Arbitrating Covered Interest Rate Parity Deviations and Bank Lending

Lorena Keller

University of Pennsylvania, The Wharton School

Motivation

- Covered interest rate parity (CIP): Pricing equation for FX forwards and swaps.
 - Return of lending in currency A = return of lending in B after hedging FX
- Large CIP deviations documented in developed economies in non-crisis period (Du, Tepper, and Verdelhan, 2018)
- Also exist in EM. I focus on Peru

• Can CIP deviations affect bank lending in a partially dollarized economy?

• Can CIP deviations affect bank lending in a partially dollarized economy?

• Propose a channel:

1 Banks arbitrage CIP deviations. To do so, they need to borrow a particular currency.

- Can CIP deviations affect bank lending in a partially dollarized economy?
- Propose a channel:
 - Banks arbitrage CIP deviations. To do so, they need to borrow a particular currency.
 - 2 But the currency banks need to borrow to arbitrage is scarce

(1) + (2) $\rightarrow \Delta$ FX composition of bank lending.

- Can CIP deviations affect bank lending?
- Propose a channel:
 - 1 Banks arbitrage CIP deviations. To do so, they need to borrow a particular currency.
 - 2 But the currency banks need to borrow to arbitrage is scarce
 - (1) + (2) $\rightarrow \Delta$ FX composition of bank lending.
- Tests this channel:
 - 1 Show banks' transactions are consistent with arbitraging CIP deviations

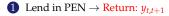
- Can CIP deviations affect bank lending in a partially dollarized economy?
- Propose a channel:
 - Banks arbitrage CIP deviations. To do so, they need to borrow a particular currency.
 - 2 But the currency banks need to borrow to arbitrage is scarce

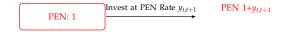
(1) + (2) $\rightarrow \Delta$ FX composition of bank lending.

- Tests this channel:
 - 1 Show banks' transactions are consistent with arbitraging CIP deviations
 - 2 Show funding in the currency required to arbitrage CIP deviations is scarce

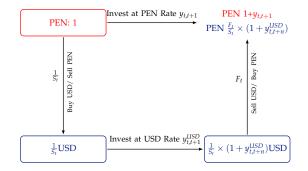
- Can CIP deviations affect bank lending in a partially dollarized economy?
- Propose a channel:
 - Banks arbitrage CIP deviations. To do so, they need to borrow a particular currency.
 - 2 But the currency banks need to borrow to arbitrage is scarce

(1) + (2) $\rightarrow \Delta$ FX composition of bank lending.


- Tests this channel:
 - 1 Show banks' transactions are consistent with arbitraging CIP deviations
 - 2 Show funding in the currency required to arbitrage CIP deviations is scarce
 - **3** Exploit heterogeneity in banks' arbitrage sensitivities to CIP dev.
- Find that banks that allocate 1pp more of their assets to arbitrage CIP deviations substitute 20% lending of scarce currency.

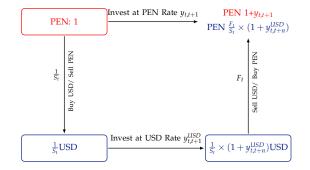

Outline

1 Review of Covered Interest Rate Parity

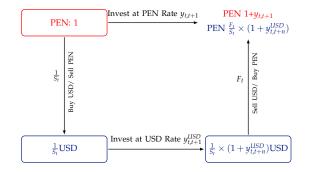

- 2 Data
- 3 Step 1: Banks' transactions are consistent with arbitraging CIP deviations
- 4 Step 2: Currency required to borrow to arbitrage is scarce
- 5 Step 3: Can arbitraging CIP deviations affect bank lending?

• Investor should be indifferent between:

- Investor should be indifferent between:
 - **1** Lend in PEN \rightarrow Return: $y_{t,t+1}$
 - 2 Lend in USD, forward to swap to PEN \rightarrow Return: $\frac{F_t}{S_t} \times (1 + y_{t,t+n}^{USD}) 1$



• Investor should be indifferent between:


1 Lend in PEN \rightarrow Return: $y_{t,t+1}$

2 Lend in USD, forward to swap to PEN \rightarrow Return: $\frac{F_t}{S_t} \times (1 + y_{t,t+n}^{USD}) - 1$

- :: CIP holds when: $y_{t,t+1} = y_{t,t+1}^{fwd} \equiv \frac{F_t}{S_t} \times (1 + y_{t,t+n}^{USD}) 1$
- Cross Currency Basis (CCB) = $y_{t,t+1}^{fwd} y_{t,t+1}$

