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Abstract

Our objective is to price the cross-section of asset returns. In contrast to existing

models that allow expected excess returns to reflect compensation only for systematic

risk, we derive a stochastic discount factor (SDF) implied by the Arbitrage Pricing

Theory and consistent with the equilibrium model of Merton (1987), in which there is

compensation also for unsystematic risk. Empirically, we find that more than seventy

percent of this SDF’s variation is explained by unsystematic risk. Our SDF dominates

traditional factor models and the state-of-the-art models of latent systematic risk in

pricing the cross-section of asset returns in and out of sample.
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1 Introduction

A major challenge in asset pricing is to explain the cross-section of asset returns. The earliest

model proposed to explain the cross-section of stock returns is the Capital Asset Pricing

Model (CAPM) of Sharpe (1964). In the world of frictionless markets assumed by the

CAPM, investors hold a perfectly diversified portfolio of risky assets, which, in equilibrium,

is the market portfolio. In the data, however, risk compensation for asset exposures to the

market factor, which is the only source of systematic risk in the CAPM, performs poorly

in explaining the cross-section of expected stock returns. Consequently, researchers have

continued to assume that in equilibrium investors hold perfectly diversified portfolios and

have empirically examined a large number of alternative proxies for systematic risk, leading

to a factor zoo (Cochrane, 2011). However, virtually all models featuring factors from this

zoo have sizable pricing errors (Bryzgalova, Huang, and Julliard, 2023).

Merton (1987), in contrast to Sharpe (1964), relaxes the assumption of frictionless mar-

kets and derives an equilibrium in which investors hold portfolios that are not fully diversi-

fied, consistent with a large body of empirical evidence.1 We show that the SDF of an agent

who can trade all assets in the economy of Merton (1987) loads on both systematic risk

(i.e., common risk factors) and unsystematic risk (i.e., asset-return shocks unexplained by

systematic risk factors). Motivated by the risk-return tradeoff implied by Merton (1987), in

this paper, we study how allowing compensation for unsystematic risk provides an avenue

for explaining the cross-section of expected asset returns and resolving the factor zoo.

As the foundation for our analysis of the role of unsystematic risk in pricing assets,

we use the Arbitrage Pricing Theory (APT) of Ross (1976, 1977), Chamberlain (1983),

and Chamberlain and Rothschild (1983). The APT provides an ideal framework because,

in contrast to what is commonly believed, it allows for both systematic and asset-specific

components in expected excess returns. The asset-specific components are unrelated to

compensation for asset exposures to systematic risk factors and satisfy an asymptotic no-

arbitrage restriction. Thus, the APT permits us to entertain, in a no-arbitrage setting,

the possibility that these asset-specific components in expected excess returns represent

compensation for unsystematic risk. We allow unsystematic risk to include both purely

asset-specific (i.e., idiosyncratic) risk and weak factors (Lettau and Pelger, 2020).

1For evidence on portfolio underdiversification, see Campbell (2006) and the literature that builds on it.
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Our first contribution is to derive the APT-implied SDF. We decompose this SDF into

two parts: a traditional systematic SDF component that reflects systematic risk factors

and a new unsystematic SDF component that reflects asset-return shocks unexplained by

systematic risk factors.2 We show that for an asymptotically large number of assets, the

structure of the SDF implied by the APT coincides with that of the SDF in the equilibrium

model of Merton (1987). We then demonstrate that the asset-specific components in ex-

pected excess returns that are typically interpreted as pricing errors from the perspective of

the traditional systematic SDF component, instead, reflect compensation for unsystematic

risk under the APT-implied SDF.

Our second contribution is to provide empirical support for the insight that unsystematic

risk is priced and to quantify its importance. To do this, we first overcome the challenge

that the APT-implied SDF, being dependent on latent systematic factors and unsystematic

shocks, is empirically infeasible. We develop a projection-based SDF, which is the APT-

implied SDF projected on a set of basis assets and a risk-free asset. Next, we show that the

projection-based SDF converges in probability to the APT-implied SDF as the number of

basis assets increases.

Then, using data for monthly returns on 202 portfolios of stocks analyzed in Giglio and

Xiu (2017), we estimate the APT model of asset returns and construct the corresponding

SDF. To guard against in-sample overfitting, we use cross-validation to estimate the two

key parameters of the APT: the number of latent factors and the no-arbitrage bound on the

compensation for unsystematic risk. The number of latent factors determines the size and

variability of the systematic SDF component, whereas the no-arbitrage bound determines

whether unsystematic risk is compensated. We use the Hansen and Jagannathan (1997)

(HJ) distance as a selection metric for these two parameters.

Our key finding is that compensation for unsystematic risk is economically significant,

with the unsystematic SDF component explaining 72.60 percent of the APT-implied SDF’s

variation. Thus, unsystematic risk plays a major role in pricing the cross-section of asset

returns, despite the risk premia associated with unsystematic shocks being small on average.

Furthermore, we find that the two constituents of unsystematic risk, purely asset-specific

2In the APT, latent factors capture systematic risk, and thus, ex-ante, we are agnostic about which
observable variables drive common variation in asset returns. Our definition of systematic factors allows for
both fundamental risk factors and behavioral factors to capture common variation in asset returns, as in
Kozak, Nagel, and Santosh (2018).
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risk and weak factors, contribute about equally to the unsystematic SDF component’s

variation.

Our third contribution is identifying the reasons for the poor performance of popular

candidate factor models used to price a cross-section of stock returns. We study three

models traditionally used in the literature: (i) a model with the market return as the only

systematic risk factor, as suggested by the CAPM of Sharpe (1964), (ii) a model with

the consumption-mimicking portfolio as the only systematic risk factor, as implied by the

Consumption Capital Asset Pricing Model (C-CAPM) of Breeden (1979), and (iii) the

three-factor model (FF3) of Fama and French (1993).3 Both theoretically and empirically,

we identify and characterize the wedge between the APT-implied SDF and the SDFs im-

plied by these candidate factor models. We document, in sample and out of sample, that

although these factor models omit some sources of systematic risk, the major source of

model misspecification is unsystematic risk, which, in these candidate models, similarly to

virtually all other factor models, is assumed to have zero compensation.

To investigate the robustness of our findings, we undertake three exercises. First, we

confirm our findings by estimating the APT-implied SDFs on different sets of basis assets.

Specifically, we consider the dataset for fifty anomaly portfolios used in Kozak, Nagel,

and Santosh (2020) and the dataset for seventy-four characteristic-based portfolios used in

Lettau and Pelger (2020). We find that the relative importance of unsystematic risk is

even higher than that documented in our original dataset of 202 portfolios of stock returns.

Second, we show that, compared to models based on either observable candidate factors or

latent factors, our APT-implied SDF has smaller out-of-sample pricing errors in both time

series and cross-section.

Third, we build on the recent work of Kozak et al. (2020) and Lettau and Pelger (2020)

that has generalized the conventional definition of systematic risk to include not just stan-

dard factors explaining the covariance matrix of asset returns but also those factors that

have a high price of risk. We find that both Kozak et al. (2020) and Lettau and Pel-

ger (2020), consistent with their definitions of systematic risk, capture, at least partially,

weak-factor risk. However, when we correct the SDFs implied by their models to obtain

the APT-implied SDF, we document that (i) the correction component is still sizable and

3We do not analyze other candidate factor models because the conclusions we draw from our empirical
analysis of these three candidate factor models apply to virtually any candidate factor model that is based
on the premise that only systematic risk is compensated in financial markets.

4



represents omitted sources of priced unsystematic risk and (ii) our APT-implied SDF has

substantially smaller pricing errors than their SDFs, both in sample and out of sample.

To understand the implications of the sizable importance of unsystematic risk for in-

vestment decisions, we examine 457 trading strategies. We find that, of the strategies

with large compensation for unsystematic risk, some capture behavioral biases—for exam-

ple, the performance factor (Stambaugh and Yuan, 2017), the long-horizon financial factor

(Daniel, Hirshleifer, and Sun, 2020a), the factor reflecting expectations about future earn-

ings (La Porta, 1996), and the momentum factor (Jegadeesh and Titman, 1993)—while

others reflect market frictions—for example, the betting-against-beta factor (Frazzini and

Pedersen, 2014) and distress risk (Campbell, Hilscher, and Szilagyi, 2008). The compen-

sation offered by these strategies for bearing unsystematic risk is large; for instance, the

premium for bearing the unsystematic risk for the 12-month momentum strategy of Je-

gadeesh and Titman (1993) is 8.27 percent per annum.

Our finding that unsystematic risk is priced also sheds light on the development of

cross-sectional asset pricing models. When the CAPM failed to explain a cross-section

of stock returns, the response was to search for additional proxies for systematic factors.

For instance, momentum (Jegadeesh and Titman, 1993), value (Fama and French, 2015),

and investment (Hou, Xue, and Zhang, 2015) have attracted attention as successful prox-

ies. We find, however, that these variables correlate more highly with the unsystematic

SDF component rather than the systematic SDF component. That is, these observable

variables represent weak factors that matter primarily for explaining the cross-section of

expected returns, as opposed to strong factors, which also explain the covariance of asset

returns. Empirically, we show that a factor model that includes even a large number of

these observable weak factors fails to capture priced unsystematic risk.

Recently, Daniel, Mota, Rottke, and Santos (2020b) have proposed removing unpriced

risk from returns on characteristic-sorted portfolios that are used as risk factors in asset-

pricing models. We find that these newly constructed factors do not capture all priced risks.

The adjusted five factors of Daniel et al. (2020b) explain 41.07 percent of the variation in

the systematic SDF component but only 13.41 percent of the variation in the unsystematic

SDF component and 31.65 percent of the variation of the overall APT-implied SDF.
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Our work relates to several strands of the literature. First, we contribute to the literature

that uses a large cross-section of asset returns to examine the risk-return tradeoff implied by

factor models. Unlike existing studies, our focus lies in examining a distinct aspect of the

risk-return tradeoff. Specifically, we allow compensation for asset-specific risk, in addition

to compensation for systematic risk factors (Kozak et al., 2018; Pelger, 2020; Giglio and

Xiu, 2021), weak factors (Kozak et al., 2020; Lettau and Pelger, 2020), and semi-strong

factors (Giglio, Xiu, and Zhang, 2021b). Our empirical results reinforce the message of

Daniel and Titman (1997) that common factors do not explain the cross-section of asset

returns and strengthen it by illustrating that this is true even in the no-arbitrage setting.

A major benefit of our no-arbitrage framework is that it allows us to construct an SDF,

which can then be used to quantify the importance of unsystematic risk for pricing assets

that, as described above, we find is substantial.

Second, because our methodology allows us to correct the misspecified SDF implied by

a given candidate factor model, we contribute to the literature that studies misspecification

of the SDF and develops methods to characterize the wedge between the misspecified and

admissible SDFs, that is, SDFs pricing assets without error. Our approach complements

existing methods, such as those by Hansen and Jagannathan (1997), Almeida and Garcia

(2012), Ghosh, Julliard, and Taylor (2017), Sandulescu and Schneider (2021), and Korsaye,

Quaini, and Trojani (2021), by providing a method for quantifying the contribution of priced

unsystematic risk in correcting misspecified SDFs.

Third, we contribute to the factor-zoo literature (see, e.g., Cochrane, 2011; Harvey, Liu,

and Zhu, 2015; Kogan and Tian, 2015), which has proposed hundreds of variables that

can potentially proxy for systematic risk priced in the cross-section of asset returns. Our

contribution is to identify that what asset-pricing factor models are missing is compensation

for unsystematic risk rather than a yet-undiscovered proxy for systematic risk.

Furthermore, our paper complements methodological advances aimed at taming the fac-

tor zoo. Feng, Giglio, and Xiu (2020), Freyberger, Neuhierl, and Weber (2020), Giglio, Liao,

and Xiu (2021a), and Bryzgalova et al. (2023) propose model-selection methods to disci-

pline the proliferation of factors and account for data snooping when performing multiple-

hypothesis testing in linear asset-pricing models. Our focus is different; however, as a

by-product of our analysis, we provide a method that establishes whether a set of arbitrary

6



observed variables span the systematic and unsystematic SDF components and quantifies

the risk prices of these variables.

Our work is also related to the work on the idiosyncratic-volatility puzzle, which studies

the relation between the compensation for asset-specific risk and the volatility of asset-

specific shocks; see, e.g., Fama and MacBeth (1973) and Ang, Hodrick, Xing, and Zhang

(2006), and the comprehensive review by Bali, Engle, and Murray (2016). Complementary

to this empirical literature, we construct an SDF and show that compensation for unsys-

tematic risk represents the negative covariance between this SDF and unsystematic shocks

(rather than their volatility). Furthermore, we find that the returns of the idiosyncratic-

volatility factors of Ali, Hwang, and Trombley (2003) and Ang et al. (2006) explain less

than 10 percent of the variation of our unsystematic SDF component. Thus, what the

traditional risk-return tradeoff is missing is not just the idiosyncratic-volatility factor.

The rest of the paper is organized as follows. Section 2 presents our theoretical results for

constructing an APT-implied SDF that allows for nonzero compensation for both systematic

and unsystematic risk. Section 3 explains how to estimate this SDF. Section 4 describes the

data we use to undertake our empirical analysis. Section 5 presents our empirical findings.

Section 6 shows that these findings are robust out-of-sample, for different sets of basis assets,

and for more general definitions of systematic risk. Section 7 provides an example of an

equilibrium model in which unsystematic risk is priced. We conclude in Section 8. The

Internet Appendix reports proofs, the estimation algorithm, and additional results.

2 Constructing the APT-implied SDF

In this section, and throughout the paper, we consider two cases. In the first case, we derive

the SDF under the classical APT, in which the systematic risk factors are latent. In the

second case, we construct an APT-implied SDF by correcting for misspecification an arbi-

trary candidate linear factor model that specifies the sources of systematic risk. We correct

for misspecification arising from omitted: (i) sources of systematic risk, (ii) compensation

for unsystematic risk, and (iii) time variation in risk premia. In the empirical application,

the first case allows us to shed light on the quantitative importance of unsystematic risk,

and the second case allows us to investigate the main sources of misspecification in popu-
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lar factor models. For both cases, we explain how to ensure the positivity and empirical

feasibility of the APT-implied SDF.

In our analysis, we use the following notation. Let an N -dimensional vector Rt+1 =

(R1,t+1, R2,t+1, . . . , RN,t+1)′ denote the vector of gross returns of N risky assets between

t and t + 1. Let Rf be the gross return on a risk-free asset over the same period.4 Let

E(·) denote the expectation operator and 1N indicate an N × 1 vector of ones, so that

E(Rt+1−Rf1N ) represents the vector of expected excess returns on the N assets. Let ft+1

be a K×1 vector of systematic risk factors with a finite number K < N and a K×K positive

definite covariance matrix Vf . Let β = (β1, β2, . . . , βN )′ be an N ×K full-rank matrix of

loadings of asset returns on the systematic factors ft+1. The notation 0N indicates an N×1

vector of zeros. For deterministic sequences {aN} and {bN} the notation aN = O(bN ) means

that, as N → ∞, |aN |/bN < δ, where δ > 0 is some finite number, and aN = o(bN ) means

that |aN |/bN → 0.

2.1 The SDF under the Arbitrage Pricing Theory (APT)

The APT of Ross (1976, 1977), Chamberlain (1983), and Chamberlain and Rothschild

(1983) is our working assumption about the true data-generating process for asset returns.

There are several advantages to choosing the APT as the null model. First, the APT is

a flexible model that does not take a stand on systematic risk factors. Second, it is a no-

arbitrage model; the absence of arbitrage opportunities implies the existence of an SDF.

Third, and more importantly for our purpose, the APT allows for asset-specific components

in expected excess returns that are unrelated to compensation for systematic risk.

The classical APT builds on the following two assumptions.

Assumption 2.1 (Linear Factor Model). The vector Rt+1 of gross asset returns satisfies

Rt+1 = E(Rt+1) + β
(
ft+1 − E(ft+1)

)
+ et+1,

where the vector et+1 has E(et+1) = 0N and a positive-definite N × N covariance matrix

Ve, whose eigenvalues are uniformly bounded and bounded away from zero. The shocks

et+1 constitute unsystematic risk and are uncorrelated with the K systematic factors ft+1,

implying the covariance matrix of returns is

VR = βVfβ
′ + Ve. (1)

4If a risk-free asset does not exist, one can use the return on the minimum-variance portfolio or the return
on a zero-beta portfolio instead.
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The systematic factors ft+1 are often referred to as strong factors, that is, factors that ex-

plain substantial comovement in asset returns and, for which, as N →∞, N−1β′Ve
−1β −→

E, where E is some arbitrary symmetric positive definite K ×K matrix.

If Ve is diagonal, the unsystematic risk arises from purely asset-specific shocks. However,

in the APT of Chamberlain (1983) and Chamberlain and Rothschild (1983), Ve is not

restricted to be diagonal. The case of a non-diagonal matrix Ve can accommodate, in

addition to purely asset-specific shocks, the presence of weak factors fweak
t+1 . We define

weak factors, as in Lettau and Pelger (2020), as factors that affect only a subset of the

underlying assets or all assets but marginally, such that the sum of squared risk exposures

remains bounded.5

Assumption 2.2 (Asymptotic No Arbitrage). There is no sequence of portfolios containing

N risky assets with weights w = (w1, w2, . . . , wN )′, for which, as N →∞:

var(R′t+1w)→ 0 and (E(Rt+1)−Rf1N )′w ≥ δ > 0,

where δ denotes an arbitrary positive scalar.

Assumptions 2.1 and 2.2 imply that, under the APT, asset excess returns satisfy

Rt+1 −Rf1N = a+ βλ+ β(ft+1 − E(ft+1)) + et+1, (2)

with expected excess returns,

E(Rt+1 −Rf1N ) = a+ βλ, (3)

containing two components: a and βλ. The K × 1 vector of risk premia λ represents

the compensations for a unit of assets’ exposures to the factors ft+1.6 The N × 1 vector

a = (E(Rt+1) − Rf1N ) − βλ, typically referred to as the vector of pricing errors, satisfies

the following no-arbitrage restriction, where δapt is some arbitrary positive scalar:

a′V −1
e a ≤ δapt <∞. (4)

We now provide the APT-implied SDF and show that for this SDF, the vector a repre-

sents compensation for bearing unsystematic risk et+1.

5Mathematically, if βweak is a matrix of loadings of returns Rt+1 on Kweak weak factors fweak
t+1 , then, as

N →∞, this matrix satisfies βweak ′βweak → E, where E is some symmetric positive-definite Kweak×Kweak

matrix (see Onatski, 2012).
6Ingersoll (1984) derives the precise condition for λ to exist and shows the result that λ =

limN→∞
(
β′V −1

e β
)−1

β′V −1
e (E(Rt+1)−Rf1N ).
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Proposition 1 (The APT-implied SDF). The APT-implied SDF Mt+1 is

Mt+1 = Mβ
t+1 +Ma

t+1, where (5)

Mβ
t+1 =

1

Rf
−
λ′V −1

f

Rf
(ft+1 − E(ft+1)) and

Ma
t+1 = −a

′V −1
e

Rf
et+1,

with cov(Mβ
t+1,M

a
t+1) = 0 and

a = − cov(Mt+1, et+1)×Rf = − cov(Ma
t+1, Rt+1)×Rf . (6)

The component Mβ
t+1 of the APT-implied SDF is a linear function of the systematic

risk factors ft+1, and therefore we refer to Mβ
t+1 as the systematic SDF component. The

component Ma
t+1 of the APT-implied SDF is a linear function of the unsystematic shocks

et+1, and therefore we refer to Ma
t+1 as the unsystematic SDF component.

The presence of the unsystematic component Ma
t+1 in the APT-implied SDF Mt+1 is

a deviation from the traditional approach relying only on systematic risk factors. This

deviation leads to a key insight underlying our approach, which is the interpretation of the

vector a. The traditional approach assumes that the SDF consists only of the systematic

SDF component Mβ
t+1. Because the expectation of the product of the systematic SDF

component with excess returns is equal to a instead of a vector of zeros,

a = E(Mβ
t+1(Rt+1 −Rf1N ))×Rf , (7)

in the traditional approach, the vector a has the interpretation of pricing errors. In contrast,

expression (6) indicates that the vector a is the negative covariance between the APT-

implied SDF and unsystematic shocks. Thus, by definition of the risk premium, the vector

a represents the vector of risk compensations associated with unsystematic shocks et+1.

This interpretation of the vector a paves the way for a quantitative assessment of priced

unsystematic risk in financial markets that we undertake in our empirical analysis.

2.2 Constructing the APT-implied SDF Empirically

Empirically, there are two challenges in constructing the APT-implied SDF. First, the linear

SDF (5) may not always be strictly positive, which could result in negative asset prices
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leading to arbitrage opportunities. To guarantee the SDF’s positivity, following Gourieroux

and Monfort (2007) and Ghosh et al. (2017), we model the SDF as an exponential function

of payoffs

Mexp,t+1 = Mβ
exp,t+1 ×M

a
exp,t+1, where (8)

Mβ
exp,t+1 =

1

Rf
× exp

(
− λ′V −1

f (ft+1 − E(ft+1))− 1

2
λ′V −1

f λ
)

and

Ma
exp,t+1 = exp

(
− a′V −1

e et+1 −
1

2
a′V −1

e a
)
.

The second challenge is that the SDF (8) is not feasible empirically because it depends

on the unobserved factors ft+1 and shocks et+1. To overcome this challenge, we replace

Mβ
exp,t+1 and Ma

exp,t+1 with an exponential function of the linear projections of Ma
t+1 and

Mβ
t+1 on the set of the risk-free and risky assets:

M̂β
exp,t+1 =

1

Rf
× exp

(
− (βλ)′V −1

R (Rt+1 − E(Rt+1))− 1

2
(βλ)′V −1

R βλ
)

and (9)

M̂a
exp,t+1 = exp

(
− a′V −1

R (Rt+1 − E(Rt+1))− 1

2
a′V −1

R a
)
, (10)

where the symbol ·̂ denotes a function of a linear projection, the covariance matrix of asset

returns VR satisfies equation (1), and the expected excess returns E(Rt+1) − Rf1N satisfy

equation (3). This leads to a feasible and positive SDF.

M̂exp,t+1 = M̂β
exp,t+1 × M̂

a
exp,t+1. (11)

The next proposition shows that, as N →∞, our feasible SDF (11) recovers the admis-

sible SDF (8):

Proposition 2 (Asymptotic Properties of the Feasible SDF). Under Assumptions 2.1 and

2.2 of the APT and the assumption that the systematic factors ft+1 and unsystematic shocks

et+1 are jointly Gaussian, the SDF in equation (8) is admissible. Furthermore, if β′Ve
−1a =

o(N
1
2 ), then, as N →∞, the following results hold7

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0, M̂β

exp,t+1 −M
β
exp,t+1

p−→ 0, cov(M̂β
exp,t+1, M̂

a
exp,t+1)→ 0.

Proposition 2 does not rely on Ve being diagonal and, therefore, allows for the presence

of weak factors in asset-return shocks et+1. Thus, our methodology characterizes the pric-

ing implications of weak factors without needing to estimate them separately from purely

7The the no-arbitrage constraint (4) and the Cauchy–Schwarz inequality imply β′Vea = O(N
1
2 ), which

is a mild form of asymptotic orthogonality. We need a slightly stronger condition to derive the exact limit
of the projection-based SDF.
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asset-specific shocks. This is a major advantage of our approach given that weak latent fac-

tors cannot be estimated consistently (Lettau and Pelger, 2020).8 Internet Appendix IA.6

discusses explicitly the case of weak factors in et+1 and shows that we can construct the

unsystematic SDF component even in the presence of weak factors.

2.3 What is Missing in Popular SDF Models

So far, we have considered the case of the APT model in which the systematic risk factors

are latent. In this section, we show how our APT model can also be used to shed light

on the poor performance of an arbitrary candidate factor model based on a given set of

observable factors as sources of systematic risk. We use the superscript “can” for variables

related to a candidate factor model.

A standard candidate factor model has Kcan observable risk factors f can
t+1 implying that

the expected excess asset returns reflect compensation for exposures to these risk factors.

A classic example of a candidate factor model is the CAPM with Kcan = 1 systematic

risk factor represented by the market excess return and compensation for unsystematic risk

acan = 0N . Viewed through the lenses of the APT, candidate factor models suffer from

possibly three sources of misspecification. First, these models may omit systematic risk

factors. Second, these models may omit compensation for unsystematic risk. Candidate

models may also be misspecified because they do not account for time variation in prices of

risk or risk exposures. We address the first two sources of misspecification in Section 2.3.1

and the third source of misspecification in Section 2.3.2.

2.3.1 Accounting for omitted systematic risk factors or omitted compensation

for unsystematic risk

Let βcan denote an N×Kcan matrix of loadings of asset returns on the candidate factors f can
t+1

with the factor covariance matrix Vfcan , and λcan denote a Kcan×1 vector of risk premia for

unit exposures to these factors.9 Given this candidate factor model, asset returns satisfy

Rt+1 −Rf1N = α+ βcanλcan + βcan(f can
t+1 − E(f can

t+1)) + εt+1, (12)

8Lettau and Pelger (2020) develop an approach to pin down noisy estimates of weak factors, and then
use these to construct the SDF. Giglio et al. (2021b) provide a consistent estimator of the SDF spanned by
latent semi-strong factors (as defined by Chudik, Pesaran, and Tosetti, 2011).

9We assume that the vector of candidate factors does not include spurious factors.
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where the vector α = (E(Rt+1)−Rf1N )− βcanλcan captures the cross-sectional variation in

expected excess returns left unexplained by compensation for asset exposures to systematic

risk factors f can
t+1, and the vector εt+1, with positive-definite covariance matrix Vε, captures

the return variation not explained by the candidate factors f can
t+1.

The candidate factor model implies a linear SDF

Mβ,can
t+1 =

1

Rf
−

(λcan)′V −1
fcan

Rf
(f can
t+1 − E(f can

t+1)),

which, if α 6= 0N , values asset returns with pricing errors α = E(Mβ,can
t+1 (Rt+1−Rf1N ))×Rf .

