Technological Stickiness: Switching and Entry in the Long Transition from Water to Steam Power

Richard Hornbeck University of Chicago Shanon Hsuan-Ming Hsu University of Chicago

Anders Humlum University of Chicago Martin Rotemberg New York University

March 2024

Motivation

Technological innovations drive growth, but widespread adoption can be protracted

 $\rightarrow\,$ Long periods with coexistence of new and old technology (David, 1990)

Case in point: Transition from water to steam power in 19th century US manufacturing

- Steam offers freedom of location, scalability, all-year reliability, ...
- Yet, 100 years before peak adoption

Steam Use in Lumber and Flour Milling

Average County

Steam Use in Lumber and Flour Milling

Water vs Steam: Static

- Steam has many advantages over water power
 - fewer locational constraints, easier to scale, not seasonal,...
- But benefits even larger in places that previously did not have access to mechanical power

Static advantages can lead to gradual steam adoption given technical change

Water vs Steam: Dynamic

- Water powered mills depreciate slowly
 - You can go buy Central Milling Flour (est. 1867), 2 miles away
- But businesses churn: 10-year survival rate is about a fifth in our sample

Related Literature

- 1. Technology diffusion: Griliches (1957), Gerschenkron (1962); Jovanovic and Nyarko (1996), Comin and Hobijn (2010), Collard-Wexler & De Loecker (2015), Humlum (2021)
 - \star Quantify role of switching costs
- 2. Creative destruction: Schumpeter (1947), Christensen (1997)
 - $\star\,$ Steam entrants crowd out of water incumbents
- 3. Water and steam power: Temin (1966); Chandler (1972); Hunter (1979); Atack (1979); Rosenberg and Trajtenberg (2004); Atack, Bateman, and Margo (2008); Chernoff (2021)
 - $\star\,$ Long panel to study switching and entry

Key Features of the Model

Estimate structural model of firm entry and steam adoption:

- Both steam and waterpowers exist in tandem:
 - One must be cheaper to purchase, the other cheaper to use
 - Use the firm size distribution \Rightarrow steam is the low marginal cost technology
- Similar strategy to motivate:
 - Improvements in steam power over time
 - Differences in water costs over space

Quantify role of switching barriers in aggregate transition dynamics

 \Rightarrow Given entry, what makes firm-level barriers matter on aggregate?

Roadmap

Data

Facts

Reduced-Form Results

Water Power Potentials

 \rightarrow Flow and fall are complements in producing power

Historical Water Census

Historical Water Census

"describing privileges actually in use, and calling attention to locations where power could be advantageously developed" **Bas**

Modern Hydrographic Data (NHDPlusV2)

For each "flowline" (1 mile river segments):

- 1. Estimates natural water flow, independent of dams and industrial activity
 - Geological model based on local rainfall, evaporation, flow transfers, etc.
- 2. Reports elevation change

Modern Water Power

Flow Rate

Establishment-Level Census of Manufactures

Figure: Alson Rogers' Lumber Mill in 1850

Name of Corneration, Company, or		Name of Business, Capital invested		Raw Material used, including Enel.		Kind of	Average num- ber of hands		verage num- ber of hands Wages.		Annual Product.			
Individual, producing Article the Annual Value of \$500.	N 10	Menufacture, or Product.	in Real and Personal Estate in the Business.	Quantities.	Kinds.	Values,	motive power, machinery, structure, or resource.	Main.		Pranta. Pranta. Armange Armang Armange Armang Armange Armang Armange Armange Armange Armange Armange Armange Armange Armange Armange Armange Armange Armange Armang Armang Armange Armange Armange Armang Armange Arma		Quantities.	Kinds.	Values.
1	12.7	, 9	3	4	5	6	7	8	9	10	11	19	13	14
alson Begue	, ,	landering	2500	1000	logs	ber	Matin	3		63		200 mg	Bonnels	13000

Power Use By Sector

Link establishments over time based on names, location, and industry

- 1. Hand-link mills 1850-1880
- 2. Validate against machine-learning model
- 3. Validate links in historical society pages