- Investor should be indifferent between:
 - **1** Lend in PEN \rightarrow Return: $y_{t,t+1}$
 - 2 Lend in USD, forward to swap to PEN \rightarrow Return: $\frac{F_t}{S_t} \times (1 + y_{t,t+n}^{USD}) 1$
- :: CIP holds when: $y_{t,t+1} = y_{t,t+1}^{fwd} \equiv \frac{F_t}{S_t} \times (1 + y_{t,t+1}^{USD}) 1$
- Cross Currency Basis (CCB) = $y_{t,t+1}^{fwd} y_{t,t+1}$
- If banks arb. and CCB ↑: (1) Borrow PEN, (2) Buy USD spot (3) Sell USD fwd (4) Invest USD

Outline

Review of Covered Interest Rate Parity

2 Data

Step 1: Banks' transactions are consistent with arbitraging CIP deviations

4 Step 2: Currency required to borrow to arbitrage is scarce

5 Step 3: Can arbitraging CIP deviations affect bank lending?

- Sample for all datasets: February 2005 February 2013, excluding NBER crisis
- End in 2013: Confounders of a deep depreciation shock and various regulations that came with it.
- Main Datasets
 - Bank-level data: (i) Forward contracts, (ii) spot transactions, (iii) positions on money market accounts and (iv) interest rates paid on deposits
 - Pirm-bank-level data: Credit register of all loans to firms with at least USD 100,000 in loans once in the sample, from confidential reports to SBS. Over 28,000 firms.

Outline

2 Data

3 Step 1: Banks' transactions are consistent with arbitraging CIP deviations

4 Step 2: Currency required to borrow to arbitrage is scarce

5 Step 3: Can arbitraging CIP deviations affect bank lending?

- Recall: CCB = y^{fwd}_{t,t+1} y_{t,t+1} → Expect: As CCB ↑ banks (i) Borrow PEN and lend USD (ii) Hedge FX: Buy USD spot, Sell USD fwd. Stronger effects when CCB > 0.
- **Estimate:** $y_{(b)t} = \theta_{(b)0} + \theta_1 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t > 0) + \theta_2 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t \le 0) + \varepsilon_{(b)t}$

- Recall: CCB = y^{fwd}_{t,t+1} y_{t,t+1} → Expect: As CCB ↑ banks (i) Borrow PEN and lend USD (ii) Hedge FX: Buy USD spot, Sell USD fwd. Stronger effects when CCB > 0.
- Estimate: $y_{(b)t} = \theta_{(b)0} + \theta_1 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t > 0) + \theta_2 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t \le 0) + \varepsilon_{(b)t}$
- I find the expected results:

	Borrowing		Currency Exchange		Len	Lending	
	(1)	(2)	(3)	(4)	(5)	(6)	
	PEN Liab:	USD Liab:	Spot	Fwd+Swap	PEN Asset:	USD Asset:	
	Fin Obl	Fin Obl	Position	Position	CB + Gvt	Investments	
Panel A: Aggregat	te Banking Sy	stem					
OLS: Positive CCB (%)	1.22***	-2.44***	4.21***	-3.56***	-2.61**	1.34***	
	(2.60)	(-2.98)	(6.99)	(-6.59)	(-2.12)	(4.31)	
OLS: Negative CCB (%)	-0.29*	-2.98***	2.61***	-2.06***	0.37	0.67***	
	(-1.71)	(-4.52)	(5.50)	(-4.99)	(0.34)	(3.24)	
Observations	77	77	77	77	77	77	

- Recall: CCB = y^{fwd}_{t,t+1} y_{t,t+1} → Expect: As CCB ↑ banks (i) Borrow PEN and lend USD (ii) Hedge FX: Buy USD spot, Sell USD fwd. Stronger effects when CCB > 0.
- **Estimate:** $y_{(b)t} = \theta_{(b)0} + \theta_1 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t > 0) + \theta_2 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t \le 0) + \varepsilon_{(b)t}$
- I find the expected results:

	Borrowing		Currency Exchange		Lending	
	(1)	(2)	(3)	(4)	(5)	(6)
	PEN Liab:	USD Liab:	Spot	Fwd+Swap	PEN Asset:	USD Asset:
	Fin Obl	Fin Obl	Position	Position	CB + Gvt	Investments
Panel A: Aggrega	te Banking Sy	stem				
OLS: Positive CCB (%)	1.22***	-2.44***	4.21***	-3.56***	-2.61**	1.34***
	(2.60)	(-2.98)	(6.99)	(-6.59)	(-2.12)	(4.31)
OLS: Negative CCB (%)	-0.29*	-2.98***	2.61***	-2.06***	0.37	0.67***
	(-1.71)	(-4.52)	(5.50)	(-4.99)	(0.34)	(3.24)
Observations	77	77	77	77	77	77

