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Abstract
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The optimal interest-rate sensitivity of wealth is hump-shaped over the life cy-
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Changes in real interest rates have significant implications for households. Firstly,

when interest rates decrease, asset prices soar, resulting in capital gains for long-

term asset owners. These gains are substantial and unevenly distributed. Over the

past four decades, declining interest rates have been a driving force behind ex-

ceptional stock market returns (Binsbergen, 2021), significantly contributing to the

surge in wealth inequality (Greenwald et al., 2023). Secondly, lower interest rates

facilitate household borrowing against future income, but also pose challenges for

retirement savings. To finance $1 of expenditure at the age of 70, a 35-year-old

worker needs to invest 71 cents at a 1% rate of return, compared to only 36 cents

at a 3% rate of return. The fact that capital gains arise when future rates of re-

turn worsen complicates our understanding of who benefits or loses from long-term

interest rate fluctuations.

The goal of our paper is twofold. First, we seek to understand why certain

households choose to invest more in long-term assets. Second, we evaluate the

extent to which the distribution of interest-rate risk among households is efficient.

We start by analyzing US households’ balance sheets to identify who benefits

from changes in the market value of assets and liabilities induced by interest-rate

fluctuations. At first glance, the data suggest that interest-rate risk is unequally dis-

tributed, as three stylized facts illustrate. First, the interest-rate sensitivity of wealth

is hump-shaped over the life cycle. Second, within an age group, the interest-

rate sensitivity of wealth increases with both earnings and wealth. In other words,

middle-aged and richer households invest more in long-term assets that rapidly ap-

preciate in value when rates fall. Third, over the last 60 years, trends in wealth

inequality have tracked changes in the valuation of long-term bonds.

The interest-rate sensitivity of wealth must, however, be interpreted in the broader

context of a household’s life-cycle problem. Therefore, we set up a parsimonious

life-cycle model to assess these stylized facts against a normative benchmark. In
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our model, households decide how much to consume and choose the interest-rate

sensitivity of their wealth by mixing two assets: a short- and a long-term zero-

coupon bond. The allocation between these two abstract securities defines the op-

timal interest-rate sensitivity of their balance sheets. Taking into account house-

holds’ stochastic stream of labor income, the progressive Social Security system,

and stochastic interest rates, we find that the patterns we document in the data are

broadly consistent with the model’s predictions, reflecting an efficient distribution

of interest-rate risk across households.

Why can the model match the US data well? Because investors with longer

horizons benefit from more years of compounding, they are more sensitive to the

rate of return on wealth. Consequently, absent any background assets, the need to

hedge against falling rates by holding long-term assets declines with age, and so

does the optimal interest-rate sensitivity of wealth. In the presence of background

assets, the same portfolio rule applies to total wealth. Long-term background assets

reduce the optimal rate sensitivity of financial wealth, while short-term assets do

the opposite. Because its duration falls over the life cycle, human capital acts as

a substitute for long-term assets during the first decade of working life and the

opposite afterwards. The combination of the investment horizon and the changing

substitution effects from human capital generates a hump-shaped demand for long-

term assets over the life cycle, as observed in the data.

Another important background asset is Social Security. Its role can be under-

stood in two ways. First, because it pays benefits from retirement until death, Social

Security remains a long-term asset over most of the life cycle. Equivalently, be-

cause it represents an alternative savings vehicle with a rate of return that does not

depend on the market rate, Social Security partly insulates workers from interest-

rate fluctuations. Either way, it reduces the hedging demand for long-term assets.

This substitution effect is larger at the bottom of the earnings distribution because
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retirement benefits replace a smaller portion of lifetime earnings at the top. Conse-

quently, the demand for long-term assets increases with earnings and wealth within

an age group, as observed in the data.

How do these abstract portfolio rules translate to the hedging dynamics that we

actually observe? To eliminate interest-rate risk entirely, households could buy a

portfolio of zero-coupon bonds of various maturities that, combined with expected

future earnings, exactly matches their desired consumption plan. Holding this port-

folio to maturity would allow them to finance a preset consumption plan regardless

of interest-rate fluctuations because payments would be made exactly when needed.

This strategy is only optimal for an infinitely risk-averse agent, but it helps convey

economic intuition because, in reality, households engage in both voluntary and

mandatory financial transactions that emulate this portfolio.

At the bottom of the earnings distribution, workers save primarily through con-

tributions to Social Security, the rate of return on which does not depend on the

evolution of interest rates. Payroll taxes and benefits essentially redistribute labor

earnings over the life cycle to match the timing of a smoothed consumption plan.

These workers do not need to invest in long-term assets to hedge interest-rate risk,

because Social Security automatically does the hedging for them. Lower middle-

class households, who have most but not all of their earnings replaced by Social

Security, need to complement Social Security with private savings and do so by

buying a house with a fixed-rate mortgage. Through this arrangement, they trade

a flow of future residential consumption for a stream of future payments at current

spot prices. Social Security benefits cover most of their non-residential consump-

tion in retirement. Finally, because they receive the lowest replacement rates from

Social Security, higher earners rely more on private savings, such as retirement ac-

counts invested in the stock market. Since stocks are high-duration assets, their

value goes up when rates fall, protecting retirement consumption when saving be-
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comes harder.

In complete markets, risk-averse agents share risk optimally (Arrow, 1964). A

direct implication is that the realization of uncertainty should not redistribute wel-

fare across investors with identical preferences, as they would hold the same portfo-

lio and any risk would be equally allocated among them. At first glance, differences

in the duration of household balance sheets suggest that interest-rate risk is far from

equally distributed and that the rich accrue larger capital gains when interest rates

fall. However, our model shows that, to truly bear identical interest-rate risk, house-

holds with the same investment horizon and risk preference need to hold different

portfolios. These differences align well with those observed in the data.

A consequence of this insight is that trends in wealth inequality induced by

interest-rate fluctuations must be interpreted with caution. Indeed, our model gen-

erates large changes in the concentration of wealth—roughly half of historical vari-

ations since 1960—without any increase in within-cohort welfare inequality. As

two key empirical facts demonstrate, Social Security plays an important role in

explaining this paradox. First, the interest-rate sensitivity of wealth no longer in-

creases with wealth or earnings once Social Security wealth is accounted for. Sec-

ond, wealth inequality, inclusive of Social Security, did not rise much over the past

four decades (Catherine et al., 2023).

Our study shows that portfolio-choice theory is a useful tool for understanding

why wealth inequality rises and falls over long periods of time, why the inclusion

of Social Security wealth significantly changes these trends, and interpreting their

implications for welfare.

Related literature Our paper contributes to the literature on portfolio choices and

the dynamics of inequality.

First, we contribute to the study of households’ portfolio choices. Following
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seminal studies by Samuelson (1969) and Merton (1969), this literature has fo-

cused on the allocation of wealth between different assets classes, and in particular

the stock market portfolio and a riskfree bond (Benzoni et al., 2007; Catherine,

2022; Cocco et al., 2005; Viceira, 2001). Our approach differs in its focus on a

risk factor—the real interest rate—rather than a specific asset class. Campbell and

Viceira (2001) show that investors can hedge interest-rate risk by holding long-term

bonds. We build on this intuition to quantitatively explain household’s demand for

long-term assets and demonstrate how mortality, human capital, and Social Security

shape the optimal hedging demand.

Previous work justifies this fresh angle. First, Lustig et al. (2013)’s finding that

events in the long-term bond market, not the stock market, are the greater source of

risk for households motivates our focus on the optimal duration of their portfolio

rather than their equity share. Second, for the subset of wealth held in stocks, a key

feature is its high interest-rate sensitivity: Binsbergen (2021) shows that, over the

last fifty years, duration explains most of the market’s exceptional returns. Green-

wald et al. (2023) document that wealthy households invest more in long-term as-

sets, which mechanically increases wealth inequality when interest rates fall. We

complement this literature by providing a theoretical foundation to portfolio differ-

ences in the exposure to interest-rate risk not only across the wealth distribution,

but also over the life cycle and across the earnings distribution.

Fagereng et al. (2023) develop a sufficient statistics approach to measure how

historical changes in asset prices redistributed welfare using transaction data. By

solving for optimal portfolio rules, we provide a normative benchmark to assess,

from current balance sheet data, who would benefit or lose from future interest-rate

shocks, given their earnings and age.

In doing so, we explain an important driver of portfolio-return heterogeneity.

The importance of this work is highlighted by Moll (2021), who argues that ex-
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plaining the portfolio choices that generate heterogeneous returns is first-order.

Benhabib et al. (2019), Bach et al. (2020) and Hubmer et al. (2021) have empir-

ically documented that the higher returns of the wealthy are essential for explaining

wealth inequality and its evolution. We provide an explanation for this hetero-

geneity: wealthier households should invest more in long-term assets to be equally

hedged against interest-rate risk.

Recent work by Fagereng et al. (2021) shows that capital gains explain most of

the rise in wealth inequality because the rich “save by holding” instead of selling

assets to consume. This behavior is consistent with interest-rate hedging. At the

limit, if households hold the perfect interest-rate hedging portfolio, holding it to

maturity will let them afford the same consumption plan regardless of discount-

rate-induced changes in asset prices. As Cochrane (2022) notes, a family should

not pay attention to these changes if it intends to live off of the coupons.

Finally, this paper builds on recent studies that have focused on the ways in

which progressive government programs attenuate the incidence of wealth inequal-

ity on lifetime consumption (Auerbach et al., 2023; Catherine et al., 2023). Our

model shows how the interplay between public programs like Social Security and

optimal portfolio choices can generate diverging trends in wealth and consumption

inequality. Our mechanism helps explain Meyer and Sullivan (2023)’s finding that,

over the past five decades, the rise in overall consumption inequality was small.

1 Data

This section describes our data sources and the methodology we adopt to measure

the interest-rate sensitivity of wealth. We provide more details in Appendix A.
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1.1 Survey of Consumer Finances

Our goal is to measure the interest-rate sensitivity of assets on households’ balance

sheets. To do this, our primary data source is the triennial Survey of Consumer

Finances (SCF), from which we use all survey years from 1989 to 2019. We use

three main series: (i) detailed information on household assets and liabilities, (ii)

interest rate and maturity data for household liabilities, and (iii) income data for

household assets, which we use to compute valuation ratios. We supplement the

SCF with data on Social Security wealth and interest-rate sensitivity from Catherine

et al. (2023), duration estimates from Greenwald et al. (2023) and Bloomberg, and

the real yield curve, computed by subtracting inflation projections from the SSA

annual reports from the nominal yield curve from the Federal Reserve.1

1.2 Interest-rate process

Measuring the interest-rate sensitivity of assets requires some structure over how

shocks to current interest rates will affect future interest rates. To this end, we

assume that log interest rates follow a first-order autoregression, given by:

rf,t+1 = (1− φ)r̄f + φrft + σrϵr,t+1, (1)

where ϵr is a standard normal shock.

Since our focus is on obtaining realistic asset price levels and capital gains for

rate-sensitive assets, we calibrate the stationary mean, persistence, and volatility

to match moments of the real yield curve. In particular, over our sample period

of 1989–2019, we target (1) the slope from a linear regression of the 30-year real

1Data on the nominal yield curve can be found here. The zero-coupon yield curve is estimated
using off-the-run Treasury coupon securities for horizons up to 30 years.
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forward rate (f30) on the current one-year real yield, (2) the average 30-year real

forward rate, and (3) the unconditional volatility of the one-year real yield. These

three moments provide an exactly identified system that defines each parameter in

terms of data moments. Table 1 reports the data moments, their relationship to

model parameters, and the implied estimates.

When interest rates follow an AR(1) process, the interest-rate sensitivity of the

price of a zero-coupon bond paying off 1 in k years (Pkt) is given by:

ε̂r(Pkt) =
1− φk

1− φ
. (2)

Table 1: Parameter values and moments for the riskfree rate process

Moment condition Estimate
Data moment Model equiv. Data value Parameter Value

cov(f30,t, rft)/var(rft) φ30 0.2569 φ 0.9557

f̄30,t r̄f 0.0193 r̄f 0.0193

var(rft) σ2
r/(1− φ2) 0.0167 σr 0.0049

1.3 Interest-rate sensitivity of assets

We obtain the rate sensitivity of households’ wealth in three steps. First, we esti-

mate cashflow duration for each asset and liability on households’ balance sheets.

