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Motivation: the demand elasticity gap
▶ Demand elasticity (DE): investor demand sensitivity to price

▶ Definition: DE = 10: price ↓ 1% → holdings ↑ 10%
▶ Relevance: if DE is high, flows barely matter for prices

▶ Selling 1% of shares ⇒ 1
DE% lower price

▶ Problem: theory and empirics disagree about the magnitude
▶ Theory predictions ≈ 7,000 (e.g., Gabaix and Koijen, 2021)

▶ Empirical estimates ≈ 2 (e.g., Shleifer, 1986; Koijen and Yogo, 2019)

▶ Simple Example: (Why do we care?)
▶ Say stock price is ”efficient” at $100
▶ Then 10% outflow for non-fundamental reasons (e.g., ESG, behavioral)

▶ Workhorse CARA/CRRA/Epstein-Zin models, price ≈ $99.999
▶ If elasticity ≈ 2, price is now $95
▶ NOT a straw man

▶ Question: what explains this large gap?
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This paper
▶ Goal: reconcile the theoretical and empirical DE estimates

▶ Decomposition: for optimizing investors, DE has two
determinants

DEi,t ≈ 1 + (pass-through)× (weight responsiveness)

▶ If we use realistic estimates, DE
predictions are close to empirical
findings

▶ Main message: empirically observed DE is not “too low”, but
largely consistent with optimal investor behavior

▶ What we do: consider a hypothetical mean-variance investor
▶ What we DO NOT do: we DO NOT estimate demand

2 / 19



This paper
▶ Goal: reconcile the theoretical and empirical DE estimates

▶ Decomposition: for optimizing investors, DE has two
determinants

DEi,t ≈ 1 + (pass-through)× (weight responsiveness)

▶ If we use realistic estimates, DE
predictions are close to empirical
findings

▶ Main message: empirically observed DE is not “too low”, but
largely consistent with optimal investor behavior

▶ What we do: consider a hypothetical mean-variance investor
▶ What we DO NOT do: we DO NOT estimate demand

2 / 19



This paper
▶ Goal: reconcile the theoretical and empirical DE estimates

▶ Decomposition: for optimizing investors, DE has two
determinants

DEi,t ≈ 1 + (pass-through)× (weight responsiveness)

▶ If we use realistic estimates, DE
predictions are close to empirical
findings

▶ Main message: empirically observed DE is not “too low”, but
largely consistent with optimal investor behavior

▶ What we do: consider a hypothetical mean-variance investor
▶ What we DO NOT do: we DO NOT estimate demand

2 / 19



Related literature

▶ Theoretical predictions of DE are high (e.g., 7,000)
▶ Gabaix and Koijen (2021), Davis (2023)

▶ Empirical estimates of DE are low (around 2)
▶ Price impact of demand:

▶ Shleifer (1986), Lou (2012), Chang, Hong, and Liskovich (2015),
Schmickler (2020), Pavlova and Sikorskaya (2023)

▶ Direct estimates of DE:
▶ Koijen and Yogo (2019), Haddad, Huebner, and Loualiche (2022)

This paper: reconcile the difference
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Outline

1. Theory: what determines DE?

2. Empirical estimates

3. Additional implications
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What determines DE? Intuition
Imagine you are an investor. Stock i price declined by 1% without
cash flow-relevant news. How much more would you buy?
▶ Q1: How much does expected return µi,t change?

▶ Q2: how substitutable is stock i?
▶ If stock i is well spanned by other stocks, this is almost an arbitrage:

should aggressively buy stock i and short the replicating portfolio
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Proposition
▶ Decomposition: DE for any asset i with positive weight is

DEi,t = −∂ log(Qi,t)

∂ log(Pi,t)
≈ 1 +

(
− ∂µi,t

∂ log(Pi,t)

)
︸ ︷︷ ︸

price pass-through

× ∂ log(wi,t)

∂µi,t︸ ︷︷ ︸
weight responsiveness

▶ Proposition: For a MV investor, this becomes:

DEi,t ≈ 1 +

(
− ∂µi,t

∂ log(Pi,t)

