Uncovering Disaggregated Oil Market Dynamics: A Full-Information Approach to Granular Instrumental Variables

Christiane Baumeister, University of Notre Dame James D. Hamilton, UCSD

Differences between local and aggregate outcomes can be an important source of identification. Differences between local and a

outcomes can be an important

identification.

Examples:

• Granular instrumental variabl Differences between local and aggregate
outcomes can be an important source of
identification.
• Bartik instruments
• Granular instrumental variables (Gabaix and
Koijen, JPE forthcoming)

Examples:

-
- Koijen, JPE forthcoming)
- Our paper shows how to exploit the power of this idea using full-information maximum likelihood estimation.
- We illustrate with an analysis of the world oil market.

A model of the world oil market

A model of the world oil market
Data from 1973:M1 to 2023:M2 (drop COVID)
 q_{it} = growth rate of country *i* oil production A model of the world oil market
Data from 1973:M1 to 2023:M2 (drop COVID)
 q_{it} = growth rate of country *i* oil production
 s_{qi} = share of country *i* in world total A model of the world oil market
Data from 1973:M1 to 2023:M2 (drop COVID)
 q_{it} = growth rate of country *i* oil production
 s_{qi} = share of country *i* in world total
 $\sum_{i=1}^{n} s_{qi}q_{it}$ = approximate growth in global

-
- $\sum_{i=1}^n s_{qi}q_{it} =$ ap $n \sim$ spirom 1973:M1 to 2023:M2 (drop COVID)
growth rate of country *i* oil production
share of country *i* in world total
 $s_{qi}q_{it}$ = approximate growth in global
oduction Data from 1973:M1 to 2
 q_{it} = growth rate of cour
 s_{qi} = share of country *i* i
 $\sum_{i=1}^{n} s_{qi} q_{it}$ = approximate

oil production

Our empirical analysis v
- q_{it} = growth rate of country *i* oil production
 s_{qi} = share of country *i* in world total
 $\sum_{i=1}^{n} s_{qi} q_{it}$ = approximate growth in global

oil production

Our empirical analysis will use the three

biggest pro s_{qi} = share of country *i* in world total
 $\sum_{i=1}^{n} s_{qi}q_{it}$ = approximate growth in global

oil production

Our empirical analysis will use the three

biggest producers (U.S., Saudi Arabia, Russia)

plus the rest o $\sum_{i=1}^{n} s_{qi}q_{it}$ = approximate growth in globa
oil production
Our empirical analysis will use the three
biggest producers (U.S., Saudi Arabia, F
plus the rest of the world ($n = 4$)
- c_{jt} = growth rate of country j oil consumption
 s_{ci} = share of country j in world total c_{jt} = growth rate of country *j* oil consumption
 s_{cj} = share of country *j* in world total
 $\sum_{i=1}^{m} s_{ci} c_{it}$ = approximate growth in global growth rate of country *j* oil consumption
share of country *j* in world total
 $s_{cj}c_{jt}$ = approximate growth in global c_{jt} = growth rate of counti
 s_{cj} = share of country *j* in
 $\sum_{j=1}^{m} s_{cj} c_{jt}$ = approximate

oil consumption

Our empirical analysis wi
-
- $\sum_{j=1}^m s_{cj}c_{jt} = a$ $m \sim m$ c_{ji} = grown rate or country *f* on consumption
 s_{cj} = share of country *j* in world total
 $\sum_{j=1}^{m} s_{cj}c_{jt}$ = approximate growth in global

oil consumption

Our empirical analysis will use the three

biggest his $S_{cj} =$ snare or country *f* in world total
 $\sum_{j=1}^{m} s_{cj} c_{jt}$ = approximate growth in global

oil consumption

Our empirical analysis will use the three

biggest historical consumers (U.S., Japan,

Europe) plus the re
-
-
- $\sum_{j=1} s_{cj} c_{jt}$ = approximate growth in global
oil consumption
Our empirical analysis will use the three
biggest historical consumers (U.S., Japan,
Europe) plus the rest of the world ($m = 4$)
-

