INTRODUCTION	Stylized facts	LIFE-CYCLE MODEL	ECONOMIC INTUITION	Model Fit	CONCLUSION
O	000000	0000	000000	000000	

Interest-rate risk and household portfolios

Sylvain Catherine Wharton Max Miller HBS James D. Paron Wharton Natasha Sarin Yale Law School

This paper

- Life-cycle portfolio choice model with stochastic interest rates
 - High interest rates means higher lifetime consumption
 - Households hedge against lower rates by buying long-term assets
 - Older investors care less, so hedging demand decreases with age
 - Human capital and Social Security create substitution effects

This paper

- Life-cycle portfolio choice model with stochastic interest rates
 - High interest rates means higher lifetime consumption
 - Households hedge against lower rates by buying long-term assets
 - Older investors care less, so hedging demand decreases with age
 - Human capital and Social Security create substitution effects
- Partial equilibrium model: we want to explain the cross-section of long-term asset holdings

This paper

- Life-cycle portfolio choice model with stochastic interest rates
 - High interest rates means higher lifetime consumption
 - Households hedge against lower rates by buying long-term assets
 - Older investors care less, so hedging demand decreases with age
 - Human capital and Social Security create substitution effects
- Partial equilibrium model: we want to explain the cross-section of long-term asset holdings
- Facts explained by the model:
 - Cross-section of portfolios
 - Wealth inequality dynamics

0

STYLIZED FACTS

Fact 1: The life-cycle profile of the interest-rate sensitivity of wealth is hump shaped

Fact 2: High earners have more rate-sensitive portfolios at all ages

Fact 3: Wealthier households have more rate-sensitive portfolios

Interest-rate sensitivity of wealth at age 40-45

Fact 4: Social Security offsets cross-sectional differences in the rate-sensitivity of portfolios

Interest-rate sensitivity of wealth at ages 40–45: Role of Social Security

Fact 5: Wealth inequality follows interest rates

INTRODUCTION	Stylized facts	LIFE-CYCLE MODEL	ECONOMIC INTUITION	Model Fit	Conclusion
O	000000	0000		000000	o

Households

• Households choose consumption C_i and portfolio allocation π_i

$$V_{it} = \max_{\{C_{is}, \pi_{is}\}} \mathbb{E}_t \sum_{s=t}^{t_{\max}} \beta^{s-t} \left[(1 - m_{is}) \frac{C_{is}^{1-\gamma}}{1-\gamma} + m_{is} b(W_{is}, r_{fs}) \right]$$

INTRODUCTION	Stylized facts	LIFE-CYCLE MODEL	ECONOMIC INTUITION	Model Fit	Conclusion
O	000000	0000	000000	000000	o

Households

• Households choose consumption C_i and portfolio allocation π_i

$$V_{it} = \max_{\{C_{is}, \pi_{is}\}} \mathbb{E}_t \sum_{s=t}^{t_{\max}} \beta^{s-t} \left[(1 - m_{is}) \frac{C_{is}^{1-\gamma}}{1-\gamma} + m_{is} b(W_{is}, r_{fs}) \right]$$

- Portfolio choice and return
 - π and 1π are the portfolio shares of the n-year and 1-year real zero-coupon bonds
 - Return on wealth portfolio

$$R_{W,it+1} = R_{ft} + \pi_{it}(R_{n,t+1} - R_{ft})$$

- Portfolio separation theorem: these two assets are sufficient to characterize the optimal interest-rate sensitivity of wealth

INTRODUCTION	Stylized facts	LIFE-CYCLE MODEL	ECONOMIC INTUITION	Model Fit	Conclusion
O	000000	0000		000000	o

Households

• Households choose consumption C_i and portfolio allocation π_i

$$V_{it} = \max_{\{C_{is}, \pi_{is}\}} \mathbb{E}_t \sum_{s=t}^{t_{\max}} \beta^{s-t} \left[(1 - m_{is}) \frac{C_{is}^{1-\gamma}}{1-\gamma} + m_{is} b(W_{is}, r_{fs}) \right]$$