Traditionally, the presence of pricing errors in a factor model has been associated with

omitted systematic risk factors. If the candidate factor model omits Kmis systematic factors

fmis
t+1 with the positive-definite covariance matrix Vfmis (that is, the first Kmis eigenvalues of

covariance matrix Vε are unbounded with the remaining eigenvalues uniformly bounded, and

the smallest eigenvalue strictly positive), then εt+1 exhibits the following factor structure

εt+1 = βmis(fmis
t+1 − E(fmis

t+1)) + et+1,

where an N×Kmis matrix βmis denotes the matrix of asset-return exposures to these omitted

risk factors. Consequently, the covariance matrix of εt+1, Vε, satisfies10

Vε = βmisVfmisβmis′ + Ve. (13)

Let the Kmis×1 vector λmis denote the compensation for unit exposures of asset returns

to the omitted factors fmis
t+1. The vector α includes the term βmisλmis reflecting risk premia

for omitted sources of systematic risk. Our approach, in contrast to conventional thinking,

allows α to also include compensation for unsystematic risk, a, that is

α = βmisλmis + a, (14)

where, by no arbitrage, for some constant δ∗apt, we have:11

α′Vε
−1α ≤ δ∗apt. (15)

Next, we show how to correct the linear SDF Mβ,can
t+1 of the misspecified candidate factor

model of asset returns to obtain the APT-implied SDF Mt+1.

10Without loss of generality, we assume that these omitted factors fmis
t+1 are orthogonal to the candidate

factors fcan
t+1. Internet Appendix IA.8 shows that the admissible SDF is invariant to our assumption about

the correlation structure between the candidate and missing factors.
11Note that δ∗apt = δapt + λmis ′V −1

fmisλ
mis + o(1), with δapt defined in equation (4). The no-arbitrage

restriction in equation (15) is asymptotically equivalent to that in equation (4), in the sense that δ∗apt is
finite if and only if δapt is finite. A formal proof of this result is available upon request.
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Proposition 3 (Correcting a Misspecified Linear SDF). Under Assumptions 2.1 and 2.2

of the APT, given the candidate SDF Mβ,can
t+1 , there exists an SDF Mt+1 that prices assets

without any pricing errors, such that

Mt+1 = Mβ,can
t+1 +Mα

t+1 = Mβ,can
t+1 + (Mβ,mis

t+1 +Ma
t+1)︸ ︷︷ ︸

=Mα
t+1

, where

Mβ,mis
t+1 = −

(λmis)′V −1
fmis

Rf
(fmis
t+1 − E(fmis

t+1)) and Ma
t+1 = −a

′V −1
e

Rf
et+1,

with cov(Mβ,can
t+1 ,Ma

t+1) = 0, cov(Ma
t+1,M

β,mis
t+1 ) = 0, and cov(Mβ,can

t+1 ,Mβ,mis
t+1 ) = 0.

Given that asset returns satisfy the assumptions of the APT, the SDF Mt+1 that prices

assets without any errors is the APT-implied SDF. The wedge between the APT-implied

SDF Mt+1 and the candidate SDF Mβ,can
t+1 is a correction term labeled Mα

t+1 that includes

two components: Mβ,mis
t+1 and Ma

t+1. The first component Mβ,mis
t+1 captures pricing of the

systematic risk factors fmis
t+1 omitted in the candidate factor model. The second component

Ma
t+1 captures pricing of the unsystematic sources of risk et+1.

The presence of the unsystematic SDF component Ma
t+1 in the correction term Mα

t+1

changes the direction of the quest for an asset-pricing model that explains the cross-section

of expected excess returns. Candidate factor models may be misspecified because of missing

systematic risk, the search for which has been the focus of the existing literature. How-

ever, Proposition 3 shows that candidate models may also be misspecified because they

omit compensation for unsystematic risk. What matters most—omitted systematic risk or

nonzero compensation for unsystematic risk—is an empirical question that we answer in

this paper.

In practice, for the same reasons as explained in Section 2.2, recovering the positive

and empirically feasible APT-implied SDF after correcting a misspecified candidate SDF

requires using the exponential function of the linear projection of Ma
t+1 and Mβ,mis

t+1 on the

set of the risk-free and risky assets, that is,

M̂β,mis
exp,t+1 = exp

(
− (βmisλmis)′V −1

R (Rt+1 − E(Rt+1))− 1

2
(βmisλmis)′V −1

R βmisλmis
)
, (16)

M̂a
exp,t+1 = exp

(
− a′V −1

R (Rt+1 − E(Rt+1))− 1

2
a′V −1

R a
)
, where (17)

E(Rt+1 − 1NRf ) = a+ βmisλmis + βcanλcan and VR = βcanVfcanβcan′ + βmisVfmisβmis′ + Ve.
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Specifying in exponential form also the component of the SDF based on observed sys-

tematic risk factors, we get

Mβ,can
exp,t+1 =

1

Rf
× exp

(
− λcan ′V −1

fcan(f can
t+1 − E(f can

t+1))− 1

2
λcan ′V −1

fcanλ
can
)

(18)

which then leads to

M̂exp,t+1 = Mβ,can
exp,t+1 × M̂

β,mis
exp,t+1 × M̂

a
exp,t+1. (19)

We show in Internet Appendix IA.4 that as N →∞, the projection version of the corrected

SDF specified in equation (19) recovers the APT-implied SDF specified in exponential form.

2.3.2 Accounting for Time-Variation in Risk Premia

So far, we have considered factor models with constant prices of risk and risk exposures.

However, in practice, one may wonder whether the vector a arises as a consequence of time

variation in prices of risk or risk exposures. Below, we demonstrate that an arbitrary model

of asset returns that has time-varying prices of risk or risk exposures is nested in the classical

APT and that the interpretation of a as compensation for unsystematic risk is preserved.

To distinguish models with constant parameters from those with time-varying parameters,

we use a tilde ·̃ to denote all the elements of the models with time-variation. To facilitate

our discussion, we consider a model with only time-varying risk exposures; the analysis of

a model with time-varying prices of risk is similar and is omitted for brevity.

Without loss of generality, assume that the true model for asset returns is a conditional

model with a single factor f̃t+1 and zero compensation for unsystematic risk ẽt+1

Rt+1 − Et(Rt+1) = β̃tf̃t+1 + ẽt+1, (20)

where f̃t+1 is a factor with unconditional risk premium λ̃, Et(f̃t+1) = 0, β̃t is an N×1 vector

of risk exposures of asset returns Rt+1 to the factor f̃t+1, and ẽt+1 is an N × 1 vector of

unsystematic shocks with a positive-definite covariance matrix Vẽ. We consider two cases.

Case 1: Common source of variation in risk exposures. Assume that

β̃t = β̃0 + β̃1g̃t,

where g̃t is a common source of time-variation in assets’ exposures β̃t to the risk factor

f̃t+1. Without loss of generality, assume that E(g̃t) = 0. Given these assumptions, the true

data-generating process for asset returns is

Rt+1 −Rf1N = β̃0λ̃+ β̃1g̃tλ̃+ β̃0f̃t+1 + β̃1g̃tf̃t+1 + ẽt+1,
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or equivalently

Rt+1 − E(Rt+1) = β̃0f̃t+1 + β̃1g̃tλ̃+ β̃1(g̃tf̃t+1 − E(g̃tf̃t+1)) + ẽt+1.

Thus, the true factor model (20) with the single factor f̃t+1, time variation in risk

premia driven by one common variable g̃t, and zero compensation for unsystematic risk

ẽt+1, is observationally equivalent to the APT model of asset returns with a = 0N and

three systematic factors, ft+1 = (f̃t+1, g̃t, g̃tf̃t+1)′.12 Therefore, if researchers assume a

misspecified candidate model with the single factor f can
t+1 = f̃t+1 and constant risk exposures

βcan = β̃0, we can use our approach developed in Section 2.3.1 to correct this candidate

model and obtain the APT-implied SDF that prices assets without errors. In this APT-

implied SDF, the component Mβ,mis
t+1 is a function of the omitted factors fmis

t+1 = (g̃t, g̃tf̃t+1)′.

Furthermore, Mβ,mis
t+1 captures completely the wedge between the admissible SDF and the

SDF implied by the candidate factor model, so that Ma
t+1 = 0.

Case 2: Asset-specific source of time-variation in risk exposures. Now, assume that

β̃t = β̃0 + β̃1 � G̃t,

where G̃t = (g̃1t, g̃2t, · · · , g̃Nt)′ is a vector of asset-specific sources of time-variation in risk

exposures β̃t to the risk factor f̃t+1, and the symbol � denotes the Hadamard element-wise

product. Without loss of generality, assume that E(g̃it) = 0 for each 1 ≤ i ≤ N . Given

these assumptions, the true data-generating process for asset returns is

Rt+1 −Rf1N = (β̃0 + β̃1 � G̃t)λ̃+ (β̃0 + β̃1 � G̃t)f̃t+1 + ẽt+1

or equivalently

Rt+1 − E(Rt+1) = β̃0f̃t+1 + (β̃1 � G̃t)λ̃+ (β̃1 � G̃t)f̃t+1 − E((β̃1 � G̃t)f̃t+1) + ẽt+1︸ ︷︷ ︸
η̃t+1

.

Thus, the true factor model (20) with the single factor f̃t+1, time variation in risk premia

driven by asset-specific variables G̃t, and zero compensation for unsystematic risk ẽt+1, is

observationally equivalent to the APT model of asset returns with the single systematic

factor ft+1 = f̃t+1 and unsystematic shocks η̃t+1. In the APT, unsystematic shocks ẽt+1

have zero compensation, exactly as in the true factor model, while unsystematic shocks

et+1 = η̃t+1− ẽt+1 are compensated if E(G̃tf̃t+1) 6= 0N .13 Therefore, if researchers assume a

12Note that g̃tf̃t+1 can be interpreted as a scale factor of Gagliardini, Ossola, and Scaillet (2016).
13This example illustrates that priced unsystematic shocks may represent the product of a systematic risk

factor with asset-specific drivers of risk premia.
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misspecified candidate model with the single factor f can
t+1 = f̃t+1 and constant risk exposures

βcan = β̃0, we can use our approach developed in Section 2.3.1 to correct this candidate

model and obtain the APT-implied SDF. In this APT-implied SDF, the component Ma
t+1 is

a function of unsystematic shocks et+1 (not ẽt+1). Furthermore, Ma
t+1 captures completely

the wedge between the admissible SDF implied by the APT and the SDF implied by the

candidate factor model, so that Mβ,mis
t+1 = 0.

3 Estimation Details

In this section, we describe our approach for estimating the APT-implied SDF for two cases.

In the first case, we estimate the APT model of asset returns, in which the systematic

factors are latent. In the second case, we explain how to estimate the APT-implied SDF by

correcting a candidate factor model of asset returns with Kcan observable factors. For both

cases, we explain how to identify the number of latent factors and the corresponding no-

arbitrage bound δapt in equation (4). We also highlight the role played by the no-arbitrage

restriction and describe how to estimate the covariance matrix Ve for unsystematic shocks.

3.1 Our Estimation Approach

For both cases described above, we recover the APT-implied SDF in two steps. For the

first case, we start by specifying values for the parameters K and δapt. For the parameter

K, we consider values ranging from 1 to 10. For the parameter δapt, we consider a grid

ranging from 0 to 0.25 that corresponds to Sharpe ratios ranging from 0 to
√

0.25 = 0.5

per month for the portfolio associated with unsystematic risk.14 To choose the optimal

values for K and δapt, we use ten-fold cross-validation with the HJ distance as a selection

metric. For each particular combination of K and δapt, we use a constrained maximum-

likelihood estimator to estimate the APT model of asset returns given in (2), subject to the

no-arbitrage restriction (4), on all but one fold, which we use for validation.15 Then, we use

14The APT theory is silent about the value of δapt; Ross (1977) suggests using a bound that is a multiple
of the Sharpe ratio for the market portfolio, which is about 0.12 per month.

15We adopt the MLE approach thanks to its properties and computational convenience. First, the MLE
approach is efficient. Second, it delivers closed-form solutions for many parameters of the model, leading
to a reduction in computation time (see Appendix IA.7). Third, the MLE approach applied to the model
without compensation for unsystematic risk is asymptotically equivalent to the standard PCA that is used
to estimate the risk factors in leading empirical SDF-models (see, e.g., Kozak et al., 2018, 2020; Lettau and
Pelger, 2020; Giglio and Xiu, 2021).
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the parameter estimates and the formulas (9), (10), and (11), where the covariance matrix

of unsystematic risk satisfies equation (1) and expected excess returns satisfy equation (3),

to construct the positive feasible APT-implied SDF on the validation fold. We repeat this

procedure ten times. We compute the HJ distance for all the validation folds. Having

obtained the HJ distances for all combinations of K and δapt, we choose the optimal K and

δapt that deliver the smallest HJ distance. We then use the optimal K and δapt to estimate

the APT-implied SDF using the entire sample. Internet Appendix IA.7 provides a more

detailed description of the estimation approach.

For the second case, in which we correct an arbitrary candidate factor model with Kcan

observable factors, we start by specifying values for the parameters Kmis and δapt.
16 For

Kmis, we consider values ranging from 0 to 5, and for δapt, just as before, we consider a grid

ranging from 0 to 0.25. To choose the optimal values for Kmis and δapt, we use ten-fold

cross-validation with the HJ distance as a selection metric. For each particular combination

of Kmis and δapt, we use a constrained maximum-likelihood estimator to estimate the model

of asset returns given in expression (12), where Vε and α are defined in (13) and (14), subject

to the no-arbitrage restriction (4).17 Then, we use the extended version of Proposition 2,

which is formally presented and proved in Internet Appendix IA.4, and formulas (16), (17),

(18), and (19) to recover the positive feasible APT-implied SDF on the validation folds.

Just as in the first case, having obtained the HJ distances for all the combinations of Kmis

and δapt, we choose the optimal Kmis and δapt that deliver the smallest HJ distance. We

then use the optimal Kmis and δapt to estimate the corrected SDF using the entire sample.

We use the HJ distance to select K (or Kmis) and δapt because it is a widely recognized

economically meaningful metric of pricing performance. Moreover, the HJ distance depends

on the SDF that provides, under the null hypothesis of the APT, the correct interpretation

of the vector a as compensation for unsystematic risk. Furthermore, under the assumption

that asset returns are Gaussian, the HJ distance summarizes how competing asset-pricing

models fit both the first and second moments of the return distribution.18 This is in contrast

16Without loss of generality, we consider candidate models with tradable factors that represent either
factor returns (for example, the market factor and returns on long-minus-short strategies) or excess returns
on factor-mimicking portfolios. It is straightforward to extend the estimation algorithm to the case of
candidate factor models with nontradable systematic risk factors.

17We use asymptotic equivalence of the no-arbitrage restrictions in equations (4) and (15).
18Because we assume for tractability that asset returns are Gaussian, the SDF and HJ distance depend

only on the mean and variance of excess returns. The APT-implied SDF in formulas (9)–(10) and (16)–(17)
depends on the model-implied quantities for E(Rt+1 −Rf1N ) and VR.
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to other metrics, for example, the cross-sectional R2, that assess how competing models fit

only average excess returns. Thus, as a model-diagnostic measure, the HJ distance sets

a higher hurdle for the APT model of asset returns, in which the choice of the number

of systematic factors and the value of the no-arbitrage bound have implications for both

expected excess returns and the return covariance matrix.

The prior literature has used other methods for selecting the number of common risk

factors in SDF models. For example, Giglio and Xiu (2021) use a statistical information

criterion similar to Bai and Ng (2002). Lettau and Pelger (2020) and Kozak et al. (2020)

use economic restrictions relating expected returns to the covariance of returns with factors,

in addition to time-series information on the variation in asset returns.19 Because none of

these approaches applies directly to a model with nonzero compensation for unsystematic

risk, i.e., a 6= 0N , we face a choice: either to use a two-stage estimation approach that pins

down K (or Kmis) in the first step and δapt in the second step or to design our own method.

We choose the latter and optimize an objective function that explicitly incorporates the no-

arbitrage restriction while simultaneously selecting the number of systematic risk factors

and the no-arbitrage bound to minimize the HJ distance.

In Sections 5 and 6, we show that our main empirical insight about unsystematic risk

being priced is robust to picking a different number of common factors, estimating the APT-

implied SDF on a different set of basis assets, or using different methods for estimating the

systematic risk factors.

3.2 The No-Arbitrage Restriction

The no-arbitrage restriction in (4) on the vector a serves several purposes. First, economi-

cally, it rules out asymptotic arbitrage. Equivalently, the no-arbitrage restriction constrains

the Sharpe ratio of the so-called alpha portfolio of Raponi, Uppal, and Zaffaroni (2022).

In our setting, a′V −1
e a is approximately equal to the square of the Sharpe ratio associated

with investing in a portfolio that represents the unsystematic SDF component Ma
exp,t+1,

19Even though our objective function is similar to that of Lettau and Pelger (2020), our approach has two
crucial differences. First, as explained above, from the perspective of the APT model, α is not a pricing
error; rather, it represents a crucial component of the SDF. Thus, α does not need to be the null vector,
and therefore, our aim is not to compress it as much as possible but only to ensure that the no-arbitrage
restriction holds. Second, our objective function does not explicitly include a pricing metric measuring
goodness of fit, such as the HJ distance. If we augmented our log-likelihood function with an additional
penalty term represented by the HJ distance, it would have made our problem computationally intensive.
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that is, δapt ≈ var(log(Ma
exp,t+1)). In the same spirit, Kozak et al. (2020) rule out near-

arbitrage opportunities by restricting the maximum squared Sharpe ratio implied by the

overall SDF.20

Second, statistically, when estimating the APT model of asset returns, the no-arbitrage

restriction (when binding) leads to the identification of the vectors βλ and a, and therefore

the systematic and unsystematic SDF components M̂β
exp,t+1 and M̂a

exp,t+1.21 Specifically,

at the estimation stage, the no-arbitrage restriction provides the N conditions that allow

us to identify separately the estimates of βλ and a (see Proposition IA.7.5 in Internet

Appendix IA.7). Similarly, when correcting a candidate factor model, the no-arbitrage

condition leads to the identification of βmisλmis and a that is necessary for constructing the

missing systematic and unsystematic components of the SDF in (19), M̂β,mis
exp,t+1 and M̂a

exp,t+1,

respectively. This use of the asymptotic no-arbitrage restriction is specific to our paper,

which, to the best of our knowledge, is the first to estimate the SDF with both systematic

and unsystematic risk.

Finally, under the no-arbitrage restriction, the estimator of a has the form of a ridge

estimator, as shown in Proposition IA.7.5 of Internet Appendix IA.7. The ridge estimator

has the appealing property of mitigating estimation noise. In our case, this property is

especially valuable because the vector a is a component of expected returns, which, as is

well known (Merton, 1980), are difficult to estimate. It also means that our estimator of

a is not simply a plug for the sample average of expected excess returns net of factor risk

premia. As we will show below, without the APT restriction, it would not be possible to

obtain a precise estimate of the vector a, and hence pin down the compensation for bearing

unsystematic risk.

3.3 Estimating the Covariance Matrix of Unsystematic Shocks

As pointed out earlier, the covariance matrix Ve of unsystematic shocks et+1 in equation (2)

or (13) does not have to be diagonal but must have bounded eigenvalues. That is, the

shocks et+1 do not have to be uncorrelated across basis assets but may include weak latent

20There is an important difference in the economic implications of the no-arbitrage constraint in our
paper and that in Kozak et al. (2020). In our paper, the no-arbitrage restriction constrains only the prices
of unsystematic risk—those of weak factors and purely asset-specific shocks—but not of common factors. In
Kozak et al. (2020), the no-arbitrage restriction constrains the prices of all factors.

21Even in population, the no-arbitrage restriction can be influenced by the presence of financial frictions
(Korsaye et al., 2021, sec. 2).
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factors. Because it is not possible to obtain consistent estimates of weak factors (Lettau

and Pelger, 2020, prop. 2), estimating Ve in the presence of weak factors is challenging.

Motivated by the shrinkage approach of Ledoit and Wolf (2004a,b), we develop the

following two-step estimator for the matrix Ve. In the first step, we assume initially that

Ve is a diagonal matrix. Given this assumption, for each K (if estimating the APT model

of asset returns) or Kmis (if correcting a candidate factor model with Kcan factors) and

each value of δapt, we optimize the log-likelihood of asset returns subject to the no-arbitrage

restriction. As a result, we obtain the first-step estimate V
(1)
e of Ve. Next, we check whether

the covariance matrix Vefit of the fitted residuals efit of the asset-return model (2) or the

candidate factor model corrected for missing systematic risk factors, is diagonal. If it is not,

we proceed to the second step, in which we estimate Ve = V
(2)
e as a linear combination of

V
(1)
e and Vefit ,

V (2)
e = θV (1)

e + (1− θ)Vefit ,

where we choose θ so that δapt ≈ var(log(M̂a
exp,t+1)). Effectively, we shrink the empirical

covariance matrix of shocks et+1 towards a diagonal matrix V
(1)
e , and we choose the degree

of shrinkage, 1 − θ, to preserve the economic interpretation of δapt as the squared Sharpe

ratio of the portfolio that loads only on unsystematic risk.

4 Data

This section describes the data we use for our empirical analysis. First, we describe the

basis assets we use to estimate the APT-implied SDF. Then, we examine variables that

could potentially span the estimated SDF and its components.

4.1 Basis Assets

We construct a projection of the SDF on a large set of standard characteristics-based port-

folios of U.S. stocks. As in Giglio and Xiu (2017), we use monthly returns data for 202

portfolios from Kenneth French’s website, which we label GX monthly data. The data

includes returns on 25 portfolios sorted by size and book-to-market ratio (ME & BM), 17

industry portfolios (Ind), 25 portfolios sorted by operating profitability and investment (OP

& INV), 25 portfolios sorted by size and variance (ME & VAR), 35 portfolios sorted by size

21



and net issuance (ME & NetISS), 25 portfolios sorted by size and accruals (ME & ACCR),

25 portfolios sorted by size and beta (ME & BETA), and 25 portfolios sorted by size and

momentum (ME & MOM). The sample runs from July 1963 to August 2019.

While our theoretical results apply to any type of asset—individual assets or portfolios—

as basis assets we use portfolios rather than individual assets for two related reasons. First,

portfolios exhibit a more stable factor structure (Lettau and Pelger, 2020; Giglio and Xiu,

2021). Second, given that portfolios exhibit a more stable factor structure, the state-of-

the-art models based on latent systematic risk (Kozak et al., 2020; Lettau and Pelger,

2020), which we use for comparison in our robustness analysis, are also estimated and

tested on portfolio data. Because, we are using portfolios as basis assets, in our empirical

investigation, purely asset-specific risk refers to idiosyncratic risk specific to these portfolios.

In Section 6, we also use as basis assets other datasets that have been employed in

related work. Specifically, we estimate the APT-implied SDF on fifty anomaly portfolios

(for both daily- and monthly-return data) used in Kozak et al. (2020), and then monthly-

return data for the seventy-four characteristic-based portfolios used in Lettau and Pelger

(2020). For ease of reference, we refer to these datasets as KNS daily data, KNS monthly

data, and LP monthly data, respectively. The KNS daily and monthly data include returns

from November 1973 to December 2017 and the LP monthly data include returns from

November 1963 to December 2017.

4.2 Variables Potentially Spanning the SDF

To interpret our results and understand which economic variables may explain the APT-

implied SDF’s variation, we collect a comprehensive set of variables available at a monthly

frequency. Our dataset includes both macroeconomic and financial indicators and returns

on trading strategies. In the factor-zoo literature, the returns on these trading strategies are

also known as factors or anomalies. We consider returns on 457 trading strategies studied

in Novy-Marx (2013), Kozak et al. (2020), Chen and Zimmermann (2022), Jensen, Kelly,

and Pedersen (2022), Hou, Mo, Xue, and Zhang (2021), and Bryzgalova et al. (2023). Fur-

thermore, we consider 103 macroeconomic and financial indicators, which include aggregate

consumption growth, inflation, various measures of economy-wide sentiment, disagreement,

and volatility. We provide the details regarding the data sources and construction of these

variables in Internet Appendix IA.9.
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5 Empirical Analysis

In this section, first, we analyze the estimated APT-implied SDF and characterize its com-

ponents, thereby establishing the relative importance of systematic versus unsystematic

risk. Then, we examine the reasons for the poor performance of traditional candidate fac-

tor models: the market model, the model with consumption growth as the sole factor, and

the FF3 model. For each candidate model, we characterize the missing systematic and

unsystematic components of the corresponding SDFs. We conclude this section by explain-

ing that our finding regarding the importance of the missing unsystematic SDF component

applies to virtually any other asset-pricing model with only systematic risk factors.

5.1 The SDF under the APT Model of Asset Returns

To analyze the APT-implied SDF, we first estimate the APT model of asset returns specified

in equations (2) and (4). As explained in Section 3.1, we use a cross-validation procedure

to determine the number of latent systematic factors K and the no-arbitrage bound, δapt.

5.1.1 Number of Latent Systematic Risk Factors and the No-Arbitrage Bound

Figure 1 shows how the HJ distance of the APT model, which is evaluated on the vali-

dation folds of the cross-validation procedure, changes as we use different K and δapt in

the estimation. We see that the combination of K = 2 latent factors and δapt = 0.0529

achieves the smallest HJ distance of 0.41.22 The low value of K is consistent with the evi-

dence on low-dimensional latent factor models in Kozak, Nagel, and Santosh (2018, 2020)

and Lettau and Pelger (2020). The nonzero value of the optimal δapt, which bounds the

vector a (δapt 6= 0 if and only if a 6= 0N ), indicates that, contrary to conventional wisdom,

unsystematic risk is priced in the stock market.