Establishment-Level Census of Manufactures

Figure: The Rogers' Lumber Mill in 1850 & 1880

Name of Corporation, Company, or	Name of Business,	Name of Business, Capital invested		Raw Material used, including Enel.		Kind of	Average num- ber of hands		wages.		Annual Product.		
Individual, producing Articles to the Annual Value of \$500.	Menufacture, or Preduct.	in Real and Personal Estate in the Business.	Quantities.	Kinds.	Values.	motive power, machinery, structure, or resource.	Main.	Frank.	Average monthly cost of mode labour.	Average monthly cost of female labour.	Quantities.	Kinds.	Values.
1	, 9	3	4	5	6	7	8	9	10	11	19	13	14
alson Acques	landering	2500	1000	logs	ber	Matin	3		63		200 mg	a Barnels	1.5000

Roadmap

Data

Facts

Reduced-Form Results

Fact 1: Entrants More Likely to Use Steam

Fact 1: Entrants More Likely to Use Steam

Table: Survival Rate

	I	By Initia	l Outpu	By Initial	Power Source	
Year	Q1	Q2	Q3	Q4	Water	Steam
1850-1860	0.178	0.220	0.222	0.247	0.223	0.163
1860-1870	0.181	0.206	0.220	0.240	0.229	0.165
1870-1880	0.202	0.231	0.253	0.275	0.256	0.207

Fact 3: Steam Plants are Larger

Mill Log Revenue

Fact 4: Steam Diffuses to Smaller Plants Over Time

Fact 5: (Potential) Waterpower leads to (Actual) Waterpower

Stylized Fact 5b: Potential waterpower doesn't lead to larger mills

Stylized Fact 1b: Water Incumbents don't "grow" faster than entrants

🔲 t 🛛 🏥 t+10

Stylized Fact 1c: Water-to-Steam Switchers Grow

Figure: Mill Size by Past Switching Choice

Linking to the Population Census

	Mean Value	Uses Steam			
	(1)	(2)	(3)	(4)	(5)
Immigrant	0.069	0.076			0.075
	[0.253]	(0.015)			(0.015)
Age, in years	44.7		-0.0018		-0.0016
	[13.3]		(0.0002)		(0.0002)
Professional Miller	0.395			0.041	0.035
	[0.489]			(0.006)	(0.006)
# Mills	30,777	30,777	30,777	30,777	30,777
Mean of Dependent Variable		0.203	0.203	0.203	0.203

Translating Stylized Facts to Model Assumptions

Stylized Fact

- 1. Business churn
- 2. Entrants use more steam
- 3. Steam users are larger
- 4. Steam diffuses to smaller plants
- 5. Water potential \rightarrow Water use

Model Assumption

- 1. Fixed costs of operating
- 2. Fixed costs of switching
- 3. Fixed costs of adoption
- 4. Falling fixed costs of adoption
- 5. Heterogeneous fixed costs of waterpower over space

Comparative Statics

Lower waterpower \rightarrow

- 1. Faster steam adoption
 - especially of entrants
- 2. Faster growth
 - especially of entrants
- 3. Unclear: if incumbents are crowded out
 - option value of steam power vs. market stealing of steam entrants

Roadmap

Data

Facts

Reduced-Form Results

Identification

Waterpower Potentials (per m^2)

Raw Variation

Baseline Controls

Baseline controls

- Total stream flow, Ruggedness
- Dummy for navigable river, Distance to navigable river, 1850 market access
- Coal

Revisiting Fact 5a: (Potential) Waterpower Leads to (Actual) Waterpower

	All Mills (1)	Only Lumber Mills (2)	Only Flour Mills (3)
Panel A. Number of Waterpowered Mills			
Lower Waterpower	-1.055	-1.246	-0.783
	(0.130)	(0.173)	(0.109)
Panel B. Revenue of Waterpowered Mills			
Lower Waterpower	-1.127	-0.974	-1.178
	(0.249)	(0.215)	(0.302)
# County-Industries	1,199	612	587