- Recall: CCB = y^{fwd}_{t,t+1} y_{t,t+1} → Expect: As CCB ↑ banks (i) Borrow PEN and lend USD (ii) Hedge FX: Buy USD spot, Sell USD fwd. Stronger effects when CCB > 0.
- **Estimate:** $y_{(b)t} = \theta_{(b)0} + \theta_1 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t > 0) + \theta_2 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t \le 0) + \varepsilon_{(b)t}$
- I find the expected results:

	Borrowing		Currency Exchange		Lending	
	(1)	(2)	(3)	(4)	(5)	(6)
	PEN Liab:	USD Liab:	Spot	Fwd+Swap	PEN Asset:	USD Asset:
	Fin Obl	Fin Obl	Position	Position	CB + Gvt	Investments
Panel A: Aggrega	te Banking Sy	stem				
OLS: Positive CCB (%)	1.22***	-2.44***	4.21***	-3.56***	-2.61**	1.34***
	(2.60)	(-2.98)	(6.99)	(-6.59)	(-2.12)	(4.31)
OLS: Negative CCB (%)	-0.29*	-2.98***	2.61***	-2.06***	0.37	0.67***
	(-1.71)	(-4.52)	(5.50)	(-4.99)	(0.34)	(3.24)
Observations	77	77	77	77	77	77

- Estimate: $y_{(b)t} = \theta_{(b)0} + \theta_1 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t > 0) + \theta_2 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t \le 0) + \varepsilon_{(b)t}$
- We expect: As CCB ↑ banks (i) Buy USD spot and sell USD forward; (ii)borrow PEN and invest in USD. These effects should be stronger when CCB > 0.
- I find the expected results:

	Borrowing		Currency Exchange		Lending	
	(1)	(2)	(3)	(4)	(5)	(6)
	PEN Liab:	USD Liab:	Spot	Fwd+Swap	PEN Asset:	USD Asset:
	Fin Obl	Fin Obl	Position	Position	CB + Gvt	Investments
Panel B: Bank-l	evel Regressio	ons				
OLS: Positive CCB (%)	0.46	-1.11***	3.48***	-2.48***	-1.76**	1.02***
	(1.14)	(-3.25)	(6.01)	(-4.83)	(-2.39)	(2.93)
OLS: Negative CCB (%)	-0.29**	-0.87***	2.20***	-1.86***	-0.08	0.48***
	(-2.16)	(-3.23)	(4.74)	(-4.46)	(-0.08)	(3.22)
Observations	873	873	873	873	832	873

Step 1: Differences in Arbitrage across Banks?

- I compute bank-specific sensitivities to arbitrage CIP in two steps:
 - **①** First, build a proxy for banks' assets invested in arbitrage, the matched position:

 $Matched_{bt} = min\{|Spot Pos.|, |Fwd+Swap Pos.|\}$

if spot and fwd positions have different signs. More specifically:

 Matched_{bt}: Takes sign of Spot Pos. (i.e. < 0 if Fwd > 0 and Spot Pos. < 0; > 0 if Fwd < 0 and Spot > 0)

Step1: Differences in Arbitrage across Banks?

- I compute bank-specific sensitivities to arbitrage CIP in two steps:
 - **①** First, build a proxy for banks' assets invested in arbitrage, the matched position:

 $Matched_{bt} = min\{|Spot Pos.|, |Fwd Pos.|\}$

if spot and fwd positions have different signs. More specifically:

- Matched_{bt}: Takes sign of Spot Pos. (i.e. < 0 if Fwd > 0 and Spot Pos. < 0; > 0 if Fwd < 0 and Spot > 0)
- **2** Second, estimate the bank-specific sensitivity, β , with:

$$\left(\frac{\text{Matched}}{\text{Assets}}\right)_{bt} = \alpha_b + \beta_b \text{CCB}_t + \varepsilon_{bt} \qquad \forall b \in B$$
(2)

- Because ↑ CCB implies banks should sell USD Fwd, buy USD spot to arbitrage
 → If bank *b* arbitrages: β_b > 0.
- If bank 1 arbitrages more aggressively than bank 2: β₁ > β₂ > 0.

