Why is Asset Demand Inelastic?

Carter Davis Indiana Mahyar Kargar UIUC Jiacui Li Utah

NBER - LTAM

April 13, 2024

Motivation: the demand elasticity gap

Demand elasticity (DE): investor demand sensitivity to price

- Definition: DE = 10: price $\downarrow 1\% \rightarrow \text{holdings} \uparrow 10\%$
- Relevance: if DE is high, flows barely matter for prices
 - Selling 1% of shares $\Rightarrow \frac{1}{DE}\%$ lower price

Problem: theory and empirics disagree about the magnitude

- Theory predictions $\approx 7,000$
- ► Empirical estimates ≈ 2

(e.g., Gabaix and Koijen, 2021)

(e.g., Shleifer, 1986; Koijen and Yogo, 2019)

Simple Example: (Why do we care?)

- Say stock price is "efficient" at \$100
- Then 10% outflow for non-fundamental reasons (e.g., ESG, behavioral)
- ▶ Workhorse CARA/CRRA/Epstein-Zin models, price ≈ \$99.999
- If elasticity \approx 2, price is now \$95
- NOT a straw man

Question: what explains this large gap?

Motivation: the demand elasticity gap

Demand elasticity (DE): investor demand sensitivity to price

- Definition: DE = 10: price $\downarrow 1\% \rightarrow \text{holdings} \uparrow 10\%$
- Relevance: if DE is high, flows barely matter for prices
 - Selling 1% of shares $\Rightarrow \frac{1}{DE}\%$ lower price

Problem: theory and empirics disagree about the magnitude

- Theory predictions \approx 7,000
- ► Empirical estimates ≈ 2

(e.g., Gabaix and Koijen, 2021)

(e.g., Shleifer, 1986; Koijen and Yogo, 2019)

Simple Example: (Why do we care?)

- Say stock price is "efficient" at \$100
- Then 10% outflow for non-fundamental reasons (e.g., ESG, behavioral)
- ► Workhorse CARA/CRRA/Epstein-Zin models, price ≈ \$99.999
- If elasticity \approx 2, price is now \$95
- NOT a straw man

Question: what explains this large gap?

This paper

- **Goal:** reconcile the theoretical and empirical DE estimates
- Decomposition: for *optimizing investors*, DE has two determinants

 $DE_{i,t} \approx 1 + (\text{pass-through}) \times (\text{weight responsiveness})$

 If we use realistic estimates, DE predictions are close to empirical findings

- Main message: empirically observed DE is not "too low", but largely consistent with *optimal* investor behavior
- What we do: consider a hypothetical mean-variance investor
- What we DO NOT do: we DO NOT estimate demand

This paper

- **Goal:** reconcile the theoretical and empirical DE estimates
- Decomposition: for *optimizing investors*, DE has two determinants

 $DE_{i,t} \approx 1 + (\text{pass-through}) \times (\text{weight responsiveness})$

 If we use realistic estimates, DE predictions are close to empirical findings

Main message: empirically observed DE is not "too low", but largely consistent with *optimal* investor behavior

What we do: consider a hypothetical mean-variance investor
 What we DO NOT do: we DO NOT estimate demand

This paper

- **Goal:** reconcile the theoretical and empirical DE estimates
- Decomposition: for *optimizing investors*, DE has two determinants

 $DE_{i,t} \approx 1 + (\text{pass-through}) \times (\text{weight responsiveness})$

 If we use realistic estimates, DE predictions are close to empirical findings

- Main message: empirically observed DE is not "too low", but largely consistent with *optimal* investor behavior
- What we do: consider a hypothetical mean-variance investor
- What we DO NOT do: we DO NOT estimate demand

Related literature

Theoretical predictions of DE are *high*

Gabaix and Koijen (2021), Davis (2023)

(e.g., 7,000)

(around 2)

• Empirical estimates of DE are *low*

- Price impact of demand:
 - Shleifer (1986), Lou (2012), Chang, Hong, and Liskovich (2015), Schmickler (2020), Pavlova and Sikorskaya (2023)
- Direct estimates of DE:
 - Koijen and Yogo (2019), Haddad, Huebner, and Loualiche (2022)

This paper: reconcile the difference

Outline

1. Theory: what determines DE?

2. Empirical estimates

3. Additional implications

What determines DE? Intuition

Imagine you are an investor. Stock *i* price declined by 1% without cash flow-relevant news. How much more would you buy?

