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Abstract

We study the macroeconomic implications of asymmetric information in capital markets.

We build a quantitative capital-accumulation model in which capital is traded in

illiquid markets, with sellers having more information about capital quality than buyers.

Asymmetric information distorts the terms of trade for sellers of high-quality capital,

who list higher prices and are willing to accept lower trading probabilities to signal

their type. Led by the model’s predictions, we measure the distortions from asymmetric

information by studying the relationship between listed prices and trading probabilities

in a unique dataset of individual capital units listed for trade. By combining the

empirical measurement with the model, we show that information asymmetries can

play a quantitatively large role during economic crises when the degree of asymmetric

information deteriorates.
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1 Introduction

Information asymmetries are a prominent feature of real asset markets. As considered in

Akerlof (1970)’s seminal work, capital units are heterogeneous in their qualities and sellers

tend to have an informational advantage over buyers. Given that information asymmetries

can have important implications for allocations in the capital market, a key question is how

these microlevel distortions affect investment and economic activity at the macro level.

In this paper, we study the aggregate effects of asymmetric information by combining

a quantitative capital-accumulation model with microlevel data on capital markets. Our

approach is motivated by two ideas. First, empirical evidence shows that capital markets are

illiquid, with capital units remaining listed for significant periods before being traded (e.g.,

Ramey and Shapiro, 2001). Second, theory indicates that in illiquid markers, asymmetric

information distorts the behavior of high-quality capital sellers, who signal their type by listing

higher prices and accepting lower trading probabilities (Guerrieri, Shimer, and Wright, 2010).

Together, these findings suggest that the distortions that arise from asymmetric information

can be measured by studying the liquidity of different capital units listed for trade.

To implement this approach, we begin by developing a capital-accumulation model

with asymmetric information and illiquid capital markets. We then measure the degree of

asymmetric information using microlevel data on capital units listed for trade and combine it

with the model to quantify the aggregate effects of asymmetric information. Our analysis

indicates that even in economies close to full information, information asymmetries can

play a quantitatively large macroeconomic role during economic crises when the degree

of asymmetric information increases. These effects stem from the impact of asymmetric-

information distortions on aggregate investment, the share of idle capital, and the quality of

employed capital.

Our model embeds three key ingredients in the neoclassical capital-accumulation framework.

First, capital units are heterogeneous in quality (i.e., their output in production). Second,

information about capital quality is privately held by the owner of a capital unit. Buyers have

access to an information-revealing technology that, with a certain probability, reveals the

true quality of the unit. The accuracy of this information technology governs the degree of

asymmetric information in the economy. Third, the trade of capital takes place in decentralized

markets, in which sellers announce a capital quality and choose at what price to list their
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capital units, and buyers choose at what price and announced quality to search. We provide

conditions whereby the model features a unique fully revealing separating equilibrium, in

which sellers announce the true quality of their capital. This separating equilibrium resembles

that of the classical model of Spence (1973), in which low types have a high marginal cost

of effort and choose not to mimic the education levels of high types. In the context of asset

markets, the equivalent marginal effort exerted by high-quality types corresponds to selling

with a lower probability: Insofar as there is a probability of buyers detecting the true capital

quality, high-quality sellers have a lower marginal cost of not trading than low-quality sellers.

Using the model, we show how the distortions that arise from asymmetric information

can be linked to cross-sectional patterns of capital units listed for trade. When capital

quality is observed by buyers, high-quality capital attracts more buyers and has a higher

selling probability than low-quality capital. However, when capital quality is unobserved by

buyers, high-quality capital sellers choose to signal their quality and separate from sellers

of low-quality assets. They do so by listing high-quality capital at such high prices that

sellers of low-quality capital would not want to mimic their pricing behavior; in turn, higher

prices attract fewer buyers and result in lower trading probabilities. The less accurate buyers’

information technology, the larger the price sellers of high-quality capital choose to separate

from low-quality capital, and the larger the covariance between capital units’ listed prices

and their expected duration on the market. Therefore, by studying the empirical relationship

between listed prices and duration, a researcher can measure the degree of information

asymmetry in capital markets.

We then apply our proposed measurement approach to a novel dataset of capital units

listed for trade. Our dataset contains the history of nonresidential structures (i.e., retail and

office space) listed for sale and rent in Spain from one of Europe’s biggest online real estate

platforms, Idealista. The data contain rich information on each unit, including the listed

price, exact location, size, age, and other characteristics. Given the dataset’s panel structure,

we can compute each unit’s duration on the platform and the search intensity it attracted,

measured by the number of clicks and emails received in a given month.

We document a set of empirical facts consistent with the presence of distortions arising

from asymmetric information in capital markets. First, we show that the component of

capital units’ listed prices that reflects publicly observed characteristics in the listing (i.e., the

predicted price from a hedonic regression of prices on the set of characteristics included in
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each listing in a narrowly defined market) is negatively correlated with the unit’s duration on

the market. This empirical fact is consistent with the model’s prediction for observed capital

quality: Since predicted prices are obtained from observable characteristics, properties with

better characteristics (which are reflected by a higher predicted price) have a shorter average

duration on the market. Second, we show that the component of a capital unit’s price that

is orthogonal to the characteristics publicly observed in the listing (i.e., the residual from

the hedonic regression described above) is positively related to the unit’s duration on the

market. This fact is consistent with the presence of asymmetric information about capital

characteristics not observed in the listing and the fact that owners of higher capital quality

choose higher prices to signal their type, which are associated with lower trading probabilities.

Furthermore, our measurement indicates that the degree of asymmetric information features

cyclical properties. In particular, the relationship between residual prices and duration exhibits

a strong comovement with economic activity, displaying a sharp increase during the Euro

crisis.

Finally, we integrate our empirical measurements with the model to quantify the aggregate

effects of asymmetric information. Our model features three main channels through which

information asymmetries in capital markets affect aggregate output. First, higher information

asymmetries lead to a lower capital stock. This is because higher information asymmetries

are associated with lower revenue for sellers of high-quality capital and, consequently, lower

returns to producing capital goods. Second, higher information asymmetries lead to a higher

unemployment rate of capital. As information asymmetries increase, so do the listed prices of

high-quality capital, which decreases the selling probability and increases the unemployment

duration of listed units. Third, a higher degree of asymmetric information is associated

with a lower average quality of employed capital. This is because information asymmetries

disproportionally affect the allocation for sellers of high-quality capital, who have to prevent

mimicking by lower types through higher prices and lower trading probabilities.

By disciplining the degree of asymmetric information in the model with the cross-sectional

patterns of capital units listed for trade, we find that changes in the degree of asymmetric

information have a large macroeconomic effect. Our measurement indicates that in the steady

state, the economy features moderate levels of asymmetric information, with the probability of

a lemon’s going unnoticed being close to 2%. However, the economy displays large aggregate

responses to changes in information technologies. For instance, an unanticipated decline in
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the accuracy of information technologies akin to that measured during the Euro crisis (with

a 2 p.p. increase in the probability of a lemon’s going unnoticed) leads to a more than 2%

decline in economic activity followed by a slow recovery. This suggests that policies designed

to alleviate information asymmetries in asset markets (e.g., Guerrieri and Shimer, 2014) can

play an important role in stabilizing economic downturns.

Related Literature First, our paper is related to the literature that studies asymmetric

information in asset markets, pioneered by Akerlof (1970); Stiglitz and Weiss (1981); and

Myers and Majluf (1984), among others. Our framework particularly builds on theories that

study these frictions in decentralized markets (e.g., Guerrieri et al., 2010; Delacroix and

Shi, 2013; Chang, 2018). Our paper is also related to the body of work on the effects of

asymmetric information in the macroeconomy (e.g., Eisfeldt, 2004; Kurlat, 2013; Bigio, 2015).

We contribute to this literature by using a “micro-to-macro” approach, which uses microlevel

data on assets listed for trade to measure the degree of asymmetric information, and study

their macroeconomic implications.

Second, the paper is related to the literature on misallocation (e.g., Hsieh and Klenow,

2009; Restuccia and Rogerson, 2008); capital reallocation (e.g., Ramey and Shapiro, 2001;

Eisfeldt and Rampini, 2006; Lanteri, 2018; Eisfeldt and Shi, 2018); and asset specificity (e.g.,

Caballero and Hammour, 1998; Kermani and Ma, 2022). We contribute to this literature by

showing that asymmetric information can constitute a sizable source of capital illiquidity and

affect the allocation of capital in the economy.1

Third, our paper is related to the literature that studies the role of search-and-matching

frictions in asset markets. This includes a large body of work on financial markets (see Lagos,

Rocheteau, and Wright, 2017, and references therein); housing markets (e.g., Wheaton, 1990;

Krainer, 2001; Caplin and Leahy, 2011; Piazzesi, Schneider, and Stroebel, 2020); and physical

capital markets (e.g., Kurmann and Petrosky-Nadeau, 2007; Gavazza, 2011; Cao and Shi,

2017; Ottonello, 2017; Wright, Xiao, and Zhu, 2018, 2020; Cui, Wright, and Zhu, 2021). We

contribute to this literature by showing how search-and-matching frictions play a central role

in lemon markets, both to measure the degree of asymmetric information in these markets

and to account for their aggregate effects.

1The form of misallocation we study builds on that of Gavazza (2016), who uses business-aircraft data to
study the welfare effects of trading frictions in the allocation of assets.
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Layout The rest of the paper is organized as follows. Section 2 presents the model. Section

3 studies the effects of asymmetric information in capital markets and discusses how the

degree of asymmetric information can be measured from micro-data moments. Section 4

applies this measurement to our dataset and presents a set of empirical facts linked to model

predictions. Section 5 combines the model and empirical measurement and quantifies the

aggregate effects of asymmetric information, and section 6 concludes.

2 Model

2.1 Environment

Time is discrete and infinite, and there is no aggregate uncertainty. Final goods are perishable

and can be used for consumption or investment. Capital goods are storable and can be used,

together with labor services, to produce final goods.

Agents, preferences, and technology The economy is populated by a unit mass of

identical households and a unit mass of firms owned by the representative household.

Households have preferences over consumption described by the lifetime utility function

E0

∞∑
t=0

βtu(ct, ht)γ
t
n, where ct and ht denote per capita consumption and hours worked in

period t, respectively; γn ≥ 1 denotes the gross population growth within the representative

household;2 u(c, h) = log(c)−$ 1
1+ξ

h1+ξ with $ > 0 and ξ > 0; β ∈ (0, 1) is the subjective

discount factor; and Et denotes the expectation conditional on the information set available

in period t. Households have access to a linear technology to produce new capital goods using

final goods.

A continuum of identical firms with measure one have access to a constant-returns-to-scale

technology to produce final goods using capital and labor as inputs, yjt = ft(Kjt, ljt) ≡

Kαjt(γtljt)1−α, where yjt, Kjt, and ljt denote the output, capital input, and labor input of firm

j in period t, respectively; γ ≥ 1 denotes the exogenous growth rate of labor-augmenting

technology in the economy; and α ∈ (0, 1). Each period, with i.i.d. probability ϕ, a firm

receives an exit shock and must exit the economy; exiting firms cannot produce and transfer

their capital holdings to households at the end of the period. After exit shocks are realized, a

2We include population and technology growth in the model to better match the investment rates observed
in the data, which are sizable flows for capital markets.
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new mass ϕ of firms enter the economy. In this setup, operating firms will be capital buyers

and households capital sellers (selling new capital or capital from exiting firms).

The model features three main departures from the neoclassical capital-accumulation

model: heterogeneity in capital quality, a decentralized market for capital, and information

frictions. We describe each of these elements next.

Capital-quality heterogeneity Studying information asymmetries in capital markets

requires introducing heterogeneity in these goods. To do so, we consider an environment in

which the capital stock is composed of infinitesimal indivisible units (i.e., capital goods are

available to trade in integer quantities only, and agents hold a mass of these units). Capital

units are heterogeneous in two dimensions: an “observed quality” ω ∈ Ω ≡ [ω1, . . . , ωNω ],

with ωr < ωs for r < s, and an “unobserved quality” a ∈ A ≡ [a1, . . . , aNa ], with ar < as

for r < s. While the observed quality ω of a unit is assumed to be perfectly observable

by all market participants, unobserved quality a is the private information of the owner of

the capital unit and is the source of asymmetric information in the model, which is further

discussed below. The capital services a capital unit provides are determined by these qualities,

with the capital services of a capital unit i being given by ωiai. Capital services employed

as input in production by firm j are then given by Kjt =
∑

ω∈Ω

∑
a∈Aωakjt+1(ω, a), where

kjt+1(ω, a) is the mass of capital of quality (ω, a) employed in production by firm j in period

t. In our application, we interpret capital quality broadly as representing any characteristic

that increases the marginal product of capital. For example, in the case of retail space, capital

quality can capture the physical conditions of the property, the ability of the store to attract

customers, or the atmosphere of the space for customers.

Terms of trade in the decentralized market for capital In models of asymmetric

information, the presence of search-and-matching frictions can play an important role in

determining the equilibrium because they provide a signaling device to sellers, who can choose

prices that reflect their different marginal benefits of trading (see, for example, Guerrieri

et al., 2010). Based on the empirical evidence of studies that characterize the trading process

in capital markets (e.g., Gavazza, 2011; Ottonello, 2017), we assume that capital goods are

traded in a decentralized market subject to search-and-matching frictions.

The decentralized capital market is organized in a continuum of submarkets, indexed
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by (ω, â, q), where ω is the observed quality, â is the unobserved quality announced by the

seller, and q is the listed price. Search is directed: Sellers can choose at what announced

unobserved quality and price to list their capital units; buyers can choose at what observed

quality, announced unobserved quality, and price to search, and dedicate labor to search and

match.3 In each submarket (ω, â, q), the market tightness, denoted by θt(ω, â, q), is defined

as the ratio between buyers’ hours of search and the mass of capital listed by sellers.4 In

visiting submarket (ω, â, q) in period t, sellers face a probability p(θt(ω, â, q)) of finding a

potential buyer for their unit and buyers match with a mass µt(θt(ω, â, q)) per hour of search

of potential units to buy, where p(θ) = min{mθ1−η, 1} with η ∈ (0, 1).5

When sellers list a capital unit in submarket (ω, â, q), they commit to allowing potential

buyers to inspect the unit using the technology described below. If no new information about

the capital quality is revealed during the inspection or if the inspection indicates that capital

quality is not below that announced (i.e., a′ ≥ â), sellers and buyers commit to trade the

capital unit at the listed price q. If the inspection reveals that the true quality of the capital

a′ is lower than the announced quality (i.e., a′ < â) and there are gains from trade between

the buyer and seller, then trade occurs at the inspection-adjusted price qPt (ω, a′, â, q) ≤ q.

Here, we assume that the transacted price qPt (.) results from a Nash bargaining problem.6

In Appendix A, we relax this assumption and show that the equilibrium characterization

remains the same under general post-inspection trading protocols. Finally, if the inspection

reveals that the quality of the capital a′ is such that a′ < â and there are no gains from trade,

the match is dissolved without trade.

Finally, since our main focus is on capital markets, we assume that final goods and labor

3The assumed directed-search framework is similar to that used by Shimer (1996), Moen (1997), and
Menzio and Shi (2011) in the labor market; and Ottonello (2017) in the capital market. For a recent survey
of the literature on directed search in labor, housing, and monetary economics, see Wright, Kircher, Julien,
and Guerrieri (2019).

4Following the directed search literature (see, e.g., Moen, 1997; Menzio and Shi, 2011), in submarkets
that are not visited by any seller, θt(ω, â, q) is an out-of-equilibrium conjecture that helps determine the
equilibrium.

5The functional form of the matching probability can be obtained from a Cobb-Douglas matching technol-
ogy Mt(k

s(ω, â, q), γtvs(ω, â, q)) = min{m(ks(ω, â, q))η(γtvs(ω, â, q))1−η, ks(ω, â, q)}, where ks(ω, â, q) and
vs(ω, â, q) denote the mass of capital listed by sellers and hours dedicated by buyers to search in submarket
(ω, â, q), respectively, and m > 0; given the labor-augmenting technology in the production of final goods, the
labor-augmenting technology in the matching sector is necessary for a balanced-growth path.

6More specifically, we assume that the transacted price is the minimum between the listed price and the
bargained price, which reflects the commitment to sell at the listed price if favorable to the buyer. The only
assumption we impose on the bargaining problem is that the seller’s bargaining power φ satisfies φ ≤ η, so
that the equilibrium bargained price is weakly lower than the price sellers would obtain when announcing the
quality truthfully.
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services are traded in Walrasian markets.

Information structure An information asymmetry arises because capital quality has a

component that is private information to its owner, ai. We are interested in studying how the

degree of asymmetric information in the economy affects capital accumulation. For this, we

assume that after having searched and matched with a capital unit and before purchasing it,

buyers have access to a technology to inspect the unit. Similar to Menzio and Shi (2011), this

information-revealing technology is such that in any submarket (ω, â, q), there is a probability

ψ that the buyer learns the true type (ω, a) of the capital good and a probability 1 − ψ

that the inspection is uninformative. Hence, ψ parameterizes the degree of asymmetry of

information in the economy, nesting a full-information case when ψ = 1 and a case with

complete asymmetric information when ψ = 0 (since there cannot be any discovery of the

unobserved quality).

Information asymmetry requires that we specify agents’ beliefs about the type of capital

available for sale, given a listed price and observable characteristics. We assume that all

potential buyers have the same beliefs. We describe beliefs by the mapping πt(a|ω, â, q) :

Ω×A2 × R+ → [0, 1], which denotes the probability that a unit of capital is of unobserved

type a, given observed type ω, announced quality â, and price q. After purchasing a unit

of capital, buyers obtain full information about its quality. Sellers are assumed not to have

recall on the capital quality of their units sold.

Timing The timing of events within each period is as follows:

(i) Exit shocks are realized, and a mass ϕ of new firms enter the economy.

(ii) Households choose the capital units they list for sale, their prices, and their announced

qualities, which are perfectly observed by all agents. Incumbent non-exiting firms and

new firms search and match with potential capital units to buy.

(iii) Firms inspect the matched capital units and decide whether to buy.

(iv) Incumbent non-exiting firms and new firms hire workers, produce final goods, and pay

wages. Firms that exit the economy transfer their capital to households. All agents

holding capital units pay a maintenance cost δ per unit of effective capital in terms of

final goods. Households invest in new capital units and consume.
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2.2 Optimization

Households Each period, households produce new capital goods. They do so by choosing

their total investment in terms of final goods it and the resulting quality of new capital is

exogenous and random, governed by the distribution function g : Ω × A → [0, 1], which

describes the measure of new capital of each quality. Since households do not have access to

a production technology, their capital revenue comes from selling these newly produced units

of capital, together with unemployed capital transferred by exiting firms, to operating firms.

The evolution of capital holdings by households is then given by

kHt+1(ω, a) = (1− p(θt(ω, âHt(ω, a), qHt(ω, a)))kHt(ω, a) + g(ω, a)it + ϕKFt(ω, a), (1)

where kHt+1(ω, a) denotes capital of quality (ω, a) held by the household at the end of period

t; âHt(ω, a) and qHt(ω, a) denote the household’s choice of announced capital quality and price

to list units of quality (ω, a); p(θt(ω, âHt(ω, a), qHt(ω, a)))kHt(ω, a) denotes the mass of capital

of type (ω, a) matched with buyers given the household’s choice of submarket; and KFt(ω, a)

denotes the aggregate capital of quality (ω, a) held by firms at the beginning of period t—a

fraction ϕ of which is transferred to households by firms that exit. For expositional simplicity,

equation (1) abstracts from households that list a unit of capital in multiple submarkets and

from capital not being sold following an inspection that reveals a different quality from that

announced (Appendix A shows that this does not happen in equilibrium).

We write the household’s optimization problem recursively. At the beginning of a period,

the individual state for the household is a matrix of its capital holdings, given by k ≡
k(ω1, a1) ... k(ωNω , a1)

... ... ...

k(ω1, aNa) ... k(ωNω , aNa)

. The recursive problem of the representative household is then

given by

VHt(k) = max
{c,h,{k′(ω,a),â(ω,a),q(ω,a)},i≥0}

u(c, h)γtn + βVHt+1(k′), (2)

subject to the budget constraint

cγtn + i+ δ
∑
ω∈Ω

∑
a∈A

ωa [(1− p(θ(ω, â(ω, a), q(ω, a))))k(ω, a) + ϕKFt(ω, a)]

=
∑
ω∈Ω

∑
a∈A

[
(1− ψ)q(ω, a) + ψqP (ω, a, â(ω, a), q)

]
p(θ(ω, â(ω, a), q(ω, a)))k(ω, a) + wthγ

t
n +DivFt
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and the law of motion for capital

k′(ω, a) = (1− p(θ(ω, â(ω, a), q(ω, a))))k(ω, a) + ig(ω, a) + ϕKFt(ω, a),

where DivFt denotes the dividends transferred by firms in period t. The optimal level of

investment (provided that i > 0) is characterized by the Euler equation

1 =
∑
ω∈Ω

∑
a∈A

g(ω, a)λt(k)νs
t+1(ω, a,k),

where λt(k) ≡ βγn
uct+1(kHt+1(k))

uct(k)
is the household’s discount factor, kHt+1(k) is the matrix

of policy functions for capital accumulation associated with problem (2), and νs
t (ω, a,k) ≡

∂VHt(k)
∂k(ω,a)

1
uct(k)γtn

is the household’s marginal value of capital of type (ω, a) measured in final

goods, which satisfies the following recursive problem:

νs
t (ω, a,k) = max

{â,q}
p(θt(ω, â, q))((1− ψ)q + ψqP (ω, a, â, q))

+ (1− p(θt(ω, â, q))) (λt(k)νs
t+1(ω, a, kHt+1(k))− δωa). (3)

Finally, the optimal labor supply is given by the first-order condition uht(k) = wt.

Firms Firms accumulate capital by buying it from sellers in the decentralized market,

which requires paying for hours of labor to search for potential units that are a good match

for the firm. Abstracting from the possibility that firms might want to sell capital (which, as

shown in Appendix A, does not occur in equilibrium), their capital holdings evolve according

to

kjt+1(ω, a) =
∑
â∈A

∫
q∈R+

ιt(a|ω, â, q)µt (θ (ω, â, q)) vjt(ω, â, q) dq + kjt(ω, a), (4)

where vjt(ω, â, q) denotes the hours of work hired by firms to search and match with sellers in

submarket (ω, â, q); µt (θt (ω, â, q)) vjt(ω, â, q) the mass of capital matched by these workers;

and ιt(a|ω, â, q) the share of capital units of quality a found in submarket (ω, â, q).

Conditional on not exiting, the recursive problem of the firm is given by

VFt(k) = max
{l,{v(ω,â,q)≥0},{k′(ω,a)}}

Ea[div + Λt,t+1((1− ϕ)VFt+1(k′) + ϕV exit
t+1 (k′))], (5)
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subject to the definition of dividends (in terms of final goods transferred to households)

div =

(∑
ω∈Ω

∑
a∈A

ωak′(ω, a)

)α

(γtl)1−α − wtl − δ
∑
ω∈Ω

∑
a∈A

ωak′(ω, a)

−
∑
ω∈Ω

∑
â∈A

∫
q∈R+

[(ψ
∑
a∈A

ιt(a|ω, â, q)qPt (ω, a, â, q) + (1− ψ)q)µt (θ (ω, â, q)) + wt]v(ω, â, q) dq

and the law of motion for capital

k′(ω, a) =
∑
â∈A

∫
q∈R+

ιt(a|ω, â, q)µt (θ (ω, â, q)) v(ω, â, q) dq + k(ω, a), (6)

where Ea[·] denotes the expectation under the belief function πt(a|ω, â, q); Λt,t+1 denotes house-

holds’ discount factor; wt denotes the wage rate in period t; V exit
t (k) ≡

∑
ω∈Ω

∑
a∈Ak(ω, a)νs

t (ω, a,KHt)

denotes the household’s value of exiting firms with capital holdings k; and KHt denotes the

matrix of capital holdings by households in period t, which is taken as given by individual

firms. Problem (5) abstracts from the scenario in which, after the inspection, trade does not

occur, and there are no gains from trade for quality a′ < â (Appendix A provides general

conditions for qPt (ω, a, â, q) for which this does not happen in equilibrium).