)
︸ ︷︷ ︸

price pass-through

×
(
µi,t − β′

−i,t · µ−i,t

)−1

︸ ︷︷ ︸
1/unspanned returns

▶ Intuition:
1. Price pass-through: speed of price reversal

2. Unspanned return: distinctiveness of the asset

▶ Both terms need to be small
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A model of µt and Σt

▶ Perspective: a price-taking, unconstrained active quantitative
fund that forms MV portfolios, rebalancing monthly

▶ Model:
▶ Expected return µt = function of characteristics

▶ Covariance Σt: rolling 1 year estimates using daily data, with
Ledoit and Wolf (2004) shrinkage:

Σt = (1 − h) · Σsample
t + h · Σtarget

t , h = 0.01

▶ Data: monthly U.S. stocks, 1970 - 2019
▶ Require > 20% NYSE size, avg 1,633 stocks/month summary stats
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1) Estimate price pass-through (− ∂µi,t
∂ logPi,t

)

▶ Model: µi,t =
∑

k Zi,k,t · πk
▶ Fama-MacBeth regression

▶ Implied monthly price pass-through:

− ∂µi,t

∂ logPi,t
= −

∑
k

∂Zi,k,t

∂ logPi,t
πk

= πlagged r − πlog(M) + πlog(B/M)

= 0.03 (S.E. 0.005)

▶ Main contributor is lagged ret

▶ Static theory models assume pass-through ≈ 1
▶ Many dynamic models have too much short-term discount rate

variation (De la O, Han, and Myers, 2023)
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2) Estimate unspanned returns (µi,t − β′
−i,t · µ−i,t)

▶ For stocks with positive weight
▶ Excess return µi,t ≈ 0.7%
▶ Spanned excess return:

β′
−i,t · µ−i,t ≈ 0.47%

details

▶ Finding consistent with
literature: Lopez-Lira and Roussanov (2023),

Baba-Yara, Boyer, and Davis (2022)

▶ Existing models often assume almost-perfect-spanning
▶ Petajisto (2009): monthly µi,t = 42bp, β′

−i,t · µ−i,t = 41.9bp
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Implied optimal DE

1 +

(
− ∂µi,t

∂ log(Pi,t)

)
︸ ︷︷ ︸

price pass-through

×
[
µi,t − β′

−i,t · µ−i,t︸ ︷︷ ︸
unspanned returns

]−1

≈ 1 + 0.03 × 1
0.23%

≈ 14

▶ Takeaway: using realistic estimates explains most of the gap
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Important Robustness 1: price pass-through
▶ van Binsbergen, Boons, Opp, and Tamoni (2023) decomposition:

log(Pi,t) = log(P̃i,t) + log(Pi,t/P̃i,t)︸ ︷︷ ︸
price wedge

▶ P̃i,t: cash flow-based valuation

▶ Estimate price pass-through, FM regressions:

ri,t+1→t+H = αH + βH · log(P̃i,t/Pi,t) + ϵi,t+1→t+H

Independent Estimated coefficient βH Obs Implied monthly price pass-through (βH/H)

variable H = 1 3 6 12 H = 1 3 6 12

(1) (2) (3) (4) (5) (6) (7) (8) (9)

van Binsbergen et al. (2023) 0.014∗∗∗ 0.040∗∗∗ 0.079∗∗ 0.157 1,270,646 0.014∗∗∗ 0.013∗∗∗ 0.013∗∗ 0.013
price wedge (0.003) (0.014) (0.038) (0.102) (0.003) (0.005) (0.006) (0.009)

Bartram and Grinblatt (2018) 0.001 0.002 0.003 0.006 782,431 0.001 0.001 0.000 0.000
price wedge (0.001) (0.002) (0.005) (0.012) (0.001) (0.001) (0.001) (0.001)

Koijen and Yogo (2019)- −0.002∗∗∗ −0.004∗∗∗ −0.009∗∗∗ −0.021∗ 1,519,519 −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.002∗

instrumented log(Pi,t) (0.000) (0.002) (0.003) (0.011) (0.000) (0.001) (0.001) (0.001)

