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Abstract

Do hazardous levels of air pollution in developing countries reflect low demand for air quality or
imperfect information about its benefits? This paper implements an experiment to estimate the
demand for clean air in a low-income country and tests for several possible market failures in in-
formation that may affect it. Combining randomized price variation for low-cost pollutionmasks
with day-to-day variation in ambient air quality, we estimate an average marginal willingness-
to-pay (MWTP) for an annual 10 unit reduction in PM2.5 of $1.16 (USD) among low-income res-
idents of Delhi, India. This estimate is low in global terms, but increases more than five times
for respondents who are treated with a description of the health impacts of air pollution prior
to demand elicitation. These findings suggest limited demand for clean air may partly reflect
limited information about its benefits.
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1 Introduction

Residents of the world’s largest cities endure levels of air pollution well beyond public health rec-
ommendations (WHO 2018).¹ The combination of high population density and low air quality has
dire consequences: published estimates put the global number of deaths from air pollution at or
above five million annually (Burnett et al. 2018; Lelieveld et al. 2019), in addition to the substantial
morbidity and productivity impacts (Graff Zivin and Neidell 2013). In India alone, around 2.2 mil-
lion lives are estimated to be lost each year from ambient air pollution (Burnett et al. 2018). Why
do particulate pollution concentrations remain high despite such large public health costs?

Clean air is a public good. One explanation for low levels of air quality in manymajor urban ar-
eas is that poor households have a high marginal utility of present consumption spending, which
implies that households with limited resources rationally value consumption in the current pe-
riod over investments in future health (such as costly pollution avoidance). Under this hypothesis,
high levels of air pollution in low income areas are the natural consequence of limited public de-
mand among the population. As people become wealthier, demand for health-improving goods,
including clean air, should rise (Hall and Jones 2007). The implication of this explanation, often
described as the “Environmental Kuznets Curve” (Kuznets 1955; Grossman and Krueger 1995), is
that only after substantial economic growth will the costs of environmental improvements justify
their benefits.

Alternative explanations hold that low observed demand for air quality could instead be the
consequence ofmarket failures that are frequently observed in developing country settings (Green-
stone and Jack 2015). Revealed preference measures of demand for air quality could be biased
downward if, for example, individuals are uninformed or inattentive to the benefits of air quality,
or if they anticipate social disapproval of and/or lack experience with air pollution filteringmasks.
For example, several studies demonstrate that informing households about the presence of risk of
water pollutants made them more likely to purify their water (Jalan and Somanathan 2008; Ben-
near et al. 2013). With respect to air quality, Ahmad et al. (2022) demonstrate that providing air
pollution forecasts makes individuals more responsive to air pollution and increases their demand
for protective air filtering masks. If information provision shifts the demand for air quality, then it
is unlikely that air quality levels are merely reflections of high marginal utility of consumption for
poor populations.²

Assessing the credibility of these competing explanations raises two key challenges. First, there

1. As of 2019, all ten of the largest cities in the world had PM2.5 averages that were exceeded the World Health Organi-
zation’s Air Quality Guidelines WHO (2018).

2. Historically, information provision has played an important role in generating public demand for environmental im-
provements: the environmental movement in the United States was precipitated by a series of well-publicized events in-
cluding Rachel Carson’s publication of Silent Spring in 1962 and the 1969 Cuyahoga River Fire. These events contributed to a
growing public awareness of the dangers of environmental pollution and provided public support for nascent United States
environmental policy starting in the 1970s (Shapiro 2022). Similarly, Barwick et al. (2019) demonstrate that China’s rollout
of real-time air quality monitoring led to large increases in the degree to which individuals sought to avoid air pollution.
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are few measurements of the demand for clean air among urban populations in developing coun-
ties. This is a notable gap given that these populations tend to face some of the highest air pollution
levels in the world. Second, environmental quality and socioeconomic status are frequently cor-
related (Banzhaf, Ma, and Timmins 2019). Rigorous evidence on whether demand for clean air is
limited by information or market failures in these settings requires careful accounting for possible
confounding factors.

This paper considers the demand for clean air and its drivers in Delhi, India. Delhi is a city of
more than 25 million people and regularly experiences wintertime PM2.5 concentrations exceed-
ing 120 𝜇g/m3, a level 24 times higher than the World Health Organization (WHO) guideline.
Although Delhi has some of the highest levels of air pollution in the country, India itself – re-
cently the largest country in the world – still averaged more than PM2.555 𝜇g/m3 in 2021 in spite
of a robust set of demonstrably effective pollution laws (Greenstone and Hanna 2014). Our study
helps to understand whether these hazardous levels entirely reflect limited demand for air quality
improvements or are the product of an information failure.

This paper presents the first experimental estimates of the demand for clean air and its drivers,
as revealed by individual decisions to purchase pollution masks. We focus on pollution masks
since they are the primary mode of defense against the harmful effects of air pollution for our
study population.³ Between October 2018 and March 2019, a period coinciding with the peak air
pollution season in Delhi, we conducted a field experiment in which we repeatedly offered pollu-
tion masks at randomized prices to lower-income households in Delhi. We focus on lower-income
households in order to capture demand for air quality for a population that is both understudied
and particularly vulnerable to air pollution.⁴ Using experimental variation in prices combinedwith
natural variation in ambient air pollution, we develop a discrete choice model of mask demand to
identify the marginal willingness-to-pay (MWTP), or demand, for clean air. We cross-randomized
the variation in prices with additional experimental variation in two more treatments (adminis-
tered prior to the mask offer), which we refer to jointly as the “non-price interventions.” The first
was an information treatment, which highlighted the long-run health implications of high levels
of air pollution, and the second is a peer belief treatment, which revealed to the respondent that
average levels of peer disapproval of mask-wearing are low.

We first show that the demand for clean air is low in absolute terms among the sample pop-
ulation. On average, we measure a MWTP of $1.16 (23.4 INR) for a 10 unit (𝜇g/m3) reduction in
annual PM2.5 concentrations.⁵

3. Prior to the onset of COVID-19 in 2020, face masks were primarily associated with air pollution in Delhi. For example,
in one of the first public demonstrations for clean air in 2015, an Indian Member of Parliament wore a pollution mask into
the Indian Lok Sabha, garnering substantial media coverage (Times of India 2015).

4. In India and in many other countries around the world, poor households are have fewer options to defend against
air pollution (Banzhaf, Ma, and Timmins 2019), but little work of which we are aware studies preferences for air quality
specifically among lower-income populations.

5. The experiment was conducted using Rupees, but in the paper we discuss the results primarily in USD (2019) to
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Second, we document that providing information on the health impacts of air pollution leads
to a proportionately large increase in the demand for clean air. We show that respondents who are
given a handout and shown a short video discussing the long-run health impacts of air pollution
before themask offer aremuchmore responsive to the level of ambient air pollutionwhen deciding
whether to purchase a mask. For those respondents, we estimate a MWTP of $6.33 per 10 unit
annual reduction in PM2.5, more than five times higher than those respondents who did not receive
the information treatment.⁶

Third, we find that demand for clean air increases substantially with income and education.
Among informed respondents, moving from the 25th to the 75th percentile of household income
and individual years of school raises MWTP by roughly 50% and 140%, respectively. This esti-
mate is low relative to estimates from richer countries and to an analogous estimate in Ito and
Zhang (2020). We also show that while the information treatment increases demand for air qual-
ity among both lower and higher income respondents in our sample, its effects are concentrated
among respondents with fewer years of schooling. This finding suggests that information provi-
sion is especially relevant in contexts where education levels are low.

Existing estimates of the demand for clean air tend to find large valuations for relativelymodest
improvements in air quality. Table A.1 summarizes papers that estimate the demand for air pol-
lution reductions, obtained through both revealed and stated preference approaches. Numerical
estimates of demand for clean air vary substantially by context, method, and pollutant observed.⁷

These studies have contributed considerably to our understanding of the public’s value of clean
air across the world. However, many are hedonic approaches that rely on backing out information
on preferences for clean air through location or home purchasing decisions, which means that
these estimates are generally derived by examining cross-sectional relationships between location
choices, air pollution levels, and the cost of location decisions. This raises three important con-

facilitate comparison to other contexts where results have also been reported in USD. We convert Rupees to USD using the
PPP-adjusted exchange rate for 2019 reported by the World Bank: 20.13 INR = $1.

6. In addition, we find little evidence of two other behavioral frictions inmask takeup: informing respondents that mask-
wearing in public is not widely disapproved of has no effect on mask demand, and prior experience using a mask actually
reduces the likelihood that a respondent will purchase another. This experiment was carried out prior to the onset of Covid-
19. In our piloting activities, a commonly cited reason for why people did not wear masks despite Delhi’s extreme pollution
levels was the fear of “looking strange.”

7. We standardize a variety of estimates of the demand for clean air in the literature to willingness to pay for an annual
reduction of 10 𝜇𝑔/𝑚3 PM2.5 in 2019 PPP-adjusted USD. Chay and Greenstone (2005) find that an annual 10 unit decrease
in PM2.5 is valued at about $196 by individuals in the United States. Bayer, Keohane, and Timmins (2009) directly model
relocation decisions using a discrete choice approach and find that the individuals would pay $2676 – $3323 for a 10 unit
decrease in PM2.5. Finney, Goetzke, and Yoon (2011) estimate a discrete choice model using data from households moving
into Riverside and San Bernardino counties. They find that individuals are willing to pay $307 – $498 to have 10% more
days meeting air quality standards. Notably for our setting, they find that high-income households pay more, while low-
income households (by U.S. standards) have a negative willingness to pay. Outside of the United States, Gonzalez, Leipnik,
and Mazumder (2013) estimate a hedonic model and find a 10 unit reduction in PM2.5 is valued at between $14 and $22
by residents of Mexico City. Freeman et al. (2019) estimate MWTP in China using discrete choice model similar to Bayer,
Keohane, and Timmins (2009) and derive a value of $173 for a 10 unit reduction in PM2.5. In the most recent and similar
setting to ours, Ito and Zhang (2020) compare variations in regional pollution in China with air purifier purchases to derive
a value of $23 for a 10 unit reduction in individual PM2.5 exposure per year.
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cerns. First, such cross-sectional relationships could be confounded by other, difficult-to-measure
factors that correlate with both pollution and location values, such as neighborhood desirability.⁸
Second, applying the existing approaches – hedonics or defensive spending on durable goods like
air purifiers – to low-income populations is challenging: data on home purchase or rental expen-
ditures tends to be unavailable for these populations, and air purifiers are neither affordable nor
effective for households living in homes with imperfectly sealed building envelopes. Third and
finally, the existing literature relies on observed variation in home value, income, or price of de-
fensive expenditures against air pollution to back out a monetary measure of the demand for clean
air; we are not aware of any existing work that leverages experimentally random variation in prices
to estimate the demand for clean air.

Our primary contributions to this line of research are providing the first experimentally-derived
estimates of the demand for clean air and using experimental variation to examine how imperfect
information and other market failures affect that demand. Importantly, this estimate of demand
focuses specifically on respondents living in low-income settlements in Delhi, India. The key to our
approach is that we combine unpredictable natural variation in local air pollution levels with offers
of pollution masks whose (subsidized) price we randomly vary across respondents.⁹ As described
above, Ahmad et al. (2022) provide evidence that is complementarywith respect to this paper: they
show that information about future pollution increases respondents’ demand for masks in Lahore,
Pakistan. By contrast, our work focuses on measuring the demand for the environmental good of
clean air. To the best of our knowledge, ours is the first to directly estimate demand for clean air
using any method among a low-income population or in the country of India.

We also contribute to the literature on the takeup of defensive health technology in develop-
ing countries. In rural Kenya, two existing studies document limited demand, even at below-
market prices, of mosquito nets and water filtration technology (Cohen and Dupas 2010; Kremer
et al. 2011). We provide an analogous estimate of the demand curve for pollution masks in India,
which allows us to project the social benefit of its free provision. We also add to this line of work by
experimentally quantifying the degree to which non-price considerations suppress demand. Our
method of combining an information treatment with randomized subsidies for mask purchases
links to Ashraf, Jack, and Kamenica (2013), who show that providing information about health
products magnifies the impact of price subsidies.

This paper is organized as follows. Section 2 describes the background context and the sample
we study; Section 3 describes the experimental design; Section 4 presents a model of mask demand
and our methodology for estimating the MWTP for clean air; Section 5 presents the main empiri-
cal findings; Section 6 evaluates the subsequent government distribution campaign; and Section 7

8. Ito and Zhang (2020) are an important exception to this concern: because their estimate is derived from air purifier
purchases, they can control for unobservables at the location level.

9. This approach builds on previous non-experimental evidence from Greenstone et al. (2022) and Barwick et al. (2019)
that greater information on air pollution increases online searches for pollution masks and air purifiers.
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discusses further implications.

2 Context

This section describes the study setting of Delhi, its air pollution problem and the countermeasures
available against it, and the composition of the sample from which we draw the respondent pool
for this study.

2.1 Delhi, India

Delhi, or the National Capital Territory (NCT) of Delhi, is the capital of India. Located in the north
of India, Delhi is one of its largest cities, with nearly 28 million people living in the metropolitan
area. Delhi is a relatively wealthy city compared to India as a whole, but still poor by global stan-
dards: on average, income per capita was roughly $14,000 in 2019(Delhi Government 2023). Within
Delhi, there are significant disparities in income. Many of the lowest-income residents live in a cat-
egory of low-income settlements areas called Jhuggi Jhopri Settlements (informally known as “JJ
clusters”).¹⁰ By some estimates, nearly half the city population resides either within a JJ cluster
or other forms of temporary, low-income settlements spread throughout the city (Times of India
2012).

The climate in Delhi is warm and subtropical, with the hottest temperatures usually occurring
between April and July, but even the coolest months, December and January, still have mean tem-
peratures around 15◦ C.

2.2 Air Pollution in Delhi

In 2019, the average PM2.5 concentration in the NCT of Delhi was 114.5 𝜇g/m3, nearly 23 times
the current WHO guideline of 5 𝜇g/m3. Since 2015, Delhi has consistently ranked as one of these
most polluted cities in the world. The sources of air pollution in the area include transportation,
industrial emissions, electricity generation, residential emissions, and biomass burning, among
others (Jalan and Dholakia 2019). The relative importance of these sources varies seasonally. The
winter months tend to have the highest pollution levels as a result of seasonal biomass burning
and meteorological conditions.

At the time of our study in 2018, regulation of air pollution in Delhi was primarily conducted
through the Graded Response Action Plan (GRAP), where increasingly high levels of particulate

10. Journalists, government officials, and some academic articles sometimes refer to these areas using the catch-all term
“slums”. In this paper, we describe the areas from which we sample respondents as either “JJ clusters” in the specific case,
or “low-income settlements” in the general case.
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matter trigger a range of government responses. These can include bans on the use of diesel gener-
ators and fireworks, closures of coal-fired power plants, limitations on construction activities, and
reductions on truck and automobile traffic (Chatterji 2021). In spite of these efforts, air pollution
levels have remained high in the winter seasons following the implementation of GRAP.

There are two modes of air pollution defense available to the average Delhi resident: air puri-
fiers and pollution masks. Due to the high upfront and operational cost of air purifiers, however,
ownership levels are low. In a survey of medium and high socioeconomic status (SES) Delhi house-
holds, Greenstone, Lee, and Sahai (2021) find that only 5% of households reported owning an air
purifier. In contrast, pollution masks are inexpensive and have been shown to filter more than 90%
of airborne particles (Langrish et al. 2012; Cherrie et al. 2018). At the time of this study, dispos-
able “N90/N95”masks cost roughly 100 INR ($4.97), making them accessible to the majority of the
population, although their use is typically limited to two weeks of daily usage.¹¹

Previous work indicates large potential increases in life expectancy would result if air pollution
were reduced in Delhi. For instance, Burnett et al. (2018) calculate that air pollution causes 2.2 mil-
lion excess deaths in India annually, while estimates derived from Ebenstein et al. (2017) calculate
that the average Delhi resident would gain 12 years of life if PM2.5 concentrations were reduced to
the WHO standard. It is likely that within the city there is meaningful heterogeneity in exposure
to these high levels of air pollution; anecdotal reporting suggests that poor households, who often
live in homes that are poorly sealed to outside air, are exposed to substantially higher levels of air
pollution on a day-to-day basis (Wu et al. 2020).

2.3 Sample Composition

We study preferences for air quality by repeatedly surveying residents of low-income settlements
throughout the city of Delhi. The sample consists of individuals living in low-income neighbor-
hoods (𝑛 = 3,533). To construct the sample, we selected 312 “sampling points” at random from
among the JJ cluster areas. Fig. 1 maps the Delhi region and its wards, and the 312 sampling points
included in the study.

[FIGURE 1 ABOUT HERE]

At each sampling point, hired enumerators surveyed adults at every other household with a
small survey incentive of 50 INR ($2.48). The sampling process was carried out between October
and December 2018. To our knowledge, this construction results in the largest and most represen-
tative sample of Delhi low-income settlements ever collected.¹²

11. Pollution masks are are commonly used in response to high pollution episodes across the world. For instance, mask
purchases tend to increase during periods of heavy pollution (Zhang and Mu 2018). In addition, multiple governments
have undertaken mass mask distribution campaigns in responses to air quality crises, including in Malaysia (2019), South
Korea (2019), and the United States (2012) (see Table B.1).
12. Additional details on the sampling procedure are given in Appendix B.1.

7



Table 1 compares the characteristics of our sample to the Delhi and India averages, obtained
from the 2017-18 round of the Periodic Labour Force Survey (PLFS) administered by the Govern-
ment of India.

[TABLE 1 ABOUT HERE]

The average respondent was split equally between male and female, had a weekly income of
roughly 1,100 INR per week ($2,900 per year, PPP), completed 7 years of school, and was around
37 years old. On average, our sample has lower income and less education than Delhi residents
as a whole, but is more similar along these dimensions to the India average. Notably, few (17%)
respondents report ever having worn a mask prior to the intervention. This is consistent with
observations by the research team that relatively few Delhi residents are observed wearing masks
even during periods of very high pollution.

3 Experiment Design

This section describes the field experimentwe ran to obtain the key parameters required to estimate
the demand for clean air. First, we illustrate the timeline of the four rounds of themain experiment.
Second, we discuss the collection of demographic and health data. Third, we describe the random-
ized interventions we used to test for the existence of informational failures affecting demand for
clean air. Finally, we describe the process we used to offer respondents masks at randomized prices
in order to elicit demand for pollution masks over the course of the study.

3.1 Timeline

Enumerators conducted repeated surveys with the originally sampled respondents in four rounds
over the course of our initial study, with each round spaced roughly two weeks apart. Fig. 2 shows
the timeline of experimental rounds against the ambient concentration of PM2.5 air pollution in
Delhi.¹³ Each dark gray tile represents one experimental round.¹⁴

[FIGURE 2 ABOUT HERE]

3.2 Survey Design

Within each experimental round, our survey proceeded in three stages. First, enumerators elicited
demographic and health information, as well as beliefs about air pollution and participation in

13. For the first two rounds starting in November 2018, all cells but the peer belief interventions were included and indi-
viduals were not re-randomized. In the third round, we re-randomized information and prices, and in the fourth round we
re-randomized information and prices and also added the final belief treatment.
14. Rounds overlapped because of the time required for enumerators to locate as many of the previously surveyed indi-

viduals as possible.
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other defensive health actions. Second, respondents in the non-price intervention arms were pro-
vided with the corresponding interventions (first the PM2.5 health information then the peer belief
information, if applicable). Finally, enumerators offered respondents in the mask groups the op-
portunity to purchase a mask for a subsidized price.

Respondents were surveyed on a rich vector of characteristics documenting socio-economic
status and short-term health outcomes. Socio-economic characteristics include age, gender, family
size, occupation, income, asset holdings, etc. Health outcomes include self-reported symptoms
(pollution and non-polluted related, randomly ordered), and administered biometrics by enumer-
ators including blood oxygen levels, blood pressure, and lung capacity.¹⁵ In addition, we asked
about beliefs regarding air pollution and past defensive health behavior (e.g., hand-washing, and
mask, helmet, and seat-belt usage).

3.3 Non-price Interventions

In order to both estimate the demand for clean air and the degree to which that demand is affected
by non-price limitations, the experimental design included several layers of randomized variation.
We varied the price that respondents were offered for masks and whether they were provided
with information on the health impacts of pollution and/or data on the degree to which pollution
masks should expect to face social disapproval. Fig. 3 illustrates how survey respondents were
randomized across treatment arms.

