Uncovering Disaggregated Oil Market Dynamics: A Full-Information Approach to Granular Instrumental Variables

Christiane Baumeister, University of Notre Dame James D. Hamilton, UCSD Differences between local and aggregate outcomes can be an important source of identification.

Examples:

- Bartik instruments
- Granular instrumental variables (Gabaix and Koijen, JPE forthcoming)

- Our paper shows how to exploit the power of this idea using full-information maximum likelihood estimation.
- We illustrate with an analysis of the world oil market.

A model of the world oil market

Data from 1973:M1 to 2023:M2 (drop COVID)

 q_{it} = growth rate of country *i* oil production

- s_{qi} = share of country *i* in world total
- $\sum_{i=1}^{n} s_{qi} q_{it} = \text{approximate growth in global}$ oil production
- Our empirical analysis will use the three biggest producers (U.S., Saudi Arabia, Russia) plus the rest of the world (n = 4)

- c_{jt} = growth rate of country *j* oil consumption
- s_{cj} = share of country *j* in world total
- $\sum_{j=1}^{m} s_{cj} c_{jt}$ = approximate growth in global
- oil consumption
- Our empirical analysis will use the three
- biggest historical consumers (U.S., Japan,
- Europe) plus the rest of the world (m = 4)

Supply curve of country *i*

$$q_{it} = \phi_{qi}p_t + \mathbf{b}'_{qi}\mathbf{x}_{t-1} + u_{qit}$$

 ϕ_{qi} = country *i* short-run supply elasticity \mathbf{x}_{t-1} contains intercept,12 lags production and consumption of every country in world, and 12 lags of world price u_{qit} = supply shock for country *i*

Demand curve of country *j*

$$c_{jt} = \phi_{cj} p_t + \mathbf{b}'_{cj} \mathbf{x}_{t-1} + u_{cjt}$$

 ϕ_{cj} = country *j* short-run demand elasticity u_{cjt} = demand shock for country *j*

Inventory demand $v_t = \phi_v p_t + \mathbf{b}'_v \mathbf{x}_{t-1} + u_{vt}$ This equals difference between global production and consumption $v_t = \sum_{i=1}^n S_{qi} q_{it} - \sum_{j=1}^m S_{cj} C_{jt}$

 v_t also includes measurement error

Structural model:

$$q_{it} = \phi_{qi}p_t + \mathbf{b}'_{qi}\mathbf{x}_{t-1} + u_{qit} \quad i = 1, \dots, n$$
or $\mathbf{q}_t = \phi_q \quad p_t + \mathbf{B}_q \quad \mathbf{x}_{t-1} + \mathbf{u}_{qt}$
 $(n \times 1) \quad (n \times 1) \quad (n \times k) \quad (n \times 1)$
 $c_{jt} = \phi_{cj}p_t + \mathbf{b}'_{cj}\mathbf{x}_{t-1} + u_{cjt} \quad j = 1, \dots, m$
or $\mathbf{c}_t = \phi_c \quad p_t + \mathbf{B}_c \quad \mathbf{x}_{t-1} + \mathbf{u}_{ct}$
 $(m \times 1) \quad (m \times 1) \quad (m \times k) \quad (m \times 1)$
 $\mathbf{s}'_q \mathbf{q}_t - \mathbf{s}'_c \mathbf{c}_t = \phi_v p_t + \mathbf{b}'_v \mathbf{x}_{t-1} + u_{vt}$