Step 1: CCB and Matched/Assets

• I find that indeed CCB and Matched/Assets are positively correlated:

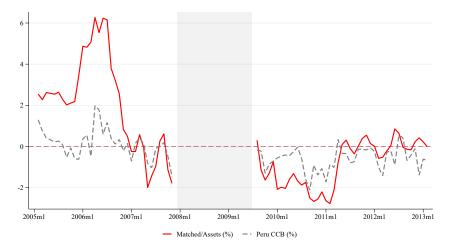


Figure: CIP deviations and Matched/Assets

Step 1: Differences in $\hat{\beta}$ s

• There is heterogeneity in the distribution of $\hat{\beta}$ s • Explanations for heterogeneity in $\hat{\beta}$ s

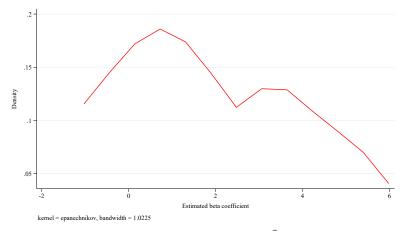


Figure: Smoothed density of the estimated $\hat{\beta}$ coefficients

Outline

Step 1: Banks' transactions are consistent with arbitraging CIP deviations

4 Step 2: Currency required to borrow to arbitrage is scarce

5 Step 3: Can arbitraging CIP deviations affect bank lending?

Step 2: Currency required to borrow to arbitrage is scarce

• I estimate a regression like the one I used before, using rate spreads and liquid assets over total assets to proxy for liquidity

	Spr	eads	Liquidit	y Ratios
	(1)	(2)	(3)	(4)
	PEN Spread:	USD Spread:	PEN Liq.	USD Liq.
	Term Dep.	Term Dep.	(% Assets)	(% Assets)
Panel A: Aggre	gate Banking Sy	stem		
OLS: Positive CCB (%)	0.36***	-0.43***	-3.13***	4.41***
	(4.12)	(-2.85)	(-2.86)	(6.82)
OLS: Negative CCB (%)	0.25***	-0.56***	-2.05***	1.51***
	(3.14)	(-3.97)	(-3.74)	(3.26)
Observations	77	77	77	77
Panel B: Ban	k-level Regressio	ons		
OLS: Positive CCB (%)	0.40***	-0.82***	-2.59***	2.66***
	(3.41)	(-4.32)	(-4.08)	(6.04)
OLS: Negative CCB (%)	0.26**	-0.49***	-1.97***	0.55
	(2.30)	(-3.77)	(-3.71)	(1.37)
Observations	872	873	873	873

Outline

Review of Covered Interest Rate Parity

2 Data

3 Step 1: Banks' transactions are consistent with arbitraging CIP deviations

4 Step 2: Currency required to borrow to arbitrage is scarce

5 Step 3: Can arbitraging CIP deviations affect bank lending?

Step 3: How can CIP arbitrage affect lending?

- Expected results:
 - \uparrow CCB \rightarrow arbitrage needs PEN funding $\rightarrow \downarrow$ PEN lending, \uparrow USD lending
 - \downarrow CCB \rightarrow arbitrage needs USD funding \rightarrow \uparrow PEN lending, \downarrow USD lending

Step 3: How can CIP arbitrage affect lending?

- Expected results:
 - \uparrow CCB \rightarrow arbitrage needs PEN funding $\rightarrow \downarrow$ PEN lending, \uparrow USD lending
 - \downarrow CCB \rightarrow arbitrage needs USD funding \rightarrow \uparrow PEN lending, \downarrow USD lending
- Estimation challenge: CCB is endogenous.
 - CIP deviations affected by macroeconomic shocks that affect:
 - Banks' decisions to lend
 - Firms' investment opportunities
 - Banks' lending decisions themselves could affect USDPEN CIP deviations as banks operate in the FX and lending markets.

Step 3: How can CIP arbitrage affect lending?

• Expected results:

- \uparrow CCB \rightarrow arbitrage needs PEN funding $\rightarrow \downarrow$ PEN lending, \uparrow USD lending
- \downarrow CCB \rightarrow arbitrage needs USD funding \rightarrow \uparrow PEN lending, \downarrow USD lending
- **Estimation challenge: CCB is endogenous** → Solutions:
 - CIP deviations affected by macroeconomic shocks that affect:
 - Banks' decisions to lend \rightarrow Compare banks with different β to arb. CIP β
 - Firms' investment opportunities \rightarrow Within firm-month analysis
 - Banks' trading and lending decisions themselves could affect USDPEN CIP deviations as banks operate in the FX and lending markets. → Instrument USDPEN CCB
- Results do not seem driven by FX

Step 3: Main Equation

• To solve these challenges, I estimate the following 2-stage model:

First stage

$$\begin{split} CCB^{\text{Peru}}_{t-1} \times \text{Arb.Intensity}_{b} &= \gamma_{0} + \gamma_{1}\text{CCB}^{ChMex}_{t-1}\text{Arb.Intensity}_{b} \\ &+ X'_{b,t-1}\Theta + \text{Bank FE} + v_{b,t-1} \end{split}$$

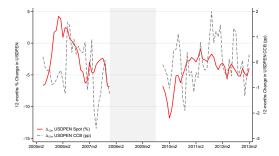
Second stage

 $y_{bft} = \alpha_0 + \alpha_1 CCB_{t-1}^{Peru} \times Arb.Intensity_b + Bank \times Firm FE$ $+ Firm \times Month FE + X'_{b,t-1}\Psi + \epsilon_{bft}$

where Arb.Intensity_{*b*}= $\hat{\beta}_b$, y_{bft} is log(Credit)*100 and X_{bt} are bank controls.