Q1: How much does *expected return* $\mu_{i,t}$ change?

Q2: how substitutable is stock i?

If stock i is well spanned by other stocks, this is almost an arbitrage: should aggressively buy stock i and short the replicating portfolio

What determines DE? Intuition

Imagine you are an investor. Stock *i* price declined by 1% without cash flow-relevant news. How much more would you buy?

• **Q1:** How much does *expected return* $\mu_{i,t}$ change?

Q2: how substitutable is stock i?

If stock i is well spanned by other stocks, this is almost an arbitrage: should aggressively buy stock i and short the replicating portfolio

What determines DE? Intuition

Imagine you are an investor. Stock *i* price declined by 1% without cash flow-relevant news. How much more would you buy?

• **Q1:** How much does *expected return* $\mu_{i,t}$ change?

- Q2: how substitutable is stock i?
 - If stock *i* is *well spanned* by other stocks, this is almost an *arbitrage*: should aggressively buy stock *i* and short the replicating portfolio

Proposition

Decomposition: DE for any asset *i* with positive weight is

$$DE_{i,t} = -\frac{\partial \log(Q_{i,t})}{\partial \log(P_{i,t})} \approx 1 + \underbrace{\left(-\frac{\partial \mu_{i,t}}{\partial \log(P_{i,t})}\right)}_{\text{price pass-through}} \times \underbrace{\frac{\partial \log(w_{i,t})}{\partial \mu_{i,t}}}_{\text{weight responsiveness}}$$

Proposition: For a MV investor, this becomes:

$$DE_{i,t} \approx 1 + \underbrace{\left(-\frac{\partial \mu_{i,t}}{\partial \log(P_{i,t})}\right)}_{\text{price pass-through}} \times \underbrace{\left(\mu_{i,t} - \beta'_{-i,t} \cdot \mu_{-i,t}\right)^{-1}}_{1/\text{unspanned returns}}$$

Intuition:

- 1. Price pass-through: speed of price reversal
- 2. Unspanned return: distinctiveness of the asset
- Both terms need to be small

Outline

1. Theory: what determines DE?

2. Empirical estimates

3. Additional implications

A model of μ_t and Σ_t

 Perspective: a price-taking, unconstrained active quantitative fund that forms MV portfolios, rebalancing monthly

Model:

- Expected return μ_t = function of characteristics
- Covariance Σ_i: rolling 1 year estimates using daily data, with Ledoit and Wolf (2004) shrinkage:

$$\Sigma_t = (1-h) \cdot \Sigma_t^{\text{sample}} + h \cdot \Sigma_t^{\text{target}}, \quad h = 0.01$$

Data: monthly U.S. stocks, 1970 - 2019

Require > 20% NYSE size, avg 1,633 stocks/month

summary stats

1) Estimate price pass-through $\left(-\frac{\partial \mu_{i,t}}{\partial \log P_{i,t}}\right)$

		Dependent v	variable: $r_{i,t}(\%)$	
Model: $\mu_{i,t} = \sum_{k} Z_{i,k,t} \cdot \pi_k$		(1)	(2)	
$\sum_{K} r_{i,K} = \sum_{K} r_{i,K} + \frac{1}{K}$	Intercept	-0.42	0.25	
Fama-MacDeth regression		(0.41)	(0.30)	
	$r_{i,t-1}$	-1.95***	-2.73***	
Implied menthly price pass through		(0.49)	(0.50)	
mplied monumy price pass-infough:	$\log(M_{i,t-1})$	0.09**	0.02	
		(0.04)	(0.03)	
<u>au.</u> az.	$\log(B/M)_{i,t-1}$	0.23**	0.30***	
$-\frac{\partial \mu_{i,t}}{\partial \Sigma_{i,k,t}} = -\sum \frac{\partial \Sigma_{i,k,t}}{\partial \Sigma_{i,k,t}} \pi_{i,k}$		(0.09)	(0.07)	
$\partial \log P_{i} = \Delta \partial \log P_{i}$	Mom		1.23***	
			(0.19)	
	Beta		-0.29**	
$= \pi_{\text{lagged } r} - \pi_{\log(M)} + \pi_{\log(B/M)}$			(0.13)	
0.02	Investment		-1.26***	
= 0.03 (S.E. 0.005)			(0.18)	
	Profitability		1.27***	
			(0.21)	
Main contributor is lagged ret	Obs	968,634	968,634	
00	Average R^2	4.04%	8.51%	