$$\mathbf{y}_{t}' = \begin{bmatrix} \mathbf{q}_{t}' & \mathbf{c}_{t}' & p_{t} \\ (1 \times n) & (1 \times m) & (1 \times 1) \end{bmatrix}$$
$$\mathbf{u}_{t}' = \begin{bmatrix} \mathbf{u}_{qt}' & \mathbf{u}_{ct}' & u_{vt} \\ (1 \times n) & (1 \times m) & (1 \times 1) \end{bmatrix}$$
$$\mathbf{A}\mathbf{y}_{t} = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{u}_{t}$$
$$\mathbf{A}_{(N \times N)} = \begin{bmatrix} \mathbf{I}_{n} & \mathbf{0}_{nm} & -\boldsymbol{\phi}_{q} \\ \mathbf{0}_{mn} & \mathbf{I}_{m} & -\boldsymbol{\phi}_{c} \\ \mathbf{s}_{q}' & -\mathbf{s}_{c}' & -\boldsymbol{\phi}_{v} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{q} \\ \mathbf{B}_{c} \\ \mathbf{b}_{v}' \end{bmatrix}$$

Given any value for \mathbf{u}_t , there exists a value of p_t , \mathbf{q}_t , \mathbf{c}_t for which all N equations hold. Identification comes from assumptions about correlations between the structural shocks in \mathbf{u}_t

Example: suppose supply shocks are uncorrelated with demand shocks,

$$E(\mathbf{u}_{qt}\mathbf{u}_{ct}')=\mathbf{0}_{nm},$$

and elasticities are homogeneous

across countries:

$$\boldsymbol{\phi}_{q} = \boldsymbol{\phi}_{q} \mathbf{1}_{n} \qquad \boldsymbol{\phi}_{c} = \boldsymbol{\phi}_{c} \mathbf{1}_{m} (n \times 1) \quad (1 \times 1)^{(n \times 1)} \quad (m \times 1) \quad (1 \times 1)^{(m \times 1)}$$

Let \mathbf{s}_q be the $(n \times 1)$ vector of global production shares. Let \mathbf{w}_q be any other $(n \times 1)$ vector for which $\mathbf{w}_{a}'\mathbf{1}_{n} = 1$. $\mathbf{q}_t = \phi_q \mathbf{1}_n p_t + \mathbf{B}_q \mathbf{x}_{t-1} + \mathbf{u}_{qt}$ $(\mathbf{s}_q - \mathbf{w}_q)'\mathbf{q}_t = (\mathbf{s}_q - \mathbf{w}_q)'\mathbf{B}_q\mathbf{x}_{t-1} + (\mathbf{s}_q - \mathbf{w}_q)'\mathbf{u}_{qt}$

$$(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t = (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{B}_q \mathbf{x}_{t-1} + (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{u}_{qt}$$

Conclusion:

- $(\mathbf{s}_q \mathbf{w}_q)' \mathbf{q}_t$ is uncorrelated with \mathbf{u}_{ct} . Could estimate ϕ_c by IV $\mathbf{w}'_c \mathbf{c}_t = \phi_c p_t + \mathbf{\tilde{B}}_c \mathbf{x}_{t-1} + \tilde{u}_{ct}$.
- Instruments: $(\mathbf{s}_q \mathbf{w}_q)' \mathbf{q}_t$ and \mathbf{x}_{t-1}

 \mathbf{w}_c is any $(m \times 1)$ vector with $\mathbf{w}'_c \mathbf{c}_t = 1$.

Example:

 $\mathbf{w}_q = n^{-1} \mathbf{1}_n$

 $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t$ is difference between share-

weighted and arithmetic average production.

- This is the granular instrument insight of
- Gabaix and Koijen (JPE forthcoming).

Could also find supply elasticity ϕ_q from regression of $\mathbf{w}'_q \mathbf{q}_t$ on p_t and \mathbf{x}_{t-1} using $(\mathbf{s}_c - \mathbf{w}_c)' \mathbf{c}_t$ and \mathbf{x}_{t-1} as instruments.