Supply curve of country i
 $q_{it} = \phi_{ai}p_t + \mathbf{b}_{ai}'\mathbf{x}_{t-1} + u_{ait}$

$$
q_{it} = \phi_{qi} p_t + \mathbf{b}_{qi}' \mathbf{x}_{t-1} + u_{qit}
$$

Supply curve of country i
 $q_{it} = \phi_{qi}p_t + \mathbf{b}_{qi}'\mathbf{x}_{t-1} + u_{qit}$
 $\phi_{qi} = \text{country } i$ short-run supply elasticity
 \mathbf{x}_{t-1} contains intercept,12 lags production Supply curve of country i
 $q_{it} = \phi_{qi}p_t + \mathbf{b}_{qi}'\mathbf{x}_{t-1} + u_{qit}$
 $\phi_{qi} = \text{country } i$ short-run supply elasticity
 \mathbf{x}_{t-1} contains intercept,12 lags production

and consumption of every country in world, Supply curve of country i
 $q_{it} = \phi_{qi}p_t + \mathbf{b}_{qi}'\mathbf{x}_{t-1} + u_{qit}$
 $\phi_{qi} = \text{country } i$ short-run supply elasticity
 \mathbf{x}_{t-1} contains intercept,12 lags production

and consumption of every country in world,

and 12 lags ϕ_{qi} = country *i* short-run supply elasticity
 \mathbf{x}_{t-1} contains intercept, 12 lags production

and consumption of every country in worl

and 12 lags of world price
 u_{qit} = supply shock for country *i* and consumption of every country in world,

Demand curve of country j
 $c_{it} = \phi_{ci}p_t + \mathbf{b}_{ci}'\mathbf{x}_{t-1} + u_{cit}$

$$
c_{jt} = \phi_{cj} p_t + \mathbf{b}_{cj}' \mathbf{x}_{t-1} + u_{cjt}
$$

Demand curve of country *j*
 $c_{jt} = \phi_{cj} p_t + \mathbf{b}_{cj}' \mathbf{x}_{t-1} + u_{cjt}$
 $\phi_{cj} =$ country *j* short-run demand elasticity
 u_{cit} = demand shock for country *j* Demand curve of country *j*
 $c_{jt} = \phi_{cj}p_t + \mathbf{b}_{cj}'\mathbf{x}_{t-1} + u_{cjt}$
 ϕ_{cj} = country *j* short-run demand elasticity
 u_{cit} = demand shock for country *j*

Inventory demand
 $v_t = \phi_v p_t + \mathbf{b}_v' \mathbf{x}_{t-1} + u_{vt}$ $v_t = \phi_v p_t + \mathbf{b}_v' \mathbf{x}_{t-1} + u_{vt}$ Inventory demand
 $v_t = \phi_{v} p_t + \mathbf{b}_v' \mathbf{x}_{t-1} + u_{vt}$

This equals difference between

global production and consumption Inventory demand
 $v_t = \phi_{v} p_t + \mathbf{b}_v' \mathbf{x}_{t-1} + u_{vt}$

This equals difference between

global production and consumption
 $v_t = \sum_{u}^{n} s_{ui} u_t - \sum_{u}^{m} s_{vi} c_{it}$ $v_t = \sum_{i=1}^n s_{qi}q_{it}$ $n \sim$ $S_{qi}q_{it} - \sum_{j=1}^{m} S_{cj}c_{jt}$ $m \sim$ $S_{\text{Cj}}C_{\text{jt}}$ This equals difference between
global production and consumption
 $v_t = \sum_{i=1}^n s_{qi} q_{it} - \sum_{j=1}^m s_{cj} c_{jt}$
 v_t also includes measurement error