To understand the economic importance of accounting for compensation for unsystem-

atic risk, we analyze two extreme situations. First, we explore how the HJ distance changes

quantitatively in a model with K = 2 latent systematic factors if we set δapt = 0, which

implies that a = 0N . Figure 1 shows that the HJ distance increases by an economically

22We see that the HJ distance obtained for a model with K = 1 is very similar to that obtained for a
model with K = 2, if the value of δapt is not too large. We provide an economic explanation of this finding
in Section 5.1.4.
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Figure 1: APT model selection using the HJ distance
This figure illustrates how the HJ distance changes with the key parameters of the APT model,
K and δapt. The figure shows, for different combinations of K and δapt, the results of the cross-
validation exercise in which we split the sample into ten folds and estimate the model on all but one
fold, which we use for validation. We repeat this procedure ten times and compute the HJ distance
on the validation folds. The numbers reported in the figure are (δapt,HJ distance). The HJ distance

is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 − Rf1N )) is a vector of pricing errors and W is the inverse
of the second-order moment matrix of asset returns.
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significant amount—49% = (0.61/0.41 − 1) if δapt = 0.23 Moreover, as δapt gets close to

zero, the HJ distance increases dramatically for any number of latent factors K.

Second, we analyze whether increasing the number of systematic factors reduces the

optimal δapt to zero. Figure 1 shows that even if we were to assume that the APT model had

a much larger number of factors than the optimal K = 2, the compensation for unsystematic

risk would remain sizable. For example, if we set the number of systematic factors to be

K = 10 and then choose only δapt in our cross-validation exercise, the HJ distance is

minimized at δapt = 0.0361 rather than δapt = 0. This finding confirms that our main

insight about unsystematic risk being priced is robust with respect to the choice of the

number of systematic factors. In Section 6, we also show that our empirical analysis leads

to the same conclusion if we use a different definition of systematic risk (e.g., that of Kozak

23Figure IA.1 in Internet Appendix IA.11 shows that the large increase in the HJ distance when we set
δapt = 0 is true not just for the cross-validation exercise but also when the SDF is estimated using the full
sample.
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Figure 2: Estimated Sharpe ratios for individual sources of risks
The histogram in this figure shows the annualized Sharpe ratios, ai/σi, associated with shocks ei
and the dotted vertical lines indicate the Sharpe ratios associated with the K = 2 systematic factors.
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et al. (2020) or Lettau and Pelger (2020)) or estimate the model on different sets of basis

assets. The analysis of these two extreme situations explains why prior work that only

investigated pricing of systematic risk could not explain the cross-section of expected stock

returns.

Even though our finding about nonzero compensation for unsystematic risk challenges

the conventional view that expected excess asset returns compensate only for asset exposures

to systematic risk factors, our empirical results are consistent with the idea that the factors

that explain most of the comovements of asset returns earn the highest compensation (Kozak

et al., 2018). Figure 2 displays the histogram of the Sharpe ratios associated with individual

unsystematic shocks ei, along with two dotted lines showing the Sharpe ratios of the K = 2

systematic factors that explain most of the variation in the cross-section of asset returns.

We see from this figure that the source of risk that exhibits the highest Sharpe ratio is

indeed one of the systematic factors.
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Figure 3: Time-series behavior of the APT-implied SDF and its components
This figure has three panels. The top, middle, and bottom panels show the dynamics of the estimated
annualized APT-implied SDF M̂exp,t+1, its unsystematic component M̂a

exp,t+1, and its systematic

component M̂β
exp,t+1, respectively. Gray bars indicate the NBER recession periods.
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5.1.2 Time-Series and Business-Cycle Properties of SDF and its Components

Having estimated the APT model of asset returns, we study the time-series properties of

the implied SDF, M̂exp,t+1 specified in (11), and its components, M̂β
exp,t+1 and M̂a

exp,t+1

specified in (9) and (10), respectively. Figure 3 shows that both M̂β
exp,t+1 and M̂a

exp,t+1,

exhibit sizable volatility during recessions and also during normal times. Furthermore, we

see that different components of the SDF dominate its variation in different periods. For

example, the increase in M̂β
exp,t+1 in October 1987 shows that systematic risk factors were

responsible for the dramatic increase in the level and volatility of the SDF. On the other

hand, in the early 2000s (following the dot-com bubble), the increase in the unsystematic

component M̂a
exp,t+1 generated the spike in the volatility of the SDF. Thus, both systematic

and unsystematic risk contribute to explaining asset valuations.

Next, we analyze the relative importance of the two SDF components for the SDF’s vari-

ance. Table 1 reports the standard deviation of the APT-implied SDF, log(M̂exp,t+1), and

its two components, log(M̂a
exp,t+1) and log(M̂β

exp,t+1). These standard deviations correspond

to annual Sharpe ratios associated with exposure to the overall SDF and its unsystematic
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Table 1: The APT-implied SDF and its components
This table reports two sets of quantities for the APT model: (1) The annualized Sharpe ratio of the
SDF and its components, where the Sharpe ratios are approximated by the standard deviation (sd)
of the log SDF and its components; and (2) the variance decomposition of the log SDF.

Sharpe ratio (p.a.) Variance decomp. (%)

Model sd(log(M̂exp,t+1)) sd(log(M̂a
exp,t+1)) sd(log(M̂β

exp,t+1)) log(M̂a
exp,t+1) log(M̂β

exp,t+1)

APT 0.89 0.79 0.51 72.60 27.40

and systematic components and are 0.89, 0.79, and 0.51, respectively.24 Thus, strikingly,

a unit exposure to unsystematic risk is compensated more prominently in financial mar-

kets than a unit exposure to systematic risk. Similarly, we find that of the total variation

of the SDF, the unsystematic component contributes 72.60 percent, while the systematic

component contributes only 27.40 percent. Thus, any model based on only systematic risk

factors implies an SDF that is too smooth. The dominant role of unsystematic risk in the

SDF’s variation that we document is consistent also with the puzzling evidence in Daniel

and Titman (1997), Herskovic, Moreira, and Muir (2019), Chaieb, Langlois, and Scaillet

(2021), and Lopez-Lira and Roussanov (2022) that a substantial portion of expected ex-

cess returns is left unexplained by factor risk premia. Our work shows quantitatively that

expected excess returns are explained largely by compensation for unsystematic risk.

We conclude by exploring the business-cycle properties of the estimated SDF and its

components. To this end, we run a regression analysis of the log SDF and its components on

macroeconomic and financial indicators; we do the log transformation because our SDF is

in exponential form. We find that log(M̂a
exp,t+1) is largely acyclical: it does not significantly

correlate with the NBER recession indicator.25 The macroeconomic and financial indicators

it correlates most with are intermediary constraints (He, Kelly, and Manela, 2017), the

sentiment indices (Baker and Wurgler, 2006; Huang, Jiang, Tu, and Zhou, 2015), shocks

in VIX, and shocks in credit spread (Gilchrist and Zakraǰsek, 2012). Individually, each of

these variables explain less than 3.5 percent of the variation in log(M̂a
exp,t+1). Panel A of

Table IA.1 in Internet Appendix IA.10 provides further details regarding these results.

24In population, the sum of the squares of the standard deviations of the components of the log SDF
must add up to the square of the standard deviation of the log SDF itself. But, in a finite sample, the
components of the log SDF are not perfectly orthogonal to one another. Therefore, the sum of the squares
of the standard deviations of the components deviates slightly from the square of the standard deviation of
the SDF.

25Throughout the manuscript, we use the 5 percent cutoff to judge statistical significance.
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In contrast to log(M̂a
exp,t+1), the systematic component log(M̂β

exp,t+1) significantly cor-

relates with the NBER recession indicator. In addition, the systematic SDF component

correlates with the Chicago Fed National Financial Condition index, intermediary con-

straints (He et al., 2017), and shocks to aggregate liquidity (Pástor and Stambaugh, 2003),

credit spread (Gilchrist and Zakraǰsek, 2012), dividend yield, financial uncertainty (Jurado,

Ludvigson, and Ng, 2015), VIX, and the TED spread. Among these variables, shocks to

intermediary constraints have the largest individual explanatory power for log(M̂β
exp,t+1):

R2 = 55%; for further details, see Panel B of Table IA.1 in Internet Appendix IA.10.

5.1.3 The Unsystematic SDF Component

The unsystematic SDF component Ma
exp,t+1 is, by construction, a weak factor for any cross-

section of basis assets. That is, even if a cross-section of basis assets has exposures to

only systematic factors and purely asset-specific shocks (i.e., the covariance matrix Ve is

diagonal), the unsystematic SDF component satisfies the properties of a weak factor.26 This

observation motivates us to examine whether it is weak factors in et+1 or shocks specific

to individual basis assets, which in our exercise are characteristic-sorted portfolios, that

play a major role in the unsystematic SDF component. Answering this question is not

straightforward because weak factors cannot be estimated consistently (Lettau and Pelger,

2020). To circumvent this problem, we assume that the returns on the 325 trading strategies

available for the entire sample out of the 457 strategies described in Section 4.2 represent

an exhaustive set of possible weak factors in the cross-section of our basis assets. Armed

with this assumption, we split the fitted residuals efit
t+1 from the estimated APT model

specified in equations (2) and (4) into two parts: one representing weak factors and the

other characteristic-sorted portfolio-specific shocks (CSP-specific shocks). To identify the

CSP-specific shocks, we use their key property: by definition, these shocks, being specific

to each individual basis asset, have a diagonal covariance matrix.

26Observe that the exposures of asset returns to the unsystematic SDF component Ma
t+1 are equal to

βa =
cov(Ma

t+1, Rt+1 −Rf1N )

var(Ma
t+1)

=
cov

(
−a
′V−1

e
Rf

et+1, Rt+1 −Rf1N
)

var(Ma
t+1)

= − a′Rf

a′V −1
e a

.

Thus, βa′βa = R2
f (a′a)/(a′V −1

e a)2, which, together with the no-arbitrage restriction (4), the boundness
of δapt away from zero, and the boundedness of the eigenvalues of the covariance matrix Ve, implies that
βa′βa = O(1), that is, βa′βa is bounded. As a result, Ma

t+1 satisfies the definition of a weak factor.
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Empirically, we regress the fitted residuals efit
t+1 of the APT model on the returns of

all trading strategies (orthogonalized with respect to the two latent factors of the APT)

that substantially reduce the cross-sectional dependence in these residuals, collected in the

vector fweak
t+1 :

efit
t+1 = γ0 + γ′fweak

t+1 + ξt+1. (21)

We find that out of the 325 trading strategies available for the entire sample, 35 reduce the

number of the significant off-diagonal terms in the covariance matrix of efit
t+1 by 68 percent,

leaving only 21 percent of the off-diagonal elements in the 202 × 202 covariance matrix of

the fitted residuals ξfit
t+1 statistically significantly different from zero. We use this regression

to split the fitted residuals efit
t+1 in equation (21) into two parts: one explained by the 35

trading strategies, or weak factors eweak
t+1 , and the other representing CSP-specific shocks

ecsp
t+1, where the vectors eweak

t+1 and ecsp
t+1 are the estimated values of γ0 + γ′fweak

t+1 and ξt+1,

respectively.

Next, we express Ma
exp,t+1 as

Ma
exp,t+1 = exp

(
−a′V −1

e eweak
t+1 − a′V −1

e ecsp
t+1 −

1

2
a′V −1

e a

)

and compute the standard deviations of −a′V −1
e eweak

t+1 and −a′V −1
e ecsp

t+1, which are approx-

imately equal to the Sharpe ratios of the strategies that invest in weak factors and CSP-

specific shocks, respectively. We find that these values are 0.55 and 0.56 per annum, re-

spectively. This result has two implications. First, an investor earns sizable compensation

for exposure to both types of unsystematic risk. Second, CSP-specific risk and weak factors

contribute almost equally to the overall variation of the unsystematic SDF component.

Having established the quantitative importance of the unsystematic SDF component,

we now examine if, in practice, there are trading strategies, whose expected excess returns

reflect compensation for exposure to unsystematic risk. To this end, first, we measure expo-

sures of trading strategies to priced unsystematic risk by running individual regressions of

log(M̂a
exp,t+1) on the excess returns of the 457 strategies described in Section 4.2. We find

that a large number of strategies considered in the literature—335 out of 457—correlate

statistically significantly with the unsystematic SDF component. The returns on the five

trading strategies that have the highest explanatory power for log(M̂a
exp,t+1) and are avail-

able for the entire sample are: one-year share issuance (Pontiff and Woodgate, 2008) with

29



R2 = 17.82%, one-year momentum (Jegadeesh and Titman, 1993) with R2 = 14.08%, resid-

ual momentum (Blitz, Huij, and Martens, 2011) with R2 = 13.22%, betting-against-beta

(Frazzini and Pedersen, 2014) with R2 = 13.19%, and net payout yield (Richardson, Sloan,

Soliman, and Tuna, 2005) with R2 = 13.03%.

We also check the explanatory power of returns of the idiosyncratic-volatility factors of

Ali et al. (2003) and Ang et al. (2006) for the unsystematic SDF component and find it to

be low: 6.44 percent and 9.57 percent, respectively. Thus, the low explanatory power of the

idiosyncratic-volatility factor shows that our unsystematic SDF component is not just the

idiosyncratic-volatility factor.

Recently, Daniel et al. (2020b) have proposed removing unpriced risk from returns on

characteristic-sorted portfolios that are used as risk factors in asset-pricing factor models.

We examine how the five adjusted factors of Daniel et al. (2020b) (adjusted Market, Size,

Value, Profitability, and Investment) relate to the unsystematic SDF component. We find

that these risk factors cannot capture priced unsystematic risk either: they explain only

13.41 percent of the unsystematic SDF component.

Second, instead of looking at individual trading strategies, we ask whether returns on

the universe of available trading strategies can span the variation in log(M̂a
exp,t+1).27 To

answer this question, we run 325 regressions, corresponding to the trading strategies with

returns available over the entire sample. In each regression, the dependent variable is

log(M̂a
exp,t+1), whereas the number of independent variables grows from 1 to 325. The first

regression includes the return on a trading strategy that explains most of the unsystematic

SDF component. Each subsequent regression includes an extra trading strategy whose

return adds the largest amount in explaining the dependent variable. Then, we select a

linear model with the smallest Bayesian information criterion (BIC).

We find that 39 trading strategies must be included to explain 66.45 percent of variation

in the unsystematic SDF component. Any further increase in R2 leads to overfitting because

then BIC deteriorates.28 We find that these 39 trading strategies explain 80.22 percent of

the variation in the component of log(M̂a
exp,t+1) driven by the weak factors, a′V −1

e eweak
t+1 ,

but only 28.28 percent of the variation in the component of log(M̂a
exp,t+1) driven by the

27See Internet Appendix IA.5 for a formal result justifying the spanning exercise for the unsystematic
SDF component.

28Figure IA.2 in Internet Appendix IA.11 shows how the R2 and BIC change as we increase the number
of trading strategies in the regression.
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Table 2: Strategies with high unsystematic risk premium RPa

This table reports 25 selected trading strategies whose returns reflect large premia for unsystematic
risk. The first column, using the classification scheme in Jensen et al. (2022), gives the name of
the cluster to which the strategy belongs. If a strategy is not in the list of Jensen et al. (2022), we
assign it to the cluster Unclassified. The second column gives the source. The third column shows
the name of the variable, as in Chen and Zimmermann (2022), Jensen et al. (2022), or Bryzgalova
et al. (2023). The last column reports the risk premium per annum in percent. The clusters, and
within each cluster, the sources, are listed in alphabetical order.

Cluster name Source Variable name RPa (%)

Low risk Ang, Hodrick, Xing, and Zhang (2006) IdioVol3F 6.07
Bali, Cakici, and Whitelaw (2010) MaxRet 6.45
Bradshaw, Richardson, and Sloan (2006) XFIN 5.95
Bradshaw, Richardson, and Sloan (2006) NetEquityFinance 4.98
Frazzini and Pedersen (2014) BAB 3.34

Momentum Avramov, Chordia, Jostova, and Philipov (2007) Mom6mJunk 5.43
Jegadeesh and Titman (1993) Mom12m 8.27
Jegadeesh and Titman (1993) Mom6m 7.21
Moskowitz and Grinblatt (1999) indmom 4.07

Profit Growth Heston and Sadka (2008) Mom12mOffSeason 7.24
Novy-Marx (2013) valmom 4.87
Novy-Marx (2013) valmomprof 4.62

Profitability Chordia, Subrahmanyam, and Anshuman (2001) std turn 4.65

Quality Haugen and Baker (1996) VolMkt 4.32
Stambaugh and Yuan (2017) PERF 4.10

Value Boudoukh, Michaely, Richardson, and Roberts (2007) NetPayoutYield 4.24

Unclassified Campbell, Hilscher, and Szilagyi (2008) DISSTR 6.27
Cooper, Gulen, and Schill (2008) betaarb 4.82
Daniel, Hirshleifer, Sun (2019) BEH FIN 4.38
Dichev and Piotroski (2001) CredRatDG 4.33
Diether, Malloy, and Scherbina (2002) ForecastDispersion 4.85
Easley, Hvidkjaer, and O’Hara (2002) ProbInformedTrading 5.91
La Porta (1996) fgr5yrLag 5.36
Prakash and Sinha (2012) DelDRC 4.95
Ritter (1991) AgeIPO 4.56

CSP-specific shocks, a′V −1
e ecsp

t+1. Because the CSP-specific shocks drive about half of the

variation in the unsystematic SDF component, a large proportion of its variation is left

unexplained by these trading strategies, implying that log(M̂a
exp,t+1) cannot be spanned

even by a large number of observable variables, many of which have been used as proxies

for factor risk in the previous literature.

Finally, we compute the risk premia associated with compensation for the exposures of

the trading strategies to the unsystematic SDF component as the negative covariance of
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the return on the strategy and M̂a
exp,t+1:29

RPastrategy = − cov(Rstrategy,t+1, M̂
a
exp,t+1)× E(Mβ

exp,t+1)/E(M̂exp,t+1).

Table 2 lists 25 selected strategies with high compensation for unsystematic risk. In the

literature, some of these 25 strategies have been interpreted as being behavioral—for exam-

ple, the performance factor (Stambaugh and Yuan, 2017), the long-horizon financial factor

(Daniel et al., 2020a), the factor reflecting expectations about future earnings in growth

(La Porta, 1996), and the momentum factor (Jegadeesh and Titman, 1993)—while others

as reflecting market frictions—for example, the betting-against-beta factor (Frazzini and

Pedersen, 2014) and distress risk (Campbell et al., 2008).

Summarizing our analysis of the unsystematic SDF component, we emphasize three

novel findings about unsystematic risk, which we have demonstrated is priced in the stock

market. First, many trading strategies featured in the existing literature correlate with

the unsystematic SDF component. Second, the strategies correlated with the unsystematic

SDF component that earn high-risk premia are related to market frictions and behavioral

biases. Third, weak factors and purely CSP-specific shocks contribute about equally to the

unsystematic SDF component.

5.1.4 The Systematic SDF Component

We now turn our attention to the systematic SDF component. We find that the strategy

exhibiting the highest explanatory power for log(M̂β
exp,t+1) is the return on the market

portfolio, with an R2 = 95.22%. It is remarkable that, despite all the criticism of the

CAPM, when we consider only the systematic component of the SDF, the market return

explains a large proportion of its time-series variation. Such a prominent role of the market

factor explains why in Figure 1, the APT model with K = 1 factor has a similar HJ distance

to that of the model withK = 2 factors. We find that four other trading strategies—sales-to-

market (Barbee Jr, Mukherji, and Raines, 1996), dollar trading volume (Brennan, Chordia,

29We use the definition of risk premia and the result in Brillinger (2001, thm. 2.3.2) to obtain the risk
premium decomposition on an asset i as compensation for systematic and unsystematic risk, as follows

E(Rit+1 −Rf ) = − cov(Mexp,t+1, (Rit+1 −Rf ))

= − cov(Mβ
exp,t+1, Rit+1 −Rf )× E(Ma

exp,t+1)/E(Mexp,t+1)

− cov(Ma
exp,t+1, Rit+1 −Rf )× E(Mβ

exp,t+1)/E(Mexp,t+1).
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Table 3: Correlations of tradable factors with SDF components
This table reports correlations of 16 selected tradable factors with the unsystematic and systematic
SDF components. The tradable factors are listed in chronological order based on the publication
date of the source.

Variable name Correlation with Correlation with Source

log(M̂a
exp,t+1) log(M̂β

exp,t+1)

Market 0.15 −0.98 Sharpe (1964), Lintner (1965)
Size 0.00 −0.36 Fama and French (1992)
Value −0.23 0.14 Fama and French (1992)
Momentum −0.36 0.18 Jegadeesh and Titman (1993)
Illiquidity 0.00 −0.27 Amihud (2002)
Operating profitability (RMW) −0.25 0.17 Fama and French (2015)
Investment (CMA) −0.32 0.31 Fama and French (2015)
Management (MGMT) −0.37 0.48 Stambaugh and Yuan (2016)
Performance (PERF) −0.37 0.27 Stambaugh and Yuan (2016)
Short-horizon underreaction (PEAD) −0.23 0.14 Daniel, Hirshleifer, and Sun (2019)
Financing (FIN) −0.41 0.42 Daniel, Hirshleifer, and Sun (2019)
Market* −0.10 −0.56 Daniel, Mota, Rottke, and Santos (2020)
Size* −0.13 −0.12 Daniel, Mota, Rottke, and Santos (2020)
Value* −0.14 0.09 Daniel, Mota, Rottke, and Santos (2020)
RMW* −0.13 0.02 Daniel, Mota, Rottke, and Santos (2020)
CMA* −0.10 0.21 Daniel, Mota, Rottke, and Santos (2020)

and Subrahmanyam, 1998), bid-ask spread (Amihud and Mendelson, 1986), and days with

zero trades (Liu, 2006)—explain an additional 4 percent of the variation in log(M̂β
exp,t+1),

bringing the overall R2 to 99.05 percent.

Next, we examine how sixteen variables most often used as systematic tradable factors

in popular asset-pricing models correlate with our SDF components. Table 3 reports these

correlations. Four factors stand out: the market factor is almost perfectly negatively cor-

related with the systematic SDF component, the adjusted profitability factor (RMW*) of

Daniel et al. (2020b) has nearly zero correlation with the systematic SDF component, while

the size factor (Fama and French, 1992) and illiquidity factor (Amihud, 2002) have zero

correlation with the unsystematic SDF component. The other tradable factors correlate

sizably with both SDF components. These findings are consistent with the results of Hol-

cblat, Lioui, and Weber (2022) that the market and size factors seem to represent risk in a

frictionless economy, whereas most of the other tradable factors reflect frictions.

5.2 Candidate Factor Models

In the section above, we have established the importance of compensation for unsystematic

risk for explaining the cross-section of asset returns. We now examine the reasons for the

poor performance of popular candidate factor models in pricing the cross-section of asset
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returns. We consider three traditional candidate models—those implied by the CAPM of

Sharpe (1964), the Consumption-CAPM (C-CAPM) of Breeden (1979), and the three-factor

model of Fama and French (1993). For the SDFs Mβ,can
exp,t+1 implied by each of these candidate

factor models, we estimate the correction terms M̂a
exp,t+1 and M̂β,mis

exp,t+1 that are required to

obtain the APT-implied SDFs. We limit our analysis to only three candidate factor models

because we find that the primary source of misspecification is the omitted compensation for

unsystematic risk, and, therefore, other candidate factor models with only systematic risk

factors would be subject to the same misspecification.

5.2.1 The CAPM

We consider a candidate model with the market return as its sole factor (Kcan = 1) and the

vector acan = 0N , which we refer to as the CAPM. Conditional on this candidate model,

our estimation procedure selects Kmis = 1 and δapt = 0.0529 (see Figure IA.3 in Internet

Appendix IA.11). The obtained number of missing factors to correct the market model is

consistent with our earlier finding that two latent factors summarize the common variation

in asset returns, with one factor being a proxy for the market factor. The nonzero value

of δapt indicates that the CAPM is misspecified not only because of missing systematic

risk factors but also because it omits compensation for unsystematic risk. The value of

δapt = 0.0529, which is the same as for the APT model, implies an annual Sharpe ratio

associated with the exposure to the unsystematic SDF component equal to 0.80.

The importance of allowing nonzero compensation for unsystematic risk and accounting

for an additional source of systematic risk when correcting the CAPM is evident from

Table 4. This table’s second and third columns show that after we correct the CAPM for

misspecification, the relative HJ distance drops by 78.87 percentage points (= 82.96% −

4.09%). The last three columns of this table show that the lion’s share of the reduction in

the HJ distance is attributable to nonzero compensation for unsystematic risk. Specifically,

of the variation in log(M̂exp,t+1), 74.14 percent is due to the unsystematic component, while

only 18.48 percent is due to market risk and 7.38 percent due to missing systematic risk in

the CAPM.30

30In Internet Appendix IA.11, Figure IA.4 shows the estimated time-series of the SDF and its components
obtained after correcting the candidate CAPM model; Figure IA.5 shows the pricing errors before and after
correcting the CAPM.
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Table 4: Analysis of models before and after correction for misspecification
The first column of the table lists the three candidate factor models considered: CAPM, C-CAPM,
and FF3. Then, the table reports three sets of quantities: (1) The HJ distances of alternative
models, relative to the HJ distance of the APT model, (HJmodel/HJAPT − 1) × 100%, before and
after the model is corrected for misspecification; (2) the annualized Sharpe ratio of the corrected
SDF for each of the models along with its components, where the Sharpe ratios are approximated by
the standard deviation (sd) of the log SDF and its components; and (3) the variance decomposition
of the log SDF.

Relative HJ (%) Sharpe ratio (p.a.) Variance decomposition (%)

Before
correction

After
correction

standard deviation of the log of log of

Model M̂exp,t+1 M̂a
exp,t+1 M̂β,can

exp,t+1 M̂β,mis
exp,t+1 M̂a

exp,t+1 M̂β,can
exp,t+1 M̂β,mis

exp,t+1

CAPM 82.96 4.09 0.89 0.80 0.42 0.27 74.14 18.48 7.38
C-CAPM 83.12 0.90 0.92 0.79 0.36 0.42 66.05 15.92 18.03
FF3 84.11 0.16 0.99 0.80 0.67 0.27 55.49 38.30 6.21

Next, we analyze which variables can explain the variation in the missing systematic

SDF component of the CAPM. We find that the size factor (Fama and French, 1993) and

illiquidity factor (Amihud, 2002) explain most of the variation in log(M̂β,mis
exp,t+1): the R2 of

a linear regression of log(M̂β,mis
exp,t+1) on the size factor or the illiquidity factor is 88 percent.