Second, we apply equation (2) to this cashflow duration, taking the rate sensitivity

of the asset to be the same as the rate sensitivity of a riskfree zero-coupon bond

with the same duration. Third, we take a value-weighted sum of the assets’ rate

sensitivities to arrive at the overall portfolio rate sensitivity of each household.

We adopt different methods to compute the cashflow durations of assets and li-

abilities for the first step. For equity, real estate, liquid assets, and fixed income, we
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use cashflow duration measures from outside sources. For vehicles, private busi-

nesses and liabilities, we use information provided in the SCF. More information

about our construction of all of the different components of interest-rate sensitivity

can be found in Appendix A.2.

Equity, real estate, liquid assets, and fixed income For all equity, real estate,

and liquid assets, we apply the annual group-wide duration estimates provided by

Greenwald et al. (2023). For fixed-income assets, we collect annual average dura-

tion estimates from Bloomberg for government debt, municipal bonds, mortgage-

backed securities, foreign bonds, and corporate bonds and apply them to each asset

within the fixed-income group accordingly.

Vehicles To determine the duration of vehicles, we compute the time left on a

vehicle’s life using the age of the vehicle provided in the SCF and an estimate of

its maximum lifetime. We then assume a constant depreciation rate to determine its

cashflow duration.

Private business wealth The time series of private business wealth duration is

taken from the annual, aggregate price-dividend ratio of businesses owned by house-

holds in the SCF, given by

dur(Private Businesst) =
Business Valuet

Business Incomet − Wagest
. (3)

We use the price-dividend ratio here because it is equal to the duration when dis-

count rates and cashflow growth are constant (Binsbergen, 2021). The business

value is the value of the household’s ownership share and dividends are the house-

hold’s business income less wages to business owners, which are either reported in

the SCF or estimated using information on their level of education and age. We
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obtain an annual time series by summing each component within each SCF survey

year and applying equation (3).

The problem with this method is that valuation ratios are higher at the top of the

earnings distribution, since wealthy entrepreneurs tend to run different businesses

than other business owners (Schoar, 2010). To address this, we allow for cashflow

duration to vary across different wealth categories using the gradient of valuation

ratios across the wealth distribution. More detail on the estimation of private busi-

ness duration is outlined in Appendix A.2.4

Liabilities For each household’s liabilities in the SCF, we assume a fixed repay-

ment schedule and estimate duration as

dur(Debtt) =
N∑

n=1

(
Pnt∑N

n′=1 Pn′t

)
n, (4)

where N is the number of years remaining on the loan given in the SCF and Pnt =

e−nynt where ynt is the n-year yield. The number of years remaining on the loan is

either given explicitly in the SCF or can be inferred from the interest rate and loan

balance outstanding.

1.4 Interest-rate sensitivity of wealth

Finally, we compute the rate sensitivity of the overall wealth portfolio for household

i as the value-weighted sum of each component elasticity:

ε̂r(Wealthi) =
∑
j

Assetji
|Wealthi|

× ε̂r(Assetji), (5)

where Assetji denotes the value of the asset or debt j, ε̂r(·) its interest-rate elasticity,

and Wealthi the household’s net worth.
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Table 2: Average duration and portfolio share by asset group

IR Sensitivity Portfolio share
equal-weighted wealth-weighted

Assets
Private Business 16.26 0.04 0.18
Equity 20.38 0.09 0.18
Real Estate 9.78 0.44 0.40
Fixed Income 5.00 0.08 0.12
Vehicles 3.17 0.20 0.03
Cash and Deposits 0.25 0.15 0.08

Liabilities
Mortgage Debt 8.23 0.52 0.83
Other Debt 2.59 0.48 0.17

Networth
Value-weighted 12.56
Equal-weighted 8.36

Note: This table reports the average interest-rate sensitivity and portfolio share of each asset group
for households in the SCF. Interest-rate sensitivity is calculated from asset duration as in equation
(2). To calculate average duration for each asset group, we take the duration estimate for each house-
hold’s holdings in the group and then average them across households, weighting each household’s
contribution by its SCF sample weight and the value of its holding in the asset group. To obtain the
equal-weighted portfolio shares, we take the share of each asset group within a household’s portfolio
and then average the shares across households using SCF sample weights. We repeat this process
for the wealth-weighted portfolio shares, but in this case we weight each household by both its SCF
sample weight and its networth.

Table 2 presents the averages of our interest-rate sensitivity estimates by asset

group and for wealth for households in the SCF. The average balance sheet interest-

rate sensitivity suggests that interest-rate risk generates substantial volatility in re-

turns to wealth. The combination of a rate volatility of 0.49% and an interest-rate

sensitivity of 8.21 translates into a volatility of 4% for the return on wealth. Inter-

estingly, holdings of public and private equity only imply a volatility from stock

market returns of 2.4%.2 This implies that variation in interest rates constitutes a

2Public and private equity shares represent 13% of networth of the average household, so, assum-
ing a volatility of market returns of 18.5%, we obtain 2.4%. Using the wealth-weighted averages of
rate sensitivity and equity share yield similar implied volatilities from stock market and interest-rate
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risk to households that is of similar magnitude to the risk imposed from variation in

stock markets.

2 Stylized facts

We begin by documenting facts about the directly observable side of household’s

interest-rate exposure: the interest-rate sensitivity of wealth εr(W ). Even though

it only paints a partial picture of households’ exposures to interest rates, the dis-

tribution of εr(W ) is interesting because it reflects households’ portfolio choice

problems. We document five stylized facts:

(1) interest-rate sensitivity is hump-shaped over the life cycle;

(2) high earners hold assets with higher interest-rate sensitivity;

(3) interest-rate sensitivity is increasing in wealth;

(4) trends in wealth inequality follow trends in interest rates;

(5) Social Security offsets differences in exposure to interest-rate risk.

These patterns will later guide our structural analysis.

2.1 Interest-rate sensitivity is hump-shaped over the life cycle

The first stylized fact is that the rate sensitivity of wealth is hump-shaped over the

life cycle: it is lowest for 20-year-olds, rises to a high for 40- to 45-year-olds,

and steadily declines thereafter. Figure 1 decomposes this pattern clearly, showing

the relative contribution of each asset to the total portfolio rate sensitivity. The

difference in portfolio interest-rate sensitivities at each age is determined by the

exposures of roughly 6%. This assumes that other balance sheet assets are not correlated with the
stock market, which is true for housing (Flavin and Yamashita, 2002).
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assets households choose to hold. For example, 20- to 25-year-old households have

relatively low interest-rate sensitivities because the majority of their wealth (70.4%)

is invested in liquid accounts (e.g., checking and savings accounts) and vehicles.

Their holdings of longer-term assets like stocks and home equity are substantially

smaller than later in life.

Figure 1: Interest-rate sensitivity of wealth by age

A. First earnings tercile B. Second earnings tercile C. Third earnings tercile

0
5

10
15

20 40 60 80
Age

Liquid assets and fixed income
+Vehicles
+Home equity
+Home leverage effect
+Equity and private business
+Other debt = wealth

20 40 60 80
Age

20 40 60 80
Age

Note: This figure reports the interest-rate sensitivity of wealth by age and tercile of earnings. The
rate sensitivity is decomposed into the contribution of six components of wealth. From bottom to
top, we calculate the sensitivity of partial portfolios, adding components step-by-step. First, we
report the interest-rate sensitivity of liquid assets and fixed-income assets. We then report the rate
sensitivity of a larger portfolio that also includes vehicles, and so forth. Thus, the interest-rate
sensitivity of the partial portfolio inclusive of the first k components of wealth is ε̂r(Portfoliok) =
Portfoliok−1

Portfoliok
ε̂r(Portfoliok−1) +

Componentk
Portfoliok

ε̂r(Componentk).

As households approach midlife, the composition of assets changes and the

interest-rate sensitivities of their portfolios grow. Shorter-term liquid assets and

vehicles contribute roughly the same to interest-rate sensitivity as they do for the

young, but now, the majority of the portfolio (48.7% for 40-year-olds) is made up

of longer-term assets like equity and real estate. Moreover, leverage—in particular,
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mortgages and other debts—plays a more important role, increasing the rate sen-

sitivity of the wealth portfolio by nearly 20%. The reason leverage increases the

rate exposure of the household’s portfolio is because the (equal-weighted) average

rate sensitivity of assets is approximately 40% higher than that of debts over our

sample. The net position, therefore, has a higher interest-rate sensitivity

As midlife turns to retirement, the rate sensitivity of household portfolios begins

to fall. The decline in rate exposure is driven not by the asset side of the portfolio,

but rather by the disappearance of leverage, which reduces the interest-rate sen-

sitivity of the wealth portfolio. This is consistent with the conventional narrative

in saving for retirement: households with a large stock of human capital take on

mortgages in early adulthood to guarantee housing consumption flows in old age.

2.2 Interest-rate sensitivity is increasing in earnings

The second stylized fact is that high-earning households hold more rate-sensitive

portfolios, on average, as seen by comparing the three panels of Figure 1. The three

panels show that, for a 1% decline in interest rates, the top earnings tercile will

see approximately 4 percentage points larger capital gains than those of the bot-

tom earnings tercile. High earners investing more in equity drives the relationship

between earnings and the rate-sensitivity of wealth.

2.3 Interest-rate sensitivity is increasing in wealth

The third stylized fact is that interest-rate sensitivity is generally increasing in

wealth. This fact is shown in Figure 2, which decomposes the average rate sen-

sitivity for households between ages 40 and 45 over the log of their wealth scaled

by the Social Security Wage Index in their survey year.

For low-wealth households, liquid accounts, vehicles, and non-mortgage debt
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contribute the most to the interest-rate sensitivity of their portfolios. For middle-

wealth households, real estate becomes the dominant asset, with its rate sensitivity

amplified by the mortgage taken on to finance the purchase. The large indivisible

nature of houses leads lower-middle-wealth homebuyers to take out large mortgages

and expose themselves to interest-rate fluctuations, which is reflected in the small

bump in rate sensitivity near the lower-middle portion of the wealth distribution. As

wealth increases, portfolio rate exposures increase with larger positions in highly

rate-sensitive assets like publicly traded equity and private businesses.

Figure 2: Interest-rate sensitivity of wealth at ages 40–45 by level of wealth

0
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10
15

-2 -1 0 1 2 3 4
Log Wealth/Wage Index

Liquid assets and fixed income
+Vehicles
+Home equity
+Home leverage effect
+Equity and private business
+Other debt = total

Note: This figure decomposes the interest-rate sensitivity for households in which the head of the
household is between 40 and 45. The methodology is the same as in Figure 1, except that here the
x-axis is the log of wealth scaled by the Social Security Wage Index in the survey year.

2.4 Wealth inequality follows interest rates

Figure 3 illustrates the fourth stylized fact: Over the last six decades, the wealth

share of the top 10% of the wealth distribution has closely tracked the price of real
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bonds, which we approximate by one minus of the estimated 10-year forward rate.

Figure 3: Wealth inequality and estimated 10-year real forward rates
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Note: This figure presents the time series of the top 10% wealth share from the World Inequality
Database and 1− f̂10,t, one minus our estimated 10-year real forward rate from equation (A.2).

2.5 Social Security offsets differences in rate sensitivity

We now extend our definition of wealth to include the net present value of Social

Security payments—that is, of expected benefits minus expected payroll taxes to be

paid into the system. Figure 4 displays the fifth stylized fact: the inclusion of Social

Security wealth strongly attenuates the relationships between interest-rate exposure

and wealth (Panel A) and earnings (Panel B).

16



Figure 4: Interest-rate sensitivity of wealth at ages 40–45: Role of Social Security

A. Wealth B. Earnings
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Note: This figure decomposes the interest-rate sensitivity for households in which the head of the
household is between 40 and 45. The methodology is the same as in Figure 1, except that here the x-
axis is the log of wealth scaled by the Social Security Wage Index in the survey year in Panel A and
scaled earnings in Panel B. Estimates for the net present value of Social Security at the individual
level come from the risk-adjusted valuation of Catherine et al. (2023).