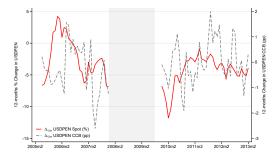
• Main coefficient of interest is α_1 .

- First stage result: Instrument is statistically significant and highly stable. St.1 Res
- Second stage as expected: ↑CCB → ↓ PEN Credit and ↑ USD Credit. OLS


	Log(PEN)	Log(USD)	Log(Total)	Ratio	Log(USD)-Log(PEN)
$CCB_{t-1}^{Peru} * (\hat{\beta})$	-24.30***	16.29***	3.377**	1.422***	40.58***
	(-3.44)	(3.50)	(2.18)	(3.40)	(3.74)
Firm * Month FE	Yes	Yes	Yes	Yes	Yes
Bank * Firm FE	Yes	Yes	Yes	Yes	Yes
Bank Controls	Yes	Yes	Yes	Yes	Yes
Observations	1,348,040	1,348,040	1,348,040	1,348,040	1,348,040

IV Results - Second Stage

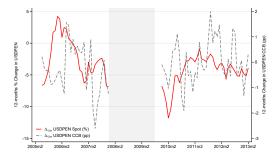
• Results robust to alternative specifications w/ FE, restricting sample to most common type of loan, restricting sample to similar banks, different clustering.


Alternative story: FX

• In EM FX has a positive correlation with CCB: PEN depreciates as \uparrow CCB

Alternative story: FX

• In EM FX has a positive correlation with CCB: PEN depreciates as \uparrow CCB



• Confounder:

- FX channel: PEN depreciates $\rightarrow \uparrow$ Savings switch to USD \rightarrow banks \downarrow PEN lending (but HH can \uparrow credit dem in PEN)
- CIP channel: As \uparrow CCB \rightarrow Banks borrow PEN to arb. \rightarrow banks \downarrow PEN lending

Alternative story: FX

• In EM FX has a positive correlation with CCB: PEN depreciates as \uparrow CCB

• Confounder:

- FX channel: PEN depreciates $\rightarrow \uparrow$ Savings switch to USD \rightarrow banks \downarrow PEN lending (but HH can \uparrow credit dem in PEN)
- CIP channel: As \uparrow CCB \rightarrow Banks borrow PEN to arb. \rightarrow banks \downarrow PEN lending
- **But**, for the FX channel to be a threat to the results: The FX channel must also be correlated with banks' abilities to arbitrage and affect more those banks with higher ability to arbitrage.

Banks that arbitrage the most are not those most affected by FX

- If banks that arbitrage more are those for which agents switch more their deposits to USD as PEN depreciates (and CCB ↑) the results could be explained by FX.
- But banks that arbitrage the most are not the ones most affected by the FX.

	Low	'	Mediu	,	Larg	
	$0\leq \hat{eta}$.	< 0.2	$1.6 \leq \hat{eta} < 2.6$		$3.5 < \hat{eta}$	
	Mean	Sd	Mean	Sd	Mean	Sd
β	0.08	0.08	2.11	0.39	4.24	0.59
Δ PEN Dep/Assets to 1% deprec. (pp)	-1.01	0.45	-0.33	0.21	-0.89	0.50
Δ USD Dep/Assets to 1% deprec. (pp)	0.53	0.24	0.83	0.05	0.62	0.76
Δ Total Dep/Assets to 1% deprec. (pp)	-0.47	0.56	0.49	0.16	-0.27	1.04

Results robust to including FX

- If banks that arbitrage more are those for which agents switch more their deposits to USD as PEN depreciates (and CCB ↑) the results could be explained by FX.
- But banks that arbitrage the most are not the ones most affected by the FX.
- Bank lending results robust to including log(FX)*(β̂)

	Log(PEN)	Log(USD)	Log(Total)	Ratio	Log(USD)-Log(PEN)
$CCB_{t-1}^{Peru} * (\hat{\beta})$	-17.03***	15.79***	5.220***	1.079***	32.82***
	(-2.88)	(3.28)	(3.06)	(2.97)	(3.32)
$\log(FX)_{t-1} * (\hat{\beta})$	-1.855***	0.356	-0.155	0.0914***	2.211***
	(-4.96)	(1.17)	(-1.37)	(4.03)	(3.67)
Firm * Date FE	Yes	Yes	Yes	Yes	Yes
Bank * Firm FE	Yes	Yes	Yes	Yes	Yes
Bank Controls	Yes	Yes	Yes	Yes	Yes
Observations	1,226,457	1,226,457	1,226,457	1,226,457	1,226,457

- CIP deviations can have important effects on bank lending in emerging economies.
- As banks arbitrage CIP deviations when the currency required to arbitrage is scarce, banks change the currency composition of their lending.
- Results suggest that CIP deviations can have the potential to affect real outcomes.