- Static theory models assume pass-through ≈ 1
- Many dynamic models have too much short-term discount rate variation (De la O, Han, and Myers, 2023)

2) Estimate unspanned returns $(\mu_{i,t} - \beta'_{-i,t} \cdot \mu_{-i,t})$

Existing models often assume almost-perfect-spanning

▶ Petajisto (2009): monthly $\mu_{i,t} = 42$ bp, $\beta'_{-i,t} \cdot \mu_{-i,t} = 41.9$ bp

Implied optimal DE

Takeaway: using realistic estimates explains most of the gap

Important Robustness 1: price pass-through

▶ van Binsbergen, Boons, Opp, and Tamoni (2023) decomposition:

$$\log(P_{i,t}) = \log(\tilde{P}_{i,t}) + \underbrace{\log(P_{i,t}/\tilde{P}_{i,t})}_{\text{log}(P_{i,t})}$$

price wedge

• $\tilde{P}_{i,t}$: cash flow-based valuation

Estimate price pass-through, FM regressions:

 $r_{i,t+1\to t+H} = \alpha_H + \beta_H \cdot \log(\tilde{P}_{i,t}/P_{i,t}) + \epsilon_{i,t+1\to t+H}$

Important Robustness 1: price pass-through

van Binsbergen et al. (2023) decomposition:

$$\log(P_{i,t}) = \log(\tilde{P}_{i,t}) + \underbrace{\log(P_{i,t}/\tilde{P}_{i,t})}_{\text{log}(P_{i,t})}$$

price wedge

• $\tilde{P}_{i,t}$: cash flow-based valuation

• Estimate price pass-through, FM regressions:

$r_{i,t+1} \to t+H =$	$\alpha_H + \beta_H$	$\log(\tilde{P}_{i,t}/P_{i,t})$	$+\epsilon_{i+1} + H$
$r_{i,t+1 \rightarrow t+H} =$	$\alpha_H + \rho_H$	105(1,t/1,t/1,t)	$\downarrow c_{i,t+1 \rightarrow t+H}$

Independent		Estimated co	efficient β_H		Obs	Implied 1	nonthly price	pass-through	(β_H/H)
variable	H = 1	3	6	12	000	H = 1	3	6	12
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
van Binsbergen et al. (2023)	0.014***	0.040***	0.079**	0.157	1,270,646	0.014***	0.013***	0.013**	0.013
price wedge	(0.003)	(0.014)	(0.038)	(0.102)		(0.003)	(0.005)	(0.006)	(0.009)
Bartram and Grinblatt (2018)	0.001	0.002	0.003	0.006	782,431	0.001	0.001	0.000	0.000
price wedge	(0.001)	(0.002)	(0.005)	(0.012)		(0.001)	(0.001)	(0.001)	(0.001)
Koijen and Yogo (2019)-	-0.002***	-0.004***	-0.009***	-0.021*	1,519,519	-0.002***	-0.001***	-0.002***	-0.002*
instrumented $log(P_{i,t})$	(0.000)	(0.002)	(0.003)	(0.011)		(0.000)	(0.001)	(0.001)	(0.001)
FIT-instrumented	0.006	0.020	0.040	0.094	1,443,296	0.006	0.007	0.007	0.008
$log(P_{i,t})$	(0.005)	(0.016)	(0.045)	(0.084)		(0.005)	(0.005)	(0.008)	(0.007)
Note:							*p<	0.1; **p<0.05;	****p<0.01

Robustness 2: unspanned returns

Robustness 2: unspanned returns

Unspanned Returns and Maximum Sharpe

• **Relationship:** unspanned returns relates to max Sharpe

$$S^{2} = \mu_{\text{unspanned}}^{\prime} \cdot (D\Sigma D) \cdot \mu_{\text{unspanned}}$$

where $D = \begin{pmatrix} 1/\sigma_{1|-1}^{2} & \cdots & \cdots \\ & 1/\sigma_{2|-2}^{2} & \cdots \\ & \ddots & \\ 0 \cdots & \cdots & 1/\sigma_{N|-N}^{2} \end{pmatrix}$

• Note that $D\Sigma D$ only depends on the covariance matrix

- Sharpe of MV strategy ≈ 1.3
- If unspanned variance is high, it offsets high unspanned returns
- Even with sensitive MV weights, we have inelastic demand

What about the remaining gap?