3 Model

We model household consumption and investment decisions over a life cycle di-

vided into two stages: working age and retirement.

3.1 Agents

Agent i chooses consumption Ci and portfolio allocation πi to maximize lifetime

utility

Vit = max
{Cis,πis}

Et

tmax∑
s=t

βs−tpit,s−1

[
(1−mi,s−1)

C1−γ
is

1− γ
+mi,s−1b(Wis, rfs)

]
, (6)
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where β is the rate of time preference, γ is the coefficient of relative risk aversion,

tmax is the maximum lifespan, mit is the age- and income-dependent mortality prob-

ability from t to t+ 1, pits =
∏s−1

u=t(1−miu) is the probability of surviving from t

to s, and b is the bequest motive over terminal wealth W and the interest rate rf .

While working-aged, the agent receives labor income Li and pays Social Se-

curity taxes Ti; in retirement, which begins at a given time tret, he or she receives

benefits Bi. The utility maximization is therefore subject to the budget constraint

for wealth

Wi,t+1 = (Wit + Lit +Bit − Tit − Cit)RWi,t+1, (7)

with gross return on savings

RWi,t+1 = Rft + πit(Rn,t+1 −Rft). (8)

In this expression, Rf is the return on a riskfree bond, Rn is the return on the long-

term asset, and πi is the share of wealth invested in this asset.

3.2 Interest rates and wealth returns

Rates of return on assets vary over time; we thus model stochastic processes for the

short- and long-term asset returns and constrain their joint dynamics using equilib-

rium pricing conditions. Denote log returns by lowercase r = logR. As in our

empirics, we assume that the riskfree rate follows a first-order autoregression:

rf,t+1 = (1− φ)r̄f + φrft + σrϵr,t+1.

We model the long-term asset as a riskless claim to one unit of real consumption

in n periods. Its price, denoted Pn, satisfies the expectations hypothesis, generalized
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to include constant term premia.

We assume that the term premium on each n-period bond is some constant µn

(with µ1 = 0). As we show in Appendix B.2, these assumptions imply an ex-

plicit relation between the dynamics of long-term bond returns and short-term rate

fluctuations: the log bond return equals

rn,t+1 = rft + µn − σnϵr,t+1, (9)

where sensitivity to rate shocks σn is given by

σn =
1− φn−1

1− φ
σr. (10)

In addition, we set µn = −σ2
n/2, so that there is no risk premium. This is because

we are interested in the effect of rate fluctuations, not the additional risk compensa-

tion for holding long-term government debt.

We define the interest-rate sensitivity of an asset with current price Pt as the

percentage change in the price caused by an unexpected decline in the interest rate:

εr(Pt) ≡ − logPt+1 − Et logPt+1

rf,t+1 − Etrf,t+1

. (11)

It follows that the rate sensitivity of the long-term bond is

εr(Pnt) =
1− φn−1

1− φ
, (12)

This sensitivity is increasing in maturity n. This expression summarizes the effect

of unexpected changes in interest rates: if the riskfree rate unexpectedly falls, then

the long-term bond has an unexpectedly high return from capital gains. The longer

is the maturity n, the larger is this response. These return processes, together with
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the agent’s portfolio allocation πi, give us the return on wealth from (8).

We purposely choose not to model the full menu of assets—housing, bonds,

stocks—and liabilities that actually constitute most of a household’s balance sheets

for two reasons. First, this choice makes the economic intuition of the model as

transparent as possible. Second, by the portfolio separation theorem, two bonds

of different maturities are sufficient to target the optimal interest-rate sensitivity of

wealth. Adding other assets with their own risk factors will have no effect on this

dimension of portfolio choice.

3.3 Labor income

We model labor-income dynamics using the empirically realistic process estimated

by Guvenen et al. (2022). Each agent’s income Li is the product of the aggregate

wage index L̄t and an idiosyncratic component

L̃it = exp {g(t) + ζi0 + zit + ϵit} . (13)

The deterministic component g(t) is a quadratic polynomial of age; it captures com-

mon life-cycle patterns in income. The parameter ζi0 governs heterogeneous levels

of earnings. The persistent component of earnings, denoted by zi, follows a first-

order autoregression

zit = ρzi,t−1 + ηit, (14)

with innovations ηi drawn from a mixture of normal distributions

ηit ∼

N (µη1, σ
2
η1) with probability pz,

N (µη2, σ
2
η2) with probability 1− pz.

(15)
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The initial cross-sectional distribution of the persistent component of earnings is

given by zi0 ∼ N (0, σ2
z0). The transitory component of idiosyncratic earnings ϵit is

also drawn from a mixture of normal distributions

ϵit ∼

N (µϵ1, σ
2
ϵ1) with probability pϵ,

N (µϵ2, σ
2
ϵ2) with probability 1− pϵ.

(16)

3.4 Social Security and Income taxes

Agents pay Social Security payroll taxes Ti on their labor income during working

life, then receive benefits Bi in retirement. We assume all workers retire at the full-

retirement age tret, which is the age at which they receive 100% of their scheduled

benefits. The tax payments are 10.6% of all income below the Social Security wage

base, which is 2.5 times the average wage:

Tit = 0.106min{Lit, 2.5L̄t}. (17)

Social Security retirement benefits depend on the agent’s average indexed yearly

earnings (AIYE), which is an average of the highest 35 years of indexed earnings

Lindexed
it = min{Lit, 2.5L̄t}

L̄t60

L̄t

(18)

up to retirement, where L̄t60 is the wage index during the period in which the worker

is 60. In words, indexed earnings are the income below the wage base at a given

age, adjusted for growth in the aggregate wage index L̄t up to age 60. Income

earned after age 60 but before retirement at tret can still contribute to the worker’s

AIYE, but it is indexed to t60. Total benefits are then a piecewise-linear function of
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the AIYE when the worker retires:

Bit =


0.9AIYEitret if AIYEitret < b1,

0.9b1 + 0.32(AIYEitret − b1) if b1 ≤ AIYEitret < b2,

0.9b1 + 0.32(b2 − b1) + 0.15(AIYEitret − b2) if b2 ≤ AIYEitret .

(19)

The kinks in this benefit formula are determined by the “bend points” b1 and b2,

which historically are about 21% and 125% of the wage index, respectively. The

formula is progressive: as AIYE (lifetime income) increases, the marginal benefit

declines. Note that AIYE is itself bounded above due to the wage base, so benefits

have an upper bound. Benefits after the retirement year are held constant in real

terms — that is, they are adjusted in nominal terms to account for CPI inflation.

Before retirement, we keep track of average index earnings as:

AIYEit =
t∑

s=t0

min{Lis, 2.5L̄s}
L̄t

L̄s

= L̄t

t∑
s=t0

min{L̃is, 2.5}. (20)

Households pay taxes on income and benefits according to the income tax brack-

ets faced by U.S. households in 2020, adjusted for changes in the aggregate wage

index. Marginal tax rates are progressively increasing in idiosyncratic income L̃i;

we report the formula for these rates in Appendix B.1.

3.5 Bequests

Individuals bequeath to their children an inheritance from their terminal financial

wealth. In modeling utility over bequests, one must consider the fact that inheri-

tance does not necessarily constitute a one-time transfer of liquid wealth; it might

instead be a long-lived flow of consumption, such as from real estate. Hence, we

model the bequest motive as a function of an annuity flow C̄i which takes into ac-
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count both the value of financial wealth and the time value of money. Specifically,

we assume

b(Wit, rft) = b̄
C̄1−γ

it

1− γ
, (21)

where b̄ can be interpreted as the number of years of consumption that the agent

wants to bequeath, and C̄i is the coupon implicit in the annuity of b̄ years: Wit =

C̄it

∑b̄
k=1 Pkt.

4 Economic intuition

To communicate the first-order intuitions of our model, we present an analytical

solution to a linearized version with no idiosyncratic income risk or bequests, which

we derive in Appendix C. We proceed in two steps. First, we discuss consumption

and portfolio rules for an agent without human capital or Social Security. Second,

we show that the same portfolio rule applies to total wealth in the presence of

background assets such as human capital and Social Security.

4.1 Optimal choices without labor income

Consumption rule Without labor income, the linearized model implies the optimal

consumption policy

C∗
it

Wit

= (1− β(1−mit))︸ ︷︷ ︸
time discounting

× exp

{(
1− 1

γ

)
(ϱ0t + ϱrtrft)

}
︸ ︷︷ ︸

income and substitution effects

. (22)

The first term represents the positive effect of impatience and mortality on con-

sumption. The second term represents the net of income and substitution effects

from interest rates. Higher rates mean higher interest income, so that households
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can consume more today (the income effect). At the same time, higher rates mean

agents get more consumption tomorrow in exchange for their savings (the substitu-

tion effect). The income effect dominates the substitution effect when the elasticity

of intertemporal substitution (the EIS, 1/γ) is less than one (γ > 1). The sensitivity

of consumption to interest rates depends on the coefficient

ϱrt =
∞∑
j=1

φj−1βjpit,t+j, (23)

where pit,t+j is the survival probability from year t to t + j. It is declining in age

because agents with shorter horizons are less affected by persistent rate changes.

Portfolio rule The optimal allocation to the n-period bond is:3

π∗
it =

1

γ

µn +
1
2
σ2
n

σ2
n︸ ︷︷ ︸

myopic demand

+

(
1− 1

γ

)
ϱrt

(
1− φn−1

1− φ

)−1

︸ ︷︷ ︸
interest-rate risk hedging demand

. (24)

The first term represents the traditional risk-return tradeoff of Merton (1969). Our

assumption of µn = −σ2
n/2 sets this term to zero. The second term is the demand

from intertemporal hedging of interest-rate fluctuations, the focus of our paper. Be-

cause its value increases when rates unexpectedly decline, the long-term bond offers

protection against the deterioration of investment opportunities.

This portfolio rule implies that the optimal interest-rate sensitivity of wealth,

which equals ε∗r(Wit) = π∗
itσn/σr from (11), is

ε∗r(Wit) =
1

γ

µn +
1
2
σ2
n

σnσr

+

(
1− 1

γ

)
ϱrt. (25)

3As we verify in Appendix C.2, this solution holds true even if we separate the coefficient of
relative risk aversion from the elasticity of intertemporal substitution (EIS). Thus, the portfolio share
is indeed governed by risk aversion, and not the EIS.
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Note that this optimal sensitivity is independent of the long-term bond maturity

n. This illustrates the fact that households can mix any combination of short- and

long-term assets to target their optimal total exposure to rate risk.

The sensitivity of consumption to rate shocks ϱrt declines with the investor’s

horizon, so the hedging demand decreases in age toward zero. From (23), we

see that ϱrt represents the cumulative effect of an interest-rate shock over time,

weighted by the importance of each future period in the agent’s lifetime utility, tak-

ing into account mortality and the psychological preference for the present. In other

words, it results from the interplay between the agent’s horizon and the persistence

of interest-rate shocks. Agents with shorter horizons are less sensitive to future

rate changes; therefore, absent labor income and Social Security, the exposure of a

household’s portfolio to rate shocks should decline over the life cycle.

Interestingly, for a risk-neutral agent (γ = 0), the hedging demand is infinitely

negative. A risk-neutral agent prefers to receive capital gains when they can be

reinvested at a higher rate of return and would therefore like to short-sell the long-

term asset. In the log-utility case (γ = 1), this force is perfectly offset by the will

to insure against the deterioration of investment opportunities and the portfolio rule

is reduced to the myopic demand.

4.2 Effects of labor income and Social Security

Now let us consider the effect of labor income and Social Security. Suppose that

labor income Li, taxes Ti, and benefits Bi are deterministic. The values of hu-

man capital and Social Security wealth are Hit =
∑tret−t

k=1 pt,t+kPktLi,t+k and Sit =∑tmax

k=1 pt,t+kPkt(Bi,t+k−Ti,t+k), where Pkt is the price of a k-maturity zero-coupon

bond. Define total wealth W i as the sum of wealth Wi and these present values.