Maximum likelihood estimation: $\mathbf{u}_t \sim N(\mathbf{0}, \mathbf{D})$

	\mathbf{D}_{q} (<i>n</i> × <i>n</i>)	0 _{nm}	0 _{<i>n</i>1}
$\mathbf{D}_{(N \times N)}$	0 _{mn}	\mathbf{D}_{c} (<i>m</i> × <i>m</i>)	0 _{<i>m</i>1}
	0 _{1n}	0 _{1m}	σ _v ² (1×1)

MLE is function of

$$\hat{\mathbf{\Pi}} = \left[\sum_{t=1}^{T} \mathbf{y}_{t} \mathbf{x}_{t-1}^{\prime} \right] \left[\sum_{t=1}^{T} \mathbf{x}_{t-1} \mathbf{x}_{t-1}^{\prime} \right]^{-1}$$

$$\hat{\boldsymbol{\epsilon}}_{t} = \mathbf{y}_{t} - \hat{\mathbf{\Pi}} \mathbf{x}_{t-1} = \begin{bmatrix} \hat{\boldsymbol{\epsilon}}_{qt} \\ (n \times 1) \\ \hat{\boldsymbol{\epsilon}}_{ct} \\ (m \times 1) \\ \hat{\boldsymbol{\epsilon}}_{pt} \\ (1 \times 1) \end{bmatrix}$$

Proposition 2: FOC for MLE are

$$\begin{aligned} \hat{\boldsymbol{\phi}}_{c} &= \frac{\sum_{t=1}^{T} \tilde{z}_{ct} \tilde{c}_{t}}{\sum_{t=1}^{T} \tilde{z}_{ct} \hat{\varepsilon}_{pt}} \\ \tilde{c}_{t} &= \hat{\mathbf{w}}_{c}' \hat{\boldsymbol{\epsilon}}_{ct} \quad \hat{\mathbf{w}}_{c}' = \mathbf{1}_{m}' \hat{\mathbf{D}}_{c}^{-1} / (\mathbf{1}_{m}' \hat{\mathbf{D}}_{c}^{-1} \mathbf{1}_{m}) \\ \hat{\mathbf{D}}_{c} &= T^{-1} \sum_{t=1}^{T} \left(\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\boldsymbol{\phi}}_{c} \mathbf{1}_{m} \hat{\varepsilon}_{pt} \right) \left(\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\boldsymbol{\phi}}_{c} \mathbf{1}_{m} \hat{\varepsilon}_{pt} \right)' \\ \tilde{z}_{ct} &= -(\mathbf{s}_{q} - \hat{\mathbf{w}}_{q})' \hat{\boldsymbol{\epsilon}}_{qt} - (\tilde{q}_{t} - \hat{\boldsymbol{\phi}}_{q} \hat{\varepsilon}_{pt}) + (\hat{\varepsilon}_{vt} - \hat{\boldsymbol{\phi}}_{v} \hat{\varepsilon}_{pt}) \\ \tilde{q}_{t} &= \hat{\mathbf{w}}_{q}' \hat{\boldsymbol{\epsilon}}_{qt} \quad \hat{\mathbf{w}}_{q}' = \mathbf{1}_{n}' \hat{\mathbf{D}}_{q}^{-1} / (\mathbf{1}_{n}' \hat{\mathbf{D}}_{q}^{-1} \mathbf{1}_{n}) \\ \hat{\mathbf{D}}_{q} &= T^{-1} \sum_{t=1}^{T} \left(\hat{\boldsymbol{\epsilon}}_{qt} - \hat{\boldsymbol{\phi}}_{q} \mathbf{1}_{n} \hat{\varepsilon}_{pt} \right) \left(\hat{\boldsymbol{\epsilon}}_{qt} - \hat{\boldsymbol{\phi}}_{q} \mathbf{1}_{n} \hat{\varepsilon}_{pt} \right)' \end{aligned}$$

