Innovations and Inequities in Access to Medical Services*

Alex Hoagland†

July 9, 2024

Abstract

Improving returns on health spending requires balancing tradeoffs between promoting innovative treatments and equitable access to care. In addition to being cost-prohibitive, innovations may reduce availability of older services, an understudied source of inequity. I propose a model of surgical specialization with productivity spillovers to study these effects. When innovations compete for inputs to other procedures, total access to care drops, causing some patients to forego care altogether. This crowd-out may be inequitably borne across patient groups or markets. I apply the model to aortic valve replacement and support interventions, showing that innovation reduced intervention volumes, particularly for patients of marginalized groups.

Keywords: Innovation Diffusion, Health Inequities

JEL codes: I12, I14, O30, D63

*I am grateful to Corinne Andriola, Carolina Arteaga, Heski Bar-Isaac, Kristen Blair, Nathaniel Breg, Marshall Drake, Randall Ellis, Andrew Friedson, Tal Gross, Jihye Jeon, Timothy Layton, Ashvin Pande, Marc Rysman, and Jeffrey Siracuse, as well as participants at seminars at the National Bureau of Economic Research Summer Institute, Boston University, Brigham Young University, and the University of Toronto for useful feedback. I am also grateful to seminar participants from the 12th Annual Conference of the American Society of Health Economists, the ASSA 2023 Annual Meeting, and the Canadian Economics Association (CEA) 2024 Annual Meeting for their comments on the paper.

†University of Toronto, Institute of Health Policy, Management, and Evaluation, 155 College St, Toronto, Ontario, Canada, M5T 3M6. Email: alexander.hoagland@utoronto.ca. Website: alex-hoagland.github.io.
1 Introduction

Improving the quality of medical treatments has immense economic and social value, through
returns from improved health and insurance value from reduced population risk (Murphy
and Topel, 2006; Lakdawalla et al., 2017). Developing and disseminating novel medical
technologies is a promising way to improve the return on high levels of health spending in
developed countries (Cutler et al., 2007). However, novel technologies may exacerbate health
inequities, which have affected marginalized individuals across socioeconomic status, race,
and ethnicity—among others—for over two centuries (Adler and Rehkopf, 2008).

Novel interventions, which are typically high-cost, can be inaccessible to lower-income
individuals immediately following adoption, generating well-documented financial barriers
to care (Hoagland and Kipping, 2024; Arcaya and Figueroa, 2017). In addition, innovations
create indirect effects which affect access to other, older technologies; these effects vary
based on the characteristics of the innovating technology. On the one hand, technological
advancements may expand access to earlier, now cheaper, generations of a technology. For
example, innovation in durable goods markets—such as MRI machines—may reduce the price
of older models and subsequently, barriers to access (Gowrisankaran and Rysman, 2012). On
the other hand, innovations that instead inhibit availability of older technologies may reduce
overall access insofar as they compete for scarce inputs; for example, capacity-constrained
physicians with limited availability post-adoption (Gandhi, 2023; Kalouptsidi, 2014).

Importantly, scarcity-driven inequities may result in reduced overall access to both old
and new technologies, resulting from a confluence of two mechanisms. First, hyper-specialized
physicians facing innovation become more selective in performing older procedures. Second,
if physicians benefit from specialization, reduced availability may be compounded by a loss
of skill, leading to volume reductions for older techniques that outpace innovation take-up.1
This may result in some patients losing access to specialized treatment entirely, with unique
impacts on equitable access to healthcare. To ensure procedural innovations maximize social
welfare gains, it is important to understand under what conditions these inequities arise and
how severe their effects might be.

I present a model of physician decision-making characterizing these effects. Physicians
select one of three treatments for patients: two interventions of different intensity (in the
empirical setting, a high-intensity aortic valve replacement or a lower-intensity aortic valve
support procedure), and standard maintenance care. The model incorporates technological
spillovers, meaning treatment returns increase with volume (Chandra and Staiger, 2007).

1“Hyper-specializing” may allow hospitals and medical professionals to achieve higher-quality outcomes (Clarify Health Institute, 2023).
Innovations increasing returns to high-intensity procedures change decision-making along two margins. First, some intermediate-risk patients are sorted into higher-intensity interventions, decreasing the use of lower-intensity procedures and corresponding returns for “inframarginal” patients continuing to receive them. Second—and more surprising—reduced returns result in some high-risk patients no longer receiving any intervention at all.

The model’s central insight is that extensive margin changes may inequitably affect some patient groups. Inequitable crowd-out may arise directly—because different groups have different surgical appropriateness—or indirectly—because risk is imperfectly observed across groups. Studying this crowd-out highlights that in settings where a substantial fraction of patients cannot immediately access interventions, incorrect or biased perceptions of risk may make some groups less likely to receive care, independent of underlying need. An innovation’s effects on total availability may further exacerbate these differences.

I empirically test these predictions using the dissemination of transcatheter aortic valve replacement (TAVR) procedures in the US. TAVR is a minimally invasive and cost-effective alternative to open-heart surgery treating aortic stenosis; importantly, TAVR expanded both supply and demand for valve replacements, as it is performed by interventional cardiologists (instead of only cardiothoracic surgeons) and is appropriate for patients deemed too high-risk for traditional open-heart surgery. Hence, I use TAVR’s adoption in a local market as a shock to the high-intensity intervention in the model. TAVR’s adoption has been used previously to study physician learning and centralized access to innovations (Yang, 2023) and hospital- and market-level adoption decisions (Huckman and Stern, 2022; League, 2023).

I estimate how adoption affected the availability of lower-intensity procedures, focusing on the provision of valve support interventions (percutaneous coronary interventions, or PCIs). Although adjacent to—not replaced by—TAVR, I observe the provision of PCIs falls dramatically following adoption, causing total procedural volume to decline. This validates the model predictions: patients foregoing care are higher risk—on the margin between selecting into treatment interventions at all—and inequitable differences are observed both within and across markets. TAVR’s impact on total intervention volume is most pronounced for markets with greater health deprivation or a greater share of nonwhite patients; additionally, even within a market, patients living in more disadvantaged zip codes or who are dual eligible are more likely to lose access to care. Importantly, inequitable crowdout is associated with poorer outcomes for patients; following adoption, more PCIs are precipitated by acute cardiac events, and more PCI patients experience cardiac events post-procedure.

The model and empirical findings fit into a discussion of the potentially unequal impact of technological change (Skinner and Staiger, 2015). Although much of this discussion studies skilled-biased innovations in the factor market (Violante, 2008; Acemoglu and Restrepo,
recent work explores innovation’s impacts on product markets, arguing the endogenous direction of innovation results in products aimed at higher-income households (Faber and Fally, 2022; Jaravel, 2019). This directed technological change is also prevalent in healthcare, where market size and patient incomes drive entry decisions for pharmaceuticals and funding for clinical trials (Acemoglu and Linn, 2004; Moradpour and Hollis, 2020). The flow of health innovations is also sensitive to market features such as drug coverage (Agha et al., 2022), procurement environments (Clemens and Rogers, 2020), and tax incentives (Gamba et al., 2021; Yin, 2008). My work highlights the previously overlooked spillover effects of such directed technological change on equitable access to adjacent technologies and specialty care more broadly, similar to the study of spillovers from medical innovations within a disease category (Callison et al., 2023). The inequities I identify arise when economies of scale cause an innovation shock in one sector to affect technological returns in another, reducing patient welfare in possibly unequal ways. Finally, my work is related to a broader discussion on how physicians respond to medical innovation (DeCicca et al., 2024).

I present the first theoretical framework for considering equity impacts of health innovations, contributing to literature on both health innovation and equity. Recent work has explored policies to equitably improve access to high-value services through physician payments (Kaarboe and Siciliani, 2023) or limiting geographic variation in service provision (Chandra et al., 2022). I argue technological advancement contributes to these disparities, modeling responses to susceptible innovations and identifying policy prescriptions.

Health disparities have increased in recent years, with some groups even experiencing disproportionate decreases in life expectancy (Case and Deaton, 2015; Olshansky et al., 2012). This paper highlights that procedural innovations are not guaranteed to improve access, with inequities potentially spilling over into adjacent services; this is related to previous work studying the spillover effects of health events (Fadlon and Nielsen, 2019; Hoagland, 2024), as well as work studying how hospital procedural decisions may differ on the basis of race (Singh and Venkataramani, 2024). Policymakers aiming to improve equitable access to innovative care may widen their focus beyond accessing innovations alone, considering also broader protections to limit unintended spillovers. Rather than reducing or regulating the flow of welfare-improving innovations, policies supporting appropriate infrastructure to scale up an innovation without crowding out older procedures may limit these effects, particularly in the short run. For example, promoting thicker markets for interventional cardiologists or investments in catheterization labs may have helped to offset the spillover effects of TAVR’s adoption.

Using TAVR as a case study underscores that inequities arise primarily when innovations compete with older technologies for scarce inputs. These results are therefore generalizable
to a broader class of innovations, including procedural healthcare innovations, which are understudied relative to pharmaceutical developments (Dranove et al., 2022; Trajtenberg, 1989). However, results may also apply to a more expansive set of innovations, such as developments in education (Biasi et al., 2021; Biasi and Ma, 2022). Finally, my work is related to discussion of identification of treatment effects across multiple margins of impact (Mountjoy, 2022).

2 Setting and Data

2.1 Adoption of TAVR

Aortic stenosis is a serious condition affecting 1.5 million people in the US; untreated, its 5-year survival rate is roughly 20% (Rosalia et al., 2023). It is the most common heart valve condition and the third most common cardiovascular disease (after hypertension and coronary artery disease) in the world. Subsequently, more than 80,000 surgical aortic valve replacements (SAVRs) were performed annually in the US prior to TAVR’s adoption. During this procedure, a cardiothoracic surgeon removes the damaged or diseased aortic valve in an open heart surgical procedure, and installs a new valve.

TAVR is a minimally-invasive alternative to SAVR, which allows for transfemoral placement of an expandable valve instead of open-heart surgery. Numerous randomized trials have indicated that TAVR is noninferior among patients at intermediate or high risk for mortality from SAVR (Leon et al., 2016) and, subsequently, low-risk patients (Mack et al., 2019). The first TAVR device (Edwards-SAPIEN) received approval from the Food and Drug Administration for high-risk patients in November 2011 (Dvir et al., 2012); over time, TAVR’s use has expanded to include lower-risk patients, outpacing SAVR as the leading surgical approach in 2017 (D’Agostino et al., 2018). Conditional on risk, TAVR is considered a cost-effective alternative to SAVR (Baron et al., 2019). However, important access gaps persist, with fewer than half of patients needing a valve replacement receiving them (Li et al., 2022).

The adoption of TAVR is ideal for studying the potentially unequal impacts of innovation for two reasons. First, TAVR was market-expanding: the median number of valve replacements in the US increased by one-third following adoption, with the number of operating surgeons nearly doubling (Appendix Table A.1). This increase in the total addressable mar-

2For example, recent work considers detrimental effects of broadband internet in primary schools (Belo et al., 2014), noting that technology is not equitably accessible (Supovitz and Manghani, 2022; Bacher-Hicks et al., 2021). If innovations in classrooms directly compete for other resources—e.g., teacher attention—expanded internet-based learning may inequitably disrupt student learning.
ket provided incentives for physicians to alter practice styles, similar to expansions of PCIs in the 1990s (Cutler and Huckman, 2003).