The following result characterizes firms’ optimal choices of capital and labor.

Proposition 1. The firm’s value function VFt(k) is linear in capital stocks—i.e., it can be

expressed as VFt(k) =
∑

ω∈Ω

∑
a∈A ν

b
t (ω, a)kt(ω, a). This marginal value of capital holdings

satisfies the recursive problem

νb
t (ω, a) = (Zt − δ)ωa+ Λt,t+1

[
(1− ϕ)νb

t+1(ω, a) + ϕνs
t+1(ω, a,KHt+1)

]
, (7)

where Zt ≡ α
(
γt(1−α)
wt

) 1−α
α

. Labor demand in the production of final goods is linear in Kt and

given by lt(Kt) = Kt ×
(

(1−α)γt(1−α)

wt

) 1
α

.

Proof. All proofs are relegated to Appendix A.1. �

Proposition 1 implies that the buyer’s value of a capital unit of a given quality does not

depend on other capital holdings. In particular, the value of capital with quality (ω, a) is

given by the utility flow generated by its production plus its continuation value, which takes

into account the probability of exiting production and becoming a seller of capital.
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Finally, a firm’s optimal search activity across different submarkets is characterized by

vt(ω, â, q)

((1− ψ)q + ψEa(qP (ω, a, â, q)|ω, â, q))︸ ︷︷ ︸
Expected price

+
wt

µt(θ(ω, â, q))︸ ︷︷ ︸
Search cost

−Ea
(
νb
t (ω, a)|ω, â, q

)
︸ ︷︷ ︸

Expected value


+

= 0,

(8)

for all (ω, â, q) (with (x)+ ≡ max(x, 0)), which shows that firms are willing to search for

capital in a given submarket if the expected marginal cost of purchasing capital in that

market, including its expected price and search cost, does not exceed its expected value. Given

that submarkets differ in their price q, firms are indifferent between buying capital with the

same expected value in different submarkets, insofar as units with a higher price have an

associated higher matching rate µt(ω, â, q).

2.3 Equilibrium

Definitions We now define the economy’s competitive equilibrium and two types of equilib-

ria: pooling and separating. We restrict attention to pure strategy equilibria, which characterize

the unique solution under the D1 equilibrium refinement.

Definition 1. Competitive Equilibrium

Given initial conditions KH0 and (kj0)j∈[0,1], a perfect Bayesian equilibrium under asym-

metric information consists of a sequence of household value functions {VHt(k), νs
t (ω, a,k)}

and policy functions {ct(k), ht(k), it(k), kHt+1(k), ât(ω, a,k), qt(ω, a,k)}; firm value func-

tions {VFt(k), νb
t (ω, a)} and policy functions {lt(k), divt(k), kFt+1(k), {vt(ω, â, q)}}; market

tightness functions {θt(ω, â, q)}; belief functions {πt(a|ω, â, q)}; wages {wt}; discount factors

{Λt,t+1}; and aggregate variables {KHt+1,KFt+1, DivFt, ιt(a|ω, â, q)} for all t ≥ 0 such that

(i) Given wages and market tightness, the household’s value functions VHt(k) and νs
t (ω, a,k)

solve (2) and (3) with associated policy functions ct(k), it(k), kHt+1(k), ât(ω, a,k), and

qt(ω, a,k) for all (ω, a) ∈ Ω×A.

(ii) Given wages, market tightness, and discount factors, a firm’s value functions VFt(k)

and νb
t (ω, a) solve (5) and (7) with associated policy functions lt(k), kFt+1(k), and

{vt(ω, â, q)} for all (ω, â) ∈ Ω×A.

(iii) The market tightness function satisfies (8) in all submarkets.
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(iv) The belief function πt(a|ω, â, q) is consistent with sellers’ strategies using Bayes’ rule

when possible.

(v) The labor market clears:
∑

ω∈Ω

∑
a∈A

∫
q∈R+

vt(ω, â, q) dq +
∫
lt(kjt) dj = ht(k)γtn.

(vi) The discount factor satisfies Λt,t+1 = λt(KHt).

(vii) Aggregate variables are consistent with individual policies: KHt+1 = kHt+1(KHt),

KFt+1 =
∫

kFt+1(kjt) dj, DivFt =
∫
divt(kjt) dj, and

ιt(a|ω, â, q) =
I{â = ât(ω,a,KHt)}I{q = qt(ω,a,KHt)}KHt(ω, a)∑

aj∈A I{â = ât(ω,aj ,KHt)}I{q = qt(ω,aj ,KHt)}KHt(ω, aj)
,

for all (ω, â, q) such that â and q are part of the set of policy functions associated with

the household’s problem.

In the rest of this section, and for analytical characterization of the equilibrium, we restrict

our attention to the balanced-growth-path equilibrium (defined in Appendix A.1). We consider

two types of equilibria, defined as follows:

Definition 2. A pooling equilibrium is a competitive equilibrium in which sellers of different

unobserved qualities list the same price and announce the same quality with strictly positive

probability—i.e., q(ω, aj) = q(ω, aj′) and â(ω, aj) = â(ω, aj′). Similarly, a separating equilib-

rium is a competitive equilibrium in which sellers of different unobserved qualities list either

different prices or different qualities—i.e., q(ω, aj) 6= q(ω, aj′) or â(ω, aj) 6= â(ω, aj′). Among

those, a fully revealing separating equilibrium is a separating equilibrium in which sellers of a

given unobserved quality announce their true unobserved quality—i.e., â(ω, aj) = aj.

Equilibrium characterization Since the strategy space contains both the announcement

of the unobserved quality and the posted price, sellers can signal their unobserved quality and

separate from each other by differing along any of these two dimensions. As in Guerrieri et al.

(2010), we characterize the equilibrium as an allocation that solves the following sequence of

constrained optimization problems Pj(ω).

Definition 3. For a given observed quality ω and aggregate variables, the solution to problem

14



Pj(ω) is a vector (q(ω, aj), â(ω, aj)) that solves

νs(ω, aj) = max
{q(ω,aj),â(ω,aj)}

p (θ (ω, â(ω, aj), q(ω, aj)))
[
(1− ψ)q(ω, aj) + ψqP (ω, aj, â(ω, aj), q)

]
+ (1− p(θ(ω, â(ω, aj), q(ω, aj))))

[
βγn
γ
νs(ω, aj)− δωaj

]
(9)

subject to

Ea
(
(1− ψ)q(ω, aj) + ψqP (ω, a, â(ω, aj), q) | ω, â(ω, aj), q(ω, aj)) (10)

= Ea
(
νb(ω, a)

)
− wt
µ (θ(ω, â(ω, aj), q(ω, aj)))

,

and

νs(ω, aj′) ≥ p (θ (ω, â(ω, aj), q(ω, aj)))
[
(1− ψ)q(ω, aj) + ψqP (ω, aj′ , â(ω, aj), q)

]
(11)

+ (1− p(θ(ω, â(ω, aj), q(ω, aj))))

[
βγn
γ
νs(ω, aj′)− δωaj′

]
for all j′ < j.

In problem Pj(ω), the seller of capital with quality (ω, aj) announces an unobserved quality

â(ω, aj) and lists a price q(ω, aj) to maximize expected revenues subject to two constraints.

The first constraint is the buyer’s search optimality condition, which pins down the market

tightness for a given set of beliefs and seller’s choices. In addition, the seller is constrained by

a set of no-mimicking conditions, which require that sellers of lower quality weakly prefer

their own terms of trade rather than mimicking the terms of trade chosen by the seller of

unobserved quality aj. Hence, an allocation that solves the above sequence of optimization

problems effectively describes a separating equilibrium. We will focus on separating equilibria

in which sellers of different unobserved qualities truthfully reveal their unobserved quality,

which we defined above as a fully revealing separating equilibria.7

As it is well known in the signaling games literature, the sequence of problems {P1(ω), . . . ,

PNa(ω)} may admit multiple solutions, each with the corresponding equilibrium supported

by appropriate out-of-equilibrium beliefs. Indeed, the definition of a fully revealing separating

equilibrium does not impose any constraint on off-equilibrium beliefs, which can potentially

7In our analysis, we omit unreasonable separating equilibria in which sellers of different unobserved
qualities choose to set different prices (so buyers do indeed identify their different unobserved qualities)
and announce different, but untrue, qualities. In Appendix A, we argue that these alternative equilibria are
dominated by the equilibrium analyzed here.
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lead to multiplicity. Therefore, we impose more structure on these beliefs by considering

equilibria that satisfy the D1 criterion of Cho and Kreps (1987); an equilibrium refinement

commonly used in signaling games. This criterion first identifies the set of sellers who are

more likely to deviate from equilibrium choices; it then requires that buyers have beliefs

consistent with this set when observing a deviation; lastly, it eliminates equilibria in which a

seller’s payoff from the deviation under the worst buyer’s consistent belief is not equilibrium

dominated. This refinement is enough to establish the existence and uniqueness of equilibrium:

Proposition 2. The balanced-growth-path fully revealing separating equilibrium is character-

ized by the following solution to the sequence of problems {P1(ω), . . . ,PNa(ω)} for all ω ∈ Ω,

which is constructed recursively:

(i) The seller of the lowest unobserved quality a1 chooses the full-information strategy

â(ω, a1) = a1, q(ω, a1) = qFI(ω, a1), and θ(ω, â(ω, a1), q(ω, a1)) = θFI(ω, a1), which is

characterized by

qFI(ω, a1) = νb(ω, a1)− χ

µ(θFI(ω, a1))
(12)

and

p′(θFI(ω, a1))

(
νb(ω, a1)−

(
βγn
γ
νs(ω, a1)− δωa1

))
= χ,

where χ ≡ wt/γ
t.

(ii) The seller of any unobserved quality ak > a1 announces his true quality—i.e., â(ω, ak) =

ak. Regarding the terms of trade, there are two cases to consider:

(a) If none of the constraints (11) evaluated at all l ≤ k − 1 bind, then the seller of

quality ak chooses the full-information terms of trade—i.e., q(ω, ak) = qFI(ω, ak)

and θ(ω, â(ω, ak), q(ω, ak)) = θFI(ω, ak).

(b) If at least one of the constraints (11) binds for l ≤ k − 1, then let θkl denote the

lowest θ that solves

νs(ω, al) = p (θ)
(
(1− ψ)q(ω, ak) + ψqP (ω, al, â(ω, ak), q)

)
+ (1− p(θ))

(
βγn
γ
νs(ω, al)− δωal

)
,

where q(ω, ak) = νb(ω, ak) − χ
µ(θ)

. The seller of quality ak chooses θ(ω, ak) =

min
{
θkj , j ∈ [1, k − 1]

}
and the corresponding price, as long as βγn

γ
νs(ω, ak) −
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δωak ≥ βγn
γ
νs(ω, al)− δωal for all l < k. In this case, the optimal market tightness

is lower than under the full-information terms of trade—i.e., θ(ω, ak) < θFI(ω, ak).

Finally, there are no pooling equilibria.

Excluding the seller of the lowest unobserved quality a1 who is never affected by the

information asymmetry, Proposition 2 describes two distinct situations. In the first case,

sellers can choose the unconstrained optimum of their objective since no other seller wants

to mimic them when they adopt this strategy. Formally, constraints (11) drop out, and

the optimal terms of trade are characterized by the first-order condition and the buyer’s

indifference condition (10). We refer to this unconstrained solution as the full-information

terms of trade. As shown below, this situation arises when the inspection is informative

enough—i.e., when ψ is high enough. The second case emerges when at least one other seller

wants to mimic the unconstrained solution, which is formally characterized by at least one

of the constraints being violated at the full-information solution. Intuitively, a relatively

uninformative inspection facilitates mimicking by sellers of lower unobserved qualities. Sellers

of high unobserved quality must then adapt their strategy to disincentivize mimicking by

lower types and thereby signal their true quality. Thus, the optimal terms of trade become

distorted relative to the full-information case. We show that if sellers’ values are increasing in

the unobserved quality (which is always true for realistically low depreciation rates), then

the optimal signaling strategy consists of choosing a lower tightness and a higher price than

under full information so that the tightest constraint is just binding. This forms the unique

fully revealing separating equilibrium that satisfies the D1 criterion. The proposition also

states that the signaling game does not feature any pooling equilibria, in which sellers of

different unobserved qualities choose the same submarket with positive probability.

3 The Micro Effects of Asymmetric Information

This section uses the model to study how asymmetric information distorts capital markets.

Section 3.1 examines how the accuracy of information technologies affects the prices and

duration of capital units listed for trade. Based on these model predictions, Section 3.2 discusses

how the degree of asymmetric information can be identified from micro-data moments.
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3.1 Asymmetric Information, Prices, and Duration

We begin by focusing on a simple case that can be characterized analytically, with Ω =

{ωL, ωH} and A = {aL, aH} (where L and H denote low and high qualities, respectively). We

also assume that depreciation costs are small relative to the values of sellers (i.e., δ → 0). We

first show how the terms of trade change in the cross-section of observed characteristics. We

then describe how asymmetric information affects the trade of units with different unobserved

characteristics.

Observed capital quality We begin by focusing on the cross-sectional predictions of

the model for units with different observed capital qualities. To isolate these differences, we

set aL = aH = a. In this case, the solution to the seller’s problem is characterized by the

first-order condition

p′(θ(ω, a))

(
νb(ω, a)− βγn

γ
νs(ω, a)

)
= χ

for all ω ∈ Ω, where we have replaced the price q(ω, a) from the optimal search strategy of

the buyer. The optimal choice of market tightness balances the marginal benefit of a higher

trading probability (left-hand side) with the reduction in price required by potential buyers

in order to visit the chosen submarket (right-hand side). The following proposition formalizes

this result by deriving the optimal price of capital and market tightness for each type of

capital under full information.

Proposition 3. If aL = aH = a, the price and market tightness for capital of quality ω are

given by

q(ω, a) = ηνb(ω, a) + (1− η)
βγn
γ
νs(ω, a)

and

θ(ω, a) =

(
m̄(1− η)

χ

(
νb(ω, a)− βγn

γ
νs(ω, a)

))1/η

.

Proposition 3 shows that the equilibrium price is a weighted average of the seller’s and

buyer’s value of capital, and the selling probability is an increasing function of the surplus

νb(ω, a)− βγn
γ
νs(ω, a). This optimal choice is graphically represented in Figure 1 for types

(ωL, a) and (ωH , a) and a given search cost χ. Dashed lines represent the iso-cost curves of

buyers, with the highest one corresponding to the high-quality ωH . These curves denote the

combination of prices and purchase probabilities that generate the same expected cost to
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buyers and are derived from equation (10). Curves are downward-sloping because buyers are

indifferent between submarkets if higher prices are associated with higher matching rates

with sellers. They are increasing in ω because buyers can obtain higher revenues by using

capital of higher quality. Similarly, solid lines denote the iso-revenue curve of sellers—i.e., the

combination of prices and market tightness that produce the same expected revenues—and

are derived from Equation (9). These are downward-sloping because the seller is willing to

accept a lower price if the sale’s probability increases. Note that the iso-revenue curves have a

lower slope for high-quality capital. This results from the outside option (i.e., the continuation

value) of the seller being increasing in the quality of its capital, which causes the seller to

require lower “compensation” in terms of a higher sale probability for a given reduction in

the price. In equilibrium, sellers choose the submarket that maximizes their utility subject to

buyers’ indifference curves.8

Proposition 3 and Figure 1 show that under full information, the price of a unit of capital

and its matching rate are increasing in its quality, which implies the following result.

Corollary 1. If aL = aH = a, capital units with higher prices match at a higher rate:

qFI(ωH , a) > qFI(ωL, a) and p
(
θFI(ωH , a)

)
> p

(
θFI(ωL, a)

)
.

To understand the intuition behind this corollary, replace the equilibrium price of capital

in the optimal search strategy of the buyer to obtain

(1− η)

(
νb(ω, a)− βγn

γ
νs(ω, a)

)
=

θ(ω, a)χ

p (θ(ω, a))
. (13)

Equation (13) requires that in equilibrium, the seller’s net benefit from buying a unit of

capital must be equal to its expected search cost. As in standard models of directed search, the

surplus (given by νb(ω, a)− βγn
γ
νs(ω, a)) is “split” according to the elasticity of the matching

function. Thus, since the price of capital scales with the buyer’s value less than proportionally

(η < 1), the net gain of buying capital is increasing in this value. By non-arbitrage, the

expected search cost must be higher for capital units with higher quality—and thus higher

value—which implies that buyers (sellers) of these units match at a lower (higher) rate.

8To see that the solution is unique, notice that the dotted line is less convex than the solid line (formally,
the second-order derivative is lower for the buyer’s indifference condition). This implies that it is possible to
construct a strictly monotonous transformation of θ, such that the dotted line depicts a linear relationship
while the solid line remains strictly convex. Replacing θ with this transformation, we obtain the standard
problem of finding the utility-maximizing intersection of strictly convex preference curves and a convex budget
set, which has a unique solution. Alternatively, note that the second-order condition of the seller’s problem is
satisfied because p′′(θ) < 0 for p(θ) < 1, which is the empirically relevant case.
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Figure 1: Competitive Equilibrium under Full Information

θFIL

qFIL

θFIH

qFIH

θ

q

Iso-revenue seller - ωL Iso-cost buyer - ωL
Iso-revenue seller - ωH Iso-cost buyer - ωH

Unobserved capital quality Next, we consider the solution to the seller’s problem under

asymmetric information. To isolate the differences, we set ωL = ωH = ω. As previously shown,

capital of the lowest unobserved quality aL is sold under the full-information terms of trade.

However, the choice of the seller of quality aH might be affected by information frictions. In

this case, the solution to the seller’s problem is characterized by the first-order condition

p′(θ(ω, aH))

(
νb(ω, aH)− βγn

γ
νs(ω, aH)

)
= χ+ ζ(ω, aH) (14)

and the complementary slackness condition

ζ(ω, aH)
[
p(θFI(ω, aL))

(
qFI(ω, aL)− βγn

γ
νs(ω, aL)

)
(15)

− p(θ(ω, aH))

(
(1− ψ)q(ω, aH) + ψqP (ω, aL, aH , q)−

βγn
γ
νs(ω, aL)

)]
= 0,

where ζ(ω, aH) denotes the Lagrange multiplier of the no-mimicking constraint, which requires

that the lower type aL does not want to mimic the choices made by the higher type aH . Notice

that the constraint incorporates the fact that sellers who mimic the choices of sellers with

other qualities sell at the posted price only when the inspection is uninformative. The presence

of the inspection stage introduces a small deviation from the standard signaling model à
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la Spence (1973). For high values of ψ—i.e., when the extent of asymmetric information is

not severe—sellers might not need to signal their quality, since the probability of detection

is high. This intuition is formalized in the following proposition, which is a special case of

Proposition 2 for the two-type example considered here.

Proposition 4. Let ψ∗ ∈ [0, 1] be defined by

p(θFI(ω, aL))

[
qFI(ω, aL)− βγn

γ
νS(ω, aL)

]
= p(θFI(ω, aH))

[
(1− ψ∗)qFI(ω, aH) + ψ∗qP (ω, aL, aH , q)−

βγn
γ
νS(ω, aL)

]
.

The seller of quality aL chooses the same terms of trade as under full information. For sellers

of quality aH , there are two cases:

(i) ψ ≥ ψ∗: the incentive-compatibility constraint is not binding and θ(ω, aH) solves the

optimality condition (14) with ζ(ω, aH) = 0.

(ii) ψ < ψ∗: the incentive compatibility constraint is binding (i.e., ζ(ω, aH) > 0) and

θ(ω, aH) solves (15). The optimal terms of trade satisfy q(ω, aH) > qFI(ω, aH) and

p(θ(ω, aH)) < p(θFI(ω, aH)). Therefore, the difference in the expected time to sell across

qualities increases as ψ decreases—i.e., d
[
p(θFI(ω,aL))
p(θ(ω,aH))

]
/dψ < 0. Thus, if information

asymmetries are strong enough (i.e., ψ is low enough), then p(θ(ω, aH)) < pFI(θ(ω, aL)).

We illustrate the equilibrium under asymmetric information in Figure 2. In a fully revealing

separating equilibrium with signaling, the outcome in the submarket for the lowest quality

capital is the same as the one obtained under full information (see Figure 1). However, the

outcome in the submarket for high-quality capital could be distorted by the fact that sellers

maximize the expected value subject to the no-mimicking constraint, whereby low-quality

sellers do not have a strict preference for participating in the same submarket. The different

possibilities are illustrated in Panel (A) of Figure 2. In addition to the iso-revenue and

iso-cost curves shown in Figure 1, the figure includes the no-mimicking constraint behind the

complementary slackness condition (15) for three values of ψ: ψL < ψM < ψ∗ < ψH . For a

given price, any market tightness to the right of the solid black lines violates the constraint.

When the information technology is good enough (e.g., ψH in Figure 2), the seller of

high-quality capital can choose the full-information market tightness. Sellers of low-quality
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Figure 2: Competitive Equilibrium under Asymmetric Information
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capital do not want to mimic this choice because, with a high probability, the inspection

reveals their lower quality and they end up selling at a lower price. As ψ decreases below ψ∗

(e.g., ψM in Figure 2), sellers of low-quality capital are more likely to be able to sell without

being detected by the inspection. Then, the full-information tightness violates the constraint,

and the seller chooses a higher price and a lower tightness to signal the higher quality of capital.

Optimal tightness is determined by the intersection between the no-mimicking constraint

and the buyer’s isocost curve evaluated at aH . This lower sale probability is more costly

for low-quality sellers given the information-revealing technology, which could reveal their

true type and lead to a low sale price. Because of these additional delays, low-quality sellers

weakly prefer their own submarket. If the informativeness of the inspection is very low (e.g.,

ψL in Figure 2), then the required signaling in the form of delays is such that capital of higher

quality ends up selling with a lower probability than low-quality capital. Therefore, ψ governs

the potential distortions to terms of trade from information asymmetries (see Panel (B) of

Figure 2).

Multiple capital qualities So far, we have focused on the simple case with two types of

capital qualities, which can be analyzed analytically. We now provide a quantitative illustration

showing how the effects of asymmetric information on prices and duration extend to a setting
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Figure 3: Capital market outcomes for different accuracies of information technologies
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Note: The left panel shows the equilibrium price for units of different unobserved quality on the x-axis. The
right panel shows the selling probabilities for units of different unobserved quality. The three lines correspond
to three values of the accuracy of the information-revealing technology, ψ: a low value ψ = 0.9, an intermediate
value ψ = 0.95, and a value high enough to take the economy to the full information limit, ψ = 0.999. The
rest of the model parameters are set to their calibrated values from Section 5.

with multiple types of observed and unobserved capital quality. For this, we assume that the

observed and unobserved qualities are distributed according to two independent log-normal

distributions with variance σ2
j for j ∈ {ω, a}.9 For the quantitative exercises presented in this

section, we use the calibrated version of the model discussed in detail in Section 5.

Figure 3 depicts listed prices and associated selling probabilities for different levels of

unobserved capital quality. The dotted red line shows that in the limiting case of ψ → 1,

in which the information technology approaches full information, sellers of higher quality

units list them at a higher price and sell them with a higher probability. As discussed in the

analytical example above, this is because, under full information, capital units of high quality

are relatively more attractive to buyers, which leads to a higher trading probability for sellers.

The blue and orange lines show that as the accuracy of the information technology

declines (i.e., a lower value of ψ), the relationship between listed prices and unobserved

capital quality becomes negative and steeper. This is because a more imprecise information

technology creates stronger incentives for sellers of low-quality capital to mimic higher-quality

9The distributional assumption is without loss of generality, but we adopt it to operationalize our
quantitative analysis. We normalize the mean of both types of capital qualities to one. The assumption that
qualities ω and a are independent is also without loss of generality since one could interpret the observable
quality as the conditional expected quality ω + E(a|ω) and the unobserved quality as the residual a− E(a|ω).
When solving the model numerically, we truncate these log-normal distributions to the support [−2σj , 2σj ]
for j ∈ {ω, a}.
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sellers. In turn, high-quality capital sellers respond to the inferior information technology

by increasing the listed price of their units, which separates them from low-capital-quality

sellers, who are not willing to bear the cost of the associated lower trading probabilities. For

this reason, an increase in the degree of asymmetric information captured by an inferior

information technology is associated with higher average prices and higher duration on the

market, particularly at the top of the distribution of capital qualities.