The sample was split into three arms: pollution mask offers (hereafter mask arm), control, and
placebo. In round 1, individuals in the mask arm were randomly assigned to receive the infor-
mation treatment or not and were offered a pollution mask at a randomly assigned price 𝑝 of 0,
10, 30, or 50 INR ($0, $0.50, $1.49, or $2.48). In round 2, those in the mask arm again received the
information treatment (or lack thereof) assigned in round 1 and were offered the mask at the same
price as in round 1. In round 3, those in the mask arm were re-randomized across information/no
information and were offered a mask at another randomly assigned price. In round 4, those in the
mask arm were again re-randomized across information/no information and also were randomly
assigned to receive the peer belief treatment (or not). They were offered a mask at another ran-
domly assigned price. Individuals in the control arm were randomly assigned to either receive
information or not in round 1 and received the same treatment again in round 2. They were then
re-randomized to receive information or not in rounds 3 and 4. The placebo group was offered a
non-N90 black cloth mask in all rounds, never received the information treatment, and randomly
received the peer belief treatment in round 4.

[FIGURE 3 ABOUT HERE]

15. We chose these in particular as they are signals of broader cardiovascular health and are shown to be negatively
impacted by air particulate matter in the public health and medicine literature.
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In total, each respondent-survey was randomized into a total of 24 treatment cells depicted
in Table C.1.¹⁶ Appendices C.2 and C.3 conduct tests for balance and attrition during the experi-
ments. We find that baseline observables do not differ in meaningful ways across treatment arms
and rounds, and that the round-to-round attrition we observe does not occur differentially across
treatment arms.

We compare across treatment arms to identify demand for clean air and the degree to which
various interventions influence demand. First, we leverage the randomization of mask prices and
quasi-random variation in ambient air pollution to estimate the MWTP for clean air. Next, we test
to what degree information and peer beliefs lead to distortions in the demand we observe. Third,
we use the multiple randomizations of mask prices within the same customer to identify the effect
of prior mask takeup on future demand. Fig. 4 illustrates the materials used for the interventions.

[FIGURE 4 ABOUT HERE]

Information Treatment The information treatment consisted of two components designed to re-
duce knowledge gaps on the harm air pollution causes to human health: a printed handout, docu-
menting the same as well as information on pollution-avoidance activities and a short, two-minute
video on the health impacts of air pollution. Both were developed and constructed by the research
team in Delhi and presented in Hindi. In other settings, similar market failures have been found
to bias estimates of demand for environmental goods towards zero. For example, Ito and Zhang
(2020) find that MWTP for clean air is higher after government information treatments, suggesting
that prior to the intervention, individuals were undervaluing clean air. Fig. 4 documents the hand-
out in (a1) and stills from the video in (a2). At the time of intervention, the video was played in
front of the enumerator to ensure the respondent’s attention and audible sound from the video. The
handout was then given to the respondent and the enumerator read over each portion out-loud.
Both the video screening and the out-loud reading of the handout were to ensure comprehension
even among illiterate respondents. By comparing those with and without the information treat-
ment, we are then able to measure the effect of updating knowledge about the health impacts of
air pollution on demand.

Peer Belief Treatment Pollution masks were unusual at the time of the study (i.e., prior to the
COVID-19 pandemic), and anecdotal reports indicated that many residents internalized a social
stigma against wearing them in public, though these same residents also reported that they them-
selves did not stigmatize others who wore masks. Similar to Bursztyn, González, and Yanagizawa-

16. Cell probabilities were uniform as this experiment was repeated over four rounds, with re-randomizations and in-
terventions included at different stages. As described above, some respondents could be represented in more than one
treatment arm, since they might receive different randomized price offers or information treatments in different rounds. In
addition, we oversampled the control group that did not receive information and the group that received both information
and a free mask offer to increase statistical power for detecting health impacts.
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Drott (2020), our strategy to correct this potential distortion of demand for masks was to first mea-
sure actual perceptions of masks and then to reveal that the true percent at random to survey
respondents.¹⁷ In the third round of our survey, we displayed pictures of an individual wearing a
mask to respondents in our control group and asked “does this person look strange?”¹⁸ On average,
35% said yes, they thought masks looked strange.

In the fourth round of the experiment, we again asked respondents whether they thought the
person wearing a mask in the image looked strange. Then, we update treated respondents with
the fraction of peers that believe masks look strange. Specifically, we stated the following, prior to
the mask offer:

[English-translated]Did you know that only 35% of your peers believe thatmasks look strange?

By comparing those with and without the peer belief intervention, we are then able to measure
the effect of updating peer beliefs on demand.

3.4 Pollution Mask Offer

We procured thousands of high-quality, low-cost pollution masks from well-known manufacturer
3M. Themaskmodel we offer (3M 9001V, depicted in Fig. B.1) is KN90 certified: tests from theman-
ufacturer ensure that thesemasks filter 90%of PM2.5 particles.¹⁹ Informal tests of usage suggest that
masks such as these can last for roughly 2 weeks of daily intermittent usage in high-pollution envi-
ronments (Talhelm 2017), and low-cost 3M masks have been shown to provide cardio-respiratory
benefits even after 1 day of usage in Beĳing among those with pre-existing conditions (Langrish
et al. 2012).

We offered masks to respondents at the end of the survey after administering the non-price
interventions. To ensure the effectiveness of masks were communicated to each respondent, we
stated the following at the time of the offer:

[English-translated] This is an N90 pollution mask manufactured by 3M. According to 3M,
this mask will block 90% of particulate matter (PM) air pollution. Would you be willing to buy
the mask at [0/10/30/50] rupees?

If the respondent agreed, then she paid the enumerator and received the new mask immediately.
To capture a large portion of the demand curve, we randomized prices to be either 0, 10, 30 or

17. Bursztyn, González, and Yanagizawa-Drott (2020) show that men in Saudi Arabia generally support women working
outside the home, but underestimate the degree to which other men do so as well. They show that providing men with
correct information regarding the actual degree of support leads them to increase their support for their wives’ job-search
efforts.
18. We showed three images in total to each respondent: one of a person wearing sunglasses, the second of a person in a

masks, and the third having green hair. 44, 35, and 89% responded yes, respectively. The bottom panel of Fig. 4 includes
the three images.
19. Cherrie et al. (2018) provide empirical tests of thesemanufacturer claims. They find thatmost pollutionmasks perform

better than advertised, i.e., they filter a higher proportion of particulates than is claimed by manufacturers.
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50 INR (approximately $0, $0.50, $1.49, or $2.48). All of these prices represented some degree of
subsidization, since masks were typically available in the retail market for 100 INR.

4 Model and Estimation

This section describes the procedure we use to estimate the demand for clean air using observed
takeup of pollution masks in response to randomized prices and variation in pollution exposure
over time. We develop a model of the pollution mask purchase choice and show how two key
parameters from the model can be used to infer demand for clean air. We then discuss how we
estimate this model and test for the existence of several possible market failures that could limit
the demand for clean air that we measure.

4.1 Model of Mask Purchase Decision

Individuals weigh the cost of the mask against the protection from pollution they expect to obtain
from it. Let 𝑗 = 0/1 be the no-mask/mask options. Utility for individual 𝑖 in round 𝑡 from choos-
ing 𝑗 is given by 𝑉𝑖𝑡 𝑗 and depends on the price (𝑝𝑖𝑡 𝑗) of the option, expected level of experienced
pollution (PM𝑒

𝑖𝑡 𝑗) resulting from the choice, individual covariates (𝑋𝑖), and unobservables (𝑒𝑖𝑡 𝑗).

𝑉𝑖𝑡 𝑗 = 𝛼 𝑗 − 𝛽𝑝𝑖𝑡 𝑗 − 𝛾1PM𝑒
𝑖𝑡 𝑗 + 𝜂 𝑗𝑋𝑖 + 𝑒𝑖𝑡 𝑗 (1)

For those who do not choose to take up the mask (𝑗 = 0), there is no price paid, and they are
exposed to ambient PM2.5, PM𝑖𝑡 , so PM𝑒

𝑖𝑡0=PM𝑖𝑡 . For those who do choose to take up the mask
(𝑗 = 1), they pay the price they were randomly assigned in the experiment, and buying the mask
provides some expected reduction (PM𝑟

𝑖𝑡) in PM2.5 exposure from the ambient PM2.5 level, meaning
they have PM𝑒

𝑖𝑡1=PM𝑖𝑡 – PM𝑟
𝑖𝑡 . Thus, we have:

𝑉𝑖𝑡0 = 𝛼0 − 𝛽 × 0 − 𝛾1PM𝑖𝑡 + 𝜂0𝑋𝑖 + 𝑒𝑖𝑡0

𝑉𝑖𝑡1 = 𝛼1 − 𝛽 × 𝑝𝑖𝑡 − 𝛾1(PM𝑖𝑡 − PM𝑟
𝑖𝑡) + 𝜂1𝑋𝑖 + 𝑒𝑖𝑡1

(2)

Perfect Information Assumption The above model of mask demand implicitly assumes individ-
uals have perfect information on how air pollution affects their utility. To test this assumption,
we interact the reduction in air pollution term with an information treatment on the health conse-
quences of air pollution, Information𝑖𝑡 . Utility is therefore assumed to be:

𝑉𝑖𝑡0 = 𝛼0 − 𝛽 × 0 − 𝛾1PM𝑖𝑡 − 𝛾2PM𝑖𝑡 × Information𝑖𝑡 + 𝜂0𝑋𝑖 + 𝑒𝑖𝑡0

𝑉𝑖𝑡1 = 𝛼1 − 𝛽 × 𝑝𝑖𝑡 − 𝛾1(PM𝑖𝑡 − PM𝑟
𝑖𝑡) − 𝛾2(PM𝑖𝑡 − PM𝑟

𝑖𝑡) × Information𝑖𝑡 + 𝜂1𝑋𝑖 + 𝑒𝑖𝑡1
(3)
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We formally test against the perfect information assumption by testing against the null of 𝛾2 =

0. If individuals become more likely to buy a mask when pollution is high after receiving the
information treatment, it should be the case that 𝛾2 > 0. Note that information treatment only
enters the utility function through its effect on responsiveness to pollution levels, since additional
information about the health impacts of pollution should not change either individuals’ value of
money (the price coefficient) or their mask purchase choice when pollution is at zero.

4.2 Estimation

To estimate the model, we write 𝑢𝑖𝑡 as difference in utility obtained from purchasing the mask
versus not.

𝑢𝑖𝑡 = 𝑉𝑖𝑡1 −𝑉𝑖𝑡0 = 𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM𝑟
𝑖𝑡 + 𝛾2PM𝑟

𝑖𝑡 × Information𝑖𝑡 + 𝜂𝑋𝑖 + 𝜖𝑖𝑡 (4)

We proxy for the pollution reduction the respondent anticipates from a day of mask usage
with PM𝑟

𝑖𝑡 , which is the product of recent pollution levels, the advertised effectiveness of the mask
respondents are offered, and an estimate of the amount of time respondents will be using the mask
each day. We then write PM𝑟

𝑖𝑡 as follows:

PM𝑟
𝑖𝑡 = PM𝑖𝑡︸︷︷︸

Expected Ambient PM2.5 Level

× 0.9︸︷︷︸
Mask Efficiency

× EU𝑖︸︷︷︸
Expected Usage

(5)

For PM𝑖𝑡 , we assume that expectations about the ambient air pollution level in the near future
are informed by air pollution levels in the recent past.²⁰ Specifically, we use the preceding day’s
average pollution level across the city.²¹ We use the Delhi average instead of residence-specific lo-
cation for two reasons: first, individuals may commute or travel throughout the city in any given
day, so measuring air quality at the residence may not fully capture total exposure; and second,
using purely temporal variation in the Delhi mean helps mitigate endogeneity concerns explained
in detail below. Therefore, we assume ambient PM2.5 and PM2.5 reduction are PM𝑡 and PM𝑟

𝑡 re-
spectively. We provide results using alternative specifications of pollution in Appendix G, with
qualitatively similar findings.

20. The second panel of Fig. N.3 provides supporting evidence for this assumption: as pollution swings week-to-week,
local news responds in-kind, suggesting that information on air pollution is relatively salient in our sample period.
21. Data on ambient PM2.5 concentrations collected by a network of monitors across the city operated by the Delhi Gov-

ernment’s Central Pollution Control Board (CPCB). These data captures high-quality, near real-time PM2.5 readings over
42 monitors spread across the city. We assign each household to their sampling point, from which households are chosen
nearby. We then take the network of hourly PM2.5 readings and interpolate values across time and space using a Gaussian
process regression (kriging) as in Wong, Yuan, and Perlin (2004). Using this panel of pollution measurements by sampling
point and day, we average across sampling points to obtain a single Delhi-wide average pollution reading per day.
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Mask efficiency is fixed at 90%, which we take as given since it is a manufacturer claim of the
product we distribute (it is also stated at the time of offer). For EU𝑖 , we leverage the reported
mask usage data (of those that take-up) we collect as part of the experiment.²² Our followup data
indicates that individuals use masks for an average of 1.8 hours per day during the study period.

Estimating Equation Given the definition of PM𝑟 in Eq. (5) in terms of observables, we are now
in a position to estimate Eq. (4) using typical discrete choice methods.

Takeup𝑖𝑡 = 1{𝑢𝑖𝑡 𝑗 > 0} = 1{𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM𝑟
𝑡 + 𝛾2PM𝑟

𝑡 × Information𝑖𝑡 + 𝜂𝑋𝑖 + 𝜙𝑠𝑡 + 𝜖𝑖𝑡 > 0} (6)

To absorb variation in the error term, our preferred specification includes controls 𝑋𝑖 , which we
select using the double-LASSO method (Urminsky, Hansen, and Chernozhukov 2016), taking 𝑝𝑖𝑡
and PM𝑟

𝑡 as the focal independent variables. We similarly include surveyor-by-round fixed effects
𝜙𝑠𝑡 . We assume that 𝜖𝑖𝑡 follows a type-1 extreme value distribution and estimate the model with
maximum likelihood (Logit). All specifications use three-way cluster standard-errors by sampling
point-round (the randomization unit for the price of the mask), date (the unit at which pollution
levels are assigned), and respondent (as respondents are surveyed in multiple rounds) (Abadie et
al. 2022; Cameron, Gelbach, and Miller 2011).²³

The resulting coefficient on PM𝑟
𝑡 , 𝛾1, is the effect of pollution mask demand among the unin-

formed group, while 𝛾1 + 𝛾2 is the effect for the informed group.

Measuring MWTP and Testing Against Full Information We uncover the demand for clean
air by comparing how individuals change mask purchase behavior in response to (1) as-good-as-
random variation in pollution levels (captured by 𝛾1) and (2) randomized price variation (captured
by 𝛽). The ratio of these parameters two yields the marginal rate of substitution between pollution
reductions and prices, which is the MWTP for clean air.

We rescale this estimate to obtain theWTP for a 10𝜇𝑔/𝑚3 reduction in expected annual PM2.5 ex-
posure. We compute this value separately for those with and without the information treatment
as follows:

MWTP|Without Information =
𝛾1

𝛽
× 365

8

MWTP|With Information =
𝛾1 + 𝛾2

𝛽
× 365

8

(7)

22. Appendix D documents that mask usage hours are similar for those who received different price offers, which is
consistent with the assumption that expected usage is similar for those who do and do not take up masks.
23. In Appendix I, we perform several robustness tests including alternative fixed effect specifications, alternative win-

dows for which we define pollution, alternative measures of mask usage, and reweighting observations to account for
attrition. Our qualitative results are unchanged.
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The first term in each expression is the marginal rate of substitution between expected pollu-
tion exposure and prices, and the second reflects day-to-annual scaling.²⁴ To examine the welfare
gains of pollution reduction policy, this MWTP estimate can then be scaled by changes in annual
pollution levels required to meet national and international health standards. Finally, a sufficient
test against a full information assumption is whether 𝛾2 = 0.

Other Frictions in Mask Takeup Beyond imperfect information in the MWTP for clean air, there
may exist other frictions that could suppress takeup of these defensive investments. These may
include, for example, beliefs about peer disapproval of mask-wearing in public or a lack of prior
experience with masks. To assess these, we specify a richer discrete choice model than that given
by the benchmark Eq. (6). To examine whether beliefs about disapproval of mask-wearing are
suppressing demand, we add Peer Belief𝑖𝑡 , an indicator for respondents in round 4 who were in-
formed about the relatively low proportion (35%) of previous respondents who findmask-wearing
unusual. To examine whether masks are an experience good, we test whether past mask usage dis-
torts current mask demand. More specifically, we let Past Takeup𝑖𝑡 be whether 𝑖 took up a mask
offer in any prior round or had worn a mask before the experiment started, which we will call their
takeup in round 0.²⁵ In other words: Past Takeup𝑖𝑡 = max

{
{takeup𝑖 𝑗}𝑡−1

𝑗=0

}
. Including this term in

the specification with distortions yields:

Takeup𝑖𝑡 = 1{𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM𝑟
𝑡 + 𝛾2PM𝑟

𝑡 × Information𝑖𝑡 + 𝜂𝑋𝑖+
𝜃1Peer Belief𝑖𝑡 + 𝜃2Past Takeup𝑖𝑡 + 𝜙𝑠𝑡 + 𝑒𝑖𝑡 > 0} (8)

Identification of 𝜃1, the impact of the peer belief intervention, is straightforward. However, the
identification of 𝜃2, the effect of previous experience wearing a mask, requires some additions to
the empirical approach. Since Past Takeup𝑖𝑡 is potentially a function of an unobserved individual
characteristics or of other persistent correlates within the error term, including it directly in the
estimating equation could bias 𝜃2 upward. We solve this problem by instrumenting past takeup
with the minimum price of all past offers made to the survey respondent. The logic of this strategy
is that previous price offers, which are given at random, are uncorrelated with any unobserved
correlates of mask demand. We use the minimum of these price offers since it has the strongest
relationship with past takeup. Appendix G.2 discusses this approach in greater detail.

24. We observe in the data that individuals typically wearmasks for 8 days. AssumingMWTP scales linearly, their MWTP
for a full year of protection would be MWTP ×365/8
25. We specify round 0 as being before the experiment started, as opposed to our first round, for 2 reasons: (1) It provides

an intuitive understanding of the coefficient 𝜃2 in Eq. (8) as the causal effect of ever having worn a mask previously on
current demand, and (2) it allows us to make use of our full sample instead of having to drop the ∼17% of respondents with
only one experimental round. We include a version of the model in which we specify round 0 as being the first round of
the experiment in Appendix I, in which case 𝜃2 should be interpreted as the causal effect of having taken up a mask in a
previous round of the experiment.
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4.3 Identification

Our estimates of MWTP rely on the causal identification of the key parameters 𝛽 and 𝛾. The de-
mand response to prices 𝛽 is identified through the random variation in prices employed in our
experimental design.

The demand response to air pollution 𝛾 is driven by a combination of the randomized timing
of each survey with temporal variation in average pollution levels in Delhi. After controlling for
round fixed effects, our estimates are identified from day-to-day swings in air pollution in the city
within each survey round of roughly 4-6 weeks. The round fixed effects capture seasonal patterns
of air pollution that may be correlated with unobservables.

A potential threat to identification of 𝛾 is the endogeneity of individual characteristics with air
pollution (e.g., due to sorting, high income respondents have systematically higher demand but
lower pollution levels, which may bias 𝛾 downward). Because the variation in pollution we use
is purely day-to-day (averaged across the city), fixed observed and unobserved characteristics of
respondents are uncorrelated with this pollution variation and should not bias our estimates of
MWTP.

Themodel estimate ofMWTP is identified from substitution patterns betweenweekly variation
in ambient air pollution and the price for pollution mask offers. Under the identification assump-
tions, any non-price or non-pollution determinants of demand will be captured in the error term
and will not affect MWTP. For example, some users of pollution masks may find them uncomfort-
able or bad looking. So long as the degree of discomfort is not driven by the price paid for a mask
or the ambient pollution level, these featuresmay shift levels ofmask demand but will not influence
the marginal rate of substitution between prices and pollution exposure (MWTP).

5 The Demand for Clean Air

This section documents the demand for clean air among our sample. We begin by estimating de-
mand for the pollutionmasks among the sample. Next, we use themodel from the previous section
to infer demand for clean air from the responsiveness of mask purchase with respect to price and
PM2.5 reductions. We then test for non-price limitations that may limit the expression of the de-
mand for clear. We conclude the section by documenting how the demand for masks changes with
respect to income, education, and gender.