Second, TAVR disrupted the supply of valve replacement surgeries and procedures: whereas SAVR could be performed only by cardiothoracic surgeons, TAVR is performed by a team of surgeons and interventional cardiologists (Adams et al., 2014). Importantly, these two specialists receive differentiated training: after residency, interventional cardiologists complete three years of cardiology fellowship and an additional year specific to interventional cardiology, while cardiac surgeons complete six to seven years of cardiothoracic surgery fellowships (Huckman and Stern, 2022). These unique training paths allow surgeons to hyper-specialize in different approaches at the expense of other skills. By 2017, 20% of TAVRs were performed by interventional cardiologists (Appendix Figure A.1), highlighting the comparative advantages of the two interventions (Breg, 2022).

2.2 Data

I assess the impact of TAVR adoption for traditional Medicare patients seeking cardiology care using fee-for-service (FFS) claims data from 2010 to 2017. Specifically, I use the 100% Inpatient Claims and Medicare Data on Provider Practice and Specialty (MD-PPAS) files as well as the 20% Carrier files to identify patients receiving interventional cardiovascular care and valve replacements, as well as information on the patients, providers, and local markets in which they reside. This data also provides information on patient risk and demographic information including race, sex, dual eligibility, area-level disadvantage scores, and risk score (Ellis et al., 2022).4

Healthcare Market Definitions. I define local markets at the commuting zone (CZ) level. CZs are geographically contiguous groups of counties within which residents typically commute (for example, to work), and are constructed based on Census commuting flow data. I assign CZs based on patient residence available in the 100% Beneficiary Summary file, to avoid problems of market definitions should patients travel to another market to receive a preferred procedure (Dingel et al., 2023). There are roughly 700 CZs commuting zones in the 2020 definition (Fowler et al., 2016); of these, 452 are included in my sample, as I require a market to perform at least 5 interventions annually. Similar work in this area has used commuting zones as reasonable definitions of local labor markets for hospitals and physicians (Prager and Schmitt, 2021; Rinz, 2018). Within each market, I define the timing of TAVR

3Note data excludes individuals enrolled in Medicare Advantage plans.
4Disadvantage scores are from the Neighborhood Atlas’ Area Deprivation Index, which ranks zip codes by socioeconomic disadvantage given income, education, employment, and housing quality (Kind and Buckingham, 2018).
adoption based on the first documented procedure in the CZ.

Patient Definitions. One concern with limiting attention only to inpatient claims is that increasingly, percutaneous coronary interventions may be performed in outpatient settings. In part, this was intended to reduce the costs of these procedures, with initiatives such as the Recovery Audit Program and the 2-midnight rule providing incentives to switch these procedures to outpatient settings in conjunction with fee changes for PCIs (Blankenship and Marshall, 2013). However, it wasn’t until after outcome differences were rigorously examined with the EXCEL trial—published in 2021, outside of my analytical sample—that this change began in earnest (Gaba et al., 2021).

To the extent that such transitions occur in conjunction with TAVR’s adoption, I may over-estimate declines in surgical volume because I do not observe the full set of PCIs performed outside of a hospital setting. To accommodate this concern, I perform additional analysis using the 20% Medicare enrollment sample, for whom I can observe the full set of claims including outpatient surgical procedures in the Carrier files. In general, there is no significant relationship between TAVR’s adoption and shifts to outpatient settings for PCI, providing reassuring evidence that the parallel trends assumption needed for identification is likely not violated. However, I report both market- and patient-level analysis as a robustness exercise.

For the 20% patient-level subsample, I include all observed patients in these files in the denominators of the main patient-level analyses, rather than attempt to limit attention to only patients who are candidates for the interventions I am considering. Identifying medically-managed patients with aortic stenosis who are candidates for surgical interventions is difficult given that aortic stenosis is a common condition among elderly patients, but typically is of minor severity. Hence, patients may not have aortic stenosis diagnostic information included on their outpatient claims in the Carrier file even though they have the condition, as it may be undiagnosed or superseded by other conditions (Chiang et al., 2016; Hoagland et al., 2024). Furthermore, many of the patients with aortic stenosis on their chart may not realistically be candidates for interventions, given that their condition is likely not severe enough to warrant the risks of a procedure. Despite these concerns, my results are robust to limiting patient-level denominators to patients with an observed aortic stenosis diagnosis in the Carrier file prior to interventions.\(^5\) My main sample includes 10,874,161 Medicare patients, of whom 1,343,580 have an aortic stenosis diagnosis and 6,780 receive a valve replacement or valve support intervention during the window of observation.\(^6\)

\(^5\)Aortic stenosis diagnoses are identified in the data using ICD-9 codes 395.0, 746.3, 396.2, and 424.1, and ICD-10 codes I06.0, I06.2, I35.0, and Q23.0.

\(^6\)Note that this is a prevalence rate of about 12.4%, roughly in line with estimated AS prevalence (Osnabrugge et al., 2013).
Procedure Definitions. I define both valve replacement procedures and valve support procedures, in keeping with the model setup. Valve replacement procedures include SAVR, the original open-heart surgical method to treat severe aortic stenosis; and TAVR, the innovative, minimally-invasive alternative. Valve support procedures include all valve-related cardiac procedures to treat aortic stenosis and other conditions for patients who are not candidates for valve replacement surgeries. The most common of these procedures are angioplasty (also referred to as percutaneous transluminal coronary angioplasty, or PTCA), coronary artery bypass grafting (CABG), and cardiac catheterization. Importantly, prior to TAVR’s adoption, these revascularization interventions were used either in combination with SAVR or as a lower-intensity alternative for patients too high-risk for open surgical replacements (Goel et al., 2012b). Appendix Table A.2 defines the relevant codes used to identify both valve replacements and valve supports. For market-level analysis, I restrict the relevant procedures to those performed by interventional cardiologists, in order to most closely match the predictions of the model; when performing analysis at the patient level, I include all procedures regardless of what surgical specialty performed them.

2.2.1 **Summary Statistics.**

Table 1 presents relevant summary information across the different procedures considered in the empirical exercise, including valve replacements and supports. Valve replacements are roughly four times costlier than valve support procedures, including for both SAVR and TAVR. Note that TAVR is performed on riskier patients than SAVR (a difference of 15.8%), but that the average PCI recipient is similarly riskier than the average valve replacement recipient (a difference of 14.5%). While TAVR is performed on riskier patients, it achieves comparable outcomes to SAVR—in terms of mortality and readmission—even in the first year of adoption. Aside from TAVR’s use on older patients (an average age of 82.8 years for TAVR compared to 78.6 years for SAVR), there are few other observable differences in patient demographics across valve replacements, during the year of innovation. In contrast, valve supports tend to be performed more on dual eligible and Black patients than SAVR or TAVR.
Panel A: Procedure Costs and Risks

<table>
<thead>
<tr>
<th></th>
<th>Valve Replacements</th>
<th>Valve Supports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SAVR</td>
</tr>
<tr>
<td>Billed Cost</td>
<td>$62,542</td>
<td>$65,999</td>
</tr>
<tr>
<td></td>
<td>($ 562)</td>
<td>($ 965)</td>
</tr>
<tr>
<td>Patient Risk</td>
<td>5.02</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Readmission</td>
<td>20.48</td>
<td>20.11</td>
</tr>
<tr>
<td></td>
<td>(0.790)</td>
<td>(1.193)</td>
</tr>
<tr>
<td>Mortality</td>
<td>5.02</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td>(0.427)</td>
<td>(0.652)</td>
</tr>
</tbody>
</table>

Panel B: Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Female</th>
<th>Black</th>
<th>Hispanic</th>
<th>Other Minority Race</th>
<th>Dual Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81.0</td>
<td>0.43</td>
<td>0.03</td>
<td>0.00</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.010)</td>
<td>(0.003)</td>
<td>(0.001)</td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>78.6</td>
<td>0.41</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td>(0.015)</td>
<td>(0.005)</td>
<td>(0.000)</td>
<td>(0.005)</td>
<td>(0.009)</td>
</tr>
<tr>
<td></td>
<td>82.8</td>
<td>0.45</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.013)</td>
<td>(0.004)</td>
<td>(0.000)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td>73.0</td>
<td>0.44</td>
<td>0.10</td>
<td>0.01</td>
<td>0.03</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td></td>
<td>72.5</td>
<td>0.39</td>
<td>0.07</td>
<td>0.01</td>
<td>0.03</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td></td>
<td>71.5</td>
<td>0.49</td>
<td>0.12</td>
<td>0.01</td>
<td>0.03</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>71.9</td>
<td>0.29</td>
<td>0.06</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.009)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Other Minority Race</th>
<th>Dual Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.009)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.009)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.009)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
</tbody>
</table>

Notes: Table shows summary statistics from relevant cardiology procedures from 2010–2017, with standard errors in parentheses. Means and counts are shown for the year of TAVR adoption (defined at the CZ level) to illustrate differences at the time of innovation. Cath. refers to cardiac catheterization. Patient risk is predicted using the STS-PROM model with 30-day mortality as the outcome; patient readmission and mortality rates are also reported at the 30-day level.

Table 1. Summary Statistics: Procedures

The table also highlights the inherent complexity of defining “alternative” treatments in
this context. Here, I use valve support procedures—including PTCA, CABG, and cardiac catheterization—as lower-intensity treatments compared to SAVR. This comparison is imperfect in several ways. First, not all of these treatments are directly used in treating aortic stenosis; many PCIs are performed for patients with stable or unstable angina or following an acute myocardial infarction (AMI) (Goel et al., 2012a). Some valve supports, such as balloon valvuloplasty, are integral procedures required in performing TAVR; balloon valvuloplasty or coronary angioplasty were also commonly-performed interventions to treat high-risk aortic stenosis patients. Throughout, I study a broad set of interventional cardiology procedures to capture overall shifts in accessibility of treatments beyond just aortic stenosis patients. Second, some valve support procedures are higher risk (and hence, costlier) than others, the clear example being CABG. In general, the set of all valve supports (of which CABG constitutes only 1.3%) is still used on lower-risk patients than SAVR, and with generally lower readmission and mortality risk. Finally, there may be evolving standards of care for performing these valve support procedures which are happening simultaneously with TAVR’s diffusion. For example, the 2007 COURAGE trial found that PCI did not reduce the risk of death, acute myocardial infarction (AMI) or major cardiovascular events for patients with stable coronary artery disease (CAD) (Boden et al., 2007). This is credited with sparking a gradual change in practice, reducing PCI use over the next several years (Almarzooq et al., 2021; Carpenter et al., 2022). I discuss the identification concerns surrounding these changes in PCI use in Section 4.

3 Model

Suppose there is a continuum of patients suffering from a single disease. Patients and physicians—acting jointly—can select from three possible treatments, indexed by $s \in \{0, 1, 2\}$: preventive maintenance ($s = 0$), low-intensity surgical interventions ($s = 1$), and high-intensity surgical interventions ($s = 2$). Empirically, $s = 2$ corresponds to valve replacements (SAVR/TAVR) while $s = 1$ corresponds to valve supports (PCIs).

A procedure’s patient-specific appropriateness depends on a risk index θ_{is} for patient i, s.

7Note that the model abstracts away from issues related to physicians as imperfect agents, assuming instead that the physician and patient act as a joint decision maker in determining care (Chandra et al., 2011).