3.2 Identification

Based on the model predictions, we now discuss how the parameters linked to the degree of

asymmetric information and capital heterogeneity can be identified from microlevel data. Our

distributional assumption regarding (ω, a) implies that the model features three parameters

linked to the degree of asymmetric information and capital heterogeneity, which are the

most novel part of the model: {ψ, σω, σa}. We first illustrate our strategy under some specific

assumptions that allow us to derive analytical results; below, we use a parameterized version

of the model to show our strategy using model-simulated data.

Analytical illustration To provide an empirical measurement of the model predictions,

we assume that a researcher observes micro data on capital units listed for sale with the

following information: the price of each unit listed in every period t, {qit}; the duration of each

unit while listed for trade {Durationit}; and a vector of observable characteristics {Xi} (e.g.,

location, size, number of rooms, etc.).10 We further assume that the observable characteristics

map onto observable efficiency units of capital according to logωi = τXi, where τ is an

unknown vector. Consider estimating the following regressions using these data:

log(qit) = ιωXi + εqit, (16)

log(Durationit) = υωXi + υq log(qit) + εdit, (17)

where εqit and εdit are random error terms. Regression (16) is a “hedonic regression,” which

projects listed prices on the observed capital quality of each unit. Henceforth, we refer to

q̂it = ι̂ωXi as “predicted prices” and ε̂qit as “residual prices.” Intuitively, by estimating this

10Section 5.2 shows how the quantitative results of the paper are affected if the researcher only observes a
subset of the capital characteristics observed by market participants.
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regression, we can approximate the variance of observed and unobserved capital qualities with

the variance of predicted and residual prices, σ̂ω ≡ Var(q̂it) and σ̂a ≡ Var(ε̂qit). Regression

(17) projects the duration of each listed unit on their observed characteristics and listed price.

The estimated coefficient υ̂q measures the slope between log duration and the component of

the price that is orthogonal to its observed quality (i.e., the residual ε̂qit), which, following

the discussion in Section 3.1, is informative of the degree of asymmetric information. The

following proposition formalizes this mapping between model parameters and data moments:

Proposition 5. Assume
(

wt
µt(θ(ω,â,q))

)
/νb

t (ω, a) → 0 and ϕ → 0. Then, up to a first-order

approximation, (σω, σa, ψ) are identified by the estimated moments σ̂ω, σ̂a, and υ̂q.

Proposition 5 imposes two assumptions (which are relaxed in the quantitative analysis of

the identification below). First, expected search costs are small relative to the buyer’s value

of a unit of capital. Second, the exit rate of firms is approximately zero. The first assumption

ensures that the price of a unit of capital mainly reflects its expected value to the buyer. The

second assumption ensures that this value is mainly determined by the net present value of

the stream of dividends generated by the unit of capital (and not by its future resale value in

case of exit).

Given these assumptions, the residual in equation (16) fully captures the unobserved

quality of the unit of capital (i.e., εqit = log ai). Thus, we can directly measure the volatility

of the distribution of the observed and unobserved quality with σ̂ω and σ̂a, respectively.

In addition, up to a first-order approximation, the assumptions imply that the estimated

regression coefficient υ̂q represents the elasticity of the (log) selling probability p(θ(ω, a)) to

the unobserved quality a evaluated at the average qualities. In the previous section, we showed

how this elasticity is a monotonic function of ψ, which governs the degree of information

asymmetries. As the asymmetry of information increases, sellers of high-quality capital choose

a lower selling probability to signal their higher quality. Thus, the regression coefficient υq is

informative of the degree of information asymmetries captured by ψ.

Quantitative illustration Our analytical identification results above were obtained under

a set of simplifying assumptions. To show that the identification strategy holds more generally,

Figure 4 illustrates the behavior of the key moments (σ̂ω, σ̂a, υ̂q) as we change the value of

the parameters (σω, σa, ψ). Given our calibration strategy in Section 5, it is useful to expand

our discussion here to incorporate one additional parameter, the match efficiency m̄, and one
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additional identifying moment, the unconditional average duration on the market. Panel (A)

shows that changes in the quality of information technology ψ have a monotonic effect on

regression coefficient υ̂q and unconditional average duration. Panel (B) shows that changes in

the standard deviation of unobserved quality σa have a positive and almost linear effect on the

variance of the regression residuals σ̂a, as expected. In addition, more dispersed unobserved

qualities naturally increase the incentives to mimic and induce sellers of higher qualities to

signal their quality more strongly, which also increases regression coefficient υ̂q and average

duration. Panel (C) shows that changes in the standard deviation of observed quality σω also

have a positive and almost linear effect on the variance of predicted prices σ̂ω. As we further

discuss below, the dispersion of observed qualities has a small interaction with the moments

associated with asymmetric information since information frictions distort the terms of trade

of units of capital for a given observed quality ω. Finally, Panel (D) shows that increases in the

efficiency of matching technology m̄ decrease the average duration of capital units. However,

since a higher trading probability makes signaling harder (i.e., higher matching efficiency

reduces overall delay in the market), regression coefficient υ̂q increases. To summarize, σ̂ω

and σ̂a are directly informed by the dispersion of observed and unobserved qualities. The

degree of asymmetric information ψ and matching efficiency m̄ are separately identified by

the fact that regression coefficient υ̂q and average duration positively comove with ψ, but

move in opposite directions in response to changes in m̄.

4 Measurement

This section applies our proposed measurement to a novel dataset of capital units listed

for trade. Section 4.1 describes the data. Section 4.2 presents a set of cross-sectional facts

linked to the model predictions. Section 4.3 discusses additional evidence linked to alternative

interpretations of these facts.

4.1 Data

Our data consist of a rich panel of nonresidential structures (retail, office, and industrial

space) listed for sale and rent. The source of these data is Idealista, one of Europe’s leading
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Figure 4: Illustration of Identification Strategy

(a) Quality of Information Technology
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(b) Dispersion of Unobserved Quality
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(c) Dispersion of Observed Quality
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(d) Efficiency of the Matching Technology
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Note: The figures report moments {σ̂ω, σ̂a, υ̂q,Avg. Duration} computed from model-simulated data as we
change the values of the parameters {σω, σa, ψ, m̄}. Remaining model parameters are set to their calibrated
values from Section 5.

online real estate intermediaries.11 The frequency of the panel is monthly and includes the

universe of capital units that were listed on the platform between 2005 and 2018. The data

includes information during the period each listing was active online. The dataset includes

approximately 8.9 million observations for Spain, where an observation corresponds to a

property–month pair. Overall, these observations come from over 1.15 million different capital

units. Appendix B provides more details on the data. In particular, Appendix B.1 describes

how the online platform works. Appendix B.2 discusses the representativeness of the dataset

and shows that data from the online platform are consistent with aggregate patterns observed

11Idealista is the leading online platform in the real estate market in Spain (see Comparison of users

and Comparison of platform). For other papers using data from online platforms in the real estate market,
see Piazzesi et al. (2020).
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in Spain during the analysis period regarding the aggregate evolution of prices.

For each property, we observe a wide range of characteristics detailed in the listing,

including the address of the property, its construction year, its area, the number of rooms,

and whether the property has heat or air conditioning, among others. We also observe the

main variables discussed in our model measurement—namely, the capital unit’s listed price,

which we observe for each property at a monthly frequency, and its duration on the market,

which we compute as the number of months the unit is listed on the platform.12 Our dataset

also features information about the search volume in each month, which we measure by the

number of views and clicks each listing receives and the number of emails the seller receives

from potential buyers through the platform.

Table 1 presents descriptive statistics on prices, duration, search intensity, and some of

the characteristics included in the listing. Although we focus the analysis in this section

on properties listed for sale, which have a more direct mapping to our model assumptions,

Appendix B.4 shows that we observe similar empirical patterns for properties listed for rent.

The average sale price per square foot is $162 (expressed in constant 2017 dollars), and the

average duration on the market is 10.5 months. Properties are relatively old, with an average

age of around 26 years. Each listing is, on average, viewed 800 times per month and receives

45 clicks and 3 emails per month.

4.2 Cross-sectional Empirical Facts

We now use our data to provide a set of facts about the cross-section of listed capital units

associated with the model’s microlevel predictions.

Measuring predicted and residual prices Following the model’s identification strategy

discussed in Section 3.2, we begin by measuring the component of a listed price that can

be predicted based on the property’s characteristics included in the listing. We do so by

estimating the following hedonic pricing regression:

log(qit) = νl(i)t + γXi + εit, (18)

12The platform asks sellers why they decided to close the listing. Figure B6 in Appendix B.3 compares
the histograms of duration for two groups of listings: those that closed the listing because the property was
rented or sold and those that do not provide an explanation. Those histograms are virtually identical. It is
worth noting that Idealista is a paid service, so it is costly for the seller to keep a dormant listing after the
property has been sold or rented.
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Table 1: Descriptive Statistics

Mean Std. dev.
Price 162.27 131.71
Duration 10.47 11.21
Construction Date 1987.63 19.50
Area 3008.89 4619.22
New 0.05 0.22
Rooms 2.31 2.99
Restrooms 1.21 1.54
Heating 0.27 0.45
AC 0.64 0.48
Emails 2.75 2.12
Views 799.91 1273.95
Clicks 44.28 59.08
Number of Obs. 4.4e+05 4.4e+05

Note: “Price” is the price per square foot in constant 2017 dollars. “Duration” is the number of months a
property was listed in the database. “Construction date” is the year the property was built. Property area is
measured in square feet. “New” is a categorical variable that takes the value 1 if the property is new. “Rooms”
is the number of separate rooms the property has, and the same for “Restrooms.” “Heating” and “AC” are
categorical variables that take the value 1 when the property has heating and air conditioning technologies.

“Emails” is the number of times a property receives an email from a potential customer per month. “Views” is
the number of times a property appeared on the screen of a potential customer per month. “Clicks” is the
number of times a potential customer clicked on the property listing to see its details per month. For those
variables that change over time, we first take the average of the variable within each listing and report the
average of that variable across listings.

where qit is the real price per square foot of capital unit i in location l(i), listed in month t;

νl(i)t are location-by-time fixed effects; Xi is a set of observable characteristics included in the

listing; and εit is a random error term.13 Similar to Section 3.2, using the estimated coefficients

{ν̂lt, γ̂}, we refer to q̂it ≡ ν̂lt + γ̂Xi as “(log) predicted prices” and ε̂it ≡ log(qit)− q̂it as “(log)

residual prices.”

Using the estimated model (18), Table 2 shows that more than 60% of the variation in

listed prices can be accounted for by characteristics included in the listing. The geographic

dimension plays a salient role and explains almost 50% of the differences in listed prices. To

illustrate this, Appendix Figure B7 shows large differences in sale prices across regions at

different levels of aggregation. These maps demonstrate that locations vary significantly in

13Location fixed effects are defined, for each unit, at the finest geographic level possible in the platform:
neighborhood level in the case of big cities like Madrid or Barcelona and city level in smaller cities. Results
are similar if we focus only on cities that have available neighborhood information. In model (18), we focus
on the average listed price during the lifetime of the listing. Table B1 in Appendix B.3 shows that when we
estimate a version of model (18) using the entire panel dataset and including a listing fixed effect, less than
2% of the variation in prices can be accounted for by properties that change their price during the lifetime
of the listing (i.e., R2 = 0.98). To understand this result, Table B2 in Appendix B.3 shows that only 9% of
listings change price in a given month.
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their capital prices. Table 2 also shows that the time dimension explains 9% of the variation

in listed prices, which is substantially smaller than the geographic dimension, despite the

large fluctuations in capital prices Spain experienced during the Euro crisis (illustrated in

Appendix Figure B8). Finally, Table 2 shows that the standard deviation of residual prices,

which we obtain after including all available controls, is 0.51, which is approximately 60% of

the variation observed in the raw data. Figure 5 shows the distribution of price residuals,

which illustrates the relevance of the dispersion in prices not accounted for by characteristics

in the listings.

Table 2: Price Variation Accounted for by Listed Characteristics

St. Dev. R2

Raw data 0.83 0.00
Year 0.79 0.09
Location 0.59 0.49
Year × Location × Type 0.56 0.54
. . . + Area 0.53 0.59
. . . + Age 0.53 0.59
Benchmark 0.51 0.62

Note: This table reports the R2 and standard deviation of residuals from estimating equation (18). The row
labeled Raw data presents statistics for demeaned raw log prices. The following rows include fixed effects in
the regression. Year and location denote fixed effects. Type (office and retail space or warehouse), area, and
age are sets of fixed effects for each of these characteristics. The last row includes additional controls for the
variables listed in Table 1.

Figure 5: Distribution of Price Residuals

Note: This figure shows the distribution of log prices per square foot relative to its mean for the raw data
and price residuals after including the fixed effects in Table (2).
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Relationship between prices and duration Guided by our model predictions, we now

analyze the relationship between units’ predicted and residual prices and their duration on the

market. Figure 6 shows that units with higher predicted prices tend to have a shorter duration

on the market, while units with higher residual prices tend to have a longer duration on the

market. Table 3 presents the same results in a regression framework. In column (1), we regress

(log) duration on (log) prices and obtain a mildly positive and statistically significant relation.

In the second column, we split the (log) price into two components—predicted and residual

prices—and run the same regression. While we obtain a negative and statistically significant

relationship between duration and predicted prices, we obtain a positive and statistically

significant relationship between duration and residual prices. In the last two columns, we

estimate similar regressions but include location-time-property-type fixed effects and obtain

similar results.14

Figure 6: Relationship between Duration and Prices

Note: This figure shows the relationship between log prices and duration. Price residuals and predicted prices
are obtained after running a regression of log prices on a set of fixed effects and observable characteristics (see
equation (18)). Figures show a binned scatter plot of each relationship after controlling for location-time-type
(offices, retail space, and warehouses) fixed effects.

Table B3 and Appendix Figure B10 reproduce the same analysis by replacing duration

with the average monthly clicks received by a listing (as a proxy for search intensity). Results

are consistent with those found for duration. Properties with high predicted prices receive

14The reason for including time-location fixed effects in the regression is to allow for the process of duration
on the market to differ over time and location (e.g., the match efficiency could be market-specific). However,
the theory predicts that if a better observable location contributes positively to the quality of the property, it
should also positively affect the trading probability. Therefore, including fixed effects also absorbs part of this
effect.
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Table 3: Prices and Duration

(1) (2) (3) (4)
log Duration log Duration log Duration log Duration

log Price 0.013*** 0.128***
(0.004) (0.004)

log Predicted Price -0.071*** -0.025**
(0.005) (0.011)

log Residual Price 0.148*** 0.148***
(0.004) (0.004)

Constant 1.961*** 2.361*** 1.407*** 2.141***
(0.018) (0.026) (0.019) (0.053)

Observations 456351 439680 439680 439680
R2 0.000 0.009 0.226 0.228
Fixed Effects No No Yes Yes

Note: This table presents the results of a regression of log duration on the two components of prices, residual
and predicted prices. The left-hand-side variable is the log duration of a listing, and the right-hand-side
variable is the mean price over the lifetime of the listing. The first column shows a regression of duration
on prices. Column 2 regresses duration on predicted prices and residual prices. Columns 3 and 4 include
location×time×type fixed effects. Standard errors are clustered at location-time level. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% level, respectively.

more clicks on average, which is consistent with a shorter duration, and properties with high

residual prices receive fewer clicks on average, which is consistent with a longer duration.

This last set of results is consistent with listed prices’ important role in attracting or repelling

potential buyers by affecting their search behavior.

Through the lens of the model, the different relations residual and predicted prices have

with duration suggest an important role of information asymmetries. When higher prices stem

from listed characteristics, such as the location of the unit—which can be perfectly observed

by buyers—they tend to be associated with shorter time to sell. When high prices cannot

be easily linked to observable characteristics, they are associated with a longer time to sell.

Under the null hypothesis of full information, according to our model, residual prices reflect

characteristics of properties not observed by the econometrician but observed by market

participants. Thus, we should expect a negative relation with duration, as is the case with

predicted prices. The fact that we estimate a positive relation provides evidence that the

extent of asymmetric information is not zero. This conclusion is more formally supported in

the estimation exercise of the model, which allows us to provide a quantitative magnitude of

the deviation from full information.
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Cyclical properties Economic downturns are often characterized as times when infor-

mation about the quality of assets deteriorates. To study this in our data, we estimate the

relationship between a unit’s duration on the market and its residual price separately for

each year in our sample. Figure 7 shows that the slope between duration and residual prices

exhibit substantial cyclical variation, showing a strong comovement with the fluctuations of

labor unemployment and more than doubling during the Euro crisis that started in 2008.

In the context of our model, these patterns are consistent with the degree of asymmetric

information increasing during downturns. Motivated by this evidence, in the next section we

examine the macroeconomic effects of changes in the accuracy of information technologies ψ.

Figure 7: Cyclical Fluctuations in the Slope between Duration and Residual Prices

Note: This figure shows the relationship between log prices and duration over the business cycle. Blue points
represent the regression coefficient of log residual prices when estimating specification (4) in Table 3 for
each year in the sample separately (vertical bars denote 95% confidence intervals). The solid line depicts the
national unemployment rate in Spain during the sample period (source: Statistical Agency of Spain INE).

4.3 Discussion of Alternative Interpretations

So far, we have interpreted the cross-sectional facts through the lens of our model with

decentralized capital markets and asymmetric information. In Appendix B.5, we provide

additional evidence to indicate that these empirical patterns would be hard to account for by

alternative explanations that do not involve asymmetric information.

To briefly summarize: We first explore the possibility that the positive relationship between

residual prices and duration on the market results from sellers’ indifference across these

variables (an explanation akin to that of Burdett and Mortensen, 1998, for labor and product
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markets). To study whether the trade-off between residual prices and duration can account for

their positive relationship in the data, we compute the expected net present discounted revenue

for properties with different residual prices under alternative preferences. The results show

that the expected net present discounted revenue monotonically increases in the listed price,

which indicates that sellers’ indifference cannot explain the observed relationship between

residual prices and duration. A related explanation of the patterns in the data could be agents’

departures from rational behavior—e.g., residual prices reflect outright mistakes. Although

it would be difficult to rule out the presence of such behavior fully, our net present value

calculations would suggest that all sellers, except those posting the highest residual prices,

would have to be making mistakes. Furthermore, given the magnitudes of residual prices,

note that the mistakes would need to be arguably large. We then analyze the possibility that

sellers have varying expenses associated with holding onto a property (e.g., maintenance costs,

taxes, and debt service costs) that they must pay every period until the property is sold. If

some sellers have higher costs than others, they might have to sell quickly and at a lower price.

We use our data to determine the minimum cost that would make it reasonable for a seller to

choose a lower residual price and find that this is implausibly large (e.g., the cost of holding

1 square foot of a property for 1 additional month would have to be larger than the price

at which the owner can sell that unit). We also consider the possibility that differences in

buyers’ liquidity for different units could explain our facts. However, the positive relationship

between residual prices and duration holds for both high- and low-priced units (in terms of

total price), which indicates that buyer liquidity is not the main factor driving the results.

5 The Macro Effects of Asymmetric Information

This section combines the model and empirical measurement to study the macroeconomic

effects of asymmetric information. Section 5.1 discusses model parameterization. Section 5.2

explores the impact of asymmetric information on steady-state macroeconomic variables,

and Section 5.3 conducts crisis experiments to study the role of asymmetric information in

economic downturns.
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5.1 Calibration

We calibrate the model in two steps. First, we fix a subset of parameters. Second, we calibrate

the remaining parameters—which govern the degree of trading frictions—to match the key

data moments discussed in Section 4.

Fixed parameters The parameters we fix in the calibration are detailed in Table 4. The

model is calibrated at monthly frequency. A subset of these parameters is shared with the

neoclassical stochastic-growth model and is set to standard values from the literature. For

preferences, we set the discount factor to β = 0.996, which is associated with a 4% annual

rate of time preference; the Frisch elasticity of labor supply, 1/ξ, to one; and the disutility of

labor, $, to target steady-state hours worked, h = 1/3. Regarding the firm’s technology, we

set the share of capital to α = 0.35 (consistent with Fernald, 2014). We set the depreciation

rate to δ = 0.0074, which corresponds to an annual rate for nonresidential capital of 8.5%

(source: BEA, Fixed Asset tables); the growth rate of technical progress to γ = 1.004, which is

associated with an annual technology growth rate of 1.6%—the growth rate per worker the U.S.

economy experienced from 1980 to 2015 (data source: BEA)—and the population growth rate

to γn = 1.0027, which is associated with an annual growth rate of the working-age population

in the period of analysis of 1% (population aged 15–64, data source: Federal Reserve Bank

of St. Louis and OECD). For the exit rate of firms, which governs separation flows, we set

ϕ = 0.0027, which corresponds to the 3.2% average exit rate of U.S. establishments, obtained

as a weighted average of exit rates for establishments of different sizes reported by the U.S.

Census Bureau. For search-and-matching frictions, we set the curvature of the matching

technology to η = 0.8 (as estimated by Ottonello, 2017) and the bargaining parameter to

φ = 0.5 as a benchmark (used in the context of labor markets, for example, by Shimer, 2010),

and analyze how the results vary with alternative parameter values.

Fitted parameters We calibrate the remaining parameters, {ψ, σω, σa,m}, following the

identification strategy proposed in Section 3.2 and targeting four key data moments measured

in Section 4 and reported in Table 5. These moments are the slope in the regression of

duration on residual prices, which is informative of the quality of information technology

ψ; the standard deviations of predicted and residual prices, which are mostly governed by

the standard deviation of capital qualities, σω and σa, respectively; and the average selling
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Table 4: Fixed Parameters

Parameter Description Value
β Discount factor 0.9966
α Share of capital 0.35
δ Depreciation rate 0.0074
γ Technology growth 1.004
γn Population growth 1.0027
ϕ Firms’ exit rate 0.0027
η Curvature matching technology 0.8
φ Bargaining power of seller 0.5

Note: This table shows the parameters we fix in the calibration. The frequency of the model is monthly.

probability, which is mostly governed by the matching efficiency m̄. The calibration strategy

for these parameters proceeds as follows. For a given set of parameters, we compute the

equilibrium choices of prices and transaction probabilities for each type of capital. Then, we

simulate the evolution of multiple units of capital, generate a sample of listed units (similar

to that of listed properties in our dataset), and perform the same measurement analysis to

obtain those moments in the model-simulated data as we performed on the data in Section

4. Finally, we use a minimum-distance estimator to choose parameter values that match

the moments in the data. Table 5 shows that our parameterized model matches fairly well

the moments targeted in our calibration. Table 6 also reports the results from running, in

model-simulated data, the regressions between duration and predicted and residual prices

considered in the empirical analysis in Section 4, which indicates that the model is aligned

with the (untargeted) relationship between duration and predicted prices.

Table 5 also reports the parameters obtained from the calibration. The calibrated parameter

for the accuracy of information technology is ψ = 0.98, which indicates that the probability a

lemon goes unnoticed is 2%. Therefore, the economy features moderate levels of information

asymmetry in the steady state. For use as a benchmark in our quantitative exercises, we also

estimate the accuracy of the information technology that would correspond to an economy

with the larger degree of asymmetric information measured during the Euro crisis. As shown

in Figure 7, in this episode the slope between duration and residual prices reached a level of

0.38, which would correspond to a level of ψ = 0.96 (keeping the rest of the model parameters

constant).

36



Table 5: Fitted Parameters and Targeted Moments

Parameter Description Value Target Model Data

ψ Accuracy information technology 0.9795 Regression coefficient 0.148 0.148
σω SD observed quality 0.72 SD log predicted prices 0.65 0.65
σa SD unobserved quality 0.58 SD log residual prices 0.51 0.51
m̄ Matching efficiency 0.267 Mean duration 11.46 11.44

Note: This table shows the parameters we calibrate by minimizing the distance between four moments in the
data and in our simulated model.

Table 6: Relationship between Duration and Prices: Data and Model

Data Model
log Duration log Duration

log Predicted Price -0.025 -0.086
log Residual Price 0.148 0.148
Constant 2.14 1.99

Note: This table reproduces the regression coefficients in the data and the model. The dependent variable is
log duration on the market, which we regress on a constant and our measures of predicted and residual prices.
Refer to the empirical section for further details.