5.1 Demand for Pollution Masks

Before proceeding to our estimates of the demand for clean air, we first document the underlying
estimates of the demand for masks in our sample. Fig. 5 shows how the average probability of
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takeup varies with price, pollution level, and across respondents who did and did not receive the
information treatment.

[FIGURE 5 ABOUT HERE]

Panel (a) shows that just under 80% of respondents take a mask when it is offered for free. At
positive prices, demand for masks is relatively low. At a price of $0.50 per mask, just over 30% of
respondents purchase. That figure falls to around 15% at $1.49 and 10% at $2.48. This is consistent
with low rates of mask usage in this setting.

Panel (b) documents how mask purchase choices vary with the level of pollution that day. We
find that pollution levels increase demand formasks. During lowpollution days –when PM2.5 con-
centrations are in the lowest quartile (50-100 𝜇𝑔/𝑚3) – just under 30% of the respondents purchase
amask. During dayswith pollution in the highest quartile (>210𝜇𝑔/𝑚3), over 40%purchase. Panel
(c) separates average takeup with respect to pollution by respondents that did and did not receive
the health information treatment before the mask offer. We find that providing information leads
to an increase in the likelihood a respondent purchased a mask.

The descriptive facts captured in Fig. 5 indicate that the respondents, who come from some
of Delhi’s poorest areas, value the protection from air pollution offered by pollution masks. That
levels of demand decline to close to zero as the price increases is consistent with the low levels of
mask usage observed in everyday life. They also demonstrate that mask usage is responsive to the
threat of air pollution. These facts are consistent with the assumptions of the model and preview
the formal analysis to follow in Section 5.2. The final panel provides descriptive evidence that
information problems may be an important factor in determining demand for masks, a suggestion
we return to in Section 5.3.

5.2 Demand for Clean Air

To estimate the average demand for clean air across the sample, we employ the logit model de-
scribed by Eq. (6). Table 2 documents the results. The outcome variable is whether or not a respon-
dent purchased a mask during that round. The first panel includes the model coefficients on the
price of the mask, the expected PM2.5 reduction from purchasing amask, and the level of pollution
reduction interacted with an indicator for the information treatment. The second panel uses the
estimates to compute the demand for clean air, which we characterize as the MWTP per annual 10
units of PM2.5 reduction for the average respondent. The “Information = 0” row is the MWTP for
respondents who did not receive the information treatment, and the “Information = 1” row is the
MWTP for respondents who did.

[TABLE 2 ABOUT HERE]
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Column (1) estimates a benchmark logit model that includes only the effects of price, pollution,
and pollution interacted with a treatment indicator for respondents placed into the information
group, as well as surveyor-by-round fixed effects. The top panel reports the estimated logit coef-
ficients. Increases in price reduce the demand for masks, while ambient pollution does not sig-
nificantly impact it for respondents who did not receive the information treatment. By contrast,
respondents who do receive the information treatment become more likely to buy a mask when
pollution is high. In Table H.1 we report average marginal effects of price and PM2.5 on the likeli-
hood of takeup. We find that a one dollar increase in price leads to a 25 percentage point reduction
in takeup probability and that a ten unit increase in PM2.5 reduction leads to a 1 p.p. increase in
the uninformed group, and a 4 p.p. (1.03+2.92) increase in the informed group.

In the bottompanel, we combine the coefficient estimates following Eq. (7) to obtain the demand
for clean air across the two groups. We find a sharp divergence in MWTP for clean air among
respondents who did not and did receive the information treatment. Baseline respondents have a
MWTP of $1.95 per 10 unit reduction in annual PM2.5 exposure that is imprecisely estimated and
not statistically distinguishable from zero. By contrast, respondents treated with information are
willing to pay $7.39 for each 10 unit reduction, an estimate that is more precisely estimated and
statistically different from zero.

Column (2) adds the double-LASSO controls following Urminsky, Hansen, and Chernozhukov
(2016) and is the preferred specification.²⁶ The point estimates do not change substantially. MWTP
for clean air in this specification is $1.16 (and not statistically distinguishable from zero) for indi-
viduals who do not receive the information treatment. For those who do receive the information
treatment, MWTP is $6.33, more than five-fold increase in the point estimate.

Column (3) is a sensitivity check that allows the information treatment to enter the utility func-
tion directly. As discussed in Section 4, this is not the preferred specification because it requires
that respondents value information about air pollution even when the level of air pollution is zero.
We include the specification here for completeness. As might be expected, including information
in this (arguably) mis-specifiedway adds noise to the estimate, of the effect of ambient air pollution
on the purchase decision. The overall result is a near-zero estimate of MWTP for clean air among
the respondents who do not receive information and a slightly larger ($7.20) but less precise point
estimate of the difference in MWTP for clean air between those who did and did not receive the
information treatment.

Columns (4) and (5) estimate linear probability models. Column (4) is the LPM analogue of
column (2), and the estimates are virtually identical. In column (5) we introduce individual fixed

26. The double-LASSO procedure selects the following controls: Female, Age, asinh(Personal Income), Years of school,
Occupation is driver, Owns bike or car, Has Air Conditioning, Asbestos roof, In the last week had pollution symptoms,
In the last week had non-pollution symptoms, In the last week had burning eyes, In the last week had joint pain, In the
last week had numbness or tingling in hands, In the last week had vision impairment, Wears a helmet or seatbelt when in
vehicle, and Has worn a mask ever.
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effects, which are not estimable in the logit approach due to incidental parameter limitations. The
qualitative findings regarding demand for clean air are identical to the preferred specification: de-
mand for clean air is near-zero for individuals in the baseline treatment, and substantially larger
and statistically different for those that receive information. We show in Appendix I that these
results are qualitatively robust to alternative fixed effect specifications, alternative windows for
which we define pollution, and reweighting observations to account for attrition.

In general, we find the the demand for clean air is low in absolute terms among the sample
we study: for respondents who are provided information on the health impacts of clean air prior
to demand elicitation, we measure a MWTP of $6.33 per 10 unit reduction in annual PM2.5. This
is around 27% of the estimate in Ito and Zhang (2020) and well below comparable estimates in
wealthier countries given in Table A.1. We return to the question of whether this estimate is low in
a relative sense, i.e., in comparison to income, in Section 5.4.

5.3 Effects of Peer Beliefs and Prior Mask Usage on Mask Demand

Beyond information frictions in the MWTP for clean air, there may be other limitations that could
suppress takeup of these defensive investments even conditional on MWTP. Accordingly, we test
for two additional potential biases that could limit respondents’ likelihood of mask purchase and,
as a result, our measure of their demand for clean air. First, we examine whether mask purchasing
could be suppressed by beliefs about peer judgement of wearers. Second, we test whether the
respondents may become accustomed to masks over time, i.e., if masks are a type of “experience
good”. We estimate Eq. (8) to incorporate the test of the peer belief intervention and the effect of
having experience with a mask into the discrete choice model. Table 3 documents the findings.

[TABLE 3 ABOUT HERE]

Column (1) reproduces the second column in Table 2 for comparison. The next two columns
add the peer belief treatment and the instrumented measure of previous mask usage described
by Eq. (8) sequentially. In column (2), we find that informing respondents about the low level of
disapproval regardingmask usage in public does not shift themask purchase decision. Column (3)
shows that prior experience with masks actually reduces demand in our experiment. We interpret
this finding as evidence that, if there is an experience effect of using masks, it is either negative
or more than fully compensated by respondents’ continued use of the previous masks. In either
case, we do not find strong support for the contention that merely exposing users to the benefits
of mask usage is a sufficient policy step to generate widespread adoption, nor do we find that
it substantively influences demand for clean air. This finding suggests that large-scale programs
of mask distributions will have, at most, temporary effects on usage, a question we return to in
Section 6.
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To summarize, our pooled estimates indicate that the low-income population we study in Delhi
has zero detectable demand for clean air in the absence of information provision.²⁷ When informa-
tion is provided prior to mask purchase, demand rises substantially and is statistically larger than
zero. For the remainder of this section, we focus primarily on respondents in the information con-
dition, since we view that condition as most reflective of the benefit a fully-informed respondent
perceives for reductions in PM2.5.

However, even the mean estimates under the information condition are comparatively low in
global terms: we measure an average MWTP per annual 10𝜇𝑔/𝑚3 PM2.5 of over $6. In the fol-
lowing section, we examine whether the demand for clean air is correlated with income, gender,
and education levels to better understand the source of both the increases due to the information
treatment and differences in income.

5.4 Correlates of the Demand for Clean Air

India, like many developing countries, is experiencing rapid demographic change. As the popula-
tion urbanizes, average levels of income and education are increasing, and women are becoming
more involved in the workforce. This section documents to what degree key demographics pre-
dict heterogeneity in demand for clean air. We estimate how MWTP varies along four important
dimensions: income, age, education, and gender. Theory and evidence suggest that demand for
environmental quality increases with income. Second, education is a measure of permanent in-
come and information failures are likely to be concentrated among those with low levels of human
capital. To estimate how these differences relate to MWTP, we allow key model parameters to vary
by household income, age, education, and gender measured at baseline (full estimation details are
reported in Appendix G.1).

Because income, age, education, and gender are not randomly assigned, we interpret these as
estimates of the demand for clean air conditional on individual characteristics. Table 4 reports our
findings at specific fixed levels of income, age, gender, and years of schooling.

[TABLE 4 ABOUT HERE]

For household income, we find that estimates of the demand for clean air increase with income,
though the degree of this increase is limited. We predict demand for clean air at household income
levels of $0, $10,000, and $18,000 USD. Estimated MWTP for clean air increases from around $0 to
$5.19 for respondents in the uninformed condition (though none of these estimates are statistically
different from zero), and up to $11.63 for informed respondents. We also find that female respon-
dents have lower estimated demand for clean air thanmen, and that the effects of information seem
to be centered on these female respondents. We further find that MWTP is decreasing in age for

27. In Appendix M, we also report on whether mask receipt, driven by randomized mask pricing, led to meaningful
improvements in reported health outcomes two to six weeks later. We do not find evidence in support of this hypothesis.
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individuals who did not receive the information treatment and increasing in age for individuals
who did. When we condition on income, gender, and schooling in Fig. G.1, we find that MWTP is
increasing in age for both individuals who did and did not receive the information treatment.

Additionally, we find that education levels have a strong positive association with the demand
for clean air, but the strength of that association falls if respondents are informed about the health
impacts of pollution. Among respondents with little or no education, demand for clean air is neg-
ative and not statistically different from zero in the no-information condition but around $3.41 if
respondents are informed. Among respondents with eight years of schooling, uninformed respon-
dents have a positive (but still statistically zero) demand for clean air, while informed respondents
arewilling to pay around $7.44. Respondentswith a full fifteen years of schooling report the highest
levels of demand for clean air in our sample at $12.73 in the uninformed condition. Most notably,
for these respondents, information has virtually no effect. This finding is consistent with well-
educated respondents already having fully internalized the health costs of air pollution in their
decisions to protect themselves, and suggests that policies targeting information on the health im-
pacts of air pollution might be most fruitfully targeted towards lower-education households.²⁸

6 Interpretation: Delhi’s 2019 Mask Distribution Program

Our findings to this point document that demand for clean air is low among the sample of low-
income households we study, but that it is substantially larger when those households are treated
with information about the health impacts of air pollution. We also find that demand for masks
is insensitive to a treatment that reports low levels of disapproval of mask wearing to respondents
and that it is actually reduced by prior experience with masks. Finally, we show that respondents
with higher incomes are more likely to value clean air, and that information provision appear to be
a substitute for increasing levels of education when it comes to the determination of the demand
for clean air.

However, our study is necessarily limited in the sense that we could only administer treatments
that were randomized by respondent; the nature of the research design means that it was not pos-
sible to, for example, treat entire communities with the opportunity to purchase a mask or with
an information campaign to (potentially) shift community-wide beliefs about mask-wearing and
its benefits. In that case, one possible explanation for our findings is that interventions at the indi-
vidual level are insufficient in the face of a strong no-mask norm among most of the population.
In this case, it is possible that a larger public health effort to popularize masks might lead to large
effects on mask usage, either by providing a more credible source of information on their benefits

28. These patterns of heterogeneity across each covariate are qualitatively robust to controlling for interactions with other
covariates as described in Fig. G.1.
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or by reducing the strength of anti-mask wearing norms.²⁹

6.1 2019 Mask Distribution Campaign

Coincidentally (with respect to this study), the Delhi government rolled out a large public health
campaign to distribute five million pollution masks across Delhi a few months after we concluded
our initial data collection described above. This policywas unprecedented at the time andprovided
masks to nearly a quarter of the residents of the city. This rollout, however, was limited to Delhi
proper, and did not include its neighboring cities. We make use of this feature of the policy to
estimate standard difference-in-differences models using the rollout timing and the treated (Delhi)
and control (non-Delhi, or the cities of Noida and Gurgaon) areas as our combined sources of
variation.

The rollout included a significant media campaign, captured notably by the Twitter post, doc-
umented in Fig. N.1 by Chief Minister of Delhi Arvind Kejriwal. On November 1st 2019, the gov-
ernment of Delhi began distributing 5 million N95 pollution masks to a network of government
and private schools in the city of Delhi (but not outside), with the intention of providing masks to
1 in 4 individuals in the city. Children attending schools received twomasks, which they were told
to bring home and give to their head of household. Fig. N.1 depicts a Tweet by the Chief Minister
describing the mask distribution, showing the packet of two N95 masks that was given to children
during this campaign.

6.2 Survey Procedure

In anticipation of this distribution, we surveyed respondents at bus stops in the cities of Delhi
(treated), Gurgaon, and Noida (untreated), a few weeks before and several weeks after the distri-
bution date, and provide mask offers (randomized at 10 and 30 INR) and the health information
treatment.³⁰ Because the respondents were largely commuting to work, the sample is primarily
employed men. In general, the Delhi and non-Delhi samples are similar to each other (the Delhi
sample has slightly higher income and more education). Compared to our main sample, this sam-
ple captured a larger share of working men. By some metrics, Delhi’s public bus system captures
approximately 40% of total transportation demand in the city (Suman, Bolia, and Tiwari 2016). This
sample is thus largely representative of working adults on the lower half of the income distribution.

In addition to mask offers, we also collect self-reported mask usage and individual character-
istics. In order to track the rollout of masks, we also survey administrators from a sample of more

29. In fact, several such interventions have been implemented inMalaysia, South Korea, Singapore, the United States, and
elsewhere. See Table B.1.
30. Fig. N.2 shows a map of all bus stops within Delhi as well as outside the city in neighboring areas of Gurgaon and

Noida we were able to survey (dots). In Tables N.1 and N.2, we describe this sample, split between the Delhi and the
non-Delhi sample (for two different location definitions).
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than 600 schools (across Delhi and non-Delhi) around the distribution period to collect the date of
first mask receipt from the government.

Finally, we scrape tweets from the top 50 news outlets in the Delhi region, which re-post head-
lines of articles in print and online. Roughly 40% of all Indians across the income distribution read
print newspapers at a regular basis (India Readership Survey). We categorize these Tweets by pars-
ingwhether the text contains pollution-related keywords. We interpret this as a proxy for exposure
to local information related to air pollution.

Because the government mask distribution campaign occurred inside the city of Delhi and not
outside (Gurgaon andNoida), we are able to estimate the effects of the policy with a “difference-in-
differences” approach: comparing surveys from respondents in treated and untreated cities, before
and after the treatment date.

6.3 Effects of the Campaign

If the impediment to mask-wearing is insufficient credible information or a strong anti-mask social
norm, then a large-scale government-funded intervention is likely the best policy instrument to
reduce this frictions and encourage widespread mask adoption. A successful policy should lead
to both raised awareness and increased long-run usage of masks.³¹ In this section we examine
the effects of the campaign in Delhi by comparing responses from commuters in Delhi to those in
neighboring Noida and Gurgaon (where masks were not distributed).

We begin by showing that the intervention was indeed effective in providing masks and in
raising social awareness of masks. The first panel of Fig. 6 shows the proportion of schools in each
area that receivedmasks. We sampled over 600 schools across both Delhi and non-Delhi and called
their administrators to inquire on when they received masks from the government and distributed
to children. We plot the cumulative distribution of these over time. We see that within 4 weeks the
distribution campaign was fully rolled out in Delhi, while not a single school in non-Delhi received
government masks. This suggests that Delhi residents received a large quantity of masks during
peak episodes of air pollution, while residents just outside the city did not.

[FIGURE 6 ABOUT HERE]

In the second and third panels, we plot weekly averages from our repeated cross-sectional sur-
veys of nearly 3 thousand respondents in both Delhi and non-Delhi. In the third panel, while
pre-trends are both parallel and overlapping, we see that self-reported mask usage (fraction of re-
spondents that report usingmasks that day) increases in Delhi after themask distribution date and
falls back to the non-Delhi level. At its peak, magnitudes are large and statistically significant, in
late November the fraction in Delhi is twice that of non-Delhi. In the second panel, we see that the

31. Barwick et al. (2019), in related work, find that simply making pollution information available led to changes in the
degree to which individuals seemed to protect themselves from its effects in China.
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demand for masks (fraction that take subsidized mask offers) is statistically equal between Delhi
and non-Delhi both before and after the mask distribution campaign.

In Appendix N.2, we present difference-in-difference estimates. We also report estimates for
different definitions of treatment assignment (neighborhood of bus stop vs. of residence), which are
qualitatively similar. Our preferred estimates using the home (residence) definition are consistent
with the descriptive patterns above, with self-reported usage increasing by up to 20% one to three
weeks following treatment and falling to zero by five weeks post-treatment. Meanwhile, mean
takeup (averaged across prices $0.50 and $1.49) does not increase post-treatment (and if anything
falls).

Our surveys suggest that while the mask distribution campaign may have increased the short-
run usage of pollutionmasks, it did so only temporarily, even during a period of very high ambient
PM2.5 levels in Delhi. This is consistent with our findings in the preceding sections of the paper:
mask takeup is responsive to recent air quality, but its effects are short-lived. Moreover, the limited
effect of the campaign and our findings in Section 5.3 are consistent in the sense that it does not
appear that social approbation is the primary driver of limited demand for clean air in this setting.

7 Discussion

In this paper, we document results from a field experiment designed to (1) study the demand for
clean air among a population exposed to some of the world’s highest levels of air pollution and (2)
formally test the null of perfect information about the impacts of air pollution. Using randomized
prices and quasi-random pollution variation, we estimate a model of mask demand to provide
the first experimental estimate of the marginal willingness-to-pay (MWTP) for clean air. For re-
spondents who are informed about the costs of air quality prior to the mask offer, we find a mean
estimate of about $6.33 for a 10 𝜇𝑔/𝑚3 annual reduction in PM2.5, which is on the lower end of
prior comparable estimates in the literature. Even so, given the very-high levels of air pollution
and the population of Delhi, these estimates suggest large public benefits from reductions in air
pollution: our estimates imply that, for those who received the information treatment, residents
are willing to pay roughly $54 per person to reduce levels of air pollution from the 2019 Delhi av-
erage to the Indian standard for a single year. This is in stark contrast to those who do not receive
the information treatment, who would be willing to pay only about $10 for such a reduction.

The stark difference in demand for clean air for respondents who receive information on the
health impacts of pollution versus not is worth emphasizing. The information treatment caused
the greatest proportional increase in the demand for clean air among the lowest income individuals
in our sample. Pressing economic concerns concerns may limit individuals’ ability to internalize
the threat of air pollution on a day-to-day basis. The finding that households become more re-
sponsive to recent air quality changes when provided information on its health impacts suggests
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realized air pollution levels in these settings could be inefficiently high. Finally, the finding that
information provision is most impactful for individuals with fewer years of completed schooling
suggests yet one more benefit of education and the importance of pollution information provision
for less-educated households.

The relationship between the demand for clean air and incomemerits consideration. If clean air
is a normal good, standard economic theory suggests that increases in income should yield higher
demand for air quality. That our own estimates of the demand for clean air increase with income
suggests that the proper comparison to other settings involves an income adjustment. Accordingly,
we extend the heterogeneity analysis in Section 5.4 by plotting MWTP as a function of income in
Fig. 7. The bottom panel captures the distribution of household income in our sample, while the
top panel projects MWTP per annual 10 𝜇𝑔/𝑚3 PM2.5 as light blue (uninformed) and dark blue
(informed) lines. Vertical lines show average PPP-adjusted household incomes for Bihar (one of
the poorest states in India), India as a whole, our sample in Delhi, and China as a whole. Focusing
on the informed line, we find that income increasesMWTP for clean air is roughly 60%higherwhen
moving from our sample’s level of income ($8,000 USD per year) to $23,000 per year. Still, these
estimates are lower than those found by Ito and Zhang (2020), who examine Chinese households’
decisions to purchase an air purifier to back out their demand for air quality.