8Chandra and Staiger (2007) use only two sectors—intervention and maintenance—and resulting spillovers. My model introduces vertically-differentiated interventions, with maintenance care as the outside option; although there are spillovers across all sectors, those between the surgical interventions are particularly salient. These spillovers arise because both interventions require surgeons to specialize differently, reducing capacity to perform all procedures.
where increasing θ_{is} indicates higher levels of predicted surgical risk. Hence, individuals with lower levels of θ_{is} receive more intensive treatment. The expected utility of a procedure U_{is} is given by

$$U_{is} = \beta_{is}\theta_{is} + \alpha_s P_s + \varepsilon_{is}, s \in \{0, 1, 2\},$$

(1)

where P_s represents the fraction of the population receiving treatment s and ε_{is} represents an idiosyncratic, unobserved shock affecting patient-procedure matches. Equation 1 incorporates productivity spillovers in the second term, in the style of Chandra and Staiger (2007); if $\alpha_s > 0$, increased local use of s improves average outcomes regardless of θ_{is}.

Given linear utility, patients’ treatment decisions can be characterized as two-way comparisons for any θ_{is}. To simplify these comparisons, I make the natural assumption that optimal treatment intensity is perfectly distributed across θ_{is}; this is equivalent to assuming the marginal utility of treatment with respect to risk is greater (in absolute value) for more intensive interventions. Patients then choose treatment only along two margins: a choice between valve replacement and valve supports, or a choice between supports and no intervention. This allows me to represent risk as a single measure across treatments, θ_i.

A patient thus chooses the intensive treatment, $s = 2$, only if $U_{i2} > U_{i1}$. Over the distribution of θ_i, this probability is given by:

$$\Pr\{s = 2\} = \Pr\{U_{i2} - U_{i1} > 0\} = \Pr\{(\beta_{i2} - \beta_{i1})\theta_i + \alpha_2 P_2 - \alpha_1 P_1 > \varepsilon_{i1} - \varepsilon_{i2}\} = \Pr\{\beta_{21}\theta_i + \alpha_2 P_2 - \alpha_1 P_1 > \varepsilon_{12}\},$$

(2)

and the probability that a patient chooses the intermediate treatment ($s = 1$) is:

$$\Pr\{s = 1\} = \Pr\{U_{i1} - U_{i0} > 0\} = \Pr\{(\beta_{i1} - \beta_{i0})\theta_i + \alpha_1 P_1 - \alpha_0 P_0 > \varepsilon_{i0} - \varepsilon_{i1}\} = \Pr\{\beta_{10}\theta_i + \alpha_{10} P_1 + \alpha_0 P_2 - \alpha_0 > \varepsilon_{10}\}. $$

(3)

9Note that θ_{is} can also include additional clinical information outside of mortality risk, such as diagnostic severity, the presence of comorbidities, or other indicators for clinical appropriateness of treatment. In practice, θ_{is} is not perfectly observed, but may be proxied by a set of observable characteristics Z_{is}; the results of the model are not dependent on the choice of θ_{is} or Z_{is}.

10That is, I assume $|\partial U_{i2}/\partial \theta_2| > |\partial U_{i1}/\partial \theta_1| > |\partial U_{i0}/\partial \theta_0|$. This implies steeper indifference curves for more intensive treatments, all things equal. Note that if Z_{is} is used to approximate θ_{is}, this is an assumption; however, if θ_{is} perfectly captures patient appropriateness, this is not a special case.
The equilibrium is therefore defined as a fixed point that solves the system of equations:

\[P_1 = \int_{\theta} \Pr\{\beta_{10}Z + \alpha_{10}P_1 + \alpha_0P_2 - \alpha_0 > \varepsilon_{10}\} f(\theta) d\theta \]

\[P_2 = \int_{\theta} \Pr\{\beta_{21}Z + \alpha_2P_2 - \alpha_1P_1 > \varepsilon_{12}\} f(\theta) d\theta. \]

An equilibrium can be conceptualized in a single-crossing framework: any initial allocation generates utility benefits that induce marginal patients to switch between the three treatment options. These flows, in turn, affect the returns to each procedure, further shifting patients and returns until a stable equilibrium is reached.

Figure 1. Treatment Decisions Based on Patient Risk

Notes: Graphical illustration of model equilibria pre- and post-innovation. Panel (a) presents treatment utilities given \(\theta \) prior to innovation, which define treatment regions for \(s_2 \) (red, \(P_2 \)); \(s_1 \) (blue, \(P_1 \)); and \(s_0 \) (yellow, \(P_0 \)). Panel (b) presents direct effects of innovation, which changes the threshold between high- and low-intensity interventions (captured in purple). Panel (c) highlights indirect effects, where spillover externalities result in movement from \(s_1 \) to \(s_0 \) (captured in green).

Figure 1 (a) plots \(U_s(\theta_i) \) for each \(s \), illustrating the allocation of patients to treatments. Overall, utility is declining in risk; however, by assumption, declines are steeper for more intensive treatments. This creates three well-defined treatment regions: low-risk patients select \(s_2 \), moderate-risk patients select \(s_1 \), and high-risk patients choose no intervention \((s_0) \). Denote the cutoff risk levels \(\bar{\theta} \) and \(\theta^* \); combined with the distribution of \(\theta \), these define each treatment’s market share.

3.1 The Effect of Innovations

Consider an innovation in valve replacements (TAVR) affecting high-intensity treatments, \(s_2 \). This innovation can be characterized as a uniform cost reduction across \(\theta \) without affecting survival utility, as TAVR is cost-effective and risk-reducing (Section 2); hence suppose \(U_1 \)
shifts by a fixed τ.11

The second and third panels of Figure 1 present the direct and indirect effects of this shift. In panel (b), the utility increase from s_2 to s'_2 directly attracts patients who switch from low-intensity intervention (shown in purple). This flow changes the returns to s_1, lowering expected returns even for inframarginal patients who continue to receive valve supports.12

Importantly, these spillover externalities result in further utility increases for s_2 and corresponding decreases in U_1. Panel (c) shows these indirect effects as two separate flows out of s_1: some into s_2 ($P_1 \to P_2$, shown in purple) and others into s_0 ($P_1 \to P_0$, shown in green). The new equilibrium has updated risk thresholds ($\bar{\theta}, \theta'$).

Notably, the shift in $\bar{\theta}$ defines a share of patients who now forego treatment. To quantify this crowd-out, note that the risk thresholds $\bar{\theta}$ and θ are defined, in expectation over ε, by

$$\beta_2 \bar{\theta} + \alpha_2 F(\bar{\theta}) + \tau = \beta_1 \theta + \alpha_1 (F(\theta) - F(\bar{\theta}))$$

(6)

$$\beta_1 \theta + \alpha_1 (F(\theta) - F(\bar{\theta})) = \beta_0 \bar{\theta} + \alpha_0 (1 - F(\theta)).$$

(7)

This system of equations defines comparative statics measuring how risk thresholds change with an innovation’s value τ:

$$\frac{\partial \bar{\theta}}{\partial \tau} = \frac{\beta_{10} + (\alpha_0 + \alpha_1)f(\bar{\theta})}{\alpha_1^2 f(\bar{\theta})f(\bar{\theta}) - [\beta_{21} + f(\bar{\theta})(\alpha_1 + \alpha_2)][\beta_{10} + f(\bar{\theta})(\alpha_0 + \alpha_1)]}$$

(8)

$$\frac{\partial \theta}{\partial \tau} = \frac{\alpha_1 f(\theta)}{\alpha_1^2 f(\theta)f(\theta) - [\beta_{21} + f(\theta)(\alpha_1 + \alpha_2)][\beta_{10} + f(\theta)(\alpha_0 + \alpha_1)]},$$

(9)

where $\beta_{ij} = \beta_i - \beta_j$ for $i, j \in \{0, 1, 2\}$.

When the innovation is market-expanding for s_2, the shift in the extensive margin (Equa-

11 τ need not be constant for results to hold, but is assumed to be fixed here for ease of exposition.

12 Note: one possibility that readers may consider at this point is whether the innovation could provide a benefit for the productivity of incumbent technologies; in the empirical context, this amounts to the extent to which performing TAVR enhances surgical skill for other PCIs such as angioplasty and catheterization. These types of spillovers are possible, particularly as both TAVR and other PCIs such as angioplasty commonly involve guiding catheters or replacement valves through the femoral artery to the heart. However, spillovers across surgical categories are unlikely to be equal in size to spillovers within an intervention type; hence in the model, these can be differenced out or set to zero without loss of generality. Although similar, the procedures considered are still fundamentally different: for example, TAVR involves the inflation and placement of a new aortic valve in a patient’s heart, while catheterization requires using the guide wires and catheter to remove blockages.
tion 9) is nonpositive—so patients are crowded-out from treatment—if and only if

\[
\frac{\alpha_1 f(\theta)}{\beta_{10} + (\alpha_0 + \alpha_1) f(\theta)} \leq 0 \quad (10)
\]

\[
\iff -\alpha_0 f(\theta) - \alpha_1 [f(\theta) - f(\theta)] \geq \beta_1 - \beta_0. \quad (11)
\]

The terms on the left side of the inequality represent post-innovation reductions in productivity spillovers for both \(s_0\) and \(s_1\). The right side captures differences in the marginal utility of each treatment. Hence, crowd-out occurs when the marginal utility gains from receiving any surgical intervention (the switch from \(s_0\) to \(s_1\)) outweigh the losses from diminished productivity spillovers for \(s_1\). As utility gains from treatment tend to be large relative to provider specialization, this condition is likely to be met in many cases.\(^{13}\)

3.2 Exacerbating Inequities

Any loss in efficient access to specialty care may be considered a market distortion. However, these losses may differ substantially across patient groups, particularly if groups have heterogeneous risk; losses may be further exacerbated if some groups have systematically misperceived risks.\(^{14}\)

Assume that the condition for crowd-out is satisfied (Equation 11), so that there is a region \(C\) of patients who received \(s_1\) prior to an innovation and \(s_0\) post-adoption \((C = [\theta, \theta'])\). However, suppose that clinicians do not observe \(\theta\) directly but a proxy \(\hat{\theta}\).\(^{15}\) Assume \(\hat{\theta}\) is a linear combination of observable characteristics \(Z_{is}\) correctly predicting \(\theta\) except for an idiosyncratic, mean-zero error \(\nu_{is}\):

\[
\theta_{is} = \underbrace{Z_{is}\gamma}_{\hat{\theta}} + \nu_{is}. \quad (12)
\]

Group membership can be represented as a binary variable \(d_{ig} \in Z_{is}\) indicating if patient \(i\) is a member of a group \(g\). Groups may include demographic (e.g., low-income) or clinical indicators (e.g., patients with diabetes, smokers); such indicators routinely inform patient risk calculations (van Ryn and Burke, 2000). The coefficient \(\gamma_d\) captures discrete shifts in

\(^{13}\)For example, however, innovations requiring extensive physician re-training with uncertain clinical benefits may not generate these effects.

\(^{14}\)Here, I focus on patients affected at the extensive margin; however, patients remaining on \(s_1\) also have reduced expected utility post-innovation. As these patients are adjacently at-risk, they may also be disproportionately represented by certain groups.