Such a prominent role of the size factor in M̂β,mis
exp,t+1 explains the success of the models

developed in Fama and French (1993, 2015) relative to the CAPM of Sharpe (1964).31

Among business-cycle indicators, shocks in the credit spread (Gilchrist and Zakraǰsek, 2012)

have the largest, yet very small (R2 = 4.41%), explanatory power for the missing systematic

SDF component, while the NBER recession indicator does not significantly correlate with

it (because the candidate SDF component already includes the market factor).

We conclude our analysis of the CAPM by highlighting that our approach successfully

corrects this model’s SDF to obtain the APT-implied SDF. We see from the left panel of

Table 5 that the corrected SDF is almost perfectly correlated with the APT-implied SDF.

Similarly, we see from the right panel of Table 5 that the unsystematic SDF components of

the SDFs implied by the APT and the corrected CAPM are almost perfectly correlated.

31Note that the illiquidity factor of Amihud (2002) and size factor of Fama and French (1993) are highly
correlated, at about 92.63 percent.
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Table 5: Correlation matrix of the corrected SDFs
This table reports the correlation matrix of log SDFs and their unsystematic components either
obtained under the APT or after correcting different candidate models: CAPM, C-CAPM, and
FF3.

log(M̂exp,t+1) log(M̂a
exp,t+1)

Corrected Corrected

APT CAPM C-CAPM FF3 APT CAPM C-CAPM FF3

APT 1.00 0.99 0.97 0.98 1.00 0.97 1.00 0.94

C
or

re
ct

ed CAPM 0.99 1.00 0.96 0.97 0.97 1.00 0.97 0.93

C-CAPM 0.97 0.96 1.00 0.94 1.00 0.97 1.00 0.93

FF3 0.98 0.97 0.94 1.00 0.94 0.93 0.93 1.00

5.2.2 The C-CAPM

We now consider a candidate model with the return on a consumption-mimicking portfolio

as its sole factor and the vector acan = 0N , which we refer to as the C-CAPM. We follow

the standard approach of Breeden, Gibbons, and Litzenberger (1989) for constructing the

consumption-mimicking portfolio.32

Conditional on the C-CAPM being the candidate factor model, the estimation proce-

dure selects Kmis = 2 latent factors and δapt = 0.0529 (see Figure IA.6 in Internet Ap-

pendix IA.11). The consumption-mimicking portfolio does not correlate highly with either

of the two latent factors of the APT model of asset returns (the correlations are 0.30 and

−0.02). Thus, two additional latent factors are still necessary to capture the common vari-

ation in asset returns. The value of δapt is 0.0529, which is the same as for the APT and

(corrected) CAPM.

The second and third columns of Table 4 show that augmenting the consumption-

mimicking-portfolio factor with two latent factors and allowing compensation for unsys-

tematic risk lead to a large drop in the relative HJ distance of 82.22 percentage points

(= 83.12% − 0.90%). The last three columns of the table show that, just like for the cor-

rected CAPM, most of this drop is accounted for by the SDF’s unsystematic component:

missing systematic risk explains a much smaller proportion of the variation in the corrected

32As outlined in Giglio and Xiu (2021), construction of factor-mimicking portfolios can be sensitive to
the choice of basis assets. They propose a three-stage procedure, insensitive to the choice of basis assets.
However, their procedure does not allow compensation for unsystematic risk, which we document plays a
major role in the risk-return tradeoff.
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Figure 4: Pricing errors in the candidate and corrected C-CAPM
The red dots in this figure indicate the annualized pricing errors for the 202 basis assets using the
C-CAPM as the candidate model. The blue dots indicate the annualized pricing errors using the
corrected C-CAPM.
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SDF, compared to its unsystematic component—18.03 percent versus 66.05 percent.33 How-

ever, compared to the CAPM, the missing systematic SDF component in the C-CAPM is

larger.

When we analyze the pricing errors, we observe from Figure 4 that the C-CAPM is

missing a level factor: the pricing errors are centered around 6 percent in the candidate

C-CAPM, whereas they are centered around zero in the corrected model. Next, we explore

which observable variable explains most of the variation in log(M̂β,mis
exp,t+1) and find, not

surprisingly, that it is the market factor, with R2 = 92.36%. We find that among financial

and macroeconomic indicators, shocks to intermediary constraints (He et al., 2017) and

VIX innovations individually explain most of the variation in the missing systematic SDF

component, with R2 = 55.08% and 55.24%, respectively. The missing systematic SDF

component has only a modest correlation with the NBER recession indicator, which is

unsurprising, given that the candidate factor model already includes consumption growth.

33Figure IA.7 in Internet Appendix IA.11 shows the estimated time-series of the APT-implied SDF and
its components obtained after correcting the candidate C-CAPM.
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The left-hand-side panel of Table 5 shows that our approach for correcting misspecifi-

cation in the C-CAPM model leads to an SDF highly correlated with that implied by the

APT and the corrected-CAPM models. The right-hand-side panel shows that the unsys-

tematic SDF components obtained when correcting the C-CAPM for misspecification and

when estimating the APT model of asset returns are perfectly correlated.

5.2.3 The Three-Factor Model of Fama and French (1993)

We consider a candidate model with the three factors of Fama and French (1993), market,

size, and value, and the vector acan = 0N , and we refer to this model as FF3. Conditional on

FF3 being the candidate model for asset returns, our estimation method selects Kmis = 1

systematic missing latent factor and an optimal δapt = 0.0529 (see Figure IA.8 in Internet

Appendix IA.11). This value of δapt is the same as for the previously discussed models.

The third row of Table 4 shows that augmenting the FF3 model with one latent

factor and nonzero compensation for unsystematic risk leads to a substantial improve-

ment in pricing performance: the relative HJ distance drops by 83.95 percentage points

(= 84.11% − 0.16%). The main improvement is attributable to the inclusion of nonzero

compensation for unsystematic risk, as suggested by the variance decomposition of the (log

of the) corrected SDF in the last three columns of Table 4. Thus, similar to Stambaugh

and Yuan (2017), Clarke (2022), and Bryzgalova et al. (2023), among others, we document

sizable misspecification in the FF3 model. In contrast to these papers, however, we at-

tribute the misspecification mainly to omitted compensation for unsystematic risk rather

than missing systematic risk.34

We analyze which observable variables can explain the variation in the missing system-

atic SDF component. We find that the operating profitability factor (Fama and French,

2006), return on equity (Haugen and Baker, 1996), and total accruals (Richardson et al.,

2005) explain most of the variation in log(M̂β,mis
exp,t+1): the R2 of a univariate linear regres-

sion of log(M̂β,mis
exp,t+1) on each of these variables is about 30 percent. We find no relation of

log(M̂β,mis
exp,t+1) with the NBER recession indicator.

34In Internet Appendix IA.11, Figure IA.9 displays the time-series behavior of the SDF obtained from
correcting the original FF3 model; Figure IA.10 displays the pricing errors before and after correcting the
FF3 model.
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The left-hand-side panel of Table 5 shows that our approach for correcting misspecifica-

tion in the original FF3 model leads to an SDF highly correlated with that implied by the

APT model and also those obtained after correcting the CAPM and C-CAPM candidate

factor models. The right-hand-side panel of the table confirms that the unsystematic SDF

components obtained when correcting the FF3 for misspecification and when estimating

the APT model of asset returns are almost perfectly correlated.

5.2.4 Discussion: Compensation for Unsystematic Risk

So far, we have shown the importance of including compensation for unsystematic risk in

three popular asset-pricing factor models. Of course, we could repeat our empirical analysis

for other candidate factor models. However, our main conclusion will not change because

when correcting a given candidate SDF, it is the unsystematic component of the SDF that

accounts for the lion’s share of pricing of the cross-section of asset returns. Our conclusion

remains robust for the two reasons. First, we have already illustrated in Section 5.1.3 that

the unsystematic SDF component remains unspanned by virtually all known proxies for

risk factors proposed in the literature so far. Second, we have also shown that adding extra

systematic risk factors to a candidate factor model, without including compensation for

unsystematic risk, cannot proxy for the unsystematic SDF component.

Our main conclusion offers a resolution for the empirical findings of Bryzgalova et al.

(2023) and Bretscher, Lewis, and Santosh (2023). Bryzgalova et al. (2023) undertake a large-

scale search for a factor model that prices a cross-section of asset returns but find none.

Bretscher et al. (2023) use institutional holdings data to show that expected excess returns

on stocks and bonds are determined by the covariance of asset returns not with common

risk factors but with the returns on institutional investors’ portfolios that is consistent with

partially segmented markets, as in, for example, the model of Merton (1987), in which

purely asset-specific risk is priced.

6 Robustness: Compensation for Unsystematic Risk

To illustrate the robustness of our conclusion about the importance of unsystematic risk

and its compensation, we undertake three exercises. In the first exercise, we show that the

importance of compensation for unsystematic risk is also present in other datasets that have
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been studied in related work; in fact, the importance of unsystematic risk is even greater in

these alternative datasets. In the second exercise, we show that also out of sample, the APT-

implied SDF has smaller pricing errors compared to the SDFs based either on observable

candidate factors or latent factors. In the third exercise, we demonstrate that, even when

more general methods are used to identify the systematic risk factors, compensation for

unsystematic risk continues to play an important role in explaining the cross-section of

expected asset returns.

6.1 Different basis assets

We use three datasets—KNS daily data, KNS monthly data, and LP monthly data—to

estimate the SDFs implied by the APT, three traditional factor models, and models with

only latent systematic factors (i.e., with a = 0N ).

For each of these three datasets, when we estimate the APT model of asset returns

using cross-validation with ten folds, we confirm that unsystematic risk has sizable com-

pensation, that is, the optimal δapt 6= 0 (see Figures IA.11, IA.12, and IA.13 in Internet

Appendix IA.11). The bound on the no-arbtrage constraint is δapt = 0.0324 for the KNS

daily data, δapt = 0.1369 for the KNS monthly data, and δapt = 0.2401 for the LP monthly

data.35 Furthermore, we find that for all three datasets, the optimal number of systematic

factors is K = 4.

To highlight the importance of non-zero compensation for unsystematic risk, in Table 6,

we report the HJ distance of the SDFs implied by three traditional factor models and also

models based exclusively on latent systematic factors (that is, the APT model, in which

we use a different number of systematic factors K but set a = 0N ) relative to the APT-

implied SDF with a 6= 0N . We include models based on latent factors because these models

are agnostic about the systematic risk factors and, therefore, nest linear candidate factor

models that feature different observable proxies for systematic risk.

We see from Table 6 that all the models with a = 0N have a substantially larger HJ

distance than the APT model of asset returns, in which a 6= 0N . The importance of

accounting for compensation for unsystematic risk is even greater for the KNS daily and

monthly data and LP monthly data relative to the GX monthly data. We also notice that

35The estimates of the bounds on the no-arbitrage constraint obtained on the monthly and daily data are
not directly comparable because of different data frequency.
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Table 6: Robustness with respect to different sets of basis assets
This table reports the HJ distances of alternative models, relative to the HJ distance of the bench-
mark APT model with priced unsystematic risk, (HJmodel/HJAPT − 1) × 100%, for four datasets:
GX monthly data, the daily and monthly datasets of Kozak et al. (2020), and the monthly dataset
of Lettau and Pelger (2020). The number of factors K and the no-arbitrage bound δapt for the
benchmark APT model are estimated in cross-validation on each of the four datasets. We examine
the performance of the three candidate traditional factor models and also models based on only
latent systematic risk (i.e., APT models with a = 0N ) using the entire sample. The HJ distance
of the C-CAPM is not available for the daily dataset of Kozak et al. (2020) because consumption
data is not available at this frequency. A positive number indicates that the corresponding model
performs worse than our benchmark APT model with priced unsystematic risk (i.e., a 6= 0N ).

Relative HJ distance (%)

GX monthly KNS daily KNS monthly LP monthly
data data data data

Panel A: Candidate models
CAPM 82.96 1007.84 252.43 433.16
C-CAPM 83.12 NA 243.91 431.51
FF3 84.12 1007.41 257.46 433.96

Panel B: Latent-factor models with a = 0N
K = 1, 83.30 1009.92 244.20 432.41
K = 2 83.44 1003.56 244.30 432.28
K = 3 89.85 999.40 243.75 440.52
K = 4 139.38 977.38 241.73 465.23
K = 5 135.61 853.18 235.02 466.99

adding more latent factors does not always improve the pricing implications of the restricted

APT model with a = 0N , because adding another common risk factor does not substitute

for nonzero compensation for unsystematic risk.

6.2 Out-of-Sample Analysis

We undertake two out-of-sample exercises in which we compare the performance of the

APT-implied SDF to the SDFs implied by the three candidate factor models (CAPM, C-

CAPM, and FF3) and latent-factor models without compensation for unsystematic risk.

The first exercise is a time-series out-of-sample analysis. We run this analysis on four

datasets: GX monthly data, KNS daily data, KNS monthly data, and LP monthly data.

For each dataset, first, we split the sample into two equal parts: one part consisting of

odd-numbered observations, and the other of even-numbered observations. Next, for each

dataset, we estimate each model by ten-fold cross-validation on one part of the sample
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Table 7: Time-Series Out-Of-Sample Pricing Performance
This table reports the HJ distances of alternative models, relative to the HJ distance of the APT
model with priced unsystematic risk, (HJmodel/HJAPT − 1) × 100% on four datasets: GX monthly
data, KNS daily data, KNS monthly data, and LP monthly data. For each dataset, we estimate
each model by cross-validation with ten folds on half of the available observations (odd or even)
and then evaluate it on the other half. Then, we swap the estimation and evaluation subsamples
of the data and repeat our exercise. Finally, we compute the average performance, which is the
quantity reported. A positive number indicates that the corresponding model performs worse than
our benchmark APT model with priced unsystematic risk (i.e., a 6= 0N ).

Relative HJ distance (%)

Model GX monthly KNS daily KNS monthly LP monthly
data data data data

Panel A: Candidate models
CAPM 10.68 180.60 49.48 61.04
C-CAPM 10.72 NA 64.36 64.93
FF3 13.52 186.34 52.47 64.61

Panel B: Latent-factor models with a = 0N
K = 1 11.72 182.27 52.14 61.01
K = 2 15.94 182.75 56.83 67.76
K = 3 19.34 184.31 52.79 73.50
K = 4 186.60 179.82 57.65 132.17
K = 5 272.13 154.26 50.70 149.15

and use the corresponding parameter estimates to form the SDF. We then evaluate the

performance of the SDF for the part of the sample not used in the estimation. Then, we

swap the subsamples that we use for estimation and evaluation. Finally, we average the

results from these two out-of-sample evaluations and report them in Table 7.

The second exercise we undertake is to run a cross-sectional out-of-sample analysis. In

this exercise, we estimate the APT model, the three candidate factor models, and latent-

factor models without compensation for unsystematic risk (i.e., a = 0N ) on GX monthly

data and then evaluate the performance of the SDFs implied by each of these models on

the KNS monthly data and LP monthly data that are not used in the estimation.36 We

report the corresponding results in Table 8.

Tables 7 and 8 show how much larger the HJ distance is for various candidate models

of asset returns with a = 0N relative to that for the APT model with priced unsystematic

risk. First, we see that the HJ distance implied by the APT model is the smallest in both

36We do not use the KNS daily dataset for this cross-sectional out-of-sample evaluation, because the
frequency of the estimated APT-implied SDF is monthly.
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Table 8: Cross-Sectional Out-Of-Sample Pricing Performance
This table reports the HJ distances of alternative models, relative to the HJ distance of the APT
model with priced unsystematic risk, (HJmodel/HJAPT− 1)× 100%. We estimate each model on the
GX monthly data. The pricing performance of each model is then evaluated on two datasets not
used in the estimation (KNS monthly data and LP monthly data). A positive number indicates that
the corresponding model performs worse than our benchmark APT model with priced unsystematic
risk (i.e., a 6= 0N ).

Relative HJ distance (%)

Model KNS monthly data LP monthly data

Panel A: Candidate models
CAPM 60.09 55.41
C-CAPM 58.77 53.12
FF3 60.02 53.61

Panel B: Latent-factor models with a = 0N
K = 1 60.00 55.59
K = 2 60.13 55.89
K = 3 70.37 65.09
K = 4 148.65 128.71
K = 5 141.83 123.68

time-series and cross-sectional out-of-sample exercises. A second noteworthy observation

from these tables, as previously pointed out, is that including extra latent factors in the

APT model with a = 0N can lead to a deterioration in the out-of-sample performance

because of overfitting.

6.3 Different Methods for Identifying Systematic Risk Factors

Kozak et al. (2020) and Lettau and Pelger (2020) propose novel approaches for identifying

systematic risk in asset returns with the goal of building SDFs spanned by this risk. Kozak

et al. (2020) define systematic risk as factors that explain most of the variation in asset

returns and earn high expected returns. Lettau and Pelger (2020) define systematic risk as

factors that explain most of the comovement in asset returns and also the cross-sectional

variation in expected asset returns. Both approaches attribute to systematic risk more vari-

ables than just those representing strong risk factors: Lettau and Pelger (2020) explicitly

include weak factors, whereas Kozak et al. (2020) capture weak factors indirectly. In con-

trast, our definition of systematic risk is based only on strong risk factors. In this section,

we show that even if one were to adopt the more general definitions of systematic risk used

43



in Kozak et al. (2020) and Lettau and Pelger (2020), the compensation for unsystematic

risk would remain substantial.

In our analysis, we use the factor models of Kozak et al. (2020) and Lettau and Pelger

(2020) as candidate factor models and correct their implied SDFs to obtain the APT-implied

SDF. To preserve the design of the experiments of Kozak et al. (2020) and Lettau and Pelger

(2020), we estimate the SDFs on their original data. We use only the daily data for Kozak

et al. (2020) because their method requires a large number of observations to obtain an

accurate estimate of the covariance matrix of asset returns and subsequently interpret it as

known. To be consistent with no arbitrage, we construct the exponential versions of the

SDFs of Kozak et al. (2020) and Lettau and Pelger (2020).

We find that: (i) the methods of Kozak et al. (2020) and Lettau and Pelger (2020) accu-

rately capture strong risk factors, (ii) both methods capture some weak factors, and (iii) the

APT-implied SDF has smaller HJ distance relative to those of Kozak et al. (2020) and Let-

tau and Pelger (2020), which is exclusively because of the presence of the unsystematic SDF

component in the APT-implied SDF.

6.3.1 The SDF of Kozak et al. (2020)

The approach of Kozak et al. (2020) selects four principal components (PC1, PC2, PC4,

and PC9) as systematic factors to explain the asset returns on fifty anomaly portfolios

netted from market exposure. Thus, the SDF of Kozak et al. (2020) that explains raw asset

returns on fifty anomaly portfolios (without orthogonalizing them for the market exposure)

and market return depends on five factors: the four PCs mentioned above and the market

factor. We use this five-factor model as a candidate factor model and correct it using our

approach. We find that this candidate model omits compensation for unsystematic risk

(the optimal δapt = 0.0784) and Kmis = 3 missing latent factors. These two sources of

misspecification lead to the HJ distance of the SDF of Kozak et al. (2020) being four times

larger than that of the APT-implied SDF (0.04 versus 0.01). Figure IA.14 in Internet

Appendix IA.11 illustrates these results.

When we analyze what drives the improvement in the HJ distance after correcting the

SDF of Kozak et al. (2020), we find, as expected, that it is compensation for unsystematic

risk. The three latent factors missing in the model of Kozak et al. (2020) account for a tiny
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Table 9: The APT-implied SDF versus the SDFs of Kozak et al. (2020) and
Lettau and Pelger (2020)
This table reports the correlations between the log of the APT-implied SDF and its systematic and
unsystematic components with the log of the SDFs of Kozak et al. (2020) and Lettau and Pelger
(2020). We consider the sparse and non-sparse SDFs of Kozak et al. (2020). We also analyze how
the SDFs of Kozak et al. (2020) and Lettau and Pelger (2020) relate to the APT-implied SDF and
its components once the weak factors are excluded from the systematic risk identified by Kozak et al.
(2020) and Lettau and Pelger (2020). All SDFs are exponential. The SDFs of Kozak et al. (2020)
and Lettau and Pelger (2020) are estimated on the data from the original papers. The APT-implied
SDF is estimated on each of these datasets.

Correlation

log(M̂APT
exp,t+1) log(M̂a

exp,t+1) log(M̂β
exp,t+1)

log(M̂KNS
exp,t+1): sparse case 0.50 0.40 0.42

log(M̂KNS
exp,t+1): non-sparse case 0.59 0.48 0.48

log(M̂LP
exp,t+1) 0.77 0.60 0.45

log(M̂KNS
exp,t+1): sparse case without weak factors 0.28 0.09 0.75

log(M̂LP
exp,t+1): without weak factors 0.54 0.08 0.94

1.17 percent of the variation in the APT-implied SDF, while unsystematic risk accounts for

88.82 percent of its variation.

Given that Kozak et al. (2020) adopt a more general definition of systematic risk than

ours, it is informative to measure how their SDF correlates with both the systematic and

unsystematic components of the APT-implied SDF. The first row of Table 9 shows that the

SDF of Kozak et al. (2020) has a correlation of about 0.50 with the APT-implied SDF and

a correlation of 0.40 with the unsystematic SDF component of the APT-implied SDF. The

former correlation is below one because, as we have shown above, the SDF of Kozak et al.

(2020) does not capture a big chunk of priced unsystematic risk. The latter correlation is

sizable because the definition of systematic risk adopted in Kozak et al. (2020) implicitly

incorporates weak factors into systematic risk. When we exclude factors that contribute

relatively little to explaining the comovement in returns on asset anomalies (e.g., PC4 and

PC9) from the systematic risk identified by Kozak et al. (2020), we find that the resulting

SDF has a much higher correlation of 0.75 with the systematic component of the APT-

implied SDF and a low correlation of 0.09 with its unsystematic component. This finding

confirms that our approach identifies similar sources of strong-factor risk to those identified
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Table 10: Out-of-sample pricing Performance of the SDFs of Kozak et al. (2020)
and Lettau and Pelger (2020)

This table reports the HJ distances of the SDFs of Kozak et al. (2020) and Lettau and Pelger
(2020), relative to the HJ distance of the APT model, (HJmodel/HJAPT − 1)× 100%. We estimate
the competing models by cross-validation with ten folds on half of the available observations (odd
or even) and then evaluate them on the other half. Then, we swap the estimation and evaluation
subsamples of the data and repeat our exercise. Finally, we compute the average performance,
which is the quantity reported. The SDFs of Kozak et al. (2020) and Lettau and Pelger (2020) are
estimated on the data from the original papers. The APT-implied SDF is estimated for each of
these datasets.

Model Relative HJ distance (%)

Kozak et al. (2020) (sparse case) 149.85
Kozak et al. (2020) (non-sparse case) 137.83
Lettau and Pelger (2020) 129.11

in Kozak et al. (2020) and complements the latter approach by identifying priced purely

asset-specific risk and the remaining sources of priced weak-factor risk.

We conclude our analysis by assessing the time-series out-of-sample performance of the

APT-implied SDF and the SDF that uses the more general definition of systematic risk

in Kozak et al. (2020) on their daily data. We see from Table 10 that the APT-implied

SDF, which allows compensation for unsystematic risk, has substantially smaller pricing

errors than the SDF of Kozak et al. (2020), regardless of whether the sparsity constraint is

imposed or not.37

6.3.2 The SDF of Lettau and Pelger (2020)

We now use the model of Lettau and Pelger (2020), which includes the first five Risk Premia

Principal Components (RP-PC) factors, as a candidate factor model that explains expected

monthly returns of seventy-four characteristic-based portfolios. We then correct this model

using our approach described in Section 2.3. We find that this candidate model does not

omit any sources of systematic risk, but it is missing compensation for unsystematic risk

(the optimal δapt = 0.1024). The nonzero value for δapt indicates that there is either priced

weak-factor risk not identified in Lettau and Pelger (2020) and/or priced purely asset-

specific risk. The contribution of the missing component to explaining the SDF variation is

only 20.6 percent, yet the Sharpe ratio associated with missing unsystematic risk is a sizable

37For details of the non-sparse SDF, see Kozak et al. (2020).
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1.11. Because the model is missing, at least partially, compensation for unsystematic risk,

the HJ distance of the candidate SDF is three times larger than that of the APT-implied

SDF (0.39 versus 0.12). Figure IA.15 in Internet Appendix IA.11 illustrates these results.

To shed further light on how the SDF of Lettau and Pelger (2020) compares with

the APT-implied SDF and its components, we calculate the correlations between them.

Table 9 shows that, despite the model of Lettau and Pelger (2020) missing a bulk of priced

unsystematic risk, the correlation between the two SDFs is a sizable 0.77. The SDF of

Lettau and Pelger (2020) is correlated with both components of the APT-implied SDF, and

more so with the unsystematic SDF component. If we remove weak factors (RP-PC5) from

the candidate factor model, the resulting candidate SDF has a very high correlation of 0.94

with the systematic SDF component of the APT-implied SDF and almost zero correlation

with its unsystematic SDF component. This analysis is reassuring because it highlights that

alternative approaches agree on important sources of strong and weak-factor risk.

We conclude our analysis by assessing the time-series out-of-sample performance of the

APT-implied SDF and the SDF that uses the more general definition of systematic risk

in Lettau and Pelger (2020) on their monthly data. From Table 10, we see that the SDF

of Lettau and Pelger (2020) implies a substantially larger pricing error than that of the

APT-implied SDF. This result highlights the importance of accounting for priced purely

asset-specific risk, that is, the component of unsystematic risk not spanned by weak factors.

7 Microfoundations for Priced Unsystematic Risk

In Sections 5 and 6, we have presented strong empirical evidence that factor models need

to include compensation for unsystematic risk and that it is the unsystematic component

of the SDF that accounts for most of its variation. Below, we present an example of an

equilibrium model that provides microfoundations for the notion that unsystematic risk is

priced. Our example relies on the well-known static model of Merton (1987), which has a

finite number of assets N . We show that, if N is asymptotically large, then the equilibrium

asset returns and SDF in this model have the same functional forms as those we have in

our APT model.