Implementing the same linearization implies the consumption rule relative to
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total wealth is the same as in the no-income solution: Ci/W i equals the right-hand

side of (22). Similarly, the optimal allocation to bonds out of total wealth is π̄i = π∗
i

from (24). The optimal allocation out of wealth W then takes the form

πit = π∗
it − (πH

it − π∗
it)

Hit

Wit︸ ︷︷ ︸
human capital

substitution effect

− (πS
it − π∗

it)
Sit

Wit︸ ︷︷ ︸
Social Security

substitution effect

, (26)

or, in terms of interest-rate sensitivities,

εr(Wit) = ε∗r,it − (εr(Hit)− ε∗r,it)
Hit

Wit

− (εr(Sit)− ε∗r,it)
Sit

Wit

, (27)

such that the interest-rate sensitivity of total wealth εr(W it) remains equal to ε∗r,it.

The endowments of human capital and Social Security wealth are implicit hold-

ings of long-term assets, and thus substitute for the traded n-period bond. The

values πH
i and πS

i represent the implicit percentage of each asset invested in the n-

period bond. The agent adjusts the allocation to wealth πi such that the duration of

total wealth matches π∗
i . If, for instance, agents are endowed with a large stock of

high-duration Social Security (i.e., πS
i and Si are large), they adjust their allocations

to long-term bonds πi downward to offset this high rate exposure.

Figure 5 illustrates the life-cycle pattern generated by this model. Early in life,

most agents have little financial wealth and a large endowment of high-duration

human capital. To match their ideal total-wealth rate exposure, they mostly hold

assets with low rate sensitivity. As households get closer to retirement, they in-

crease holdings of the long-term asset to offset short-term labor income and taxes,

net of long-term benefits. As they progress through retirement, households reduce

long-term bond holdings, in line with the declining target allocation implied by the

policies above. In sum, substitution and aging effects explain the hump-shaped
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pattern in the data.

Figure 5: Effect of labor income and Social Security on long-term asset share
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Note: This figure shows a representative path of total wealth components, their interest-rate sensi-
tivities, and their effect on wealth allocations over the life cycle. Panel A plots the average values
of each component of total wealth, defined as the sum of wealth and the present values of labor
income (human capital) and Social Security taxes and benefits. Panel B shows the interest-rate sen-
sitivity of each component. Panel C illustrates the incremental effect of each component on the
optimal interest-rate sensitivity. We assume γ = 5 and β = 0.95. The life-cycle profile of wealth
is approximated from the data, the present values of human capital and Social Security wealth are
simulated.

In addition to these effects, the progressivity of Social Security implies that

households with lower earnings will hold less rate-sensitive portfolios. Figure 6

illustrates the economic intuition behind this prediction. Panel A describes the

case without Social Security: all households have the same savings rate, hence

the wealth-income ratios and portfolio allocations show little variation within an

age group. Panel B shows the two effects of Social Security. Social Security offers

a higher replacement rate to low-earners, which means that they need to save less

for retirement, leading to a lower wealth-to-human capital ratio at a given age: the

retirement savings substitution effect. Second, because Social Security represents a

greater share of their total endowment, it reduces the demand for long-term asset of

low-earners disproportionately: the portfolio substitution effect. As Panel C shows,
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these effects combine to generate a steep positive relation between wealth and rate

exposure, as in the data.

Figure 6: Substitution effects of Social Security within an age group
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Note: This figure illustrates the effect of Social Security on intra-cohort allocations to the long-
term asset. Panel A plots the optimal long-term bond share as a function of the ratio of wealth W
to human capital H when there is no Social Security. The round markers represent hypothetical
wealth-to-human capital ratios W/H . Panel B shows the same relation but in the presence of Social
Security. In Panel C, we re-plot the points in Panels A and B in terms of wealth only. Policy
functions are drawn for age 42, γ = 5, and β = 0.95.

4.3 Real-life interpretation

Fully hedged consumption plan In principle, agents can eliminate interest-rate

risk by buying, at current prices, a portfolio of zero-coupon bonds that perfectly

matches the difference between their desired consumption plan and their expected

earnings in all periods, then holding this portfolio to maturity.

We can illustrate this intuition most clearly in the limiting case of an infinitely

risk-averse investor.4 In this case, the investor’s desire to smooth consumption over

time yields a constant, deterministic policy Cit = C̄i. Let Yi denote the agent’s de-

terministic stream of income. Wealth is the present value of the excess consumption

4See Appendix C.5 for a derivation and more detailed technical discussion of this case.
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plan:

Wit =
tmax∑
k=1

Pkt(C̄i − Yi,t+k). (28)

The agent can secure the optimal consumption plan by buying C̄i − Yi,t+k of each

k-period zero-coupon bond and consuming the coupons and income at maturity.

The strategy is unaffected by capital gains and losses from interest-rate changes.

As we prove in Appendix C.5, the optimal allocation πi replicates exactly this buy-

and-hold strategy in the limit as γ → ∞.

Real-world implementation In reality, households do not invest their wealth in

portfolios of zero-coupon bonds. We illustrate how they implement this strategy,

with the set of assets and contracts at their disposal, with three hypothetical house-

holds.

First, consider a worker at the bottom of the earnings distribution. Because of its

high replacement rate, Social Security taxes and benefits execute all inter-temporal

transfers of income required to smooth consumption over the life cycle, and does so

independently of the rate of return on private savings. The worker need only hold

short-term assets.

Second, consider a middle-class worker. Because replacement rates fall with

lifetime earnings, the worker needs to save privately as well. However, he can

execute large inter-temporal transfers at current prices by buying a house with a

fixed-rate mortgage. By doing so, he effectively trades a flow of coupon payments

later in life, when C > Y , in the form of rent-free housing, in exchange for a stream

of mortgage payments earlier in life, when C < Y . This operation is priced using

the spot yield curve. This strategy eliminates interest-rate risk for households whose

Social Security benefits cover their non-residential consumption in retirement.

Finally, consider a high-income worker. Because Social Security benefits are
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relatively small in the upper half of the earnings distribution, she complements this

strategy with additional investments. In the United States, this complement typ-

ically takes the form of a retirement account. If these savings were invested in

short-term assets, she would need to increase her contribution rate to maintain the

same consumption level in retirement. However, if her account were mostly in-

vested in long-term assets, capital gains would offset potential declines in future

rates of return. As we see in Figure 1, high earners follow the long-term asset strat-

egy by investing their “extra” wealth in stocks. From this point of view, the glide

path strategy of pension funds also makes sense, as it invests retirement contribu-

tions in stocks early in the life cycle and moves towards safer assets when workers

get older.

4.4 Distributional effects of interest-rate fluctuations

Because of substitution effects, the interest-rate exposure of wealth is heteroge-

neous and correlated with key household characteristics, both within and between

cohorts. At the same time, the model suggests substantially less heterogeneity in

total rate exposure. In fact, all agents within a given age group are identically

exposed to interest-rate risk, regardless of differences in wealth, income, or bene-

fits. The only source of heterogeneous total rate exposure is different investment

horizons. To see this, let us consider three measures of total rate exposure: the

interest-rate sensitivity of total wealth, of consumption, and of lifetime utility.

As we showed above, the rate elasticity of total wealth is εr(W it) = ε∗it, which

depends only on risk aversion and the agent’s investment horizon ϱrt. In other

words, for any two agents with the same risk aversion and horizon, a rate shock will

have an identical effect on total wealth, even if those agents have different long-term

asset shares. Likewise, the optimal consumption rule (22) implies that the response
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of consumption to a rate shock εr(C
∗
it) is also homogeneous within a cohort.

The third—and arguably most relevant—measure of total rate exposure is the

interest-rate sensitivity of lifetime utility. Specifically, we calculate the rate sensi-

tivity of a transformation of expected utility:

Uit = ((1− γ)Vit)
1/(1−γ), (29)

where Vit is the expected utility maximand (6). This transformation backs out a

total-wealth certainty equivalent—it is the value of total wealth implied by the value

function V taking a power form.5 In our linearized model, lifetime utility has the

closed-form solution

Uit = W it(1− β(1−mit)) exp {ϱ0t + ϱrtrft} . (30)

This expression illustrates the complementarity between total wealth and interest

rates: agents have high expected utility when they enjoy high wealth with high

rates. The rate sensitivity of lifetime utility is therefore6

εr(Uit) =

(
1− 1

γ

)
ϱrt − ϱr,t+1 ≈ −1

γ
ϱrt. (31)

For any finite value of risk aversion, this elasticity is negative, meaning that a de-

cline in rates is bad news for lifetime utility, while an increase is good news. In wel-

fare terms, this means that, when rates fall, the deterioration of future investment

opportunities outweighs the capital gains on long-term cash-flow claims. Agents

are willing to accept this unhedged interest-rate exposure because of the option

5The other, more mathematical reason for the transformation is that V is negative, so it does not
have a well-defined rate sensitivity.

6This expression remains unchanged with Epstein-Zin preferences. The approximate equality is
exact as the length of the time interval shrinks to zero.
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value of compounding at a higher rate, as explained above.

Most notably, the amount of wealth, income, and benefits a household possesses

is irrelevant to the rate sensitivity of utility, because the household always trades in

long-term asset markets to rebalance back to this optimal exposure. Unexpected

rate changes may redistribute wealth, but they do not redistribute welfare.

5 Matching the stylized facts

5.1 Calibration

Preferences We calibrate households’ preferences to match the evolution of wealth

over the life cycle and the average interest-rate sensitivity of wealth observed in the

SCF. We find that a discount factor of β = 0.95 and a bequest motive equivalent

to b̄ = 10 years of consumption match the growth of wealth until the retirement

age and its evolution thereafter. Moreover, a coefficient of relative risk aversion of

γ = 5 matches the average rate sensitivity of wealth.

Our calibration of γ is consistent with studies matching the life-cycle profile of

the share of wealth invested in stocks, which typically use values between 5 and 6

(Benzoni et al., 2007; Catherine, 2022; Huggett and Kaplan, 2016; Lynch and Tan,

2011; Meeuwis, 2022). Based on portfolios observed in Swedish administrative

data, Calvet et al. (2021) estimate an average γ of 5.2.

Income process We calibrate the stochastic parameters of the labor process using

estimates from Guvenen et al. (2022), which we report in Appendix E.1.

Initial wealth Households enter working life with 0.1× the national wage index

in networth, the equivalent of $5,400 in 2019.
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Mortality We model mortality as a function of age and past lifetime earnings:

mit = min

{
χ

(
AIYEit

L̄t

)
×m(ageit), 1

}
, (32)

where χ is an adjustment coefficient which only depends on the average indexed

earnings of the agent up to time t and m(ageit) is the average mortality rate at

that age, which we calibrate as the average across genders from the 2017 Social

Security actuarial life tables. While χ
(
AIYEit/L̄t

)
does not depend on age, the

agent sees his life expectancy change as he moves up or down the wage ladder. An

advantage of our method is that the agent’s life expectancy is less volatile than if it

were a function of persistent income zit. We calibrate the value of χ
(
AIYEit/L̄t

)
at each point of the numerical grid of the AIYEit/L̄t state variable such that, given

our labor-income process, we obtain the same life expectancy differential across

percentiles of χ
(
AIYEit/L̄t

)
at age 40 as those reported by percentiles of earnings

in Chetty et al. (2016).

5.2 Cross-section of interest-rate sensitivity

Figure 7 reports the evolution of wealth and its sensitivity to interest rates over the

life cycle, in the data and in the model. The left panel shows that the model matches

the evolution of wealth very well. The right panel shows that, like in the data, the

interest-rate sensitivity of wealth increases over the first twenty years and declines

afterwards. The increase is explained by the substitution effect of human capital

and Social Security early in life. Both of these assets have higher rate sensitivity

than the agent’s target, thus reducing the optimal long-term asset share. Over the

life cycle, the duration of human capital declines and drops below the agent’s target,

reversing the sign of the hedging demand and increasing the long-term asset share.

As the weight of human capital declines with age, the magnitude of the hedging
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begins to fall at retirement.

The introduction of labor income risk in the model reduces the agent’s valuation

of his human capital, which explains why the predicted hump-shaped relationship

with age is less pronounced than in Figure 5.