APPENDIX

CIP Deviations and Interest Rates

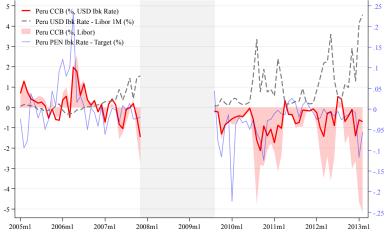


Figure: CIP deviations and Interest Rate Spreads

1 Step 1: Are banks arbitraging CIP? Do banks differ in their ability?

(2)

- I check whether banks' FX and money market transactions are consistent with arbitrage of CIP deviations.
- Formally, I estimate the following equation at the aggregate and bank-level:

$$y_{(b)t} = \theta_{(b)0} + \theta_{(b)1} \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t > 0) + \theta_2 \text{CCB}_t \cdot \mathbf{1}(\text{CCB}_t \le 0) + \varepsilon_{(b)t}$$
(4)

and check if $\hat{\theta}_1$ and $\hat{\theta}_2$ have the expected signs.

 Results: They do at the aggregate level and bank level. But less robust at the bank level → Suggests there could be bank heterogeneity.

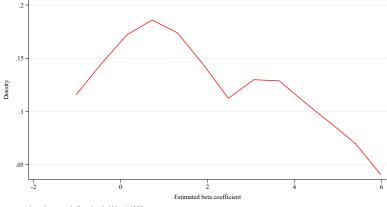
Step 1: Aggregate and Bank-Level Results

	Borre	owing	Currenc	y Exchange	Len	ding
	(1)	(2)	(3)	(4)	(5)	(6)
	PEN Liab:	USD Liab:	Spot	Fwd+Swap	PEN Asset:	USD Asset:
	Fin Obl	Fin Obl	Position	Position	CB + Gvt	Investments
Panel A: Aggrega	te Banking Sy	stem				
OLS: Positive CCB (%)	1.22***	-2.44***	4.21***	-3.56***	-2.61**	1.34***
	(2.60)	(-2.98)	(6.99)	(-6.59)	(-2.12)	(4.31)
OLS: Negative CCB (%)	-0.29*	-2.98***	2.61***	-2.06***	0.37	0.67***
	(-1.71)	(-4.52)	(5.50)	(-4.99)	(0.34)	(3.24)
Observations	77	77	77	77	77	77
Panel B: Bank-l	evel Regressio	ons				
OLS: Positive CCB (%)	0.46	-1.11***	3.48***	-2.48***	-1.76**	1.02***
	(1.14)	(-3.25)	(6.01)	(-4.83)	(-2.39)	(2.93)
OLS: Negative CCB (%)	-0.29**	-0.87***	2.20***	-1.86***	-0.08	0.48***
	(-2.16)	(-3.23)	(4.74)	(-4.46)	(-0.08)	(3.22)
Observations	873	873	873	873	832	873

Step1: Differences in Arbitrage across Banks?

- I compute bank-specific sensitivities to arbitrage CIP in two steps:
 - **1** First, build a proxy for banks' assets invested in arbitrage, the matched position:

$$Matched_{bt} = \begin{cases} -\min\{|\text{Spot Pos.}|, |\text{Fwd}+\text{Swap Pos.}|\} &, \text{ if Fwd}+\text{Swap Pos.} > 0 \land \text{Spot Pos.} < 0 \\ +\min\{|\text{Spot Pos.}|, |\text{Fwd}+\text{Swap Pos.}|\} &, \text{ if Fwd}+\text{Swap Pos.} < 0 \land \text{Spot Pos.} > 0 \\ 0 &, \text{ if sgn}(\text{Fwd}+\text{Swap Pos.}) = \text{sgn}(\text{Spot Pos.}) \end{cases}$$


2 Second, estimate the bank-specific sensitivity, β , with:

$$\left(\frac{\text{Matched}}{\text{Assets}}\right)_{bt} = \alpha_b + \beta_b \text{CCB}_t + \varepsilon_{bt} \qquad \forall b \in B$$
(5)

- If bank *b* arbitrages: $\beta_b > 0$.
- If bank 1 arbitrages more aggressively thank bank 2: β₁ > β₂ > 0.