[FIGURE 7 ABOUT HERE]

To summarize, our results indicate that if there is an absence of demand for clean air, it is likely
explained by either a lack of information or a lack of salience in its health impacts. That information
provision results inmeasurably positive increase in demand for clean air and that those changes are
primarily centered on low-income, low-education individuals is relevant for considerations of the
benefits of public good provision in settings where poor households are the primary constituency.
The methodological approach we describe in this paper could be exported to other settings where
credible revealed preference measures of the demand for public goods are urgently needed.

The limited effect of public health campaigns (like the one described in Section 6) to make de-
fensive measures such as mask usage commonplace suggests that the question of how to make the
salience of the benefits of clean air long-lasting remains a fruitful topic for future research. At the
least, one implication of our findings is that as incomes and education in India continue to rise
policymakers should expect commensurate increases in the demand for clean air.
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Tables and Figures

Tables

Table 1: Sample Characteristics at Baseline

Main Sample
(1)

Delhi
(2)

India
(3)

Annual Personal Income (USD) 2,936.40 3,676.64 1,487.93
(8,285.73) (8,763.69) (4,329.80)

Annual Personal Income = 0 0.61 0.70 0.79
(0.49) (0.46) (0.41)

Annual Household Income (USD) 7,944.37 9,665.89 6,139.14
(15,087.20) – –

Below Poverty Line 0.20
(0.40)

Female 0.52 0.46 0.49
(0.50) (0.50) (0.50)

Age (≥ 18) 36.51 36.98 39.70
(12.76) (14.46) (15.77)

Years of School 7.37 7.45 5.90
(5.01) (5.50) (5.18)

Household Size 5.50 3.86 4.18
(2.40) (1.99) (1.97)

Ever Worn Mask 0.17
(0.38)

Has Air Purifier 0.02
(0.14)

Owns Bike or Car 0.39
(0.49)

Has Air Conditioning 0.11
(0.32)

Observations 2,466 3,956 433,339

Notes: This table reports means and standard deviations (in parentheses) for the study sample (column 1)
against those of Delhi and India (columns 2 and 3), across several covariates of interest at the individual
level. Statistics for Delhi and India come from the 2017-18 round of the Periodic Labour Force Survey (PLFS)
administered by the Government of India. For PLFS data we use sub-sample weights. For PLFS household
size data we use the household survey instead of the individual level survey. India Household Income taken
from India Human Development Survey (IHDS), and Delhi Household Income set to urban average from
IHDS.
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Table 2: The Demand for Clean Air

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.82*** −1.86*** −1.86*** −0.25*** −0.26***
(0.10) (0.09) (0.09) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.07 0.05 0.02 0.01 0.01

(0.18) (0.17) (0.20) (0.02) (0.02)
× Information 0.21*** 0.20*** 0.26 0.03*** 0.05***

(0.07) (0.07) (0.16) (0.01) (0.02)
Information −0.09

(0.20)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 1.95 1.16 0.43 1.69 1.64
(4.58) (4.26) (5.12) (4.12) (4.48)

Information = 1 7.39* 6.33 7.20* 7.31* 10.25**
(4.37) (4.11) (4.03) (4.19) (4.45)

𝑝-value of difference 0.004 0.004 0.109 0.008 0.005

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: The table shows how price, pollution, and health information affect de-
mand for masks, and the resulting estimated demand for clean air. Each observa-
tion is one respondent in a survey round. The dependent variable is whether the
respondent bought a mask. Price (2019 USD) is the level of the randomized price
offer made to the recipient, PM2.5 (10 𝜇𝑔/𝑚3) is the average level of PM2.5 mea-
sured in Delhi over the preceding day in 10 𝜇𝑔/𝑚3, and Information is a dummy
for whether they received information in that round on the negative health im-
pacts of particulates exposure. The MWTP panel shows the marginal willingness
to pay for clean air for those who did and did not receive health information. Sur-
veyor by Round FEs are fixed effects for each surveyor-round combination. LASSO
controls are the set of controls selected by the Double-LASSO method. Standard
errors are given in parentheses and are three-way clustered: at the level of price
randomization (survey point by round), at the level of pollution averaging (day),
and at the respondent level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table 3: Effect of Peer Belief and Past-Takeup

Logit
(1) (2) (3)

Model Coefficients
Price (USD) −1.86*** −1.86*** −1.95***

(0.09) (0.09) (0.10)
PM𝑟

2.5 (10𝜇𝑔/𝑚3) 0.05 0.05 0.08
(0.17) (0.17) (0.19)

× Information 0.20*** 0.20*** 0.23***
(0.07) (0.07) (0.08)

Peer Belief 0.12 0.15
(0.18) (0.25)

Previous Mask Usage −1.08
(0.75)

Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)
Information = 0 1.16 1.18 2.01

(4.26) (4.26) (4.59)
Information = 1 6.33 6.37 7.54

(4.11) (4.11) (4.59)
𝑝-value of difference 0.004 0.004 0.007

Surveyor-by-Round FEs Yes Yes Yes
LASSO Controls Yes Yes Yes
Control Fnc. Yes
Observations 6,465 6,465 6,465

Notes: The table shows how price, pollution, health information, peer belief and past mask usage affect de-
mand for masks, and the resulting estimated demand for clean air. Each observation is one respondent in a
survey round. The dependent variable is whether the respondent bought amask. Price (2019 USD) is the level
of the randomized price offer made to the recipient, PM2.5 (10 𝜇𝑔/𝑚3) is the average level of PM2.5 measured
in Delhi over the preceding day in 10 𝜇𝑔/𝑚3, Information is a dummy for whether they received information
in that round on the negative health impacts of particulates exposure, Peer Belief is a dummy for whether they
were received the treatment on how peers view masks, and Previous Mask Usage is a dummy for whether
they had ever worn a mask prior to that experimental round. The MWTP panel shows the marginal willing-
ness to pay for clean air for those who did and did not receive health information. Surveyor by Round FEs
are fixed effects for each surveyor-round combination. LASSO controls are the set of controls selected by the
Double-LASSO method. Standard errors are given in parentheses and are three-way clustered: at the level of
price randomization (survey point by round), at the level of pollution averaging (day), and at the respondent
level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table 4: MWTP Heterogeneity

Annual Household
Income (USD) Age Years of School Gender

0 10,000 18,000 25 45 55 0 8 15 Female Male
Information = 0 −0.23 3.08 5.19

(4.25) (5.06) (6.62)
Information = 1 4.95 9.02* 11.63*

(4.18) (4.94) (6.69)
𝑝-value of difference 0.042 0.005 0.051

Information = 0 3.02 1.42 0.55
(4.64) (4.78) (5.34)

Information = 1 6.73 7.95* 8.61
(4.56) (4.56) (5.27)

𝑝-value of difference 0.098 0.002 0.004

Information = 0 −6.23 2.03 12.89**
(4.51) (4.03) (5.72)

Information = 1 3.41 7.44* 12.73**
(4.49) (3.96) (5.69)

𝑝-value of difference < .001 0.003 0.956

Information = 0 −1.12 3.50
(4.22) (4.95)

Information = 1 6.23 6.51
(3.92) (5.04)

𝑝-value of difference 0.001 0.211

Notes: This table shows how MWTP, and the impact of health information on MWTP, varies across observables. Values
are marginal willingness to pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD) if the entire sample counterfactually had the given
covariate value and did (not) receive health information in that round on the negative health impacts of particulates
exposure. Standard errors and p-values are calculated using the delta-method from three-way clustering: at the level of
price randomization (survey point by round), at the level of pollution averaging (day), and at the respondent level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Figures

Figure 1: Map of Sample in Delhi

Notes: This map shows the 312 sampling points (blue), where surveys were conducted for the main sample.
Grey regions demarcate Delhi Government and Military Zones that largely do not contain residents.
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Figure 2: Experimental Timeline

Notes: This figure shows the timeline of our experiments and surveys against the bi-weekly rolling average
of ambient air pollution (PM2.5, 𝜇𝑔/𝑚3) in Delhi. There were four rounds of our main experimental sample,
and then a secondary sample overlapping the government mask distribution programming..
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Figure 3: Experiment Flowchart

Full
sample

Pollution
mask
offers

Main
sampleControlPlacebo

Price 10 INR
($0.50)

Price 0 INR
($0)

Price 30 INR
($1.49)

Price 50 INR
($2.48)

No information Information

No peer belief Peer belief

Add peer belief treatment
in round 4

Re-randomize in round 3 and round 4

Notes: This diagram depicts the experimental design. Respondents were cross-randomized across the subsi-
dized price offer they received, whether they received information on the health impacts of pollution or not,
and whether they were informed about the level of peer disapproval of mask wearing or not. Respondents in
the control group did not receive a subsidized price offer, while respondents in the placebo group received a
non-N90 mask for free. See text for more details.
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Figure 4: Non-Price Treatment Materials

(a) Information Treatment

(b) Peer Belief Treatment

Notes: This figure depicts the twonon-price interventions in the experiment. Panel (a) is the health information
treatment, with the right panel showing the (english-translated) handout shown to respondents and the left
sub-panel showing two scenes from the (english-translated) video shown to respondents. Panel (b) depicts
images that were shown to respondents to solicit private beliefs regarding mask appearance: respondents
were asked to respond yes or no to the question “do you think this person looks strange?”
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Figure 5: Demand for Masks

(a) Randomized Prices and Mask Demand
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(c) Ambient Particulate Matter and Mask Demand, by Information Treatment
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Notes: This figure shows the observed relationship between mask take-up and the randomly assigned prices
offered (panel a) as well as the relationship between mask take-up and ambient city-wide PM (panel b). Panel
(c) separates the relationship between ambient PManddemandbywhether the respondent received the health
information treatment that round.
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Figure 6: Effect of Government Program
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Notes: This figure plots the time series of treated and untreated units in event time by week. The three panels
plot the time trends of the fraction of school that received masks from the government campaign, the fraction
of respondents that reported using masks, and the fraction of respondents that took subsidized mask offers
in Delhi (dark red) and non-Delhi (orange), respectively.

35



Figure 7: Income and the Marginal Willingness-to-Pay for Clean Air
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Notes: This figure plots the estimated MWTP at each level of income from the demand model with income
heterogeneity modeled as in Eq. (9). The red dot corresponds to the annual household income and estimated
MWTP from Ito and Zhang (2020); We adjust their original 2014 USD dollar value as follows: Undo the cur-
rency exchange rate they use (through correspondence with authors), convert to 2019 USD through purchas-
ing power parity data from theWorld Bank, scale by number of individuals per household, account for China’s
rapid income growth during the study period, adjust for time usage spent in home and thus exposed to air
filter (using 2008 Chinese National Bureau of Statistics time use data), adjust for air filter efficiency, and lastly
convert PM10 reduction to PM2.5 reduction. The vertical lines for Bihar, India, and China are average house-
hold incomes in each area: Bihar value comes from survey data in Burgess et al. (2023), India value comes
from the 2004 India Human Development Survey purchasing power parity adjusted to 2019, and the China
value comes from 2019 Chinese National Bureau of Statistics data purchasing power parity adjusted.

36



References

Abadie, Alberto, SusanAthey, Guido Imbens, and JeffreyWooldridge. 2022.When Should YouAdjust
Standard Errors for Clustering?, arXiv:1710.02926, September. arXiv: 1710.02926 [econ, math,
stat].

Ahmad, Husnain, MatthewGibson, Fatiq Nadeem, Sanval Nasim, and Arman Razaee. 2022. “Fore-
casts: Consumption, Production, and Behavioral Responses.”

Akhtar, Sana, Wajeeha Saleem, VM Nadeem, Isra Shahid, and Ayeza Ikram. 2017. “Assessment of
willingness to pay for improved air quality using contingent valuationmethod.”Global Journal
of Environmental Science and Management 3 (3): 279–286.

Ashraf, Nava, B Kelsey Jack, and Emir Kamenica. 2013. “Information and subsidies: Complements
or substitutes?” Journal of Economic Behavior & Organization 88:133–139.

Banzhaf, Spencer, Lala Ma, and Christopher Timmins. 2019. “Environmental Justice: The Eco-
nomics of Race, Place, and Pollution.” Journal of Economic Perspectives 33 (1): 185–208.

Barwick, Panle Jia, Shanjun Li, Liguo Lin, and Eric Zou. 2019. “From Fog to Smog: the Value of
Pollution Information.” National Bureau of Economic Research Working Paper Series, no. 26541.

Bayer, Patrick, Nathaniel Keohane, and Christopher Timmins. 2009. “Migration and hedonic val-
uation: The case of air quality.” Journal of Environmental Economics and Management 58 (1): 1–
14.

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society. Series B (Method-
ological) 57 (1): 289–300. JSTOR: 2346101.

Benjamini, Yoav, and Daniel Yekutieli. 2001. “The Control of the False Discovery Rate in Multiple
Testing under Dependency.” The Annals of Statistics 29 (4): 1165–1188. JSTOR: 2674075.

Bennear, Lori, Alessandro Tarozzi, Alexander Pfaff, Soumya Balasubramanya, Kazi Matin Ahmed,
and Alexander Van Geen. 2013. “Impact of a randomized controlled trial in arsenic risk com-
munication on household water-source choices in Bangladesh.” Journal of environmental eco-
nomics and management 65 (2): 225–240.

Burgess, Robin, Michael Greenstone, Nicholas Ryan, and Anant Sudarshan. 2023. “Electricity De-
mand and Supply on the Global Electrification Frontier.” Working Paper.

37

https://arxiv.org/abs/1710.02926
https://arxiv.org/abs/1710.02926
http://www.jstor.org/stable/2346101
http://www.jstor.org/stable/2674075


Burnett, Richard, Hong Chen, Mieczysław Szyszkowicz, Neal Fann, Bryan Hubbell, C Arden Pope
III, Joshua S Apte, et al. 2018. “Global estimates of mortality associated with long-term expo-
sure to outdoor fine particulate matter.” Proceedings of the National Academy of Sciences 115 (38):
9592–9597.

Bursztyn, Leonardo, Alessandra L. González, and David Yanagizawa-Drott. 2020. “Misperceived
Social Norms:WomenWorkingOutside theHome in Saudi Arabia.”American Economic Review
110 (10): 2997–3029.

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2011. “Robust Inference With Multi-
way Clustering.” Journal of Business & Economic Statistics 29 (2): 238–249. JSTOR: 25800796.

Carlsson, Fredrik, and Olof Johansson-Stenman. 2000. “Willingness to pay for improved air quality
in Sweden.” Applied Economics 32 (6): 661–669.

Chatterji, Arpan. 2021. “Air pollution in Delhi: filling the policy gaps.” Massach Undergr J Econ 17
(1).

Chay, Kenneth Y., and Michael Greenstone. 2005. “Does Air Quality Matter? Evidence from the
Housing Market.” Journal of Political Economy 113 (2): 376–424.

Cherrie, JohnW,AndrewApsley, Hilary Cowie, Susanne Steinle,WilliamMueller, Chun Lin, Claire
J Horwell, et al. 2018. “Effectiveness of Face Masks Used to Protect Beĳing Residents Against
Particulate Air Pollution.” Occupational and Environmental Medicine 75 (6): 446–452.

Cohen, Jessica, and Pascaline Dupas. 2010. “Free Distribution or Cost-Sharing? Evidence from a
Randomized Malaria Prevention Experiment.” The Quarterly Journal of Economics 125 (1): 1–45.

Delhi Government. 2023. “State Economy.” In Economic Survey of Delhi 2022-2023, 26. Planning De-
partment Government of NCT of Delhi, March.

Deschenes, Olivier, Michael Greenstone, and Joseph S. Shapiro. 2017. “Defensive Investments and
the Demand for Air Quality: Evidence From the Nox Budget Program.” American Economic
Review 107 (10): 2958–89.

Donfouet, Hermann Pythagore Pierre, Joseph Cook, and P Wilner Jeanty. 2015. “The economic
value of improved air quality in urbanAfrica: a contingent valuation survey inDouala, Cameroon.”
Environment and development economics 20 (5): 630–649.

Doove, L. L., S. Van Buuren, and E. Dusseldorp. 2014. “Recursive Partitioning for Missing Data
Imputation in the Presence of Interaction Effects.” Computational Statistics & Data Analysis 72
(April): 92–104.

38

http://www.jstor.org/stable/25800796


Ebenstein, Avraham, Maoyong Fan, Michael Greenstone, Guojun He, and Maigeng Zhou. 2017.
“New evidence on the impact of sustained exposure to air pollution on life expectancy from
China’s Huai River Policy.” Proceedings of the National Academy of Sciences 114 (39): 10384–10389.

Filippini, Massimo, and Adán L Martı́nez-Cruz. 2016. “Impact of environmental and social atti-
tudes, and family concerns on willingness to pay for improved air quality: a contingent valu-
ation application in Mexico City.” Latin American Economic Review 25:1–18.

Finney,MilesM, Frank Goetzke, andMann J Yoon. 2011. “Income sorting and the demand for clean
air: Evidence from Southern California.” Land Economics 87 (1): 19–27.

Freeman, Richard,Wenquan Liang, Ran Song, and Christopher Timmins. 2019. “Willingness to Pay
for Clean Air in China.” Journal of Environmental Economics and Management 94:188–216.

Gao, Xuwen, Ran Song, and Christopher Timmins. 2023. “Information, migration, and the value of
clean air.” Journal of Development Economics 163:103079.

Gonzalez, Fidel, Mark Leipnik, and Diya Mazumder. 2013. “How much are urban residents in
Mexico willing to pay for cleaner air?” Environment and Development Economics 18 (3): 354–379.

Graff Zivin, Joshua, andMatthewNeidell. 2013. “Environment, Health, and Human Vapital.” Jour-
nal of Economic Literature 51 (3): 689–730.

Greenstone, Michael, and Rema Hanna. 2014. “Environmental Regulations, Air and Water Pollu-
tion, and Infant Mortality in India.” American Economic Review 104, no. 10 (October): 3038–72.

Greenstone,Michael, GuojunHe, Ruixue Jia, andTongLiu. 2022. “CanTechnology Solve the Principal-
Agent Problem? Evidence from China’s War on Air Pollution.” American Economic Review: In-
sights 4, no. 1 (March): 54–70.

Greenstone, Michael, and B. Kelsey Jack. 2015. “Envirodevonomics: A Research Agenda for an
Emerging Field.” Journal of Economic Literature 53 (1): 5–42.

Greenstone, Michael, Kenneth Lee, and Harshil Sahai. 2021. “Indoor Air Quality, Information, and
Socioeconomic Status: Evidence from Delhi.” In AEA Papers and Proceedings, 111:420–24.

Grossman, GeneM, and Alan B Krueger. 1995. “Economic growth and the environment.” The quar-
terly journal of economics 110 (2): 353–377.

Hall, Robert E, and Charles I Jones. 2007. “The value of life and the rise in health spending.” The
Quarterly Journal of Economics 122 (1): 39–72.

Ito, Koichiro, and Shuang Zhang. 2020. “Willingness to Pay for Clean Air: Evidence from Air Puri-
fier Markets in China.” Journal of Political Economy 128 (5): 1627–1672.

39



Jalan, Ishita, and Hem H Dholakia. 2019. What is Polluting Delhi’s Air? Understanding Uncertainties.
Emissions Inventories.

Jalan, Jyotsna, and Eswaran Somanathan. 2008. “The importance of being informed: Experimental
evidence on demand for environmental quality.” Journal of development Economics 87 (1): 14–28.

Jeuland, M.A., V. Bhojvaid, A. Kar, J.J. Lewis, O. Patange, S.K. Pattanayak, N. Ramanathan, et al.
2015. “Preferences for improved cook stoves: Evidence from rural villages in north India.”
Energy Economics 52:287–298.

Kremer, Michael, Jessica Leino, Edward Miguel, and Alix Peterson Zwane. 2011. “Spring Clean-
ing: Rural Water Impacts, Valuation, and Property Rights Institutions.” The Quarterly Journal of
Economics 126 (1): 145–205. eprint: https://academic.oup.com/qje/article-pdf/126/1/145/
17089858/qjq010.pdf.