\(^{15}\)\(\hat{\theta}\) is a combination of physician assessment, patient beliefs, and clinical histories.
predicted risk across groups.16 If membership is informative (so that $\gamma_d \neq 0$), patients in different groups constitute different shares of the crowdout region, $s_{C,g}$, determined by the underlying distributions of θ and $Z_{i\gamma}$ and Bayes’ rule:

\begin{align}
 s_{C,g} &= Pr(i \in g|i \in C) = Pr(i \in C|i \in g) \frac{Pr(i \in g)}{Pr(i \in C)} \\
 &= \frac{s_g}{s_C} [Pr(Z_{it,-g}\gamma_{-g} + \gamma_g \in [\bar{\theta}, \bar{\theta}'])] \\
 &= \frac{s_g}{s_C} \int_{\bar{\theta} - \gamma_d}^{\bar{\theta}' - \gamma_d} f(Z_{it,-g}\gamma_{i,-g}) d(Z_{it,-g}\gamma_{i,-g}) \\
 &= s_g \frac{\int_{\bar{\theta} - \gamma_d}^{\bar{\theta}' - \gamma_d} f(Z_{it,-g}\gamma_{i,-g}) d(Z_{it,-g}\gamma_{i,-g})}{\int_{\bar{\theta}}^{\bar{\theta}'} f(\theta) d\theta}.
\end{align}

Here, s_g indicates the share of group g in the population, and $s_C = F(\bar{\theta}) - F(\bar{\theta}')$ is the relative size of C. As these are not equal in general, C may over- or under-represent g. Figure 2 presents the intuition of this result, illustrating the crowd-out region (Figure 1) for heterogeneous risk distributions across two hypothetical groups. Even when risk is correctly measured, these groups have different likelihoods of losing access to specialty treatment.

Figure 2. Inequities in Crowdout

\textit{Notes:} Graph shows potential differences in which patients forego specialty care following an innovation. Patient pool is divided into two groups with heterogeneous risks; patient risk θ determines treatment status, denoted by $\{\bar{\theta}, \hat{\theta}\}$. Innovations shift these cutoff values, creating a crowd-out region (shaded).

These inequalities in access may correspond to \textit{inequities} in access when risk distributions are imperfectly or incorrectly observed. Imperfect proxying may arise from provider error or other factors, including patient beliefs or biased health measurements like risk scores (Obermeyer et al., 2019). This measurement error distorts the likelihood that members of g are represented in C. To quantify this relationship, suppose that instead of using γ_d in risk

16For ease of exposition, assume d_{ig} is independent to all covariates $Z_{i\alpha,-g} = Z_{i\alpha} \setminus d_{ig}$.
calculations, \(\hat{\theta} \) relies on the use of a “noisy signal” \(\hat{\gamma}_g \):

\[
\hat{\gamma}_g = \gamma_g + \nu, \tag{17}
\]

where \(\nu \) is an idiosyncratic error in group risk measurement.\(^{17}\) Consider how this term changes the representation of group \(g \) in the crowd-out region \(C \) (that is, \(s'_{C,g}(\nu) \)) relative to the original representation, \(s_{C,g} \). Define this ratio to be \(I(\nu) \) and notice:

\[
I(\nu) = \frac{s'_{C,g}(\nu)}{s_{C,g}} \tag{18}
\]

\[
= \frac{1}{s_{C,g}} \int_{\theta - \gamma_d - \nu}^{\theta - \gamma_d} f(X_{i,-g\gamma_{i,-g}})d(X_{i,-g\gamma_{i,-g}}). \tag{19}
\]

Importantly, this ratio changes in keeping with the size of the measurement error, \(\nu \):

\[
\frac{\partial I}{\partial \nu} = \left[\frac{f_{X_{i,-g\gamma_{i,-g}}(\theta - \gamma_d - \nu)} - f_{X_{i,-g\gamma_{i,-g}}(\theta' - \gamma_d - \nu)}}{s_{C,g}} \right]. \tag{20}
\]

That is, risk perception error \(\nu \) affects group-specific crowd-out proportionately to the initial composition of \(g \) in \(C \). Appendix Figure A.2 presents the intuition behind this result; intuitively, \(\nu \) incorrectly shifts patients of one group up or down along the risk distribution, \(\theta \), leading the “over-estimated group” more likely to lose access to care.

3.3 Empirical Implications

The model predicts that innovations may generate spillover health inequities in two steps. First, innovations affect technological spillovers and create “crowd-out regions,” shifting high-risk patients out of interventions. Second, these affected patients may be systematically different from the overall population, particularly if risk is incorrectly proxied.

Three empirical implications arise from this model. First, I test for the direct and indirect effects of innovation by assessing how adopting physicians substitute patients along treatment margins; this is done by examining intervention volume both overall as well as by intervention type (and within intervention type, by procedure). I then identify which patients are affected based on their risk, paying particular interest to the existence and magnitude of crowd-out regions. Finally, I examine whether crowded-out patients are inequitably made up of different demographic groups, including patient race, income, and ADI. I identify aggregate differences across groups that result from both true and misperceived risk differences, with

\(^{17}\)\(\nu \) is not classical measurement error or necessarily centered around 0. In addition, \(\nu \) can be allowed to vary across providers or patients.
a back-of-the-envelope calculation separating these effects.

In addition to implications for access to interventions within a single market, the above model can easily be extended to consider multiple markets, as in previous work (Chandra and Staiger, 2007). In particular, equilibrium allocations of patients across treatments (which in turn determine productivity spillovers and, in part, equilibrium shifts in allocations post-innovation) may differ across markets, leading to different estimated effects of an innovation’s adoption in different regions. Similar logic as in Section 3.2 implies that these differential effects may also generate inequitable loss in access to treatments across markets as well as within them; this is particularly important given that racial and socioeconomic segregation in the United States often imply that demographic differences across commuting zones are likely larger than differences within them (Fu et al., 2023; Carpenter et al., 2022). I therefore consider both differences within and across markets when estimating inequitable impacts of technology adoption for valve interventions.

4 Methods

I assess the effects of TAVR’s adoption on access to valve replacements—including SAVR and TAVR—and valve supports—including PCIs such as angioplasty and stenting—within a local market. Due to the high comorbidity of aortic stenosis and coronary artery disease, PCIs are frequently performed when a patient’s risk is too high for SAVR. Hence, as TAVR becomes available in a local market, patients and physicians working together to evaluate risk and select treatment options may be change their behavior in response to treatment availability and the (potentially market-varying) estimated returns to each procedure.

4.1 Estimating Patient Risk

Cardiac surgery risk is typically estimated using models constructed by The Society of Thoracic Surgeons (STS), accounting for pre-operative factors that influence surgical outcomes (O’Brien et al., 2009). I use the STS Predicted Risk of Mortality (STS-PROM) model, a logistic regression of 60-day mortality on patient demographics and health conditions (Appendix Table A.3). This model classifies patients into low risk (score ≤ 3%), moderate risk (score between 3% and 8%), and high risk (score ≥ 8%). Traditionally, SAVR is limited to low-risk patients, while PCIs can be done on higher-risk patients.18

The empirical distribution of predicted risk in my sample closely matches population

18Some work questions the STS-PROM in physician decision-making (Catalano et al., 2020); however, as it is still commonly used by practitioners to approximate θ, I incorporate it here.
STS-PROM predictions (Appendix Figure A.3). I estimate an average (median) risk of 3.6% (4.8%), with 40% of patients identified as low-risk, 44% as intermediate-risk, and 15% as high-risk.

4.2 Effect of Innovations

To estimate the causal impact of TAVR’s adoption on treatment decisions, I use a local projections difference in differences (LP-DID) estimator (Dube et al., 2023), a “stacked” regression of treated units combined with their clean controls to estimate treatment effects without bias from naive staggered adoption designs with heterogeneous treatment effects (Roth et al., 2023). The regression uses local projections methods to restrict the estimation sample so that previously-treated observations (which may be experiencing time-varying or heterogeneous treatment effects post-adoption) are not included in the control group, eliminating bias. The LP-DID regression performs similarly to other approaches in this context, including weighted stacked DID regressions (Wing et al., 2024; Cengiz et al., 2019) and imputation estimators (Sun and Abraham, 2020; Callaway and Sant’Anna, 2021). Formally, for h periods pre- and post-treatment, I estimate the equation

$$y_{m,t+h} - y_{m,t-1} = \beta_{LP-DID}^{h} \Delta D_{mt} + \alpha_m + \tau_t + \varepsilon_{mt}^{h},$$

(21)

where the sample is restricted to newly treated ($\Delta D_{it} = 1$) or clean controls ($\Delta D_{i,t+h} = 0$). Outcomes include intervention volumes at the market m level and treatment decisions for patients i, with periods separated into quarters t. I cluster standard errors at the CZ level, and report pooled estimates of the overall average post-treatment effect with each dynamic regression. The LP-DID results I report are robust to including both comparisons between early and late adopters of TAVR and comparisons to never-treated units, as well as only to never-treated units.20

Throughout, the identifying assumption is that the timing of TAVR’s adoption is exogenous at the local market level, in the sense that there are parallel trends and no anticipatory changes in valve support procedures (not TAVR/SAVR volumes). That is, my approach requires the assumption that interventional cardiologists did not adopt TAVR due to underlying changes in the expected volume of patients seeking PCI interventions; while hospitals certainly made strategic decisions about when to adopt TAVR adoption based on anticipated valve replacement volume, my estimation is well-identified provided there were no spillovers in these anticipated events. This can be examined directly by assessing differential

19Note that the regression equation for patient-level outcomes is similar to Equation 21.

20Effects were estimated using the LPDID package in Stata (Busch and Girardi, 2023).
pre-trends between adopting and non-adopting markets for indications that volumes were changing before adoption.

This identifying assumption may be violated if, for example, contemporaneous changes to physician practice affected PCI volumes close to the time of TAVR adoption. This could arise from two channels: first, individual organizations may change their supply of procedures around the time of TAVR adoption. For example, facilities providing care in a market that has already introduced TAVR, but who have yet to adopt themselves, may change the volume of PCI procedures offered in anticipation of future demand for procedures occurring in a catheterization lab. I examine this directly in the data (Appendix Figure A.4) and do not observe such anticipatory behavior, particularly for PCIs, which drive observed crowd-out later on (e.g., in Figure A.5, discussed in the next section). This is true for both initial adopters in a market as well as organizations responding to this adoption.

Second, the use of PCI may have changed over time nationally, occurring close to the timing of TAVR’s adoption. For example, a critical 2007 randomized control trial (the COURAGE trial) indicated PCIs did not meaningfully reduce mortality or cardiovascular risk for patients with stable coronary artery disease (Boden et al., 2007). This led to declines in PCI utilization over the next decade Almarzooq et al. (2021); Yeh et al. (2015). If these reductions occurred in tandem with TAVR’s adoption, this could bias regression estimates. Several factors, however, make this trial—and other unobserved heterogeneity in PCI provision generally—unlikely to drive the observed results. First, shifts in practice following the COURAGE trial began immediately, with the bulk of changes occurring prior to TAVR’s initial adoption nationally in 2012. Second, declines would need to be observed in tandem with a market’s switch from SAVR to TAVR, a fact that is unlikely as it would require local markets that were early adopters of TAVR to also be the last to change their PCI practices in response to the COURAGE trial. In general, overall reductions in PCI provision over time are not an identification concern, as this does not violate the parallel trends assumption. Finally, I show that my results are robust to excluding patients with stable coronary artery disease (the patient population affected by changes in standards of care over this time period) in Appendix Figure A.6, discussed in Section 5. The consistently observed declines in utilization suggest these results are driven by TAVR’s adoption rather than other unobserved shifts in technological availability or utilization.

4.3 Heterogeneity & Inequities in Post-Innovation Access

After assessing the impacts of TAVR on access to interventions both at the market and patient levels, I examine how treatment effects varied across three dimensions: geography,
socioeconomic status, and race and ethnicity. I use the Area Deprivation Index (ADI) score for 9-digit zip codes to define differences in geographic vulnerability both across and within markets. I also measure how many enrollees are dually-eligible for Medicaid to proxy for socioeconomic status, and measure racial diversity in a market as the fraction of nonwhite enrollees in a region. To identify heterogeneous treatment effects, I bin markets and estimate traditional difference-in-differences regressions, adjust these results for multiple inferences using sharpened false discovery rate control methods (Anderson, 2008). Where applicable, I smooth these results using weighted local nonlinear regressions.