Formula:

 $DE_{i,t} = 1 + (pass-through) \times (weight responsiveness)$

+ other terms

Other terms matter little

- Variance/Covariance effects
- Epstein-Zin hedging
- Wealth effects

Weight responsiveness

- Frictionless MV demand: $\mu_{i,t} \uparrow 0.01\% \implies \text{dollar} \uparrow 4\%$
- For $DE_{i,t} \approx 2 \implies \approx \uparrow 0.3\%$
- Frictions/constraints/biases:
 - Short-sale/leverage constraints
 - Heuristic demand
 - Trading costs
 - Behavioral effects (e.g., Giglio, Maggiori, Stroebel, and Utkus, 2021)

Other Terms

► Formula:

 $DE_{i,t} = 1 + (pass-through) \times (weight responsiveness) + other terms$

► With covariances:

$$-\frac{\partial \log(Q_{i,t})}{\partial \log(P_{i,t})} = \underbrace{1 + \frac{\partial \log(w_{i,t})}{\partial \mu_{i,t}} \left(-\frac{\partial \mu_{i,t}}{\partial \log(P_{i,t})}\right)}_{\text{Main Decomposition}} -\underbrace{\sum_{j} \frac{\partial \log(w_{i,t})}{\partial \Sigma_{i,j,t}^{-1}} \frac{\partial \Sigma_{i,j,t}^{-1}}{\partial \log(P_{i,t})}}_{\text{Covariance Effects}}$$

This matters, but 7000 - 3 does not get us there

- Idiosyncratic volatility effects reduce demand elasticity a bit
- β_t effects (i.e. $\Sigma_{i,t} = \beta_t \Omega_t \beta'_t + \text{Diag}(\sigma_t)$) are small

Epstein-Zin consumption hedging is small

Applications of our Decomposition

$$DE_{i,t} \approx 1 + \underbrace{\left(-\frac{\partial \mu_{i,t}}{\partial \log(P_{i,t})}\right)}_{\text{price pass-through}} \times \underbrace{\left(\mu_{i,t} - \beta'_{-i,t} \cdot \mu_{-i,t}\right)^{-1}}_{1/\text{unspanned returns}}$$

Davis (2023) statistical arbitrage demand elasticity is inelastic

- All stat arb models exhibit inelastic demand
- In many models (e.g., IPCA), cannot separately decompose mean/covariance
- Alpha/beta and idiosyncratic/systematic DE are low
- Demand elasticity can be very high (Li, Fu, and Chaudhary, 2023)
- ▶ DE is not a primitive structural parameter! (Lucas critique)
 - ▶ In IO, consumers have *direct* preferences on goods
 - In asset pricing, investors have *indirect* preference over securities

Applications of our Decomposition

$$DE_{i,t} \approx 1 + \underbrace{\left(-\frac{\partial \mu_{i,t}}{\partial \log(P_{i,t})}\right)}_{\text{price pass-through}} \times \underbrace{\left(\mu_{i,t} - \beta'_{-i,t} \cdot \mu_{-i,t}\right)^{-1}}_{1/\text{unspanned returns}}$$

Davis (2023) statistical arbitrage demand elasticity is inelastic

- All stat arb models exhibit inelastic demand
- In many models (e.g., IPCA), cannot separately decompose mean/covariance
- Alpha/beta and idiosyncratic/systematic DE are low
- Demand elasticity can be very high (Li et al., 2023)
- ▶ DE is not a primitive structural parameter! (Lucas critique)
 - ▶ In IO, consumers have *direct* preferences on goods
 - In asset pricing, investors have indirect preference over securities

Applications of our Decomposition

$$DE_{i,t} \approx 1 + \underbrace{\left(-\frac{\partial \mu_{i,t}}{\partial \log(P_{i,t})}\right)}_{\text{price pass-through}} \times \underbrace{\left(\mu_{i,t} - \beta'_{-i,t} \cdot \mu_{-i,t}\right)^{-1}}_{1/\text{unspanned returns}}$$

Davis (2023) statistical arbitrage demand elasticity is inelastic

- All stat arb models exhibit inelastic demand
- In many models (e.g., IPCA), cannot separately decompose mean/covariance
- Alpha/beta and idiosyncratic/systematic DE are low
- Demand elasticity can be very high (Li et al., 2023)
- ► DE is not a primitive structural parameter! (Lucas critique)
 - ▶ In IO, consumers have *direct* preferences on goods
 - In asset pricing, investors have *indirect* preference over securities