5.2 Steady-state Analysis

Output effects of asymmetric information Figure 8 shows the effects of asymmetric

information on the equilibrium level of aggregate variables as a function of ψ (each variable is

normalized by its corresponding value under full information). Panel (A) shows how steady-

state aggregate output varies with the degree of asymmetric information in the economy.

Given that the baseline economy features a moderate degree of asymmetric information

(ψ = 0.98), moving to an economy with full information also involves modest output gains

(i.e., a level of output 1.5% larger relative to the baseline economy). However, the economy

features a large elasticity of output to changes in the degree of asymmetric information. For

instance, a 2 p.p. permanent increase in the degree of asymmetric information to ψ = 0.96

(i.e., the level observed during the Euro crisis) is associated with a 2% decline in steady-state

output. This high sensitivity of economic activity to changes in the degree of asymmetric

information suggests that information asymmetries can play an important role in economic

fluctuations, as we further analyze in Section 5.3.

Panel (A) of Figure 8 also shows how the output effects of asymmetric information vary

for different degrees of capital heterogeneity and matching efficiency. Each line corresponds to

a different parameterization, reporting the effects of varying ψ relative to the value under full
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information for that parameterization. On the one hand, these results indicate that varying

the degree of heterogeneity in observed capital quality σω or the matching efficiency m̄ does

not substantially affect the output effects of asymmetric information.15 On the other hand,

the model naturally predicts a larger elasticity of output losses with respect to ψ when the

dispersion of unobserved qualities the information technology is expected to uncover is higher.

For instance, in an economy that features a standard deviation of observed capital quality, σa,

40% larger than in our baseline economy, the effects of eliminating asymmetric information are

three times larger than in our baseline economy. Motivated by this finding, in the robustness

analysis below, we study how measuring imperfectly the degree of asymmetric information in

the economy affects our results.

Aggregate channels To decompose the channels through which asymmetric information

affects economic activity, we can express aggregate output, Yt ≡
∫
yjt dj, as

Yt ≡
(
γtLt

)1−αKαt (19)

=
(
γtLt

)1−α
([∑

ω∈ω

∑
a∈A

Kt(ω, a)

]
[E (ωa) (1− E (ut(ω, a)))− Cov (ωa, ut(ω, a))]

)α

,

where Lt ≡ ht(k)γtn −
∫ ∫ ∑

ω

∑
â vjt(ω, â, q) dq dj denotes labor used in production; Kt ≡∫

Kjt dj denotes aggregate capital input used in production; and ut(ω, a) and Kt(ω, a) denote

the aggregate unemployment rate and the aggregate stock of capital of type (ω, a), respectively.

Equation (19) indicates that there are four channels through which asymmetric information can

affect aggregate output: the capital stock, the unemployment rate of capital, the allocation

of employed capital (measured by the covariance between capital productivity and the

unemployment rate of capital), and the labor input. Figure 8 shows how each of these

channels are affected by the degree of asymmetric information and Table 7 reports their

contribution to the effect of asymmetric information in output, relative to an economy with

full information. We next describe each of these channels.

First, Panel (B) of Figure 8 shows that a lower accuracy of the information technology, ψ,

is associated with a lower capital stock. This is because higher information asymmetries are

15Note that, because in each line we are normalizing output relative to their respective level under full
information, these results do not indicate that changing σω or m̄ does not have an effect on output. Instead,
it shows that the model predicts a small interaction effect between ψ and model parameters associated with
capital heterogeneity and search frictions.
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Figure 8: Degree of Asymmetric Information and Macroeconomic Variables
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Note: This figure shows the decomposition of the macroeconomic effects of changes in the quality of the
information technology for four parameterizations of the model. The solid orange line shows our baseline
calibration. We also report a calibration with a higher variance of observed quality in dashed blue; a calibration
with a higher variance of unobserved quality in dash-dot red; and a calibration with a lower efficiency of
the matching technology in dotted green. All numbers are reported as a percentage of the value under full
information except for the capital unemployment rate, which is reported in levels.
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Table 7: Decomposition of Output Effects

Change Contribution
Y/Y FI − 1 1.22% 100%
K/KFI − 1 2.55% 74%
K/KFI − 1 1.12% 32%
E (u(ω, a))− E

(
uFI(ω, a)

)
0.92% 25%

Cov (ωa, u(ω, a))− Cov
(
ωa, uFI(ω, a)

)
0.01 16%

L/LFI − 1 0.5% 26%

Note: This table decomposes the output effects of the calibrated degree of asymmetric information into the
channels shown in equation (19). The second column reports the percentage change of each variable in the
baseline calibration relative to the full-information equilibrium. The third column reports the contribution of
each channel to the output effect by computing the counterfactual level of output that would arise if only one
channel is present at a time, while keeping the remaining aggregate variables at their full-information level.
Effects are reported as a share of the total decline in output due to asymmetric information.

associated with lower revenues for sellers of high-quality capital, which decreases the returns

to producing capital goods. Relative to the economy under full information, the capital

stock is 1.12% lower and contributes 32% of the output effects of asymmetric information.

Second, Panel (C) of Figure 8 shows that higher information asymmetries lead to a higher

unemployment rate of capital. As information asymmetries increase, so do the listed prices of

high-quality capital sellers, which decreases selling probabilities and increases the duration

of unemployment of listed units up to 1 p.p. relative to the full-information rate (5%), and

contributes 25% of the output effects of asymmetric information. Third, this unemployment

effect is compounded by the fact that information asymmetries disproportionally affect the

allocation for sellers of high-quality capital, who have to prevent mimicking by lower types

through higher prices and lower trading probabilities (see Panel (D)), although this channel

has the smallest independent effect on output (with a contribution of 16% to the output

effects of asymmetric information). By combining these three effects, Panel (E) shows that a

higher degree of asymmetric information is associated with a lower effective capital input of

approximately 2.55% relative to the full-information benchmark, which accounts for most

of the output effects of asymmetric information. Finally, Panel (f) shows that the lower

equilibrium level of capital input reduces the demand for labor and results in 0.5% lower

labor input.

Robustness Table 8 shows that our quantitative results for the aggregate effects of asym-

metric information are robust to several alternative model parameterizations. First, we

consider a version of the model in which buyers have more bargaining power: If an inspection
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reveals that the seller’s quality is below that announced, the buyer makes a take-it-or-leave-it

offer to the seller (in our baseline economy, we assume the transacted price is the result of

symmetric Nash bargaining). Second, we consider an economy in which the exit rate of firms

(and thus the associated reallocation of capital) is larger, and as a result, the steady-state

level of capital unemployment is also larger. Third, we consider an economy with an inelastic

labor supply. All of these variants feature aggregate effects that are quantitatively similar to

our baseline economy, ranging from 100% of the baseline results in an economy with inelastic

labor supply to 1.22 times our baseline results in an economy with a higher exit rate of firms.

Finally, we study how our quantitative results vary when we change the set of characteristics

we observe for listed capital units in the dataset in Section 4. This exercise is motivated

by the concern that our dataset may feature an incomplete set of characteristics relative

to those observed by market participants, which translates into an estimation of a larger

dispersion of unobserved capital qualities and potentially larger output effects of asymmetric

information. To address this concern, we recalibrate the model assuming that our dataset only

includes information on the price per square foot, the duration on the market, and the time

and location of listed capital units; that is, it does not include any additional information

about listed capital units, such as the age, type, number of rooms, etc.16 Appendix Table C1

reports how the moments targeted in the calibration vary in the dataset with fewer observable

characteristics. As expected, we estimate a lower dispersion for predicted prices and a larger

dispersion for residual prices. Importantly, we estimate a smaller slope between residual prices

and duration. Through the lens of the model, this can be explained by the differences in slopes

between duration and predicted prices and duration and residual prices; as we reduce the set

of characteristics observed by the researcher, the slope between duration and residual prices

becomes more influenced by characteristics that are actually observed by market participants,

which moves the slope between duration and residual prices more in the direction of that

between duration and predicted prices. Therefore, the calibration to the dataset with fewer

observable characteristics features a higher σa but a lower ψ, which have opposing effects on

the aggregate effects of asymmetric information (see Appendix Figure C1). Table 8 shows

that these two changes in parameters roughly offset each other, leading to similar conclusions

regarding the aggregate effects of asymmetric information as in our baseline calibration.

16Our exercise is in the spirit of Romer (1986): While we cannot assess how our results would vary if the
data were to include more observable characteristics than they currently have, we can still study how results
would vary if they were to include fewer.
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Table 8: Robustness of Macro Effects to Different Calibrations

Calibration Y/Y FI − 1 K/KFI − 1 K/KFI − 1 u− uFI
Baseline -1.22% -2.55% -1.12% 0.83%
TIOLI -1.44% -2.93% -1.46% 0.72%
Higher ϕ -1.5% -3.15% -1.24% 1.09%
Inelastic Labor Supply -1.22% -2.55% -1.12% 0.83%
Incomplete Observed Characteristics -1.17% -2.46% -1.06% 0.78%

Note: This table shows the macroeconomic effects of asymmetric information on output, the capital input,
the capital stock, and the unemployment rate of capital for the benchmark calibration and alternative
parameterizations in which we calibrate the model to match the same moments. The TIOLI (“take it or leave
it”) calibration assigns a bargaining power of zero to the seller if he or she is caught lying (i.e., φ = 0). The
Higher ϕ calibration increases the value of firm exit to match the number of exits plus the share of capital that
is reallocated among public firms in the United States as reported by Eisfeldt and Shi (2018). The Inelastic
Labor Supply version of the model keeps the labor supply fixed at its baseline level of 1/3. The Incomplete
Observed Characteristics calibration is one in which we purposely ignore a set of observable characteristics to
analyze the effect of perturbing the availability of information about observed characteristics on our results.

5.3 Crisis Experiments

We now study the macroeconomic effects of transitory changes in information technologies.

Our experiment is motivated by the dynamics of capital markets observed during the Euro

crisis (documented in Figure 7), in which the slope between duration and residual prices

sharply increased during the economic downturn and then gradually recovered. Through the

lens of our model, such dynamics can be accounted for by a transitory decline in the accuracy

of information technologies, which increases the degree of asymmetric information in the

economy.17 This shock is consistent with classic narratives of economic crises that place a

central role to the deterioration of agents’ ability to evaluate the quality of assets (Gorton,

17Appendix Figure C2 shows that shocks to total factor productivity, Zt, generate changes in the degree
of asymmetric information that are substantially below those observed in the data. Specifically, although a
1 percentage point decline in productivity that reverts to normal with a persistence of 0.85 at a quarterly
level causes an on-impact decline of aggregate output of 1.5% (see Figure C4), the slope in the relationship
between duration and residual prices does not change, compared with the 20 percentage point increase in
the slope of the relationship between duration and residual prices observed during the Euro crisis. Figure
C2 shows that similar results are obtained when considering shocks to the discount rate or the exit rate of
firms. On the other hand, a shock to the accuracy of the information-revealing technology, ψ, of 2 percentage
points that lasts for 2 years is able to replicate the cyclical patterns of the slope in the data. This suggests
that accounting for increases in asymmetric information of the right magnitudes observed during the Euro
crisis requires the presence of shocks more directly linked to information asymmetries, such as the changes in
information technologies we consider in our crisis experiment. Figure 4 shows that other shocks that can
lead to substantial changes in the degree of asymmetric information are those that affect the distribution of
unobserved capital qualities (e.g., changes in σa). This type of shock has been considered by Kurlat (2013)
and Bigio (2015) in studying the aggregate effects of information and financial frictions. Appendix Figure
C1 shows how this type of shock can have effects on economic activity similar to those of the changes in
information technologies considered in this section. Additional details on the comparison of these shocks are
available upon request.
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2008, and references therein). In the spirit of the analysis of the effects of exogenous changes

in total factor productivity, our exercise abstracts from the specific factors that lead to a

decline in the accuracy of buyers’ information-revealing technologies and instead focuses on

their macroeconomic effects.

To implement this crisis experiment, we assume that at t = 0 the economy experiences

an unexpected and transitory decline in the accuracy of information technologies, ψt. We

parameterize the magnitude and persistence of this shock to induce a change in the slope

between duration and residual prices akin to that observed during the Euro crisis. In particular,

as shown in Panel (A) of Figure 9, we assume that at t = 0 the economy experiences a 2 p.p.

decline in the accuracy of information technologies to ψ0 = 0.96, which lasts for 3 years, and

reverts to its steady-state value following a first-order autoregressive process.18 The top left

panel of Figure C3 shows the behavior of the slope after the shock to ψ. This increase in the

slope of 20 percentage points replicates the behavior of the slope in the data.

Panel (B) of Figure 9 shows that increases in the degree of asymmetric information

induced by declines in the accuracy of information technologies lead to large and persistent

contractions in economic activity. In particular, following the shock, the economy experiences

a 2% output contraction and it takes more than 5 years to recover half of its decline. Panel

(B) also shows that this contraction in economic activity is primarily driven by declines in the

capital input. This occurs because, as shown in Panel (C), with a less accurate information

technology, sellers of high-capital quality are willing to accept lower selling probabilities to

signal their unobserved quality. For a given capital stock, this implies an increase in the

unemployment rate of capital, particularly among capital units of high quality. In addition,

as shown in Panel (D), the lower selling probabilities of high-quality capital lead to a decline

in the expected returns of producing new capital goods and, thus, in aggregate investment.

In sum, a decline in the accuracy of information technology acts like a tax on high-quality

capital, lowering the incentives to invest and worsening the allocation of capital.

Our analysis so far has concentrated on the effects of changes in information technologies.

To complement this analysis, Appendix Figure C4 shows how the presence of asymmetric

information shapes the response to other shocks (i.e., changes in total factor productivity,

the discount factor, the exit rate of firms, or the distribution of unobserved capital qualities).

18More specifically, we assume that during the recovery, the accuracy of information technologies follows
the process ψt = ρψψt−1. We parameterize this process with ρψ = 0.94 to match the half-life of the slope
between duration and residual prices observed in Figure 7.
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Figure 9: Macroeconomic Responses to Changes in Information Technologies
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(c) Selling Probabilities
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(d) Expected Marginal Value of Capital
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Note: This figure shows the impulse responses of output, capital input, and labor input to an unexpected
decline in the accuracy of information technologies ψt. Panel (A) depicts the assumed path for ψt considered
in the exercise. Panel (B) shows the response of aggregate output Yt, capital input Kt, and labor input Lt.
The horizontal axis displays years after the shock. Impulse responses are expressed in percentage deviations
from the detrended steady state. Panel (C) shows the selling probabilities (p(θ)) for the lowest type in dashed
blue, for the highest type in dash-dot crimson, and the weighted average selling probability in solid red. Panel
(D) shows the behavior of the expected marginal value of capital, computed as

∑
a

∑
ω ν

s
t+1(ω, a)g(ω, a).

Results indicate that the extent to which information asymmetries amplify the response to

these shocks critically depends on the steady-state degree of asymmetric information. For the

baseline economy, which features a moderate degree of asymmetric information, the aggregate

responses to these shocks are similar to those in an economy with full information. However, in

economies with large steady-state levels of asymmetric information, the responses differ more

substantially from those in the economy with full information. For instance, in an economy

in which the probability of a lemon is going unnoticed is 4%, the cumulative output effect

of a shock that increases the exit rate of firms is 26% higher than in an economy with full
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information. The intuition behind this result is that asymmetric information operates over

the amount of capital that is being reallocated at each point in time from capital sellers to

capital buyers. Therefore, an increase in the exit rate of firms increases the effective amount

of capital that is affected by information frictions at each point in time.

6 Conclusion

In this paper, we show that information asymmetries in capital markets can have impor-

tant macroeconomic implications and affect an economy’s investment, capital allocation,

and economic activity. This conclusion emerges from adopting a micro-to-macro approach,

which combines microlevel data on capital units listed for trade with a quantitative capital-

accumulation model that features illiquid capital markets and asymmetric information. The

results of our paper suggest the importance of studying capital-market policies designed to

address potential inefficiencies that arise from information asymmetries. For example, our

quantitative framework is useful to investigate the effects of policies aimed at reducing infor-

mation asymmetries (e.g., prevent signaling). In addition, our results suggest the relevance

of further studying agents’ incentives for developing information technologies that mitigate

information frictions (e.g., in a version of the model in which the accuracy of information

technologies is endogenous). We leave this analysis for future research.
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A Theory Appendix

In this section, we provide all proofs of our theory. Instead of focusing on a specific post-

inspection trading protocol, as we did in the main text, here we provide a set of general

sufficient conditions that the inspection-adjusted price function must satisfy and generalize

the proof to any protocol that satisfies the following assumption.

Assumption 1. The inspection-adjusted price function qPt (ω, a, â, q) : Ω×A2 × R+ → R+

has the following properties:

(i) it is non-decreasing in the true quality:

∀(a, a′) ∈ A2 such that a′ > a, ∀(ω, â, q) ∈ Ω×A×R+ : qPt (ω, a′, â, q) ≥ qPt (ω, a, â, q),

(ii) it is non-increasing in the announced quality:

∀(â, ˆ̂a) ∈ A2 such that â > ˆ̂a, ∀(ω, a, q) ∈ Ω×A× R+ : qPt (ω, a, â, q) ≤ qPt (ω, a, ˆ̂a, q),

(iii) it is weakly lower (resp. higher) than the buyer’s (resp. seller’s) value for the unit:

qPt (ω, a, â, q) ∈ [min(q,Λt+1ν
s
t+1(ω, a)− δωa),min(q, νb

t (ω, a,KHt))]

∀ω ∈ Ω, â, a ∈ A, q ∈ R+,KHt ∈ R+,

(iv) it is such that buyers obtain at least a fraction 1− η of the surplus:

qPt (ω, a, â, q) ≤ ηνb
t (ω, a,KHt) + (1− η)

(
Λt+1ν

s
t+1(ω, a)− δωa

)
,

(v) it does not decrease “too fast” as the announced quality increases, i.e.:

η(νb
t (ω, ai)− Λt+1ν

s
t+1(ω, ai) + δωai)

qP (ω, ai, ak)− Λt+1νs
t+1(ω, ai) + δωai

≥
qB(ω, aj, ai)− Λt+1ν

s
t+1(ω, aj) + δωaj

qB(ω, aj, ak)− Λt+1νs
t+1(ω, aj) + δωaj

∀aj < ai < ak ∈ A, ω ∈ Ω.

The first assumption requires that for a given announced quality, sellers obtain a weakly

higher post-inspection price the higher their true revealed quality is. Relatedly, the second
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assumption states that after the inspection reveals the true quality, sellers of higher announced

quality are weakly worse off. This protocol captures a variety of contractual arrangements that

punish sellers for lying about the true quality of their units. For example, these assumptions

allow for a post-inspection bargaining price that sanctions sellers more severely when the

difference between true and announced quality increases. They also allow for sanction-less

bargaining, which we consider in our quantitative analysis. The third assumption states that

the inspection-adjusted price is bounded by the buyer’s valuation of the unit and the seller’s

outside option, which corresponds to its continuation value if the transaction does not happen.

This implies that a transaction occurs as long as the gains from trade are positive. Notice that

this assumption also incorporates the seller’s commitment to sell at the initially posted price

q. The fourth assumption requires the inspection-adjusted price to be weakly lower than the

price the seller would obtain under full information, which we derive below. Intuitively, after

units are inspected and their true qualities are revealed, sellers should not be able to transact

at a higher price than they would have received if all information were publicly available. The

post-inspection price we propose can capture situations in which sellers who lie about the

quality of their units are “punished” with a lower transacted price (e.g., by increasing the

buyer’s bargaining power). The final assumption limits how large this “punishment” can be.

This is a sufficient condition that ensures that the separating equilibrium derived below has

sellers truthfully reporting their quality and rules out pathological equilibria.

In the quantitative analysis, we use a standard Nash bargaining protocol to determine

post-inspection price qP (ω, a, â, q). At the end of this section, Lemma 2 shows that such Nash

solution satisfies the above assumptions if the seller’s bargaining power satisfies φ ≤ η.

A.1 Proofs

Proof of Proposition 1

Here we prove a more general version of Proposition 1, in which we endogenize all selling

and buying decisions of firms and households. Let us denote by bFI(ω, â, q, a) ∈ {0, 1} the

decision of buyers to purchase the unit on submarket (ω, â, q) conditional on learning from

the inspection that it is of quality a. Similarly, let b(ω, â, q) ∈ {0, 1} be the decision of buyers

to purchase the unit conditional on visiting the submarket (ω, â, q) and not learning the true

quality from the inspection. Let s(ω, a) be the seller’s decision to post the unit of quality
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(ω, a) for sale. In what follows, we drop the subscript j of an individual firm.

Household’s problem. The recursive optimization of the household can be written as

VHt(k) = max
{v(ω,â,q),q(ω,a),b(ω,â,q),

bFI(ω,â,q,a),s(ω,a),â(ω,a),k′(ω,a),c,h,i>0}

u(c, h)γtn + βVHt+1(k′),

subject to the per-period budget constraint

cγtn + i+ δ
∑
ω∈Ω

∑
a∈A

ωa (k′(ω, a)− ig(ω, a)) = wthγ
t
n + xs − xb +DivFt,

the law of motion of capital of quality (ω, a)

k′(ω, a) = kb(ω, a)− ks(ω, a) + k(ω, a) + ig(ω, a) + ϕKFt(ω, a),

and the nonnegativity constraints v(ω, â, q) ≥ 0 ∀(ω, â, q) ∈ Ω×A×R+, where total purchases

of quality (ω, a) are given by

kb(ω, a) =
∑
â∈A

∫
q∈R+

ιt(a|ω, â, q)[ψbFI(ω, â, q, a)+(1−ψ)b(ω, â, q)]µt (θ (ω, â, q)) v(ω, â, q) dq,

total sales are given by

ks(ω, a) =
(
ψbFIt (ω, â(ω, a), q(ω, a), a) + (1− ψ)bt(ω, â(ω, a), q(ω, a))

)
p(θ(ω, â(ω, a), q(ω, a)))s(ω, a)k(ω, a),

total costs of buying capital are given by

xb =
∑
â∈A

∑
ω∈Ω

∫
q∈R+

[
(ψ
∑
a∈A

ιt(a|ω, â, q)qPt (ω, a, â, q)bFI(ω, â, q, a)

+ (1− ψ)qb(ω, â, q))µt (θ (ω, â, q)) + wt

]
v(ω, â, q) dq,

and total revenues from selling capital are given by

xs =
∑
ω∈Ω

∑
a∈A

[
ψbFIt (ω, â(ω, a), q(ω, a), a)qP (ω, a, â(ω, a), q(ω, a))

+ (1− ψ)bt(ω, â(ω, a), q(ω, a))q(ω, a)
]
p(θ(ω, â(ω, a), q(ω, a)))s(ω, a)k(ω, a).

51



The optimal level of investment, provided that i > 0, is given by the first-order condition

1 =
∑
ω∈Ω

∑
a∈A

g(ω, a)λt(k)νs
t+1(ω, a,k),

where λt(k) ≡ βγn
uct+1(kHt+1(k))

uct(k)
, kHt+1(k) is the matrix of policy function for capital accu-

mulation associated with problem (2), and νs
t (ω, a,k) ≡ ∂VHt(k)

∂k(ω,a)
1

uct(k)γt
is the marginal value

of capital of type (ω, a) measured in final goods, which satisfies the recursive problem (its
notation anticipates the result whereby households only sell capital, which is derived below):

νs
t (ω, a,k) = max

{â(ω,a),q(ω,a)}

s(ω, a)p(θ(ω, â(ω, a), q(ω, a)))
[
ψbFIt (ω, â(ω, a), q(ω, a), a)qPt (ω, a, â(ω, a), q(ω, a)) + (1− ψ)bt(ω, â(ω, a), q(ω, a))q(ω, a)

]
+
(

1− (ψbFIt (ω, â(ω, a), q(ω, a), a) + (1− ψ)bt(ω, â(ω, a), q(ω, a)))s(ω, a)p(θ(ω, â(ω, a), q(ω, a)))
) [
λt(k)νs

t+1(ω, a,kHt+1(k))− δωa
]
.