Kuznets, Simon. 1955. “Economic Growth and Income Inequality.” American Economic Review 45
(1): 1–28.

Langrish, Jeremy P, Xi Li, Shengfeng Wang, Matthew MY Lee, Gareth D Barnes, Mark R Miller,
Flemming R Cassee, et al. 2012. “Reducing Personal Exposure to Particulate Air Pollution Im-
proves Cardiovascular Health in Patients with Coronary Heart Disease.” Environmental Health
Perspectives 120 (3): 367–372.

Lelieveld, J, K Klingmüller, A Pozzer, RT Burnett, A Haines, and V Ramanathan. 2019. “Effects of
fossil fuel and total anthropogenic emission removal on public health and climate.” Proceedings
of the National Academy of Sciences 116 (15): 7192–7197.

Ligus, Magdalena. 2018. “Measuring the willingness to pay for improved air quality: A contingent
valuation survey.” Polish Journal of Environmental Studies 27 (2): 763–771.

Maarraoui, Giorgio, WalidMarrouch, Faten Saliba, and AdaWossink. 2023. “Willingness to Pay for
Clean Air: Evidence from the UK.”

Ndambiri, Hilary, Eric Mungatana, and Roy Brouwer. 2015. “Stated preferences for improved air
quality management in the city of Nairobi, Kenya.” The European Journal of Applied Economics
12 (2): 16–26.

Nishitateno, Shuhei, and Paul J Burke. 2021. “Willingness to pay for clean air: Evidence from diesel
vehicle registration restrictions in Japan.” Regional Science and Urban Economics 88:103657.

Poder, Thomas G, and Jie He. 2017. “Willingness to pay for a cleaner car: The case of car pollution
in Quebec and France.” Energy 130:48–54.

40

https://academic.oup.com/qje/article-pdf/126/1/145/17089858/qjq010.pdf
https://academic.oup.com/qje/article-pdf/126/1/145/17089858/qjq010.pdf


Rubin, Donald B., ed. 1987.Multiple Imputation forNonresponse in Surveys.Wiley Series in Probability
and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc., June.

. 1996. “Multiple Imputation After 18+ Years.” Journal of the American Statistical Association
91 (434): 473–489. JSTOR: 2291635.

Shannon, Alexandra K, Faraz Usmani, Subhrendu K Pattanayak, and Marc Jeuland. 2019. “The
Price of Purity: Willingness to pay for air and water purification technologies in Rajasthan,
India.” Environmental and Resource Economics 73:1073–1100.

Shapiro, Joseph S. 2022. “Pollution Trends and US Environmental Policy: Lessons from the Past
Half Century.” Review of Environmental Economics and Policy 16 (1): 000–000.

Suman, Hemant K., Nomesh B. Bolia, and Geetam Tiwari. 2016. “Analysis of the Factors Influenc-
ing the Use of Public Buses in Delhi.” Journal of Urban Planning and Development 142, no. 3
(September): 04016003.

Talhelm, Thomas. 2017. “How Long Do Air Pollution Masks Last?”

Tantiwat, Waranan, Christopher Gan, and Wei Yang. 2021. “The estimation of the willingness to
pay for air-quality improvement in Thailand.” Sustainability 13 (21): 12313.

Times of India. 2012. “Half of Delhi’s Population Lives in Slums.”Https://timesofindia.indiatimes.
com/city/delhi/half - of - delhis - population- lives - in - slums/articleshow/16664224 .cms,
Accessed on January 7, 2022.

. 2015. “Delhi Pollution: Cong MP Gaurav Gogoi Comes to Parliament Wearing Mask.” Ht
tps://m.timesofindia.com/videoshow/50072968.cms?mobile=no, Accessed on January 7,
2022.

Train, Kenneth E. 2009.Discrete ChoiceMethods with Simulation. 2nd ed. CambridgeUniversity Press.

Urminsky, Oleg, Christian Hansen, and Victor Chernozhukov. 2016. Using Double-Lasso Regression
for Principled Variable Selection. SSRN Scholarly Paper, 2733374, Rochester, NY.

WHO. 2018. WHO global ambient air quality database (update 2023).

Wong,DavidW, Lester Yuan, and SusanAPerlin. 2004. “Comparison of Spatial InterpolationMeth-
ods for the Estimation ofAirQualityData.” Journal of Exposure Science & Environmental Epidemi-
ology 14 (5): 404–415.

Wu, J, D Watkins, J Williams, S Venugopal Bhagat, H Kumar, and J Gettleman. 2020. “Who gets to
breathe clean air in New Delhi?” New York Times 17.

41

http://www.jstor.org/stable/2291635
Https://timesofindia.indiatimes.com/city/delhi/half-of-delhis-population-lives-in-slums/articleshow/16664224.cms
Https://timesofindia.indiatimes.com/city/delhi/half-of-delhis-population-lives-in-slums/articleshow/16664224.cms
Https://m.timesofindia.com/videoshow/50072968.cms?mobile=no
Https://m.timesofindia.com/videoshow/50072968.cms?mobile=no


Yusuf, Arief Anshory, and Budy P Resosudarmo. 2009. “Does clean air matter in developing coun-
tries’megacities? A hedonic price analysis of the Jakarta housingmarket, Indonesia.”Ecological
Economics 68 (5): 1398–1407.

Zhang, Junjie, and Quan Mu. 2018. “Air Pollution and Defensive Expenditures: Evidence from
Particulate-filtering Facemasks.” Journal of Environmental Economics and Management 92:517–
536.

42



Appendix

Table of Contents
A Literature Estimates of Demand for Clean Air A.3

B Experiment Documentation B.5

B.1 Sampling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.5

B.2 Pollution Masks Offered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.6

B.3 Mask Distribution Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.8

C Treatment Groups, Balance, and Attrition C.9

C.1 Treatment Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.9

C.2 Balance Across Treatment Arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.9

C.3 Attrition Across Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.19

D A Model of Optimal Mask Usage D.20

E Imputation E.23

E.1 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E.23

E.2 Variables Chosen for Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . E.27

E.3 Results using Alternate Income Data . . . . . . . . . . . . . . . . . . . . . . . . . . . E.29

F Attrition Weighting F.32

F.1 Attrition Weighting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.32

F.2 Attrition Weighted Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F.32

G Details of Additional Specification G.34

G.1 Heterogeneity by Income, Age, Education, and Gender . . . . . . . . . . . . . . . . G.34

.1



G.2 Instrumenting Past Takeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G.36

H Average Marginal Effects H.37

I Alternate Specifications & Robustness Checks I.38

I.1 Model tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.38

I.2 Specification curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.45

I.3 Sensitivity to Mask Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I.51

J Assorted Impacts of Information J.52

K Persistence of Information K.53

L MWTP Implied by the VSL M.54

M The Health Impacts of Mask Distribution M.54

N Government Mask Distribution N.59

N.1 Sampling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N.59

N.2 Difference-in-difference Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N.62

.2



A Literature Estimates of Demand for Clean Air

Table A.1: WTP for Clean Air Literature Review

Citation Location Time
Period

WTP
Estimate Units Methodology

Chay and Greenstone
(2005)

United States 1970, 1980 196 Standardized Hedonic property value regression instrumenting
TSPs with non-attainment status

Bayer, Keohane, and
Timmins (2009)

United States
metro areas

1990, 2000 2676–3323 Standardized Discrete choice location decision instrumenting PM10
with distant pollution

Finney, Goetzke, and
Yoon (2011)

Southern Califor-
nia

1999–2000 307–498 Annual MWTP per 10% increase in num-
ber of days air quality standards are met
per year per person

Multinomial neighborhood choice

Gonzalez, Leipnik, and
Mazumder (2013)

Mexico, 3 cities 2003–2004 12–22 Standardized Hedonic property value regression instrumenting
PM10 with season

Freeman et al. (2019) China 2005 173 Standardized Discrete choice instrumenting PM2.5 with distant pol-
lution and wind direction

Ito and Zhang (2020) China 2006–2014 23 Standardized Discrete choice instrumenting price with distance to
manufacturing plant and PM10 using the Huai River
boundary

Gao, Song, and Tim-
mins (2023)

China 2011-2016 369 Standardized Hedonic pricing and migration decisions in response
to unexpected PM disclosure

Tantiwat, Gan, and
Yang (2021)

Thailand 2020 173 Standardized Contingent valuation method

Maarraoui et al. (2023) UK 2004-2019 6059 Standardized Life satisfaction score regression from interview data
Yusuf and Resosu-
darmo (2009)

Jakarta, Indonesia 1997-1998 12 Annual, individual level, WTP for a unit
reduction of SO2

Hedonic property value

Donfouet, Cook, and
Jeanty (2015)

Cameroon 2011 2 Annual, individual level, WTP for a 25%
reduction in air pollution

Contingent valuation method

Akhtar et al. (2017) Lahore, Pakistan 2016 72 Annual, individual level,WTP todecrease
level of air contamination by 50%

Contingent valuation method

Carlsson and
Johansson-Stenman
(2000)

Sweden 1996 352 Annual, individual level, WTP for a 50%
reduction of harmful substances

Contingent valuation method

Zhang and Mu (2018) China 2013 – 2014 0.24 Cumulative, individual level, benefit of
reducing days with AQI ≥ 201 by 10%

Observational study of mask purchase decisions

Deschenes, Green-
stone, and Shapiro
(2017)

USA 1997-2007 20 Annual, individual level, WTP for reduc-
tion of 1 million tons of NO𝑋 emissions

Quasi experiment of NO𝑋 budget program
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Table A.1 continued from previous page

Citation Location Time
Period

WTP
Estimate Units Methodology

Nishitateno and Burke
(2021)

Japan 1995-2015 10 Cumulative, individual level, WTP per
square meter of land area for total reduc-
tion in SPM concentration

Hedonic property value instrumenting based on roll-
out of automobile NO𝑋/PM law

Jeuland et al. (2015) Uttar Pradesh
and Uttarakhand,
India

2012 6 Cumulative, individual level, WTP for a
33% reduction in cookstove smoke

Contingent valuation method

Shannon et al. (2019) Rajasthan, India 2013 10 Annual, individual level, WTP for a de-
crease in respiratory illness

Contingent valuation method

Filippini andMartı́nez-
Cruz (2016)

Mexico City 2007-2008 457 Annual, individual level, WTP for im-
proved air quality

Contingent valuation method

Ligus (2018) Poland 2015 154 Annual, individual level, WTP for overall
reduction in air pollution

Contingent valuation method

Ndambiri, Mungatana,
and Brouwer (2015)

Nairobi, Kenya 2015 11 Annual, individual level, WTP for perma-
nent improved air quality management

Contingent valuation method

Poder and He (2017) Quebec and
France

2009 5395 Cumulative, population level, WTP for
cleaner cars for a 62.2% reduction in ex-
haust gases

Contingent valuation method

Notes: All WTPs are in 2019 PPP-adjusted USD. Standardized units are annual MWTP per annual 10𝜇𝑔/𝑚3 PM2.5 per person. When WTPs
are provided in currencies other than USD, they are converted to PPP-adjusted USD using the World Bank’s PPP-adjusted exchange rate.
WTPs are then inflated or deflated to 2019 USD using the BLS’s inflation calculator. When WTPs are provided in USD, but correspond with
countries other than the United States, the WTP estimates are first converted to the local currency and then the procedure described above is
implemented. Estimates for WTP for TSPs or PM10 are converted to WTP for PM2.5 by using the share of TSPs or PM10 that is PM2.5. Where
possible, population or household level WTPs are converted to individual by dividing by population or household size. Where relevant and
feasible, changes in home prices are converted to annual WTP using a discount rate supplied by the paper or suggestions from the literature
and an approximation for home tenure. Finally, in the case of Tantiwat, Gan, and Yang (2021) we convert a WTP for a proportional reduction
in PM2.5 to a WTP for a difference of PM2.5 using ambient PM2.5 levels from the AQLI.

A
.4



B Experiment Documentation

B.1 Sampling Procedure

Our sampling frame consists of mostly poor and non-migrant workers living in Delhi, and some of

the surrounding urban areas. Themain sample, which we refer to as “low-income neighborhoods”

captures individuals (𝑛 = 3,533) residing in poor, informal settlements across Delhi. To create this

sample, we obtained a list of Jhuggie Jhopri (J.J.) Squatter Settlements (“clusters”) provided by

the Delhi Government’s Urban Shelter Improvement Board. To our knowledge, this is the most

comprehensive list of low-income settlement clusters or squatter settlements available in Delhi. We

randomly generated sampling points (i.e., locations where enumerators could begin administering

in-person surveys) located around the center of each J.J. cluster. We excluded sampling points

that were too close together or were judged (using a combination of satellite images and in-person

checks) to no longer be low-income or squatter settlements due to urban development. To simplify

logistics, we then geographically grouped these points into 6 groups, and randomly re-drew 52

sampling points from each of the 6 groups. This generated 312 sampling points, around which our

team of enumerators enrolled individuals into our sample. Upon arriving at the sampling point,

the enumerator would survey adults at every other household with a small survey incentive of

50Rs ($0.73 USD). The sampling process was carried out between October and December 2018. To

our knowledge, this construction results in the largest and most representative sample of Delhi

low-income settlements ever collected.
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B.2 Pollution Masks Offered

Figure B.1: 3M Pollution Mask

Notes: This figure depicts the mask that was offered to respondents in our experiment. The mask is manufac-

tured by 3M and filters 90% of particulate matter (PM) according to manufacturer tests. The retail price across

our surveys was roughly 100INR on average and wholesale prices were roughly 50INR.
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B.3 Mask Distribution Campaign

Table B.1: Historical protective mask distribution efforts (as of 2019)

Location Period Scale Issue Details

Delhi, India 2019 5,000,000 Pollution In advance of the annual winter pollution season,

N95 pollution masks distributed to schoolchil-

dren in both public and private schools.

Malaysia 2019 500,000 Pollution During a particularly severe smog episode,

the National Disaster Management Agency

(NADMA) distributed masks to people in the

worst-affected areas.

Suwon, South

Korea

2018 36,000 Pollution For a two-day period starting on March 26, 2018,

Gyeonggi province placed 36,000 free masks on

185 buses after excessive fine dust triggered emer-

gency response.

Singapore 2013 1,100,000 SARS Similar kits were distributed for free once again.

Volunteers went door to door to distribute the

kits, while others had to collect them from local

centres.

Washington,

USA

2012 20,000 Pollution Free masks distributed to towns affected by wild-

fire smoke. The government drew upon an emer-

gency stockpile that had originally been intended

to address a swine flu epidemic.

Singapore 2003 1,100,000 SARS The government distributed a free SARS toolkit

(which included N-95 protective masks) to all

households.

This table describes historical government mask distribution efforts around the world as of 2019. Delhi’s

mask distribution policy was more than 4 times larger than the largest program before (Singapore’s mask

program during the SARS epidemic).
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C Treatment Groups, Balance, and Attrition

C.1 Treatment Groups

Table C.1 describes the probability of treatment assignment in each round of the sample.

Table C.1: Probability of Assignment to Treatment Groups

No Health Info +
No Peer Belief Info

No Health Info +
Peer Belief Info

Health Info +
No Peer Belief Info

Health Info +
Peer Belief Info Total

0 INR 13.99% 1.70% 20.94% 2.29% 38.92%
1 INR 7.23% 0.87% 7.02% 0.82% 15.94%
2 INR 6.69% 0.81% 7.21% 0.92% 15.64%
Black Mask (Free) 6.98% 1.04% 0.00% 0.00% 8.02%
No Mask 14.33% 0.00% 7.15% 0.00% 21.48%
Total 49.22% 4.43% 42.32% 4.03% 100.00%

Notes: This table reports probabilities (1-100) of treatment assignment across surveys in all rounds of the sample.
Rows describe types of mask offers and columns describe different information interventions.

C.2 Balance Across Treatment Arms

To test the validity of our randomization in the main experiment, we collect baseline characteristics

for each individual. In this section, we report means of selected variables at baseline for all control

and treatment groups, as well as 𝑝-values for differences in means across groups and rounds. We

find that covariates are similarly balanced across rounds as well as for the full set of 50+ covariates.

We find no statistically meaningful difference in covariates of interest across various prices and

intervention arms.

The tables below describe balance in selected baseline (round 1) characteristics across treatment

arms, for each round. Each cell is the mean of the corresponding baseline variable (row) for the

corresponding treatment variable (column). Standard deviations are in parenthesis. The 𝑝-value

(Raw) column reports a 𝑝-value of test of equality across means of the given variable across all

treatment arms using a cluster permutation F-test: We permute the group assignments across the

sampling points and see what portion of those permutations result in an F-stat greater than the
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one observed in the raw data. The 𝑝-value (BH) column reports those same 𝑝-values, but having

done the multiple testing correction from Benjamini and Hochberg (1995). This multiple testing

procedure is done collectively on all of the 𝑝-values for the tests reported in all of the balance tables

in this section.³²

32. This multiple testing correction controls the False Discovery Rate (i.e. the expected portion of rejected null hypotheses
which are false discoveries) and is valid under independence or positive regression dependence (Benjamini and Yekutieli
2001), which encompass the plausible set of circumstances for these balance tests.
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Table C.2: Baseline Balance Across Price Arms in Round 1

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR

𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 21.663 19.964 21.035 20.940 21.245 20.133 0.802 0.954
(7.792) (6.241) (6.805) (6.394) (6.872) (5.618)

asinh(Weekly-Income/1000) 2.880 3.401 3.862 3.705 3.282 3.394 0.234 0.781
(4.286) (4.415) (4.583) (4.603) (4.410) (4.469)

asinh(Household-Income/1000) 7.486 8.220 8.508 8.235 8.492 8.035 0.266 0.781
(3.887) (3.190) (3.144) (3.467) (2.888) (3.546)

Female 0.505 0.513 0.502 0.502 0.573 0.516 0.668 0.931
(0.501) (0.500) (0.500) (0.500) (0.495) (0.500)

Age 36.910 36.670 37.273 37.011 36.811 35.302 0.499 0.903
(13.192) (13.968) (12.771) (13.152) (13.093) (12.514)

Years of School 6.318 7.007 7.485 7.788 6.806 7.543 0.071 0.781
(5.182) (5.021) (5.009) (4.915) (4.981) (5.104)

Ever Worn Mask 0.161 0.150 0.191 0.171 0.138 0.186 0.191 0.781
(0.368) (0.357) (0.393) (0.377) (0.345) (0.390)

Pollution-Symptoms 0.743 0.673 0.691 0.649 0.646 0.651 0.122 0.781
(0.438) (0.469) (0.463) (0.478) (0.479) (0.477)

Non Pollution-Symptoms 0.654 0.566 0.582 0.570 0.538 0.527 0.199 0.781
(0.477) (0.496) (0.494) (0.496) (0.499) (0.500)

Observations 280 813 811 539 543 547

C
.11



Table C.3: Baseline Balance Across Information Arms in Round 1

Health-Info No Health-Info 𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 20.452 20.940 0.537 0.903
(6.120) (6.906)

asinh(Weekly-Income/1000) 3.446 3.530 0.676 0.931
(4.458) (4.510)

asinh(Household-Income/1000) 8.129 8.341 0.350 0.875
(3.398) (3.229)

Female 0.526 0.511 0.592 0.903
(0.499) (0.500)

Age 36.636 36.734 0.878 0.954
(13.191) (13.143)

Years of School 7.389 7.102 0.268 0.781
(5.017) (5.051)

Ever Worn Mask 0.176 0.160 0.282 0.781
(0.381) (0.367)

Pollution-Symptoms 0.671 0.672 0.954 0.954
(0.470) (0.470)

Non Pollution-Symptoms 0.563 0.570 0.763 0.954
(0.496) (0.495)

Observations 1,619 1,914
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Table C.4: Baseline Balance Across Price Arms in Round 2

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR

𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 20.360 20.704 19.632 20.429 21.026 19.997 0.733 0.954
(3.404) (5.898) (4.881) (4.495) (5.952) (5.722)

asinh(Weekly-Income/1000) 2.529 3.098 3.331 3.469 2.845 3.111 0.537 0.903
(4.112) (4.316) (4.421) (4.516) (4.220) (4.404)

asinh(Household-Income/1000) 7.307 8.189 8.301 8.840 8.704 8.424 0.149 0.781
(3.910) (3.215) (3.333) (2.762) (2.556) (3.223)

Female 0.594 0.555 0.572 0.570 0.645 0.545 0.472 0.903
(0.492) (0.497) (0.495) (0.496) (0.479) (0.499)