Figure 7: Life-cycle profiles of wealth and its interest-rate sensitivity
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Note: This figure reports the evolution of market wealth and its sensitivity to interest rates over the
life cycle in our benchmark calibration and in the SCF. In the data, wealth is computed per adult,
including deceased spouses, and scaled by the Social Security wage index. 95% confidence intervals
represent ± 1.96 standard errors, clustered by cohort.

During retirement, the decline in the agent’s investment horizon becomes the

dominant force and reduces the need to hedge against falling interest rates. As a

result, the long-term asset share falls. This decline is moderated by the bequest

motive, which effectively increases the investment horizon of the agent beyond his

or her own life expectancy.

The left panel of Figure 8 reports the relationship between the interest-rate sen-

sitivity of wealth and income between age 40 and 45. In the model, high earners

invest more in the long-term asset because Social Security covers a smaller share of

their retirement consumption and, to a lesser extent, because they have higher life

expectancy. Appendix D.2 decomposes these two effects quantitatively.
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Figure 8: Interest-rate sensitivity of wealth at age 40–45
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Note: This figure reports the relationship between the interest-rate sensitivity of wealth and wealth
(left panel) and earnings (right panel). In the data, wealth and earnings are computed per adult and
scaled by the Social Security wage index. In the left panel, each bin represents a decile of earnings.
In the right panel, each bin represents 5% of observations, except for the four wealthiest bins which
represent 2.5% each. Simulated data report the average interest-rate sensitivity per centile of wealth
and earnings, respectively. 95% confidence intervals represent ± 1.96 standard errors, clustered by
cohort.

The right panel shows that the model also produces a positive relationship be-

tween the long-term asset share and wealth within an age group. This is partly

explained by the fact that wealthier households tend to be high earners and that

human capital and Social Security represent smaller fractions of their total wealth,

and thus have weaker substitution effects. In the data, we observe a hump around

the third decile of the wealth distribution, which could reflect the need for these

households to borrow to buy houses and vehicles.

It is notoriously difficult for life-cycle models to match household portfolio al-

locations between stocks and short-term bonds. In contrast, our findings show that a

relatively simple model can match the key cross-sectional features of the allocation

of wealth between short- and long-term assets.
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Robustness Importantly, if labor earnings and Social Security are modeled prop-

erly, our cross-sectional predictions should be robust to model misspecifications.

This is because cross-sectional predictions directly follow from the substitution ef-

fects of Social Security and human capital described in equation (27) and would not

change as long as the relative weights and interest-rate sensitivities of background

assets remain the same.

We chose to estimate φ based on moments from the yield curve, which im-

plies a persistence of rate shocks of φ = .956. It seems, however, that investors

and economic forecasters have been repeatedly surprised by the long-run decline in

interest rates (Council of Economic Advisers, 2015), which suggests that the true

persistence may be higher than the yield curve implied. In Appendix D.1, we con-

sider how our findings would change if φ was .02 higher, meaning equal to .976.

We find that this change in calibration raises empirical and simulated estimates of

the interest-rate sensitivity of wealth in a similar fashion, such that the model still

matches well the data with the same preference parameters.

5.3 Household interest-rate exposure

We now study the rate sensitivities of two measures that are more relevant for wel-

fare: wealth inclusive of Social Security and expected lifetime utility. As in the lin-

earized model, we find that there is less heterogeneity in these measures (especially

in utility), suggesting that the recent rise in wealth inequality has not necessarily

come with a rise in welfare inequality.

To calculate wealth inclusive of Social Security, we capitalize the expected ben-

efits and taxes into a present value. To measure welfare, we calculate the trans-

formed expected utility U defined in (29). Because U is a function of both wealth
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W and rates rf , this elasticity can be approximated, to a first order, as

εr(U) ≈ −∂ logU

∂rf︸ ︷︷ ︸
change in investment

opportunities

+
∂ logU

∂ logW
εr(W )︸ ︷︷ ︸

capital gains

(33)

When rates decline, expected utility decreases because investment opportunities are

worse, but also increases because of capital gains in financial wealth. If εr(U) is

negative, as we find, then a decline in rates decreases welfare.

Figure 9: Interest-rate sensitivities over the life cycle
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Note: This figure reports the interest-rate sensitivity of wealth, wealth inclusive of Social Security,
and expected utility over the life cycle.

Figure 9 shows the average paths of these sensitivities over the life cycle. Adding

Social Security wealth increases the average sensitivity for the young, consistent

with the fact that it is a very long-term asset.7 The rate sensitivity of expected

utility, on the other hand, is flatter over the life cycle. At all ages, households are

7We only report the interest-rate sensitivity of Wealth+Social Security starting at age 25. Be-
cause Social Security wealth can be negative in high rate environments, we find that Wealth+Social
Security can be negative or extremely close to zero in the first two years, leading to diverging values
of ϵr on very small dollar amounts.
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negatively affected by rate declines on net. The magnitude of this effect is slowly

declining over the life cycle as the investment horizon declines with age. For in-

stance, εr(U) is −2.7 at age 25 and −2.2 at age 65. The closeness of these numbers

means that even different cohorts have relatively similar total exposure to rate risk.

Figure 10: Interest-rate sensitivities at age 42
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Note: This figure reports the sensitivity of wealth, excluding and including Social Security, and of
expected utility to an interest-rate decline at age 42.

Figure 10 reports the distribution of these sensitivities within a middle-aged

cohort. First, when Social Security is taken into account, the wealth of the rich

and of high earners is no longer more sensitive to interest rates. This explains the

findings of Catherine et al. (2023) that, when Social Security is accounted for and

discounted using the market yield curve, wealth inequality has not increased since

1989. Figure 10 is the model’s counterpart to Figure 3. The data and the model

convey the same message: once Social Security is accounted for, rich households

no longer hold more interest-rate-sensitive assets. Like in the data, the interest-rate

sensitivity of wealth, inclusive of Social Security, is around 15, though a bit higher

for low-wealth households in the data.

Second, within a cohort, expected utility is uniformly elastic to interest rates

across the earnings and wealth distributions, save for a very minor effect from
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income-driven mortality differences. As equation (26) predicts, once human capital

and Social Security wealth are accounted for, all households within a cohort are

equally exposed to rate fluctuations.

6 Trends in wealth inequality

So far, we have demonstrated that, under a reasonable calibration, the interest-rate

risk hedging demand for long-term assets can explain differences in the interest-

rate sensitivity of wealth over the life cycle, and across the earnings and wealth

distribution. Consequently, in the model, interest-rate fluctuations will, through

our mechanism, redistribute wealth across the population without significant im-

plications for the distribution of welfare or lifetime consumption. The goal of this

section is to assess how much of the long-run fluctuations in wealth inequality can

be explained by this channel.

6.1 Economic intuition

Wealth evolves according to:

Wi,t+1

Wit

=

(
1− Cit − Yit

Wit

)
︸ ︷︷ ︸

savings

RWi,t+1︸ ︷︷ ︸
portfolio

, (34)

where Yi is the sum of labor income, taxes, and benefits. Interest rates can shape

trends in wealth inequality through two channels: differences in consumption-

wealth ratios (savings) and differences in portfolio allocations (returns).

We can decompose changes in inequality over time by taking logs of (34) and

then computing cross-sectional variances. Doing so yields the change in wealth
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inequality from one period to the next,8

varI(wi,t+1)− varI(wit) = varI(sit) + varI(rwi,t+1)

+ 2covI(wit, sit) + 2covI(wit, rwi,t+1) + 2covI(sit, rwi,t+1). (35)

The first two channels through which wealth inequality may increase are the direct

effects of heterogeneous savings rates s and realized portfolio returns rw. The re-

maining three channels are captured by the covariance terms. Inequality increases if

(i) the wealthy tend to save more, (ii) the wealthy experience higher returns and (iii)

households with higher savings rates experience higher returns. Our model reveals

why these covariance channels are all positive when interest rates fall.

First, consider intra-cohort wealth inequality. Absent Social Security, there is no

variation in savings rates or portfolio choices within a cohort, so wealth inequality

will just mirror post-tax income inequality.

The presence of Social Security, in contrast, generates changing inequality through

both the savings and portfolio channels. First, inequality increases because So-

cial Security induces differential savings rates: low-income, low-wealth households

with higher replacement rates will save less into financial wealth. This savings sub-

stitution effect of Social Security results in a dispersion in savings rates (varI(sit) >

0) and a positive wealth-savings correlation (covI(wit, sit) > 0). Second, Social

Security gives rise to changes in inequality via its impact on portfolio choices. As

Figure 6 illustrates, the substitution effects of Social Security create a positive corre-

lation between a household’s wealth and its rate exposure. Thus, households within

a cohort may experience different wealth returns, and the direction of reallocation

will depend on the direction of the interest-rate shock. All unexpected rate changes

result in heterogeneous returns (varI(rwi,t+1) > 0). A negative rate shock will

8Lowercase letters denote logs; s ≡ log(1− (C − Y )/W ) denotes the log savings rate.
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result in disproportionately high returns for the wealthy (covI(wit, rwi,t+1) > 0),

increasing inequality. A positive rate shock will do the opposite. Finally, since the

wealthy save more, the savings-return covariance covI(sit, rwi,t+1) is also positive

given a rate decline, amplifying the increase in inequality.

6.2 Overlapping-generations simulation

To quantify the role of the interest-rate risk hedging channel on wealth inequal-

ity trends, we set up an overlapping-generations version of our life-cycle model.

Specifically, we simulate the lives of cohorts born between 1880 and 1986 and feed

the model with the historical time series of interest rates and interest-rate shocks. To

obtain this time series, we use a methodology similar to that of Beeler and Campbell

(2012) described in detail in Appendix A.3. We assume that, when a household dies,

its wealth is transferred to a household from a cohort that is thirty years younger.

For simplicity, we assume this transfer of wealth to be unexpected.

Our model is not ideally situated to match the level of wealth inequality. First,

the wealth concentration in the top 1% of the distribution comes primarily from

business income, which is omitted from the model. Therefore, we calibrate our

model to match the level of inequality within the bottom 99%,9 by increasing the

standard deviation of earnings fixed effects σz,0 from .652 to 1.1.10

Figure 11 illustrates our results. In our historical simulation, the top 10% share

falls from 56% in 1956 to 52% in 1984, then rises back to 56% in 2019. According

to the World Inequality Database, the top 10% (within the bottom 99%) share fell

from 58.6% to 49% in 1984, then rose back to 55% in 2019. The top 10%, inclusive

9We approximate this measure as (Top 10% share − Top 1% share)/(100% − Top 1% share).
10There are several reasons why earnings inequality in administrative data, measured at the worker

level, would be lower than at the household level across the entire population. For example, part
of the population does not participate in the labor force and the number of earners varies across
households.
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of the top 1%, fell from 70.3% in 1962 to 62.1% in 1985, then rose back to 70.7%

in 2019. Consequently, the interest-rate risk hedging channel can explain roughly

half of the long-run fluctuations in wealth inequality since the mid-1950s.

As predicted in Section 4.4, these trends in wealth inequality do not translate

into increased welfare inequality within a cohort. To illustrate this point, Figure 11

also reports the evolution of welfare inequality within cohorts, using the certainty

equivalent measure from equation (29). As predicted by theory, welfare inequality

remains largely unchanged.11

Figure 11: Evolution of top 10% share
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Note: This figure reports, on the left axis, the evolution of the top 10% wealth share in simulated
data using the historical path of real interest rates. On the right axis, it reports the evolution of the
share of total wealth, or welfare (U ), as defined in equation (29), going to the top 10% of each
cohort, and averaged across cohorts in any given year. In each time series, the demographic weights
of living cohorts are weighted using the historical age pyramid.

Greenwald et al. (2023) conduct a similar quantitative exercise and find that

the fall in real interest rate explains 75% of the rise in wealth inequality because
11If anything, welfare inequality trends go in the opposite direction. This is because, in the full

model, high earners have higher life expectancy and are therefore slightly more exposed to interest-
rate risk, as predicted in equation (31).
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the rich invest more in long-term assets. Our model only explains 50% but the

gap is explained by the different natures of the two exercises. Greenwald et al.

(2023) estimate the role played by the empirical relationship between wealth and

duration, including the rapid growth of private business wealth owned by the very

rich. In contrast, in our study, the long-term asset share is endogenous and limited

to the interest-rate risk hedging demand alone. Hence, our model provides a micro-

foundation for two-thirds of the effect documented in their paper.