Structural model:
\n
$$
q_{it} = \phi_{qi}p_t + \mathbf{b}_{qi}'\mathbf{x}_{t-1} + u_{qit} \quad i = 1, ..., n
$$
\n
$$
\text{or } \mathbf{q}_t = \phi_q \quad p_t + \mathbf{B}_q \quad \mathbf{x}_{t-1} + \mathbf{u}_{qt}
$$
\n
$$
\begin{array}{c}\n(n \times 1) \quad (n \times 1) \quad (n \times k) \quad (n \times 1) \\
\mathbf{c}_{jt} = \phi_{cj}p_t + \mathbf{b}_{cj}'\mathbf{x}_{t-1} + u_{cjt} \quad j = 1, ..., m \\
\text{or } \mathbf{c}_t = \phi_c \quad p_t + \mathbf{B}_c \quad \mathbf{x}_{t-1} + \mathbf{u}_{ct} \\
(m \times 1) \quad (m \times 1) \quad (m \times k) \quad (m \times 1) \\
\mathbf{s}_q' \mathbf{q}_t - \mathbf{s}_c' \mathbf{c}_t = \phi_v p_t + \mathbf{b}_v' \mathbf{x}_{t-1} + u_{vt}\n\end{array}
$$

$$
\mathbf{y}'_t = \begin{bmatrix} \mathbf{q}'_t & \mathbf{c}'_t & p_t \\ (1 \times N) & (1 \times m) & (1 \times 1) \end{bmatrix}
$$

$$
\mathbf{u}'_t = \begin{bmatrix} \mathbf{u}'_{qt} & \mathbf{u}'_{ct} & u_{vt} \\ (1 \times N) & (1 \times m) & (1 \times 1) \end{bmatrix}
$$

$$
\mathbf{A}\mathbf{y}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{u}_t
$$

$$
\mathbf{A} = \begin{bmatrix} \mathbf{I}_n & \mathbf{0}_{nm} & -\boldsymbol{\phi}_q \\ \mathbf{0}_{mn} & \mathbf{I}_m & -\boldsymbol{\phi}_c \\ \mathbf{s}'_q & -\mathbf{s}'_c & -\boldsymbol{\phi}_v \end{bmatrix} \begin{bmatrix} \mathbf{B}_q \\ \mathbf{B}_c \\ (N \times k) \end{bmatrix}
$$

Given any value for \mathbf{u}_t , there exists
value of $p_t, \mathbf{q}_t, \mathbf{c}_t$ for which all N equa , there exists a
ich all N equations Given any value for \mathbf{u}_t , thereform \mathbf{v}_t and p_t , \mathbf{q}_t , \mathbf{c}_t for which and and and the position \mathbf{c} omeshold. Identification \mathbf{c} omeshold. , $\mathbf{q}_t, \mathbf{c}_t$ for v for \mathbf{u}_t , there exists a
for which all N equations
on comes from Given any value for \mathbf{u}_t , there exists a
value of p_t , \mathbf{q}_t , \mathbf{c}_t for which all N equations
hold. Identification comes from
assumptions about correlations between Given any value for \mathbf{u}_t , there exists a
value of p_t , \mathbf{q}_t , \mathbf{c}_t for which all N equations
hold. Identification comes from
assumptions about correlations between
the structural shocks in \mathbf{u}_t Given any value for \mathbf{u}_t , there exists a
value of $p_t, \mathbf{q}_t, \mathbf{c}_t$ for which all N equations
hold. Identification comes from
assumptions about correlations between
the structural shocks in \mathbf{u}_t

Example: suppose supply shocks are
uncorrelated with demand shocks, Example: suppose supply shocks are
uncorrelated with demand shocks,
 $E(\mathbf{u}_{at}\mathbf{u}_{ct}^{\prime}) = \mathbf{0}_{nm}$, Example: suppose supply shocks are
uncorrelated with demand shocks,
 $E(\mathbf{u}_{qt}\mathbf{u}_{ct}^{\prime}) = \mathbf{0}_{nm}$,
and elasticities are homogeneous
across countries: Example: suppose supply shocks are
uncorrelated with demand shocks,
 $E(\mathbf{u}_{qt}\mathbf{u}_{ct}') = \mathbf{0}_{nm}$,
and elasticities are homogeneous
across countries:

$$
E(\mathbf{u}_{qt}\mathbf{u}_{ct}^{\prime})=\mathbf{0}_{nm},
$$

$$
\begin{array}{ll}\n\boldsymbol{\phi}_q = \boldsymbol{\phi}_q \mathbf{1}_n & \boldsymbol{\phi}_c = \boldsymbol{\phi}_c \mathbf{1}_m \\
(n \times 1) \quad (1 \times 1)^{(n \times 1)} & (m \times 1) \quad (1 \times 1)^{(m \times 1)}\n\end{array}
$$