Firm’s problem. The recursive optimization problem faced by firms can be written as

VF (k) = max
{l,v(ω,â,q),q(ω,a),b(ω,â,q),

bFI(ω,â,q,a),s(ω,a),â(ω,a),k′(ω,a)}

Ea[div + Λ′
(
(1− ϕ)V ′F (k′) + ϕV exit

t+1 (k′)
)
],

subject to the nonnegativity constraints v(ω, â, q) ≥ 0 ∀(ω, â, q) ∈ Ω×A×R+, the definition

of per-period dividends

div =

(∑
ω∈Ω

∑
a∈A

ωak′(ω, a)

)α

(γtl)1−α − wl − δ
∑
ω∈Ω

∑
a∈A

ωak′(ω, a)− xb + xs,

and the law of motion of capital of quality (ω, a)

k′(ω, a) = kb(ω, a)− ks(ω, a) + k(ω, a), (A.1)

where total purchases of quality (ω, a) are given by

kb(ω, a) =
∑
â∈A

∫
q∈R+

ιt(a|ω, â, q)[ψbFI(ω, â, q, a)+(1−ψ)b(ω, â, q)]µt (θ (ω, â, q)) v(ω, â, q) dq,

(A.2)
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total sales are given by

ks(ω, a) =
(
ψbFI(ω, â(ω, a), q(ω, a), a) + (1− ψ)b(ω, â(ω, a), q(ω, a))

)
p(θ(ω, â(ω, a), q(ω, a)))s(ω, a)k(ω, a),

(A.3)

total costs of buying capital are given by

xb =
∑
â∈A

∑
ω∈Ω

∫
q∈R+

[
(ψ
∑
a∈A

ιt(a|ω, â, q)qP (ω, a, â, q)bFI(ω, â, q, a)

+ (1− ψ)qb(ω, â, q))µ (θ (ω, â, q)) + wt

]
v(ω, â, q) dq,

(A.4)

and total revenues from selling capital are given by

xs =
∑
ω∈Ω

∑
a∈A

[
ψbFI(ω, â(ω, a), q(ω, a), a)qP (ω, a, â(ω, a), q(ω, a))

+ (1− ψ)b(ω, â(ω, a), q(ω, a))q(ω, a)
]
p(θ(ω, â(ω, a), q(ω, a)))s(ω, a)k(ω, a).

(A.5)

The recursive problem of the firm features a static choice of labor demand and only

depends on the number of efficiency units of capital K′ =
∑

ω∈Ω

∑
a∈A ωak

′(ω, a). The

first-order condition with respect to l is given by

K′αγt(1−α)(1− α)l−α = wt,

which can be rewritten as

l = K′
(

(1− α)γt(1−α)

wt

) 1
α

.

Hence, labor demand is linear in K′, which proves the last part of Proposition 1. We can

express the revenue from production as

Φt(k
′) = K′α(γtl)1−α − wtl.

Replacing our expression for the optimal labor demand, we obtain that Φt(k
′) = ZtK′, where

Zt ≡ α

(
γt(1− α)

wt

) 1−α
α

.
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Given this result, we can now re-express the problem of the firm as

VFt(k) = max
{v(ω,â,q),q(ω,a),b(ω,â,q),

bFI(ω,â,q,a),s(ω,a),â(ω,a),k′(ω,a)}

Ea
[

(Zt − δ)K′ − xb + xs
]

+ Λt,t+1

(
(1− ϕ)VFt+1(k′) + ϕV exit

t+1 (k′)
)
,

subject to (A.1), (A.2), (A.3), (A.4), (A.5), and the nonnegativity constraint v(ω, â, q) ≥

0 ∀(ω, â, q) ∈ Ω×A× R+.

Next, we conjecture that VFt(k) =
∑

ω∈Ω

∑
a∈A ν

b
t (ω, a)k(ω, a). Let us denote by ξt(ω, â, q)

the Lagrange multiplier associated with the nonnegativity constraint for vacancies in all

submarkets (ω, â, q) ∈ Ω×A× R+. The first-order condition with respect to v(ω, â, q) is

Ea[ψbFI(ω, â, q, a) + (1− ψ)b(ω, â, q)]µt (θ (ω, â, q))
(
(Zt − δ)ωa+ Λt,t+1((1− ϕ)νbt+1(ω, a) + ϕνst+1(ω, a,KHt+1))

)
=

[(ψEaqPt (ω, a, â, q)bFI(ω, â, q, a) + (1− ψ)qb(ω, â, q))µt (θ (ω, â, q)) + wt] + ξt(ω, â, q),

together with the complementary slackness condition ξt(ω, â, q)v(ω, â, q) = 0. These conditions
do not depend on the firm’s individual capital holdings and state that the purchased units
of capital are bought at a cost equal to their marginal value. We multiply the first-order
condition above by v(ω, â, q) and replace it in the objective of the firm, which then becomes

VFt(k) = max
{v(ω,â,q),q(ω,a),b(ω,â,q),

bFI (ω,â,q,a),s(ω,a),â(ω,a),k′(ω,a)}

Ea

{∑
ω∈Ω

∑
a∈A[

(Zt − δ)ωa
(

1− [ψbFI(ω, â(ω, a), q(ω, a), a) + (1− ψ)b(ω, â(ω, a), q(ω, a))]p (θ(ω, â(ω, a), q(ω, a))) s(ω, a)
)
k(ω, a)

+ [ψbFI(ω, â(ω, a), q(ω, a), a)qPt (ω, a, â(ω, a), q) + (1− ψ)b(ω, â(ω, a), q(ω, a))q(ω, a)]p (θ(ω, â(ω, a), q(ω, a))) s(ω, a)k(ω, a)

+ Λt,t+1((1− ϕ)νb
t+1(ω, a) + ϕνs

t+1(ω, a,KHt+1))

×
(

1− [ψbFI(ω, â(ω, a), q(ω, a), a) + (1− ψ)b(ω, â(ω, a), q(ω, a))]p (θ(ω, â(ω, a), q(ω, a))) s(ω, a)
)
k(ω, a)

]}
,

where we have used the fact that the total cost of the newly purchased units equals their

marginal value, so the terms xb and kb cancel each other. This shows the linearity of the firm’s

value function with respect to k. In what follows, we show that households are the sellers

and firms are the buyers in the capital market. We also show that under certain assumptions

about qPt (ω, a, â(ω, a), q), buyers always choose to buy the capital unit after matching with a

seller.

Firm’s selling decision and household’s buying decision. Here, we show that firms

buy capital but do not sell it, and that households sell capital but do not buy it (although

they invest to produce capital). For this, recall that the value of a capital unit is symmetric

among all firms and households because it does not depend on individual capital holdings.
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Notice that the problem of households is a particular case of firms’ problem with produc-

tivity Zt set to zero. Hence, the marginal value of a capital unit for firms is larger than the

marginal value of a capital good for the household as long as Zt > 0. As a consequence, if firms

want to sell (the value from operating the unit of capital is lower than the value from selling

it), then households also prefer to sell, as they cannot obtain a higher value from this unit

than an operating firm would. Hence, there is no market for the unit considered. Similarly, if

households do not want to sell (they obtain a higher value by keeping the unit), firms also

will not want to sell. Again, there will be no market for the unit considered, since no one

wants to sell. This implies that we can simplify the problem: Households never buy capital

(otherwise there are no sellers), and firms never sell capital as long as Zt > 0 (otherwise there

are no buyers). Thus, the optimal firm’s policy is s(ω, a) = 0, which simplifies the firm’s

marginal value of capital of quality k(ω, a) to

νb
t (ω, a) = (Zt − δ)ωa+ Λt,t+1

[
(1− ϕ)νb

t+1(ω, a) + ϕνs
t+1(ω, a,KHt+1)

]
,

which proves the second result of Proposition 1. This result also simplifies the household’s

marginal value of a capital unit to

νs
t (ω, a,k) = max

{qt(ω,a),ât(ω,a)}
p(θ(ω, â(ω, a), q(ω, a)))

[
ψbFIt (ω, â(ω, a), q(ω, a), a)qPt (ω, a, â(ω, a), q)

+ (1− ψ)bt(ω, â(ω, a), q(ω, a))q(ω, a)
]

+
(

1− (ψbFIt (ω, â(ω, a), q(ω, a), a) + (1− ψ)bt(ω, â(ω, a), q(ω, a)))p(θ(ω, â(ω, a), q(ω, a)))
)

×
[
λt(k)νs

t+1(ω, a,kHt+1(k))− δωa
]
.

Optimal purchase decision. Here, we characterize the buyer’s optimal purchase decision.

There are two cases to consider: Either the inspection is unsuccessful and only (ω, â) is

known, or the inspection is successful and the true type (ω, a) is revealed. We handle the

cases successively.

In the first case, the firm’s first-order condition with respect to b(ω, â, q) is

∂VFt(k)

∂b(ω, â, q)
= (1− ψ)µt(θ(ω, â, q))[Ea

(
νb
t (ω, a)|ω, â, q

)
− q].

55



Hence, the optimal purchase policy when the inspection is not informative is given by

b(ω, â, q) =

1 if Ea
(
νb
t (ω, a)|ω, â, q

)
≥ q

0 otherwise

.

In the second case, the firm’s first-order condition with respect to bFI(ω, â, q, a) is

∂VFt(k)

∂bFI(ω, â, q, a)
= ψµt(θ(ω, â, q))[ν

b
t (ω, a)− qPt (ω, a, â, q)].

Hence, the optimal purchase policy when the inspection is informative is given by

bFI(ω, â, q, a) =

1 if νb
t (ω, a) ≥ qPt (ω, a, â, q)

0 otherwise

.

Given the partial derivative with respect to bFI(ω, â, q, a) derived above, Assumption 1

ensures that a transaction always takes place after an informative inspection.

Definition of Balanced-growth path

Definition 4. A balanced-growth path is defined as a competitive equilibrium in which the

sequence

{ct, kHt(ω, a), kFt(ω, a), ât(ω, a), qt(ω, a), θt(ω, ât, qt), wt,Λt,t+1, Zt}t≥0 satisfies:

(i) Per capita consumption ct, wages wt, and productivity Zt grow at rate γ.

(ii) For all (ω, a), the stock of capital held by firms and households (kFt(ω, a) and kHt(ω, a),

respectively) grows at rate γγn.

(iii) For all (ω, a), submarket choices at(ω, a) and qt(ω, a), market tightness θt(ω, ât, qt) are

constant over time.

(iv) The discount factor satisfies Λt,t+1 = βγn
γ

.

Proof of Proposition 2

The proof is split into five steps we list below. It makes use of the particular case of the

full-information case from Proposition 3, for which a separate proof is presented below. The
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proof proceeds as follows:

Step 1: We describe the link between prices and market tightness under a fully revealing

separating equilibrium.

Step 2: We construct the unique, fully revealing separating equilibrium during the transition

path recursively. We proceed in two substeps:

(a) First, we show that under certain conditions, the full-information allocation can

be sustained when ψ < 1.

(b) Second, we prove the existence and uniqueness of a separating equilibrium when the

full-information optimum is not part of the possible strategies under asymmetric

information.

Step 3: We apply the result from the previous step to a balanced-growth path.

Step 4: We show that there cannot be a pooling equilibrium if a→ φqP (ω, a, â, q)− νb(ω, a) is

monotonous in a during the transition path.

Step 5: We show that there is no pooling equilibrium on the balanced-growth path by applying

the previous step.

Step 1: Prices and market tightness in a fully revealing separating equilibrium.

The following Lemma characterizes the equilibrium prices and market tightness in a fully

revealing separating equilibrium.

Lemma 1. Equilibrium market tightness in a fully revealing separating equilib-

rium

In a fully revealing separating allocation, sellers never misreport their true unobserved

quality—i.e., â(ω, a) = a ∀(ω, a) ∈ Ω×A. Then, market tightness is given by

θ(ω, â, q) = µ−1
t

(
wt

νb(ω, â)− (1− ψ)q − ψqP (ω, â, â, q)

)
. (A.6)

Proof. In a fully revealing separating allocation, the vector (ω, â, q) reveals unobserved quality

a by definition. Hence, using the indifference condition of buyers, we obtain

θ(ω, â, q) = µ−1
t

(
wt

Ea(νb(ω, â)− (1− ψ)q − ψqP (ω, a, â, q)|ω, â, q)

)
.
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Since the allocation is fully revealing, â(ω, a) = a. Therefore, we can drop the expectation

term. We then obtain the result of Lemma 1. �

Step 2: Recursive construction of the unique fully revealing separating equilib-

rium. Let us consider the case with ψ < 1. The case in which ψ = 1, corresponding to

full information, is solved in the proof of Proposition 3 below. We first define the notation

used in this step of the proof. In what follows, we fix ω ∈ Ω and a time t and omit all

references to ω and t (there will be no ambiguity: All variables depend on t except for

the continuation values taken at t + 1). We note v̄(a) = Λt,t+1ν
s
t+1(ω, a) − δωa the con-

tinuation value of a seller of unobserved quality a and observed quality ω. We also note

V (a) = p(θ(ω, q(ω, a)))
[
νb(ω, a)− v̄(a)

]
− χθ(ω, q(ω, a)), where χ ≡ wt

γt
. The set of qualities

A is ordered and we note Ak = {a ∈ A|a ≤ ak}, the subset of its k lowest elements. We

denote qP (ω, ai, aj, q) = min(q, qB(ω, ai, aj)) so that the post-inspection price is equal to

some qB(ω, ai, aj) unless the seller committed to a lower price pre-inspection. Finally, we

use Lemma 1 to define q(a, θ) = νb(ω, a)− wt
µt(θ)

as the price corresponding to quality a and

tightness θ. We will show the following assertion by induction on k ∈ [1, Na].

Assertion 1. Assertion at rank k ∈ [1,Na]

The unique separating fully revealing equilibrium allocation Θk = {θ(a1), . . . , θ(ak)} on

Ak that satisfies the D1 criterion is constructed recursively:

(i) The seller of the lowest unobserved quality a1 chooses the full-information strategy

â(ω, a1) = a1, q(ω, a1) = qFI(ω, a1) and θ(ω, â(ω, a1), q(ω, a1)) = θFI(ω, a1), which is

characterized by

qFI(ω, a1) = νb(ω, a1)− w

µ(θFI(ω, a1))

and

p′(θFI(ω, a1))
(
νb(ω, a1)− v̄(ω, a1)

)
= χ.

(ii) The seller of any unobserved quality ai > a1 signals his true quality—i.e., â(ω, ai) = ai.

Regarding the terms of trade, there are two cases to consider:

(a) If for all l < i, the constraint (11) evaluated at qFI(ω, ai) and θFI(ω, ai) is slack,

then the seller of quality ai chooses the full-information terms of trade—i.e.,

q(ω, ai) = qFI(ω, ai) and θ(ω, â(ω, ai), q(ω, ai)) = θFI(ω, ai).
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(b) If at least one of the constraints (11) binds for l < i, then let θil denote the lowest

solution θ to

νs(ω, al) = p (θ)
(
(1− ψ)νb(ω, ai) + ψqP (ω, al, â(ω, ai), q)

)
+ (1− p(θ)) v̄(ω, al)− χθ.

The seller of quality ai chooses

θ(ω, ai) = min
{
θij, j ∈ {1, . . . , i− 1}

}
and the corresponding price, as long as v̄(ω, ai) ≥ v̄(ω, al) for all l < i. In this

case, the optimal market tightness is lower than under the full-information terms

of trade—i.e., θ(ω, ai) < θFI(ω, ai).

Initialization: A1 = {a1}. We begin the construction by noting that since in the set A1

there is no lower type that needs to be disincentivized from mimicking for type a1 and type a1

does not want to mimic any higher type because there is none, we have that in any separating

equilibrium in A1: â(a1) = a1

q(a1) = qFI(a1)

, (A.7)

which proves the assertion for k = 1.

Recursion. Let us fix k ∈ [2, Na] and suppose that the assertion is true for k − 1.

Step 2(a): The full-information optimum can be sustained under asymmetric

information. We first study the case in which the full-information terms of trade can be

sustained for quality ak. Given the sequence Θk−1, the full-information strategy of the seller

of quality ak can be part of a fully revealing separating equilibrium if and only if no seller of a

lower quality wants to deviate from its current strategy to mimic her. Formally, the incentive

compatibility constraint must be just binding or slack for every quality ai ≤ ak when type ak

implements its full-information allocation:

V (ai) ≡ p(θ(ai))
[
νb(ai)− v̄(ai)

]
− χθ(ai) ≥

p(θFI(ak))
[
(1− ψ)νb(ak) + ψqP (ai, ak, q

FI(ak))− v̄(ai)
]
− (1− ψ)χθFI(ak).

(A.8)
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The seller of quality ak is then allowed to implement its full-information strategy, which

maximizes its unconstrained objective conditional on â(ak) = ak. Since ak is the highest

quality on Ak, the seller would not be able to obtain a higher value by mimicking a lower

quality. Then, since no seller has an incentive to deviate to mimic quality ak, the previous

allocation Θk−1 remains.

The last step is to discuss off-equilibrium beliefs conditional on being on other submarkets

in which ak is the announced quality. We can first rule out that quality ak is expected by

buyers in these other submarkets. Indeed, the seller of quality ak is not better off deviating

to any other tightness θ as it is achieving its unconstrained optimum. If the seller of any

lower quality is better off deviating to a submarket (â = ak, θ) conditional on quality ak being

expected, this seller would be better off under a larger set of beliefs than the seller of quality

ak. The D1 criterion would then impose that its quality is the one expected instead of ak,

which rules out the deviation.

Finally, suppose that a seller of some quality ai < ak has a profitable deviation by choosing

(â(ai) = ak, θ) and that the expected quality on this submarket is aj < ak. Then, since

qB(ai, ak) ≤ qB(ai, aj) from Assumption 1, the seller of quality ai would also have a profitable

deviation absent quality ak. Using the recursion at rank k − 1, we know that this is not the

case, since Θk−1 is an equilibrium on Ak−1. As a consequence, no seller of lower quality has a

profitable deviation to either on-path or off-path submarkets in which ak is announced, and

quality ak is never expected by buyers on any off-equilibrium submarket.

Thus, using the Assertion for k − 1, we obtain a unique separating equilibrium in which

the allocation is Θk = Θk−1 ∪ {θFI(ak)} and all sellers announce their true quality.

Step 2(b): The full-information optimum cannot be sustained under asymmetric

information. Let Ak−1 denote the set of qualities that want to mimic sellers of quality ak

when they play their full-information market tightness. We now have that for all aj ∈ Ak−1:

V (aj) < p(θFI(ak))
[
(1− ψ)νb(ak) + ψqP (aj, ak, q

FI(ak))− v̄(aj)
]
− (1−ψ)χθFI(ak). (A.9)

Let Rk
j (θ) = p(θ)

[
(1− ψ)νb(ak) + ψqP (aj, ak, q(ak, θ))− v̄(aj)

]
−(1−ψ)χθ. Then,Rk

j (θ)+

v̄(aj) represents the revenue seller of quality aj receives when mimicking the seller of quality

ak when the latter plays θ.
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Single-peaked shape of Rk
j (θ). We next analyze the properties of the expected value from

mimicking Rk
j (θ). We have two intervals to consider. Suppose first that q(ak, θ) > qB(aj, ak).

Then, qP (aj, ak, q(ak, θ)) = qB(aj, ak) does not depend on θ. The second-order derivative with

respect to θ is then

p′′(θ)
[
(1− ψ)νb(ak) + ψqB(aj, ak)− v̄(aj)

]
< 0.

Hence, on this interval, the function is strictly concave.19

Now suppose that q(ak, θ) ≤ qB(aj, ak). Then, qP (aj, ak, q(θ, ak)) = q(ak, θ) and the

second-order derivative writes

p′′(θ)
[
νb(ak)− v̄(aj)

]
< 0.

Hence, the revenue from mimicking is also strictly concave on that interval. The entire

function is piecewise concave. Thus, it could have either one or two peaks.

We now show that it is indeed single-peaked. Let us define θB as the tightness at which

the two concave parts connect: qB(aj, ak) = νb(ak) − w
µ(θB)

. For θ > θB, the revenue from

mimicking is equal to

Rk
j (θ) = p(θ)

[
νb(ak)− v̄(aj)

]
− χθ

and its maximum θ∗ is characterized by the first-order condition:

p′(θ∗)
[
νb(ak)− v̄(aj)

]
− χ = 0.

Substituting in the buyer’s indifference condition, we obtain

q∗ = ηνb(ak) + (1− η)v̄(aj).

Recall that the full information price of the seller of quality aj satisfies

qFI(aj) = ηνb(aj) + (1− η)v̄(aj).

19We have νb(ak) ≥ νs(ak) > v̄(ak) ≥ v̄(aj), where the first inequality is due to discounting and the
presence of search frictions, the second inequality is due to the definition of the value, and the last inequality
comes from the assertion. In addition, qB(aj , ak) ≥ v̄(aj) from Assumption 1.
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Since νb(ak) ≥ νb(aj) and by assumption qFI(aj) ≥ qB(aj, ak), we obtain q∗ ≥ qFI(aj) ≥

qB(aj, ak). Hence, the function Rk
j (θ) is strictly decreasing for θ > θB, which in turn implies

that it is single-peaked.

Disincentivizing mimicking from lower types. Next, we derive the set of tightnesses

(and corresponding prices) the seller of quality ak can choose without having other types

mimicking him.

Let θ̃l denote the market tightness that causes the incentive-compatibility constraint

between types ak and al < ak to bind. Then, θ̃l is characterized by the equation

p(θl)(ν
b(al)− v̄(al))− χθl = Rk

l (θ̃l). (A.10)

Since Rk
l (·) is single-peaked, there are at most two values θ̃l that satisfy the above equation.

In addition, limθ→+∞R
k
l (θ) = −∞ and limθ→0R

k
l (θ) = 0 and p(θl)(ν

b(al)− v̄(al))− χθl > 0.

Hence, there are either two or no solutions to the equation above. Let us denote θkl and θ̄kl the

two solutions to (A.10), provided they exist. As Rk
l (·) is single-peaked, we have that for all

θ ∈ [0, θkl ] ∪ [θ̄kl ,+∞), the right-hand side of equation (A.10) is lower than its left-hand side.

As a consequence, for any tightness on these two subintervals, the incentive-compatibility

constraint is slack; i.e., type al does not want to mimic type ak.

We now show that the sets
{
θkl : l ∈ {1, . . . , k − 1}

}
and

{
θ̄kl : l ∈ {1, . . . , k − 1}

}
are

non-empty. Because the seller of quality ak cannot choose its full-information tightness, there

exists at least one quality aj ∈ Ak−1 such that

Rk
j (0) = 0 < p(θj)

[
νb(aj)− v̄(aj)

]
− χθj < Rk

j (θ
FI(ak)).

Using the inequality above and the fact thatRk
j (·) is continuous, we can find a θ̃j < θFI(ak) such

that equation (A.10) holds, which implies that θkj and θ̄kj are well defined. As a consequence,

the two sets are non-empty.

Let θ = min
{
θkl : l ∈ {1, . . . , k − 1}

}
and θ̄ = max

{
θ̄kl : l ∈ {1, . . . , k − 1}

}
. It follows

that if type ak chooses any θ ≥ θ̄ or θ < θ, then no seller of quality aj ∈ Ak−1 wants to mimic

the seller of quality ak. Finally, note that since θkj < θFI(ak) and θ̄kj > θFI(ak), we necessarily

have that θ < θFI(ak) and θ̄ > θFI(ak).
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Any tightness θ ∈ (0, θ] ∪ [θ̄,+∞) is a possible value for a separating equilibrium.

We just proved that for any θ ∈ (0, θ]∪ [θ̄,+∞) played by the seller of quality ak, all types in

Ak−1 do not want to mimic, which ensures that a separating equilibrium can be constructed

using any of these values. Note that without a further refinement of off-equilibrium beliefs,

we can always find a set of buyers’ beliefs that can sustain any θ in that set. We can, for

example, assume that buyers believe that any off-path terms of trade are only picked by the

lowest type and make any θ in the set part of a separating equilibrium. Also, note that any

θ < θ or θ > θ̄ imposes a cost to the seller without any further benefit, since the seller is

already signaling its true type. Next, we follow the signaling literature and impose the D1

criterion, which is an equilibrium refinement that isolates the “most relevant” equilibrium.

The only values consistent with the D1 criterion are θ or θ̄. Choose any θk 6∈ [θ, θ̄].