7 Conclusion

We study household exposure to interest-rate risk, beginning from the empirical

observation that middle-aged and richer households invest more in long-term as-

sets that appreciate in value when rates fall. This interest-rate sensitivity must be

interpreted in light of households’ life-cycle problem, so we develop a life-cycle

model that incorporates the roles that human capital and Social Security play in

households’ portfolio choices.

The data and the normative model produce strikingly close patterns: the opti-

mal long-term asset share is hump-shaped over the life cycle and, within cohorts,

increases with wealth and earnings. This is driven in part by the heterogeneous

role our background assets play: human capital displaces the need for long-term

holdings for the young, and Social Security has the same effect for the low- and

middle-income households on which its impact is most pronounced.

So, in practice, households are targeting the right interest-rate exposure over

their life cycles. Still, we cannot conclude from our findings that households would

continue to do this if the economic environment were to change. For example,

we cannot say whether households adjust their portfolios optimally in response to

Social Security or whether Social Security is well-designed to correct investment
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mistakes that would arise in its absence. Determining the direction of this causality

is necessary for evaluating policy counterfactuals and is therefore an essential step

for future research.

Our paper focuses on interest-rate risk, motivated by the fact that several empir-

ical studies have shown it is a significant driver of past returns and inequality dy-

namics (Binsbergen, 2021; Greenwald et al., 2023). Still, the core logic of the paper

could, in principle, apply to any risk factor: differences in observed wealth exposure

to systematic risks may reflect differences in exposure to household-specific back-

ground risks. Thus, more research is also needed to determine the extent to which

other major risk factors—like economic growth, house prices, and inflation—shape

household portfolio choices. In general, our paper advances a view of portfolio

choice in which households decide asset allocations across common risk factors, as

opposed to across asset types.
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INTERNET APPENDIX

A Data appendix

A.1 Survey of Consumer Finances

Data on household portfolios come from the Survey of Consumer Finances (SCF). We construct

networth as:12

networth d = cash dep+ equity+ fixed inc+ real estate

+ bus+ vehic− mortgage dbt− vehic dbt− other dbt,

where each of the constituent variables are defined as:

– cash dep: value of cash deposits defined as liquid accounts (liq) which are the sum of

all checking, savings, and money market accounts, call accounts at brokerages, and prepaid

cards, added to certificates of deposit (cds).

– equity: value of all financial assets invested in stock, which include directly held stock,

stock mutual funds, and the portion of any combination mutual funds, annuities, trusts,

IRA/Keogh accounts, and other retirement accounts invested in stock.

12Note that we do not include student debt in our analysis for several reasons. In the US, stu-
dent debt is largely repaid through income-driven repayment (IDR) programs. In IDR, borrowers’
monthly payments are determined as a fraction (10–15%) of their earnings, above a certain family-
size-dependent threshold. After 10 to 25 years of payments, their remaining balance is forgiven.
This system has both practical and conceptual implications. Practically, it means that the informa-
tion collected by the SCF regarding balance and scheduled payments do not accurately reflect the
actual present values and cashflow duration of the debt (Catherine and Yannelis, 2021). Conceptu-
ally, student debt payments are more akin to a progressive tax on earnings and therefore would be
better treated as a deduction to human capital. For context, Catherine and Yannelis (2021) estimate
that in 2019, the average working-age American had $4,922 in student debt (in present value terms)
and that student debt had an average interest-rate-sensitivity of 6.
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– fixed inc: value of all other remaining financial assets (fixed inc = fin− cash dep−

equity). The largest component of this asset category is bonds held outright, in mutual

funds, and in retirement accounts.

– real estate: value of the primary residence (houses) plus the value of other residential

real estate (oresre) and net equity in nonresidential real estate (nnresre).

– bus: reported market value of private business interest.

– vehic: prevailing retail value for all vehicles owned by household.

– mortgage dbt: housing debt from mortgages, home equity loans, and home equity lines of

credit (mrthel) plus debt for other residential property (resdbt).

– vehic dbt: debt from vehicle loans (veh inst)

– other dbt: other debt, including other lines of credit plus credit card balance (ccbal) plus

installment loans less education loans and vehicle loans (other dbt = othloc+ ccbal+

install− edn inst− veh inst).

In addition to portfolio data, we also use data on household wage income (wageinc) which we

combine with data on the number of people in the household and the Social Security wage index to

create a per capita wage measure that is comparable over time.

A.2 Duration component calculations

A.2.1 Duration of equity

The duration of equity is obtained using annual estimates for the duration of the aggregate stock

market from Greenwald et al. (2023), Figure D2 of the September 2023 working paper version.

These estimates are applied uniformly to all individuals in the SCF by survey year.

A.2.2 Duration of fixed income

Data on the Macaulay duration of government bonds, municipal bonds, corporate bonds, and mort-

gage backed securities come from Bloomberg where the series used are:

– U.S. gov/credit: LUGCTRUU
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– U.S. Treasury: LUATTRUU

– Government-related: LD08TRUU

– U.S. aggregate: LBUSTRUU

– Municipal bond: LMBTTR

– Corporate: LUACTRUU

– U.S. MBS: LUMSTRUU

– Global aggregate: LEGATRUU

For holdings of U.S. government bonds (govtbnd + gbmutf + savbnd), we use the market-value

weighted average Macaulay duration of the U.S. gov/credit, U.S. Treasury, and government-related

bond categories. For holdings of tax-free and municipal bonds (notxbnd + tfbmutf), mortgage-

backed securities (mortbnd), corporate bonds (corpbnd), and foreign bonds (forbnd), we use

the Macaulay duration of municipal bonds, corporate bonds, U.S. MBS, and the global aggregate,

respectively. For all other fixed income assets that we do not have duration measures for, we assign

5.64, which is the average fixed income wealth-weighted duration in the SCF assets which we have

data.

A.2.3 Duration of real estate

The duration of real estate is obtained using the annual estimates of the duration of aggregate

real estate from Greenwald et al. (2023), Figure D2 of the September 2023 working paper version.

These estimates are applied uniformly to all individuals in the SCF by survey year.

A.2.4 Duration of private business wealth

The duration of private business wealth is computed for each household as the value of household

businesses, bus, divided by the annual cashflows from those equity holdings. However, the annual

cashflows from those equity holdings are not reported in the SCF, the major issue being that cash-

flows from private businesses partially contain implicit or explicit labor income for the entrepreneur.

As such, we must estimate or difference out this labor income. We do this in four ways, depending

on the household’s role in the business and what is reported.
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1. For households whose main respondent has an active management role in either of the house-

hold’s potential actively managed businesses, reports being self-employed, and reports not

receiving a salary, we estimate their predicted wage.

– The predicted wage is estimated via ordinary least squares on all SCF respondents

j where the household’s wage income is the dependent variable, and the indepen-

dent variables are a third-degree polynomial in age interacted with dummies for each

Race × Education × Gender group.

2. For households whose main respondent has an active management role in either of the house-

hold’s potential actively managed businesses and reports being self-employed and receiving

a salary or reports being employed by someone else, we subtract the maximum of their pre-

dicted wage and reported wage from busefarminc.

3. We repeat steps 1) and 2) for spouses who have an active management role in either of the

household’s potential actively managed businesses.

4. All other households with positive private business wealth who do not meet the criteria for a

wage subtraction are given cashflows equal to busefarminc.

We then aggregate bus and the estimated annual cashflows within each survey year and divide them

to obtain an annual time series of valuation ratios.

Next, to allow our aggregate estimates of private business duration to vary over the wealth

distribution, we perform a mean-preserving adjustment to these aggregate duration estimates. First,

we split the population into different networth groups defined by whether they are in the bottom 50%,

50–90%, 90–99%, 99–99.9%, 99.9–99.99% or the top 0.01% of the wealth distribution. We then

take the business wealth (bus) divided by total income from businesses (busefarminc) for each

household, and take the business wealth-weighted average for each networth group. Provided that

cashflows from equity are proportional to labor income, this provides a proxy for duration for each

group. These price-total income ratios are then divided by the business wealth-weighted average

for the aggregate population to obtain a mean-preserving adjustment which is applied to the annual

aggregate private business duration estimates. This is given by

dur(Private businessct) =
Price-total income ratioc
Price-total income ratio

× dur(Private businesst). (A.1)
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A.2.5 Duration of vehicles

The vehic category in the SCF contains detailed information on up to 4 automobiles, up to 2 non-

automobile vehicles, and an aggregation of additional automobiles and non-automobile vehicles

owned by the household. For the primary automobiles of the house, we attribute an expected lifetime

of 8 years for 1989 and 12 years for 2019, linearly interpolating in intermediate years. We calculate

the time left on an automobile’s life as the model year plus the expected age minus the survey year.

We assume a fixed depreciation rate to 0 over the car’s remaining years, and calculate the duration

using (4). We attribute a duration of one to vehicles whose age exceeds their expected lifetime.

For the aggregation of additional automobiles owned, we attribute a duration equal to the aver-

age of the duration of the first four automobiles owned by the household. For all non-automobile

vehicles owned by the household, we ascribe a duration of 6 years.

A.2.6 Duration of debts

For the debt categories, mortgage dbt, vehic dbt, and other dbt, we break each up into their

component loans as described in the SCF extract and calculate the duration of each loan separately.

For each loan, we assume a fixed payment schedule, and thus its duration can be calculated using

equation (4), whereN is the maturity of the loan and ynt is the riskfree spot rate at horizon n in year

t.

Under our fixed payment assumption, the only metric we need for each loan is its time remain-

ing. Since different loan component variables contain different amounts of information in the raw

SCF, we calculate the time remaining differently depending on the available information for each

component loan group: primary component loans, aggregated additional loans, and lines of credit.

The primary component loans of each debt category contain information on loan origination, bal-

ance, payments, and interest rates. For these loans, we calculate the number of years remaining

on the loan payments using the reported origination year, length of loan at origination, and survey

year. For respondents with a positive loan balance who have missing responses for loan length or a

negative calculated time remaining, we impute time remaining with balance (B), initial amount (L),

interest rate (R), and year of origination (p) using the equation

T =
log(Rp −B/L)− log(1−B/L)

logR
− p.
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The aggregated additional loans group contains loan variables that capture an aggregation of loans

that the respondents hold in addition to the primary ones in each debt category. These loans include

data on only loan balance and payments (X). Using the average interest rates for primary loans in

the same debt category, we calculate time remaining as

T = − log(1−B(R− 1)/X)

logR
.

The third group of component loans is the lines of credit. The line of credit variables contain

information on loan balance, typical payments, and interest rates. With these data points, we calcu-

late time remaining according to the same formula used for the aggregated additional loans group.

Finally, there is an aggregated additional lines of credit variable, which we assign a duration equal

to the average of the duration of the other lines of credit.

We replace the duration of loans with a predicted time remaining under one year with a duration

of one and give the median duration to respondents with a positive loan amount but insufficient

information to calculate time remaining on the loan.

A.2.7 Interest-rate sensitivity of Social Security wealth

The interest-rate sensitivity of Social Security wealth comes from the methodology used in Catherine

et al. (2023). We generate their baseline risk-adjusted Social Security wealth under the net present

value wealth concept and the Treasury yield curve. We then generate Social Security wealth under

an identical specification where the log forward rate at horizon h in survey year t is given by f̃h,t =

fh,t + φh0.01 where fh,t is the unshocked log forward rate and φ is our calibrated persistence for

the interest rate process shown in Table 1. This is the same thing as applying a one-period shock of

0.01 to the log riskfree rate under the process in equation (1).
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A.3 Time series of riskfree rates

Figure A.1: Time series of riskfree rates, Post-war sample
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Note: This figure presents the time series of short-term riskfree rates as estimated by equation (A.2)
and transformed by equation (A.3).