Let \mathbf{s}_q be the $(n \times 1)$ vector of global
production shares. Let s_q be the $(n \times 1)$ vector of α
production shares.
Let w_q be any other $(n \times 1)$ ved Let s_q be the $(n \times 1)$ vector of global
production shares.
Let w_q be any other $(n \times 1)$ vector
for which $w'_a 1_n = 1$. Let s_q be the $(n \times 1)$ vector of global
production shares.
Let w_q be any other $(n \times 1)$ vector for which $w'_a 1_n = 1$. $\mathbf{q}_t = \phi_q \mathbf{1}_n p_t + \mathbf{B}_q \mathbf{x}_{t-1} + \mathbf{u}_{qt}$ $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t = (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{B}_q \mathbf{x}_{t-1} + (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{u}_{qt}$

$$
(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t = (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{B}_q \mathbf{x}_{t-1} + (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{u}_{qt}
$$

Conclusion:

- $(\mathbf{s}_q \mathbf{w}_q)' \mathbf{q}_t$ is ur $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t = (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{B}_q \mathbf{x}_{t-1} + (\mathbf{s}_q - \mathbf{w}_q)' \mathbf{u}_{qt}$
Conclusion:
 $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t$ is uncorrelated with \mathbf{u}_{ct} .
Could estimate ϕ_c by IV
 $\mathbf{w}_c' \mathbf{c}_t = \phi_c p_t + \mathbf{\tilde{B}}_c \mathbf{x}_{t-1}$ $\mathbf{w}_c' \mathbf{c}_t = \phi_c p_t + \mathbf{\tilde{B}}_c \mathbf{x}_{t-1} + \tilde{u}_{ct}.$ $_c\mathbf{X}_{t-1} + \tilde{u}_{ct}.$ $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t$ is uncorrelated with \mathbf{u}_{ct} .
Could estimate ϕ_c by IV
 $\mathbf{w}_c' \mathbf{c}_t = \phi_c p_t + \mathbf{\tilde{B}}_c \mathbf{x}_{t-1} + \tilde{u}_{ct}$.
Instruments: $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t$ and \mathbf{x}_{t-1}
 \mathbf{w}_c is any $(m \times 1)$ v
- Instruments: $(\mathbf{s}_q \mathbf{w}_q)' \mathbf{q}_t$ and \mathbf{x}_{t-1}
- w_c is any $(m \times 1)$ vector with $w_c'c_t = 1$.

Example:

 $\mathbf{w}_q = n^{-1} \mathbf{1}_n$

 $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t$ is di is difference between share-
is difference between share-
id arithmetic average production. Example:
 $\mathbf{w}_q = n^{-1} \mathbf{1}_n$
 $(\mathbf{s}_q - \mathbf{w}_q)' \mathbf{q}_t$ is difference between share-

weighted and arithmetic average production.
This is the granular instrument insight of
Gabaix and Koijen (JPE forthcoming).

- weighted and arithmetic average production.
This is the granular instrument insight of
Gabaix and Koijen (JPE forthcoming).
-

Could also find supply elasticity ϕ_q
from regression of $\mathbf{w}'_q \mathbf{q}$ on p_t and \mathbf{x}_{t-1} Could also find supply elasticity ϕ_q
from regression of $\mathbf{w}_q' \mathbf{q}_t$ on p_t and \mathbf{x}
using $(\mathbf{s}_c - \mathbf{w}_c)' \mathbf{c}_t$ and \mathbf{x}_{t-1} as q'_{q} q_t on p_{t} and \mathbf{x}_{t-1} Could also find supply elast could also find supply elasting $(\mathbf{s}_c - \mathbf{w}_c)' \mathbf{c}_t$ and \mathbf{x}_{t-1}
instruments. using $(\mathbf{s}_c - \mathbf{w}_c)' \mathbf{c}_t$ and \mathbf{x}_{t-1} as instruments.