FIT-instrumented 0.006 0.020 0.040 0.094 1,443,296 0.006 0.007 0.007 0.008
log(Pi,t) (0.005) (0.016) (0.045) (0.084) (0.005) (0.005) (0.008) (0.007)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Robustness 2: unspanned returns
▶ Robust to using alternative models of µt

▶ Characteristics-based, rolling 10y FM predictions
▶ Factor-based: µi,t =

∑
k βi,k,t−1 · µfactor

k
▶ 2y rolling loadings, full-sample FF5+mom+rev µfactor

k

Average fraction spanned in parentheses

▶ Alternative Σt:
▶ Different shrinkage

parameters
shrinkage parameter

▶ Characteristics-based
covariance (e.g., Barra)
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Unspanned Returns and Maximum Sharpe

▶ Relationship: unspanned returns relates to max Sharpe

S2 = µ′
unspanned · (DΣD) · µunspanned

where D =


1/σ2

1|−1 . . . . . .

1/σ2
2|−2 . . .

. . .
0 . . . . . . 1/σ2

N|−N


▶ Note that DΣD only depends on the covariance matrix

▶ Sharpe of MV strategy ≈ 1.3
▶ If unspanned variance is high, it offsets high unspanned returns
▶ Even with sensitive MV weights, we have inelastic demand
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What about the remaining gap?
▶ Formula:

DEi,t = 1 + (pass-through)× (weight responsiveness)

+ other terms

▶ Other terms matter little
▶ Variance/Covariance effects
▶ Epstein-Zin hedging
▶ Wealth effects

▶ Weight responsiveness
▶ Frictionless MV demand:

µi,t ↑ 0.01% =⇒ dollar ↑ 4%
▶ For DEi,t ≈ 2 =⇒ ≈ ↑ 0.3%
▶ Frictions/constraints/biases:

▶ Short-sale/leverage constraints
▶ Heuristic demand
▶ Trading costs
▶ Behavioral effects (e.g., Giglio,

Maggiori, Stroebel, and Utkus,
2021)
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Other Terms
▶ Formula:

DEi,t = 1 + (pass-through)× (weight responsiveness) + other terms

▶ With covariances:

−∂ log(Qi,t)

∂ log(Pi,t)
= 1 +

∂ log(wi,t)

∂µi,t

(
− ∂µi,t

∂ log(Pi,t)

)
︸ ︷︷ ︸

Main Decomposition

−
∑

j

∂ log(wi,t)

∂Σ−1
i,j,t

∂Σ−1
i,j,t

∂ log(Pi,t)︸ ︷︷ ︸
Covariance Effects

▶ This matters, but 7000 - 3 does not get us there
▶ Idiosyncratic volatility effects reduce demand elasticity a bit
▶ βt effects (i.e. Σi,t = βtΩtβ′

t + Diag(σt)) are small

▶ Epstein-Zin consumption hedging is small
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Applications of our Decomposition

DEi,t ≈ 1 +

(
− ∂µi,t

∂ log(Pi,t)

)
︸ ︷︷ ︸

price pass-through

×
(
µi,t − β′

−i,t · µ−i,t

)−1

︸ ︷︷ ︸
1/unspanned returns

▶ Davis (2023) statistical arbitrage demand elasticity is inelastic
▶ All stat arb models exhibit inelastic demand
▶ In many models (e.g., IPCA), cannot separately decompose

mean/covariance
▶ Alpha/beta and idiosyncratic/systematic DE are low

▶ Demand elasticity can be very high (Li, Fu, and Chaudhary, 2023)

▶ DE is not a primitive structural parameter! (Lucas critique)
▶ In IO, consumers have direct preferences on goods
▶ In asset pricing, investors have indirect preference over securities
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2) Implications for equilibrium models

▶ Most cross-sectional equilibrium models generate very high DE
1. Many (not all) are static models, and thus assume price

pass-through = 1.
2. Essentially all of them generate almost-perfect spanning.