To obtain a time series of the short-term real interest rate, we use a methodology similar to that of

Beeler and Campbell (2012). Using the yield on the 10-year nominal Treasury bond y10 and annual

inflation rate π from Global Financial Data, we estimate the annual regression

y10,t − πt,t+1 = β0 + β1y10,t + β2πt−1,t + ϵt+1 (A.2)

on the post-war period. The fitted values are then taken as our estimate of the expected riskfree rate

10-years from time t, f̂10,t. From this, equation (1) yields the time-t riskfree rate:

rft = φ−10(f̂10,t − (1− φ10)r̄f ). (A.3)

We use this methodology for two main reasons. First, by using long-term rates to back out short-

term rates, we smooth much of the short-term variation in measured short-term real rates that are

potentially outside of our model. Second, this methodology allows us to extend our real rate series
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further into the past, allowing for a longer simulation prior to our period of interest. This procedure

yields a time series of annual realizations of real rates {rft} and shocks {ϵrt} from 1789 to 2020.

The post-war time series of these rates are shown in Figure A.1.

B Model appendix

B.1 Details on income tax rates

Section 3.4 discusses the taxes paid on labor income and Social Security benefits. In the model,

households face the following marginal tax rates:

Marginal Tax Rateit =



0.10 if L̃it < 0.18,

0.12 if 0.18L̃it < 0.72,

0.22 if 0.72L̃it < 1.54,

0.24 if 1.54L̃it < 2.94,

0.32 if 2.94L̃it < 3.73,

0.35 if 3.73L̃it < 9.32,

0.37 if L̃it > 9.32.

(B.1)

The bendpoints in this formula are the limits of the 2020 tax brackets divided by the wage index.

B.2 Derivation of long-term bond returns

This section explains how the riskfree rate dynamics (1) imply the n-period bond returns (9). Since

it has no intermediate cash flows, the bond’s return from t to t+ 1 is

Rn,t+1 =
Pn−1,t+1

Pnt
≡ e−(n−1)yn−1,t+1

e−nynt
, (B.2)

where the yield ynt, under the expectations hypothesis, is given by

ynt ≡
1

n
log

(
1

Pnt

)
=

1

n

n∑
j=1

(Etrf,t+j−1 + µj). (B.3)
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Moreover, note that (1) iterates backward to the expression

rf,t+j = (1− φj)r̄f + φjrft +

j∑
k=1

φj−kσrϵr,t+k. (B.4)

Substituting the riskfree rates (B.4) into the yield expression (B.3) and evaluating expectations im-

plies

ynt = r̄f +
1

n

1− φn

1− φ
(rft − r̄f ) +

1

n

n∑
j=1

µj . (B.5)

Taking logs of (B.2) and substituting (B.5) into the yield then implies the log return

rn,t+1 = nynt − (n− 1)yn−1,t+1

= r̄f +
1− φn

1− φ
(rft − r̄f )−

1− φn−1

1− φ
(rf,t+1 − r̄f ) + µn

= r̄f +
1− φn

1− φ
(rft − r̄f )−

φ− φn

1− φ
(rft − r̄f )−

1− φn−1

1− φ
σrϵr,t+1 + µn

= rft + µn − 1− φn−1

1− φ
σrϵr,t+1,

the stated expression (9).

C Derivation of the linearized model

This section lays out the details of the linearization and analytical solutions presented in Section 4.

The approach follows that of Campbell and Viceira (2001), except that we add finite lives and,

ultimately, intertemporal income. To fully understand the economics, we first solve for policies in

the general case of recursive utility (i.e., disentangling risk aversion and the EIS), then reduce to the

time-additive case in the main text. For the remainder of this appendix section, we will suppress i

indices and state approximate (i.e., linearized) equalities as exact.

C.1 Linearized conditions

Suppose that there is no intertemporal income, so the budget constraint (7) simplifies to

Wt+1 = (Wt − Ct)RW,t+1. (C.1)
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The first-order condition for a recursive-utility agent takes the familiar form

1 = Et

[
(β(1−mt))

θ

(
Ct+1

Ct

)−θ/ψ

Rθ−1
W,t+1Rj,t+1

]
, (C.2)

where β(1 −mt) is mortality-adjusted patience, ψ is the EIS, θ = (1 − γ)/(1 − 1/ψ), and Rj ∈

{Rf , Rn, RW }. The analytical solution follows from linearizing this budget constraint and first-

order condition.

Let lowercase letters denote logs and the ∆ operator denote first-differences. Scaling the budget

constraint (C.1) by financial wealth Wt, taking logs, and linearizing log (1− ect−wt) around ct −

wt = log(1− β(1−mt)) implies

∆wt+1 = κw(mt) +

(
1− 1

ρc(mt)

)
(ct − wt) + rw,t+1, (C.3)

where ρc(mt) = β(1−mt) and κw(mt) = log ρc(mt)+(1−ρc(mt)) log (1− ρc(mt))/ρc(mt).13

(Notice that, as mt → 1, ct → wt; agents who will die almost surely consume everything.) We can

also get the linearized approximation to the log wealth return

rw,t+1 = rft + πt(rn,t+1 − rft) +
1

2
πt(1− πt)vart(rn,t+1). (C.4)

This expression is a discretization of the exact continuous-time law of motion. Finally, log-linearize

the Euler equation (C.2) up to a second order:

0 = θ log(β(1−mt)) + Et
[
− θ

ψ
∆ct+1 + (θ − 1)rw,t+1 + rj,t+1

]
+

1

2
vart

(
− θ

ψ
∆ct+1 + (θ − 1)rw,t+1 + rj,t+1

)
. (C.5)

Substituting in rj = rn and then rj = rf and subtracting the two equations implies the risk

premium on the long-term bond

Et[rn,t+1−rf,t+1]+
1

2
vart(rn,t+1) =

θ

ψ
covt(rn,t+1,∆ct+1)+(1−θ)covt(rn,t+1, rw,t+1). (C.6)

13In infinite-horizon models like that of Campbell and Viceira (2001), one typically chooses ρc =
1− exp{E[ct−wt]}, which reduces to ρc = β for EIS of 1. Here, to capture the effect of aging, we
linearize instead around the unit-EIS solution, which is exact in our model.
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Using the decomposition

∆ct+1 = (ct+1 − wt+1)− (ct − wt) + ∆wt+1 (C.7)

and the expression for ∆wt+1 from the linearized budget constraint (C.3), we can rewrite

covt(rn,t+1,∆ct+1) = covt(rn,t+1, ct+1 − wt+1) + covt(rn,t+1, rw,t+1).

Substituting this and the fact that

covt(rn,t+1, rw,t+1) = πtvart(rn,t+1) (C.8)

into (C.6) and using θ/ψ + 1− θ = γ implies the solution

πt =
1

γ

Et[rn,t+1 − rf,t+1] +
1
2vart(rn,t+1)

vart(rn,t+1)
− 1− 1/γ

1− ψ

covt(rn,t+1, ct+1 − wt+1)

vart(rn,t+1)
. (C.9)

As explained in the main text, the first term is the myopic risk-return portfolio; the second is in-

tertemporal hedging of rate risk.

Another fact that will become useful is that the first-order condition (C.5) for wealth returns

(rj = rw) simplifies to

Et[∆ct+1] = ψ log(β(1−mt)) + ψEt [rw,t+1] +
1

2

θ

ψ
vart (∆ct+1 − ψrw,t+1) . (C.10)

Using fact (C.8) and the decomposition of ∆c from (C.7), the variance term can be rewritten as

vart (∆ct+1 − ψrw,t+1) = vart (ct+1 − wt+1 + (1− ψ)rw,t+1)

= vart (ct+1 − wt+1) + (1− ψ)2π2
t vart (rn,t+1)

+ (1− ψ)πtcovt (rw,t+1, ct+1 − wt+1) .

(C.11)

We will use these expressions to solve for the equilibrium consumption-wealth ratio.
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C.2 Optimal policies in the linearized model

We will now solve for the optimal consumption and portfolio choices using the conditions derived

above. Conjecture that the optimal consumption-wealth ratio takes the form

ct − wt = log(1− β(1−mt)) + (1− ψ)(ϱ0t + ϱrtrft), (C.12)

for some functions ϱ0t = ϱ0({ms}s≥t) and ϱrt = ϱr({ms}s≥t) of the future mortality probabilities.

Increasing utility implies the boundary conditions limm→1(1−ψ)ϱ0(m) = 0 and limm→1 ϱr(m) =

0. This conjecture implies that

(1− ψ)−1covt(rn,t+1, ct+1 − wt+1) = ϱrtcovt(rn,t+1, rf,t+1)

= −ϱrtσnσr.

Substituting this expression into (C.9), we obtain

πt =
1

γ

µn + 1
2σ

2
n

σ2
n

+

(
1− 1

γ

)
ϱrt

σr
σn

= a0 + arϱrt,

which, combined with (9), is our expression for the optimal share in the n period bond given by (24).

To solve for ϱ0 and ϱr, notice that substituting this solution for π into the expectation of our

log-linearized wealth return (C.4) implies

Et[rw,t+1] = rft + πtµn + πt(1− πt)σ
2
n

= rft +
(
a0µn + (a0 − a20)σ

2
n

)
+
(
arµn + (ar − 2a0ar)σ

2
n

)
ϱrt − a2rσ

2
nϱ

2
rt

= rft + d0 + d1ϱrt − d2ϱ
2
rt.

(C.13)

It also implies

vart (ct+1 − wt+1) = (1− ψ)2ϱ2rtσ
2
r ,

(1− ψ)2π2
t vart (rn,t+1) = (1− ψ)2(a20 + 2a0arϱrt + a2rϱ

2
rt)σ

2
n,

(1− ψ)πtcovt (rn,t+1, ct+1 − wt+1) = (1− ψ)2(a0 + arϱrt)(−ϱrtσnσr).
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Substituting these three facts into (C.11), we have

vart (∆ct+1 − ψrw,t+1) = (1− ψ)2(g0 + g1ϱrt + g2ϱ
2
rt) (C.14)

for constants gj . Finally, substituting our log-linearized budget constraint (C.3) into our decompo-

sition (C.7) and applying our conjecture (C.12), we have

Et[∆ct+1] = Et[ct+1 − wt+1]− ρc(mt)
−1(ct − wt) + κw(mt) + Et[rw,t+1]

= (1− ψ)(ϱ0,t+1 + ϱr,t+1((1− φ)r̄f + φrft))

− ρc(mt)
−1(1− ψ)(ϱ0t + ϱrtrft) + κw(mt) + Et[rw,t+1].

(C.15)

Substituting (C.14), (C.15), and (C.11) into the Euler equation for wealth returns (C.10), then col-

lecting coefficients on rft, implies the difference equation

φϱr,t+1 = ρc(mt)
−1ϱrt − 1.

Now iterate forward and use the boundary condition limt→∞ ϱrt = 0:

ϱrt = ρc(mt)(φϱr,t+1 + 1)

= ρc(mt) + φρc(mt)ρc(mt+1) + φ2ρc(mt)ρc(mt+1)ρc(mt+2) + . . .

= β(1−mt)

1 +

∞∑
j=1

φjβj
j∏

k=1

(1−mt+k)


=

∞∑
j=1

φj−1βjpt,t+j

The lower are the probabilities of future survival pt,t+j , the less relevant are fluctuations in the

interest rate to consumption and portfolio choices. For reference, note that, for infinitely lived

agents (mt = 0 for all t), this converges to ϱr = ρc/(1 − φρc), the result from Campbell and

Viceira (2001).

Collecting the remaining constant terms implies a difference equation for ϱ0t:

ϱ0,t+1 = ρc(mt)
−1ϱ0t − q0t

59



for the deterministic constant

q0t ≡ ϱr,t+1(1− φ)r̄f + log ρc(mt) + (1− ψ)−1(ρc(mt)
−1 − 1) log(1− ρc(mt))

+ d0 + d1ϱrt − d2ϱ
2
rt +

1

2
(γ − 1)(g0 + g1ϱrt + g2ϱ

2
rt).

Note that q0t converges to a finite constant: limm→1 q0t = d0 + (γ − 1)g0/2. We can similarly

iterate this expression forward with terminal condition (1− ψ)ϱ0 → 0 to arrive at a solution:

ϱ0t = ρc(mt)(q0t + ϱ0,t+1)

= ρc(mt)q0t + ρc(mt)ρc(mt+1)q0,t+1 + ρc(mt)ρc(mt+1)ρc(mt+2)q0,t+2 + . . .

=

∞∑
j=1

βjpt,t+jq0,t+j−1.

