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Scientists drive innovation and economic growth
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Scientists can create value in Academia
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Scientists can create value in Industry
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Markets don’t necessarily direct R&D to areas of highest value

Academia Industry

How much friction is there in the allocation of scientists across sectors?
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Controversies about the (mis)allocation of scientists
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Why do we care today?

• Knowledge-base economy: intellectual capital is a key driver of economic

growth (Romer, 1990; Bell et al., 2017)

• Competition for talent: firms need talent to maintain competitiveness ;

universities need talent for prestige and reputation

• Increasing earnings gap at graduation between Industry and Academia
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Why do we care today?

Earnings gap at graduation in Industry and Academia, by cohort and field
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Research Question

• How socially efficient is the allocation of scientists across sectors?

• How do scientists perform in Industry vs Academia?

To answer this question we need:

1. Measures of private and social value

2. Identification strategy that accounts for selection and heterogeneity
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This paper

• Measures of private and social value: focus on earnings and publications

• Private value: earnings + non-pecuniary returns

• Social value: Private value + Externalities (publications, ...)

• Administrative dataset (SED/SDR) that matches demographics and earnings

information about doctorate holders who graduated between 1970 and 2013 to

their publication output

• Identification strategy that accounts for selection and heterogeneity

• Model of selection

• Within department variation

• Instrumental variable (IV)

• Estimation of Marginal Treatment Effects (MTE)

• (Mis)Allocation - Preliminary results
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Preliminary Findings

• Joining Industry (vs Academia) leads to:

• A large increase in lifetime earnings, driven by the early-stage of the career

• A large decrease in the overall stock of publications

• I find substantial heterogeneity and selection (ATT>ATE)

Sector joined βW

Industry 85%

Academia 2%
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Contributions

• Literature on the role of Industry and Academia in the production of knowledge

and innovation

• Difference in institutional norms: (Dasgupta and David, 1994; Aghion et al.,

2008; Stephan, 2012; Furman and Stern, 2011; Kahn and Ginther, 2017;

Stephan, 1996; Stephan et al., 2004; Agarwal and Ohyama, 2013)

• Differences in individuals’ preferences: (Stern, 2004; Roach and Sauermann,

2010, 2023, 2024; Sauermann and Roach, 2012; Sauermann and Stephan, 2013)

• Literature on the relationship between talent, innovation and economic growth

• Frictions related to the extensive margin: Bell et al. (2017), Akcigit et al.

(2020), Celik (2023)

• Frictions related to the intensive margin: Akcigit and Goldschlag (2023)

• Literature on resource allocation within organizations and its consequences for

performance

• Literature on general and firm-specific human capital: Coff and Kryscynski

(2011)

• Selection: Shu (2016)
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Data



Data Sources

• Survey of Doctorate Recipients (SDR 2015): (during the career)

• Across cohorts, longitudinal

• Earnings (flow), Patents (flow, sub-sample)

• Survey of Doctorate Recipients Bibliometric Research Data:

• SDR 2015 matched with Web of Science

• Publication output (stock) from PhD graduation to 2017

• Survey of Earned Doctorates (SED): (at graduation)

• Within cohort

• Sector joined at graduation (+ earnings at start)
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Sample and main variables

• 21,406 individuals

• Ind. with PhD cohort ≥ 1970, with definite postgraduate commitment at the

time of survey and start their career in the U.S.

• Treatment:

• Starting in Industry vs Academia (incl. Government/Postdoc)

• Outcomes:

• Earnings: total earned income before deductions in the previous year (2015 US

dollars)

• Publications: from PhD graduation to the time of survey (2017)
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Supply
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Sorting at graduation, by PhD field
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Raw differences - Earnings and Publications
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Empirical Framework and Results



Overview

1. ‘Control’ for ability: within department variation

2. Selection at the individual level (LATE)

3. Selection at the individual level + Heterogeneity (MTE)

4. (Mis)allocation
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Within department variation

Yi = α0 + α1Industryi + δmu + α2Xi + εi (1)

• δmu: PhD major × university FE

Log(1+Publications (stock))

(1) (2) (3) (4) (5)

Industry -0.911∗∗∗ -0.943∗∗∗ -0.936∗∗∗ -0.942∗∗∗ -0.900∗∗∗

(0.0200) (0.0255) (0.0255) (0.0278) (0.0296)

Observations 21,406 21,406 21,406 21,406 21,406

Demographics Yes Yes Yes Yes Yes

Experience Yes Yes Yes Yes Yes

PhD major FE Yes Yes Yes Yes

Doct. Inst. FE Yes Yes Yes

PhD major x Doct. Inst. FE Yes Yes

Taste Yes

Standard errors in parentheses clustered at the doctoral institution level
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Within department variation

Yi = α0 + α1Industryi + δmu + α2Xi + εi (2)
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(1) (2) (3) (4) (5)
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Overview

1. ‘Control’ for ability: within department variation

2. Selection at the individual level (LATE)

3. Selection at the individual level + Heterogeneity (MTE)

4. (Mis)allocation
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Instrumental Variable

• Ideal Variation: PhDs graduating face an exogenous demand from firms’ and an

exogenous demand from universities’

• Empirical Variation: exploits inter-temporal variation in firms’ vs universities’

demand for PhDs in the same major (within major across cohorts)
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Instrumental Variable

• Instrument: exploits inter-temporal variation in firms’ vs universities’ demand for

PhDs in the same major (within major across cohorts)

• Empirically: PhD major × PhD cohort FE, controlling for PhD major FE

• I create a leave-one out continuous measure Zi = share of individuals in

major/cohort going to Ind.