Maximum likelihood estimation:
 $\mathbf{u}_t \sim N(\mathbf{0}, \mathbf{D})$ $\mathbf{u}_t \sim N(\mathbf{0},\mathbf{D})$

MLE is function of
\n
$$
\hat{\Pi} = \left[\sum_{t=1}^{T} \mathbf{y}_t \mathbf{x}_{t-1}' \right] \left[\sum_{t=1}^{T} \mathbf{x}_{t-1} \mathbf{x}_{t-1}' \right]^{-1}
$$
\n
$$
\hat{\epsilon}_t = \mathbf{y}_t - \hat{\Pi} \mathbf{x}_{t-1} = \begin{bmatrix} \hat{\epsilon}_{qt} \\ (\eta \times 1) \end{bmatrix}^{-1}
$$

Proposition 2: FOC for MLE are
\n
$$
\hat{\phi}_c = \frac{\sum_{t=1}^T \tilde{z}_{ct}\tilde{e}_{tt}}{\sum_{t=1}^T \tilde{z}_{ct}\hat{e}_{pt}}
$$
\n
$$
\tilde{c}_t = \hat{\mathbf{w}}_c' \hat{\boldsymbol{\epsilon}}_{ct} \quad \hat{\mathbf{w}}_c' = \mathbf{1}_m' \hat{\mathbf{D}}_c^{-1} / (\mathbf{1}_m' \hat{\mathbf{D}}_c^{-1} \mathbf{1}_m)
$$
\n
$$
\hat{\mathbf{D}}_c = T^{-1} \sum_{t=1}^T (\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\boldsymbol{\phi}}_c \mathbf{1}_m \hat{\boldsymbol{\epsilon}}_{pt}) (\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\boldsymbol{\phi}}_c \mathbf{1}_m \hat{\boldsymbol{\epsilon}}_{pt})'
$$
\n
$$
\tilde{z}_{ct} = -(\mathbf{s}_q - \hat{\mathbf{w}}_q)' \hat{\boldsymbol{\epsilon}}_{qt} - (\tilde{q}_t - \hat{\boldsymbol{\phi}}_q \hat{\boldsymbol{\epsilon}}_{pt}) + (\hat{\boldsymbol{\epsilon}}_{vt} - \hat{\boldsymbol{\phi}}_v \hat{\boldsymbol{\epsilon}}_{pt})
$$
\n
$$
\tilde{q}_t = \hat{\mathbf{w}}_q' \hat{\boldsymbol{\epsilon}}_{qt} \quad \hat{\mathbf{w}}_q' = \mathbf{1}_n' \hat{\mathbf{D}}_q^{-1} / (\mathbf{1}_n' \hat{\mathbf{D}}_q^{-1} \mathbf{1}_n)
$$
\n
$$
\hat{\mathbf{D}}_q = T^{-1} \sum_{t=1}^T (\hat{\boldsymbol{\epsilon}}_{qt} - \hat{\boldsymbol{\phi}}_q \mathbf{1}_n \hat{\boldsymbol{\epsilon}}_{pt}) (\hat{\boldsymbol{\epsilon}}_{qt} - \hat{\boldsymbol{\phi}}_q \mathbf{1}_n \hat{\boldsymbol{\epsilon}}_{pt})'
$$