- Portfolio choice and return
 - π and 1π are the portfolio shares of the n-year and 1-year real zero-coupon bonds
 - Return on wealth portfolio

$$R_{W,it+1} = R_{ft} + \pi_{it}(R_{n,t+1} - R_{ft})$$

- Portfolio separation theorem: these two assets are sufficient to characterize the optimal interest-rate sensitivity of wealth
- Evolution of wealth:

$$W_{i,t+1} = (W_{it} + L_{it} + B_{it} - T_{it} - C_{it})R_{W,it+1}$$

Interest-rate risk and asset returns

• Dynamics of 1-year log risk-free rate:

$$r_{f,t+1} = (1 - \varphi)\bar{r}_f + \varphi r_{ft} + \sigma_r \varepsilon_{r,t+1}.$$

• Long-term asset is a zero coupon payable in n years, with log return:

$$r_{n,t+1} = r_{ft} + \mu_n - \sigma_n \varepsilon_{r,t+1}$$

where

$$\sigma_n = \frac{1 - \varphi^{n-1}}{1 - \varphi} \sigma_r$$

and $\mu_n = -\sigma_n^2/2 \Rightarrow \mathbb{E}[R_n] = \mathbb{E}[R_f]$

– Interest-rate sensitivity increases with maturity n and shock persistence φ

- Household can target any interest-rate sensitivity by mixing the two assets

Rest of the model

- Stochastic income process
- **Progressive Social Security system**: higher replacement rate to workers with low lifetime earnings
- Income tax on earnings and Social Security benefits

Rest of the model

- Stochastic income process
- **Progressive Social Security system**: higher replacement rate to workers with low lifetime earnings
- Income tax on earnings and Social Security benefits
- Bequest motive is a utility flow of \bar{b} years

$$b(W_{it}, r_{ft}) = \bar{b} \frac{\bar{C}_{it}^{1-\gamma}}{1-\gamma},$$

where \bar{C}_i is the coupon implicit in a \bar{b} -year annuity of value W_{it} :

$$W_{it} = \bar{C}_{it} \sum_{k=0}^{\bar{b}} P_{kt}$$

INTRODUCTION	Stylized facts	LIFE-CYCLE MODEL	ECONOMIC INTUITION	Model Fit	Conclusion
O	000000	0000		000000	0

ECONOMIC INTUITION

We solve a linearized version of the model with no income risk and no bequest

No labor earnings or Social Security

• Long-term asset share:

• Without myopic demand (no term premium):

$$\underbrace{\pi_{it}^* \frac{\sigma_n}{\sigma_r}}_{\text{rate sens. of wealth}} = \left(1 - \frac{1}{\gamma}\right)_{\text{rate sens. of constant cons. plan}}$$

- Trade-off:
 - Option value of reinvesting when rates of return are high makes the long-term asset undesirable
 - Hedging value of capital gains when rates fall make the long-term asset desirable
 - Hedging effect dominates for $\gamma > 1$

Adding labor income and Social Security

• Same portfolio rule applies to <u>total</u> wealth

$$\frac{\pi_{it}W_{it} + \pi_{it}^{H}H_{it} + \pi_{it}^{S}S_{it}}{W_{it} + H_{it} + S_{it}} = \pi_{it}^{*}$$

- π_{it}^* is the optimal long-term asset share without background assets
- H and S are the certainty equivalents of human capital and Social Security
- $-\pi_{it}^{H}H_{it}$ and $\pi_{it}^{S}S_{it}$ are implicit background holdings of the long-term asset

Adding labor income and Social Security

• Same portfolio rule applies to \underline{total} wealth

$$\frac{\pi_{it} W_{it} + \pi_{it}^H H_{it} + \pi_{it}^S S_{it}}{W_{it} + H_{it} + S_{it}} = \pi_{it}^*$$

- π_{it}^* is the optimal long-term asset share without background assets
- ${\cal H}$ and ${\cal S}$ are the certainty equivalents of human capital and Social Security
- $-\pi_{it}^{H}H_{it}$ and $\pi_{it}^{S}S_{it}$ are implicit background holdings of the long-term asset
- Human capital and Social Security substitution effects

$$\pi_{it} = \pi_{it}^* + (\pi_{it}^* - \pi_{it}^H) \frac{H_{it}}{W_{it}} + (\pi_{it}^* - \pi_{it}^S) \frac{S_{it}}{W_{it}}.$$