The fact that θk > θ̄ or θk < θ implies that the constraint “quality aj does not want to mimic

type ak” is not binding; i.e.,

V (aj) > p(θk)
(
(1− ψ)νb(ak) + ψqP (aj, ak, q(ak, θk))− v̄(aj)

)
− (1− ψ)χθk.

Suppose first that θk < θ. We now need to determine which seller is most likely to deviate

and choose (â = ak, θ), so that we can set beliefs in accordance with the D1 criterion. We

know that the seller of quality ak is strictly better off if the price is q(ak, θ), as the expected

revenue of the seller of quality ak is strictly increasing in market tightness for θk < θ. At the

same time, any seller of a quality lower than ak would not, by construction, be better off by

deviating to the submarket with tightness θ and price q(ak, θ). This implies that the seller of

quality ak is better off under a larger set of beliefs than other sellers, as he is better off under

a larger set of prices (in the sense of inclusion). The D1 criterion then requires that type ak

is the one expected on any submarket with θ ∈ (0, θ]. A symmetric reasoning implies that

quality ak is also expected on submarkets with θ ∈ [θ̄,+∞).

We then invoke the fact that the unconstrained objective of sellers of quality ak is

strictly increasing on (0, θ] because θ < θFI(ak) and strictly decreasing on [θ̄,+∞) because

θ̄ > θFI(ak). As a consequence, the seller of quality ak has a profitable deviation for any

θk < θ and θk > θ̄, which leaves only θ and θ̄ as possible equilibrium values after applying

the D1 criterion.
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The seller of quality ak (weakly) prefers θ to θ̄ if continuation values are (weakly)

increasing in a. We proceed in two steps. We first show that the seller of quality ak has a

higher value at θ if the incentive-compatibility constraint is binding with the same quality for

θ and θ̄. We then show that the same is true if the incentive-compatibility constraint binds

with different qualities for θ and θ̄.

Let νs(ak; θ) denote the value of the seller of quality ak when the market tightness is θ

and the posted price is q(ak, θ).

(i) Case 1 : The same quality binds at θ and θ̄. Let this quality be al.

We start with the sub-case with qP (al, ak, q(ak, θ̄
k
l )) = qB(al, ak), which implies that

q(ak, θ̄
k
l ) ≥ qB(al, ak). Since θkl < θFI(ak), we always have qP (al, ak, q(ak, θ

k
l )) = qB(al, ak).

The binding incentive-compatibility constraint with quality al at tightness θkl can be

written as

V (al) = p(θkl )
(
(1− ψ)νb(ak) + ψqP (al, ak, q(ak, θ

k
l ))− v̄(al)

)
− (1− γ)χθkl .

After adding and subtracting (1− ψ)(1− p(θkl ))v̄(ak) on the right-hand side, we obtain

V (al) = (1−ψ)νs(ak; θ
k
l )−(1−ψ)v̄(ak)+p(θkl )

[
ψqP (al, ak, q(ak, θ

k
l )) + (1− ψ)v̄(ak)− v̄(al)

]
.

A similar expression applies when evaluating the incentive-compatibility constraint at θ̄kl .

Subtracting the expression above from its counterpart at θ̄kl , we obtain

(1− ψ)
[
νs(ak; θ

k
l )− νs(ak; θ̄

k
l )
]

=
(
p(θ̄kl )− p(θkl )

) [
ψqP (al, ak, q(ak, θ̄

k
l )) + (1− ψ)v̄(ak)− v̄(al)

]
+ ψp(θkl )

(
qP (al, ak, q(ak, θ̄

k
l ))− qP (al, ak, q(ak, θ

k
l ))
)
.

(A.11)

Given the sub-case we started from, we have that qP (al, ak, q(ak, θ̄
k
l ) = qP (al, ak, q(ak, θ

k
l )) =

qB(al, ak); therefore the second term on the left-hand side in (A.11) is zero. This yields

(1− ψ)
[
νs(ak; θ

k
l )− νs(ak; θ̄

k
l )
]

=
(
p(θ̄kl )− p(θkl )

) [
ψqP (al, ak, q(ak, θ̄

k
l )) + (1− ψ)v̄(ak)− v̄(al)

]
.

Because p(θ̄kl ) > p(θkl ) and qP (al, ak, q(ak, θ̄
k
l )) ≥ v̄(al) from Assumption 1, the right-hand

side is (weakly) positive if continuation values are (weakly) increasing in unobserved quality.
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Hence, the left-hand side is (weakly) positive; i.e., θkl yields a (weakly) higher utility to the

seller of quality ak.

Let us now handle the remaining sub-case with qP (al, ak, q(ak, θ̄
k
l )) = q(ak, θ̄

k
l ). The

binding incentive-compatibility constraint at θ̄kl is given by

V (al) = p(θ̄kl )
(
(1− ψ)νb(ak) + ψqP (al, ak, q(ak, θ̄

k
l ))− v̄(al)

)
− (1− γ)χθ̄kl .

Substituting in qP (al, ak, q(ak, θ̄
k
l )) = q(ak, θ̄

k
l ) = νb(ak)− w

µ(θ̄kl )
, we obtain

V (al) = p(θ̄kl )
(
νb(ak)− v̄(al)

)
− χθ̄kl

Next, we add and subtract (1− p(θ̄kl ))v̄(ak):

V (al) = νs(ak; θ̄
k
l )− v̄(ak) + p(θ̄kl ) [v̄(ak)− v̄(al)] .

As in the previous sub-case, the binding incentive-compatibility constraint at θkl is given by

V (al) = νs(ak; θ
k
l )− v̄(ak) + p(θkl )

[
ψ(qP (al, ak, q(ak, θ

k
l ))− q(ak, θkl )) + v̄(ak)− v̄(al)

]
.

Subtracting these last two expressions, we finally obtain

νs(ak; θ
k
l )− νs(ak; θ̄

k
l ) =

(
p(θ̄kl )− p(θkl )

)
[v̄(ak)− v̄(al)] + p(θkl )ψ

[
q(ak, θ

k
l )− qP (al, ak, q(ak, θ

k
l ))
]
.

The first term on the right-hand side is (weakly) positive because continuation values

are (weakly) non-decreasing in a by assumption. The second term is weakly positive by

the commitment assumption on qP (·). Hence, θkl is (weakly) preferred when the incentive-

compatibility constraint binds with the same quality on both sides.

(ii) Case 2 : Different qualities bind at θ and θ̄. Let us now take l,m < k with m 6= l such

that θ̄ = θ̄km and θ = θkl .

By definition of the bounds, we have θ̄kl ≤ θ̄km and θkl ≤ θkm. Since θ̄kl is in the decreasing

part of the revenue function Rk
l (θ) and θ̄kl ≤ θ̄km, we have that Rk

l (θ̄
k
l ) ≥ Rk

l (θ̄
k
m). By definition

of θ̄kl , the last inequality can be written as

V (al) > Rk
l (θ̄

k
m).
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We subtract V (am) from both sides of the last inequality and use the definition of θ̄km to

obtain

V (al)− V (am) > p(θ̄km)
[
ψ(qP (al, ak, q(ak, θ̄

k
m))− qP (am, ak, q(ak, θ̄

k
m)) + v̄(am)− v̄(al))

]
.

(A.12)

Let us now compare the value obtained by the seller of quality ak at the two market

tightnesses θ̄km = θ̄ and θkl = θ. We start by analyzing the sub-case qP (al, ak, q(ak, θ̄
k
m)) <

q(ak, θ̄
k
m). As before, the binding incentive-compatibility constraint with respect to quality al

can be written as

V (al) = (1−ψ)νs(ak; θ
k
l )−(1−ψ)v̄(ak)+p(θkl )

[
ψqP (al, ak, q(ak, θ

k
l )) + (1− ψ)v̄(ak)− v̄(al)

]
.

We subtract the above expression from its counterpart evaluated at θ̄km and obtain

(1− ψ)
[
νs(ak; θ

k
l )− νs(ak; θ̄

k
m)
]

= V (al)− V (am)

+ p(θ̄km)
[
ψqP (am, ak, q(ak, θ̄

k
m)) + (1− ψ)v̄(ak)− v̄(am)

]
− p(θkl )

[
ψqP (al, ak, q(ak, θ

k
l )) + (1− ψ)v̄(ak)− v̄(al)

]
.

Using inequality (A.12), we obtain

(1− ψ)
[
νs(ak; θ

k
l )− νs(ak; θ̄

k
m)
]
≥ (p(θ̄km)− p(θkl ))

[
ψqP (al, ak, q(ak, θ

k
l )) + (1− ψ)v̄(ak)− v̄(al)

]
+ψp(θ̄km)

[
qP (al, ak, q(ak, θ̄

k
m))− qP (al, ak, q(ak, θ

k
l ))
]
.

In this sub-case, the second term on the right-hand side is zero. The first term on the right-

hand side is positive, since qP (al, ak, q(ak, θ
k
l )) ≥ v̄(al) and continuation values are increasing

in a. Hence, νs(ak; θ
k
l ) ≥ νs(ak; θ̄

k
m); therefore, θ is preferred by the seller of quality ak.

We now address the second sub-case: qP (al, ak, q(ak, θ̄
k
m)) = q(ak, θ̄

k
m). In this case, the

binding incentive-compatibility constraint at θ̄km can be written as

V (am) = νs(ak; θ̄
k
m)− v̄(ak) + p(θ̄km) [v̄(ak)− v̄(am)]
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and the binding incentive-compatibility constraint at θkl can be written as

V (al) = νs(ak; θ
k
l )− v̄(ak) + p(θkl )

[
ψ(qP (al, ak, q(ak, θ

k
l ))− q(ak, θkl )) + v̄(ak)− v̄(al)

]
.

Subtracting one from the other, we obtain

νs(ak; θ
k
l )− νs(ak; θ̄

k
m) = V (al)− V (am) + p(θ̄km) [v̄(ak)− v̄(am)]

− p(θkl )
[
ψ(qP (al, ak, q(ak, θ

k
l ))− q(ak, θkl )) + v̄(ak)− v̄(al)

]
.

Using inequality (A.12) to replace the difference V (al)− V (am), substituting in the sub-case

expression qP (al, ak, q(ak, θ̄
k
m)) = q(ak, θ̄

k
m), and rearranging terms, we obtain the following

inequality:

νs(ak; θ
k
l )− νs(ak; θ̄km) ≥

(
p(θ̄km)− p(θkl )

)
[v̄(ak)− v̄(al)]

+ p(θ̄km)ψ
[
q(ak, θ̄

k
m)− qP (am, ak, q(ak, θ̄

k
m))
]

+ p(θkl )ψ
[
q(ak, θ

k
l )− qP (al, ak, q(ak, θ

k
l ))
]
.

All terms on the right-hand side are positive. Hence, the left-hand side is positive and

νs(ak; θ
k
l ) ≥ νs(ak; θ̄

k
m); therefore, θ is preferred by the seller of quality ak.

In conclusion, the only possible value for a separating equilibrium is θ as long as continua-

tion values are increasing in a. We also show that under beliefs set in accordance with the D1

criterion, there is no profitable deviation on (0, θ] ∪ [θ̄,+∞). This guarantees that no seller

has an incentive to deviate to these submarkets.

Downward incentive-compatibility constraints. By construction, Θk−1 ∪ {θ} satisfies

the “upward” incentive compatibility constraints, since no seller of a lower quality has an

incentive to mimic ak at θ. We now need to show that for this allocation, sellers have no

incentives to mimic the strategy of qualities lower than themselves. The recursion at rank

k − 1 implies that all qualities lower than ak satisfy the downward incentive-compatibility

constraints, so that we only need to show the property for sellers of quality ak. Let us fix

ai < ak. We prove that type ak does not want to mimic the strategy of type ai. Let θk = θ

and θi be the market tightness chosen by the seller of quality ai in equilibrium.

(i) Case 1: θi < θk. By construction, θk ≤ θFI(ak). We know that the unconstrained objective
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of sellers of quality ak is strictly concave, with a maximum reached at θFI(ak). This implies

that p(θ)
(
νb(ak)− v̄(ak)

)
− χθ is strictly increasing in θ for θ ∈ [θi, θk], which yields

p(θi)
(
νb(ak)− v̄(ak)

)
− χθi < p(θk)

(
νb(ak)− v̄(ak)

)
− χθk.

We then use νb(ak) > νb(ai), which implies

p(θi)
(
νb(ai)− v̄(ak)

)
− χθi < p(θk)

(
νb(ak)− v̄(ak)

)
− χθk.

Intuitively, if θk > θi, then the seller of quality ak benefits from both a higher selling probability

and a higher price. As a consequence, the seller of quality ak does not want to mimic the

strategy of the seller of quality ai.

(ii) Case 2: θi ≥ θk. For this case, we need to introduce quality aj < ak such that the

“upward” incentive-compatibility constraint between ak and aj is binding. We proceed with

three sub-cases:

(i) Case 2.1: ai = aj. The “upward” incentive-compatibility constraint between ai and ak

is binding, i.e.:

p(θk)
[
q(ak)(1− ψ) + ψqP (ai, ak)− v̄(ai)

]
= p(θi) [q(ai)− v̄(ai)] ,

which can be rewritten as

p(θk) [q(ak)− v̄(ak)] = p(θi) [q(ai)− v̄(ak)]+(p(θi)−p(θk))(v̄(ak)−v̄(ai))+ψp(θk)
[
q(ak)− qP (ai, ak)

]
.

Since θi ≥ θk, q(ak) ≥ qFI(ak) > qP (ai, ak) and continuation values are increasing, we

have unambiguously:

p(θk) [q(ak)− v̄(ak)] ≥ p(θi) [q(ai)− v̄(ak)] .

Hence the seller of quality ak does not want to mimic type ai’s strategy.

(ii) Case 2.2: aj > ai. We start from the binding incentive-compatibility constraint between
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aj and ak:

p(θk)
[
q(ak)(1− ψ) + ψqP (aj, ak)− v̄(aj)

]
= p(θj) [q(aj)− v̄(aj)] .

Using the recursion, sellers of quality aj satisfy the downward incentive-compatibility

constraint with ai:

p(θj) [q(aj)− v̄(aj)] ≥ p(θi) [q(ai)− v̄(aj)] .

Injecting this inequality in the previous equation:

p(θk)
[
q(ak)(1− ψ) + ψqP (aj, ak)− v̄(aj)

]
≥ p(θi) [q(ai)− v̄(aj)]

p(θk) [q(ak)− v̄(ak)] ≥ p(θi) [q(ai)− v̄(ak)]+ψp(θk)
[
q(ak)− qP (aj, ak)

]
+(p(θi)−p(θk))(v̄(ak)−v̄(aj)).

Since θi ≥ θk, q(ak) ≥ qP (aj, ak) and continuation values are increasing, we obtain

p(θk) [q(ak)− v̄(ak)] ≥ p(θi) [q(ai)− v̄(ak)] .

Hence, the seller of quality ak does not want to mimic type ai’s strategy.

(iii) Case 2.3: aj < ai. We start again from the binding incentive-compatibility constraint

between aj and ak:

p(θk)
[
q(ak)(1− ψ) + ψqP (aj, ak)− v̄(aj)

]
= p(θj) [q(aj)− v̄(aj)] .

This time we use the upward incentive-compatibility constraint between ai and aj:

p(θj) [q(aj)− v̄(aj)] ≥ p(θi)
[
q(ai)(1− ψ) + ψqP (aj, ai)− v̄(aj)

]
.

Injecting this inequality in the previous expression:

(1− ψ)p(θk) [q(ak)− v̄(ak)] ≥ (1− ψ)p(θi) [q(ai)− v̄(ak)] + (p(θi)− p(θk))((1− ψ)v̄(ak)− v̄(aj))

−ψp(θk)qP (aj, ak) + ψp(θi)q
P (aj, ai).
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From Assumption 1 qP (aj, ai) ≥ qP (aj, ak), which yields

(1− ψ)p(θk) [q(ak)− v̄(ak)] ≥ (1− ψ)p(θi) [q(ai)− v̄(ak)] +

(p(θi)− p(θk))(ψqP (aj, ai) + (1− ψ)v̄(ak)− v̄(aj)).

Since θi ≥ θk, continuation values are increasing and qP (aj, ai) ≥ v̄(aj) (from Assump-

tion 1), the second term on the right-hand side is positive. As a consequence:

p(θk) [q(ak)− v̄(ak)] ≥ p(θi) [q(ai)− v̄(ak)] .

Thus, the downward incentive-compatibility constraint is satisfied.

As a result, the allocation Θk−1∪{θ} satisfies all upward and downward incentive-compatibility

constraints and forms a separating equilibrium. In order to conclude, we still need to analyze

off-equilibrium beliefs and show the absence of strictly profitable deviations to off-equilibrium

submarkets.

Off-equilibrium beliefs. Next, we show that no seller strictly improves its payoff by

deviating to an off-equilibrium submarket. Beliefs on off-equilibrium submarkets are set in

accordance with the D1 criterion, so that the expected quality on a given submarket is the

one that is better off deviating under the largest set of beliefs, i.e., prices. For the equilibrium

to survive the D1 criterion, it is sufficient to show that the seller of the expected quality on

any off-equilibrium submarket does not have a strictly profitable deviation to that submarket.

Since we focus on the seller who is better off under the largest set of beliefs, no other seller

will obtain a strictly positive payoff from deviating to this submarket.

To prove this, fix an unobserved quality a ∈ Ak. Conditional on being expected on a given

off-equilibrium submarket (â, θ′), the seller of quality a faces the same objective function as

in equilibrium, but evaluated at market tightness θ′. As a consequence, if in equilibrium the

seller of unobserved quality a is implementing its full-information strategy, it cannot have

a strictly profitable deviation to this submarket because its equilibrium strategy already

maximizes its unconstrained objective. Hence, without loss, we can restrict our attention

to the case in which the seller has a binding incentive-compatibility constraint with a lower

unobserved quality on equilibrium.
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Given a binding constraint, we know that the seller of quality a deviates from its full-

information strategy in order to disincentivize mimicking from lower types by picking a lower

tightness than it would have under full information. Using the concavity of the unconstrained

objective of sellers with respect to market tightness, this implies that there is a range of

tightnesses [θa, θ̄a], where the seller of quality a would be better off deviating conditional on

being the only quality expected. Note that θa is the market tightness picked by the seller of

quality a on equilibrium. We therefore need to ensure that the seller of quality a is never

expected on off-equilibrium submarkets (â, θ′) with θ′ ∈ [θa, θ̄a]—i.e., that there is always a

seller of lower quality who is better off on this submarket under a larger set of beliefs. We

show this result in three steps corresponding to the three possible cases.

(i) Case 1: â = a. Choose any a ∈ Ak and let al < a be the quality whose “upward”

incentive-compatibility constraint with a is binding in equilibrium. Let q(a, θa) denote the

price obtained by the seller of quality a in the separating equilibrium. Choose any θ′ ∈ (θa, θ̄a)

and let q′ be the corresponding price on the off-equilibrium submarket (a, θ′). The revenue of

the seller of quality a at θ′ would be p(θ′) [q′ − v̄(a)] + v̄(a). Hence, the net gain the seller of

quality a would receive from deviating to θ′ is

∆ = p(θ′)[q′ − v̄(a)]− p(θa) [q(a, θa)− v̄(a)] .

Similarly, the net gain the seller of quality al would receive from deviating to the same

submarket, conditional on these beliefs, is

∆l = p(θ′)[(1− ψ)q′ + ψqP (al, a, q
′)− v̄(al)]− p(θ(al)) [q(al, θ(al))− v̄(al)] . (A.13)

Let us now use the binding incentive-compatibility constraint between qualities al and a,

which is given by

p(θa)[(1− ψ)q(a, θa) + ψqP (al, a, q(a, θa))− v̄(al)] = p(θ(al)) [q(al, θ(al))− v̄(al)] .

Combining this equality with equation (A.13), we obtain

∆l = p(θ′)[(1−ψ)q′+ψqP (al, a, q
′)− v̄(al)]−p(θa)[(1−ψ)q(a, θa)+ψqP (al, a, q(a, θa))− v̄(al)].

(A.14)
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The break-even price of the seller of quality a at (a, θ′) that makes ∆ = 0, which we denote

by q̃, is characterized by

p(θ′)q̃ = (p(θ′)− p(θa))v̄(a) + p(θa)q(a, θa). (A.15)

Next, we show that ∆l > 0 when evaluated at this price. Suppose first that q̃ ≤ qB(al, a).

Then, qP (al, a, q̃) = q̃ and equation (A.14) becomes

∆l = p(θ′)[q̃ − v̄(al)]− p(θa)[(1− ψ)q(a, θa) + ψqP (al, a, q(a, θa))− v̄(al)].

Replacing in the expression for q̃ from (A.15), we obtain

∆l = (p(θ′)− p(θa))[v̄(a)− v̄(al)] + p(θa)ψ
(
q(a, θa)− qP (al, a, q(a, θa))

)
.

Since θ′ > θa and continuation values are increasing, the first term is positive. In addition,

by Assumption 1, q(a, θa) ≥ qP (al, a, q(a, θa)) implies that the second term is also weakly

positive. Hence, ∆l > 0; i.e., there exists a price q̃ for which there is a strictly profitable

deviation for sellers of quality al but not for sellers of quality a.

Now suppose that q̃ > qB(al, a). Then, qP (al, a, q̃) = qB(al, a). Following similar steps, we

evaluate (A.14) at price q̃ and replace the expression for p(θ′)q̃ using (A.15) to obtain

∆l = (p(θ′)−p(θa))[ψqB(al, a)+(1−ψ)v̄(a)− v̄(al)]+p(θa)ψ
(
qB(al, a)− qP (al, a, q(a, θa))

)
.

Since θ′ > θa, continuation values are increasing, qB(al, a) ≥ v̄(al), and qB(al, a) ≥ qP (al, a, q(a, θa))

by Assumption 1, we can conclude again that ∆l > 0.

To summarize, for any submarket (a, θ′) with θ′ ∈ (θa, θ̄a), sellers of quality al still find a

strictly profitable deviation at the break-even price of sellers of quality a. This implies that

sellers of quality al are better off under a larger set of beliefs (those that justify the price q̃)

than sellers of quality a. The D1 criterion then requires that buyers do not expect to find

units of quality a in these submarkets, which proves our claim in Case 1.

(ii) Case 2: â > a. Let aj < a be the quality whose “upward” incentive-compatibility

constraint with a is binding in equilibrium. Choose any θ′ ∈ (θa, θ̄a). Let q′ denote the price

on submarket (â, θ′). By deviating to this submarket, the seller of quality a obtains a change

72



in expected revenues of

∆ = p(θ′)
[
(1− ψ)q′ + ψqP (a, â, q′)− v̄(a)

]
− V (a). (A.16)

Similarly, the change in revenue from this deviation for the seller of quality aj is given by

∆j = p(θ′)
[
(1− ψ)q′ + ψqP (aj, â, q

′)− v̄(aj)
]
− V (aj).

Hence, we have

∆j −∆ = V (a)− V (aj) + p(θ′)
[
ψ(qP (aj, â, q

′)− qP (a, â, q′)) + v̄(a)− v̄(aj)
]
.

Let us use the binding incentive-compatibility constraint between a and aj, which can be

rewritten as

V (aj)− V (a) = p(θa)
[
ψ(qP (aj, a, q(a))− q(a)) + v̄(a)− v̄(aj)

]
.

Since q(a) ≥ qFI(a) ≥ qB(aj, a), qP (aj, a, q(a)) = qB(aj, a). Substituting in the previous

equation, we obtain

∆j−∆ ≥ (p(θ′)−p(θa))(v̄(a)−v̄(aj))+ψp(θ
′)(qP (aj, â, q

′)−qP (a, â, q′))+p(θa)ψ(q(a)−qB(aj, a)).

(A.17)

Let us now set q′ such that ∆ = 0. First assume that q′ ≤ qB(aj, â). Because aj < a,

qP (aj, â, q
′) ≤ qP (a, â, q′) and qP (aj, â, q

′) = qP (a, â, q′) = q′. Hence, the second term in

(A.17) is zero. The other terms are positive as continuation values are increasing and θ′ > θa.

As a consequence ∆j ≥ 0: The seller of quality aj is better off deviating for a larger set of

prices than the seller of quality a.