Step 1: Differences in $\hat{\beta}$ s

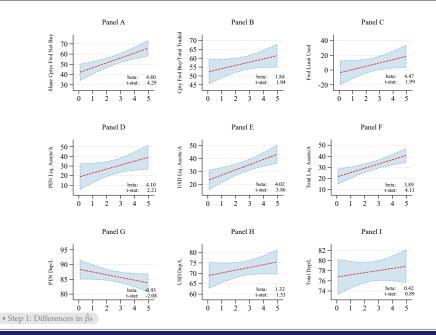
• There is heterogeneity in the distribution of $\hat{\beta}s$

kernel = epanechnikov, bandwidth = 1.0225

• I check if $\hat{\beta}$ s are effective at capturing arbitrage ability.

	Borrowing		Currenc	y Exchange	Lending	
	(1)	(2)	(3)	(4)	(5)	(6)
	PEN Liab:	USD Liab:	Spot	Fwd+Swap	PEN Asset:	USD Asset:
	Fin Obl	Fin Obl	Position	Position	CB + Gvt	Investments
Panel A: High	arbitrage ban	ks				
OLS: Positive CCB (%)	1.20***	-2.21***	5.42***	-4.31***	-2.52**	0.80**
	(2.79)	(-3.34)	(5.83)	(-4.82)	(-2.28)	(2.43)
OLS: Negative CCB (%)	-0.23*	-2.05***	3.74***	-3.36***	-0.22	0.54***
	(-1.78)	(-4.36)	(4.86)	(-4.59)	(-0.19)	(3.22)
Observations	479	479	479	479	476	479
Panel B: Low-	arbitrage bank	(S				
OLS: Positive CCB (%)	-0.46	0.27	1.05***	-0.18***	-0.77**	1.28***
	(-1.11)	(0.66)	(5.40)	(-3.06)	(-2.13)	(3.14)
OLS: Negative CCB (%)	-0.38	0.55**	0.32**	-0.06	0.12	0.41**
	(-1.60)	(2.05)	(2.11)	(-0.67)	(0.18)	(2.48)
Observations	394	394	394	394	356	394

Explanations for arbitrage heterogeneity


• Why can some banks arbitrage (β) more than others?

- Constraints on the balance sheet
 - Distance to capital control limits
 - Liquidity in funding
- 2 Type of client in the forward market
 - If demand in fwd market goes **against market flow** \rightarrow easier to unwind position

Methodology:

- 1 Compute averages across time of bank indicators regarding these characteristics
- 2 Regress these on banks' arbitrage intensities

Arbitrage intensity and bank indicators

Step 1: Are banks arbitraging CIP? Do banks differ in their ability?

2 Step 2: Do banks face funding constraints?

Step 3: How can CIP arbitrage affect lending

Step 2: Banks face constraints when funding arbitrage?

- To engage in arbitrage banks need funding in PEN or USD
- How do they fund their CIP arbitrage? If banks are unconstrained, no trade-off between arbitrage and lend. If constrained, their decision depends on marginal profit of the competing business lines.
- Under liquidity constraints and CIP arbitrage → Lending in the currency required to do arbitrage is likely to fall.
 - If sourcing is internal: direct reallocation of funds from lending to trading.
 - If sourcing is external: pay higher rates for deposits \rightarrow charge higher lending rate \rightarrow less loans in equilibrium.

Evidence of liquidity constraints

• I estimate a regression like the one I used before, using rate spreads and liquid assets over total assets to proxy for liquidity

	Spr	eads	Liquidit	y Ratios
	(1)	(2)	(3)	(4)
	PEN Spread:	USD Spread:	PEN Liq.	USD Liq.
	Term Dep.	Term Dep.	(% Assets)	(% Assets)
Panel A: Aggre	gate Banking Sy	stem		
OLS: Positive CCB (%)	0.36***	-0.43***	-3.13***	4.41***
	(4.12)	(-2.85)	(-2.86)	(6.82)
OLS: Negative CCB (%)	0.25***	-0.56***	-2.05***	1.51***
	(3.14)	(-3.97)	(-3.74)	(3.26)
Observations	77	77	77	77
Panel B: Ban	k-level Regressio	ons		
OLS: Positive CCB (%)	0.40***	-0.82***	-2.59***	2.66***
	(3.41)	(-4.32)	(-4.08)	(6.04)
OLS: Negative CCB (%)	0.26**	-0.49***	-1.97***	0.55
-	(2.30)	(-3.77)	(-3.71)	(1.37)
Observations	872	873	873	873

- When banks require PEN (USD) to arbitrage, liquidity in PEN (USD) is scarce
- Note: It is not important where this scarcity comes from. All that is required is that this happens simultaneously.