In Merton (1987), investors are aware of only a subset of the available securities in

which they invest. This type of “incomplete information” implies that not only systematic
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risk factors but also shocks specific to each security are priced. The modeling framework

of Merton (1987) can be motivated by the presence of market segmentation, institutional

restrictions, transaction costs, illiquidity, or imperfect divisibility of securities, that lead

investors to invest in only a subset of available securities. While the incomplete information

of Merton (1987) may not be the only reason why unsystematic risk is compensated, it is an

appealing argument given the substantial empirical evidence documenting that both retail

(Polkovnichenko, 2005; Campbell, 2006; Goetzmann and Kumar, 2008) and institutional

investors (Koijen and Yogo, 2019, table 2) invest in only a small number of available stocks.

In Merton (1987), and as shown in Internet Appendix IA.4, equilibrium asset returns

satisfy

Ri −Rf = ai − βiam + βi(E(Rm)−Rf ) +
bi
b

(Rm − E(Rm)) + ei,

where Rm representing the market return is the only systematic risk factor, βi denotes the

beta of asset i with respect to the market return, ei = σiεi are asset-specific shocks with

the diagonal covariance matrix containing the elements σ2
i , bi and σi are functions of the

parameters of the firm’s i production technology, b =
∑N

i=1 xibi with xi being the fraction of

the market portfolio invested in asset i, ai = (1−qi)(E(Ri)−Rf −bi(E(RN+1−Rf )) with qi

denoting the fraction of investors who know about the security i, RN+1 being the return on

the (N + 1)th security which is in zero net supply and which combines the risk-free security

and a forward contract with cash settlements on the only systematic risk factor Rm, and

am =
∑N

i=1 xiai.

We now derive the SDF in this economy when N →∞. We assume that xi, the fraction

of the market portfolio invested in any asset i, is infinitesimally small.

Proposition 4. When the number of assets N →∞, equilibrium asset returns are

Ri −Rf = ai + βi(E(Rm)−Rf ) + βi(Rm − E(Rm)) + ei, (22)

= ai + βi(Rm −Rf ) + ei, (23)

with the market return asymptotically orthogonal to asset-specific shocks ei, and the equilib-

rium SDF is

M =
−a′V −1

e

Rf
e︸ ︷︷ ︸

Ma

+
1

Rf
−

E(Rm)−Rf
Rf × var(Rm)

(Rm − E(Rm))︸ ︷︷ ︸
Mβ

. (24)
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Note that the model of asset returns (23) coincides with the APT model of asset returns

in equation (2) with K = 1 systematic factor that is f = Rm. Similarly, the SDF in (24)

coincides with the SDF in (5), given that the price of market risk is λ = E(Rm)−Rf . Thus,

in the model of Merton (1987) with an infinite number of assets, the SDF consists of two

components: one representing unsystematic risk, Ma, and the other systematic risk, Mβ,

just as under the APT.

Note that, consistent with the definition of the risk premium, ai in (22) represents the

compensation for unsystematic risk, because

ai = − cov
(
Ri −Rf ,−

a′V −1
e

Rf
ei
))
×Rf ,

which coincides with the elements of the vector a in the APT. Naturally, the other part of

the risk premium in (22), βi(E(Rm)−Rf ), is compensation for exposure to systematic risk,

represented by market risk because of the assumption of a single systematic factor:

βi(E(Rm)−Rf ) = − cov
(
Ri −Rf ,−

E(Rm)−Rf
Rf × var(Rm)

(Rm − E(Rm))
)
×Rf .

If all investors are fully informed about all N assets, that is, qi = 1, then ai = 0, and the

results in (22) and (24) simplify to the expressions for security returns and the SDF under

the CAPM, respectively. Moreover, the no-arbitrage APT restriction in expression (4) is

equivalent to stating that in the Merton (1987) model when N →∞ there are only a small

number of assets that do not belong to the common information set of investors, that is,

qi < 1 for some of the assets but not all, or that there are only a small number of investors

who are unaware of each asset, that is, for each i, qi is approximately 1.

8 Conclusion

A fundamental challenge in finance is to price the cross-section of assets. The main difficulty

when pricing assets is to determine the relevant sources of risk and quantify how to adjust

assets’ returns for these risks. The literature has proposed many proxies for systematic risk

factors and developed factor models based on these proxies to explain the cross-sectional

risk-return tradeoff. However, despite the proliferation of systematic risk factors, referred

to as the factor zoo (Cochrane, 2011), there is still a sizable pricing error called alpha.
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We challenge the conventional wisdom that only systematic risk receives compensation

in financial markets by showing that also unsystematic risk is compensated. That is, the

pricing error alpha implied by popular factor models includes compensation not only for

omitted systematic risk factors but also for unsystematic risk. Theoretically, we demonstrate

this key insight through the lens of the SDF under the assumptions of the APT and support

it by demonstrating that an equilibrium model such as Merton (1987) is consistent with

our insight. Empirically, we show that the component of the APT-implied SDF reflecting

unsystematic risk, which is a linear combination of unsystematic shocks, accounts for more

than 70 percent of the variation in the APT-implied SDF. Furthermore, the Sharpe ratio

associated with the investment strategy exposed to only unsystematic risk is 0.8 per annum.

Our results indicate that what is missing in cross-sectional asset-pricing factor models is

compensation for unsystematic risk. This insight is crucial both for empiricists wanting to

resolve the factor zoo and theorists wishing to develop microfounded asset-pricing models.

50



References

Ali, Ashiq, Lee-Seok Hwang, and Mark A. Trombley, 2003, Arbitrage risk and the book-to-

market anomaly, Journal of Financial Economics 69, 355–373.
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Internet Appendix

In Section IA.1, we define the notation we will use in the Internet Appendix. Sec-

tion IA.2 lists the assumptions used to prove the lemmas in Section IA.3 and propositions

in Section IA.4. Section IA.5 contains proofs for the propositions related to the spanning

of different SDF components using observable variables. Section IA.6 presents the results

for weak factors. Section IA.7 gives the details of how we estimate the APT model of asset

returns. Section IA.8 discusses the case where the candidate factors are not assumed to be

orthogonal to the missing sources of systematic risk. Section IA.9 provides the details of

the data we use in our analysis. Section IA.10 collects additional tables and Section IA.11

additional figures that are related to the results reported in the main text of the manuscript.

IA.1 Notation

We adopt the following notation in the manuscript and appendix. E(·) denotes the expec-

tation operator. Capital letters denote matrices, while lowercase letters denote scalars or

vectors. The notation 0N and 1N indicates an N × 1 vector of zeros and ones, respectively.

The notation IK and OK denotes the K ×K identity matrix and matrix of zeros, respec-

tively. For an arbitrary matrix A, the expression A > 0 means that A is a positive-definite

matrix, ‖A‖ denotes the Frobenius norm ‖A‖ = (tr(A′A))
1
2 , where tr(·) is the trace oper-

ator, and |A| is the determinant when A is a square matrix. For deterministic sequences

{aN} and {bN}, the notation aN = O(bN ) means that |aN |/bN < δ, where δ > 0 is a finite

constant, and aN = o(bN ) means that |aN |/bN → 0, as N →∞. The notation aN = O(bN )

and aN = o(bN ) is adopted for scalars and finite-dimensional vectors and matrices (whose

number of rows and columns are not a function of N). Finally, the notation aN = Op(bN )

and aN = op(bN ) means that the previous statements hold in probability. The notation

vec(A) for an arbitrary matrix A stands for an operator that transforms the matrix A into

a column vector by vertically stacking the columns of the matrix. The notation vech(A) for

an arbitrary symmetric matrix A indicates an operator that transforms a symmetric matrix

into a column vector by stacking the elements in the lower triangular part of A. We use ⊗
to denote the Kronecker product.

IA.2 Assumptions

This section provides a set of assumptions we use in the lemmas and propositions of Sec-

tions IA.3 and IA.4, respectively.
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Assumption IA.2.1 (Systematic candidate factors). We assume that a candidate model

contains Kcan systematic factors f can
t , that is, βcan ′Ve

−1βcan/N → D , where D > 0 is a

Kcan ×Kcan matrix.

Assumption IA.2.2 (Asymptotic orthogonality of βcan and a). We assume that βcan ′Ve
−1a =

o(N
1
2 ).

Assumption IA.2.3 (Systematic missing factors). We assume that a candidate factor

model is missing Kmis systematic factors fmis
t , that is, βmis ′Ve

−1βmis/N → E, where E > 0

is some Kmis ×Kmis matrix.

Assumption IA.2.4 (Asymptotic orthogonality of βmis and a). We assume that βmis ′Ve
−1a =

o(N
1
2 ).

Remark. Assumptions IA.2.2 and IA.2.4 represent asymptotic orthogonality conditions

because they imply that as N →∞, βcan ′Ve
−1a/N → 0 and βmis ′Ve

−1a/N → 0.38

IA.3 Lemmas

We now provide a set of lemmas that will be useful for proving our propositions.

Lemma IA.3.1. For a normally-distributed vector z ∼ N(µz,Σz), and a constant vector

d:

E(zed
′z) = µ∗e

1
2

(µ∗′Σ−1
z µ∗−µ′zΣ−1

z µz), where µ∗ = (µz + Σzd).

Proof: Denote by nz the dimension of the vector z. Use the definition of the mathematical

expectation to obtain

E(zed
′z) =

1

(
√

2π)nz |Σz|
1
2

∫ ∞
−∞

zed
′ze−

1
2

(z−µz)′Σ−1
z (z−µz)dz.

Note that

ed
′ze−

1
2

(z−µz)′Σ−1
z (z−µz) = ed

′z− 1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+µ′zΣ−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+(Σzd+µz)′Σ−1
z z

= e−
1
2
z′Σ−1

z z− 1
2
µ′zΣ−1

z µz+µ∗′Σ−1
z z

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗e−
1
2
z′Σ−1

z z+µ∗′Σ−1
z z− 1

2
µ∗′Σ−1

z µ∗

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗e−
1
2

(z−µ∗)′Σ−1
z (z−µ∗),

38Assumptions IA.2.1 and IA.2.3, together with asymptotic no arbitrage, by the Cauchy-Schwarz inequal-
ity, imply that βcan ′V −1

e a = O(N1/2) and βmis ′V −1
e a = O(N1/2) but we need a slightly slower rate.
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implying that

E(zed
′z) = e−

1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗ ×

(
1

(
√

2π)nz |Σz|
1
2

∫ ∞
−∞

ze−
1
2

(z−µ∗)′Σ−1
z (z−µ∗)dz

)

= e−
1
2
µ′zΣ−1

z µz+ 1
2
µ∗′Σ−1

z µ∗µ∗. �

Lemma IA.3.2. Under Assumptions IA.2.1 and IA.2.3:

βmis ′Ve
−1βcan = O(N).

Proof: We apply the Cauchy-Schwarz inequality for matrices and obtain

0 ≤ ||βmis ′Ve
−1βcan|| ≤ ||βmis ′Ve

−1βmis||
1
2 × ||βcan ′Ve

−1βcan||
1
2 = O(N). �

Lemma IA.3.3. Under Assumptions IA.2.1 and IA.2.3:

βcan ′Vε
−1βcan = O(N).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βcan ′Vε
−1βcan = βcan ′Ve

−1βcan − βcan ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1βcan

= O(N) +O(N)× [O(1) +O(N)]−1 ×O(N) = O(N). �

Lemma IA.3.4. Under Assumption IA.2.3:

βmis ′Vε
−1βmis → V −1

fmis as N →∞,

implying that βmis ′Vε
−1βmis = O(1).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βmis ′Vε
−1βmis = βmis ′Ve

−1βmis − βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1βmis

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1βmis

= V −1
fmis × [O(1) +O(N)]−1 ×O(N)→ V −1

fmis . �

Lemma IA.3.5. Under Assumptions IA.2.1 and IA.2.3:

βmis ′Vε
−1βcan = O(1).
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Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βmis ′Vε
−1βcan = βmis ′Ve

−1βcan − βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1βcan

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1βcan

= O(1)× [O(1) +O(N)]−1 ×O(N) = O(1). �

Lemma IA.3.6. Under Assumptions IA.2.3 and IA.2.4:

a′Vε
−1a− a′Ve−1a→ 0 as N →∞.

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

a′Vε
−1a = a′Ve

−1a− a′Ve−1βmis(V −1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1a

= a′Ve
−1a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 )

= a′Ve
−1a+ o(1),

where a′Ve
−1a = O(1). �

Lemma IA.3.7. Under Assumptions IA.2.1, IA.2.2, IA.2.3 and IA.2.4:

βcan ′Vε
−1a = o(N

1
2 ).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βcan ′Vε
−1a = βcan ′Ve

−1a− βcan ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1a

= o(N
1
2 ) +O(N)× [O(1) +O(N)]−1 × o(N

1
2 )

= o(N
1
2 ). �

Lemma IA.3.8. Under Assumptions IA.2.3 and IA.2.4:

βmis ′Vε
−1a = o(N−

1
2 ).

Proof: Recall that Vε = βmisVfmisβmis ′ + Ve and apply the Sherman-Morrison-Woodbury

formula to Vε
−1 to obtain

βmis ′Vε
−1a = βmis ′Ve

−1a− βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1a

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1a

= O(1)× [O(1) +O(N)]−1 × o(N
1
2 ) = o(N−

1
2 ). �
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Lemma IA.3.9. Let e be an N × 1 random vector with zero mean and covariance matrix

Ve. Under Assumptions IA.2.1 and IA.2.3:

βcan ′Vε
−1e = Op(N

1
2 ).

Proof: For any random variable X with a finite second moment, we have that X =

Op((E(X2))
1
2 ). If X = βcan ′Ve

−1e, then

E(βcan ′Ve
−1ee′Ve

−1βcan) = βcan ′Ve
−1βcan = O(N),

and therefore, βcan ′Ve
−1e = Op(N

1
2 ). Similarly, we can show that βmis ′Ve

−1e = Op(N
1
2 ).

Apply the Sherman-Morrison-Woodbury formula to Vε
−1 and use Lemma IA.3.2 to obtain

βcan ′Vε
−1e = βcan ′Ve

−1e− βcan ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1e

= Op(N
1
2 ) +O(N)× [O(1) +O(N)]−1 ×Op(N

1
2 ) = Op(N

1
2 ). �

Lemma IA.3.10. Under Assumption IA.2.3:

βmis ′Vε
−1e = Op(N

− 1
2 ).

Proof: From the proof of Lemma IA.3.9, βmis ′Ve
−1e = Op(N

1
2 ). Apply the Sherman-

Morrison-Woodbury formula to Vε
−1 and use Lemma IA.3.2 to obtain

βmis ′Vε
−1e = βmis ′Ve

−1e− βmis ′Ve
−1βmis(V −1

fmis + βmis ′Ve
−1βmis)−1βmis ′Ve

−1e

= V −1
fmis(V

−1
fmis + βmis ′Ve

−1βmis)−1βmis ′Ve
−1e

= O(1)× [O(1) +O(N)]−1 ×Op(N
1
2 ) = Op(N

− 1
2 ). �

IA.4 Proofs of Propositions

In this section, we provide the proofs for the propositions in the manuscript.

Proof of Proposition 1

We use a guess-and-verify method to derive the SDF. Specifically, we guess that the SDF

has the following functional form

Mt+1 = E(Mt+1) + b′(ft+1 − E(ft+1)) + c′et+1,

where b is a K × 1 vector and c is an N × 1 vector. We identify the unknown vector b

and c by using the Law of One Price. Specifically, because we assume the existence of the

risk-free asset, to determine the mean of the SDF we use the following condition:

E(Mt+1) =
1

Rf
.

Page 5: Internet Appendix



Next, because λ represents the vector of prices of risk of ft+1, we have that

− cov(Mt+1, ft+1)×Rf = λ.

These K conditions identify b:

b = −
V −1
f λ

Rf
.

Finally, it must be the case that the SDF Mt+1 prices the N assets:

E
(
Mt+1(Rt+1 −Rf1N )

)
= 0N .

These N equations identify c:

c = −V
−1
e a

Rf
.

Taken together

Mt+1 = Mβ
t+1 +Ma

t+1,

where

Mβ
t+1 =

1

Rf
−
λ′V −1

f

Rf
(ft+1 − E(ft+1)) and

Ma
t+1 = −a

′V −1
e

Rf
et+1.

Pairwise uncorrelatedness of ft and et implies that the covariance between Mβ
t+1 and Ma

t+1

is zero. �

Proof of Proposition 2

First, we prove that the exponential SDF specified in equation (8) is the APT-implied SDF.

We use a guess-and-verify method. We guess that the SDF has the following functional

form:

Mexp,t+1 = exp
[
µ+ + b′+(ft+1 − E(ft+1)) + c′+et+1

]
,

with unknown vectors b+ and c+, as well as an unknown scalar µ+.

To identify the unknowns and verify our guess we use the following K+N+1 equations,

which are implications of the Law of One Price:

−cov(Mexp,t+1, ft+1)×Rf = λ,

E(Mexp,t+1(Rt+1 −Rf1N )) = 0N ,

E(Mexp,t+1) =
1

Rf
.
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The first K equations imply that

−E(Mexp,t+1(ft+1 − E(ft+1))) = E(Mexp,t+1)× λ,

which, along with Lemma IA.3.1, gives

b+ = −V −1
f λ.

The next N equations and Lemma IA.3.1 imply that

0N = E(Mexp,t+1(Rt+1 −Rf1N )) = E(Mexp,t+1(a+ βλ+ β(ft+1 − E(ft+1)) + et+1))

= (a+ βλ)E(Mexp,t+1) + E(Mexp,t+1et+1) + E(Mexp,t+1β(ft+1 − E(ft+1)))

= (a+ βλ)E(Mexp,t+1) + Vec+E(Mexp,t+1)− βλE(Mexp,t+1) = (a+ Vec+)E(Mexp,t+1).

As a result,

c+ = −V −1
e a.

Finally, the last identifying condition implies

R−1
f = E(Mexp,t+1)

= E(exp[µ+ + b′+(ft+1 − E(ft+1)) + c′+et+1]) = exp [µ+ + b′+Vfb+/2 + c′+Vec+/2].

Thus,

exp (µ+) = R−1
f × exp

[
− λ′V −1

f λ/2− a′V −1
e a/2

]
.

Collecting all these results, we obtain

Mexp,t+1 = Mβ
exp,t+1 ×M

a
exp,t+1,

where

Mβ
exp,t+1 = R−1

f × exp [−λ′V −1
f (ft+1 − E(ft+1))− λ′V −1

f λ/2)],

Ma
exp,t+1 = exp [−a′V −1

e et+1 − a′V −1
e a/2].

Next, we prove that, as N → ∞, the feasible SDF given in equation (11) recovers the

exponential SDF (8). We start by analyzing the exponent of M̂a
exp,t+1:

−a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
R β(ft+1 − E(ft+1))− a′V −1

R et+1 −
1

2
a′V −1

R a.

We apply the Sherman-Morrison-Woodbury formula to V −1
R , use Assumptions IA.2.1 and

IA.2.2, and Lemma IA.3.9 to obtain39

a′V −1
R β = a′V −1

e β − a′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e β

39The APT model contains K systematic factors ft+1, so it satisfies Assumptions IA.2.1 and IA.2.2, where
one replaces Kcan by K, fcan

t+1 by ft+1, and βcan by β.
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= a′V −1
e β(V −1

f + β′V −1
e β)−1V −1

f

= o(N
1
2 )× [O(1) +O(N)]−1 ×O(1)

= o(N−1/2),

a′V −1
R et+1 = a′V −1

e et+1 − a′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e et+1

= a′V −1
e et+1 + o(N

1
2 )× [O(1) +O(N)]−1 ×Op(N

1
2 )

= a′V −1
e et+1 + op(1),

a′V −1
R a = a′V −1

e a− a′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e a

= a′Ve
−1a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 )

= a′V −1
e a+ o(1).

These three results imply that

− a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
e et+1 −

1

2
a′V −1

e a+ op(1),

and therefore, by Slutzky’s theorem,

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞.

Next, we analyze the exponent of M̂β
exp,t+1:

− (βλ)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βλ)′V −1

R βλ

= −(βλ)′V −1
R β(ft+1 − E(ft+1))− (βλ)′V −1

R et+1 −
1

2
(βλ)′V −1

R βλ.

We apply the Sherman-Morrison-Woodbury formula to V −1
R , use Assumptions IA.2.1 and

Lemma IA.3.9 to obtain

β′V −1
R β = β′V −1

e β − β′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e β

= V −1
f + o(1),

β′V −1
R et+1 = β′V −1

e et+1 − β′V −1
e β(V −1

f + β′V −1
e β)−1β′V −1

e et+1

= Op(N
− 1

2 ) +O(1)× [O(1) +O(N)]−1 ×Op(N
1
2 )

= Op(N
− 1

2 ).

These two results imply that

− (βλ)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βλ)′V −1

R βλ
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= −λ′V −1
f (ft+1 − E(ft+1))− 1

2
λ′V −1

f λ+ op(1)

and therefore

M̂β
exp,t+1 −M

β
exp,t+1

p−→ 0 as N →∞.

Independence of ft and et implies that the covariance between Mβ
exp,t+1 and Ma

exp,t+1

is zero. The same remains true asymptotically for the projected versions, M̂a
exp,t+1 and

M̂β
exp,t+1, thanks to the asymptotic-in-N equivalences proven above. �

Proof of an extended version of Proposition 2

The following proposition extends Proposition 2 to the case in which we correct a mis-

specified candidate factor model to obtain the APT-implied SDF. The correction includes

the systematic risk factors missing in the candidate factor model and compensation for

unsystematic risk. This case is described in Section 2.3 of the manuscript.

Proposition IA.4.1 (Feasible Admissible SDF Constructed by Correcting a Candidate

Factor Model). Consider a candidate factor model with Kcan factors f can
t+1. Suppose the first

Kmis eigenvalues of the covariance matrix Vε are unbounded when N → ∞, the remaining

eigenvalues are uniformly bounded, and the smallest eigenvalue is strictly positive. Under

Assumptions 2.1 and 2.2 of the APT and the assumption that the factors f can
t+1 and fmis

t+1 and

unsystematic shocks et+1 are jointly Gaussian, the SDF

Mexp,t+1 = Ma
exp,t+1 ×M

β,can
exp,t+1 ×M

β,mis
exp,t+1 with (IA1)

Ma
exp,t+1 = exp

(
−a′V −1

e et+1 −
1

2
a′V −1

e a

)
,

Mβ,can
exp,t+1 =

1

Rf
× exp

(
−λcan ′V −1

fcan(f can
t+1 − E(f can

t+1)− 1

2
λcan ′V −1

fcanλ
can

)
,

Mβ,mis
exp,t+1 = exp

(
−λmis ′V −1

fmis(f
mis
t+1 − E(fmis

t+1)− 1

2
λmis ′V −1

fmisλ
mis)

)
,

prices assets correctly. Furthermore, under Assumptions IA.2.1–IA.2.4, as N → ∞, the

following results hold

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0, M̂β,mis

exp,t+1 −M
β,mis
exp,t+1

p−→ 0, cov(M̂β,mis
exp,t+1, M̂

a
exp,t+1)→ 0,

where

M̂a
exp,t+1 = exp

(
− a′V −1

R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a
)
, and
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M̂β,mis
exp,t+1 = exp

(
− (βmisλmis)′V −1

R (Rt+1 − E[Rt+1])− 1

2
(βmisλmis)′V −1

R βmisλmis
)
,

implying that

M̂exp,t+1 = Mβ,can
exp,t+1 × M̂

β,mis
exp,t+1 × M̂

a
exp,t+1 (IA2)

is a feasible positive SDF that prices assets correctly, when N →∞.

Proof: First, we prove that the exponential SDF specified in equation (IA1) prices assets

correctly. To this end, we use a guess-and-verify method. We guess that the exponential

SDF is

Mexp,t+1 = exp
[
µ+ + bcan ′

+ (f can
t+1 − E(f can

t+1)) + bmis ′
+ (fmis

t+1 − E(fmis
t+1)) + c′+et+1

]
(IA3)

with unknown vectors bcan
+ , bmis

+ , and c+, as well as an unknown scalar µ+.

To identify the unknowns and verify our guess we use the following Kcan +Kmis +N +1

equations, which are the implications of the Law of One Price:

−cov(Mexp,t+1, f
can
t+1)×Rf = λcan,

−cov(Mexp,t+1, f
mis
t+1)×Rf = λmis,

E(Mexp,t+1(Rt+1 −Rf1N )) = 0N ,

E(Mexp,t+1) =
1

Rf
.

The first Kcan equations imply that

−E(Mexp,t+1(f can
t+1 − E(f can

t+1))) = E(Mexp,t+1)× λcan,

which, along with Lemma IA.3.1, gives:

bcan
+ = −V −1

fcanλ
can.

Similarly, the next Kmis equations imply that

−E(Mexp,t+1(fmis
t+1 − E(fmis

t+1))) = E(Mexp,t+1)× λmis,

which, along with Lemma IA.3.1, leads to:

bmis
+ = −V −1

fmisλ
mis.

Then, we use the next N equations and Lemma IA.3.1 to obtain

0N = E(Mexp,t+1(Rt+1 −Rf1N ))

= E(Mexp,t+1(a+ βmisλmis + βcanλcan + βcan(f can
t+1 − E(f can

t+1))
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+ βmis(fmis
t+1 − E(fmis

t+1)) + et+1))

= (a+ βmisλmis + βcanλcan)E(Mexp,t+1) + E(Mexp,t+1et+1)

+ E(Mexp,t+1β
can(f can

t+1 − E(f can
t+1))) + E(Mexp,t+1β

mis(fmis
t+1 − E(fmis

t+1)))

= (a+ βmisλmis + βcanλcan)E(Mexp,t+1) + Vec+E(Mexp,t+1)

− βcanλcanE(Mexp,t+1)− βmisλmisE(Mexp,t+1)

= (a+ Vec+)E(Mexp,t+1).

As a result,

c+ = −V −1
e a.