5 Results

Market-level Analysis. Figure 3 presents the dynamic effects of TAVR adoption on interventional cardiology procedures at the commuting zone level, following Equation 21. Prior to adoption, I observe no meaningful variation in procedure volumes: the pre-treatment pooled LP-DID estimate is 0.558, with a 95% confidence interval of $[-0.576, 1.692]$. However, post-adoption I observe a marked decline in total surgical volume, with average volume dropping by 3.7 interventions quarterly, or 14.8 interventions annually. This is roughly 7.8% (20%) of the total volume of the average (median) commuting zone, which performs 47.3 (18) procedures per quarter. These effects are first observed one year after TAVR’s adoption, becoming more pronounced within the first three years post-innovation.

Overall changes in intervention volume are an aggregation of increases in the availability of valve replacements through TAVR’s adoption and changes in the availability of valve supports. In Appendix Figure A.5, I disaggregate these overall effects across specific interventions. The availability of valve replacements increased post-adoption at an average rate of 1.48 valve replacements per quarter; this is in keeping with the model’s predictions, which suggested an expansion in use of the high-intensity intervention following innovation (Figure 1). As predicted, this expansion moved the threshold for valve replacements down the patient risk distribution, with TAVR’s adoption expanding replacement procedures to patients that were 4.1 years older and 1.5 percentage points higher-risk on average. On the other hand, TAVR’s adoption led to overall declines in other intervention volumes that

21Results are robust to using average “pooled” LP-DID effects instead of DID coefficients.
22The figure shows results for valve replacements (SAVR/TAVR), angioplasty (PTCA), cardiac catheterization, and all other PCI interventions; each of these last three groups constitutes roughly one-third of all valve supports in our sample. Note that only 213 patients in my sample (.02%) received more than one valve replacement; hence, the observed results are unlikely driven by repeat patients. Importantly, only 5.6% of SAVR patients in the sample required a follow-up PCI prior to TAVR’s adoption; this indicates that the declines here are unlikely to be driven by TAVR’s adoption reducing the need for follow-up PCI interventions following a valve replacement.
Figure 3. Effect of TAVR Adoption on Total Surgical Volumes, Commuting Zone Level

Notes: Estimated impact of TAVR adoption on total volume of surgical interventions performed by interventional cardiologists. Here, the outcome variable is the count of all valve interventions performed at a CZ level, including valve replacements (SAVR/TAVR) and valve supports (PCIs). Markets performing ≤ 5 inpatient procedures quarterly are dropped from estimation. Standard errors are clustered by commuting zone.

outpaced their relative cost-savings, with average reductions of 3.7 PTCAs and 2.6 other PCI interventions; I find no significant effects on cardiac catheterization. This implies that roughly 4-5 valve supports were eliminated for each TAVR procedure adopted by the average CZ, roughly consistent with the cost differential across PCIs and TAVR.

Analysis of the dynamic treatment effects—rather than simple DID estimation—provides important insight into the changing landscape of TAVR utilization and substitution post-adoption. The quality of TAVR may be improving over time for two reasons: first, providers gaining experience in the procedure may induce improved outcomes (as suggested by the model); second, subsequent clinical trials expanded TAVR utilization to lower-risk patients (see Section 2). Hence, the results in Figures 3 and A.5—which show increasing adoption and substitution over time—are likely influenced by this move down the “appropriateness curve”. One important concern in interpreting these dynamic effects, then, is that they may be endogenous to market characteristics, especially if hospitals or CZs that expected increased dynamic returns (from specialization or expanded patient markets) adopted TAVR earlier than others. However, these strategic decisions would serve only to reinforce in-

\[\text{Note that there are significant pre-trends for PTCA effects; this may be related to either investment costs as TAVR is preparing to be deployed in a region, or strategic delays in valve replacements for some patients until after TAVR becomes available. These differences, however, appear to be anticipation effects that would serve only to understate true declines in overall surgical volume that are highlighted here.} \]
equitable access to surgeries, as these decisions impact overall volume of valve interventions. Furthermore, these findings are robust to alternative specifications, including using Poisson regression (A.4) or excluding patients likely to be affected by the change in PCI availability following the COURAGE trial (as discussed in Section 4). In Appendix Figure A.6, I show that removing patients treated only for these conditions does not change the main results.\footnote{The COURAGE trial led to reductions in the availability of elective PCI for patients with stable angina or stable coronary artery disease. Patients treated with stable angina or stable coronary artery disease are identified based on diagnosis codes (ICD-9-CM: 413.9; ICD-10-CM: I20.8, I20.9) anywhere in the first ten diagnoses. Note that this likely a conservative approach, as this may remove patients with a history of stable angina but with new cardiovascular conditions.}

Finally, I consider relationships in the average differences in quarterly TAVR utilization and total intervention volume between 2010 and 2017, shown in Figure A.10. The figure shows a strong overall negative relationship, indicating that local markets that invested more heavily on TAVR experienced larger declines in total intervention volume by the end of the data period. Reductions in intervention volume are observed even for markets that perform fewer overall interventions or specialize less in TAVR. Taken together with Figure 3, this evidence suggests a strong relationship between adoption of a novel technology and future restrictions in overall availability of medical interventions.\footnote{As a robustness check, I examine whether these effects may be driven by missing data for patients enrolled in Medicare Advantage (MA) plans, whose claims do not appear in the dataset. In particular, one hypothesis is that if commuting zones adopting TAVR are also commuting zones experiencing the largest growth in MA enrollment, the observed decline in service provision may be mechanical due to this fact. Using the Medicare Enrollment Dashboard, I find a slightly negative relationship between quarterly growth in MA enrollment and the likelihood of adoption, overall. Once I condition on a set of controls including the fraction of the population with aortic stenosis, average surgical volumes in the pre-period, and patient and provider demographic information (including surgical risk), these relationships are statistically insignificant. In general, there is no concern that declines in surgical volume are due to missing data from increases in MA enrollment.}

Patient-Level Analysis. These results—tested at the market level—also hold for individual patients. In Appendix Figure A.7, I use the 20% sample of all Medicare beneficiaries to estimate changes in the likelihood that individual patients receive procedures (measured in rates per 1,000 patients). In keeping with Figure 3, I find that while the rates of receiving a valve replacement (TAVR or SAVR) go up by roughly 40%, an individual’s probability of receiving any interventional cardiology procedure in a given quarter declines by 32.6%, or by a rate of 0.73 per 1,000 patients from a baseline of 2.24 per 1,000. Recall that this analysis includes outpatient procedures as well as inpatient interventions, suggesting that the observed results are not driven by unobserved shifts of PCIs to being performed in outpatient settings during my analytic period. These results, similar to those presented above, are driven by large reductions in valve support utilization, swamping expansions in valve replacements.
Importantly, this patient-level analysis allows for a more in-depth exploration of patient-physician interactions and heterogeneity across patient severity. I highlight two facts in the Appendix: First, Figure A.8 shows that following TAVR’s adoption, interventional cardiologists are roughly 35% more likely to screen patients for appropriateness for SAVR/TAVR. This suggests that physicians may adapt their diagnostic screening strategies in response to available technology (Mullainathan and Obermeyer, 2021) or learning about surgical outcomes and availability (Hoagland et al., 2024). Second, I also show that while the overall availability of valve supports declines post-adoption, urgent PCI procedures—including angiography for patients following a heart attack—are not delayed (Figure A.9).

5.1 Which patients lose access to treatments?

These findings corroborate the model’s predictions that patients will be crowded out from access to surgical care. Next, I isolate which patients are losing access to treatments based on patient risk. Although TAVR expands access to valve replacements to riskier patients, I do not observe a corresponding increase in the relative average risk of patients receiving valve supports (Appendix Figure A.11). This suggests that the composition of valve support patients changed along both margins, with a corresponding exit of higher-risk patients as predicted by the model. I investigate this further, estimating treatment effects separately across bins of patient risk to identify the crowd-out region.26

Figure 4 shows the results across the distribution of 30-day risk. Each point in the figure represents an estimated DID coefficient; these effects are then smoothed using a local linear regression weighted by the number of patients in each bin, with standard errors corrected for multiple hypothesis testing.27 The figure therefore identifies which patients experienced the largest declines in access to care following TAVR’s adoption in their market.

The results corroborate the model predictions that patients whose risk placed them on the margin between low-intensity procedures (valve supports) and maintenance care were more likely to forego care post-adoption. Figure 4 shows a clear region of patients crowded out from treatment, specifically those whose risk is between 4.5% and 9%. Patients in this group lost access to cardiac interventions at an average rate of 0.5 procedures per quarter per bin.

26 Recall that Appendix Figure A.3 shows the distribution of the patient risk score for both 30- and 90-day mortality.
27 Results are similar across 60- and 90-day risk. Appendix Figure A.12 presents a version without smoothing.
Figure 4. Effects of TAVR Adoption on Total Intervention Volumes by Patient Risk

Notes: Estimated heterogeneous treatment effects of adoption on total volume for valve replacements and valve supports, stratifying patients by risk bin (width=0.2pp). Each point is a bin-specific difference-in-differences coefficient, with effects smoothed nonparametrically using local linear regression weighted by patient volume. Standard errors are adjusted for multiple hypothesis testing (Anderson, 2008; Benjamini et al., 2006). See Appendix Figure A.12 for non-smoothed version and Figure A.13 for a version scaled by overall decline in intervention volume. Vertical lines indicate STS-PROM delineation between low- and high-risk patients. Results are robust to using “pooled” post-treatment LP-DID average effects.

5.2 Inequities in Access to Surgical Care

The results suggest TAVR induced some relatively low-risk patients to switch into valve replacements, but also drove higher-risk patients out of receiving valve support procedures. As my model predicts, this lost access may differentially affect the most vulnerable populations, especially if groups have heterogeneous risk. I estimate how TAVR adoption affected crowd-out across these groups, both across and within markets.

5.2.1 Market-Level Inequities

First, I consider how inequitable restrictions to access may propagate across markets, by considering market-level differences in patient populations. This allows me to use the full analytical sample, rather than the 20% Carrier file available for patient-level analysis. I sort CZs into quintiles based on the the share of nonwhite patients, the share of dually-eligible patients, and the (population-weighted) average ADI across zip codes in a CZ, and then estimate TAVR’s effects on total intervention volume within each quintile.
Figure 5. Inequities in TAVR’s Effects on Local Access to Interventions: CZ Level

(a) % Non-white
(b) 9-digit zip code ADI

Notes: Heterogeneous effects of TAVR adoption on surgical volume across binned quintiles of CZs according to disadvantage, measured in (a) as the fraction of nonwhite patients, and in (b) as the average ADI in the market (based on 9-digit ZIP code ADI scores; results are robust to using 5-digit scores). Each point represents a “pooled” post-treatment LP-DID average effects, where the outcome is total surgical volume at the market level as in Figure 3. See Appendix Figure A.14 for results for dually-eligible patients. Results are robust to using standard difference-in-differences coefficients, as depicted in Appendix Figure A.15.