Revisiting Fact 5a: (Potential) Waterpower Leads to (Actual) Steampower

	All Mills (1)	Only Lumber Mills (2)	Only Flour Mills (3)
Panel C. Steam Share of Mills			
Lower Waterpower	0.089	0.107	0.060
	(0.015)	(0.019)	(0.016)
Panel D. Steam Share of Revenue			
Lower Waterpower	0.123	0.160	0.060
	(0.022)	(0.031)	(0.021)
# County-Industries	1,199	612	587

In GE: (Potential) Waterpower Leads to Economic Activity

	All Mills (1)	Only Lumber Mills (2)	Only Flour Mills (3)
Panel E. Total Number of Mills			
Lower Waterpower	-0.956	-1.100	-0.738
	(0.119)	(0.156)	(0.105)
Panel F. Total Revenue of Mills			
Lower Waterpower	-0.876	-0.704	-0.973
	(0.215)	(0.173)	(0.291)
# County-Industries	1,199	612	587
Lower Waterpower \rightarrow Earlier Steam Adoption and Economic Growth

	Steam Share of Mills (1)	Total Mills (2)	Total Mill Revenue (3)
Growth in Lower Waterpower Counties:			
From 1850 to 1860	0.067	0.220	0.183
	(0.016)	(0.062)	(0.081)
# County-Industries	1,084	1,199	1,199
From 1860 to 1870	0.034	0.113	0.203
	(0.013)	(0.052)	(0.097)
# County-Industries	1,061	1,199	1,199
From 1870 to 1880	-0.009	0.092	0.140
	(0.013)	(0.036)	(0.087)
# County-Industries	1,138	1,199	1,199

Earlier Steam Adoption... especially of entrants

	Entrants (1)	Water Incumbents (2)	Difference (1) - (2) (3)
Adoption in Lower Waterpower Counties:			
In 1860	0.169	0.034	0.135
	(0.024)	(0.021)	(0.023)
# County-Industries	1,076	607	
In 1870	0.188	0.049	0.139
	(0.022)	(0.018)	(0.025)
# County-Industries	1,151	560	
ln 1880	0.172	0.051	0.121
	(0.022)	(0.024)	(0.025)
# County-Industries	1,169	685	. ,

Faster Growth... especially of entrants

	Entry Rate (1)	Survival Rate (2)	Difference $(1) - (2)$
Elasticity with Respect to Lower Waterpower	(-)	(-)	(0)
In 1860	0.323	-0.230	0.554 (0.089)
# County-Industries	1,199	1,199	(0.000)
In 1870	0.168	-0.266	0.434
# County-Industries	(0.058) 1,199	(0.057) 1,199	(0.072)
ln 1880	0.158	-0.158	0.316
# County-Industries	(0.045) 1,199	(0.040) 1,199	(0.061)

Brief Digression: Agglomeration

	Total Non-Mill Establishments (1)	Steam User Share of Non-Mill Establishments (2)	Steam Makers, Relative to All Establishments (3)
Differences in Lower Wate	erpower Counties:		
In 1850	-0.546	0.016	0.410
	(0.229)	(0.005)	(0.162)
# Counties	690	674	690
In 1860	-0.428	0.023	0.326
	(0.328)	(0.008)	(0.211)
# Counties	690	661	690
In 1870	-0.525	0.035	0.501
	(0.234)	(0.010)	(0.242)
# Counties	690	678	690

Table: Waterpower and Non-Mills

Model & History: Purchase Price of Power

Historical evidence:

- Steam Engine costs \$2500 in 1840 (Armistead et al. 1841)
- Purchase Price of Steam and Water similar in 1880 (Swain 1888)
- Operating costs of steam 2x water (Swain 1888)

Other Model Estimates

- With complete irreversability sunk costs are 95% of barriers
- Agglomeration benefits aren't huge 2.5% increase in productivity with 100% steam use but generate large increases in aggregate output

Counterfactuals: Effects of Switching Barriers

Counterfactuals: Diffusion of Steam Power with a 1 year subsidy

Counterfactuals: Diffusion of Steam Power with a 20 year subsidy

Counterfactuals: Diffusion of Steam Power with a permanent subsidy

Switching Costs AND Fixed Costs Matter

Conclusion

Previous investments in waterpower

- Slowed the adoption of steam
- · Barred incumbents from benefits of steam

Switching costs are quantitatively important

- Steam would have diffused faster without water lock-in
- Entry/exit does not neutralize switching costs
- Spillovers small enough that temporary policies would have temporary effects

Thank You!