Finally, the last identifying condition implies

R−1
f = E(Mexp,t+1)

= E(exp[µ+ + bcan ′
+ (f can

t+1 − E(f can
t+1)) + bmis ′

+ (fmis
t+1 − E(fmis

t+1)) + c′+et+1])

= exp [µ+ + bcan ′
+ Vfcanbcan

+ /2 + bmis ′
+ Vfmisbmis

+ /2 + c′+Vec+/2].

Thus,

exp (µ+) = R−1
f × exp

[
− λcan ′V −1

fcanλ
can/2− λmis ′V −1

fmisλ
mis/2− a′V −1

e a/2
]
.

We substitute bcan
+ , bmis

+ , c+, and µ+ in equation (IA3) and obtain the exponential SDF

given in equation (IA1). Thus, we have successfully verified our guess.

Next, we prove that, as N → ∞, the feasible SDF given in equation (IA2) recovers

the exponential SDF specified in equation (IA1). We start by analyzing the exponent of

Ma
exp,t+1. First, we note that

−a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
R βcan(f can

t+1 − E(f can
t+1))

− a′V −1
R βmis(fmis

t+1 − E(fmis
t+1))

− a′V −1
R et+1

− 1

2
a′V −1

R a.

We analyze the four right-hand-side terms one-by-one. We apply the Sherman-Morrison-

Woodbury formula to V −1
R and V −1

ε and use Lemmas IA.3.3, IA.3.5–IA.3.9, and the proof

of Lemma IA.3.10 to obtain

a′V −1
R βcan = a′Vε

−1βcan − a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1βcan

= a′V −1
ε βcan(V −1

fcan + βcan ′V −1
ε βcan)−1V −1

fcan
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= o(N
1
2 )× [O(1) +O(N)]−1 ×O(1)

= o(N−1/2),

a′V −1
R βmis = a′Vε

−1βmis − a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1βmis

= o(N−
1
2 ) + o(N

1
2 )× [O(1) +O(N)]−1 ×O(1) =

= o(N−1/2),

a′V −1
R et+1 = a′Vε

−1et+1 − a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1et+1

= a′Vε
−1et+1 + o(N

1
2 )× [O(1) +O(N)]−1 ×Op(N

1
2 )

= a′Vε
−1et+1 + op(1)

= a′V −1
e et+1 − a′V −1

e βmis(V −1
fmis + βmis ′V −1

e βmis)−1βmis ′V −1
e et+1 + op(1)

= a′V −1
e et+1 + o(N

1
2 )× [O(1) +O(N)]−1 ×Op(N

1
2 ) + op(1)

= a′V −1
e et+1 + op(1),

a′V −1
R a = a′Vε

−1a− a′Vε−1βcan(V −1
fcan + βcan ′Vε

−1βcan)−1βcan ′Vε
−1a

= a′Ve
−1a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 ) + o(1)

= a′V −1
e a+ o(1).

These four results imply that

− a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
e et+1 −

1

2
a′V −1

e a+ op(1),

and therefore we obtain

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞.

Next, we analyze the exponent of M̂β,mis
exp,t+1:

− (βmisλmis)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βmisλmis)′V −1

R βmisλmis

= −(βmisλmis)′V −1
R βcan(f can

t+1 − E(f can
t+1))

− (βmisλmis)′V −1
R βmis(fmis

t+1 − E(fmis
t+1))

− (βmisλmis)′V −1
R et+1

− 1

2
(βmisλmis)′V −1

R βmisλmis.

We apply the Sherman-Morrison-Woodbury formula and Lemmas IA.3.3, IA.3.4, IA.3.5,

IA.3.9, and IA.3.10 to the first three terms above:

βmis ′V −1
R βcan = βmis ′Vε

−1βcan − βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1βcan ′Vε

−1βcan
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= βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1V −1

fcan

= O(1)× [O(1) +O(N)]−1 ×O(1)

= O(N−1),

βmis ′V −1
R βmis = βmis ′Vε

−1βmis − βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1βcan ′Vε

−1βmis

= (V −1
fmis + o(1)) +O(1)× [O(1) +O(N)]−1 ×O(1)

= V −1
fmis + o(1), and

βmis ′V −1
R et+1 = βmis ′Vε

−1et+1 − βmis ′Vε
−1βcan(V −1

fcan + βcan ′Vε
−1βcan)−1βcan ′Vε

−1et+1

= Op(N
− 1

2 ) +O(1)× [O(1) +O(N)]−1 ×Op(N
1
2 )

= Op(N
− 1

2 ).

These three results imply that

− (βmisλmis)′V −1
R (Rt+1 − E(Rt+1))− 1

2
(βmisλmis)′V −1

R βmisλmis

= −λmis ′V −1
fmis(f

mis
t+1 − E(fmis

t+1))− 1

2
λmis ′V −1

fmisλ
mis + op(1),

and therefore we obtain

M̂β,mis
exp,t+1 −M

β,mis
exp,t+1

p−→ 0 as N →∞.

Pairwise uncorrelatedness (and independence by Gaussianity) of f can
t+1, f

mis
t+1, and et+1

implies that the pairwise covariances between Mβ,can
exp,t+1,M

β,mis
exp,t+1, and Ma

exp,t+1 are all zero.

The same remains true asymptotically for the projected versions, M̂a
exp,t+1 and M̂β,mis

exp,t+1,

thanks to the asymptotic-in-N equivalences proven above. �

Remark: This proposition assumes the presence of at least one omitted systematic risk

factor, that is, Kmis > 0. If instead Kmis = 0, that is, all eigenvalues of Vε are bounded,

then the data-generating process of asset returns with Kcan factors given in expression (12)

satisfies the assumptions of the classical APT provided in Section 2.1.

Proof of Proposition 3

We use a guess-and-verify method to derive the SDF. We guess that the SDF has the

following functional form

Mt+1 = E(Mt+1) + bcan ′(f can
t+1 − E(f can

t+1)) + bmis ′(fmis
t+1 − E(fmis

t+1)) + c′et+1,
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where bcan is a Kcan × 1 vector , bmis is a Kmis × 1 vector, and c is an N × 1 vector. We

identify the unknown vectors bcan, bmis, and c by using the Law of One Price. Specifically,

because we assume the existence of the risk-free asset, to determine the mean of the SDF

we use the following condition:

E(Mt+1) =
1

Rf
.

Next, because λcan represents a vector of prices of risk of f can
t+1, we have that

− cov(Mt+1, f
can
t+1)×Rf = λcan.

These Kcan conditions identify bcan:

bcan = −
V −1
fcanλcan

Rf
.

Similarly, λmis is the price of risk associated with factors fmis
t+1, or equivalently,

− cov(Mt+1, f
mis
t+1)×Rf = λmis.

These Kmis conditions identify bmis:

bmis = −
V −1
fmisλ

mis

Rf
.

Finally, it must be the case that the SDF prices the N assets

E
(
Mt+1(Rt+1 −Rf1N )

)
= 0N .

These N equations identify c:

c = −V
−1
e a

Rf
.

Taken together

Mt+1 = Mβ,can
t+1 +Mβ,mis

t+1 +Ma
t+1,

where

Mβ,can
t+1 =

1

Rf
−
λcan ′V −1

fcan

Rf
(f can
t+1 − E(f can

t+1)),

Mβ,mis
t+1 = −

λmis ′V −1
fmis

Rf
(fmis
t+1 − E(fmis

t+1)),

Ma
t+1 = −a

′V −1
e

Rf
et+1.

Pairwise uncorrelatedness of f can
t+1, f

mis
t+1, and et+1 implies that the pairwise covariances be-

tween Mβ,can
t+1 ,Mβ,mis

t+1 , and Ma
t+1 are all zero. �
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Proof of Proposition 4

Below we summarize the main assumptions of the model in Merton (1987) and then analyze

its equilibrium implications for the SDF and expected excess returns. For details of the

model, we refer the reader to Merton (1987).

Assume that there are N firms in the economy whose end-of-period cash flows are:

Ci = Ii [µi + ηiY + siεi] ,

where, for simplicity, it is assumed that there is a single random systematic factor Y with

E(Y ) = 0 and E(Y 2) = 1, with E(εi) = E (εi | ε1, . . . , εi−1, εi+1, . . . , εN , Y ) = 0, for

i = {1, . . . , N}, where εi are asset-specific shocks.40 Here, Ii is the amount of physical in-

vestment in firm i and µi, ηi, and si represent parameters of firm i ’s production technology.

Let Vi denote the equilibrium value of firm i at the beginning of the period. If Ri is the

equilibrium return per dollar from investing in firm i over the period, then Ri = Ci/Vi, and

Ri = E(Ri) + biY + σiεi, (IA4)

where bi and σi are functions of the parameters of firm i’s production technology.

There are two additional securities in the economy, both in zero net supply: a security

that is risk-free with return Rf and the (N + 1)-th risky security, which combines the risk-

free security and a forward contract with cash settlements on the factor Y . Without loss

of generality, the forward price of the contract is assumed to be such that the standard

deviation of the equilibrium returns on the security is unity. As a result, its return is

RN+1 = E(RN+1) + Y. (IA5)

There is a sufficiently large number of investors with a sufficiently dispersed distribution

of wealth so that each investor acts as a price taker. Each investor is risk averse and has

mean-variance preferences over the end-of-period wealth:

U j = E(RjW j)− γj

2W j
var(RjW j),

where W j denotes the value of the initial endowment of investor j evaluated at equilibrium

prices, Rj denotes the return per dollar on investor j’s optimal portfolio, and γj > 0 is the

risk-aversion of investor j.

40We have made the following changes to the notation used in Merton (1987) so that it is consistent
with the notation in our paper. We denote an investor’s risk aversion by γ instead of δ; we denote the
total number of assets by N instead of n; we index individual assets by i instead of k; and we denote the
unsystematic risk premium by ai instead of λk.
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Investors differ in their information sets. The common part of investors’ information

sets includes: (i) the return on the risk-free security, (ii) the structure of securities’ return

given in expression (IA4), and (iii) the expected return and variance of the forward-contract

security given in (IA5). However, different investors have knowledge about the parameters

bi and σi for different subsets of securities. The investors who know about security i agree

on its characteristics. To simplify the analysis, investors are assumed to have identical risk

aversion γj = γ and identical initial wealth W j = W .

The optimal solution to each investor’s portfolio problem allows us to obtain the aggre-

gate demand for every security. Equating this to the aggregate supply for every security

leads to the equilibrium expected return for asset i (Merton, 1987, eq. (16)):

E(Ri) = Rf + γbib+ γxiσ
2
i /qi, for i = {1, . . . , N}, (IA6)

where xi is the fraction of the market portfolio invested in asset i,

b =
N∑
i=1

xibi,

and qi is the fraction of investors who know about security i.

Denoting the return on the market as Rm =
∑N

i=1 xiRi, Merton (1987, eq. (24)) obtains

the equilibrium expected excess return on the market:

E(Rm)−Rf = γ var(Rm) + am, (IA7)

where am =
∑N

i=1 xiai,

ai = (1− qi)∆i,

∆i = E(Ri)−Rf − bi(E(RN+1)−Rf ).

Equations (IA4) and (IA7) then imply

Ri −Rf = βi(E(Rm)−Rf ) + ai − βiam + biY + σiεi, (IA8)

where βi denotes the covariance of the return on security i with the return on the market

portfolio, divided by the variance of the market return. Equation (IA8) contains Y on the

right-hand side. We substitute out Y by using the definition of the market portfolio return

along with equations (IA4) and (IA6), to obtain

Ri −Rf = ai − βiam + βi(E(Rm)−Rf ) +
bi
b

(Rm − E(Rm)) + σiεi.

The equilibrium process for asset returns, given by equations (2) and (25) in Merton

(1987), is

Ri −Rf = βi(E(Rm)−Rf ) + ai − βiam + biY + σiεi. (IA9)
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We posit that the SDF M has the following form,

M = ξ + χY +

N∑
i=1

ζiεi,

where ξ, χ, and ζi, i = {1, . . . , N}, are determined using the N + 2 equations for the Law

of One Price:

E[M ] =
1

Rf
, (IA10)

E[M(RN+1 −Rf )] = 0 (IA11)

E[M(Ri −Rf )] = 0, for i = {1, . . . , N}, (IA12)

where, from (3) and (11) in Merton (1987),

RN+1 = Rf + γb+ Y.

From expression (IA10), we get

ξ =
1

Rf
.

From expression (IA11), we get

χ = − γb
Rf

.

From expression (IA12), for each i = {1, . . . , N}, we have

ξβi(E(Rm)−Rf ) + ξ(ai − βiam) + χβi + ζσi = 0.

As a result,

ζ = − 1

Rf

βi(E(Rm)−Rf ) + ai − βiam − biγb
σi

.

Recalling that

Rm =

N∑
i=1

xiRi

and using (2) and (16) from Merton (1987), we have

Rm −Rf =
N∑
i=1

xi(γbib+ γxiσ
2
i /qi) +

N∑
i=1

xibiY +
N∑
i=1

xiσiεi

= γb2 + γ
N∑
i=1

x2
iσ

2
i /qi + bY +

N∑
i=1

xiσiεi.

Page 17: Internet Appendix



From the last expression, we obtain

bY = (Rm −Rf )− γb2 − γ
N∑
i=1

x2
iσ

2
i /qi −

N∑
i=1

xiσiεi.

As a result, the SDF is

M =
1

Rf
− γ

Rf

(
(Rm −Rf )− b2γ − γ

N∑
i=1

x2
iσ

2
i /qi −

N∑
i=1

xiσiεi

)

− 1

Rf

N∑
t=1

βi(E(Rm)−Rf ) + ai − βiam − biγb
σi

εi.

Grouping together similar terms, we obtain

M =
1

Rf
+
γ2b2

Rf
+
γ2
∑N

i=1 x
2
iσ

2
i /qi

Rf
− γ

Rf
(Rm −Rf )

− 1

Rf

N∑
i=1

(
βi(E(Rm)−Rf ) + ai − βiam − biγb− γxiσ2

i

σi
εi

)
.

Finally, we use expressions (22) and (24) in Merton (1987) to simplify the loading of M

on εi and obtain

− 1

Rf

N∑
i=1

(
βi(E(Rm)−Rf ) + ai − βiam − biγb− γxiσ2

i

σi

)
= − 1

Rf

N∑
i=1

ai
σi
.

Using the demeaned return on the market portfolio as a factor in the SDF, along with

expressions (15), (19), and (24) in Merton (1987), we obtain

M = − 1

Rf

N∑
i=1

(
ai
σi
εi

)
+

1

Rf
−

(E(Rm)−Rf )

Rf var(Rm)
(Rm − E(Rm))

= −a
′V −1
e

Rf
et+1︸ ︷︷ ︸

Ma

+
1

Rf
−

(E(Rm)−Rf )

Rf var(Rm)
(Rm − E(Rm))︸ ︷︷ ︸

Mβ

, (IA13)

where ei = σiεi and Ve is the covariance matrix of e with σ2
i on its diagonal.

To characterize the limiting behavior of this economy, as N →∞, assume that xi → 0,

that is the fraction of market portfolio invested in each asset i is infinitesimally small. Then,

as N →∞, we have

βi =
bib+ xiσ

2
i

b2 +
∑N

i=1 x
2
iσ

2
i

→ bi
b∗
, where b→ b∗,
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am =

N∑
i=1

xiai =

N∑
i=1

xi(1− qi)∆i =

N∑
i=1

γx2
iσ

2
i

(1− qi)
qi

→ 0,

cov
( N∑
i=1

xiσiεi, εi

)
=

N∑
i=1

xiσi → 0.

Thus, given N → ∞, we have: (i) βi → bi/b
∗, (ii) am → 0, and (iii) the market return

is asymptotically orthogonal to all unsystematic shocks, ei. Making these substitutions in

equations (IA9) and (IA13) gives the results in (22) and (24). �

IA.5 Spanning of the SDF Components

Proposition IA.4.1 implies that, as N → ∞, the log of the estimated SDF component

log(M̂β,mis
exp,t+1) converges to a linear function of the missing systematic factors. Proposi-

tion IA.5.2 below shows how to determine whether a vector of observable variables gt rep-

resents missing sources of systematic risk in the candidate factor model, and if so, how to

estimate the prices of risk associated with these missing risk factors.

Let fmis
t be the vector of true systematic risk factors that are missing in the candidate

factor model. Consider the regression of log(M̂β,mis
exp,t ) on an intercept and the vector gt,

log(M̂β,mis
exp,t ) = γ0 + γ′1gt + ut.

Denote by γols
1 the OLS-estimator of γ1 and by R2

g the coefficient of determination in the

corresponding regression.

Proposition IA.5.2 (Detecting Missing Systematic Factors). Under the assumptions of

the extended Proposition IA.4.1 and if gt = Qfmis
t , for some nonsingular Q, as N →∞ we

have

γols
1

p−→ −(Q′)−1V −1
fmisλ

mis and R2
g

p−→ 1.

On the other hand, if gt is orthogonal to fmis
t then

γols
1

p−→ 0Kmis and R2
g

p−→ 0.

Proof: Collect the values of the vector gt for each t in a matrix G = (g1 · · · gT )′. Likewise,

collect the values of the vector fmis
t for each t in a matrix Fmis = (fmis

1 · · · fmis
T )′. For

each t, collect the values of the systematic component log(M̂β,mis
exp,t+1) of the SDF in a vector

log(M̂β,mis
exp ) = (log(M̂β,mis

exp,1 ) · · · log(M̂β,mis
exp,T ))′. Then, the R2 of the regression of log(M̂β,mis

exp,t )

on an intercept and the vector gt,

log(M̂β,mis
exp,t ) = γ0 + γ′1gt + ut,
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is

R2
g =

γols ′
1 G′(IT − 1T 1

′
T /T )Gγols

1

log(M̂β,mis
exp )′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp )
,

where γols
1 = (G′(IT − 1T 1

′
T /T )G)−1G′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp ).

In Proposition IA.4.1, we have showen that

log(M̂β,mis
exp,t+1)

p−→ −λmis ′V −1
fmis(f

mis
t+1 − E(fmis

t+1))− 1

2
λmis ′V −1

fmisλ
mis.

For simplicity, we set M1T = IT − 1T 1′T /T and, given that M1T 1T = 0T , we obtain

γols
1

p−→ −(G′M1TG)−1G′M1T (Fmis − 1TE(fmis ′
t+1 ))V −1

fmisλ
mis

= −(QFmis ′M1TF
misQ′)−1QFmis ′M1TF

misV −1
fmisλ

mis

= −(Q′)−1V −1
fmisλ

mis.

The limiting behavior of the numerator of R2
g is as follows

γols ′
1 (G′M1TG)γols

1
p−→ λmis ′V −1

fmisQ
−1Q(Fmis ′M1TF

mis)Q′(Q′)−1V −1
fmisλ

mis

= λmis ′V −1
fmis(F

mis ′M1TF
mis)V −1

fmisλ
mis.

The limiting behavior of the denominator of R2
g is as follows

log(M̂β,mis
exp )′(IT − 1T 1

′
T /T ) log(M̂β,mis

exp )

p−→ λmis ′V −1
fmis(F

mis − 1TE(fmis ′
t+1 ))′M1T (Fmis − 1TE(fmis ′

t+1 ))V −1
fmisλ

mis

= λmis ′V −1
fmis(F

mis ′M1TF
mis)V −1

fmisλ
mis.

Given that the limit of the numerator equals the limit of the denominator, R2
g

p−→ 1.

The proof of the case ofG being orthogonal to Fmis, that is, whenG′(IT−1T 1′T /T )Fmis =

OKmis , is straightforward, and therefore, omitted. �

Along the same lines, if weak factors span the unsystematic component of the SDF

Ma
exp,t+1, Proposition IA.5.3 below shows how to determine whether a vector of observable

variables ht is a linear combination of these weak factors and if so how to estimate their

prices of risk. Assume that log(Ma
exp,t+1) = −a′V −1

e et − a′V −1
e a/2 = γ′weakf

weak
t , where

fweak
t is a vector of true latent Kweak weak factors with the identity covariance matrix

Vfweak = IKweak .

Proposition IA.5.3 (Detecting Missing Weak Factors). Consider the regression of log(M̂a
exp,t)

on an intercept and the vector ht,

log(M̂a
exp,t) = γ0 + γ′1ht + ut.
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Denote by γols
1 an OLS estimator of γ1 and R2

h the coefficient of determination in the

corresponding regression.

Under the assumptions of Proposition IA.4.1 and if ht = Qfweak
t for some nonsingu-

lar Q, as N →∞ we have

γ̂1
p−→ −(Q′)−1γweak and R2

h
p−→ 1.

On the other hand, if ht is orthogonal to fweak
t then

γ̂1
p−→ 0Kweak and R2

h
p−→ 0.

Proof: Collect the values of the vector ht for each t in a matrix H = (h1 · · ·hT )′. Likewise,

collect the values of the vector fweak
t for each t in a matrix Fweak = (fweak

1 · · · fweak
T )′. For

each t, collect the values of log(M̂a
exp,t) in a vector log(M̂a

exp) = (log(M̂a
exp,1) · · · log(M̂a

exp,T ))′.

Then, the R2 of the regression of log(M̂a
exp,t) on an intercept and the vector ht,

log(M̂a
exp,t) = γ0 + γ′1ht + ut,

is given by

R2
h =

γols ′
1 H ′(IT − 1T 1

′
T /T )Hγols

1

log(M̂a
exp)′(IT − 1T 1

′
T /T ) log(M̂a

exp)
,

where γols
1 = (H ′(IT − 1T 1

′
T /T )H)−1H ′(IT − 1T 1

′
T /T ) log(M̂a

exp).

In Proposition IA.4.1, we showed that, as N →∞,

log(M̂a
exp,t+1)− aV −1

e et+1 −
1

2
a′V −1

e a
p−→ 0.

For simplicity, we set M1T = IT − 1T 1′T /T . Given that M1T 1T = 0T , we obtain

γols
1

p−→ −(H ′M1TH)−1H ′M1T (Fweak − 1TE(fweak ′
t+1 ))γweak

= −(QFweak ′M1TF
weakQ′)−1QFweak ′M1TF

weakγweak

= −(Q′)−1γweak, when N →∞.

The limiting behavior of the numerator of R2
h is as follows

γols ′
1 (H ′M1TH)γols

1
p−→ γ′weakQ

−1Q(Fweak ′M1TF
weak)Q′(Q′)−1γweak

= γ′weak(Fweak ′M1TF
weak)γweak, when N →∞.

The limiting behavior of the denominator of R2
h is as follows

log(M̂a
exp)′(IT − 1T 1

′
T /T ) log(M̂a

exp)
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p−→ γ′weak(Fweak − 1TE(fweak ′
t+1 ))′M1T (Fweak − 1TE(fweak ′

t+1 ))γweak

= γ′weak(Fweak ′M1TF
mis)γweak, when N →∞.

Given that the limit of the numerator equals the limit of the denominator, R2
h

p−→ 1.

The proof when H is orthogonal to Fweak, that is, when H ′(IT − 1T 1′T /T )Fweak =

OKweak , is straightforward, and therefore, omitted. �

A major strength of our approach is that we do not need to estimate the exposures of

asset returns to an observable variable in order to define whether this variable represents a

systematic or weak factor in the given cross-section of asset returns and quantify its price

of risk. Thus, Propositions IA.5.2 and IA.5.3 complement the three-pass method of Giglio

and Xiu (2021) and the supervised PCA of Giglio et al. (2021b) for describing the role of

systematic and weak factors in pricing a cross-section of asset returns, and estimating the

corresponding risk premia.41

IA.6 Weak Factors

Thanks to the assumption of the approximate factor structure of asset returns, our method-

ology accommodates weak factors in the unsystematic shocks et+1. The approximate factor

structure implies that Ve can be non-diagonal, with the only constraint being that the max-

imum eigenvalue of Ve is uniformly bounded. Even though we have already mentioned that

our theoretical results hold regardless of the presence of weak factors in et+1, we now prove

Proposition IA.4.1 where we explicitly allow for weak factors in et+1. This proof strength-

ens the relevance of our methodology for identifying the importance of compensation for

unsystematic risk, in particular, including that arising from weak factors.

Specifically, we assume now that

et+1 = βweakfweak
t+1 + eas

t+1, (IA14)

where eas
t+1 is a vector of asset-specific (“as”) shocks with a diagonal covariance matrix Veas

that has a bounded maximum eigenvalue, fweak
t+1 is a vector of Kweak latent weak factors with

covariance matrix V weak
f , and βweak is the matrix of assets’ exposures to the weak factors

fweak
t+1 . We define weak factors in accordance with the definition of Lettau and Pelger (2020):

fweak
t+1 is a weak factor, if the following condition holds βweak ′βweak → A > 0, if N → ∞,

where A is some constant matrix. This condition can be written as βweak ′βweak = O(1),

41The large-N results of Propositions IA.5.2 and IA.5.3 abstract from estimation uncertainty, unlike Giglio
and Xiu (2021) and Giglio et al. (2021b), who allow for sampling variability by developing their analysis
under both large N and large T .
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in contrast to the condition for systematic factors βcan ′V −1
e βcan/N = O(1), as indicated in

Assumption IA.2.1. In practice, the condition βweak ′βweak = O(1) holds when either the

factors fweak
t+1 affect only a subset of the asset returns or the factors fweak

t+1 affect all asset

returns but only marginally.

Without loss of generality, we assume that the weak factors fweak
t+1 are orthogonal to the

asset-specific shocks eas
t+1 and Vfweak = IKweak , thus Ve = βweakβweak ′ + Veas .

Denote the vector of prices of unit assets’ exposures to weak factors by λweak, thus

compensation for the unsystematic risk includes compensation for exposure to weak factors

and compensation for asset-specific shocks, a = aas +βweakλweak, such that the no-arbitrage

constraint holds, that is, aas ′V −1
eas aas < δas

apt <∞, for some constant δas
apt > 0.

For simplicity, assume that the candidate factor model includes all systematic risk fac-

tors, that is, Kmis = 0, implying that Vε = Ve.

Assumption IA.6.1. The following assumptions explicitly incorporate weak factors in the

unsystematic shocks, imposing more structure on the covariance matrix Ve:
42

N−1βcan ′V −1
eas βcan −→ D > 0, as N →∞,

βweak ′V −1
eas βweak −→ E > 0, as N →∞,

βcan ′V −1
eas βweak = o(N

1
2 ),

βcan ′V −1
eas aas = o(N

1
2 ).