▶ 1) is easy to fix. 2) less so.
▶ For tractability, equilibrium models use CARA-normal setups

which predict CAPM (or slight variations)

▶ To deliver realistic equilibrium price impact, two possible ways:
1. Market segmentation

▶ Gârleanu, Panageas, and Yu (2015), Iachan, Silva, and Zi (2022)

2. Low spanning, possibly due to “complexity”:
▶ Martin and Nagel (2022), Baba-Yara et al. (2022), Da, Nagel, and Xiu (2022)
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Summary

▶ Research question: reconcile the theory predictions and
empirical estimates of DE (7,000 vs 2)

▶ Main result: low DE is consistent with optimal response to
realistic price processes:

1. Low price pass-through
2. High unspanned returns

▶ Existing equilibrium models are useful for qualitative, but not
quantitative understanding of price impact
▶ They need to be adjusted to generate realistic price processes
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Unspanned Returns and Factor Models
▶ Consider some factor model ex. returns f with weights W (N × F)
▶ Normalize weights so Var−1(f )E[f ] = 1
▶ Then we have:

µi,unspanned = αi − β′
−iα−i︸ ︷︷ ︸

αi,unspanned

+ Σ′
i(W − W∗

−i)1︸ ︷︷ ︸
weight dependence on i

where

W∗
−i = I′−iΣ

−1
−i,−iI−iΣ︸ ︷︷ ︸

projection-like matrix

W

▶ Take-away: high unspanned returns means either
1. High unspanned alpha or
2. High factor model weight dependence

▶ If f is MVE (i.e. W = w∗ = Σ−1µ):

µi,unspanned = Σ′
i(w

∗ − w∗
−i)︸ ︷︷ ︸

weight dependence on i

where w∗
−i = I′−iΣ

−1
−i,−iµ−i
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Summary statistics

back
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Not sensitive to shrinkage parameter

▶ Ledoit and Wolf (2004) shrinkage parameter h:

Σt = (1 − h) · Σsample
t + h · Σtarget

t

back
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Predicting return using decomposed µi,t

back
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Implied Sharpe ratio

▶ One may worry that large unspanned returns at the stock-level
implies infinite Sharpe ratios, per APT logic.

Sharpe ratio

Return predictor: Full-sample FM Rolling FM

Covariance shrinkage (h) (1) (2)

0.01 1.26 1.15
0.025 1.27 1.16
0.05 1.29 1.18
0.25 1.46 1.30
0.50 1.73 1.49

back
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Leverage effect

MV-efficient portfolio weight for each stock i is:

wi =
1
γ
·

µi − β−iµ−i

σ2
i − Σ′

−iΣ
−1
−i,−iΣ−i

=
1
γ
·
µi,unspanned

σ2
i,unspanned

⇒ −
1
wi

·
∂wi

∂ log Pi
=

1
µi,unspanned

·
(
−

µi

∂ log Pi

)
+

1
σ2

i,unspanned

·
∂σ2

i
∂ log Pi

▶ σ2
idio,i,t: monthly variance of daily

FF5 residuals

σ2
idio,i,t = b1ri,t−1 + b2σ

2
idio,i,t−1 + ϵi,t

back
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Other terms in an Epstein-Zin framework

▶ Campbell, Chan, and Viceira (2003): Epstein-Zin investor,
dynamic optimization

wt =
1
κ
Σ−1

t

[
µt +

1
2
σ2

t −
ϑ

ς
σc−w,t

]
,

▶ σc−w,t = Cov(rt, log(Ct/Wt))

▶ Empirical implementation:
▶ Σt depends on prices through characteristics
▶ σc−w,t estimated using cay (Lettau and Ludvigson, 2001)

▶ Both effects turn out to be very small
back
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Restricting investment universe

▶ Exercise: restricting investment to 500/100/20 largest stocks
▶ Recompute the fraction of returns unspanned

1 to 20 21 to 100 101 to 500 500+
full sample 0.21 0.26 0.28 0.34
largest 500 0.37 0.40 0.41
largest 100 0.42 0.47
largest 20 0.45

Fraction unspanned
Stock size rankingInvestment 

universe

▶ Conclusion: unspanned returns increase by ≈ 60%/90%/110%
▶ Then, DE increases by ≈ 35%/47%/52%

back
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