2) Implications for *equilibrium* models

- Most cross-sectional equilibrium models generate very high DE
 - 1. Many (not all) are static models, and thus assume price pass-through = 1.
 - 2. Essentially all of them generate *almost-perfect spanning*.
- ▶ 1) is easy to fix. 2) less so.
 - For tractability, equilibrium models use CARA-normal setups which predict CAPM (or slight variations)
- ▶ To deliver realistic *equilibrium* price impact, two possible ways:
 - 1. Market segmentation
 - Gârleanu, Panageas, and Yu (2015), Iachan, Silva, and Zi (2022)
 - 2. Low spanning, possibly due to "complexity":
 - Martin and Nagel (2022), Baba-Yara et al. (2022), Da, Nagel, and Xiu (2022)

Summary

- Research question: reconcile the theory predictions and empirical estimates of DE (7,000 vs 2)
- Main result: low DE is consistent with optimal response to realistic price processes:
 - 1. Low price pass-through
 - 2. High unspanned returns
- Existing equilibrium models are useful for *qualitative*, but not *quantitative* understanding of price impact
 - They need to be adjusted to generate realistic price processes

References I

- Baba-Yara, Fahiz, Brian H. Boyer, and Carter Davis, 2022, The factor model failure puzzle, *Working Paper*, *Indiana*.
- Bartram, Söhnke M, and Mark Grinblatt, 2018, Agnostic fundamental analysis works, *Journal of Financial Economics* 128, 125–147.
- Campbell, John Y., Yeung Lewis Chan, and Luis M. Viceira, 2003, A multivariate model of strategic asset allocation, *Journal of Financial Economics* 67, 41–80.
- Chang, Yen-Cheng, Harrison Hong, and Inessa Liskovich, 2015, Regression discontinuity and the price effects of stock market indexing, *Review of Financial Studies* 28, 212–246.
- Da, Rui, Stefan Nagel, and Dacheng Xiu, 2022, The statistical limit of arbitrage, Work .
- Davis, Carter, 2023, Elasticity of quantitative investment, Working Paper, Indiana.
- De la O, Ricardo, Xiao Han, and Sean Myers, 2023, The return of return dominance: Decomposing the cross-section of prices .
- Gabaix, Xavier, and Ralph S.J. Koijen, 2021, In search of the origins of financial fluctuations: The inelastic markets hypothesis, Working Paper 28967, National Bureau of Economic Research.
- Gârleanu, Nicolae, Stavros Panageas, and Jianfeng Yu, 2015, Financial entanglement: A theory of incomplete integration, leverage, crashes, and contagion, *American Economic Review* 105, 1979–2010.
- Giglio, Stefano, Matteo Maggiori, Johannes Stroebel, and Stephen Utkus, 2021, Five facts about beliefs and portfolios, *American Economic Review* 111, 1481–1522.
- Haddad, Valentin, Paul Huebner, and Erik Loualiche, 2022, How competitive is the stock market? Theory, evidence from portfolios, and implications for the rise of passive investing, Working Paper, UCLA and Minnesota.

References II

- Iachan, Felipe S, Dejanir Silva, and Chao Zi, 2022, Under-diversification and idiosyncratic risk externalities, *Journal of Financial Economics* 143, 1227–1250.
- Koijen, Ralph S.J., and Motohiro Yogo, 2019, A demand system approach to asset pricing, Journal of Political Economy 127, 1475–1515.
- Ledoit, Olivier, and Michael Wolf, 2004, Honey, I shrunk the sample covariance matrix, Journal of Portfolio Management 30, 110–119.
- Lettau, Martin, and Sydney Ludvigson, 2001, Consumption, aggregate wealth, and expected stock returns, *Journal of Finance* 56, 815–849.
- Li, Jian, Zhiyu Fu, and Manav Chaudhary, 2023, Corporate bond multipliers: Substitutes matter, Working Paper.
- Lopez-Lira, Alejandro, and Nikolai L. Roussanov, 2023, Do common factors really explain the cross-section of stock returns?, Working Paper, Florida and Wharton.
- Lou, Dong, 2012, A flow-based explanation for return predictability, *Review of Financial Studies* 25, 3457–3489.
- Martin, Ian W.R., and Stefan Nagel, 2022, Market efficiency in the age of big data, Journal of Financial Economics 145, 154–177.
- Pavlova, Anna, and Taisiya Sikorskaya, 2023, Benchmarking intensity, *Review of Financial Studies* 36, 859–903.
- Petajisto, Antti, 2009, Why do demand curves for stocks slope down?, *Journal of Financial and Quantitative Analysis* 44, 1013–1044.
- Schmickler, Simon, 2020, Identifying the price impact of fire sales using high-frequency surprise mutual fund flows, Working Paper, Princeton.
- Shleifer, Andrei, 1986, Do demand curves for stocks slope down?, Journal of Finance 41, 579-590.
- van Binsbergen, Jules H, Martijn Boons, Christian C Opp, and Andrea Tamoni, 2023, Dynamic asset (mis) pricing: Build-up versus resolution anomalies, *Journal of Financial Economics* 147, 406–431.