 $\hat{\phi}_a$ and q and $\hat{\phi}_v$ $\hat{\phi}_v$ \mathcal{V}

Analogous FOC for
$$
\hat{\phi}_q
$$
 and $\hat{\phi}_v$
\n
$$
\hat{\phi}_q = \frac{\sum_{t=1}^T \tilde{z}_{qi}\tilde{e}_{pt}}{\sum_{t=1}^T \tilde{z}_{qi}\hat{e}_{pt}}
$$
\n
$$
\tilde{z}_{qt} = (\mathbf{s}_c - \mathbf{\hat{w}}_c)' \hat{\boldsymbol{\epsilon}}_{ct} + (\tilde{c}_t - \hat{\phi}_c \hat{\boldsymbol{\epsilon}}_{pt}) + (\hat{\boldsymbol{\epsilon}}_{vt} - \hat{\phi}_v \hat{\boldsymbol{\epsilon}}_{pt})
$$
\n
$$
\hat{\phi}_v = \frac{\sum_{t=1}^T \tilde{z}_{vt}\hat{\boldsymbol{\epsilon}}_{vt}}{\sum_{t=1}^T \tilde{z}_{vt}\hat{\boldsymbol{\epsilon}}_{pt}}
$$
\n
$$
\hat{\boldsymbol{\epsilon}}_{vt} = \mathbf{s}_q' \hat{\boldsymbol{\epsilon}}_{qt} - \mathbf{s}_c' \hat{\boldsymbol{\epsilon}}_{ct}
$$
\n
$$
\tilde{z}_{vt} = (\mathbf{s}_c - \mathbf{\hat{w}}_c)' \hat{\boldsymbol{\epsilon}}_{ct} - (\mathbf{s}_q - \mathbf{\hat{w}}_q)' \hat{\boldsymbol{\epsilon}}_{qt}
$$

$$
- (\tilde{q}_t - \hat{\phi}_q \hat{\varepsilon}_{pt}) + (\tilde{c}_t - \hat{\phi}_c \hat{\varepsilon}_{pt})
$$

Iterated 3SLS

\n
$$
\hat{\phi}_c^{(1)} = \frac{\sum_{t=1}^T \tilde{z}_{ct}^{(1)} \tilde{c}_t^{(1)}}{\sum_{t=1}^T \tilde{z}_{ct}^{(1)} \hat{\epsilon}_{pt}}
$$
\n
$$
\tilde{c}_t^{(1)} = \mathbf{s}_c' \hat{\boldsymbol{\epsilon}}_{ct} \quad \tilde{z}_{ct}^{(1)} = (n^{-1} \mathbf{1}_n - \mathbf{s}_q)' \hat{\boldsymbol{\epsilon}}_{qt}
$$
\n
$$
\hat{\mathbf{D}}_c^{(1)} = T^{-1} \sum_{t=1}^T \left(\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\boldsymbol{\phi}}_c^{(1)} \mathbf{1}_m \hat{\boldsymbol{\epsilon}}_{pt} \right) \left(\hat{\boldsymbol{\epsilon}}_{ct} - \hat{\boldsymbol{\phi}}_c^{(1)} \mathbf{1}_m \hat{\boldsymbol{\epsilon}}_{pt} \right)'
$$
\n
$$
\tilde{c}_t^{(2)} = \hat{\mathbf{w}}_c^{(2)'} \hat{\boldsymbol{\epsilon}}_{ct}
$$
\n
$$
\hat{\mathbf{w}}_c^{(2)'} = \mathbf{1}_m' \left(\hat{\mathbf{D}}_c^{(1)} \right)^{-1} \div \left[\mathbf{1}_m' \left(\hat{\mathbf{D}}_c^{(1)} \right)^{-1} \mathbf{1}_m \right]
$$

Comparison of plain-vanilla granular IV (step 1 of 3SLS) and MLE (iterate on 3SLS to convergence)

(standard errors in parentheses)

- Likelihood ratio test rejects the
model's 21 overidentifying assumptions. Likelihood ratio test rejects the
model's 21 overidentifying assumptions.
A more general model with heterogeneous
- Likelihood ratio test rejects the
model's 21 overidentifying assumptions.
A more general model with heterogeneous
elasticities is also rejected. Likelihood ratio test rejects the
model's 21 overidentifying assumptio
A more general model with heteroger
elasticities is also rejected.
Reason: there do not exist (4×1) Likelihood ratio test rejects the
model's 21 overidentifying assumptions.
A more general model with heterogeneou
elasticities is also rejected.
Reason: there do not exist (4 \times 1)
vectors ϕ and ϕ for which entifying assumptions.

odel with heterogeneo

rejected.