We now consider the case in which qB(a, â) ≥ q′ ≥ qB(aj, â). The break-even price for the

seller of quality a is such that

p(θ′)(1− ψ)q′ = p(θa)q(a) + (p(θ′)− p(θa))v̄(a)− ψp(θ′)qP (a, â, q′).
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Provided that q′ ≤ qB(a, â), this equation becomes

p(θ′)q′ = p(θa)q(a) + (p(θ′)− p(θa))v̄(a). (A.18)

Combining the expression for ∆j , with the binding incentive-compatibility constraint between

qualities a and aj and the expression above that characterizes the break-even price q′, we

obtain

∆j = p(θ′)
(
ψqB(aj, â) + (1− ψ)v̄(a)− v̄(aj)

)
− p(θa)

(
ψqB(aj, a) + (1− ψ)v̄(a)− v̄(aj)

)
.

We now combine equation (A.18) with the condition q′ ≤ qB(a, â) to obtain

p(θ′) ≥ p(θa)
q(a)− v̄(a)

qB(a, â)− v̄(a)
.

Finally, we substitute this inequality into the previous equation to obtain

∆j ≥ p(θa)

[
q(a)− v̄(a)

qB(a, â)− v̄(a)

(
ψqB(aj, â) + (1− ψ)v̄(a)− v̄(aj)

)
−
(
ψqB(aj, a) + (1− ψ)v̄(a)− v̄(aj)

)]
.

The term between brackets is positive if

q(a)− v̄(a)

qB(a, â)− v̄(a)
≥ ψqB(aj, a) + (1− ψ)v̄(a)− v̄(aj)

ψqB(aj, â) + (1− ψ)v̄(a)− v̄(aj)
.

Since qB(aj, a) ≥ qB(aj, â), the right-hand side is an increasing function of ψ. We also have

that q(a) ≥ qFI(a). Therefore, a sufficient condition for the above inequality to hold is

qFI(a)− v̄(a)

qB(a, â)− v̄(a)
≥ qB(aj, a)− v̄(aj)

qB(aj, â)− v̄(aj)
,

which is true by Assumption 1. As a consequence, the seller of quality aj is better off deviating

to submarket (â, θ′) for a larger set of beliefs than the seller of quality a, which therefore

cannot be expected on that submarket.

Next let us discuss the remaining case in which q′ > qB(a, â). Note that (A.16) implies

that the q′ that makes ∆ = 0 is a continuous, decreasing function of θ′. Hence, if q′ ≥ qB(a, â)

for a given tightness θ, we have q′ ≥ qB(a, â) for all θ′ ≤ θ. This implies that the right-hand

side of inequality (A.17) is a linear function of p(θ′) on an interval of the form (θa, θ
B),
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where θB is defined as the market tightness in submarket (â, q′) when q′ = qB(a, â). The

right-hand side of inequality (A.17) is positive at θa. We just showed that (A.17) is positive

when q′ = qB(a, â). Hence, it is positive in the entire range (θa, θ
B) or equivalently for any

q′ ≥ qB(a, â).

Thus, for any submarket (a, θ′) with θ′ ∈ (θa, θ̄a), sellers of quality aj still find a strictly

profitable deviation at the break-even price of sellers of quality a. So, the D1 criterion then

requires that buyers do not expect to find units of quality a in these submarkets.

(iii) Case 3: â < a. Let al be the quality whose “upward” incentive-compatibility constraint

with a is binding in equilibrium. There are two cases to consider.

(i) Case 3.1: If â > al, then the proof is identical to Case 1. Indeed, the only required

change is to replace the announced quality in the expression of qP . This change does

not alter any argument made in that step of the proof.

(ii) Case 3.2: Suppose now that â ≤ al and set q′ to be the price on submarket (â, θ′). The

net gain from deviating for sellers of quality a is

∆ = p(θ′)[q′ − v̄(a)]− V (a),

where we have used the fact that quality a is higher than announced quality â, so sellers

of a still sell at price q′ and not at the inspection-adjusted price qP (·). Similarly, the

net gain from deviating for sellers of quality al is

∆l = p(θ′)(q′ − v̄(al))− V (al).

The incentive-compatibility constraint between qualities al and a can be rewritten as

V (al) = V (a) + p(θa)
[
ψ(qP (al, a, q(a, θa))− q(a, θa)) + v̄(a)− v̄(al)

]
.

Combining these three expressions, we obtain:

∆l −∆ = (p(θ′)− p(θa))(v̄(a)− v̄(al)) + p(θ(a))ψ(q(a, θa)− qP (al, a, q(a, θa))).

Continuation values are increasing, θ′ > θa and q(a, θa) ≥ qP (al, a, q(a, θa)). Hence,

∆l > ∆—i.e., sellers of quality al are better off under a larger set of prices (and the
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corresponding beliefs) than sellers of quality a. Hence, quality a cannot be expected on

such off-equilibrium submarkets.

In conclusion, if a quality is expected on a given off-equilibrium submarket, the seller of

this quality does not have a strictly profitable deviation to that submarket. As a consequence,

the recursive construction of Θk−1 ∪ {θk} as the only fully revealing separating equilibrium

that survives the D1 criterion is justified.

Conclusion of the recursion. We proved that there exists a unique fully revealing

equilibrium on Ak that satisfies the D1 criterion and that the construction is done using the

procedure described in the assertion. Hence, the assertion is true at rank k, which concludes

the induction.

A non-revealing separating equilibrium is always weakly dominated by a fully

revealing separating equilibrium. For a given quality ak, it is possible to construct

bounds θ and θ̄ on any submarket with announced quality â < ak and similarly construct a

separating, but not fully revealing, equilibrium. Because the inspection-adjusted price qP (·) is

weakly decreasing in the announced quality, the revenue from the mimicking of sellers of all

lower qualities will be weakly larger when the announced quality is â than ak. Thus, in order

to disincentivize mimicking, the bound θ, conditional on an announced quality â < ak, will

be lower than for an announced quality â = ak, and the bound θ̄ will be larger. At the same

time, the transacted price obtained by the seller of quality ak remains the same as the posted

price (since there is no penalty for announcing a quality lower than its own). This implies

that by announcing â < ak, the seller of quality ak will have to choose a market tightness

further from his full-information tightness than he would have had he signaled quality ak,

yielding a lower payoff. Therefore, non-revealing separating equilibria are at least weakly

dominated by the fully revealing separating equilibrium. Since we assume qP (·) to be weakly

decreasing in the announced quality, we cannot rule out non-revealing separating equilibria

as strictly dominated. If instead qP (·) was strictly decreasing in the announced quality, then

the fully revealing equilibrium would also be the unique separating equilibrium.

Step 3: Balanced-growth path under asymmetric information. The proof of Propo-

sition 2 is then a simple application of the recursion above on A = ANa .
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Step 4: There is no pooling equilibrium in transitional dynamics if ψqP (ω, a, â, q)−

v̄(ω, a) is monotonous in a. Assume that for all (ω, â, q) ∈ Ω×A×R+, ψqP (ω, a, â, q)−

v̄(ω, a) is monotonous in a. Suppose there exists an equilibrium such that the subset of types

A ⊂ A are pooled together in submarket (ω, â, q) with some strictly positive probability. Let

ā = max{a : a ∈ A}. As in previous steps, we suppose they all have the same observed quality

ω and omit it for convenience.

We next show that under the D1 criterion, there exists a strictly profitable deviation for

sellers of quality ā, ruling out any equilibria in which pooling occurs with strictly positive

probability. Let θ be the tightness on submarket (â, q) where pooling occurs. We can assume

without loss of generality that buyers visit this submarket.20 We then proceed by setting

beliefs consistent with the D1 criterion on submarkets where â is the announced quality and

θ′ is the market tightness.

Consider a deviation of a seller of quality a ∈ A, with a < ā, to another submarket with

the same announced quality â and market tightness θ′. The seller would be better off for any

price weakly greater than q̃, which is defined by the indifference condition:

p(θ′)((1−ψ)q̃+ψqP (a, â, q̃))+(1−p(θ′))v̄(a) = p(θ)((1−ψ)q+ψqP (a, â, q))+(1−p(θ))v̄(a).

(A.19)

Let us now set beliefs. Let ∆ā denote the net gain for the seller of quality ā from deviating

to a submarket with tightness θ′ and price q̃:

∆ā = p(θ′)((1−ψ)q̃+ψqP (ā, â, q̃))+(1−p(θ′))v̄(ā)−p(θ)((1−ψ)q+ψqP (ā, â, q))−(1−p(θ))v̄(ā).

Consider first the case with θ′ < θ. Then, from equation (A.19) we have q̃ > q. It can be verified

that qP (ā, â, q) − qP (a, â, q) is weakly increasing in q. Therefore, qP (ā, â, q̃) − qP (a, â, q̃) ≥

qP (ā, â, q)− qP (a, â, q), which implies

∆ā ≥ (p(θ)− p(θ′))
[
ψ(qP (a, â, q)− qP (ā, â, q)) + v̄(ā)− v̄(a)

]
.

We now use the assumption that ψqP (a, â, q)− v̄(a) is monotonous in a. More specifically,

assume the function is decreasing in a. This implies that the second term on the right-hand

20Otherwise, sellers of any quality could deviate to any submarket in which buyers would purchase for a
strictly positive price, which would be a strictly profitable deviation.
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side is positive, as is the first term on the right-hand side. Hence, for all a ∈ A and θ′ < θ,

the seller of quality ā always has a larger benefit from deviating than the seller of inferior

quality—by definition, at price q̃, the net benefit from deviating for sellers of quality a is zero.

This ensures that the seller of quality ā will be better off under the worst consistent beliefs.

The D1 criterion then requires that quality ā is expected in submarkets with tightness θ′ < θ.

We can now construct a profitable deviation for the seller of quality ā. Using the indifference

condition of buyers, we have that (1− ψ)q = Ea
(
νb(a)− ψqP (a, â, q)|â, q

)
− χ

µ(θ)
. Given the

monotonicity assumption, Ea
(
νb(a)− ψqP (a, â, q)|â, q

)
= νb(ā)− ψqP (ā, â, q)− ε for some

ε > 0. The net gain from deviating to tightness θ′ for the seller of quality ā is then

∆ā = p(θ′)[νb(ā)−v̄(ā)]−p(θ)
[
Ea
(
νb(a)− ψqP (a, â, q)|â, q

)
+ ψqP (ā, â, q)− v̄(ā)

]
+χ(θ−θ′),

or

∆ā = (p(θ′)− p(θ))[νb(ā)− v̄(ā)] + χ(θ − θ′) + p(θ)ε.

Hence, we can find a θ′ sufficiently close to θ such that the deviation yields a strictly positive

∆ā, which in turn implies a strictly profitable deviation for the seller of quality ā. Therefore,

the pooling equilibrium cannot be sustained. If the function ψqP (a, â, q) − v̄(a) is instead

increasing in a, we can make exactly the same symmetric reasoning with θ′ > θ.

Step 5: There are no pooling equilibria on the balanced-growth path. Let us now

apply the result from Step 4 to a balanced-growth-path equilibrium. Suppose that some

qualities are pooled together at some announced quality â and market tightness θ. Let quality

a be one of them and let q be the associated price.

The value of the seller of type a on the balanced-growth path is:

νs(a) = p(θ)((1− ψ)q + ψqP (a, â, q)) + (1− p(θ))(Λνs(a)− δωa).

We multiply by Λ, subtract δωa, and reorganize the terms to obtain

v̄(a)(1− Λ(1− p(θ))) = −δωa+ Λp(θ)((1− ψ)q + ψqP (a, â, q)).
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Solving for v̄(a) and subtracting ψqP (a, â, q) we obtain

v̄(a)− ψqP (a, â, q) =
1

(1− Λ(1− p(θ)))
[
−δωa+ Λ(1− ψ)p(θ)q − ψqP (a, â, q)(1− Λ)

]
.

Hence, a → v̄(a) − ψqP (a, â, q) is monotonous in a for all unobserved qualities a ∈ A that

are pooled in submarket (â, θ). We can then apply the previous step, which rules out any

pooling equilibrium on a balanced-growth path. �

A.1.1 Proof of Proposition 3 and Corollary 1

We first characterize the equilibrium in transitional dynamics.

Transitional dynamics in the full-information case. We now characterize the equilib-

rium under full information—namely, the equilibrium when the signal is always informative

of the unobserved quality (ψ = 1).

We fix the continuation value of sellers νs
t+1(ω, a) for all ω and a and describe the

equilibrium in period t conditional on agents’ continuation values. From Proposition 1, we

have that the values of sellers and buyers are given by equations (3) and (7).

Under full information, the first-order condition with respect to vacancies posted is given

by

µt(θ(ω, a, q))(ν
b
t (ω, a)− qFIt (ω, a)) = wt,

which relates the expected benefit from searching in a given submarket to the expected cost,

and provides an indifference condition between sale prices and trading probabilities. Given

this condition, the seller’s maximization problem is then given by

max
θ
p(θ)

(
νb
t (ω, a)− wtθ

γtp(θ)

)
+ (1− p(θ))(Λt,t+1ν

s
t+1(ω, a,KHt+1)− δωa),

which gives the following first-order condition with respect to θ:

p′(θ)(νb
t (ω, a)− Λt,t+1ν

s
t+1(ω, a,KHt+1) + δωa) =

wt
γt
.

We then replace the right-hand side using the indifference condition of buyers to obtain

(1− η)(νb
t (ω, a)− Λt,t+1ν

s
t+1(ω, a,KHt+1) + δωa) = νb

t (ω, a)− qFIt (ω, a),
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from which we can solve for the equilibrium full-information price

qFIt (ω, a) = ηνb
t (ω, a) + (1− η)(Λt,t+1ν

s
t+1(ω, a,KHt+1)− δωa).

To find the associated optimal market tightness, we replace this price in the seller’s first-order

condition to obtain

θFIt (ω, a) =

(
m̄γt

wt
(1− η)(νb

t (ω, a)− Λt,t+1ν
s
t+1(ω, a,KHt+1) + δωa)

)1/η

.

Balanced-growth path under full information. We next use these results to obtain

closed-form solutions for values and terms of trade on the balanced-growth path equilibrium.

Let χ = wt
γt

denote the detrended wage on the balanced-growth path. From our expression

above we have

qFI(ω, a) = ηνb(ω, a) + (1− η)(Λνs(ω, a)− δωa)

and

θFI(ω, a) =

(
m̄

χ
(1− η)(νb(ω, a)− Λνs(ω, a) + δωa)

)1/η

.

From Proposition 1, the seller’s and buyer’s values on the balanced-growth path under full

information are given by

νb(ω, a) = (Z − δ)ωa+ Λ
[
(1− ϕ)νb(ω, a) + ϕνs(ω, a)

]
,

νs(ω, a) = qFI(ω, a)p(θFI(ω, a)) +
(
1− p(θFI(ω, a))

)
(Λνs(ω, a)− δωa).

Replacing these values in the optimal market tightness θFI(ω, a), we obtain

p(θFI(ω, a)) = m̄

(
Zωam̄(1− η)

χ (1− Λ(1− ϕ)(1− ηp(θFI(ω, a))))

) 1−η
η

,

We can derive the comparative static by differentiating with respect to ω:

dlogp(θFI(ω, a))

dlog(ω)
=

1− η
η

(
1− Λ (1− ϕ)

(
1− ηp(θFI(ω, a))

))
(1− Λ (1− ϕ) (1− p(θFI(ω, a))))

> 0.
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Similarly, we replace the buyer’s and seller’s values in the optimal price qFI(ω, a) to obtain

qFI(ω, a) =
ωa

1− Λ

[
ηZ

1− Λ(1− p(θFI(ω, a)))

1− Λ(1− ϕ)(1− ηp(θFI(ω, a)))
− δ
]
≡ ωa

1− Λ
F (p(θFI(ω, a))).

We can derive the comparative static by differentiating with respect to ω:

dqFI(ω, a)

dω
=

a

1− Λ

[
F (p(θFI(ω, a))) + ωF ′(p(θFI(ω, a)))

dp(θFI(ω, a))

dω

]
,

where

F ′(p(θFI(ω, a))) = ηZΛ
1− (1− ϕ)[η + Λ(1− η)]

(1− Λ(1− ϕ)(1− ηp(θFI(ω, a))))2
> 0.

Thus, when qFI(ω, a) ≥ 0, we obtain dqFI(ω,a)
dω

> 0. Since qualities ω and a have similar effects

on optimal terms of trade, the same comparative statics apply to changes in a under full

information. �

A.1.2 Proof of Proposition 4

In the case with A = {aL, aH} with aL < aH , the seller of quality aL chooses the full-

information price and market tightness. The strategy of the seller of quality aH is then

determined by the binding incentive-compatibility constraint between him and sellers of

quality aL, which is given by

p(θFI(aL))(qFI(aL)−Λνs(aL) + δωaL) =

p(θ(aH))[(1− ψ)q(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL].

There exists a threshold ψ∗ that triggers the non-full-information solution. For

a small degree of asymmetry of information, the constraint above might not be binding.

Instead, the constraint becomes binding for a threshold value ψ∗ defined by

p(θFI(aL))(qFI(aL)−Λνs(aL) + δωaL) =

p(θFI(aH))[(1− ψ∗)qFI(aH) + ψ∗qP (aL, aH , q
FI(aH))− Λνs(aL) + δωaL].
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By Assumption 1, fqP (aL, aH , q
FI(aH)) < qFI(aL); thus, we can rewrite the constraint and

solve for ψ∗ and obtain

ψ∗ =

(
νS,FI(aH)− νS,FI(aL)

) [
1− Λ(1− p(θFI(aH)))

]
+ δω (aH − aL) (1− p(θFI(aH)))

p(θFI(aH))(qFI(aH)− qP (aL, aH , qFI(aH)))
.

(A.20)

Thus, for ψ below ψ∗, the incentive-compatibility constraint evaluated at the full-information

terms of trade is not satisfied. Then, the optimal market tightness for sellers of quality aH is

determined by

p(θFI(aL))(qFI(aL)−Λνs(aL) + δωaL)

= p(θ(aH))
(
(1− ψ)q(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL

)
.

Replacing the price q(aH) from the buyer’s indifference condition, this condition can be

rewritten as

p(θFI(aL))(qFI(aL)− Λνs(aL) + δωaL)

= p(θ(aH))
(
(1− ψ)νb(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL

)
− (1− ψ)θ(aH)χ.

(A.21)

Comparative statics. Let us differentiate the constraint with respect to ψ in the region

in which the incentive-compatibility constraint binds (i.e., ψ ≤ ψ∗). Differentiating (A.21)

with respect to ψ, we obtain

dlog(θ(aH))

dψ
=

q(aH)− qP (aL, aH , q(aH))

(1− η)((1− ψ)q(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL)− η(1− ψ) χ
µ(θ(aH))

.

(A.22)

To sign this expression, we need to ensure that the denominator is positive, since q(aH) ≥

qFI(aH) > qFI(aL) ≥ qP (aL, aH , q(aH)). Under full information, we know that

qFI(aH) = νb(aH)− w

µ(θFI(aH))
= ηνb(aH) + (1− η)(Λνs(aH)− δωaH),

and hence
χ

µ(θFI(aH))
= (1− η)(νb(aH)− Λνs(aH) + δωaH).
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We also know that the binding incentive-compatibility constraint (A.21) has two solutions

for θ(aH) and that as long as Λνs(aH) − δωaH ≥ Λνs(aL) − δωaL, the lowest one will be

chosen by the seller of quality aH . In particular, this implies θ(aH) ≤ θFI(aH). Since µ(θ) is

a decreasing function of θ, we obtain

χ

µ(θ(aH))
≤ (1− η)(νb(aH)− Λνs(aH) + δωaH).

The denominator in (A.22) can be rewritten as

(1− η)((1− ψ)q(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL)− η(1− ψ)
χ

µ(θ(aH))
=

(1− η)
(
(1− ψ)νb(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL

)
− (1− ψ)

χ

µ(θ(aH))
.

Using the previous inequality and the fact that qP (aL, aH , q(aH)) > Λνs(aL)− δωaL:

(1− η)
(

(1− ψ)νb(aH) + ψqP (aL, aH , q(aH))− Λνs(aL) + δωaL

)
− (1− ψ)

χ

µ(θ(aH))
>

(1− η)(1− ψ) [Λνs(aH)− δωaH − (Λνs(aL)− δωaL)] .

Since continuation values are increasing, Λνs(aH)− δωaH ≥ Λνs(aL)− δωaL. This implies

that the denominator in (A.22) is positive, which in turn implies

dlog(θ(aH))

dψ
> 0.

Thus, the optimal market tightness for sellers of quality aH is increasing in the informativeness

of the inspection. From the buyer’s indifference condition, we can also conclude that their

optimal posted price is decreasing in the informativeness of the inspection.

There exists a threshold ψ such that sellers’ continuation values are increasing

for ψ ≥ ψ. The last item we need to verify is that v̄(aH) > v̄(aL), with v̄(a) ≡ Λνs(a)−δωa,

in the case in which the incentive-compatibility constraint is binding so that we can guarantee

the existence of the equilibrium.

Rewriting the incentive-compatibility constraint, we have

νs(aL)− v̄(aL) = νs(aH)− v̄(aH) + p(θ(aH))[ψ(qP (aL, aH , q(aH))− q(aH)) + v̄(aH)− v̄(aL)].
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Using the fact that q(aH) > qFI(aH) and qP (aL, aH , q(aH)) = qB(aL, aH), this constraint can

be written as

(1− Λ(1− p(θ(aH))))(v̄(aH)− v̄(aL)) = Λψp(θ(aH))[q(aH)− qB(aL, aH)]− δω(aH − aL).

Hence, v̄(aH) ≥ v̄(aL) ≥ 0 ⇐⇒ Λψp(θ(aH))[q(aH)− qB(aL, aH)] ≥ δω(aH − aL).

For δ low enough, there exists a ψ such that ψΛp(θ(aH))[q(aH)−qB(aL, aH)] ≥ δω(aH−aL).

As ψ decreases, θ(aH) decreases—and since the function on the left-hand side is concave in

θ(aH), the left-hand side becomes increasing in ψ at optimal choices of θ(aH). This implies

that there exists a threshold ψ such that

Λψp(θ(aH))[q(aH)− qB(aL, aH)] = δω(aH − aL).

Thus, assuming that δ is low enough to have Λψ∗p(θFI(aH))[qFI(aH)−qB(aL, aH)] ≥ δω(aH−

aL), then ψ ≤ ψ∗ and we obtain that the inequality is satisfied on the interval [ψ, 1], which

in turn ensures that continuation values are increasing on that interval. Finally, notice that

lim
δ→0

ψ = 0. That is, as the depreciation rate becomes negligible, it is always true that sellers’

continuation values are increasing in the quality a.

There is no pooling equilibrium in the two-quality case. Using our earlier proof that

rules out pooling equilibria, we need to verify the condition that for all (ω, â, q) ∈ Ω×A×R+,

ψqP (ω, a, â, q)− νs(ω, a) + δωa is monotonous in a. Here, this condition is trivially satisfied.

Indeed, the function is always monotonous over the set of unobserved qualities since there

are only two (either one is greater than the other or the reverse). �

A.1.3 Proof of Proposition 5

In a fully revealing separating equilibrium, the buyer’s indifference condition is given by

qt(ω, a) = νb
t (ω, a)− wt

µt(θ(ω, a))
,

where

νb
t (ω, a) = (Zt − δ)ωa+ Λt,t+1

(
(1− ϕ) νb

t+1(ω, a) + ϕνs
t+1(ω, a,KHt+1)

)
.
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As ϕ→ 0, this value can be expressed as

νb
t (ω, a) ≈ ωa

(
(Zt − δ) +

∞∑
j=1

(
j∏
i=0

Λt,t+i

)
(Zt+j − δ)

)

≈ ωaf(Zt),

where we have used the fact that Zt follows a Markov process to summarize the effect of

future productivity in terms of the function of current productivity f(Zt). Then, taking logs,

this value can be expressed as

log νb
t (ω, a) ≈ logω + log a+ ιt,

where ιt denote time fixed effects. Finally, making the assumption that search costs represent

a small fraction of the buyer’s value of a unit of capital—i.e.,
wt

µt(θ(ω,a))

νb
t (ω,a)

→ 0—we obtain the

following expression for the price of a unit of capital:

log qt(ω, a) ≈ logω + ιt + log a

= τX + ιt + log a,

where the second line imposes the mapping between observed characteristics and observed

efficiency units logω = τX. Thus, using microdata we can regress

log qit = ιωXi + ιt + εqit,

which results in a consistent estimator for τ (and thus ω) and the unobserved quality a from

ιω and the residuals εqit, respectively.