Lemma IA.6.1.

βcan ′Ve
−1βcan = O(N).

Proof: The Sherman-Morrison-Woodbury formula applied to Ve
−1 leads to

βcan ′Ve
−1βcan = βcan ′V −1

eas βcan − βcan ′V −1
eas βweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas βcan

= O(N) + o(N
1
2 )× [O(1) +O(1)]−1 × o(N

1
2 )

= O(N) + o(N) = O(N). �

Lemma IA.6.2.

βweak ′Ve
−1βcan = o(N

1
2 ).

42Because the matrix V −1
eas has uniformly bounded eigenvalues, the definition of a weak factor of Lettau

and Pelger (2020) can be equivalently written as βweak ′V −1
eas β

weak −→ E > 0, as N →∞.
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Proof: The Sherman-Morrison-Woodbury formula applied to Ve
−1, leads to

βweak ′Ve
−1βcan = βweak ′V −1

eas βcan − βweak ′V −1
eas βweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas βcan

= V −1
fweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas βcan

= O(1)× [O(1) +O(1)]−1 × o(N
1
2 ) = o(N

1
2 ). �

Lemma IA.6.3.

βcan ′Ve
−1a = o(N

1
2 ).

Proof: The Sherman-Morrison-Woodbury formula applied to Ve
−1, given a = aas+βweakλweak,

leads to

βcan ′Ve
−1aas = βcan ′V −1

eas aas − βcan ′V −1
eas βweak(V −1

fmis + βweak ′V −1
eas βweak)−1βweak ′V −1

eas aas

= o(N
1
2 ) + o(N

1
2 )× [O(1) +O(1)]−1 ×O(1)

= o(N
1
2 ).

Thus, βcan ′Ve
−1βweakλweak = o(N

1
2 ) by Lemma IA.6.2. �

Lemma IA.6.4. Let eas be an N × 1 random vector with zero mean and covariance matrix

Veas.

βcan ′Ve
−1eas = Op(N

1
2 ).

Proof: For any random variable X with a finite second moment, we have that X =

Op((E(X2))
1
2 ). If X = βcan ′V −1

eas eas, then

E(βcan ′V −1
eas easeas ′V −1

eas βcan) = βcan ′V −1
eas βcan = O(N),

and therefore, βcan ′V −1
eas eas = Op(N

1
2 ). Similarly, we can show that βweak ′V −1

eas eas = Op(1).

Finally, we apply the Sherman-Morrison-Woodbury formula to Ve
−1 and obtain

βcan ′Ve
−1eas = βcan ′V −1

eas eas − βcan ′V −1
eas βweak(V −1

fweak + βweak ′V −1
eas βweak)−1βweak ′V −1

eas eas

= Op(N
1
2 ) + o(N

1
2 )× [O(1) +O(1)]−1 ×Op(1) = Op(N

1
2 ). �

We now generalize Proposition IA.4.1 for the case in which the unsystematic shocks

explicitly include weak factors, that is, when (IA14) holds. To do this, the only result we

need to prove is that the presence of weak factors does not have implications for the limiting

behavior of M̂a
exp,t+1 and Ma

exp,t+1.
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Proposition IA.6.4 (Properties of M̂a
exp,t+1, when Shocks et+1 Include Weak Factors).

Under Assumptions 2.1 and 2.2, the assumption that returns Rt+1 are Gaussian, Assump-

tions IA.6.1, and the assumption that Kmis = 0, we have

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞.

Proof: Recall that

M̂a
exp,t+1 = exp

[
− aV −1

R (Rt+1 − E(Rt+1))− 1

2
a′V −1

R a
]

and

Ma
exp,t+1 = exp

[
− a′V −1

e et+1 −
1

2
a′V −1

e a
]
.

The exponent of M̂a
exp,t+1, given that Kmis = 0, is

− a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a =

− a′V −1
R βcan(f can

t+1 − E(f can
t+1))− a′V −1

R et+1 −
1

2
a′V −1

R a.

We analyze the three terms of the exponent of M̂a
exp,t+1 one-by-one. We use Lemmas IA.6.1

and IA.6.3 and apply the Sherman-Morrison-Woodbury formula to V −1
R :

a′V −1
R βcan = a′V −1

e βcan − a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1βcan ′V −1

e βcan

= a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1V −1

fcan

= o(N
1
2 )× [O(1) +O(N)]−1 ×O(1)

= o(N−
1
2 ).

Next, by Lemmas IA.6.1, IA.6.3, and IA.6.4, and by taking into account that et+1 =

βweakfweak
t+1 + eas

t and a = aas + βweakλweak, we obtain

a′V −1
R et+1 = a′V −1

e et+1 − a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1βcan ′V −1

e et+1

= a′V −1
e et+1 + op(N

1
2 )[O(1) +O(N)]−1Op(N

1
2 ) = a′V −1

e et+1 + op(1).

Finally, by Lemmas IA.6.1 and IA.6.3,

a′V −1
R a = a′V −1

e a− a′V −1
e βcan(V −1

fcan + βcan ′V −1
e βcan)−1βcan ′V −1

e a

= a′V −1
e a+ o(N

1
2 )× [O(1) +O(N)]−1 × o(N

1
2 )

= a′V −1
e a+ o(1).

Putting these results together, we obtain

−a′V −1
R (Rt+1 − E[Rt+1])− 1

2
a′V −1

R a = −a′V −1
e et+1 −

1

2
a′V −1

e a+ op(1),
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implying that

M̂a
exp,t+1 −Ma

exp,t+1
p−→ 0 as N →∞. �

Remark: Proposition IA.6.4 shows that our methodology is still valid if expected excess

returns include compensation for exposure to weak factors that are present in unsystem-

atic shocks et+1. This is an important result because of the challenges associated with

identifying weak factors. For example, it is well known that weak factors cannot be esti-

mated consistently (Lettau and Pelger, 2020). Our methodology does not require estimating

weak factors but can still accurately characterize the importance of unsystematic risk that

includes weak factors, which makes our approach compelling.

IA.7 Estimation

We start this section by discussing the identification conditions that fix the rotation of risk

factors. These identification conditions do not have any implications for the SDF but allow

us to estimate the model of asset returns. Next, we show how to estimate the model of asset

returns. In the empirical analysis, we use an observable time-varying risk-free rate Rft in

place of Rf .

IA.7.1 Identification conditions

In a candidate model, the loadings of asset returns on the missing factors, and the missing

factors themselves, are unique up to a rotation. Similarly, identifying the loadings of asset

returns on the latent factors in the APT model is unique up to a rotation. Thus, at

the estimation stage, we need to impose identification conditions. These identification

conditions affect the interpretation of latent factors but not the estimated SDF.

Below, we detail the identification strategy, which we use to correct a candidate model

of asset returns. The difference between identifying missing factors in the candidate factor

model and identifying latent factors of the APT model is only because of the presence of

observable factors in the candidate model. Thus, the identification strategy for the APT

model is equivalent to that described below but in which Kcan = 0 and Kmis = K.

We follow the identification strategy of Bai and Li (2012) and adapt it to the case in

which a model has Kcan observable and Kmis latent risk factors. Denote F can a matrix

T × Kcan that collects candidate factors column by column. Denote by Fmis a matrix

T × Kmis that collects missing factors column by column. Combine these matrices in a

Page 26: Internet Appendix



T × (Kcan +Kmis) matrix F = [F can, Fmis]. Note that the rotation of this matrix is defined

by a squared invertible matrix of a dimension (Kcan +Kmis)×(Kcan +Kmis), and therefore,

the rotation is pinned down by (Kcan +Kmis)2 parameters.

At the estimation stage, we impose the following (Kcan+Kmis)2 identification conditions

to fix the rotation:

• The first Kcan columns of the rotation matrix are fixed because F can includes only

observable factors. This is equivalent to Kcan × (Kcan + Kmis) restrictions being

already imposed.

• Vfmis = IKmis introduces Kmis × (Kmis + 1)/2 restrictions.

• βmis ′V −1
e βmis is a diagonal matrix that is equivalent to imposing (Kmis− 1)×Kmis/2

restrictions. We also introduce an order restriction that requires that the diagonal

elements of the matrix βmis ′V −1
e βmis follow in descending order. In addition, we

require the eigenvectors of βmis ′V −1
e βmis to have positive means to identify the latent

factors uniquely, rather than up to a sign.

• Candidate factors f can
t+1 are uncorrelated with missing factors fmis

t+1. This requirement

is equivalent to imposing Kcan ×Kmis additional restrictions.

IA.7.2 Constrained Maximum-Likelihood (ML) Estimator

This section describes how to estimate the candidate factor model and its required correction

to obtain the APT-implied SDF. The underlying problem is described in Section 2.3.

To simplify exposition, introduce the following notation

R̄ = T−1
T∑
t=1

Rt, R̄f = T−1
T∑
t=1

Rft, f̄ can = T−1
T∑
t=1

f can
t ,

Q̂fcan = T−1
T∑
t=1

f can
t f can ′

t , and Q̂Rfcan =
1

T

T∑
t=1

(Rt −Rft−11N )f can ′
t .

For this section only, we use the notation ·̂ to denote an estimator.

Without loss of generality, assume that the candidate factors f can
t+1 are tradable factors in

the form of excess returns on investment strategies (if any candidate factor is not tradable,

we use its factor-mimicking portfolio, as in Breeden et al. (1989)).

For a generic vector Θ that collects all the unknown parameters of the corrected model

of asset returns, Θ = (a′, vech(Ve)
′, vech(Vfcan)′, vec(βcan)′, λcan ′, vec(βmis)′, λmis ′),
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denote L(Θ) the (up to a constant) Gaussian joint likelihood of the vector of asset returns

in excess of the risk-free rate, Rt+1 − Rft1N , and observable factors f can
t+1 scaled by the

number of time-series observations T

log(L(Θ)) = −1

2
log(|Vε|)−

1

2
log(|V can

f |)− 1

2T

T−1∑
t=0

ε′t+1V
−1
ε εt+1

− 1

2T

T−1∑
t=0

(f can
t+1 − E(f can

t+1))′V −1
fcan(f can

t+1 − E(f can
t+1)), (IA15)

where εt+1 = Rt+1 − Rft1N − a − βmisλmis − βcanλcan − βcan(f can
t+1 − E(f can

t+1)) and Vε =

βmisVfmisβmis′ + Ve.

We maximize this log-likelihood function (IA15) subject to the no-arbitrage restric-

tion (4). Without loss of generality, we replace the no-arbitrage restriction (4) with the

expression

a′V −1
ε a ≤ δapt

that is, replacing Ve with Vε, is more convenient when deriving the first-order conditions.

We use the Karush-Kuhn-Tucker (KKT) multiplier method to solve the resulting con-

strained optimization problem,

Θ̂ = argmax log(L(Θ)) subject to a′V −1
ε a ≤ δapt, (IA16)

and denote the KKT multiplier by κ/2.

The optimization problem for estimating the parameters of the APT-implied SDF is

identical to that formulated in expression (IA16), in which there are no candidate factors,

Kcan = 0, and the missing factors fmis
t+1 are replaced with latent factors ft+1. Correspond-

ingly, the parameters characterizing the missing factors fmis
t+1, such as βmis, λmis, and Kmis,

are replaced with the parameters characterizing the latent factors ft+1, which are β, λ, and

K, respectively.

Proposition IA.7.5 (Constrained ML Estimator). Suppose that the assumptions of Propo-

sition IA.4.1 hold. Assume that the number Kmis of missing factors in the candidate model

and the no-arbitrage bound δapt are known and that the sample covariance matrix V̂fcan of

candidate factors is nonsingular. Then the estimators of λcan and Vfcan coincide with the

sample mean and sample covariance of the candidate factors f can
t :

λ̂can = f̄ can,

V̂ can
f = Q̂fcan − f̄ canf̄ can ′.

The estimators β̂mis and V̂e of βmis and Ve do not admit a closed-form solution.
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(i) If the optimal value of the Karush-Kuhn-Tucker multiplier κ̂ is greater than zero, the

estimators of βcan, λmis, and a, are

vec(β̂can) =
(
Q̂fcan ⊗ IN − f̄ canf̄ can ′ ⊗ Ĝ

)−1

× vec
(
Q̂Rfcan − Ĝ(R̄− R̄f1N )f̄ can ′) (IA17)

λ̂mis = (β̂mis′ V̂ε
−1
β̂mis)−1β̂mis′ V̂ε

−1
(
R̄− R̄f1N − β̂canλ̂can

)
, and

â =
1

κ̂+ 1

(
R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis

)
,

where

κ̂ =

(
(R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)′V −1

ε (R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)

δapt
− 1

)1/2

,

Ĝ =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
β̂mis(β̂mis′ V̂ε

−1
β̂mis)−1β̂mis′ V̂ε

−1
, and

V̂ε = β̂misβ̂mis′ + V̂e.

(ii) If the optimal value of the Karush-Kuhn-Tucker multiplier satisfies κ̂ = 0, it is possible

to estimate the vector α

α̂ = R̄− R̄f1N − β̂canλ̂can

but not its components, a and βmisλmis. The estimator of vec(βcan) is given by ex-

pression (IA17) with κ̂ = 0.

Proof: The Lagrangian for our optimization problem is

Lp(Θ) = −κ
2

(a′V −1
ε a− δapt)−

1

2
log(|Vε|)−

1

2
log(|Vfcan |)− 1

2T

T−1∑
t=0

ε′t+1V
−1
ε εt+1

− 1

2T

T−1∑
t=0

(f can
t+1 − E(f can

t ))′V −1
fcan(f can

t+1 − E(f can
t )). (IA18)

Recall that the candidate factors f can
t represent excess returns on tradable investment strate-

gies, that is, E(f can
t ) = λcan. The first-order condition for λcan results in

λ̂can =
1

T

T∑
t=1

f can
t .

Similarly, the first-order condition for V can
f gives

V̂fcan =
1

T

T∑
t=1

(f can
t − λ̂can)(f can

t − λ̂can)′.
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Next, we consider two cases, κ̂ > 0 and κ̂ = 0.

First, suppose that κ̂ > 0, and therefore a′V −1
ε a = δapt. We differentiate the Lagrangian

in equation (IA18) with respect to λmis and a and obtain the following Kmis +N first-order

conditions:

(
β̂mis ′V̂ −1

ε

IN

)(
R̄− R̄f1N − β̂canλ̂can

)
=
( β̂mis ′V̂ −1

ε β̂mis β̂mis ′V̂ −1
ε

β̂mis ′ (1 + κ̂)IN

)(
λ̂mis

â

)
.

The matrix premultiplying the vector (λ̂mis ′, â′)′ is nonsingular when the no-arbitrage re-

striction binds, implying that λ̂mis and â are identified separately :

λ̂mis = (β̂mis ′V̂ −1
ε β̂mis)−1β̂mis ′V̂ −1

ε

(
R̄− R̄f1N − β̂canλ̂can

)
, (IA19)

â =
1

κ̂+ 1

(
R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis

)
. (IA20)

Next, we use equation (IA20) and the binding no-arbitrage restriction a′V −1
ε a = δapt to

obtain

κ̂ =
((R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)′V̂ −1

ε (R̄− R̄f1N − β̂canλ̂can − β̂misλ̂mis)

δapt
− 1
)1/2

.

(IA21)

Finally, we consider the first-order condition with respect to the generic (i, j)th element

of βcan, denoted by βcan
ij with 1 ≤ i ≤ N, 1 ≤ j ≤ Kcan, and obtain

− 1

T

T∑
t=1

(
Rt −Rft1N − β̂misλ̂mis − â− β̂canf can

t

)′
V̂ −1
ε

(
− ∂βcan

∂βcan
ij

|βcan=β̂can f
can
t

)
= 0,

which can be rearranged by stacking together the first-order conditions as

Q̂Rfcan − (â+ β̂misλ̂mis)f̄ can ′ − β̂canQ̂fcan = 0N×Kcan . (IA22)

Next, we define

Ĝ =
1

(κ̂+ 1)
IN +

κ̂

(κ̂+ 1)
β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′V̂ −1
ε ,

and use the formulas (IA19) and (IA20) to rewrite equation (IA22) as follows

β̂canQ̂fcan − Ĝβ̂canf̄ canf̄ can ′ = Q̂Rfcan −G(R̄− R̄f1N )f̄ can ′.

Then, we take the vec operator and solve for β̂can to obtain

vec(β̂can) =
(
Q̂fcan ⊗ IN − f̄ canf̄ can ′ ⊗ Ĝ

)−1×vec
(
Q̂Rfcan −G(R̄− R̄f1N )f̄ can ′).(IA23)
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The solution for β̂can exists because the matrix
(
Q̂fcan⊗IN−f̄ canf̄ can ′⊗Ĝ

)
is nonsingular.

We note that

Q̂fcan ⊗ IN − f̄ can f̄ can ′ ⊗ Ĝ = V̂fcan ⊗ IN + f̄ can f̄ can ′ ⊗ (IN − Ĝ),

where V̂fcan , being a covariance matrix, is positive-definite, and f̄ can f̄ can ′ ⊗ (IN − Ĝ) is

positive semi-definite, because

IN − Ĝ = IN −
1

(κ̂+ 1)
IN −

( κ̂

1 + κ̂

)
β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′V̂ −1
ε

=
( κ̂

1 + κ̂

)
(IN − β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′V̂ −1
ε )

=
( κ̂

1 + κ̂

)
V̂ε(V̂

−1
ε − V̂ −1

ε β̂mis(β̂mis ′V̂ −1
ε β̂mis)−1β̂mis ′V̂ −1

ε )

=
( κ̂

1 + κ̂

)
V̂ε(V̂

−1
ε )

1
2 (IN − (V̂ −1

ε )
1
2 β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′(V̂ −1
ε )

1
2 )(V̂ −1

ε )
1
2

is the product of the positive-definite matrices IN−(V̂ −1
ε )

1
2 β̂mis(β̂mis ′V̂ −1

ε β̂mis)−1β̂mis ′(V̂ −1
ε )

1
2

(projection matrix), V̂ε, and (V̂ −1
ε )

1
2 . Note that λ̂mis, â, κ̂ are functions of β̂mis, V̂e, and

β̂can:

λ̂mis = λ̂mis(β̂mis, β̂can, V̂e, ), â = â(β̂mis, β̂can, V̂e), κ̂ = κ̂(β̂mis, β̂can, V̂e). (IA24)

However, we cannot obtain the explicit representation of λ̂mis, â, and κ̂ in terms of fewer

parameters, for example, only β̂mis and V̂e. This is because substituting κ̂ into expression

(IA23) for β̂can creates a fixed-point problem for β̂can.

Because a fixed-point problem slows down substantially the optimization routine, we do

not use the closed-form solution (IA23) for β̂can and instead substitute expressions (IA24)

into Lp(Θ) to obtain the concentrated log-likelihood function, which is a function of only

βmis, βcan, and Ve. We maximize the concentrated log-likelihood numerically, thereby ob-

taining the estimates of βmis, βcan, and Ve, which also imply the optimal values of the other

parameters. Finally, we verify if equation (IA23) holds, thereby checking convergence of

our optimization algorithm.

If equation (IA21) implies that κ̂ < 0 then we ignore all the obtained above results and

move to the next case of κ̂ = 0.

Consider the second case, in which the Karush-Kuhn-Tucker multiplier is zero: κ̂ = 0.

In this case, a feasible solution to the optimization problem satisfies a′V −1
ε a < δapt.

The first-order conditions with respect to λmis and a imply the following singular system

of Kmis +N equations(
β̂mis ′V̂ −1

ε

IN

)(
R̄− R̄f1N − β̂canλ̂can)

)
=
( β̂mis ′V̂ −1

ε β̂mis β̂mis ′V̂ −1
ε

β̂mis IN

)(
λ̂mis

â

)
.
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The matrix ( β̂mis ′V̂ −1
ε β̂mis β̂mis ′V̂ −1

ε

β̂mis IN

)
is of dimension (N+Kmis)×(N+Kmis) but of rank N , and therefore it is noninvertible. As a

result, we cannot identify separately a and λmis, implying that if κ̂ = 0, we can only identify

the sum a + βmisλmis but not its two components separately. All the other parameters of

the vector Θ are identified separately, and their expressions follow from differentiating the

Lagrangian (IA18) and solving the resulting first-order conditions. For instance, the formula

for β̂can follows by setting Ĝ = IN into (IA17).

When both cases, κ̂ > 0 and κ̂ = 0, are feasible, we choose the one under which the

log-likelihood Lp(Θ) is larger. �

IA.8 The SDF with Nonorthogonal Components

In the main text of the manuscript, we assumed that the candidate risk factors f can
t+1 are

orthogonal to the missing sources of systematic risk fmis
t+1 and unsystematic shocks et+1. This

assumption is without loss of generality because if the (observable) systematic risk factors

fmis
t+1 that the candidate model omits are correlated with f can

t+1, there exists an observationally

equivalent representation of the SDF Mt+1, such that the factors f can
t+1 are orthogonal to some

latent systematic risk factors (residuals from an orthogonal projection of omitted observable

risk factors onto the candidate factors). Thus, the assumption of orthogonality affects the

interpretation of the missing factors but not the admissibility of the pricing kernel.

In particular,

Mt+1 =
1

Rf
+ bcan ′(f can

t+1 − E(f can
t+1)) + bmis ′(fmis

t+1 − E(fmis
t+1)) + c′et+1

=
1

Rf
+ b̃can ′(f can

t+1 − E(f can
t+1)) + bmis ′(f̃mis

t+1 − E(f̃mis
t+1)) + c′et+1,

where Q = cov(f can
t+1, f

mis ′
t+1 ) is a Kcan ×Kmis matrix of covariances and

b̃can = bcan + V −1
fcanQb

mis,

f̃mis
t+1 − E(f̃mis

t+1) = (fmis
t+1 − E(fmis

t+1))−Q′Vfcan(f can
t+1 − E(f can

t+1)).

Notice that by construction cov(f can
t+1, f̃

mis ′
t+1 ) is a Kcan ×Kmis matrix of zeros, because

f̃mis
t+1 represent the linear-projection residual from projecting fmis

t+1−E(fmis
t+1) on f can

t+1−E(f can
t+1).

We now show how, starting from a candidate factor model with factors f can
t+1 that are

correlated with the missing systematic factors fmis
t+1, we can construct the APT-implied SDF.
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Proposition IA.8.6 (SDF: Correlated case). Under Assumptions 2.1 and 2.2 of the APT,

there exists an SDF of the form

Mt+1 =
1

Rf
+ bcan ′(f can

t+1 − E(f can
t+1)) + bmis ′(fmis

t+1 − E(fmis
t+1)) + c′et+1, where

bcan ′ =

(
−
λcan ′V −1

fcan

Rf
+
λmis ′V −1

fmis

Rf
Q′V −1

fcan

)
×
(
IKcan −QV −1

fmisQ
′V −1
fcan

)−1
,

bmis ′ =

(
−
λmisV −1

fmis

Rf
+
λcan ′V −1

fcan

Rf
QV −1

fmis

)
×
(
IKmis −Q′V −1

fcanQV
−1
fmis

)−1
,

c′ = −aV
−1
e

Rf
.

Proof: We guess that the SDF has the following functional form

Mt+1 = E(Mt+1) + bcan ′(f can
t+1 − E(f can

t+1)) + bmis ′(fmis
t+1 − E(fmis

t+1)) + c′et+1,

where bcan is a Kcan × 1 vector, bmis is a Kmis × 1 vector, and c is an N × 1 vector. We

identify the unknown vectors bcan, bmis, and c by using the Law of One Price. Specifically,

because we assume the existence of the risk-free asset, to determine the mean of the SDF,

we use the condition

E(Mt+1) =
1

Rf
.

Next, because λcan represents a vector of prices of risk of f can
t+1 we have that

− cov(Mt+1, f
can
t+1)×Rf = λcan.

These Kcan conditions identify bcan:

bcan ′ = − 1

Rf
λcan ′V −1

fcan − bmis ′Q′V −1
fcan . (IA25)

Similarly, λmis is the price of risk associated with factors fmis
t+1, or equivalently,

− cov(Mt+1, f
mis
t+1)×Rf = λmis.

These Kmis conditions identify bmis:

bmis ′ = −
λmis ′V −1

fmis

Rf
− bcan ′QV −1

fmis . (IA26)

Putting together expressions (IA25) and (IA26), we obtain

bcan ′ =

(
−
λcan ′V −1

fcan

Rf
+
λmis ′V −1

fmis

Rf
Q′V −1

fcan

)
×
(
IKcan −QV −1

fmisQ
′V −1
fcan

)−1
,
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bmis ′ =

(
−
λmisV −1

fmis

Rf
+
λcan ′V −1

fcan

Rf
QV −1

fmis

)
×
(
IKmis −Q′V −1

fcanQV
−1
fmis

)−1
.

Finally, it must be the case that the SDF prices the N basis assets:

E(Mt+1(Rt+1 −Rf1N )) = 0N .

These N equations identify c. Given expressions (IA25) and (IA26), we obtain

c′ = −aV
−1
e

Rf
. �

Next, we provide a non-negative SDF.

Proposition IA.8.7 (Nonnegative SDF: Correlated case). Under Assumptions 2.1 and

2.2 of the APT and the assumption that returns Rt+1 are Gaussian, there exists an SDF

Mexp,t+1

Mexp,t+1 = Mβ,can
exp,t+1 ×M

a
exp,t+1 ×M

β,mis
exp,t+1 where

Mβ,can
exp,t+1 =

1

Rf
exp

(
bcan ′
+ (f can

t+1 − E(f can
t+1))− 1

2
bcan ′
+ Vfcanbcan

+ − 1

2
bcan ′
+ Qbmis

+

)
Mβ,mis

exp,t+1 = exp

(
bmis ′
+ (fmis

t+1 − E(fmis
t+1))− 1

2
bmis ′
+ Vfmisbmis

+ − 1

2
bcan ′
+ Qbmis

+

)
Ma

exp,t+1 = exp

(
−a′V −1

e et+1 −
1

2
a′V −1

e a

)
, where

bcan ′
+ = (−λcan ′Vfcan + λmis ′V −1

fmisQ
′V −1
fcan)× (IKcan −QV −1

fmisQ
′V −1
fcan)−1,

bmis ′
+ = (−λmis ′Vfmis + λcan ′V −1

fcanQV
−1
fmis)× (IKmis −Q′V −1

fcanQV
−1
fmis)

−1.