Figure 5 presents the results. In both panels, a clear gradient emerges: in panel (a), declines in volume are concentrated in local markets with racial diversity above the median; total declines in these markets are estimated to be around 20 interventions quarterly, more than five times the overall estimated effect in Figure 3. A similar result appears when examining local markets with limited employment, education, and housing, as measured by average ADI in panel (b).28 In panel (b), there is even evidence that the least disadvantaged markets may have experienced small, but significant increases in total intervention availability, underscoring the importance of considering variation across markets as well as within them. These results suggest the local adoption of some innovations may generate distinct experiences across patient groups, with vulnerable groups foregoing access more than others.

Such an analysis leverages the large variation across markets in patient demographics, including racial makeup and local measures of disadvantage. However, given that the model predictions imply potential inequities within markets, I next consider differences in TAVR’s effects within a commuting zone by examining patient-level data.

28I also stratify markets by dual eligibility, finding little evidence of inequities along this dimension (Appendix Figure A.14).
5.2.2 Patient-Level Inequities

I consider how differences in patient characteristics may affect the dynamic treatment effects presented in Figure 3. This limits my analysis to the 20% Carrier file, where I observe patient geography (zip-code level ADI), dual eligibility status, race/ethnicity, and sex (Section 2). Within each stratification, I present subgroup analysis estimating Equation 21 separately for each group; I report the pooled post-treatment indicators for each.

<table>
<thead>
<tr>
<th>Group</th>
<th>Estimate</th>
<th>% Change</th>
<th>95% Confidence Interval</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>-4.68</td>
<td>-13.64</td>
<td>[-20.55, -6.72]</td>
<td>0.000</td>
</tr>
<tr>
<td>Panel A: Patient Geography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADI: Lowest Quintile</td>
<td>-0.78</td>
<td>-14.36</td>
<td>[-23.79, -4.94]</td>
<td>0.003</td>
</tr>
<tr>
<td>ADI: Highest Quintile</td>
<td>-3.03</td>
<td>-27.62</td>
<td>[-43.05, -12.19]</td>
<td>0.001</td>
</tr>
<tr>
<td>Panel B: Patient Eligibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Dual Eligible</td>
<td>-3.40</td>
<td>-12.76</td>
<td>[-20.32, -5.21]</td>
<td>0.001</td>
</tr>
<tr>
<td>Dual Eligible</td>
<td>-1.28</td>
<td>-16.80</td>
<td>[-26.08, -7.51]</td>
<td>0.000</td>
</tr>
<tr>
<td>Panel C: Patient Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>-4.26</td>
<td>-14.18</td>
<td>[-21.39, -6.96]</td>
<td>0.000</td>
</tr>
<tr>
<td>Black</td>
<td>-0.41</td>
<td>-14.24</td>
<td>[-28.13, -0.35]</td>
<td>0.046</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.00</td>
<td>0.00</td>
<td>[23.63, 23.63]</td>
<td>0.933</td>
</tr>
<tr>
<td>Other Non-White</td>
<td>-0.02</td>
<td>-2.08</td>
<td>[-16.89, 12.72]</td>
<td>0.835</td>
</tr>
<tr>
<td>Panel D: Patient Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-2.69</td>
<td>-13.72</td>
<td>[-21.90, -5.54]</td>
<td>0.001</td>
</tr>
<tr>
<td>Female</td>
<td>-1.99</td>
<td>-13.58</td>
<td>[-19.65, -7.51]</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes: Table presents estimates Equation 21, stratified by patient groups. The outcome variable is the count of interventions performed within the patient group at the CZ level; markets with ≤ 5 procedures quarterly are dropped. Reported coefficients are “pooled” average post-treatment effects over 16 quarters post-adoption. Patients and demographic information are identified based on the 20% carrier file. Standard errors are clustered at the CZ level. Percentage changes are relative to the mean CZ-quarter intervention volume for the indicated group; results are robust to considering the median instead.

Table 2. Within-Market Inequities: Pooled LP-DID Estimates

Table 2 presents the results. Overall, the 20% Carrier file suggests a post-TAVR decline in surgical volume of 13.6% on average, in line with Figure 3 and Appendix Figure A.7. Across
the four panels, I observe that patients in at-risk populations experience larger declines, relative to majority populations. In panel (a), patients living in areas of higher disadvantage (even within the same CZ) experience larger declines in intervention volume post-TAVR, with those in the highest quintile of ADI values (most disadvantaged) experiencing declines roughly twice as large as those in the lowest (least disadvantaged) areas. Other differences have meaningful point estimates, but are not statistically different from each other. For example, in panel (b), I observe a significant 17% reduction in volume for dual-eligible patients, compared to a 13% decline for non-dual eligible patients. In panel (c), I observe significant declines in intervention volume among both White patients (14.18%) and Black patients (14.24%). Finally, I observe few differences between male and female patients, perhaps as expected given that there is little prior reason to suspect inequitable differences in access to valve procedures based on patient sex, particularly when compared to more meaningful indicators such as race, ethnicity, income, and geography.

Overall, the estimates suggest that an innovation’s adoption may affect access to interventions in inequitable ways even within a market. Note that I observe different effects when looking within versus across a market; for example, Table 2 suggests only that differences in a patient’s geography leads to significant differences in access effects, rather than differences in race, sex, or dual eligibility. In part, this is likely driven by limited sample size at the patient level, as the 20% Carrier file limits identification of patient-level effects. Additionally—and perhaps more importantly—difference are likely driven by the fact that variation within commuting zones across patient race, income, and ADI, is very small, particularly when compared to the differences that exist across commuting zones (Fu et al., 2023; Carpenter et al., 2022).

Despite this lack of variation, however, results comparing patients both within and across markets provide consistent evidence that patients from at-risk populations experience differential declines in access to valve procedures. The combined estimates suggest that the effects of an innovation’s adoption on total intervention availability—including for adjacent procedures—may serve to widen gaps in access to care for patients who already face barriers to accessing care.

5.3 Patient Outcomes & Potential Mechanisms

Downstream Health Outcomes of Losing Access to Interventions. Although potentially detrimental effects may lag adoption by several years, identifying them is important to quantify the potential severity of foregone care. For example, if valve supports such as PCIs were over-used in some markets, the results in Figure 5 may not be welfare-decreasing
I therefore explore two additional patient outcomes in Appendix Figure A.16: the rate at which PCIs were accessed only following acute cardiac events, and post-operative outcomes. In the short run, TAVR-adopting markets experience an increase in the fraction of PCIs precipitated by a cardiac event, estimated at 0.86 percentage points (a 1.5% increase). This suggests that post-adoption, the health threshold for surgical intervention was higher; importantly, these effects are driven by both diverse and disadvantaged markets. On the other hand, I do not observe significant differences post-adoption in the rate of complications for a PCI; this is likely an underpowered analysis, however, given the rarity of these events.

Potential Mechanisms: Capacity Constraints and Physician Skill. Finally, I examine the extent to which the primary channels discussed in Section 3 contribute to the observed results presented above. First, I investigate differences in capacity constraints, by examining total utilization of catheterization labs over time around TAVR’s adoption in a commuting zone. These labs are examination and operating rooms where PCIs and TAVRs are typically performed; the intuition for this analysis is that TAVR may consume valuable time in these labs, reducing their availability for other procedures and patients. Appendix Figure A.17 illustrates that following TAVR’s adoption, the total utilization of the catheterization lab (measured in inpatient days) remains unchanged; on the other hand, the total number of patients receiving care in a catheterization lab declines by 30%. This suggests capacity constraints, including for operating space, are binding in these markets, and adoption of one technique (TAVR) competes with other techniques for availability.

Second, I examine potential changes in physician skill following TAVR’s adoption. The intuition here is that, in keeping with the model, productivity spillovers may lead to additional declines in availability of PCI as returns to these procedures decline post-adoption. To investigate this, I examine post-operative outcomes, measured as the rate at which PCI recipients experience cardiac events within a year post-procedure. Appendix Figure A.16 suggests markets with more nonwhite individuals experienced increases in these events of 1.97 percentage points (9.1%) post-adoption. Although suggestive, results indicate potential...

29I observe markets with more dual-eligible patients fare better than others. This is potentially attributable to expanded coverage and reduced cost-sharing among this population (Ryan & Super, 2003), but warrants future research.

30This analysis is limited somewhat by significant pre-trends in both panels, potentially indicating that total utilization of catheterization labs was declining in local markets immediately prior to TAVR adoption compared to non-adopting markets. In part, this may be due to the expansion of catheterization labs to rural areas in the U.S. during this time, areas that make up the control group in the primary analysis as they were slower to adopt TAVR (Shen et al., 2023). Note, however, that the estimated declines in panel (b) are large relative to the pre-trends, potentially implying that TAVR’s adoption hastened a widening difference across these local markets for patient access to the catheterization lab, but not for total catheterization lab use (as shown in panel (a)).
tial differences in health outcomes that may persist and even worsen with time. Finally, I examined the effect of TAVR’s adoption on risk-adjusted outcomes for valve support interventions, including readmission and mortality (Appendix Figure A.18). I find statistically insignificant effects, precisely estimated enough to rule out increases of 17 percentage points in the likelihood of readmission and 1 percentage point in the likelihood of post-operative mortality.

Taken together, these results suggest that capacity constraints and physician skill may both contribute to the overall declines in availability of percutaneous coronary interventions following TAVR’s adoption in a local market, and the potential spillover inequities that are generated as a result.

6 Conclusion

Inequities in access to high-return health services have persisted for decades, leaving patients of lower incomes or marginalized groups with inferior treatments and, subsequently, health outcomes. Innovations in health treatments—despite their significant health benefits—may further entrench these differences if they inhibit access to older technologies.

I present a theoretical framework considering these implications. The model highlights a tension between innovation takeup and overall service availability, stemming from physician specialization, limited availability, and productivity spillovers. This tension implies that post-innovation, overall availability to interventions may be reduced, leaving some patients crowded-out of access to care. Importantly, crowd-out may differ systematically across a population, differentially affecting vulnerable groups. I test these predictions empirically using aortic valve replacement surgeries as a case study.

Studying TAVR’s adoption provides important insights for policymakers seeking to promote equitable access to healthcare. My results suggest that a policy focus on infrastructure to scale up innovative treatments—without compromising availability of adjacent procedures—can limit inequitable spillover effects (Hoagland and Kipping, 2024). Identifying these adjacent treatments and incentivizing their continued provision—for example, by adjusting physician reimbursement rates or centralizing access to innovations (Yang, 2023)—could maximize the social impact of technological change. Additionally, my results suggest that policies aiming to reduce inequities in risk assignment may have spillover benefits: improvements in risk estimation which rely less on demographic information or provider bias—such as improvements in precision medicine (Matthew, 2019; Hoagland, 2024)—may generate large reductions in population-level differences in access. These potentially snowballing effects may make policies targeting equality across patient groups particularly appealing. For
example, while recent concerns have highlighted how naive artificial intelligence (AI) models assisting clinical decision-making may inadvertently exacerbate health inequities even in cardiology care (Gichoya et al., 2022), adjusting these models to include a specific equity focus may both reduce disparities in access to key services such as cardiovascular imaging and, ultimately, reduce downstream healthcare costs (Dankwa-Mullan et al., 2021). Finally, investments in primary care screenings and diagnoses may have large dividends, given that these diagnostic inequities typically persist and widen as patients move “upstream” in the treatment cycle (Marcus et al., 2023; Hoagland et al., 2024).