Appendix

Unspanned Returns and Factor Models

- Consider some factor model ex. returns *f* with weights *W* (*N* × *F*)
 Normalize weights so Var⁻¹(*f*)E[*f*] = 1
- Then we have:

$$\mu_{i,\text{unspanned}} = \underbrace{\alpha_i - \beta'_{-i}\alpha_{-i}}_{\alpha_{i,\text{unspanned}}} + \underbrace{\Sigma'_i(W - W^*_{-i})\mathbf{1}}_{\text{weight dependence on }i}$$

where

$$W_{-i}^* = \underbrace{I'_{-i}\Sigma_{-i,-i}^{-1}I_{-i}\Sigma}_{W} W$$

projection-like matrix

- ▶ Take-away: high unspanned returns means either
 - 1. High unspanned alpha or
 - 2. High factor model weight dependence

• If f is MVE (i.e.
$$W = w^* = \Sigma^{-1}\mu$$
):

$$\mu_{i,\text{unspanned}} = \underbrace{\Sigma'_i(w^* - w)}_{i,\text{unspanned}}$$

weight dependence on *i*

where
$$w_{-i}^* = I'_{-i} \Sigma_{-i,-i}^{-1} \mu_{-i}$$

Summary statistics

Variable	Ν	Mean	SD	5%	25%	50%	75%	95%
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Market cap (\$ bn)	1,633	4.58	13.96	0.30	0.51	1.08	3.02	17.65
Monthly excess return	1,633	0.72%	9.77%	-13.83%	-4.68%	0.38%	5.67%	16.24%
Lagged monthly return	1,633	1.49%	9.88%	-12.82%	-4.16%	0.86%	6.31%	17.69%
Log(B/M)	1,633	-0.59	0.82	-2.02	-1.06	-0.52	-0.06	0.63
Asset growth	1,633	0.13	0.19	-0.09	0.03	0.09	0.19	0.52
Dividend/book	1,633	2.91%	2.84%	0.00%	0.74%	2.11%	4.30%	9.36%
Profitability	1,633	0.24	0.22	-0.03	0.15	0.24	0.34	0.59

Not sensitive to shrinkage parameter

Ledoit and Wolf (2004) shrinkage parameter *h*:

$$\Sigma_t = (1 - h) \cdot \Sigma_t^{\text{sample}} + h \cdot \Sigma_t^{\text{target}}$$

		St	Portfolio-l	evel		
Covariance shrinkage	Expected return	Spanned return	Unspanned return	Unspanned fraction	Weight responsiveness	Demand elasticity
(<i>h</i>)	(μ_i)	$(\beta'_{-i}\mu_{-i})$	$(\mu_i - \beta'_{-i}\mu_{-i})$		$\theta = \frac{\partial \log(w)}{\partial \mu}$	$(1 + \theta \psi)$
	(1)	(2)	(3)	(4)	(5)	(6)
0.01	0.70%	0.47%	0.23%	32.9%	471.2	15.2
0.025	0.70%	0.47%	0.23%	32.8%	471.7	15.2
0.05	0.70%	0.47%	0.23%	32.6%	472.7	15.2
0.25	0.72%	0.50%	0.23%	31.3%	478.6	15.4
0.50	0.75%	0.53%	0.23%	29.8%	479.3	15.4