This verifies the conjecture.

C.3 Adding labor income and Social Security

We now introduce a deterministic stream of labor income L and, in turn, Social Security taxes T

and benefits B. The present values of labor income (human capital) H and Social Security wealth

S are as stated in the main text.

As we did with the wealth return above, let us linearize the returns on human capital and Social

Security wealth using a continuous-time approximation. For human capital, the log return is

rH,t+1 = rft + µHt +

tret−t∑
j=1

ωHjt

(
σj
σn

)
︸ ︷︷ ︸

πHt

(rn,t+1 − rf,t+1)

where

ωHjt =
pt,t+jPjtLt+j∑tret−t

j′=1 pt,t+j′Pj′tLt+j′
=
pt,t+jPjtLt+j

Ht

is the value weight of the jth labor-payment, and therefore πH is a value-weighted rate-sensitivity

adjustment. More specifically, πH represents the percent holdings of n-period bonds implicit in the
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human capital asset. To see this, note that the rate sensitivity implied by πH is14

πHt
σn
σr

=

tret−t∑
j=1

ωHjt

(
σj
σr

)
=

tret−t∑
j=1

ωHjtεr(Pjt) = εr(Ht).

In words, the interest-rate sensitivity of a portfolio with πH percent allocated to the n-period bond

has the exact same interest-rate elasticity as the human capital asset.

Identical logic leads us to conclude that the log return on Social Security is

rS,t+1 = rft + µSt +

 ∞∑
j=1

ωSjt

(
σj
σn

)
︸ ︷︷ ︸

πSt

(rn,t+1 − rf,t+1),

where the value weights take the form

ωSjt = ωBjt − ωTjt =
pt,t+jPjt(Bt+j − Tt+j)

St
,

the difference between the benefits claim and the tax liability.

Now, as in the main text, define total wealth as

W t =Wt + (Lt +Ht) + (Bt − Tt + St). (C.16)

(Recall that H and S do not include their contemporaneous “dividends,” so we must add them back

in this expression.) Grossing up at the rates of return on these assets implies

W t+1 = (Wt + Lt +Bt − Tt − Ct)RW,t+1 +HtRH,t+1 + StRS,t+1. (C.17)

Multiplying and dividing by W t − Ct, we have the dynamic budget constraint

W t+1 = (W t − Ct)RW,t+1.

14The last equality is exact in continuous time and true to a first order in discrete time.
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where the return on total wealth is

RW,t+1 =

(
Wt + Lt +Bt − Tt − Ct

W t − Ct

)
RW,t+1 +

(
Ht

W t − Ct

)
RH,t+1 +

(
St

W t − Ct

)
RS,t+1

= αWtRW,t+1 + αHtRH,t+1 + αStRS,t+1,

and the return on financial wealth RW is as it was in the original problem.

Using the same linearization technique as before, the log total-wealth return can be approxi-

mated as

rw,t+1 = rft + µ̄t + π̄t(rn,t+1 − rft) +
1

2
π̄t(1− π̄t)σ

2
n,

where

µ̄t = αHtµHt + αStµSt

is a value-weighted drift term from the intertemporal endowments, and

π̄t = αWtπt + αHtπ
H
t + αStπ

S
t (C.18)

is the value-weighted average of positions in the long-term bond—that is, the percentage of total

wealth invested in the bond. Other than the presence of µ̄, this budget constraint is identical in

form to that of the problem with no labor income or Social Security. Following the same steps from

before, we conclude that

π̄t = π∗
t ,

where π∗
t is the optimal solution without intertemporal income. Substituting this into (C.18) and

rearranging, we see that the optimal allocation to the asset from financial wealth is

πt = π∗
t +

(
Ht

Wt + Lt +Bt − Tt − Ct

)
(π∗
t − πHt ) +

(
St

Wt + Lt +Bt − Tt − Ct

)
(π∗
t − πSt ).

In the main text, we slightly simplify notation by redefining wealth to include the contemporaneous

income and consumption flows (thus far, we have assumed that it excludes these components). Doing

this gives us the final expression (26).
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C.4 Solution to the value function

This section solves for the value function under optimal policies in closed form. Under recursive

preferences, the transformed value function (29) is implicitly defined by the aggregator

Ut =

[
(1− β)C

1−1/ψ
t + β(1−mt)Et

[
U1−γ
t+1

] 1−1/ψ
1−γ

] 1
1−1/ψ

.

By Euler’s Theorem,

Ut =
∂Ut
∂Ct

Ct + Et
[
∂Ut
∂Ut+1

Ut+1

]
,

where
∂Ut
∂Ct

= (1− β)

(
Ut
Ct

)1/ψ

and
∂Ut
∂Ut+1

= β(1−mt)U
1/ψ
t Et

[
U1−γ
t+1

] γ−1/ψ
1−γ

U−γ
t+1.

Noting that the stochastic discount factor

Mt+1 = β(1−mt)

(
Ct+1

Ct

)−1/ψ

 Ut+1

Et
[
U1−γ
t+1

]1/(1−γ)

−(γ−1/ψ)

,

and that
(∂Ut/∂Ut+1)(∂Ut+1/∂Ct+1)

∂Ut/∂Ct
=Mt+1,

we have that
Ut

∂Ut/∂Ct
= Ct + Et

[
Mt+1

Ut+1

∂Ut+1/∂Ct+1

]
.

Iterating this recursion forward yields

Ut
∂Ut/∂Ct

=

∞∑
j=0

Et [Mt+jCt+j ] =W t,

since total wealth is the present value of consumption. Substituting the expression for ∂Ut/∂Ct and

noting that consumption is at an optimum (Ct = C∗
t ), we get the solution (30).
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C.5 Optimal consumption plan in the limit

This section derives the optimal consumption-investment strategy in the limit as risk aversion ap-

proaches infinity and the EIS approaches zero. To do so, it is easiest to begin with the first-order

condition of a power-utility investor:

1 = Et

[
β(1−mt)

(
Ct+1

Ct

)−γ

Rj,t+1

]
. (C.19)

Conjecture that the optimal consumption policy is a deterministic constant Ct = C̄t. Substituting

this conjecture into the first-order condition implies the recursion

C̄t = (β(1−mt)Et[Rj,t+1])
−1/γ

C̄t+1. (C.20)

Now taking the limit as γ → ∞ implies that C̄t = C̄t+1 = C̄, meaning that consumption is indeed

deterministic and in fact time-invariant.

The present value of optimal consumption must equal total wealth, so we have

W t = C̄

tmax−t∑
j=0

Pjt, (C.21)

where tmax is the first year in which mt = 1.15 This expression pins down the value of C̄. Because

the optimal consumption plan is deterministic and constant, the agent finances it by purchasing C̄ of

each zero-coupon bond and consuming the coupons.

Finally, we wish to relate the optimal portfolio strategy financing this consumption plan to the

optimal policy π̄ derived above. First, using the same linearization technique as above, notice that

the wealth return under this consumption policy equals

rw,t+1 = rft +

tmax−t∑
j=1

Pjt∑tmax−t
j′=1 Pj′t

(
σj
σn

)
︸ ︷︷ ︸

π̃t

(rn,t+1 − rft). (C.22)

As with human capital and Social Security wealth, π̃ represents an implicit holding of n-period

bonds from the annuity financing consumption. Now let us compare this implicit holding π̃ to the

15Note that this satisfies the terminal condition W tmax
= C̄, since P0 = 1.
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optimal holding π∗. In the limit, the general expression for optimal consumption (22) implies the

(negative) elasticity
∂ log(C̄/Wt)

∂rft
= ϱrt.

Calculating this same left-hand-side derivative from (C.21) and equating these, we have

ϱrt =

tmax−t∑
j=0

Pjt∑tmax−t
j′=0 Pj′t

(
σj
σr

)
.

Substituting this into the expression for the optimal portfolio π̄ = π∗ in (24), then taking γ → ∞,

we have

π̄t = ϱrt
σr
σn

=

tmax−t∑
j=0

Pjt∑tmax−t
j′=0 Pj′t

(
σj
σn

)
.

This optimal policy is exactly identical to the expression π̃ from (C.22), as claimed.

D Additional simulation results

D.1 Higher persistence of interest-rate shocks

Figure D.2: Life-cycle profiles of wealth and its interest-rate sensitivity for φ = .9756
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Note: This figure reports the evolution of market wealth and its sensitivity to interest rates over the
life cycle in our benchmark calibration and in the SCF. In the data, wealth is computed per adult,
including deceased spouses, and scaled by the Social Security wage index. 95% confidence intervals
represent ± 1.96 standard errors, clustered by cohort.
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Figure D.3: Interest-rate sensitivity of wealth at age 40–45 for φ = .9756
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Note: This figure reports the relationship between the interest-rate sensitivity of wealth and wealth
(left panel) and earnings (right panel). In the data, wealth and earnings are computed per adult and
scaled by the Social Security wage index. In the left panel, each bin represents a decile of earnings.
In the right panel, each bin represents 5% of observations, except for the four wealthiest bins which
represent 2.5% each. Simulated data report the average interest-rate sensitivity per centile of wealth
and earnings, respectively. 95% confidence intervals represent ± 1.96 standard errors, clustered by
cohort.

D.2 Mechanism

The quantitative model validates our economic intuition and allows us to study counterfactuals. To

shed more light on the full numerical model, this section analyzes the importance of two novel

mechanisms in our model: income-based differences in mortality rates and the presence of Social

Security. Figure D.4 plots quantities of interest with and without these features.
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Figure D.4: Effect of Social Security and differences in life expectancy
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Note: This figure shows the effects of mortality differences and Social Security on life-cycle wealth
accumulation and the interest-rate sensitivity of wealth in the model. In the benchmark case, mortal-
ity probabilities are constant within an age cohort and there are no Social Security taxes or benefits.
Mortality differences are based on lifetime earnings (AIYE). Where relevant, wealth W and income
L are scaled by the Social Security wage index L̄.

Mortality affects the optimal interest-rate sensitivity through two channels. First, higher mortal-

ity rates reduce the value of human capital relative to financial wealth, diminishing its substitution

effect. Second, higher morality reduces rate exposure because agents discount the future more. The

distributional consequences of this effect are revealed by the bottom two panels of Figure D.4. The

income-based adjustment to mortality rates applies mostly to low-income households; the adjust-

ment is small for households with average and high income. As a result, the optimal rate exposure

falls noticeably for low earners but does not change much for other households. This means that the

average life-cycle path of rate exposure, shown in the top right panel of Figure D.4, tends to be lower

67



in levels than in the benchmark without intracohort mortality differences. Perhaps surprisingly, the

overall quantitative effect of mortality differences on most of the cross-section is minimal.

The effect of Social Security is more substantial. The existence of Social Security taxes and

benefits leads to less accumulation of financial wealth over the life cycle, because taxes reduce

disposable income and benefits crowd out the need to save. Social Security also flattens the “hump”

in rate exposure during working life but has little effect in retirement, consistent with the economic

intuition discussed in Section 4. Finally, Social Security steepens the relation of rate sensitivity with

wealth and income. This, too, is exactly as predicted by the analysis in Section 4.
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E Numerical appendix

Table E.1: Calibration of labor income process

Parameter estimates for Section 3.3 come from Specifications (5) in Guvenen et al. (2022). Param-
eters can be found in Table IV of the published version and Table D.III of the Online Appendix. We
also combine the z and α processes, which results in the σz,0 parameter listed below. We do this to
avoid adding an additional state variable to the model, a decision that has little effect on the results
as the z process is extremely persistent. Finally, note the deterministic life-cycle component is given
by g(Age) = b0,g + b1,gAge + b2,gAge2/10 + b3,gAge3/100 where b0,g is specified to make mean
earnings equal to Social Security Wage Index.

Parameter Calibration
ρ 0.991
pz 17.6%
µη,1 -0.524
ση,1 0.113
ση,2 0.046
σz,0 0.652
λ 0.016
pε 4.4%
µε,1 0.134
σε,1 0.762
σε,2 0.055
aν · 1 -2.495
bν · t -1.037
cν · zt -5.051

dν · t · zt -1.087
b0,g -6.142
b1,g 0.3040
b2,g -0.051
b3,g 0.002586
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