- Human capital reduces the hedging demand for long-term asset if it's implicit long-term share exceeds the optimal target $(\pi_{it}^* < \pi_{it}^H)$
- Same intuition for Social Security
- Equivalently, in terms of rate-sensitivity:

$$\varepsilon_r(W_{it}) = \varepsilon_{r,it}^* - (\varepsilon_r(H_{it}) - \varepsilon_{r,it}^*) \frac{H_{it}}{W_{it}} - (\varepsilon_r(S_{it}) - \varepsilon_{r,it}^*) \frac{S_{it}}{W_{it}},$$
(1)

Substitution effects shape the life cycle of the long-term asset share

Substitution effects shape the life cycle of the long-term asset share

Substitution effects shape the life cycle of the long-term asset share

Duration-matching interpretation

• Intertemporal budget constraint:

$$W_{it} = \sum_{k=1}^{t_{\max}} P_{kt}(\bar{C}_{i,t+k} - Y_{i,t+k})$$

- No interest-rate risk strategy: for each period in k years, buy $\bar{C}_{i,t+k} Y_{i,t+k}$ units of the corresponding zero-coupon at spot price P_{kt}
- Intuition: Hold that portfolio, ignore changes in r, just use the coupons to pay (or save) for excess consumption plan
- We prove that when $\gamma \to +\infty$, the optimal portfolio converges to the duration-matching strategy

Real-world implementation of duration-matching

- Low earners:Social Security implements duration-matching
 - Working years $(Y_{i,t+k} > \overline{C}_{i,t+k})$: Pay Social Security contributions
 - Retirement $(Y_{i,t+k} < \overline{C}_{i,t+k})$: Receive Social Security benefits
- Middle-class earners: Add homeownership with fixed-rate mortgage
 - Working years: Mortgage payments
 - Retirement: Receive in-kind coupon payment (rent-free residence)
- \bullet High earners: Complement the above with a retirement account (...)
 - Working years: Invest in long-term assets (stocks)
 - Retirement: Consume out of retirement account
- Note: Duration of market wealth increases with earnings... but not the duration of total endowment (W+H+S)

ECONOMIC INTUITION

Model Fit •00000

Model Fit

Calibration: Preferences & Income process

- Preferences:
 - Discount factor $\beta=0.95$
 - Bequest motive $\bar{b} = 10$ years
 - Relative risk aversion γ = 6
 consistent with many recent portfolio choice studies (Benzoni et al., 2007; Lynch and Tan, 2011; Catherine, 2022; Calvet et al., 2021; Meeuwis, 2022).
 ⇒ we could match households' exposure to other risk factors (systematic risk, real-estate) with this calibration
- Income process from Guvenen et al. (2022)
- Differences in life expectancy across earnings distribution from Chetty et al. (2016)

Calibration: Interest rates

- We match moments from real yield curve data from 1989-2019 so our calibration reflect the beliefs of market participants
 - 1. Regression coefficient of 30-year forward rate on 1-year rate identifies the persistence of shocks φ
 - 2. Mean 30-years forward rate identifies the long-run average historical rate \bar{r}_f
 - 3. Variance 1-year rate identifies rate volatility σ_r

Mome	Estima	Estimate		
Data moment	Model equiv.	Data value	Parameter	Value
$\operatorname{cov}(f_{30,t}, r_{ft}) / \operatorname{var}(r_{ft})$	$arphi^{30}$	0.2569	arphi	0.9557
$f_{30,t}$	$ar{r}_f$	0.0193	$ar{r}_f$	0.0193
$\operatorname{var}(r_{ft})$	$\sigma_r^2/(1-\varphi^2)$	0.0167	σ_r	0.0049

Interest-rate sensitivity of wealth within a cohort

Evolution of wealth inequality in OLG framework

- We simulate data starting with the cohort of 1880, using the historical path of real interest rates
- We generate 40% of the long-run variations in the top 10% share
- -~66% of the top 10% share within the bottom 99%

INTRODUCTION STYLIZED FACTS LIFF-CYCLE MODEL ECONOMIC INTUITION MODEL FIT CONCLUSION

Conclusion

- We provide micro-foundations for the cross-section of the interest-rate sensitivity of wealth
 - Hedging demand against rate risk can explain who invests in long-term assets
 - Substitution effects from human capital and Social Security play key roles
 - Differences in life expectancy are less important
- Our model helps understand trends in wealth inequality
 - Rates explain 40% of long-run variations in the top 10% wealth share since 1960
 - We shed light on welfare implications