Predicting return using decomposed $\mu_{i,t}$

	Dependent var	riable: $r_{i,t+1}$	$\mu_{\text{spanned},i,t}$ - μ	$\mu_{\text{spanned},i,t}$ - $\mu_{\text{unspanned},i,t}$		
FM Specification:	Full-sample	Rolling	Full-sample	Rolling		
	(1)	(2)	(1b)	(2b)		
Intercept	0.001	0.003	0.204	0.139		
-	(0.002)	(0.003)	(0.176)	(0.189)		
$\mu_{\text{spanned},i,t}$	0.992***	0.629***				
	(0.138)	(0.158)				
$\mu_{\text{unspanned},i,t}$	0.788***	0.490***				
• • • •	(0.110)	(0.104)				
Obs	957,550	806,652				
Average R^2	1.86%	1.82%				
Note:			*p<0.1; **p<0.05;	***p<0.01		

▶ back

Implied Sharpe ratio

One may worry that large unspanned returns at the stock-level implies infinite Sharpe ratios, per APT logic.

	Sharpe ratio			
Return predictor:	Full-sample FM	Rolling FM		
Covariance shrinkage (h)	(1)	(2)		
0.01	1.26	1.15		
0.025	1.27	1.16		
0.05	1.29	1.18		
0.25	1.46	1.30		
0.50	1.73	1.49		

Leverage effect

MV-efficient portfolio weight for each stock *i* is:

$$\begin{split} w_{i} &= \frac{1}{\gamma} \cdot \frac{\mu_{i} - \beta_{-i}\mu_{-i}}{\sigma_{i}^{2} - \Sigma_{-i}^{\prime}\Sigma_{-i,-i}^{-1}\Sigma_{-i}} = \frac{1}{\gamma} \cdot \frac{\mu_{i,\text{unspanned}}}{\sigma_{i,\text{unspanned}}^{2}} \\ \Rightarrow -\frac{1}{w_{i}} \cdot \frac{\partial w_{i}}{\partial \log P_{i}} = \frac{1}{\mu_{i,\text{unspanned}}} \cdot \left(-\frac{\mu_{i}}{\partial \log P_{i}}\right) + \frac{1}{\sigma_{i,\text{unspanned}}^{2}} \cdot \frac{\partial \sigma_{i}^{2}}{\partial \log P_{i}} \end{split}$$

• $\sigma^2_{\text{idio},i,t}$: monthly variance of daily FF5 residuals

$$\sigma_{\text{idio},i,t}^2 = b_1 r_{i,t-1} + b_2 \sigma_{\text{idio},i,t-1}^2 + \epsilon_{i,t}$$

	i un sumpre				
	(1)	(2)	(3)		
$r_{i,t-1}$	-0.077***	-0.063***	-0.065***		
	(0.003)	(0.003)	(0.002)		
$\sigma_{\text{idio}it-1}^2$	0.633***	0.472***	0.456***		
idiojiji i	(0.010)	(0.011)	(0.011)		
Stock FE	Ν	Y	Y		
Time FE	Ν	Ν	Y		
Obs	2,136,330	2,136,330	2,136,330		
<i>R</i> ²	37.51%	43.55%	44.59%		

Full cample

back

Other terms in an Epstein-Zin framework

 Campbell, Chan, and Viceira (2003): Epstein-Zin investor, dynamic optimization

$$w_t = \frac{1}{\kappa} \Sigma_t^{-1} \left[\mu_t + \frac{1}{2} \sigma_t^2 - \frac{\vartheta}{\varsigma} \sigma_{c-w,t} \right],$$

•
$$\sigma_{c-w,t} = Cov(r_t, \log(C_t/W_t))$$

- Empirical implementation:
 - \triangleright Σ_t depends on prices through characteristics
 - $\sigma_{c-w,t}$ estimated using cay (Lettau and Ludvigson, 2001)
- Both effects turn out to be very small

Restricting investment universe

Exercise: restricting investment to 500/100/20 largest stocks

	Recompute th	e fraction	of returns	unspanned
--	--------------	------------	------------	-----------

Fraction unspanned						
Investment		Stock size ranking				
universe	1 to 20	21 to 100	101 to 500	500+		
full sample	0.21	0.26	0.28	0.34		
largest 500	0.37	0.40	0.41			
largest 100	0.42	0.47				
largest 20	0.45					

• **Conclusion:** unspanned returns increase by $\approx 60\%/90\%/110\%$

• Then, DE increases by $\approx 35\%/47\%/52\%$

back