Future work examining the potentially unequal impact of technological change can build on this paper in several ways. As innovations like TAVR mature, future work can consider the long-run impacts of innovation on equity, including for outcomes not directly observable in my data such as wait times, complications, and endogenous patient risk.31 New research may also incorporate long-run physician entry, exit, and specialization decisions. Additionally, future work may consider how selection affects market outcomes, whether selective innovation takeup by providers (Huckman and Stern, 2022) or “cherry-picking” patients post-innovations (Cram et al., 2008; Desai et al., 2009). Finally, this framework can be extended to many other inequities and structural forces that worsen health outcomes for marginalized groups, including discrimination at the point of care and systematic gaps in seeking out healthcare due to eroded trust in the healthcare system (Webb Hooper et al., 2019).

31Wait times for SAVR/TAVR have increased in other countries, leading to higher rates of heart failure for those with severe aortic stenosis (Albassam et al., 2020). This might be due to high centralization of access. Additionally, this paper only examined years that TAVR was available for high-risk patients; as TAVR became more widely available, structural changes in the market for aortic stenosis treatments may have occurred.
References

Appendix

A.1 Tables

<table>
<thead>
<tr>
<th></th>
<th>All Procedures (N)</th>
<th>Cardiothoracic Surgeons</th>
<th>Interventional Cardiologists</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SAVR</td>
<td>TAVR</td>
</tr>
<tr>
<td>2010</td>
<td>36,458</td>
<td>36,453</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>38,084</td>
<td>37,376</td>
<td>705</td>
</tr>
<tr>
<td>2012</td>
<td>40,564</td>
<td>35,124</td>
<td>5,463</td>
</tr>
<tr>
<td>2013</td>
<td>44,736</td>
<td>35,369</td>
<td>9,409</td>
</tr>
<tr>
<td>2014</td>
<td>47,530</td>
<td>33,638</td>
<td>13,944</td>
</tr>
<tr>
<td>2015</td>
<td>53,301</td>
<td>33,225</td>
<td>20,134</td>
</tr>
<tr>
<td>2016</td>
<td>58,539</td>
<td>30,104</td>
<td>28,469</td>
</tr>
<tr>
<td>2017</td>
<td>60,896</td>
<td>25,933</td>
<td>35,010</td>
</tr>
</tbody>
</table>

Table A.1. Role of Cardiologists in Aortic Stenosis Procedures, 2010–2017

Table Notes: Each cell represents the fraction of the intervention type performed by the type of medical professional in a given year. Sample is limited to all aortic valve replacements (TAVR/SAVR) procedures. Totals do not add up to 100% because some procedures are performed by a team comprised of both cardiothoracic surgeons and interventional cardiologists, and others are performed by physicians with other listed specialties (e.g., internal medicine). Cardiothoracic surgeons are those whose primary specialty is listed as “cardiac surgery”, “thoracic surgery”, or “general surgery”; interventional cardiologists are those whose primary specialty is listed as “interventional cardiology”, “cardiology”, or “cardiovascular disease.”
<table>
<thead>
<tr>
<th>Version</th>
<th>Codes</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: SAVR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD-9-PCS</td>
<td>3521, 3522</td>
<td>Open and other replacement of aortic valve</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td>02RF0*</td>
<td>Open replacement of aortic valves</td>
</tr>
<tr>
<td>Panel B: TAVR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD-9-PCS</td>
<td>3505, 3506</td>
<td>Endovascular replacement of aortic valve</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td>02RF3*, 02RF4*</td>
<td>Percutaneous and/or endoscopic replacement of aortic valves</td>
</tr>
<tr>
<td>Panel C: PCIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD-9-PCS</td>
<td>0061–0066</td>
<td>Percutaneous transluminal coronary angioplasty (PTCA)</td>
</tr>
<tr>
<td></td>
<td>3510–3514</td>
<td>Open heart valvuloplasty without replacement</td>
</tr>
<tr>
<td></td>
<td>3721–3723</td>
<td>Cardiac catheterization</td>
</tr>
<tr>
<td>ICD-10-PCS</td>
<td>0270*—0273*</td>
<td>Dilation of coronary arteries, percutaneous approach</td>
</tr>
<tr>
<td></td>
<td>027F*—027J*</td>
<td>Dilation of heart valves, percutaneous approach</td>
</tr>
<tr>
<td></td>
<td>02NF0ZZ, 02NG0ZZ, 02NH0ZZ, 02NJ0ZZ</td>
<td>Release heart valves, open approach</td>
</tr>
<tr>
<td></td>
<td>02QF0ZZ, 02QG0ZZ, 02QH0ZZ, 02QJ0ZZ</td>
<td>Repair heart valves, open approach</td>
</tr>
<tr>
<td></td>
<td>037G*—037Q*</td>
<td>Dilation of arteries with intraluminal device, percutaneous</td>
</tr>
<tr>
<td></td>
<td>057L*—057S*</td>
<td>Dilation of veins with intraluminal device, percutaneous</td>
</tr>
</tbody>
</table>

Table A.2. Definitions of Interventional Cardiology Procedures

*Notes: Table shows inpatient hospital procedure codes (ICD-9-PCS and ICD-10-PCS) used to identify valve replacements (TAVR and SAVR) and valve supports (PCIs). Interventional cardiologists are identified using the Medicare Data on Provider Practice and Specialty (MD-PPAS) files, 2010–2017. * indicates all relevant ICD codes with the listed prefix.*
Table A.3. STS-PROM Logistic Regression Coefficients

<table>
<thead>
<tr>
<th></th>
<th>30-Day Mortality</th>
<th>60-Day Mortality</th>
<th>90-Day Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ME</td>
<td>95% CI</td>
<td>ME</td>
</tr>
<tr>
<td>Panel A: Patient Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient age</td>
<td>-0.000</td>
<td>[-0.001,-0.000]</td>
<td>-0.000</td>
</tr>
<tr>
<td>Female</td>
<td>0.007</td>
<td>[0.006,0.008]</td>
<td>0.006</td>
</tr>
<tr>
<td>Black</td>
<td>0.011</td>
<td>[0.008,0.014]</td>
<td>0.009</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.006</td>
<td>[-0.000,0.013]</td>
<td>0.010</td>
</tr>
<tr>
<td>Other Minority Race</td>
<td>0.011</td>
<td>[0.007,0.015]</td>
<td>0.015</td>
</tr>
<tr>
<td>ADI (5-digit ZIP)</td>
<td>0.000</td>
<td>[-0.000,0.000]</td>
<td>0.000</td>
</tr>
<tr>
<td>ADI (9-digit ZIP)</td>
<td>0.000</td>
<td>[0.000,0.000]</td>
<td>0.000</td>
</tr>
<tr>
<td>Log(Median Zip Income)</td>
<td>-0.006</td>
<td>[-0.010,-0.003]</td>
<td>-0.010</td>
</tr>
<tr>
<td>Dual Eligible</td>
<td>0.049</td>
<td>[0.047,0.051]</td>
<td>0.061</td>
</tr>
<tr>
<td>Panel B: Chronic Conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Chronic Conditions</td>
<td>0.004</td>
<td>[0.004,0.004]</td>
<td>0.006</td>
</tr>
<tr>
<td>CC: AMI</td>
<td>0.005</td>
<td>[0.003,0.007]</td>
<td>0.006</td>
</tr>
<tr>
<td>CC: COPD</td>
<td>0.008</td>
<td>[0.006,0.009]</td>
<td>0.011</td>
</tr>
<tr>
<td>CC: CHF</td>
<td>0.018</td>
<td>[0.016,0.019]</td>
<td>0.024</td>
</tr>
<tr>
<td>CC: Diabetes</td>
<td>-0.003</td>
<td>[-0.005,-0.002]</td>
<td>-0.004</td>
</tr>
<tr>
<td>CC: Hypertension</td>
<td>0.006</td>
<td>[0.004,0.009]</td>
<td>0.006</td>
</tr>
<tr>
<td>CC: Stroke</td>
<td>-0.000</td>
<td>[-0.002,0.001]</td>
<td>-0.001</td>
</tr>
<tr>
<td>Panel C: Previous Healthcare Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Previous Surgery</td>
<td>0.011</td>
<td>[0.002,0.021]</td>
<td>0.007</td>
</tr>
<tr>
<td># of Previous Surgeries</td>
<td>0.006</td>
<td>[0.004,0.008]</td>
<td>0.006</td>
</tr>
<tr>
<td>Previous PCI</td>
<td>-0.009</td>
<td>[-0.018,0.001]</td>
<td>-0.004</td>
</tr>
<tr>
<td>Previous SAVR</td>
<td>0.021</td>
<td>[0.014,0.028]</td>
<td>0.023</td>
</tr>
<tr>
<td>Previous TAVR</td>
<td>0.006</td>
<td>[-0.008,0.020]</td>
<td>0.012</td>
</tr>
<tr>
<td>Any ED Visit</td>
<td>0.016</td>
<td>[0.014,0.018]</td>
<td>0.025</td>
</tr>
<tr>
<td># of ED Visits</td>
<td>-0.001</td>
<td>[-0.002,0.000]</td>
<td>-0.005</td>
</tr>
<tr>
<td>Any Hospital Stay</td>
<td>0.032</td>
<td>[0.023,0.041]</td>
<td>0.017</td>
</tr>
<tr>
<td># Hospital Stays</td>
<td>-0.023</td>
<td>[-0.024,-0.022]</td>
<td>-0.034</td>
</tr>
<tr>
<td># of Readmissions</td>
<td>0.016</td>
<td>[0.015,0.018]</td>
<td>0.029</td>
</tr>
<tr>
<td># of Days Admitted</td>
<td>-0.000</td>
<td>[-0.000,-0.000]</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Notes: Table shows estimated marginal effects (ME) and 95% confidence intervals (CI) according to the STS-PROM model. Regressions include year-quarter fixed effects, and are estimated for $N = 377,532$ cardiology patients, including all those who received valve replacements or supports in the analytical sample.
<table>
<thead>
<tr>
<th>Market Level Analysis: 100% inpatient claims</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Interventions</td>
<td>-0.159***</td>
</tr>
<tr>
<td></td>
<td>(0.0137)</td>
</tr>
<tr>
<td>Valve Replacements</td>
<td>1.857***</td>
</tr>
<tr>
<td></td>
<td>(0.0745)</td>
</tr>
<tr>
<td>PTCA Only</td>
<td>-0.258***</td>
</tr>
<tr>
<td></td>
<td>(0.0174)</td>
</tr>
<tr>
<td>Cardiac Catheterization</td>
<td>0.034**</td>
</tr>
<tr>
<td></td>
<td>(0.0133)</td>
</tr>
<tr>
<td>All Other PCI</td>
<td>-0.123***</td>
</tr>
<tr>
<td></td>
<td>(0.0117)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual Level Analysis: 20% Carrier File (Inpatient + Outpatient)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Interventions</td>
<td>-0.331***</td>
</tr>
<tr>
<td></td>
<td>(0.1238)</td>
</tr>
<tr>
<td>Valve Replacements</td>
<td>0.562***</td>
</tr>
<tr>
<td></td>
<td>(0.0190)</td>
</tr>
</tbody>
</table>

Table A.4. Robustness of Main Regression Results to Poisson Estimation

Notes: Table shows estimated regression coefficients from pooled DID analysis using Poisson regression. Compare estimated coefficients to event study results presented in Figures 3, A.5, and A.7. Panel A includes 100% of inpatient procedures, and measures total volume at the CZ-quarter level; panel B includes all interventional cardiology procedures for the 20% carrier file (inpatient and outpatient), and measures individual rates of interventions per 1,000 enrollees. Standard errors are clustered at the CZ level. Model is estimated using the `ppmlhdfe` package (Correia et al., 2020).
A.2 Figures

Figure A.1. Timeline of TAVR Adoption

Notes: Figure shows diffusion of TAVR procedures among different cardiac surgeon specialties over time. Total volume of surgical valve replacements (SAVR and TAVR, labelled as “S” and “T” on the x-axis) for the full U.S. Medicare population are shown, with a breakdown of surgeon specialty. Cardiothoracic surgeons ("CT") are those whose primary specialty is listed as “cardiac surgery”, “thoracic surgery”, or “general surgery”; interventional cardiologists ("IVC") are those whose primary specialty is listed as “interventional cardiology”, “cardiology”, or “cardiovascular disease”. Other surgeons include those with specialties outside of these fields (e.g., internal medicine) who also performed the procedures over time.
Figure A.2. Inequities in Crowdout Associated with Imperfect Risk Assessment

Hence, \(s_{C,g} \) is the ratio of \(A \) to \(B \) (weighted by \(s_g \)).