Age 36.213 37.145 37.434 37.770 36.874 35.735 0.593 0.903
(12.915) (14.390) (13.128) (13.597) (13.177) (12.626)

Years of School 6.044 7.056 7.309 7.791 6.663 7.503 0.048 0.781
(5.051) (5.035) (5.020) (4.818) (4.884) (5.078)

Ever Worn Mask 0.128 0.170 0.184 0.160 0.109 0.169 0.080 0.781
(0.335) (0.376) (0.388) (0.368) (0.312) (0.375)

Pollution-Symptoms 0.750 0.689 0.704 0.676 0.637 0.666 0.268 0.781
(0.434) (0.463) (0.457) (0.469) (0.482) (0.472)

Non Pollution-Symptoms 0.683 0.580 0.607 0.582 0.536 0.541 0.139 0.781
(0.466) (0.494) (0.489) (0.494) (0.499) (0.499)

Observations 180 553 560 349 366 344
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Table C.5: Baseline Balance Across Information Arms in Round 2

Health-Info No Health-Info 𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 20.057 20.560 0.387 0.875
(4.991) (5.564)

asinh(Weekly-Income/1000) 3.031 3.211 0.469 0.903
(4.294) (4.412)

asinh(Household-Income/1000) 8.294 8.408 0.646 0.930
(3.175) (3.171)

Female 0.588 0.567 0.490 0.903
(0.492) (0.496)

Age 37.074 36.912 0.840 0.954
(13.576) (13.304)

Years of School 7.249 7.070 0.519 0.903
(4.983) (5.016)

Ever Worn Mask 0.175 0.145 0.070 0.781
(0.380) (0.352)

Pollution-Symptoms 0.693 0.676 0.451 0.903
(0.462) (0.468)

Non Pollution-Symptoms 0.580 0.584 0.909 0.954
(0.494) (0.493)

Observations 1,084 1,268
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Table C.6: Baseline Balance Across Price Arms in Round 3

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR

𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 10.780 11.480 12.302 11.470 11.733 12.220 0.855 0.954
(4.398) (4.941) (5.252) (4.998) (5.698) (5.290)

asinh(Weekly-Income/1000) 2.420 2.757 3.215 2.926 3.231 3.121 0.624 0.917
(4.048) (4.182) (4.325) (4.280) (4.456) (4.416)

asinh(Household-Income/1000) 7.828 8.214 8.176 8.351 8.139 7.856 0.945 0.954
(3.768) (3.109) (3.067) (3.239) (3.575) (3.757)

Female 0.573 0.565 0.569 0.622 0.576 0.565 0.915 0.954
(0.496) (0.496) (0.496) (0.486) (0.495) (0.497)

Age 35.968 36.456 37.538 34.963 37.587 37.835 0.243 0.781
(13.821) (14.115) (13.436) (11.869) (13.190) (12.912)

Years of School 6.503 7.379 7.122 6.821 7.281 7.345 0.730 0.954
(5.147) (5.046) (4.735) (5.092) (5.032) (5.165)

Ever Worn Mask 0.096 0.159 0.141 0.123 0.161 0.190 0.162 0.781
(0.295) (0.366) (0.348) (0.329) (0.368) (0.393)

Pollution-Symptoms 0.656 0.653 0.701 0.668 0.657 0.678 0.806 0.954
(0.477) (0.477) (0.458) (0.472) (0.476) (0.468)

Non Pollution-Symptoms 0.548 0.511 0.597 0.568 0.531 0.585 0.488 0.903
(0.499) (0.501) (0.491) (0.496) (0.500) (0.493)

Observations 157 352 461 301 335 311
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Table C.7: Baseline Balance Across Information Arms in Round 3

Health-Info No Health-Info 𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 11.965 11.612 0.602 0.903
(5.428) (4.961)

asinh(Weekly-Income/1000) 3.172 2.853 0.236 0.781
(4.365) (4.254)

asinh(Household-Income/1000) 8.111 8.128 0.947 0.954
(3.356) (3.401)

Female 0.566 0.588 0.506 0.903
(0.496) (0.492)

Age 36.794 36.932 0.863 0.954
(13.112) (13.401)

Years of School 7.157 7.113 0.893 0.954
(5.012) (5.003)

Ever Worn Mask 0.140 0.158 0.385 0.875
(0.347) (0.365)

Pollution-Symptoms 0.685 0.659 0.274 0.781
(0.465) (0.474)

Non Pollution-Symptoms 0.579 0.541 0.210 0.781
(0.494) (0.499)

Observations 928 989
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Table C.8: Baseline Balance Across Price Arms in Round 4

Placebo Control N90
0 INR

N90
10 INR

N90
30 INR

N90
50 INR

𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 8.832 8.472 8.890 8.515 8.739 8.881 0.755 0.954
(2.297) (1.782) (1.937) (1.897) (2.244) (1.733)

asinh(Weekly-Income/1000) 3.409 2.779 2.863 3.394 3.182 2.918 0.583 0.903
(4.454) (4.194) (4.312) (4.446) (4.386) (4.265)

asinh(Household-Income/1000) 8.067 8.169 7.992 7.933 8.505 7.880 0.824 0.954
(3.381) (3.152) (3.644) (3.498) (3.031) (3.692)

Female 0.491 0.576 0.556 0.538 0.608 0.629 0.325 0.867
(0.501) (0.495) (0.497) (0.499) (0.489) (0.484)

Age 39.839 36.418 36.573 37.935 36.678 36.356 0.266 0.781
(14.181) (13.926) (13.347) (13.363) (12.484) (13.233)

Years of School 6.874 7.249 7.154 7.327 6.924 6.801 0.907 0.954
(5.256) (5.001) (4.916) (5.189) (5.020) (4.949)

Ever Worn Mask 0.149 0.154 0.144 0.211 0.148 0.149 0.234 0.781
(0.357) (0.361) (0.351) (0.408) (0.356) (0.357)

Pollution-Symptoms 0.703 0.648 0.660 0.687 0.724 0.708 0.281 0.781
(0.458) (0.478) (0.474) (0.464) (0.448) (0.456)

Non Pollution-Symptoms 0.617 0.536 0.550 0.599 0.555 0.623 0.389 0.875
(0.487) (0.499) (0.498) (0.491) (0.498) (0.485)

Observations 175 403 480 342 330 342
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Table C.9: Baseline Balance Across Information Arms in Round 4

Health Info
Peer-Info

Health-Info
No Peer-Info

No Health Info
Peer-Info

No Health-Info
No Peer-Info

𝑝-value
(Raw)

𝑝-value
(BH)

PM2.5 (10𝜇𝑔/𝑚3) 8.476 8.799 8.611 8.856 0.597 0.903
(1.819) (1.954) (2.100) (1.941)

asinh(Weekly-Income/1000) 2.695 3.063 3.704 2.797 0.024 0.781
(4.215) (4.336) (4.561) (4.197)

asinh(Household-Income/1000) 7.873 7.985 8.512 7.981 0.388 0.875
(3.666) (3.490) (3.086) (3.420)

Female 0.582 0.572 0.507 0.607 0.164 0.781
(0.494) (0.495) (0.501) (0.489)

Age 35.392 37.826 38.349 36.490 0.075 0.781
(12.773) (13.817) (13.830) (13.058)

Years of School 7.460 7.007 7.220 6.837 0.539 0.903
(4.970) (5.012) (5.001) (5.083)

Ever Worn Mask 0.156 0.186 0.167 0.134 0.151 0.781
(0.363) (0.390) (0.373) (0.340)

Pollution-Symptoms 0.691 0.690 0.698 0.666 0.685 0.931
(0.463) (0.463) (0.460) (0.472)

Non Pollution-Symptoms 0.573 0.568 0.602 0.562 0.796 0.954
(0.495) (0.496) (0.490) (0.497)

Observations 398 548 437 689
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C.3 Attrition Across Rounds

We report attrition rates across survey rounds and treatment arms. We find that we experience

roughly 30% attrition round-to-round, but that this rate is not differential across arms. The tables

below describe attrition rates across treatment arms, over rounds. The first row is the number

of observations in round 1 for each treatment arm (column). The subsequent rows describe the

fraction of these observations that we successfully surveyed int he corresponding round (row).

Table C.10: Round-to-Round Attrition Across Price Arms

No Mask Black Mask
0 INR

N90 Mask
0 INR

N90 Mask
10 INR

N90 Mask
30 INR

N90 Mask
50 INR Total

Round 1 Count 813 280 811 539 543 547 3533
Round 1 (%) 100 100 100 100 100 100 100
Round 2 (%) 68 64 69 65 67 63 67
Round 3 (%) 43 56 57 56 62 57 54
Round 4 (%) 50 62 59 63 61 63 59

Table C.11: Round-to-Round Attrition Across Information Arms

No PM2.5 Health
Information

PM2.5 Health
Information Total

Round 1 Count 1,914 1,619 3533
Round 1 (%) 100 100 100
Round 2 (%) 66 67 67
Round 3 (%) 52 57 54
Round 4 (%) 59 58 59
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D A Model of Optimal Mask Usage

Given equations (1-4) on themask takeup decision, we can further model expected usage 𝐸𝑈𝑖 itself

as another maximization problem:

𝐸𝑈𝑖 = max
𝑢∈[0,1]

𝜂 + 𝑏𝑖𝑢 − 𝑐𝑖𝑢2 ,

where 𝑢 is the fraction of time using the mask, 𝑏𝑖 is the marginal benefit, and 𝑐𝑖 is the marginal cost

of usage.

Actual usage 𝐴𝑈𝑖 is then realized after some usage shock 𝜔𝑖 :

𝐴𝑈𝑖 = 𝐸𝑈𝑖 + 𝜔𝑖

Note that when 𝐸[𝜔𝑖] = 0 we have:

𝐸[𝐴𝑈𝑖] = 𝐸𝑈𝑖

However, we only observe actual usage for those who takeup:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] = 𝐴𝑈1

Actual usage for those who do not takeup is unobserved:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 0] = ?

If 𝐸𝑈𝑖 is assumed to be 1, then overstating usage could result in bias:

→ If true 𝐸𝑈𝑖 < 1 then MWTP would be downward biased

More generally, the selection of who takes up could result in bias depending on how the takeup

unobservable 𝜖𝑖 correlates with the determinants of usage 𝑐𝑖 , 𝑏𝑖 :

→ If 𝑏𝑖 , 𝑐𝑖 ̸⊥ 𝜖𝑖 then 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] ≠ 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 0] and MWTP would be biased
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→ If 𝑏𝑖 , 𝑐𝑖 ⊥ 𝜖𝑖 then

𝐸[𝐴𝑈𝑖] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 0]

and MWTP would be unbiased

Note that because prices were randomly assigned, those who takeup at higher prices have higher

unobserved preferences:

𝐸[𝜖𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 50] > 𝐸[𝜖𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 30] > . . .

So if 𝑏𝑖 , 𝑐𝑖 ̸⊥ 𝜖𝑖 we should have:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 50] ≠ 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 30] ≠ . . .

In Fig. D.1 we plot ex-post means of mask usage by prices, and find that mean usage is roughly

equal across all prices and we cannot reject a zero difference.³³ That is, we find that:

𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 50] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1, 𝑝𝑖 = 30] = . . .

which suggests that 𝑏𝑖 , 𝑐𝑖 ⊥ 𝜖𝑖 may be a reasonable assumption. Together we then have:

𝐸[𝐴𝑈𝑖] = 𝐸[𝐴𝑈𝑖 |Takeup𝑖 = 1] = 𝐴𝑈1 = 𝐸𝑈𝑖

This is thus consistent with assuming 𝐸𝑈𝑖 is the ex-post mean usage among those who takeup

masks, which is 0.08 (1.8 hours per day).

33. Note that usage was only asked for individuals who had a mask at the time of survey. Thus, there is attrition in the
fraction of respondents for which we observe usage (top-left of Fig. D.1). However, we do not observe any differences in
this fraction across prices either, further suggestive of equal usage across price arms.
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Figure D.1: Mask Usage by Price

Days Mask Worn Last Week
(if took up and still have mask)
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(if took up and still have mask)
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Notes: This figure reports means and standard deviations of the given variable by round (color) and experi-

mental price arm (x-axis). The top-left panel plots whether individuals still have masks conditional on taking

up in a prior round. The remaining plots report self-reported usage conditional on taking up in a prior period

and still having the mask: the top-right panel plots the hours in the day the respondent last used the mask;

the bottom-left panel plots the days the respondent last used the mask in the last week; and the bottom-right

panel plots the days the respondent last used the mask in the past month. Standard errors are in parentheses.
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E Imputation

E.1 Multiple Imputation

In our data we have two measures of income, personal and household. Personal income in our

sample has a radically different distribution between males and females as seen in Fig. E.1, with

80% reported as 0 for females, while only 30% report 0 for males. This discrepancy, though, does

not imply that males and females have such radically different sets of resources which they draw

on to make their financial decisions, but instead they likely both use their household’s income as

the income pot from which they draw when making purchases. This reasoning suggests that to

accurately understand how financial resources affect decision making, we would be interested in

the interaction of MWTP with household income.

Household income, although similarly distributed across males and females in our sample as

seen in Fig. E.1, is missing for 60% of individuals in our sample. Thus, we use multiple imputation

(Rubin 1987, 1996): We create 30 different datasets each with a different set of imputed values, run

our analysis on each of the 30 completed datasets separately, and then aggregate the results across

those 30 analyses in a way accounting for variance in e.g. a parameter estimate both inside each

completed dataset and across the 30 completed datasets. The intuition underlying multiple im-

putation is that under certain assumptions about the imputation technique, the multiple different

imputed values used in each completed dataset will reflect our uncertainty about what that miss-

ing value might be, and thus we are taking into account our additional uncertainty resulting from

not knowing what those true values are.

Our imputation procedure to generate each of the 30 completed datasets is to use the Multiple

Imputation by Chained Equation (MICE) algorithm with random forests (Doove, Van Buuren, and

Dusseldorp 2014) on each. This method imputes values for a particular variable using a “fully con-

ditional specification” of the values of that variable conditional on all other variables (discussion of

selection of other variables to include in this procedure in Appendix E.2). In particular, after an ini-

tial filling of missing values with other observed values at random, we then cycle through variables

using the distribution of all other variables’ current assigned values along with random forests to

E.23



fill new values for all the observations with initially missing values of that variable. We then apply

this procedure in a cycle through all variables which had any missing values, and we then iterate

this whole cycle several times to achieve stability in the imputed values. We chose random for-

est to estimate the full conditional specification of values conditional on other variables due to its

flexibility in incorporating arbitrary interactions and estimating data of arbitrary distributions due

to its non-parametric nature. The key assumption for the validity of the imputation procedure is

that the data is “Missing at Random” (as opposed to “Missing Completely at Random” and “Not

Missing at Random”) meaning that whether or not a value for a particular covariate is missing can

be modelled as a function of other covariates and an i.i.d. (across individuals) distributed error

term. We believe this is a reasonable assumption given the number of covariates we observe and

use in the imputation procedure, but we also include our analysis restricted to only the rawdata, an

alternative imputation procedure, and personal income (which does not require any imputation)

below.
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Figure E.1: Distribution of observed values of weekly and household incomes in raw data
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Notes: This figure plots the density histogram of the raw data distribution of weekly personal and household

incomes (in 1000s Rps), with our preferred inverse hyperbolic-sine asinh transformation.
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Figure E.2: Distribution of Test Imputation Predictions and Errors
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Notes: For 6 different test datasets with a random 20% of household income data amputed in each, and using

three different imputation methods (linear prediction, unconditional mean imputation, and random forest

imputation) this figure plots the density of the error distributions in that 20% of values.
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Figure E.3: Distribution of observed values of weekly household income in raw data
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Notes: This figure plots three distributions of annual household incomes (USD), with our preferred inverse

hyperbolic-sine asinh transformation. The green line is the raw data, the blue line is if we use our full random

forest imputation procedure to create a single completed dataset, and the orange is if we use our full impu-

tation procedure, but with linear prediction instead of random forest, to create to create a single completed

dataset.

E.2 Variables Chosen for Multiple Imputation

To choose the variables which we use for multiple imputation, we look at the entire space of 63

individual level covariates collected for the 2,645 individuals contacted. We then observe that,

excluding Household income which we intend to be the central target of our multiple imputation,

there are only two variables (hours per day masks were worn and whether masks look strange)

with more than 800 respondent’s missing values (2507 and 857 missing respectively). All other

covariates having fewer than 75 missing respondent values (i.e. < 3% of all respondents missing).

Thus, in our process of multiple imputation we only exclude these two variables with significant
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missing percentages, and include the remaining 61 in our MICE algorithm.
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E.3 Results using Alternate Income Data

Table E.1: MWTP Heterogeneity – Linear Prediction

Annual Household
Income (USD) Age Years of School Gender

0 10,000 18,000 25 45 55 0 8 15 Female Male
Information = 0 1.16 2.09 2.62

(4.69) (4.67) (5.48)
Information = 1 5.21 7.79* 9.25*

(4.56) (4.50) (5.34)
𝑝-value of difference 0.129 0.002 0.003

Information = 0 3.02 1.42 0.55
(4.64) (4.78) (5.34)

Information = 1 6.73 7.95* 8.61
(4.56) (4.56) (5.27)

𝑝-value of difference 0.098 0.002 0.004

Information = 0 −6.23 2.03 12.89**
(4.51) (4.03) (5.72)

Information = 1 3.41 7.44* 12.73**
(4.49) (3.96) (5.69)

𝑝-value of difference < .001 0.003 0.956

Information = 0 −1.12 3.50
(4.22) (4.95)

Information = 1 6.23 6.51
(3.92) (5.04)

𝑝-value of difference 0.001 0.211

Notes: This table is similar to Table 4. Here we show results from a single dataset where linear regression is used to
impute missing values for household income rather than random forest.

* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table E.2: MWTP Heterogeneity – Raw Data

Annual Household
Income (USD) Age Years of School Gender

0 10,000 18,000 25 45 55 0 8 15 Female Male
Information = 0 4.74 6.75 7.99

(5.70) (5.91) (7.69)
Information = 1 5.90 12.35** 16.30**

(5.52) (5.97) (8.17)
𝑝-value of difference 0.748 0.034 0.039

Information = 0 3.02 1.42 0.55
(4.64) (4.78) (5.34)

Information = 1 6.73 7.95* 8.61
(4.56) (4.56) (5.27)

𝑝-value of difference 0.098 0.002 0.004

Information = 0 −6.23 2.03 12.89**
(4.51) (4.03) (5.72)

Information = 1 3.41 7.44* 12.73**
(4.49) (3.96) (5.69)

𝑝-value of difference < .001 0.003 0.956

Information = 0 −1.12 3.50
(4.22) (4.95)

Information = 1 6.23 6.51
(3.92) (5.04)

𝑝-value of difference 0.001 0.211

Notes: This table is similar to Table 4. Here we show results from a single dataset where we drop observations missing
household income.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table E.3: MWTP Heterogeneity – Personal Income

Annual Household
Income (USD) Age Years of School Gender

0 10,000 18,000 25 45 55 0 8 15 Female Male
Information = 0 0.08 6.42 11.01

(4.23) (6.29) (9.27)
Information = 1 5.44 13.84** 19.92**

(3.95) (6.66) (10.09)
𝑝-value of difference 0.007 0.046 0.163

Information = 0 3.02 1.42 0.55
(4.64) (4.78) (5.34)

Information = 1 6.73 7.95* 8.61
(4.56) (4.56) (5.27)

𝑝-value of difference 0.098 0.002 0.004

Information = 0 −6.23 2.03 12.89**
(4.51) (4.03) (5.72)

Information = 1 3.41 7.44* 12.73**
(4.49) (3.96) (5.69)

𝑝-value of difference < .001 0.003 0.956

Information = 0 −1.12 3.50
(4.22) (4.95)

Information = 1 6.23 6.51
(3.92) (5.04)

𝑝-value of difference 0.001 0.211

Notes: This table is similar to Table 4. Here we show results from a single dataset where we use personal income rather
than household income.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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F Attrition Weighting

F.1 Attrition Weighting Scheme

As seen in Table C.10 we were not able to contact every individual in every round of the survey:

There was attrition. We thus redo our main analyses using inverse probability weighting for attri-

tion. This involves creating a model to predict, for each respondent in each round, how likely they

are to appear in the sample in that round conditional on their observables. Then, you weight ob-

servations by the inverse of that probability, as those who are more likely to appear in the sample

will be over-represented and thus should be downweighted accordingly.