In the second step, we need to estimate the following regression:

log(Durationit) = υω log(ωit) + υq log(qit) + ιt + εdit.

Given our assumptions that yield log qit ≈ logωit + ιt + log ait and the independence between

ωit and ait, we can recover υq = cov(logDurationit,log ait)
var(log ait)

.

To map this result to our model, note thatDurationit ≡ Duration(ωit, ait) ∼ Geometric(1/p(ωit, ait)).
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Thus,

Duration(ωit, ait) =
1

p(ωit, ait)
+ ηit,

with E(ηit|ωit, ait) = 0. Making a first-order approximation of logDurationit around ηit = 0,

we obtain

logDuration(ωit, ait) ≈ log

(
1

p(ωit, ait)

)
+ p(ωit, ait)ηit.

Using the law of total variance and the approximation, the estimated covariance simplifies to

cov(logDuration(ωit, ait), log ait) ≈ −cov (log (p(ωit, ait)), log ait) .

Taking a first-order approximation of the equilibrium price around the mean qualities (ω̄, ā),

and of log a around ā,

log (p(ωit, ait)) ≈ log (p(ω̄, ā)) +

∂p(ωit,ait)
∂ωit

|ω̄,ā
p(ω̄, ā)

(ωit − ω̄) +

∂p(ωit,ait)
∂ait

|ω̄,ā
p(ω̄, ā)

(ait − ā)

and

log ait ≈ log ā+
1

ā
(ait − ā) .

Replacing this expression in the covariance,

cov (log (p(ωit, ait)), log ait) ≈ cov

(
∂p(ωit,ait)

∂ωit
|ω̄,ā

p(ω̄, ā)
(ωit − ω̄) +

∂p(ωit,ait)
∂ait

|ω̄,ā
p(ω̄, ā)

(ait − ā) ,
1

ā
(ait − ā)

)

=

∂p(ωit,ait)
∂ait

|ω̄,ā
p(ω̄, ā)

āvar
(ait
ā
− 1
)

≈
∂p(ωit,ait)

∂ait
|ω̄,ā

p(ω̄, ā)
āvar(log ait),

where the second step follows from the independence of ωit and ait. Thus,

υq =
cov(logDurationit, log ait)

var(log ait)

≈ −cov (log (p(ωit, ait)), log ait)

var(log ait)

≈ −∂p(ωit, ait)
∂ait

|ω̄,ā
ā

p(ω̄, ā)

≈ −∂ log p(ωit, ait)

∂ log ait
|ω̄,ā.
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As shown in 4, our model predicts that ∂ log p(ωit,ait)
∂ log ait

is a strictly monotonic function of ψ,

which means ψ can be recovered by inverting the function υq(ψ).

A.2 Additional results

A.2.1 Bargaining as a special case of inspection-adjusted price function

Lemma 2. Suppose that qP (ω, a, â, q) is determined by Nash bargaining. Let us denote φ the

bargaining power of sellers so that

qPt (ω, a, â, q) = min(q, φνb
t (ω, a) + (1− φ)

[
Λt+1ν

s
t+1(ω, a)− δωa

]
). (A.23)

Then, qPt satisfies Assumption 1 if and only if φ ≤ η.

Proof. Let us assume that the post-inspection price function qP (·) is determined by a Nash

bargaining protocol and the bargaining power of the seller is φ with φ < η:

qPt (ω, a, â, q) = min
(
φνb

t (ω, a) + (1− φ)
[
Λtν

s
t+1(ω, a)− δωa

]
, q
)
. (A.24)

Let us note qBt (ω, a, â) = φνb
t (ω, a) + (1 − φ)

[
Λtν

s
t+1(ω, a)− δωa

]
so that qPt (ω, a, â, q) =

min(qBt (ω, â, a), q). We now verify that this function satisfies all of the conditions in Assump-

tion 1. To do so, we make use of the result whereby both νb(ω, a) and νs(ω, a) − δωa are

increasing in unobserved quality a, as we showed in the proof of Proposition 2.

(i) qP (ω, a, â, q) is non-decreasing in the true quality: For any two qualities a′ > a,

qPt (ω, a′, â, q)− qPt (ω, a, â, q)

= φ(νb
t (ω, a′)− νb

t (ω, a)) + (1− φ)
[
Λt(ν

s
t+1(ω, a′)− νs

t+1(ω, a))− δω(a′ − a)
]
≥ 0,

which proves the first condition.

(ii) qP (ω, a, â, q) is non-increasing in the announced quality: The second condition is trivially

satisfied, since qP (ω, a, â, q) in (A.24) does not depend on the announced quality.

(iii) qP (ω, a′, â, q) is weakly lower (resp. higher) that the buyer’s (resp. seller’s) value for

the unit: This condition is also trivially satisfied, since qP (ω, a′, â, q) in (A.24) is the

minimum of q and a convex combination of νb(ω, a) and Λt+1ν
s
t+1(ω, a)− δωa.
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(iv) Buyers obtain at least a fraction 1− η of the surplus: The Nash bargaining solution

implies that buyers get a fraction 1 − φ of the surplus. Hence, as long as φ ≤ η this

condition is satisfied.

(v) qPt does not decrease too fast as the announced quality increases: We need to show that

η(νb
t (ω, ai)− Λt+1ν

s
t+1(ω, ai) + δωai)

qP (ω, ai, ak)− Λt+1νs
t+1(ω, ai) + δωai

≥
qBt (ω, aj, ai)− Λt+1ν

s
t+1(ω, aj) + δωaj

qBt (ω, aj, ak)− Λt+1νs
t+1(ω, aj) + δωaj

.

Since qB(·) does not depend on the announced quality (i.e., qB(ω, aj, ak) = qB(ω, aj)),

the right-hand side of the inequality is equal to one. Hence, the inequality simplifies to

η(νb
t (ω, ai)− Λt+1ν

s
t+1(ω, ai) + δωai) ≥ qP (ω, ai, ak)− Λt+1ν

s
t+1(ω, ai) + δωai,

or

ηνb
t (ω, ai) + (1− η)(Λt+1ν

s
t+1(ω, ai)− δωai) ≥ qP (ω, ai, ak),

which is satisfied since it corresponds to the fourth condition of Assumption 1.

�

B Empirical Appendix

B.1 The online platform

This subsection describes how the platform works. When entering the website, the buyer

encounters the screen shown in Figure B1. The platform asks the client to choose a type of

transaction (buy, rent, or find a shared space), the type of property (retail store, office, etc.),

and the location.

Figure B1: Main Website
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Once those options are selected (suppose the client wants to find a unit in Madrid—see Figure

B2), then the website shows the number of properties available for sale by area in the city.

Figure B2: Options in Madrid

After choosing a narrower location within the city (not shown here), the client finds a scrolling

list of available units that meet her requirements, as shown in Figure (B3). There, the user

can include more filters depending on her requirements for layout and amenities.

Figure B3: Available Listings in a Narrow Location in Madrid

When the user finds a unit that may be to her taste and clicks on it, a window pops up with

the details shown in Figure B4 and additional text details not shown here. The information the
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listing contains is the unit description with pictures, price, change in price, area, construction

date, and other amenities and equipment.

Figure B4: A Listing on the Website

B.2 Representativeness of the dataset

In this subsection, we analyze the representativeness of the dataset and show that our data

are consistent with aggregate patterns observed in Spain over this period. More specifically,

we show that the price index exhibits the patterns of aggregate data. Figure B5 shows the

index of listed prices for properties for sale in our sample and the index of transacted prices of

retail space in Spain (obtained from official transaction records). Both indexes are normalized

to 1 at their respective peak. We highlight the fact that the fall in prices we observe is

consistent and very similar in size to that observed for retail space in Spain during the recent

financial crisis. Moreover, our index leads the aggregate index, which is expected since our

index consists of listed prices and it will take properties some months to exit the database,

be registered as sales, and be recorded in national statistics. These patterns are consistent

with the evidence presented in Guren (2018), who shows that the modal property sells at its

listed price and that the average property sells within 1.6% of its listed price.
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Figure B5: Price Index: Idealista Data versus Aggregate Data
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Note: The solid line shows the price index for properties for sale in Barcelona and Madrid in our dataset. The
dashed line shows the aggregate retail space price index gathered from the National Registry of Property
(Registradores de España). All indices are normalized to their respective peak.

B.3 Additional Figures and Tables

Figure B6: Distribution of Duration: Confirmed Sales

Note: This figure compares the histogram of duration for two subgroups of listings: those that, after removing
the listing from the platform, explained that they did so because the property was rented or sold, and those
that did not provide an explanation.
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Figure B7: Capital Prices Across Locations
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(c) City of Madrid

Note: Each map shows average prices by location expressed in constant 2017 dollars per square foot. Panel
(A) shows average prices across provinces in Spain. Panel (B) zooms in on the province of Madrid to show
substantial heterogeneity across municipalities within this province. Panel (C) shows that, after zooming in
on the municipality of Madrid, there is still significant geographic dispersion of prices across neighborhoods.

Figure B8: Evolution of Prices of Capital Units

(a) Capital for Sale (b) Capital for Rent

Note: The left panel shows the evolution of mean prices at daily frequency from 2006 to 2017. The right panel
shows an equivalent index for rental units. Prices are denominated in constant 2017 dollars per square foot.
To compute these price indices, we averaged the prices of all active listings in a given day.
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Figure B9: Evolution of Average Duration

(a) Capital for Sale (b) Capital for Rent

Note: The left panel shows the evolution of mean time to sell (in months) at monthly frequency from 2006
to 2017. The right panel shows an equivalent index for rental units. Time to sell is measured as the time
difference between the entry and exit dates of each listing. Each observation contains the average time to sell
for listings that entered the online platform in a given month.

Figure B10: Relationship between log Clicks and log Prices

Note: This figure shows the relationship between log prices and log average monthly clicks. Price residuals and
predicted prices are obtained after running a regression of log prices on a set of fixed effects and observable
characteristics (see equation (18)). Figures show a binned scatter plot of each relationship, after controlling
for location-time-type (offices, retail space, and warehouses) fixed effects.
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Table B1: Price Variation Accounted by Property Fixed Effect

St. Dev R2

Raw data 0.81 0.00
Year 0.76 0.12
Year + Location 0.57 0.51
Year x Location 0.54 0.55
... + Type 0.54 0.55
... + Area 0.51 0.60
... + Age 0.51 0.61
Benchmark 0.51 0.61
Property Fixed Effect 0.12 0.98

Note: This table extends Table 2 by including a property fixed effect, which gathers inference from properties
that change their prices while they are active in the dataset. We find that after including property fixed
effects, nonparametrically absorbing all of the property’s time-invariant price determinants, the standard
deviation is 9% and the R2 is roughly 0.98.

Table B2: Frequency of Price Changes for Capital

Statistic Value

Frequency of Price Changes 0.09
Frequency of Price Increases 0.03
Frequency of Price Decreases 0.06
Absolute Size of Price Changes 0.13
Absolute Size of Price Increases 0.15
Absolute Size of Price Decreases 0.12

Note: This table presents price adjustment statistics for properties listed for sale. We first compute statistics
on price changes within each property and then take averages across properties in a given time period. Finally,
we compute the average over time. The first row shows the frequency of price changes, which is the average
share of properties that exhibit a price change in a given month. The following two rows show the share of
listings with price increases and decreases. The absolute size of price changes is computed as the absolute
value of the log difference in prices over consecutive months (ignoring the zeros).
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Table B3: Prices and Clicks

(1) (2) (3) (4)
log Clicks log Clicks log Clicks log Clicks

log Price 0.027*** -0.226***
(0.008) (0.006)

log Predicted Price 0.248*** 0.116***
(0.012) (0.011)

log Residual Price -0.270*** -0.272***
(0.007) (0.007)

Constant 3.299*** 2.265*** 4.509*** 2.889***
(0.035) (0.056) (0.029) (0.051)

Observations 398260 387213 386163 386163
R2 0.000 0.035 0.421 0.425
Fixed Effects No No Yes Yes

Note: This table presents the results of a regression of log average monthly clicks on the two components
of prices, residual and predicted prices. The left-hand-side variable is the log average monthly clicks of a
listing and the right-hand-side variable is the mean price over the lifetime of the listing. The first column
shows a regression of log clicks on prices. Column 2 regresses log clicks on predicted prices and residual prices.
Columns 3 and 4 include location×time×type fixed effects. Standard errors are clustered at the location-time
level. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively.

B.4 Results for properties listed for rent

Figure B11: Distribution of Price Residuals for Rentals

Note: This figure shows the distribution of log prices per square foot relative to its mean for the raw data
and price residuals after including the fixed effects in Table (2).
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Figure B12: Relationship between log Duration and log Prices for Rentals

Note: This figure shows the relationship between log prices and log duration. Price residuals and predicted prices
are obtained after running a regression of log prices on a set of fixed effects and observable characteristics (see
equation (18)). Figures show a binned scatter plot of each relationship, after controlling for location-time-type
(offices, retail space, and warehouses) fixed effects.

Figure B13: Relationship between log Clicks and log Prices for Rentals

Note: This figure shows the relationship between log prices and log average monthly clicks. Price residuals and
predicted prices are obtained after running a regression of log prices on a set of fixed effects and observable
characteristics (see equation (18)). Figures show a binned scatter plot of each relationship, after controlling
for location-time-type (offices, retail space, and warehouses) fixed effects.
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Table B4: Price Variation Accounted for by Listed Characteristics

St. Dev. R2

Raw data 0.77 0.00
Year 0.75 0.04
Year × Location 0.55 0.48
. . . × Type 0.55 0.48
. . . + Area 0.51 0.55
. . . + Age 0.51 0.56
Benchmark 0.48 0.60

Note: This table reports the R2 and standard deviation of residuals from estimating equation (18). The row
labeled Raw data presents statistics for the demeaned raw log prices. The following rows include the fixed
effects in the regression. Year and location denote fixed effects. Type (office and retail space or warehouse),
area, and age are sets of fixed effects for each of these characteristics. The last row includes additional controls
for the variables listed in Table 1.

Table B5: Prices and Duration

(1) (2) (3) (4)
log Duration log Duration log Duration log Duration

log Price -0.092*** -0.012***
(0.004) (0.003)

log Predicted Price -0.175*** -0.228***
(0.006) (0.007)

log Residual Price 0.032*** 0.032***
(0.004) (0.004)

Constant 1.848*** 1.838*** 1.857*** 1.832***
(0.004) (0.004) (0.000) (0.001)

Observations 696874 680553 680553 680553
R2 0.007 0.014 0.182 0.186
Fixed Effects No No Yes Yes

Note: This table presents the results of a regression of log duration on the two components of prices, residual
and predicted prices. The left-hand-side variable is the log duration of a listing and the right-hand-side
variable is the mean price over the lifetime of the listing. The first column shows a regression of duration
on prices. Column 2 regresses duration on predicted prices and residual prices. Columns 3 and 4 include
location×time×type fixed effects. Standard errors are clustered at the location-time level. *, **, and ***
represent statistical significance at the 10%, 5%, and 1% level, respectively.

B.5 Alternative Explanations for the Price-Duration Relationship

Sellers’ indifference We begin by considering potential explanations for the positive

relationship between residual price and duration on the market that rely on sellers’ indifference

across these variables: Although sellers prefer higher residual prices, this is also associated

with longer duration on the market. The key for this interpretation is that the trade-off
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Table B6: Prices and Clicks

(1) (2) (3) (4)
log Clicks log Clicks log Clicks log Clicks

log Price 0.176*** -0.195***
(0.011) (0.007)

log Predicted Price 0.528*** 0.565***
(0.017) (0.010)

log Residual Price -0.351*** -0.353***
(0.009) (0.009)

Constant 3.883*** 3.950*** 3.829*** 3.957***
(0.013) (0.013) (0.001) (0.002)

Observations 578653 567847 566704 566704
R2 0.013 0.088 0.437 0.460
Fixed Effects No No Yes Yes

Note: This table presents the results of a regression of log average monthly clicks on the two components
of prices, residual and predicted prices. The left-hand-side variable is the log average monthly clicks of a
listing and the right-hand-side variable is the mean price over the lifetime of the listing. The first column
shows a regression of log clicks on prices. Column 2 regresses log clicks on predicted prices and residual prices.
Columns 3 and 4 include location×time×type fixed effects. Standard errors are clustered at the location-time
level. *, **, and *** represent statistical significance at the 10%, 5%, and 1% level, respectively.

between residual prices and time to sell is such that they provide an equivalent expected

revenue for sellers. This type of explanation is akin to that of labor- and product-market

models such as those of Burdett and Judd (1983) and Burdett and Mortensen (1998).

To study whether this trade-off can explain the positive relationship observed between

residual prices and duration in the data, we compute the expected net present discounted

revenue for properties with different residual prices, given their observed trading probabilities

implied by the relation in Figure 6. For this, we assume homogeneous risk-neutral sellers; in

this case, the expected net present revenue from choosing residual price εit is given by

R(εit, β) ≡
∞∑
t=0

βt(1− p(εit))tp(εit)εit =
p(εit)εit

(1− β(1− p(εit)))
, (B.25)

where p(εit) is the associated selling probability implied by the empirical relationship between

residual prices and duration, depicted in Figure 6, and β ∈ [0, 1) is the discount factor used

in the exercise.21

Figure B14 shows the results of this exercise for a wide range of discount factors (β = 0.99

21Note that we abstract from price changes in this calculation and use the mean price instead, since the
frequency of price changes is small. The trading probability in a given month is computed from the duration
of each property.
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Figure B14: Net Present Value of Price-Duration Trade-off

Note: This figure reports the net present value estimates from (B.25). The blue line (“Benchmark”) shows
the net present value for a discount factor of β = 0.99 given the empirical relationship between residual
prices and average duration in the data. The orange line (“Low Discount”) shows a similar net present value
calculation for a discount factor of β = 0.

and β = 0), which indicate that the expected net present discounted revenue is monotonically

increasing in the listed price. Lower discount factors disproportionally affect properties that

have lower trading probabilities and high prices, which flattens the net present value profile.

However, even in the extreme scenario of β = 0, the relation between prices and duration in

the data is such that we still find that the net present value is monotonically increasing in

the listed price. These results indicate that sellers’ indifference cannot explain the observed

relationship between residual prices and duration: Any seller facing such a price-duration

trade-off will maximize expected revenue by choosing the highest residual price we see in the

data.

Sellers’ heterogeneity We now consider whether the positive relationship between residual

prices and duration can be explained by heterogeneity across sellers. First, the results presented

in Figure B14 indicate that the positive relationship between residual prices and duration

cannot be explained by heterogeneity in sellers’ discount factors. To see this, note that, as

shown in Figure B14, the expected net present revenue is increasing in both the computation

with a high discount factor (β = 0.99) and with a low discount factor (β = 0). Therefore, if,

under the preferences of the most impatient seller, a higher residual price with lower selling

probability is preferred, the higher residual price would also be preferred under any other

possible discount factor.

Second, we consider the possibility that sellers have heterogeneous holding costs. For
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this, assume that sellers must pay a fixed cost each period until the property is sold (e.g.,

maintenance costs, taxes, debt service costs, etc). If sellers face different costs, then some

sellers might be forced to list properties at low prices in order to sell their property faster,

as would occur in a fire sale. Using our data, we ask how large must the cost be in order

to rationalize a seller’s choice of a lower residual price. Thus, for each residual price εit, we

compute the (unobserved) cost, ξ(εit, β), that would render risk-neutral sellers with discount

factor β indifferent between choosing that residual price and the highest observed residual

price (εit) by solving the following condition:

p(εit)εit − ξ(εit, β)(1− εit)
1− β(1− εit)

=
p(εit)εit − ξ(εit, β)(1− p(εit))

1− β(1− p(εit))
. (B.26)

Figure B15 presents the results, which indicate that in order for differential holding costs to

explain the differences in returns in the data, they must be extremely large. To illustrate,

the cost of holding 1 square foot of a property for one additional month would have to be

larger than the price at which the owner can sell that unit. We conclude that it is unlikely

that the bulk of the positive relation between residual prices and duration is explained by

the presence of heterogeneous holding costs.

Figure B15: Required Holding Costs

Note: This figure reports the distribution of holding costs obtained from (B.26) as a fraction of the property’s
price.

Buyers’ heterogeneity Finally, we consider the possibility that our fact could be explained

by the different liquidity of potential buyers of different units. For example, it could be the

case that units with higher residual prices take longer to sell simply because fewer buyers can
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afford to buy expensive units. To explore this possibility, we reestimate the results in Figure

6 for two subsamples: units with total prices above and below the median. Figure B16 shows

that the positive relationship between residual prices and duration is similarly present in

each subsample, which indicates that heterogeneity in buyer’s liquidity cannot be the main

driver of our fact.

Figure B16: Relationship between Duration and Prices by Total Price

(a) Below Median Total Price (b) Above Median Total Price

Note: This figure shows the relationship between log prices and duration. Price residuals and predicted prices
are obtained after running a regression of log prices on a set of fixed effects and observable characteristics (see
equation (18)). Figures show a binned scatter plot of each relationship after controlling for location-time-type
(offices, retail space, and warehouses) fixed effects. Panels (A) and (B) report results for the set of capital
units listed for sale with total prices below and above the median, respectively.

C Appendix Quantitative Analysis

Table C1: Fitted Parameters and Targeted Moments — Robustness Exercise

Parameter Description Value Target Model Data

ψ Accuracy information technology 0.98 Regression coefficient 0.13 0.13
σω SD observed quality 0.69 SD log predicted prices 0.62 0.62
σa SD unobserved quality 0.61 SD log residual prices 0.54 0.54
m̄ Matching efficiency 0.27 Mean duration 11.4 11.4

Note: This table shows the parameters we calibrate by minimizing the distance between four moments in
the data and in our simulated model for the case in which we exclude observables from the computation of
predicted prices.
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Figure C1: Output Response for Different Model Parameterizations

(a) Iso-output curves: ψ vs σa
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(b) Iso-output curves: ψ vs σω
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Note: This figure reports the effects of changing the precision of the inspection technology and the standard
deviation of the observed and unobserved capital qualities on aggregate output. The left panel illustrates the
loci of points (ψ, σa) that achieve a given level of output Y (ψ, σa) as a fraction of the level of output with
the same standard deviation of unobserved quality in the full information limit Y (1, σa). The right panel
shows the analog exercise but this time for the standard deviation of observed quality σω. The figure shows
that ψ and σa are substitutes. Either increases in σa or decreases in ψ decrease aggregate output. The effects
of changes in ψ and σω are almost orthogonal.

102



Figure C2: Effect of macroeconomic shocks on the elasticity of duration to residual prices
— Normalized
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Note: This figure shows the effect of shocks to the quality of the screening technology (ψ), TFP (Z), time
preferences (β), and the exit rate of firms (ϕ) on the elasticity between duration and residual prices. We
subtract the long-run value of the elasticity and divide over the effect of each shock on output, in order to
make the units in each graph comparable across shocks. A value of zero implies that the shock has no effect
on the slope at a given time period. The unit of the x-axis is denominated in years.
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Figure C3: Effect of macroeconomic shocks on the elasticity of duration to residual prices
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Note: This figure shows the effect of shocks to the quality of the screening technology (ψ), TFP (Z), time
preferences (β), and the exit rate of firms (ϕ) on the elasticity between duration and residual prices. The unit
of the x-axis is denominated in years.
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Figure C4: Effect of macroeconomic shocks on aggregate output
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Note: This figure shows the effect of shocks to the quality of the screening technology (ψ), TFP (Z), time preferences (β), the exit rate of firms (ϕ), and the mass
of capital units of the lowest quality on aggregate output. The top panel presents the shocks we feed into the model in levels. The bottom panel shows the effect
on the percent change of output as a consequence of the shock with respect to its long-run detrended value. Each figure in the bottom row has three lines: one for
our benchmark calibration, one for a calibration of the full information limit (ψ → 1), and one for a level of ψ that replicates the elasticity of duration to residual
prices observed in the European Crisis.
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