Notes: Figure illustrates the relative “crowd-out regions” for members and nonmembers of a group \(g \) when used in a proxy for patient risk, as well as the effect of measurement error in \(\beta_d \) on the relative crowd-out rates of members and nonmembers. The figure plots an inverse gamma distribution with parameters \((3, 1)\) for observable non-group covariates used in predicting patient risk, \(f(\cdot) \). The figure assumes that the membership variable \(d_{ig} \) is independent of all other covariates \(X_{-g}\). The region \(A \) (in red) represents the crowd-out region for members of a group \(g \) given \(\beta_d \), and region \(B \) (in blue) the corresponding region for nonmembers. Hence, the relative sizes of \(A \) and \(B \) (weighted by the overall size of the group \(g \) in the population) indicate the representation of members of \(g \) in the crowd-out region. Changes in \(\nu \) shift the region \(A' \), ultimately affecting the relative representation of members of group \(g \) in the crowd-out region.
Figure A.3. Predicted Patient Risk of Surgical Mortality (STS-PROM)

(a) Pr(30-Day Mortality)

(b) Pr(90-Day Mortality)

Notes: Figure shows predicted surgical risk from TAVR and SAVR, estimated using the STS-PROM model presented in Table A.3. The current STS-PROM model classifies a similar population as 33% low-risk, 42% intermediate-risk, and 25% high-risk (Kumar et al., 2018).
Figure A.4. Organization-level trends in utilization around TAVR adoption

(a) TAVR Surgeries

(b) Other PCI

(c) All Interventions

Notes: Figure shows recentered time series indicating average surgical volume at the individual organization level (identified using organization NPI) in the quarters around their own TAVR adoption in a local CZ. Panel (a) shows average TAVR volume; panel (b) average PCI volume; and (c) average total intervention volume. Results are stratified by those who were the first organizations to adopt in their local CZ.
Figure A.5. Procedural Volume Responses to TAVR Adoption, by Intervention Type

(a) SAVR/TAVR Surgeries

(b) PTCA

(c) Catheterization

(d) All Other PCIs

Notes: Figure shows estimated impact of TAVR adoption on the total volume of valve interventions performed in a local market, divided into major service types. In each panel, the outcome variable is the total market volume of a given intervention at a CZ level. Panel (a) shows the effect on all SAVR/TAVR surgeries; panels (b) and (c) show the effects on PTCA and cardiac catheterization, the two major PCI procedures; panel (d) shows effects for all other PCI interventions. Markets with fewer than 5 inpatient procedures quarterly are dropped from estimation, and standard errors are clustered at the CZ level.
Figure A.6. Robustness: Total Intervention Effects, Excluding Patients with Stable Angina or Stable Coronary Artery Disease

Notes: Compare to Figure 3. Figure shows estimated impact of TAVR adoption on the total volume of surgical interventions performed by IVCs. Sample excludes patients treated with stable angina or stable coronary artery disease, identified as patients with ICD-9-CM diagnosis code 413.9 or ICD-10-CM diagnosis codes I20.8 or I20.9 anywhere in the first ten diagnoses. Note that this likely a conservative approach, as this may remove patients with a history of stable angina but with new cardiovascular conditions; however, results are unchanged. Markets with fewer than 10 inpatient surgeries per quarter are dropped from estimation, and standard errors are clustered at the commuting zone level.
Figure A.7. Individual-Level Responses to TAVR Adoption

(a) All Interventions (Rate/1,000 patients)

(b) Valve Replacement (Rate/1,000 patients)

Notes: Figure shows estimated likelihood of an individual patient receiving (panel A) any valve intervention or (panel B) valve replacement following TAVR’s adoption in their commuting zone. Here, the denominator is the full CZ population from the 20% carrier file; results are robust to limiting the denominator to only patients with an aortic stenosis diagnosis prior to the intervention, as discussed in Section 2. Markets with fewer than 5 inpatient procedures quarterly are dropped from estimation, and standard errors are clustered at the CZ level.
Figure A.8. Effect of TAVR Adoption on Screening for Surgical Viability

Note: Figure shows effect of TAVR adoption at the CZ level on the fraction of interventional cardiologists performing Computed Tomography Angiography (CTA) screening to diagnose aortic stenosis and discuss valve replacement or support options (CPT code 71275). Regressions are estimated as in Equation 21. Markets with fewer than 5 inpatient procedures quarterly are dropped from estimation, and standard errors are clustered at the CZ level.
Figure A.9. TAVR Adoption Effects on Acute Angiography for NSTEMI Patients

Note: Figure shows estimated treatment effects of TAVR’s adoption on the percentage of Non-ST-Elevation Myocardial Infarction (NSTEMI) patients receiving an angiogram within 72 hours (the maximum acceptable wait time recommended by the European Society of Cardiology guidelines) (Hansen et al., 2018). Markets experiencing fewer than 5 NSTEMI patients quarterly are dropped from estimation.

Figure A.9 considers the case of urgently required PCIs, using the case of Non-ST-Elevation Myocardial Infarctions (NSTEMIs). These are less severe heart attacks that typically require angioplasty to reduce patient risk of future, more serious, heart attacks or strokes. The American and European Society of Cardiology guidelines both state that angiography should be performed on NSTEMI patients within 72 hours, in preparation for subsequent angioplasty (Hansen et al., 2018). The figure shows that the percentage of NSTEMI patients meeting this target is not affected by TAVR’s adoption, suggesting that the reductions in PCI availability may be for less severe patients.
Figure A.10. Market Relationships Between TAVR Takeup and Overall Intervention Volume

Notes: Figure shows a binscatter plotting the relationship between TAVR takeup in a local market (commuting zone) and changes in total interventional cardiology procedures performed. Each point is a CZ included in the analytical sample; the x-axis shows average quarterly TAVR volume in 2017, and the y-axis shows average differences in total IVC surgical volume (quarterly) between 2010 and 2017. 2 CZs with total 2017 TAVR volume exceeding 200 patients/quarter are dropped from view for visibility; binned regression results are robust to their inclusion/exclusion.
Figure A.11. Effect of TAVR Adoption on Average Risk of Valve Support Patients

(a) Log(90-day STS-PROM Risk)

Note: Figure shows effect of TAVR adoption at the CZ level on estimated mortality risk (STS-PROM) for patients receiving low-intensity treatments (valve supports). Figure shows results for 90-day predicted risk, with a log-transformed outcome variable. Results are similar for 30- and 60-day risk. Regressions are estimated as in Equation 21, with standard errors clustered at the CZ level.
Figure A.12. Heterogeneous Effects of TAVR Adoption on Procedural Volumes by Patient Risk

Note: Figure shows estimated heterogeneous treatment effects of TAVR’s adoption on total surgical volume for patients in different risk bins. STS-PROM risk is binned (width=0.2 percentage points); each point represents a difference-in-differences coefficient of TAVR’s adoption on surgical volume within the bin. Standard errors are adjusted for multiple hypothesis testing according to Anderson (2008) and Benjamini et al. (2006). Markets performing fewer than 10 surgeries per quarter are dropped. Vertical lines indicate STS-PROM delineation between low-risk patients (3%) and high-risk patients (8%). Compare with Figure 4.
Figure A.13. Effects of TAVR Adoption on Total Intervention Volumes by Patient Risk: Effects as % of Overall Decline

Notes: See Figure 4 for estimation details. In this figure, coefficients are normalized to be percentages of the total decline in intervention volume, with each coefficient divided by the overall DID estimate. Standard errors are adjusted for multiple hypothesis testing (Anderson, 2008; Benjamini et al., 2006). Vertical lines indicate STS-PROM delineation between low- and high-risk patients. Results are robust to using “pooled” post-treatment LP-DID average effects.
Notes: Compare to Figure 5. Effects of TAVR adoption on surgical volume across binned quintiles of CZs according to disadvantage, measured in the fraction of patients in a market who are dually-eligible for Medicaid (results are robust to defining dual-eligibility at the month or year level). Each point represents a “pooled” post-treatment LP-DID average effects, where the outcome is total surgical volume at the market level as in Figure 3. See Appendix Figure A.14 for results for dually-eligible patients. Results are robust to using standard difference-in-differences coefficients, as depicted in Appendix Figure A.15.
Figure A.15. Inequity Estimates: Robustness to Traditional DID Estimation

(a) % Non-white

(b) 9-digit zip code ADI

Notes: Heterogeneous effects of TAVR adoption on surgical volume across binned ventiles of CZs according to disadvantage, measured in (a) as the fraction of nonwhite patients, and in (b) as the average ADI in the market (based on 9-digit ZIP code ADI scores; results are robust to using 5-digit scores). Results use traditional DD coefficients; compare to Figure 5 for “pooled” post-treatment LP-DID average effects. Outcome is total surgical volume at the market level, as in Figure 3. Results are smoothed using weighted nonlinear regression as discussed in Section 4.
Figure A.16. Incidence of Cardiac Events Prior to or Following PCI

(a) Hospitalization Preceding PCI

(b) Hospitalization Following PCI

Notes: Figure shows difference-in-differences coefficients estimating the effect of local TAVR adoption on the percentage of PCI patients who either (a) had their procedure precipitated by a hospitalization (less than a year prior to PCI) or (b) experienced a cardiac event within a year following PCI. Cardiac events are limited to inpatient stays for heart attacks or heart failure. Across each group, markets in the top and bottom quintile are compared. Regressions adjust for CZ and quarter-of-year fixed-effects, and 95% confidence intervals are shown. Results are robust to using pooled LP-DID coefficients.
Figure A.17. Capacity Constraints: Utilization of Catheterization Labs around Local TAVR Adoption

(a) Total Utilization of Cath Lab (Inpatient Days)

(b) Total # of Unique Patients Using Cath Lab

Notes: Figure shows LPDID coefficients and 95% confidence intervals estimating the effect of TAVR adoption in a local market on utilization of catheterization laboratories over time. Panel (a) measures utilization via unique patient-days, indicated in the data using the \(\text{rev_unit} \) variable; panel (b) measures utilization by the unique number of patients receiving care in the cath lab. Markets with fewer than 10 inpatient surgeries per quarter are dropped from estimation, and standard errors are clustered at the commuting zone level.
Figure A.18. Effect of TAVR Adoption on Valve Support Intervention Outcomes

(a) Readmission

(b) Mortality

Note: Figures show effect of TAVR adoption at the CZ level on readmissions (panel A) and mortality (panel B) within 60 days following valve support (PCI) procedures. Regressions are estimated as in Equation 21, with standard errors clustered at the CZ level. Results are robust to limiting to 30- or 90-day windows for health events.