To do this weighting, then, wemustmodel the probability of an individual appearing in the sample

in a given round given their covariates. To do this we use themachine learning algorithmXGBoost,

with hyper-parameters chosen by cross validation. The covariates we used for predicting attrition

are the same 61 covariates we used for our imputation strategy discussed in Appendix E. We chose

XGBoost after comparing log-loss performance to LASSO (on a testing dataset not used in training).

F.2 Attrition Weighted Results
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Table F.1: The Demand for Clean Air – Attrition Weighted

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.82*** −1.86*** −1.86*** −0.25*** −0.26***
(0.10) (0.09) (0.09) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.07 0.05 0.00 0.01 0.01

(0.18) (0.17) (0.20) (0.02) (0.03)
× Information 0.20*** 0.19*** 0.29* 0.03** 0.04***

(0.07) (0.07) (0.17) (0.01) (0.02)
Information −0.14

(0.21)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 1.93 1.28 0.12 1.94 2.07
(4.60) (4.26) (5.18) (4.08) (4.57)

Information = 1 7.15 6.09 7.47* 7.31* 10.13**
(4.36) (4.10) (4.01) (4.16) (4.48)

𝑝-value of difference 0.006 0.007 0.086 0.012 0.009

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: This table is similar to Table 2 except that observations are weighted by the
inverse of the probability of staying in the sample. We compute attritionweighting
using XGBoost.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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G Details of Additional Specification

G.1 Heterogeneity by Income, Age, Education, and Gender

Let ℎ𝑖 be the covariate of interest for individual 𝑖. We modify the mask takeup decision in Eq. (6)

as follows:

Takeup𝑖𝑡 = 1{𝛼𝑖 − 𝛽𝑖𝑝𝑖𝑡 + 𝛾𝑖𝑡PM2.5𝑡 + 𝜙𝑠𝑡 + 𝑒𝑖𝑡 > 0},
𝛼𝑖 = 𝛼0 + 𝛼1ℎ𝑖

𝛽𝑖 = 𝛽0 + 𝛽1ℎ𝑖

𝛾𝑖𝑡 = 𝛾0 + 𝛾1ℎ𝑖 + 𝛾2Information𝑖𝑡 + 𝛾3ℎ𝑖 × Information𝑖𝑡

(9)

The modified expression of MWTP is therefore a function of ℎ𝑖 :

MWTP|ℎ=ℎ𝑖 =
𝛾0 + 𝛾1ℎ𝑖
𝛽0 + 𝛽1ℎ𝑖

× 1
0.9

× 24
1.8

× 365
7

. (10)
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Figure G.1: Heterogeneity in MWTP Controlling for Other-Covariate Interactions
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Notes: In each panel we allow MWTP to vary by one of four covariates (income, age, education, gender), while integrating over the sample

distribution of the other three covariates. The overall specification allows sensitivity to price, pm, pm x info to vary by each of the four

covariates.
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G.2 Instrumenting Past Takeup

We assume the following two causal models³⁴:

Takeup𝑖𝑡 = 1{𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM2.5𝑡 + 𝛾2PM2.5 × Information𝑖𝑡 + 𝜂𝑋𝑖+ (11)

𝜃1Peer Belief𝑖𝑡 + 𝜃2Past Takeup𝑖𝑡 + 𝜙𝑠𝑡 + 𝑒𝑖𝑡 > 0}
Past Takeup𝑖𝑡 = 𝛼1 − 𝛽1Min Past Price𝑖𝑡 + 𝜂1𝑋𝑖 + 𝜙𝑠𝑡 + 𝜇𝑖𝑡 (12)

In equation 11, Past Takeup𝑖𝑡 is potentially a function of unobserved individual characteristics or

of other persistent correlates within the error term. Including it directly in the estimating equation

could bias 𝜃2 upward. We employ a control function approach following Train (2009) to estimate

𝜃2. Therefore, we further assume that 𝑒𝑖𝑡 is equal to the sum of 𝑒1
𝑖𝑡 and 𝑒2

𝑖𝑡 with 𝑒1
𝑖𝑡 and 𝜇𝑖𝑡 jointly

normal and 𝑒2
𝑖𝑡 iid extreme value³⁵.

The instrument for Past Takeup𝑖𝑡 is the minimum price of all past mask offers, Min Past Price𝑖𝑡 .

Because past mask prices are randomly assigned, the instrument is independent of 𝑒𝑖𝑡 and 𝜇𝑖𝑡 ³⁶.

The model is estimated by the procedure described in Train (2009). The residuals from estimat-

ing equation 12 are stored as �̂�𝑖𝑡 . Then, equation 13 is mixed logit with mixing over �̂�𝑖𝑡 :

Takeup𝑖𝑡 = 1{𝛼 − 𝛽𝑝𝑖𝑡 + 𝛾1PM2.5𝑡 + 𝛾2PM2.5 × Information𝑖𝑡 + 𝜂𝑋𝑖

𝜃1Peer Belief𝑖𝑡 + 𝜃2Past Takeup𝑖𝑡 + 𝜙𝑠𝑡 + �̂�𝑖𝑡 + 𝑒2
𝑖𝑡 > 0}

(13)

Standard errors are computed using the clustered bootstrap described in Cameron, Gelbach, and

Miller (2011).

34. For computational tractability, we assume that the causal model for Past Takeup𝑖𝑡 = max
{
{Takeup𝑖 𝑗}𝑡−1

𝑗=0

}
is a linear

probability model. Allowing the minimum past price to enter linearly, abstracts from the true dynamic nature of the takeup
decision.
35. 𝑒1

𝑖𝑡 might consist of persistent individual characteristics that determine mask takeup in this round and in prior rounds
such as attitudes towards risk. 𝑒2

𝑖𝑡 might consist of unobserved factors that are specific to this round’s takeup decision such
as the quality of the surveyor-respondent interaction.
36. The price offered in the previous round also satisfies the required independence relationship, but we found that it is

a worse predictor of Past Takeup𝑖𝑡 .
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H Average Marginal Effects

Table H.1: The Demand for Clean Air – Average Marginal Effects

Logit LPM
(1) (2) (3) (4) (5)

Average Marginal Effects (pp.)

Price (USD) −25.35*** −24.65*** −24.64*** −25.41*** −26.23***
(0.74) (0.79) (0.85) (0.80) (1.19)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 1.03 0.59 0.22 0.90 0.90

(2.43) (2.19) (2.63) (2.20) (2.47)
× Information 2.92*** 2.70*** 3.52* 2.99*** 4.73***

(1.00) (0.92) (2.12) (1.10) (1.63)
Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: This table shows the average marginal effects of the models from Table 2.
Marginal effects are calculated at the observation level and then averaged across ob-
servations. Covariates are set at the observation level to the observed sample values,
except in the marginal effects for PM2.5: The non-interaction row shows the average
marginal effect of PM2.5when respondents do not receive information, and the interac-
tion value is the additional average marginal effect of PM2.5when respondents receive
information. As in Table 2, standard errors are given in parentheses and are three-way
clustered: at the level of price randomization (survey point by round), at the level of
pollution averaging (day), and at the respondent level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

H.37



I Alternate Specifications & Robustness Checks

I.1 Model tables

Table I.1: The Demand for Clean Air – LPM Models

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.82*** −1.82*** −0.26*** −0.26*** −0.25***
(0.10) (0.09) (0.01) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.17 0.21 0.03 0.01 0.01

(0.16) (0.17) (0.03) (0.02) (0.03)
× Information 0.11 0.02 0.03** 0.04

(0.08) (0.01) (0.01) (0.02)
Information −0.01

(0.03)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 5.60 5.46 2.16 1.09
(4.23) (4.80) (4.59) (4.97)

Information = 1 8.44** 8.50* 8.00* 8.01*
(4.00) (4.59) (4.56) (4.28)

𝑝-value of difference 0.162 0.221 0.011 0.136

Round FEs Yes Yes
Surveyor-by-Round FEs Yes Yes Yes
LASSO Controls Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: This table is similar to Table 2. Column 1 fits a logit model with no in-
teraction between PM2.5 and the information treatment. The MWTP indicated
by “Information = 0” is the MWTP for the full sample. Column 2 includes round
fixed effects rather than surveyor-by-round fixed effects. Columns 3 and 4 com-
pare LPM estimates with round fixed effects and surveyor-by-round fixed effects.
Column 5 includes information as a demand level-shifter and LASSO controls.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table I.2: The Demand for Clean Air – PM2.5Window: 14 Day Average Across City

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.83*** −1.86*** −1.86*** −0.25*** −0.26***
(0.09) (0.09) (0.09) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.20 0.11 −0.04 0.02 −0.01

(0.24) (0.23) (0.26) (0.03) (0.04)
× Information 0.23*** 0.21*** 0.50** 0.03*** 0.05***

(0.07) (0.07) (0.20) (0.01) (0.02)
Information −0.38

(0.25)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 5.17 2.78 −1.02 3.28 −2.01
(6.18) (5.81) (6.62) (6.19) (7.89)

Information = 1 11.07* 8.18 11.86* 9.04 6.72
(6.25) (5.87) (6.10) (6.37) (7.87)

𝑝-value of difference 0.002 0.003 0.015 0.007 0.007

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: This table is similar to Table 2 except that PM2.5 is averaged over the last
14 days rather than over the last day.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table I.3: The Demand for Clean Air – PM2.5Window: 7 Day Average Across City

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.83*** −1.86*** −1.86*** −0.25*** −0.26***
(0.09) (0.09) (0.09) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.10 −0.01 −0.13 0.01 −0.02

(0.17) (0.16) (0.20) (0.02) (0.03)
× Information 0.23*** 0.22*** 0.46** 0.03*** 0.05***

(0.07) (0.07) (0.19) (0.01) (0.02)
Information −0.31

(0.23)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 2.53 −0.20 −3.41 1.16 −3.56
(4.37) (3.99) (5.03) (4.48) (6.01)

Information = 1 8.54** 5.36 8.27** 7.07 5.23
(4.20) (3.87) (3.99) (4.45) (6.18)

𝑝-value of difference 0.001 0.002 0.014 0.005 0.006

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: This table is similar to Table 2 except that PM2.5 is averaged over the last
7 days rather than over the last day.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table I.4: The Demand for Clean Air – PM2.5Window: 1 Day Average at Respondent Location

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.82*** −1.86*** −1.86*** −0.25*** −0.26***
(0.09) (0.09) (0.09) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.01 0.00 0.00 0.01 0.01

(0.16) (0.15) (0.18) (0.02) (0.02)
× Information 0.19*** 0.19*** 0.19 0.03*** 0.04***

(0.07) (0.07) (0.16) (0.01) (0.02)
Information 0.00

(0.20)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 0.18 0.05 0.05 1.21 1.37
(4.29) (3.88) (4.68) (3.77) (4.10)

Information = 1 5.30 4.87 4.86 6.63* 9.12**
(4.01) (3.74) (3.62) (3.80) (4.05)

𝑝-value of difference 0.007 0.007 0.248 0.009 0.011

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,465 6,465 6,465 6,465 6,465

Notes: This table is similar to Table 2 except that PM2.5 is averaged over the last
day at the respondent’s location rather than over the full city.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table I.5: The Demand for Clean Air – Respondent with Multiple Observations

Logit LPM
(1) (2) (3) (4) (5)

Model Coefficients

Price (USD) −1.82*** −1.85*** −1.85*** −0.25*** −0.26***
(0.10) (0.09) (0.09) (0.01) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.15 0.11 0.09 0.02 0.01

(0.17) (0.17) (0.20) (0.02) (0.02)
× Information 0.19** 0.19** 0.24 0.03** 0.05***

(0.08) (0.08) (0.18) (0.01) (0.02)
Information −0.07

(0.21)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 3.82 2.89 2.30 2.99 1.59
(4.53) (4.25) (5.12) (4.33) (4.48)

Information = 1 8.80** 7.79* 8.48** 8.18* 10.17**
(4.36) (4.14) (4.15) (4.38) (4.44)

𝑝-value of difference 0.016 0.013 0.174 0.027 0.005

Surveyor-by-Round FEs Yes Yes Yes Yes Yes
Individual FEs Yes
LASSO Controls Yes Yes Yes
Observations 6,053 6,053 6,053 6,053 6,053

Notes: This table is similar to Table 2 except that the sample is subsetted to only
include respondents that are observed multiple times in the data.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table I.6: Effect of Peer Belief and Past-Takeup – In Experiment

Logit
(1) (2) (3)

Model Coefficients

Price (USD) −1.86*** −1.86*** −2.08***
(0.09) (0.09) (0.17)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.05 0.05 −0.12

(0.17) (0.17) (0.27)
× Information 0.20*** 0.20*** 0.27**

(0.07) (0.07) (0.11)
Peer Belief 0.12 0.09

(0.18) (0.26)
Previous Mask Usage −0.57

(0.37)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 1.16 1.18 −2.78
(4.26) (4.26) (6.17)

Information = 1 6.33 6.37 3.38
(4.11) (4.11) (6.65)

𝑝-value of difference 0.004 0.004 0.011

Surveyor-by-Round FEs Yes Yes Yes
LASSO Controls Yes Yes Yes
Control Fnc. Yes
Observations 6,465 6,465 6,465

Notes: This table is similar to Table 3 except that Past Takeup
is an indicator for whether a mask was worn in any earlier
round of the experiment (as opposed to also including pre-
experiment mask usage). As a result all “round 1” observations
are dropped.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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Table I.7: Effect of Peer Belief and Past-Takeup

Logit Probit Bi-Probit LPM
(1) (2) (3) (4)

Model Coefficients

Price (USD) −1.95*** −1.05*** −1.03*** −0.26***
(0.10) (0.05) (0.03) (0.01)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.08 0.03 0.02 0.01

(0.19) (0.09) (0.06) (0.02)
× Information 0.23*** 0.12*** 0.12*** 0.03***

(0.08) (0.04) (0.03) (0.01)
Peer Belief 0.15 0.07 0.05 0.01

(0.25) (0.11) (0.09) (0.03)
Previous Mask Usage −1.08 −0.62* −0.15* −0.18**

(0.75) (0.37) (0.09) (0.08)
Average Marginal Effects (pp.)

Price (USD) −24.73*** −24.44*** −23.94*** −26.37***
(1.15) (0.87) (0.45) (0.92)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 1.05 0.59 0.54 0.94

(2.37) (2.12) (1.29) (2.19)
× Information 3.94 2.93*** 2.76*** 3.23***

(2.40) (0.94) (0.80) (1.20)
Peer Belief 1.91 1.58 1.13 1.08

(3.13) (2.56) (2.20) (3.32)
Previous Mask Usage −12.46 −13.60* −3.36* −18.07**

(8.09) (7.29) (2.00) (8.08)
Marginal Willingness to Pay per annual 10𝜇𝑔/𝑚3 PM2.5 (USD)

Information = 0 2.01 1.17 1.10 1.70
(4.59) (4.17) (2.61) (3.96)

Information = 1 7.54 6.80 6.53** 7.55*
(4.59) (4.16) (2.64) (4.08)

𝑝-value of difference 0.007 0.002 < .001 0.009

Surveyor-by-Round FEs Yes Yes Yes Yes
LASSO Controls Yes Yes Yes Yes
Control Fnc. Yes Yes
Observations 6,465 6,465 6,465 6,465

Notes: This table shows alternate specifications for how to handle the dy-
namics and endogeneity of including “Previous Mask Usage”. Column (1)
is the logit control function approach included in Table 3. Column (2) uses
a probit control function approach. Column (3) uses a bi-probit approach.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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I.2 Specification curves

Figure I.1: Specification Curve – Uninformed
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Notes: This figure displays a range of MWTP estimates for respondents who did not receive the information

treatment along with the details of the corresponding specification. The first panel is the specification curve,

which shows point estimates and 95% confidence intervals. Black indicates that the estimate was not signif-

icantly different from 0, orange is our preferred specification, and blue indicates that the point estimate is

statistically significantly different from zero and positive. The second panel displays the functional form of

the takeup function. The third indicates if the specification is “dynamic” i.e. past takeup enters the current

takeup decision. The fourth panel is different fixed effects specifications. The fifth is whether the LASSO

controls discussed in Section 5.2 are included. The sixth is if the model allows for heterogeneity in MWTP by

covariates as discussed in Appendix G.1. The seventh is if expected pollution is determined by city-average

pollution in the last day, week, two weeks, month, or if it is pollution at the individual’s location in the last

day. The eighth is whether weights were used. The ninth is if income imputation occurred. Note that income

imputation is only relevant for specifications which consider heterogeneity by income.
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Figure I.2: Specification Curve – Informed
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Notes: This figure displays a range of MWTP estimates for respondents who received the information treat-

ment alongwith the details of the corresponding specification. The first panel is the specification curve, which

shows point estimates and 95% confidence intervals. Black indicates that the estimate was not significantly

different from 0, orange is our preferred specification, and blue indicates that the point estimate is signifi-

cantly different from zero and positive. The second panel displays the functional form of the takeup function.

The third indicates if the specification is “dynamic” i.e. past takeup enters the current takeup decision. The

fourth panel is different fixed effects specifications. The fifth is whether the LASSO controls discussed in Sec-

tion 5.2 are included. The sixth is if the model allows for heterogeneity in MWTP by covariates as discussed

in Appendix G.1. The seventh is if expected pollution is determined by city-average pollution in the last day,

week, two weeks, month, or if it is pollution at the individual’s location in the last day. The eighth is whether

weights were used. The ninth is if income imputation occurred. Note that income imputation is only relevant

for specifications which consider heterogeneity by income.
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Figure I.3: Specification Curve – Impact of Information
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Notes: This figure displays a range of estimates of the difference in MWTP between respondents who did and

did not receive the information treatment along with the details of the corresponding specification. The first

panel is the specification curve, which shows point estimates and 95% confidence intervals. Black indicates

that the estimate was not significantly different from 0, orange is our preferred specification, and blue indi-

cates that the point estimate is significantly different from zero and positive. The second panel displays the

functional formof the takeup function. The third indicates if the specification is “dynamic” i.e. past takeup en-

ters the current takeup decision. The fourth panel is different fixed effects specifications. The fifth is whether

the LASSO controls discussed in Section 5.2 are included. The sixth is if the model allows for heterogeneity

in MWTP by covariates as discussed in Appendix G.1. The seventh is if expected pollution is determined by

city-average pollution in the last day, week, two weeks, month, or if it is pollution at the individual’s location

in the last day. The eighth is whether weights were used. The ninth is if income imputation occurred. Note

that income imputation is only relevant for specifications which consider heterogeneity by income.