not exist (4×1)

for which
 λ ($\hat{\epsilon}$ = \rightarrow $\hat{\epsilon}$ $\lambda' \approx 0$
-
- vectors ϕ_{a} and ϕ_{c} for which
- $T^{-1} \sum_{t=1}^{T} (\hat{\epsilon}_{qt} \phi_q \hat{\epsilon})$ $(\hat{\epsilon}_{qt} - \phi_q \hat{\epsilon}_{pt})(\hat{\epsilon}_{ct} - \phi_c \hat{\epsilon}_{pt})' \simeq \mathbf{0}_{nm}.$
- Supply shocks \mathbf{u}_{qt} and demand shocks \mathbf{u}_{ct}
appear to be correlated. Supply shocks \mathbf{u}_{qt} and demand shocks \mathbf{u}_{ct}
appear to be correlated.
We allow a single global factor on which Supply shocks \mathbf{u}_{qt} and demand shocks \mathbf{u}_{ct}
appear to be correlated.
We allow a single global factor on which
both \mathbf{u}_{qt} and \mathbf{u}_{ct} can load without restriction. Supply shocks \mathbf{u}_{qt} and demand shocks \mathbf{u}_{ct}
appear to be correlated.
We allow a single global factor on which
both \mathbf{u}_{qt} and \mathbf{u}_{ct} can load without restriction.
Seems to be response of Saudi and
OPEC p
-
- appear to be correlated.
We allow a single global factor on which
both \mathbf{u}_{qt} and \mathbf{u}_{ct} can load without restriction.
Seems to be response of Saudi and
OPEC production to global demand.
-
-

Proposed model:
 ϕ_q and ϕ_c unrestricted (4×1) vectors $\mathbf{D} = E(\mathbf{u}_t \mathbf{u}_t') =$ $\mathbf{h}_q \mathbf{h}'_q + \Sigma_q$ $\mathbf{h}_q \mathbf{h}'_c$ $\mathbf{0}_{n1}$ $\mathbf{h}_c \mathbf{h}'_q$ $\mathbf{h}_c \mathbf{h}'_c + \gamma_c \gamma'_c + \Sigma_c \mathbf{0}_{m1}$ $\mathbf{0}_{1n}$ $\mathbf{0}_{1m}$ σ_v^2 $\begin{bmatrix} \mathbf{h}_q \mathbf{h}_q' + \Sigma_q & \mathbf{h}_q \mathbf{h}_c' & \mathbf{0}_{n1} \\ \mathbf{h}_c \mathbf{h}_q' & \mathbf{h}_c \mathbf{h}_c' + \gamma_c \gamma_c' + \Sigma_c & \mathbf{0}_{m1} \\ \mathbf{0}_{1n} & \mathbf{0}_{1m} & \sigma_v^2 \end{bmatrix}$
 $\mathbf{h}_q, \mathbf{h}_c, \gamma_c$ are (4×1) vectors
 Σ_q and Σ_c are diagonal $(4 \times$

 $\mathbf{h}_q, \mathbf{h}_c, \gamma_c$ are (4×1) vectors

 Σ_q and Σ_c are diagonal (4 × 4) matrices
Model has 16 overidentifying
restrictions that are not rejected. $\begin{bmatrix} \mathbf{0}_{1n} & \mathbf{0}_{1m} & \sigma_v^2 \ \mathbf{h}_q, \mathbf{h}_c, \gamma_c \text{ are } (4 \times 1) \text{ vectors} \ \mathbf{\Sigma}_q \text{ and } \mathbf{\Sigma}_c \text{ are diagonal } (4 \times 4) \text{ matrices} \ \text{Model has 16 overidentitying} \ \text{restrictions that are not rejected.} \end{bmatrix}$

Maximum likelihood estimates of elasticities and their standard errors

Loadings on global demand factor

Impact effect of one-standard-deviation increase in global demand factor

Dynamic effect of one-standard-deviation increase in global demand factor

Shaded regions denote 68% confidence bands 29

Impact effect of 50% cut in Russian production (inventory change $= 0$)

Dynamic effect of 50% cut in Russian production

Assumes zero inventory change for first 6 months

Conclusion

- If correlations between supply and demand shocks can be described with low-order factor structure, can use correlations between price and country-specific production and consumption to estimate key elasticities.
- Next step: use regularization to apply to larger numbers of producers and consumers.

Additional slides