• Identifying assumption: individuals that are more/less productive in Ind. (vs Acad.)

do not time when they go on the market based on macro. conditions

• Controls:

• Doctoral institution FE

• Indicator for having published prior to graduation

• Test: conditions at the time of PhD entry do not predict sorting
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Instrumental Variable - First-stage

Industry

(1) (2) (3)

Zi 0.220∗∗∗ 0.214∗∗∗ 0.214∗∗∗

(0.0385) (0.0390) (0.0389)

Demographics Yes Yes Yes

Experience Yes Yes Yes

PhD major FE Yes Yes Yes

Doct. inst. FE Yes Yes

Publ. bef. grad. Yes

F-stat 32.5 30.1 30.1

Observations 21,406 21,406 21,406

R-sq 0.163 0.185 0.185

Notes: Standard errors (in parentheses) are two-way

clustered at the PhD major and PhD cohort level.

• Zi = share of individuals in major/cohort going to Ind.

• If everyone in her major/cohort goes to Industry, the focal individual has a 21% higher

probability of going to Ind. (vs Acad.)
25



Instrumental Variable - 2SLS results

Log(1+Publications) Log(1+Earnings)

OLS 2SLS OLS 2SLS

Industry -0.900∗∗∗ -1.227∗∗∗ 0.274∗∗∗ 0.527∗∗

(0.0296) (0.476) (0.0147) (0.313)

F-stat 30.1 30.1

Observations 21,406 21,406

Demographics Yes Yes

Experience Yes Yes

PhD major FE Yes Yes

Doct. Inst. FE Yes Yes

Publ. bef. grad. Yes Yes

Notes: Standard errors in parentheses clustered at the PhD major and PhD cohort level ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

• OLS ̸= 2SLS because (Ishimaru, 2024):

• Covariate weight difference

• Treatment-level weight difference

• Selection

26



Overview

1. ‘Control’ for ability: within department variation

2. Selection at the individual level (LATE)

3. Selection at the individual level + Heterogeneity (MTE)

4. (Mis)allocation
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Heterogeneity on observables and unobservables - MTE

• I estimate Marginal Treatment Effects (MTE)

• The ATE for groups of individuals who have the same latent propensity to be

treated based on observables and unobservables

• Is the micro-component of the ATE, ATT, LATE

• MTE for individuals with observables X = x and unobservable UD = u is:

MTE(X = x ,UD = u) = E[Y I − Y A|X = x ,UD = u] (3)

• I can predict expected treatment effects for every individual based on their

observables, treatment status and unobservable

28



Heterogeneity on observables and unobservables - MTE

• I estimate Marginal Treatment Effects (MTE)

• The ATE for groups of individuals who have the same latent propensity to be

treated based on observables and unobservables

• Is the micro-component of the ATE, ATT, LATE

• MTE for individuals with observables X = x and unobservable UD = u is:

MTE(X = x ,UD = u) = E[Y I − Y A|X = x ,UD = u] (3)

• I can predict expected treatment effects for every individual based on their

observables, treatment status and unobservable

28



Individual-specific expected treatment effects
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Figure 2: Log(Earnings)

• Individuals who start their career in

Industry have higher earnings gains of

joining Ind. (vs Acad.)
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Figure 3: Log(Publications)

• Individuals who start their career in

Industry have a lower publication decrease

of joining Ind. (vs Acad.)

MTE Propensity Score

MTE curves
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Individual-specific expected potential outcomes

Earnings in Academia
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• Individuals who start their career in Industry have higher earnings in Industry and

lower earnings in Academia than those who start their career in Academia
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Individual-specific expected potential outcomes

Publications in Academia
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Publications in Industry
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• Individuals who start their career in Industry have a higher publication potential in

Industry than those who start their career in Academia

• In the private sector, individuals who start their career in Industry join bigger firms

than those who start their career in Academia
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Individual-specific expected potential outcomes

Publications in Academia
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• Individuals who start their career in Industry have the same publication potential in

Academia than those who start their career in Academia

• Individuals who start their career in Industry lack non-research related skills that are

valued in Academia
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Overview

1. ‘Control’ for ability: within department variation → ATE

2. Selection at the individual level → LATE

3. Selection at the individual level + Heterogeneity → MTE

4. (Mis)allocation
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(Mis)Allocation

• Goal: think about the wedge between private and social returns

• Individuals’ sorting is influenced by their private returns in Ind. (vs Acad.)

• Individuals’ ‘best use’ is influenced by their social returns in Ind. (vs Acad.)

• The wedge between private and social returns comes from externalities

• Goal: highlight trends and patterns

• I cannot capture the entirety of private returns

• I cannot capture the entirety of externalities

• I can only discuss the rate of externalities, not the direction

• I am currently trying to build a simple model of social returns where I use the

individual-level MTE for earnings and publications to shed light on misallocation

• I can compare the wedge in earnings with the wedge in publications

• I can characterize individuals based on where they are in the Earnings and

Publications distribution in Industry and in Academia

• All the extensions are the fun part!

34
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Conclusion

In this paper, I study the performance of scientists in Industry and Academia after

graduation:

• Data: I use administrative surveys that give me individual-level information about two

measures of performance: earnings and publications

• Identification:

• I account for individual-level selection with an instrument that leverage variation

in firms’ vs universities’ demand over time for PhDs in the same major

• I incorporate heterogeneity with the estimation of MTE

• Next steps: use the reduced-form individual-level estimates to highlight trends and

patterns in the misallocation of scientists across sectors
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Thank you!
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MTE - Parameters

ATE(x) =

∫ 1

0

MTE(x , u)du (4)

ATT (x) =

∫ 1

0

hATT (x , u)MTE(x , u)du (5)

ATUT (x) =

∫ 1

0

hATUT (x , u)MTE(x , u)du (6)

IV (x) =

∫ 1

0

hIV (x , u)MTE(x , u)du (7)

back
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MTE Propensity score
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MTE Curves
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