I.50



I.3 Sensitivity to Mask Usage

Table I.8: Sensitivity of MWTP Results to Mask Usage

Hours per Day Days Multiplier MWTP
Observed usage – no heterogeneity

Information = 0 1.9 7.6 1.00 1.16
Information = 1 1.9 7.6 1.00 6.33

Observed usage – by information treatment
Information = 0 1.9 8.4 0.88 1.02
Information = 1 1.8 6.9 1.14 7.20

5 day continuous usage
Information = 0 8.0 5.0 0.35 0.41
Information = 1 8.0 5.0 0.35 2.25

CDC high-dust usage recommendation
Information = 0 8.0 1.0 1.77 2.05
Information = 1 8.0 1.0 1.77 11.23

Notes: This table displays mask usage and the corresponding multi-
pliers on MWTP relative to our preferred mask usage measure. The
first two columns are the mask usage, the third column is the corre-
spondingmultiplier to be applied to ourMWTP estimates. The fourth
column includes the MWTP estimates from our preferred specifica-
tion scaled by the corresponding multiplier. The first panel uses our
preferred mask-usage measure, average reported usage across treat-
ment arms. The second allows for heterogeneity in mask-usage by
treatment arm. The third panel assumes five days of continuous us-
age. The fourth panel uses the CDC recommendation for N90/95
mask usage in high-dust environments.
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J Assorted Impacts of Information

Table J.1: Effect of Information on Air Quality Perceptions, Mask Usage, and Fatalism

No Health-Info Health-Info 𝑝-value BH-adjusted 𝑝-value
Outside Air Quality Rating

Air quality rating (1–5) 2.28 2.25 0.841 0.895
(1.15) (0.96)

Air quality rating < 3 0.57 0.56 0.895 0.895
(0.50) (0.50)

Indoor Air Quality
Doors and windows open - day 0.76 0.76 0.816 0.895

(0.43) (0.43)
Doors and window open - night 0.05 0.04 0.243 0.459

(0.21) (0.19)
Indoor PM (10𝜇𝑔/𝑚3) 24.69 25.01 0.857 0.895

(15.70) (15.05)
Stated Mask Usage

Still has mask 0.61 0.71 0.115 0.280
(0.49) (0.45)

Hours per day 1.92 1.77 0.302 0.467
(2.03) (1.96)

Days per week 2.56 2.27 0.098 0.280
(2.49) (2.40)

Days per month 7.46 7.93 0.585 0.828
(7.74) (8.33)

Would Wear a Mask
At the store 0.53 0.59 0.100 0.280

(0.50) (0.49)
With relatives 0.50 0.57 0.060 0.253

(0.50) (0.50)
With friends 0.58 0.65 0.058 0.253

(0.49) (0.48)
While traveling to work 0.60 0.65 0.136 0.290

(0.49) (0.48)
At work 0.56 0.63 0.059 0.253

(0.50) (0.48)
Fatalism

Wears a helmet or seatbelt 0.67 0.66 0.690 0.895
(0.47) (0.47)

Regularly washes hands with soap 0.75 0.79 0.278 0.467
(0.43) (0.41)

Happiness (1–10) 6.14 6.45 0.025 0.253
(2.28) (2.34)
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Notes: This table reports means and standard deviations (in parentheses) of survey questions capturing air
quality perceptions and defensive behaviors, mask usage, and fatalism. The first block asks respondents to
give an air quality rating out of 5, with 1 being very bad and 5 being clean. In the second block of questions,
surveyors recorded indoor PM2.5 concentrations and respondents were asked whether they leave doors and
windows open, a behavior that worsens indoor air quality. In the third block of questions, respondents were
asked if they still had the mask offered in the previous round. If so, they were asked about mask usage. The
fourth block of questions asks respondents if they would wear a mask in different settings. The fifth block
attempts to find if informationmade respondents fatalistic. Happiness is out of 10, 1 is completely dissatisfied,
10 is completely satisfied. The 𝑝-value in column 3 is computed by regressing the response on an intercept
and an indicator for having received health information. Questions in blocks 1-3 and 5 were asked prior to the
information treatment, so previous round treatment status was used. The 𝑝-values in column 4 are adjusted
for multiple testing using the Benjamini–Hochberg procedure, which controls the false discovery rate.

K Persistence of Information

Table K.1: Impact of Information in Previous Rounds

Last Round Info Ever Past Info
(1) (2) (3) (4)

Price −1.818*** −1.824*** −1.818*** −1.823***
(0.096) (0.095) (0.096) (0.095)

PM𝑟
2.5 (10𝜇𝑔/𝑚3) 0.170 0.097 0.170 0.092

(0.163) (0.179) (0.165) (0.184)
× Information 0.237*** 0.263***

(0.081) (0.082)
× Past-Information 0.016 −0.265 0.011 −0.117

(0.095) (0.176) (0.097) (0.225)
× Information × Past-Information 0.147 −0.047

(0.189) (0.244)
Observations 6,465 6,465 6,465 6,465

Notes: This table shows the impact of receiving information in past rounds on current
round takeup. In columns (1) and (2) ”Past-Information” is set to whether or not they
received information in the most recent previous round. In columns (3) and (4) ”Past-
Information” is set to whether or not they received information in any previous round. All
columns are a logistic regression for mask take-up, include controls selected by double-
LASSO, and include surveyor-by-round fixed effects. Standard errors are given in paren-
theses and are three-way clustered: at the level of price randomization (survey point by
round), at the level of pollution averaging (day), and at the respondent level.
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01
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L MWTP Implied by the VSL
We compute the MWTP implied by the Sample VSL as follows:

MWTP
= Value of a statistical life
× 1/Life expectancy ($/year)
× CR function ($/lifetime exposure to PM2.5)
× 1/Life expectancy ($/annual exposure to PM2.5)

Table L.1: Impact of Information in Previous Rounds

VSL Concentration-Response Paper Concentration-Response Function MWTP
EPA (Elasticity 1) Ebenstein et al. 2017 0.98 194
EPA (Elasticity 1) Pope et al. 2009 0.61 120
EPA (Elasticity 1) Correia et al. 2013 0.35 69
EPA (Elasticity 1) Apte et al. 2018 0.21 41
Majumder et al. 2018 Ebenstein et al. 2017 0.98 453
Majumder et al. 2018 Pope et al. 2009 0.61 281
Majumder et al. 2018 Correia et al. 2013 0.35 161
Majumder et al. 2018 Apte et al. 2018 0.21 95

Notes: This table shows the MWTP implied by the VSL under different assumptions on the value of the
VSL and the concentration-response function. Entries marked “EPA (Elasticity 1)” use the EPA’s VSL and
the assumption that the elasticity of the VSL with respect to real income is 1.

M The Health Impacts of Mask Distribution
In model estimates, we find that demand for clean air and pollution masks are modest. What
drives ex-ante consumer surplus from mask receipt? By exploiting our randomized assignment of
pollution mask offers, we can estimate the effects of masks on ex-post short-run health outcomes.
For individual 𝑖 in round 𝑡 we estimate

𝑌𝑖,𝑡 = 𝛼 + 𝛽Takeup𝑖 ,𝑡−1 +HInfo𝑖,𝑡−1 + 𝑋′
𝑖𝜂 + 𝛿𝑡 + 𝜖𝑖𝑡 , (14)

where 𝑌𝑖𝑡 is the health outcome in round 𝑡, Takeup𝑖,𝑡−1 is whether the individual took up the mask
in round 𝑡 − 1, 𝑋𝑖 is individual-specific controls at baseline, and 𝛿𝑡 is the round fixed effects. Since
Takeup𝑖 ,𝑡−1 might be endogenous, we use indicators of whether the price of mask in round 𝑡 − 1
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was 0 / 10/ 30 / 50 as instruments for Takeup𝑖,𝑡−1:

Takeup𝑖,𝑡−1 = 𝛽0 +
∑

𝑐∈{0,10,30,50}
𝛽1,𝑝1[𝑝𝑖,𝑡−1 = 𝑐] +HInfo𝑖 ,𝑡−1 + 𝑋′

𝑖𝛽2 + 𝛿𝑡 + 𝜂𝑖 ,𝑡−1.

We estimate this using Two Stage Least Squares.
We estimate the model using observations in two different samples. First, we include those

offered N90 masks at different prices (0, 10, 30, 50) as well as the control group. Second we include
the control group and the placebo group

We use a similar specification to estimate the health impact of black masks that were offered
in the placebo group. There are two main differences: 1) Takeup𝑖,𝑡−1 is now instrumented with
an indicator of whether the individual was assigned to the placebo group; and 2) the model is
estimated using observations in the placebo and control group.
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Table M.1: Health Impact of Mask Distribution

Control
Mean

Impact of
N90 Takeup

Impact of
Black Mask Takeup

Panel A: Self-Reported Health Outcomes
Pollution Symptoms 0.56*** -0.02 -0.01

(0.02) (0.02) (0.04)
[813] [3732] [1142]

Non-Pollution Symptoms 0.46*** 0.01 0.10***
(0.02) (0.02) (0.03)
[813] [3732] [1142]

Visited Hospital or Doctor Last 14 Days 0.36*** -0.01 0.03
(0.02) (0.02) (0.04)
[813] [3732] [1142]

Arcsinh(Hospital or Doctor Expenditures) 2.16*** 0.01 0.27
(0.13) (0.15) (0.27)
[813] [3723] [1142]

Panel B: Biometric Health Outcomes
Resting Heart Rate (BPM) 84.56*** -1.53** 0.27

(0.73) (0.72) (1.46)
[437] [1925] [599]

Systolic Blood Pressure 127.41*** -1.36 0.10
(1.23) (1.27) (2.02)
[429] [1871] [589]

Diastolic Blood Pressure 85.13*** -0.60 -1.37
(0.79) (0.82) (1.46)
[429] [1870] [589]

Blood Oxygen (%) 97.38*** -0.08 -0.02
(0.18) (0.19) (0.31)
[430] [1902] [588]

Peak Flow Lung Capacity (L/Min) 252.43*** 5.06 -6.28
(6.79) (6.44) (10.99)
[412] [1754] [559]

Notes: Panel A reports the average of self-reported health outcomes in the control group in rounds 2, 3, and
4 and the estimated impact of N90 and black mask takeup in round 𝑡 − 1 on these outcomes in round 𝑡 for
𝑡 = 2, 3, and 4 from an IV regression as in Eq. (14). Panel B reports the average biometric health outcomes in
the control group from round 2 and 4 and the estimated impact of N90 and black mask takeup from round
𝑡 − 1 on these outcomes in round 𝑡 for 𝑡 = 2 and 4. N90 mask takeup in last round is instrumented by
indicators of whether the mask price in last round was 0/10/30/50 Rs. Black mask takeup in last round
is instrumented by indicators of whether the individual is assigned to the placebo group. We assign each
arm sample weights proportional to the inverse of the number of observations from that arm in that round.
As a result, all arms receive equal weight inside each round. Standard errors are clustered at the level of
treatment assignment (sampling point × round). Standard errors are in parentheses, sample sizes are in
brackets.
* 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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We find that the provision of inexpensive pollution masks has little impact on short-run health
outcomes. This seems to be driven by low self-reported usage of masks in the weeks following
mask takeup: those who takeup the free mask offer report using the mask for 1.8 hours per day
for 8 days. This suggests that total reductions in pollution exposure may be small for the average
individual. Our sample may not have enough power to detect small differences in short-run health
that would be expected with such a small reduction in air pollution exposure.

In addition, whatever value does exist in masks is a potentially large vector of short- and long-
run health and productivity impacts. We test only a small subset of these potential outcomes.
It is possible that (i) gains exist among unobserved dimensions and/or (ii) our sample is under-
powered to detect small effects among measured dimensions. Overall, however, these results are
consistent with our demand estimates which suggest MWTP and consumer surplus from mask
receipt is modest.

Lastly, another interpretation of little changes to short-term health is individual disbelief in
mask effectiveness. That is, if individuals do not think masks will filter PM2.5 and improve health,
they will not use them ex-post and thus experience no short-term health gain. However, as de-
scribed earlier, our model parameter estimates of 𝛾 > 0 suggest that, indeed, individuals have
higher demand at higher pollution levels (though imprecise), which yields a positive point estimate
of MWTP. We further find that the implied one-year VSL from our MWTP estimate is roughly 19%
of annual household income in our sample, similar to that of Ito and Zhang (2020).³⁷ This suggests
that individuals are, on average, interpreting masks as defensive investments against air pollution
and its associated health damages.

37. As in Ito and Zhang (2020), we can compute the implied one-year VSL from the MWTP estimate in this paper using
prior estimates of the life expectancy reductions associated with PM2.5 (Ebenstein et al. 2017).
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Table M.2: Pollution vs. Non-Pollution Health Symptoms in Survey

Symptom Air pollution related Source (if pollution related)
Headaches TRUE Mukamal et. al. (2009)
Dizziness TRUE Künzli et. al. (2000)
Increased fatigue TRUE Lei et. al. (2016)
Vision impairment FALSE
Skin rashes FALSE
Joint pain FALSE
Hand numbness or tingling FALSE
Coughing or wheezing TRUE Ostro (2004), Duflo et al. (2008), Afroz et al. (2003)
Stomach ache FALSE
Shortness-of-breath/chest-
tightness

TRUE Ostro (2004)

Burning eyes TRUE Afroz et al. (2003), Guttikunda and Goel (2013)
Nausea FALSE
Fever TRUE Lei et. al. (2016)
Toothaches FALSE
Hearing impairment FALSE
Phlegm TRUE Ostro (2004), Afroz et al. (2003)

Notes: This table describes the construction of pollution and non-pollution related symptoms. We report
various symptoms and whether or not they are related to pollution (and sources if so).
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N Government Mask Distribution
Fig. N.1 documents a tweet released by Chief Minister of Delhi Arvind Kejriwal announcing the
mask distribution program in 2019.

Figure N.1: Chief Minister of Delhi Tweets About Mask Distribution Campaign

Note: This figure shows a Twitter post by Chief Minister Arvind Kejriwal announcing the government mask
distribution program of 5 million pollution masks in November 2019. Pictures show two masks being dis-
tributed to each child at a Delhi government school.

N.1 Sampling Procedure
The secondary sample, which we refer to as “public bus commuters” (𝑛 = 2,110), was created later
in 2019 and captures individuals who use the public bus system in Delhi, and its neighboring cities
Gurgaon and Noida, used for constructing a control group. To create this sample, we randomly
selected 120 bus stops operated by the Delhi Transport Corporation, 18 bus stops from routes op-
erated by the Noida Metro Rail Corporation, and 79 bus stops from routes operated by Gurgaon
Metropolitan City Bus Limited. These three organizations comprise the universe of all bus stops
in these three cities. Upon arriving at the bus stop, the enumerator would survey every other in-
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dividual waiting at the bus stop with a small survey incentive of 50Rs ($0.73 USD). This sampling
process was carried out between October and December 2019.

Figure N.2: Bus Stops Classifications in Secondary Sample

Classification of Stop
Delhi
Gurgaon
Noida

Notes: This figure maps the bus stops in Delhi (blue) and in Non-Delhi (black), where surveys were conducted
for the secondary analysis of the Delhi government mask distribution campaign. Neighboring “Non-Delhi”
regions include Gurgaon to the south and Noida to the east.

N.1.1 Location definition

We collect two possible location variables for whether respondents are exposed to the Delhi gov-
ernmentmask distribution campaign. The first is the “home” address (whether the respondent has
lived in Delhi for the last 10 years or more); the second is the “stop” location (where the bus stop
is in Delhi). Because the mask distribution campaign offered masks to children attending schools,
we use the home definition to split our sample between the Delhi and the non-Delhi sample. We
provide estimates for both definitions below, and are qualitatively similar.

N.1.2 Balance
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Table N.1: Secondary Sample: Delhi vs Non-Delhi (Home Definition)

Non-Delhi
(1)

Delhi
(2)

p-value
(3)

Age 34.31 37.34 < 0.01
Female (%) 0.26 0.29 < 0.01
Completed Secondary School (%) 0.59 0.60 0.31
Employed (%) 0.81 0.78 0.07
Annual Income (USD) 9,084.48 8,057.83 0.36
Obs. 1,486 3,269

Notes: This table describes the mean of selected characteristics for the
Non-Delhi and the Delhi sample using the “home” definition (column
1 and 2, respectively). Column 3 reports a 𝑝-value of test of equality
across means of the given variable from the two samples.

Table N.2: Secondary Sample: Delhi vs Non-Delhi (Stop Definition)

Non-Delhi
(1)

Delhi
(2)

p-value
(3)

Age 36.55 36.18 0.26
Female (%) 0.24 0.34 < 0.01
Completed Secondary School (%) 0.59 0.62 0.03
Employed (%) 0.73 0.87 < 0.01
Annual Income (USD) 7,221.98 9,902.15 0.01
Obs. 2,747 2,016

Notes: This table describes the mean of selected characteristics for the
Non-Delhi and the Delhi sample using the “stop” definition (column
1 and 2, respectively). Column 3 reports a 𝑝-value of test of equality
across means of the given variable from the two samples.
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N.2 Difference-in-difference Analysis
We estimate the effect of themask distribution policy using a difference-in-differences specification
of the following form:

𝑌𝑖𝑡 = 𝛼𝑇1(𝑖 in Delhi) +
7∑

𝑠=−3
𝛿𝑠1(𝑡 = 𝑠) +

7∑
𝑠=−3

𝛽𝑠1(𝑖 in Delhi) ∗ 1(𝑡 = 𝑠) + 𝜖𝑖𝑡 (15)

where𝑌𝑖𝑡 is an outcome of interest for individual 𝑖 at week 𝑡. We include week fixed effects (𝛿𝑠) and
allow the treatment effects (𝛽𝑠) to vary among weeks. We use 𝑠 ∈ [−3, 7] to denote the event-time
relative to the first week of treatment. For example, 𝑠 = −1 is the last week of the pre-treatment
period and 𝑠 = 0 is the first week of treatment. We normalize 𝛽−1 = 0 so that all other 𝛽𝑠 are
treatment effects relative to the the last week of the pre-treatment period. We cluster the standard
errors at the bus-stop level.
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Figure N.3: Rollout of Government Mask Program
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Notes: This figure plots weekly averages for children’s mask receipt (fraction of children receiving a mask in
school) from our repeated cross-sectional surveys of respondents in both Delhi and Non-Delhi. Here, the
sample was split between the Delhi and Non-Delhi sample with the “home” definition.
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Figure N.4: DID Estimates of the Government Mask Distribution Program

(a) Children’s Mask Receipt
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(b) Children’s Mask Receipt

(Stop Definition)
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(c) Self-reported Mask Usage

(Home Definition)
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(d) Self-reported Mask Usage

(Stop Definition)
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(e) Take Up

(Home Definition)
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(f) Take Up

(Stop Definition)
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Notes: The figure reports the estimated treatment effects (blue) from the DID specification in Eq. (15) for dif-
ferent binary outcome variables across definitions. “Children’s Mask Receipt” is whether the respondent’s
children received a mask through the government policy. “Self-reported Mask Usage” is whether the respon-
dent used a mask in the past week. “Take Up” is whether the respondent took up the mask offer (10INR or
30INR, randomized). 95% confidence intervals (black) are clustered at the bus stop level.
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Table N.3: DID Estimates of Government Mask Distribution (Home Definition)

Self-Reported Mask Usage
(1)

Children’s Mask Receipt
(2)

Take Up
(3)

t - 3 0.059 −0.033 0.012
(0.046) (0.051) (0.034)

t - 2 0.013 −0.060 −0.058
(0.045) (0.057) (0.039)

t 0.063 0.089 −0.044
(0.046) (0.081) (0.038)

t + 1 0.131** 0.216*** 0.024
(0.062) (0.081) (0.028)

t + 2 0.101 0.252*** −0.023
(0.065) (0.074) (0.038)

t + 3 0.232*** 0.370*** −0.047
(0.058) (0.077) (0.031)

t + 4 0.150** 0.272*** −0.071*
(0.065) (0.087) (0.038)

t + 5 −0.023 0.085 −0.099**
(0.057) (0.119) (0.041)

t + 6 −0.095 0.144 −0.051
(0.060) (0.106) (0.033)

t + 7 0.038 0.086 −0.062
(0.059) (0.131) (0.047)

Observations 4,745 1,243 4,755

Notes: The table reports the estimated treatment effects from the DID specification
in crefeq: DID for different binary outcome variables using the “Home” definition.
“Children’s Mask Receipt” is whether the respondent’s children received a mask
through the government policy. “Self-reported Mask Usage” is whether the respon-
dent used a mask in the past week. “Take Up” is whether the respondent took up
the mask offer (10INR or 30INR, randomized). Standard errors in parenthesis are
clustered at the bus stop level.
* 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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Table N.4: DID Estimates of Government Mask Distribution (Stop Definition)

Self-Reported Mask Usage
(1)

Children’s Mask Receipt
(2)

Take Up
(3)

t - 3 0.028 0.024 −0.112***
(0.049) (0.059) (0.035)

t - 2 −0.053 −0.014 −0.062
(0.045) (0.060) (0.039)

t 0.010 0.058 −0.041
(0.051) (0.086) (0.041)

t + 1 0.173*** 0.210** −0.011
(0.056) (0.098) (0.034)

t + 2 0.097* 0.281*** −0.005
(0.058) (0.091) (0.037)

t + 3 0.192*** 0.501*** −0.068**
(0.057) (0.087) (0.034)

t + 4 0.211*** 0.465*** −0.029
(0.064) (0.097) (0.037)

t + 5 0.015 0.383*** 0.012
(0.053) (0.098) (0.035)

t + 6 −0.066 0.305*** −0.041
(0.050) (0.103) (0.031)

t + 7 −0.002 0.381*** −0.095**
(0.053) (0.123) (0.040)

Observations 4,751 1,243 4,763

Notes: The table reports the estimated treatment effects from the DID specification in
crefeq: DID for different binary outcome variables using the “Stop” definition. “Chil-
dren’s Mask Receipt” is whether the respondent’s children received a mask through
the government policy. “Self-reported Mask Usage” is whether the respondent used
a mask in the past week. “Take Up” is whether the respondent took up the mask offer
(10INR or 30INR, randomized). Standard errors in parenthesis are clustered at the
bus stop level.
* 𝑝 <0.10, ** 𝑝 <0.05, *** 𝑝 <0.01.
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