Step 1: Are banks arbitraging CIP? Do banks differ in their ability?

2 Step 2: Do banks face funding constraints?

3 Step 3: How can CIP arbitrage affect lending?

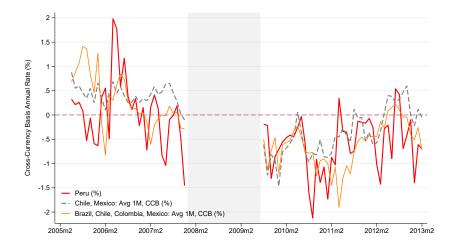
Step 3: How can CIP arbitrage affect lending?

• Expected results:

- \uparrow CCB \rightarrow arbitrage needs PEN funding $\rightarrow \downarrow$ PEN lending, \uparrow USD lending
- \downarrow CCB \rightarrow arbitrage needs USD funding \rightarrow \uparrow PEN lending, \downarrow USD lending
- Estimation challenge: CCB is endogenous
- Solutions:
 - **1** Compare lending on the same month across banks with different $|\hat{\beta}|$
 - **2** Control for shocks in Peru instrumenting Peru's CCB with CCB of Chile and Mexico.
 - **3** Control for changes in firms' inv. opportunities using within firm-month analysis.
 - 4 Analyze consequences of variable correlated with CCB: FX

• To solve these challenges, I estimate the following 2-stage model:

$$\begin{split} \text{CCB}_{t-1}^{\text{Peru}} \times \text{Arb.Intensity}_b &= \gamma_0 + \gamma_1 \text{CCB}_{t-1}^{\text{ChMex}} \text{Arb.Intensity}_b \\ &+ X'_{b,t-1} \Theta + \text{Bank FE} + v_{b,t-1} \end{split}$$


$$y_{bft} = \alpha_0 + \alpha_1 \overline{CCB_{t-1}^{\text{Peru}} \times \text{Arb.Intensity}_b} + \text{Bank} \times \text{Firm FE}$$

+ Firm × Month FE + $X'_{b,t-1}\Psi + \epsilon_{bft}$

where Arb.Intensity_b= $\hat{\beta}_b$, y_{bft} is log(Credit)*100 and X_{bt} are bank controls.

• Main coefficient of interest is α_1 .

Step 3: First Stage Validity

• Instrument is statistically significant and highly stable.

Step 3: First Stage Validity

• Instrument is statistically significant and highly stable.

	(1)	(2)	(3)
$\text{CCB}_{t-1}^{\text{Chile,Mex}}*(\hat{\beta})$	0.811*** (5.43)	0.591*** (4.33)	0.576*** (4.22)
Bank Controls	No	No	Yes
Bank FE	No	Yes	Yes
F Observations	29.45 1348040	18.77 1348040	17.79 1348040

Second Stage Results: IV Results

• **Expected results:** \uparrow CCB $\rightarrow \downarrow$ PEN Credit and \uparrow USD Credit.

	Log(PEN)	Log(USD)	Log(Total)	Ratio	Log(USD)-Log(PEN)
$CCB_{t-1}^{Peru} * (\hat{\beta})$	-24.30***	16.29***	3.377**	1.422***	40.58***
	(-3.44)	(3.50)	(2.18)	(3.40)	(3.74)
Firm * Month FE	Yes	Yes	Yes	Yes	Yes
Bank * Firm FE	Yes	Yes	Yes	Yes	Yes
Bank Controls	Yes	Yes	Yes	Yes	Yes
Observations	1,348,040	1,348,040	1,348,040	1,348,040	1,348,040

Second Stage Results: OLS Results

• OLS estimates are consistently smaller than IV estimates.

	Log(PEN)	Log(USD)	Log(Total)	Ratio	Log(USD)-Log(PEN)
$CCB_{t-1}^{Peru} * (\hat{\beta})$	-6.693***	3.430***	0.409	0.361***	10.12***
1 1	(-3.48)	(3.05)	(0.89)	(3.35)	(3.82)
Firm * Month FE	Yes	Yes	Yes	Yes	Yes
Bank * Firm FE	Yes	Yes	Yes	Yes	Yes
Bank Controls	Yes	Yes	Yes	Yes	Yes
Firm Cluster	18,374	18,374	18,374	18,374	18,374
Month Cluster	77	77	77	77	77
Observations	1,348,040	1,348,040	1,348,040	1,348,040	1,348,040
Adjusted R2	0.74	0.81	0.72	0.81	0.82

Du, W., A. Tepper, and A. Verdelhan (2018). Deviations from covered interest rate parity. *The Journal of Finance* 73(3), 915–957.