Proof: We use a guess-and-verify method to derive a nonnegative SDF. We guess that the

SDF has the following functional form

Mexp,t+1 = exp [µ+ + bcan ′
+ (f can

t+1 − E(f can
t+1)) + bmis ′

+ (fmis
t+1 − E(fmis

t+1)) + c′+et+1]

with unknown vectors bcan
+ , bmis

+ , and c+, as well as an unknown scalar µ+. To identify the

unknowns and verify our guess, we use the following Kcan +Kmis +N + 1 equations, which

are implications of the Law of One Price:

− cov(Mexp,t+1, f
can
t+1)×Rf = λcan,

− cov(Mexp,t+1, f
mis
t+1)×Rf = λmis,

E(Mexp,t+1(Rt+1 −Rf1N )) = 0N

E(Mexp,t+1) = R−1
f .
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The first Kcan equations imply that

−E(Mexp,t+1(f can
t+1 − E(f can

t+1))) = E(Mexp,t+1)× λcan,

which. along with Lemma IA.3.1, give

Vfcan(bcan
+ + V −1

fcanQb
mis
+ ) = −λcan. (IA27)

Similarly, the next Kmis equations imply that

−E(Mexp,t+1(fmis
t+1 − E(fmis

t+1))) = E(Mexp,t+1)× λmis,

which, along with Lemma IA.3.1, lead to:

Vfmis(bmis
+ + V −1

fmisQ
′bmis

+ ) = −λmis. (IA28)

From expressions (IA27) and (IA28), we obtain

bcan ′
+ = (−λcan ′Vfcan + λmis ′V −1

fmisQ
′V −1
fcan)× (IKcan −QV −1

fmisQ
′V −1
fcan)−1,

bmis ′
+ = (−λmis ′Vfmis + λcan ′V −1

fcanQV
−1
fmis)× (IKmis −Q′V −1

fcanQV
−1
fmis)

−1.

Next, we use the condition that the SDF prices the N basis assets and Lemma IA.3.1

to derive:

c′+ = −a′V −1
e .

Finally, the last identification condition implies

1

Rf
= E(Mexp,t+1)

= E(exp(µ+ + bcan ′
+ (f can

t+1 − E(f can
t+1)) + bmis ′

+ (fmis
t+1 − E(fmis

t+1)) + c′+et+1))

= exp (µ+ + (bcan
+ + V −1

fcanQb
mis
+ )′Vfcan(bcan

+ + V −1
fcanQb

mis
+ )/2 + bmis ′

+ Vfmisbmis
+ /2 + c′+Vec+/2)

= exp(µ+ + bcan ′
+ Vfcanbcan

+ /2 + bmis ′
+ Vfmisbmis

+ /2 + a′V −1
e a/2 + bcan ′

+ Qbmis
+ ).

In the last equation, we use Vfmis = Q′V −1
fcanQ+ Vf̃mis , where f can

t+1 and f̃mis
t+1 are orthogonal,

and c′ = −a′V −1
e . As a result,

exp(µ+) = R−1
f × exp(−bcan ′

+ Vfcanbcan
+ /2− bmis ′

+ Vfmisbmis
+ /2− a′V −1

e a/2− bcan ′
+ Qbmis

+ ). �

Next, let us introduce the projection version of the SDF Mexp,t+1. First, note that it is

convenient to express Mexp,t+1 as

Mexp,t+1 =
1

Rf
× exp (mt+1 −

1

2
m) (IA29)
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=
1

Rf
× exp (mβ,can

t+1 +mβ,mis
t+1 +ma

t+1 −
1

2
mβ,can − 1

2
mβ,mis − 1

2
ma),

where

mt+1 = mβ,can
t+1 +mβ,mis

t+1 +ma
t+1,

m = mβ,can +mβ,mis +ma,

mβ,can
t+1 = bcan ′

+ (f can
t+1 − E(f can

t+1)),

mβ,mis
t+1 = bmis ′

+ (fmis
t+1 − E(fmis

t+1)),

ma
t+1 = −a′V −1

e et+1,

mβ,can = bcan ′
+ Vfcanbcan

+ + bcan ′
+ Qbmis

+ ,

mβ,mis = bmis ′
+ Vfmisbmis

+ + bcan ′
+ Qbmis

+ ,

ma = a′V −1
e a.

Second, set Xt+1 = Rt+1 − Rf1N − µ with µ = E(Rt+1 − Rf1N ), ft = (f can ′
t , fmis ′

t )′, and

β = (βcan, βmis) and notice that VR = βV β′ + Ve with V =

(
Vfcan Q
Q′ Vfmis

)
.

Finally, define the projected non-negative SDF as

M̂exp,t+1 =
1

Rf
× exp

(
m̂t+1 −

1

2
m̂

)
, where (IA30)

m̂t+1 = E(mt+1X
′
t+1)E(Xt+1X

′
t+1)−1Xt+1,

m̂ =
1

2
V ar(m̂t+1).

Thus,

m̂t+1 = m̂β,can
t+1 + m̂β,mis

t+1 + m̂a
t+1 and m̂ = m̂β,can + m̂β,mis + m̂a, where

m̂β,can
t+1 = bcan ′

+ (Vfcanβcan ′ +Qβmis ′)V −1
R Xt+1 = bcan ′

+ (Vfcan , Q)β′V −1
R Xt+1,

m̂β,mis
t+1 = bmis ′

+ (Q′βcan ′ + Vfmisβmis ′)V −1
R Xt+1 = bmis ′

+ (Q′, V mis
f )β′V −1

R Xt+1,

m̂a
t+1 = c′+VeV

−1
R Xt+1,

m̂β,can = bcan ′
+ (Vfcan , Q)β′V −1

R β(Vfcan , Q)′bcan
+ + bcan ′

+ (Vfcan , Q)β′V −1
R β(Q′, Vfmis)′bmis

+ ,

m̂β,mis = bmis ′
+ (Q′, Vfmis)β′V −1

R β(Q′, Vfmis)′bmis
+ + bcan ′

+ (Vfcan , Q)β′V −1
R β(Q′, Vfmis)′bmis

+ ,

m̂a = c′+VeV
−1
R Vec+.

Proposition IA.8.8 (Asymptotic Properties of the SDF Projections: Correlated Case).

Under the assumptions of Proposition IA.4.1, as N →∞, Mexp,t+1 and M̂exp,t+1 of (IA29)

and (IA30) satisfy

M̂exp,t+1 −Mexp,t+1
p−→ 0.
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Proof: We have, as N →∞,

c′+VeV
−1
R et+1 − c′+et+1

p−→ 0,

β′VeV
−1
R c+ −→ 0Kcan+Kmis ,

β′V −1
R et+1

p−→ 0Kcan+Kmis ,

β′V −1
R β −→ V −1

f ,

and therefore,

m̂β,can
t+1 = bcan ′

+ (Vfcan , Q)β′V −1
R Xt+1

p−→ bcan ′
+ (Vfcan , Q)V −1(ft+1 − E(ft+1))

= bcan ′
+ (IKcan , OKcan)(ft+1 − E(ft+1)) = bcan ′

+ (f can
t+1 − E(f can

t+1)), (IA31)

and

m̂β,mis
t+1 = bmis ′

+ (Q, Vfmis)β′V −1
R Xt+1

p−→ bmis ′
+ (Q′, Vfcan)V −1(ft+1 − E(ft+1))

= bmis ′
+ (OKmis , IKmis)(ft+1 − E(ft+1)) = bmis ′

+ (fmis
t+1 − E(fmis

t+1)). (IA32)

Given that β′VeV
−1
R c+ −→ 0Kcan+Kmis and c′+VeV

−1
R et+1 − c′+et+1

p−→ 0, as N →∞, then

c′+VeV
−1
R Xt+1 − c′+et+1

p−→ 0, as N →∞. (IA33)

As a result, expressions (IA31), (IA32), and (IA33) imply that

m̂t+1 −mt+1
p−→ 0, as N →∞, (IA34)

Similarly, the result that, as N →∞, β′V −1
R β −→ V −1

f , implies that

m̂β can−→bcan ′
+ Vfcanbcan

+ + bcan ′
+ Qbmis

+ = mβ,can, as N →∞, and (IA35)

m̂βmis−→bmis ′
+ Vfmisbmis

+ + bcan ′
+ Qbmis

+ = mβ,mis, as N →∞. (IA36)

Notice that

m̂a = c′+VeV
−1
R Vec+ = a′V −1

e VeV
−1
R VeV

−1
e a = a′V −1

R a

and recall that the proof of Proposition IA.4.1 shows that a′V −1
R a − a′V −1

e a −→ 0, as

N →∞, which implies that

m̂a −ma −→ 0, as N →∞, (IA37)

Expressions (IA35), (IA36), and (IA37) imply that

m̂−m −→ 0, as N →∞. (IA38)

From the results in expressions (IA34) and (IA38), we obtain

M̂exp,t+1 −Mexp,t+1
p−→ 0, as N →∞. �

Remark: Note that because f can
t+1 are observable factors, in empirical work, we may use the

exact component mβ,can
t+1 +mβ,can rather than its projected counterpart m̂β,can

t+1 + m̂β,can.
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IA.9 Data description

To examine which economic variables may explain variation in the SDF, we collect the

returns on a set of 457 trading strategies and 103 macroeconomic and financial indicators.

The set of trading strategies includes:

• 205 strategies from Chen and Zimmermann (2022).

• 153 strategies in the Global Factor Dataset from Jensen et al. (2022).

• 55 strategies from Kozak et al. (2020).

• 35 strategies from Bryzgalova et al. (2023). The sources of these strategies are specified

in their Internet Appendix. Their dataset includes 34 trading strategies, but we

consider two versions of the size strategy, one from Fama and French (1993) and the

other from Fama and French (2015).

• We add the following nine strategies:

– Industry-adjusted value, momentum, and profitability factors; intra-industry

value, momentum, and profitability factors; profitable-minus-unprofitable factor

from Novy-Marx (2013), available from http://rnm.simon.rochester.edu.

– Expected-growth factor of Hou et al. (2021), available from https://global-q.

org/index.html.

– Up-minus-down (UMD) factor from the AQR data library, available from https:

//www.aqr.com/Insights/Datasets.

The set of macroeconomic and financial indicators includes:

• 53 variables constructed from 17 variables from Bryzgalova et al. (2023). Below we

explain how we get to 53 variables.

– For indices of financial uncertainty, real uncertainty, and macroeconomic uncer-

tainty, we consider time horizons of 1, 3, and 12 months. We use these variables

in levels and consider their AR(1) innovations, for a total of 18 variables.

– For the investor-sentiment measures of Baker and Wurgler (2006) and Huang

et al. (2015), labeled as BW INV SENT and HJTZ INV SENT, respectively, we

consider both the orthogonalized and non-orthogonalized versions. We use these

variables in levels and consider AR(1) innovations of these variables for a total

of 8 variables.
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– For other persistent variables, such as the term spread (TERM), change in the

difference between a 10-year Treasury bond yield and a 3-month Treasury bill

yield (DELTA SLOPE), credit spread (CREDIT), dividend yield (DIV), price-

earnings ratio (PE), unemployment rate (UNRATE), the growth rate of indus-

trial production (IND PROD), the monthly growth rate of the Producer Price

Index for Crude Petroleum (OIL), we look at both levels and first-order differ-

ences, for a total of 16 variables.

– Real per capita consumption growth on nondurable goods and services separately

and jointly. We also include the 3-year consumption growth (nondurable goods

and services) and its AR(1) innovations, for a total of 5 variables.

– Inflation, computed as the log-difference in the price index for both nondurable

goods and services and its AR(1) innovations, for a total of 2 variables.

– The level of the intermediary-capital ratio and its innovations, for a total of 2

variables.

– The level of the aggregate liquidity factor and its innovations.

• The first 3 principal components and their VAR(1) innovations for the 279 macroeco-

nomic variables from Jurado et al. (2015), for a total of 6 variables.

• The first eight principal components and their VAR(1) innovations for the 128 macroe-

conomic variables from the FRED-MD dataset of McCracken and Ng (2016), gives a

total of 16 variables. We obtain these macro variables from https://research.

stlouisfed.org/econ/mccracken/fred-databases and use the data vintage for

February 2021. We exclude four variables, ACOGNO, ANDENOx, TWEXAFEGSMTHx,

and UMCSENT, which have missing observations at the start of the sample.

• Consumer sentiment and its first-order differences.

• The market-dislocation index of Pasquariello (2014), its first-order differences, and

AR(1) innovations.

• The disagreement index of Huang, Li, and Wang (2021) and its first-order differences.

• The Chicago Board Options Exchange (CBOE) volatility index (VIX) available on

the website of the CBOE, its first-order differences, and AR(1) innovations.

• The U.S. economic policy uncertainty index (EPU) of Baker, Bloom, and Davis (2016)

and the equity market volatility (EMV) tracker of Baker, Bloom, Davis, and Kost

(2019), which are available from www.policyuncertainty.com. For both indices, we

also consider their first-order differences and AR(1) innovations.
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• The U.S. business-confidence index, the U.S. consumer-confidence index, and the U.S.

composite leading indicator from the OECD library.

• The coincident economic-activity index and its first-order differences from https:

//fred.stlouisfed.org/series/USPHCI.

• The NBER recession index from https://fred.stlouisfed.org/series/USREC.

• The TED spread from https://fred.stlouisfed.org/series/TEDRATE.

• The effective federal funds rate and the real federal funds rate from https://fred.

stlouisfed.org/series/FEDFUNDS.

• The credit-spread index (Gilchrist and Zakraǰsek, 2012) and its first order differences.

• The Chicago Fed National Financial Condition Index from https://fred.stlouisfed.

org/series/NFCI.
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IA.10 Additional Tables

This section contains additional tables supporting the interpretation of our empirical results

described in the manuscript.

Table IA.1: The APT-implied SDF and observable variables
This table reports the explanatory power of the selected variables for the unsystematic (Panel A)
and systematic (Panel B) components of the APT-implied SDF.

R2(%) p-value

Panel A: log(Ma
exp,t+1)

NBER recession indicator 0.18 0.27
Intermediary constraints (He et al., 2017) 2.71 0.00
Sentiment index (Baker and Wurgler, 2006) 2.60 0.00
Sentiment index (Huang et al., 2015) 3.41 0.00
Shocks in credit spread (Gilchrist and Zakraǰsek, 2012) 1.92 0.00
Shocks in VIX 2.24 0.00

Panel B: log(Mβ
exp,t+1)

NBER recession indicator 0.76 0.02
Chicago Fed National Financial Condition Index 2.64 0.00
Intermediary constraints (He et al., 2017) 55.15 0.00
Shocks in aggregate liquidity (Pástor and Stambaugh, 2003) 11.12 0.00
Shocks in credit spread (Gilchrist and Zakraǰsek, 2012) 13.79 0.00
Shocks in dividend yield (Campbell, 1996) 40.39 0.00
Shocks in financial uncertainty (Jurado et al., 2015) 11.09 0.00
Shocks in VIX 54.32 0.00
TED spread 4.39 0.00
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IA.11 Additional Figures

This section contains additional figures supporting the interpretation of our empirical results

described in the manuscript.

Figure IA.1: APT model selection: Cross-validation vs. in-sample
This figure illustrates how the HJ distance changes with the key parameters of the APT model,
K and δapt. The top panel, which is the same as Figure 1 in the main text, shows the results
of the cross-validation exercise for different combinations of K and δapt. We split the sample into
ten folds and estimate the model on all but one fold, which we use for validation. We repeat this
procedure ten times and compute the HJ distance on the validation folds. The bottom panel shows
the results when the model is estimated on the full sample. The numbers reported in the two plots
are (δapt,HJ distance). The HJ distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1−Rf1N )) is a vector
of pricing errors and W is the inverse of the second-order moment matrix of asset returns.
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The top panel of Figure IA.1, which is the same as Figure 1 in the main text, shows

how the HJ distance of the APT model, which is evaluated on the validation folds of the
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cross-validation procedure, changes as we use different K and δapt in the estimation. The

bottom panel of Figure IA.1 shows how the HJ distance of the APT model changes as we

use different K and δapt in the estimation on the full sample.

The bottom panel shows that if we were to naively choose K and δapt based on an in-

sample analysis instead of cross-validation, we would have selected much larger values for

these parameters. This is because the larger number of factors K fits better the in-sample

covariance matrix of returns, while the larger δapt fits better the in-sample cross-sectional

variation in expected excess returns. However, choosing K and δapt based on in-sample fit

leads to overfitting and, consequently, an inferior fit of asset returns out-of-sample.
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Figure IA.2: Spanning the unsystematic SDF component

The blue curve shows the R2 (left axis) of 325 regressions of log(M̂a
exp,t+1) on the returns of trad-

ing strategies that are available for the entire sample. The first regression includes the return on
the trading strategy that explains the most variation in log(M̂a

exp,t+1); each subsequent regression
includes the return on an extra trading strategy that adds the most to explaining the variation in
log(M̂a

exp,t+1). The red curve shows the value of the Bayesian Information Criteria (BIC) (right
axis) associated with these regressions. The minimal BIC= −552.86 is for the regression with 39
explanatory variables; the associated R2 = 66.45%.
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Figure IA.3: Correcting the CAPM

This figure illustrates how the HJ distance changes with Kmis and δapt when we correct for misspec-
ification the candidate model, which includes only the market return as a systematic factor. The
top panel shows the results of the cross-validation exercise for different combinations of Kmis and
δapt. We split the sample into ten folds and estimate the model on all but one fold, which we use
for validation. We repeat this procedure ten times and compute the HJ distance on the validation
folds. The bottom panel shows the results for the full sample. The numbers reported in the two
plots are (δapt,HJ distance). The HJ distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 − Rf1N )) is
a vector of pricing errors, W is the inverse of the second-order moment matrix of asset returns, and
M̂exp,t+1 is the SDF implied by the CAPM (brown triangle in the bottom panel) or the corrected
SDFs for different values of Kmis and δapt.

(0.0529, 0.42)

Kmis =  1  
Kmis =  2  
Kmis =  3  0.

0
0.

5
1.

0
1.

5
H

J 
di

st
an

ce
 (

C
V

10
)

(0.0529, 0.34)

(0, 0.6)
Kmis =  4  
Kmis =  5  
CAPM

0.00 0.05 0.10 0.15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

δapt

H
J 

di
st

an
ce

 (
in

−
sa

m
pl

e)

Page 45: Internet Appendix



Figure IA.4: Time-series behavior of the corrected SDF and its components
when the candidate model is the CAPM
This figure has four panels, which show the dynamics of the corrected SDF, M̂exp,t+1 and its three

components: the unsystematic component M̂a
exp,t+1, the component M̂β,can

exp,t+1 corresponding to the

candidate model with the market factor, and the missing systematic component M̂β,mis
exp,t+1. Gray

bars indicate NBER recession periods.
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Figure IA.5: Pricing errors in the candidate and corrected CAPM
The red dots in this figure indicate the annualized pricing errors for the 202 basis assets using
the CAPM as the candidate model. The blue dots indicate the annualizes pricing errors using the
corrected CAPM.
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Figure IA.6: Correcting the C-CAPM

This figure illustrates how the HJ distance changes with Kmis and δapt when we correct for mis-
specification the candidate model, which includes only the return on the consumption-mimicking
portfolio of Breeden et al. (1989) as a systematic factor. The top panel shows the results of the
cross-validation exercise for different combinations of Kmis and δapt. We split the sample into ten
folds and estimate the model on all but one fold, which we use for validation. We repeat this proce-
dure ten times and compute the HJ distance on the validation folds. The bottom panel shows the
results for the full sample. The numbers reported in the two plots are (δapt,HJ distance). The HJ

distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 − Rf1N )) is a vector of pricing errors, W is the

inverse of the second-order moment matrix of asset returns, and M̂exp,t+1 is the SDF implied by the
C-CAPM (brown triangle in the bottom panel) or the corrected SDFs with different values of Kmis

and δapt.
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Figure IA.7: Time-series behavior of the corrected SDF and its components
when the candidate model is the C-CAPM
This figure has four panels, which show the dynamics of the corrected SDF M̂exp,t+1 and its three

components: the unsystematic component M̂a
exp,t+1, the component M̂β,can

exp,t+1 corresponding to the
candidate model with the consumption mimicking portfolio as the sole factor, and the missing
systematic component M̂β,mis

exp,t+1. Gray bars indicate NBER recession periods.
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Figure IA.8: Correcting the FF3

This figure illustrates how the HJ distance changes with Kmis and δapt when we correct for mis-
specification the three-factor model of Fama and French (1993). The top panel shows the results of
the cross-validation exercise for different combinations of Kmis and δapt. We split the sample into
ten folds and estimate the model on all but one fold, which we use for validation. We repeat this
procedure ten times and compute the HJ distance on the validation folds. The bottom panel shows
the results for the full sample. The numbers reported in the two plots are (δapt,HJ distance). The

HJ distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 −Rf1N )) is a vector of pricing errors, W is the

inverse of the second-order moment matrix of asset returns, and M̂exp,t+1 is the SDF implied by
the FF3 model (brown triangle in the bottom panel) or the corrected SDFs with different values of
Kmis and δapt.
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Figure IA.9: Time-series behavior of the corrected SDF and its components
when the candidate model is FF3
This figure has four panels, which show the dynamics of the corrected SDF, M̂exp,t+1 and its three

components: the unsystematic component M̂a
exp,t+1, the component M̂β,can

exp,t+1 corresponding to the

candidate FF3 model, and the missing systematic component M̂β,mis
exp,t+1. Gray bars indicate NBER

recession periods.
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Figure IA.10: Pricing errors in the candidate and corrected FF3 model
The red dots in this figure indicate the annualized pricing errors for the 202 basis assets when using
the candidate FF3 model. The blue dots indicate the annualized pricing errors using the corrected
FF3 model.
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Figure IA.11: APT model selection on the KNS daily dataset
This figure illustrates how the HJ distance changes with the key parameters of the APT model, K
and δapt. The top panel shows the results of the cross-validation exercise for different combinations of
K and δapt. We split the sample into ten folds and estimate the model on all but one fold, which we
use for validation. We repeat this procedure ten times and compute the HJ distance on the validation
folds. The bottom panel shows the results for the full sample. The numbers reported in the two
plots are (δapt,HJ distance). The HJ distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 − Rf1N )) is
a vector of pricing errors and W is the inverse of the second-order moment matrix of asset returns.
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Figure IA.12: APT model selection on the KNS monthly dataset
This figure illustrates how the HJ distance changes with the key parameters of the APT model, K
and δapt. The top panel shows the results of the cross-validation exercise for different combinations of
K and δapt. We split the sample into ten folds and estimate the model on all but one fold, which we
use for validation. We repeat this procedure ten times and compute the HJ distance on the validation
folds. The bottom panel shows the results for the full sample. The numbers reported in the two
plots are (δapt,HJ distance). The HJ distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 − Rf1N )) is
a vector of pricing errors and W is the inverse of the second-order moment matrix of asset returns.
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Figure IA.13: APT model selection on the LP monthly dataset
This figure illustrates how the HJ distance changes with the key parameters of the APT model, K
and δapt. The top panel shows the results of the cross-validation exercise for different combinations of
K and δapt. We split the sample into ten folds and estimate the model on all but one fold, which we
use for validation. We repeat this procedure ten times and compute the HJ distance on the validation
folds. The bottom panel shows the results for the full sample. The numbers reported in the two
plots are (δapt,HJ distance). The HJ distance is p′eWpe, where pe = E(M̂exp,t+1(Rt+1 − Rf1N )) is
a vector of pricing errors and W is the inverse of the second-order moment matrix of asset returns.

(0.2401, 0.12)

K =  1  
K =  2  
K =  3  0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
H

J 
di

st
an

ce
 (

C
V

10
)

(0.2401, 0.08)

K =  4  
K =  5  

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

δapt

H
J 

di
st

an
ce

 (
in

−
sa

m
pl

e)

Page 55: Internet Appendix



Figure IA.14: Correcting the SDF based on Kozak et al. (2020)

This figure illustrates how the HJ distance changes with Kmis and δapt when we correct for misspec-
ification the model of Kozak et al. (2020). The top panel shows the results of the cross-validation
exercise for different combinations of Kmis and δapt. We split the sample into ten folds and estimate
the model on all but one fold, which we use for validation. We repeat this procedure ten times
and compute the HJ distance on the validation folds. The bottom panel shows the results for the
full sample. The numbers reported in the two plots are (δapt,HJ distance). The HJ distance is

p′eWpe, where pe = E(M̂exp,t+1(Rt+1 −Rf1N )) is a vector of pricing errors, W is the inverse of the

second-order moment matrix of asset returns, and M̂exp,t+1 is the SDF based on Kozak et al. (2020)
(brown triangle in the bottom panel) or the corrected SDFs with different values of Kmis and δapt.
The SDFs are estimated on the original daily data used in Kozak et al. (2020).
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Figure IA.15: Correcting the RP-PCA SDF based on Lettau and Pelger (2020)

This figure illustrates how the HJ distance changes with Kmis and δapt when we correct for misspecifi-
cation the model of Lettau and Pelger (2020). The top panel shows the results of the cross-validation
exercise for different combinations of Kmis and δapt. We split the sample into ten folds and estimate
the model on all but one fold, which we use for validation. We repeat this procedure ten times
and compute the HJ distance on the validation folds. The bottom panel shows the results for the
full sample. The numbers reported in the two plots are (δapt,HJ distance). The HJ distance is

p′eWpe, where pe = E(M̂exp,t+1(Rt+1 −Rf1N )) is a vector of pricing errors, W is the inverse of the
second-order moment matrix of asset returns, and Mexp,t+1 is the SDF based on Lettau and Pelger
(2020) (brown triangle in the bottom panel) or the corrected SDFs with different values of Kmis and
δapt. The SDFs are estimated on the daily data used in Lettau and Pelger (2020).
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