Analogous FOC for $\hat{\phi}_q$ and $\hat{\phi}_v$

$$\hat{\phi}_{q} = \frac{\sum_{t=1}^{T} \tilde{z}_{qt} \tilde{q}_{t}}{\sum_{t=1}^{T} \tilde{z}_{qt} \hat{\varepsilon}_{pt}}$$

$$\tilde{z}_{qt} = (\mathbf{s}_c - \hat{\mathbf{w}}_c)' \hat{\boldsymbol{\epsilon}}_{ct} + (\tilde{c}_t - \hat{\phi}_c \hat{\varepsilon}_{pt}) + (\hat{\varepsilon}_{vt} - \hat{\phi}_v \hat{\varepsilon}_{pt})$$

$$\hat{\phi}_{v} = \frac{\sum_{t=1}^{T} \tilde{z}_{vt} \hat{\varepsilon}_{vt}}{\sum_{t=1}^{T} \tilde{z}_{vt} \hat{\varepsilon}_{pt}}$$

$$\hat{\boldsymbol{\varepsilon}}_{vt} = \mathbf{s}_q' \hat{\boldsymbol{\epsilon}}_{qt} - \mathbf{s}_c' \hat{\boldsymbol{\epsilon}}_{ct}$$

$$\tilde{z}_{vt} = (\mathbf{s}_c - \hat{\mathbf{w}}_c)' \hat{\boldsymbol{\epsilon}}_{ct} - (\mathbf{s}_q - \hat{\mathbf{w}}_q)' \hat{\boldsymbol{\epsilon}}_{qt} - (\tilde{q}_t - \hat{\phi}_q \hat{\boldsymbol{\varepsilon}}_{pt}) + (\tilde{c}_t - \hat{\phi}_c \hat{\boldsymbol{\varepsilon}}_{pt})$$

Iterated 3SLS

$$\hat{\phi}_{c}^{(1)} = \frac{\sum_{t=1}^{T} \tilde{z}_{ct}^{(1)} \tilde{c}_{t}^{(1)}}{\sum_{t=1}^{T} \tilde{z}_{ct}^{(1)} \hat{\varepsilon}_{pt}}$$

$$\tilde{c}_{t}^{(1)} = \mathbf{s}_{c}' \hat{\boldsymbol{\epsilon}}_{ct} \quad \tilde{z}_{ct}^{(1)} = (n^{-1}\mathbf{1}_{n} - \mathbf{s}_{q})' \hat{\boldsymbol{\epsilon}}_{qt}$$

$$\hat{\mathbf{D}}_{c}^{(1)} = T^{-1} \sum_{t=1}^{T} (\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\phi}_{c}^{(1)}\mathbf{1}_{m} \hat{\varepsilon}_{pt}) (\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\phi}_{c}^{(1)}\mathbf{1}_{m} \hat{\varepsilon}_{pt})'$$

$$\tilde{c}_{t}^{(2)} = \hat{\mathbf{w}}_{c}^{(2)'} \hat{\boldsymbol{\epsilon}}_{ct}$$

$$\hat{\mathbf{w}}_{c}^{(2)'} = \mathbf{1}_{m}' (\hat{\mathbf{D}}_{c}^{(1)})^{-1} \div \left[\mathbf{1}_{m}' (\hat{\mathbf{D}}_{c}^{(1)})^{-1}\mathbf{1}_{m}\right]$$

Comparison of plain-vanilla granular IV (step 1 of 3SLS) and MLE (iterate on 3SLS to convergence)

Parameter	IV	MLE
Demand elasticity ϕ_c	-0.106	-0.130
	(0.252)	(0.026)
Supply elasticity ϕ_q	-3.699	0.054
	(7.717)	(0.009)
Inventory demand elasticity ϕ_v		-0.373
		(0.052)

(standard errors in parentheses)

- Likelihood ratio test rejects the
- model's 21 overidentifying assumptions.
- A more general model with heterogeneous elasticities is also rejected.
- Reason: there do not exist (4×1)
- vectors ϕ_a and ϕ_c for which
- $T^{-1}\sum_{t=1}^{T}(\hat{\boldsymbol{\epsilon}}_{qt}-\boldsymbol{\phi}_{q}\hat{\boldsymbol{\varepsilon}}_{pt})(\hat{\boldsymbol{\epsilon}}_{ct}-\boldsymbol{\phi}_{c}\hat{\boldsymbol{\varepsilon}}_{pt})'\simeq \mathbf{0}_{nm}.$

- Supply shocks \mathbf{u}_{qt} and demand shocks \mathbf{u}_{ct} appear to be correlated.
- We allow a single global factor on which
- both \mathbf{u}_{qt} and \mathbf{u}_{ct} can load without restriction.
- Seems to be response of Saudi and
- OPEC production to global demand.

Proposed model:

 $\phi_q \text{ and } \phi_c \text{ unrestricted } (4 \times 1) \text{ vectors}$ $\mathbf{D} = E(\mathbf{u}_t \mathbf{u}_t') =$ $\begin{bmatrix} \mathbf{h}_q \mathbf{h}_q' + \mathbf{\Sigma}_q & \mathbf{h}_q \mathbf{h}_c' & \mathbf{0}_{n1} \\ \mathbf{h}_c \mathbf{h}_q' & \mathbf{h}_c \mathbf{h}_c' + \mathbf{\gamma}_c \mathbf{\gamma}_c' + \mathbf{\Sigma}_c & \mathbf{0}_{m1} \\ \mathbf{0}_{1n} & \mathbf{0}_{1m} & \sigma_v^2 \end{bmatrix}$

 $\mathbf{h}_q, \mathbf{h}_c, \boldsymbol{\gamma}_c$ are (4 × 1) vectors

 Σ_q and Σ_c are diagonal (4 × 4) matrices Model has 16 overidentifying restrictions that are not rejected.

Maximum likelihood estimates of elasticities and their standard errors

U.S. supply	0.021	(0.016)	Global
Saudi supply	0.248	(0.058)	supply
Russia supply	0.034	(0.010)	elasticity: 0.077
ROW supply	0.066	(0.020)	(0.017)
U.S. demand	-0.077	(0.025)	
Japan demand	-0.001	(0.031)	Global demand
Europe demand	-0.202	(0.037)	elasticity: -0.119
ROW demand	-0.139	(0.038)	(0.030)
Inventory demand	-0.355	(0.061)	26

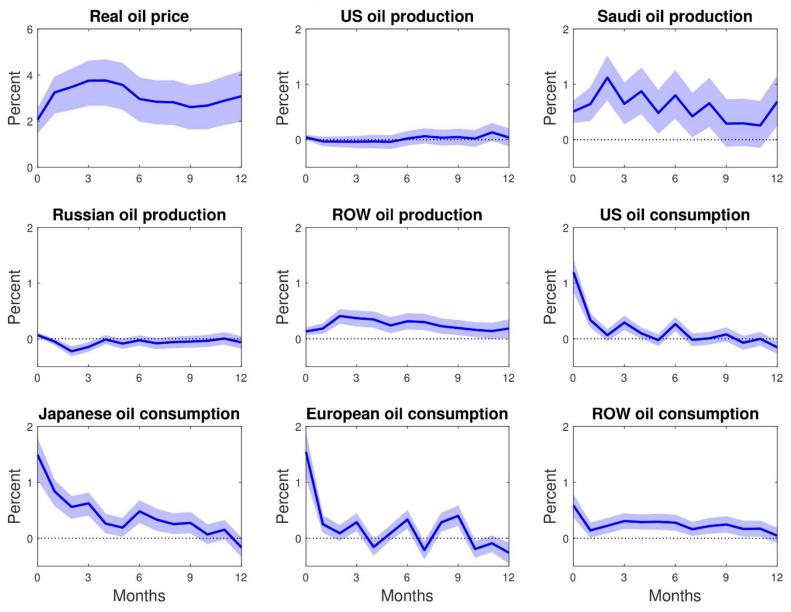
Loadings on global demand factor

U.S.	1.367	(0.425)
Japan	1.495	(0.499)
Europe	1.981	(0.537)
Rest of world	0.881	(0.321)

Impact effect of one-standard-deviation increase in global demand factor

	as $\%$ of country			% of world
Variable	direct	response	net	net
	effect	to price	effect	effect
	(1)	(2)	(3)	(4)
p	2.055			
q_{US}	0	0.044	0.044	0.005
q_{Saudi}	0	0.509	0.509	0.061
q_{Russia}	0	0.070	0.070	0.010
q_{ROW}	0	0.135	0.135	0.082
q				0.159
c_{US}	1.367	-0.159	1.208	0.302
C_{Japan}	1.495	-0.002	1.493	0.105
c_{Europe}	1.981	-0.416	1.565	0.125
CROW	0.881	-0.286	0.595	0.357
c				0.889
v				0.730

Dynamic effect of one-standard-deviation increase in global demand factor

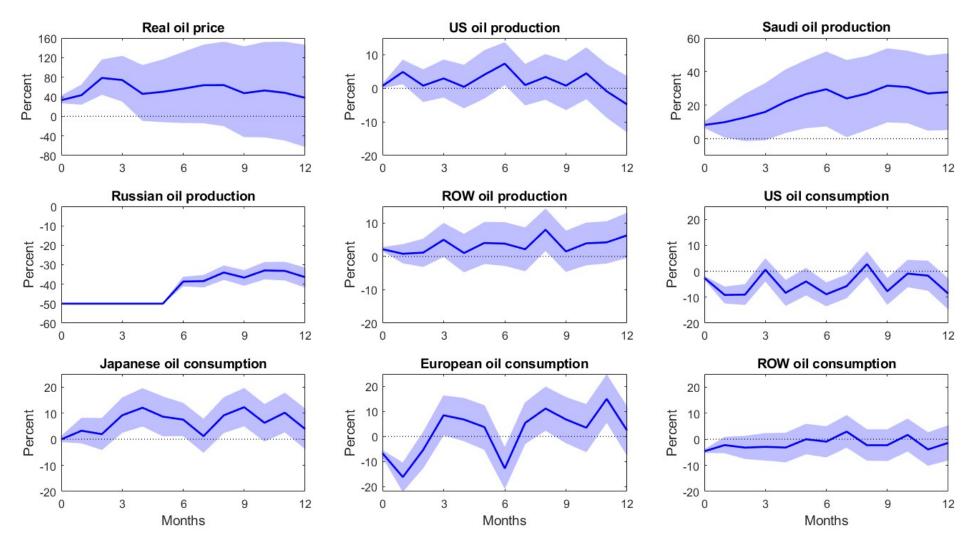


Shaded regions denote 68% confidence bands

Impact effect of 50% cut in Russian production (inventory change = 0)

	as % of country			in mb/d
Variable	direct	response	net	net
	effect	to price	effect	effect
	(1)	(2)	(3)	(4)
p	33.020			
q_{US}	0	0.699	0.699	0.086
q_{Saudi}	0	8.186	8.186	0.808
q_{Russia}	-50	0.000	-50.000	-5.350
q_{ROW}	0	2.165	2.165	1.069
q				-3.386
c_{US}	0.000	-2.554	-2.554	-0.420
c_{Japan}	0.000	-0.026	-0.026	-0.001
c_{Europe}	0.000	-6.679	-6.679	-0.275
c_{ROW}	0.000	-4.603	-4.603	-2.690
c				-3.386
v				0.000

Dynamic effect of 50% cut in Russian production



Assumes zero inventory change for first 6 months

Conclusion

- If correlations between supply and demand shocks can be described with low-order factor structure, can use correlations between price and country-specific production and consumption to estimate key elasticities.
- Next step: use regularization to apply to larger numbers of producers and consumers.

Additional slides