Model Ingredients

- 1. Manufacturers: select locations, choose power sources, sell output locally
 - $\rightarrow\,$ Forward-looking decision: future adoption costs, future demand, etc.
- 2. Steam power is easier to scale, but incumbents face switching costs \rightarrow Option value of steam power vs. market stealing by steam entrants
- 3. Locations differ by water adoption costs
- 4. Steam adoption costs fall everywhere

Production & Demand

Productivity determined by a baseline productivity φ , an additional productivity from its power source γ_R , and an agglomeration force $\alpha_{R_{ilt}}$ in local steam-use s_{lt}

$$y_{j|t} = \exp(\varphi_{j|t} + \gamma_{R_{j|t}} + \alpha_{R_{j|t}} s_{lt}) x_{j|t}$$

Consumers have nested CES demand, with elasticity ϵ within sector and η across So, a firm's sales and profits are

$$y_{j|t} = p_{j|t}^{-\epsilon} P_{lt}^{\epsilon-\eta}$$
$$\pi_{j|t}(R) = \frac{1}{\epsilon} P_{lt}^{\epsilon-\eta} \left(\frac{\epsilon}{\epsilon-1} \frac{w}{\exp(\varphi_{j|t} + \gamma_{R_{j|t}} + \alpha_{R_{j|t}} s_{lt})} \right)^{1-\epsilon}$$

Power

Technology states

$R \in \{$ Entrant, Water, Steam $\}$

Costs of switching reflect buying prices, resale values, and other frictions

$$c_{lt}(R,R') = \begin{cases} 0 & \text{if } R = R' \\ c_{lt}(R') & \text{if } R = E \\ c_{lt}(R') - \omega^R c_{lt}(R) + c(R,R') & \text{otherwise} \end{cases}$$

Power

Technology states

$R \in \{$ Entrant, Water, Steam $\}$

Costs of switching reflect buying prices, resale values, and other frictions

$$c_{lt}(R,R') = \begin{cases} 0 & \text{if } R = R' \\ c_{lt}(R') & \text{if } R = E \\ c_{lt}(R') - \omega^R c_{lt}(R) + c(R,R') & \text{otherwise} \end{cases}$$

Price of water $c_l(W)$ varies over space but not time Price of steam $c_t(S)$ varies over time but not space

Dynamic Choices

- 1. Prospective entrants decide to enter
- 2. Entrants draw & incumbents update productivity
- 3. Firms choose if they want to produce
- 4. Surviving firms decide if they want to change power source

1. Prospective entrants decide to enter:

$$\mathbb{E}_{\varphi}\left[V_{lt}(E,\varphi)\right] - f^e \geq 0$$

2. Entrants draw & incumbents update productivity: Productivity of incumbents follow an AR(1) process

$$\varphi_{jt} = \pi \varphi_{jt-1} + \sigma \xi_{jt}$$

Entrants draw productivities from the resulting stationary distribution

3. Firms choose if they want to produce:

Compare the expected value from paying the operating cost to the value of exit

$$V_{lt}(R,\varphi) = \max\{\mathbb{E}_{\varepsilon}\left[V_{lt}^o(R,\varphi)\right] - f^R - \nu_{jlt}^R(0), \Omega_{lt}^R - \nu_{jlt}^R(1)\}$$

Dynamic Choices

4. Surviving firms decide if they want to change power source:

$$V_{lt}^{o}(R,\varphi) = \max_{R' \in \{W,S\}} \{\pi_{lt}(R',\varphi) - c_{lt}(R,R') - \varepsilon_{jlt}(R') + \delta \mathbb{E}_{\varphi'} \left[V_{lt+1}(R',\varphi') \right] \}$$

Equilibrium

- 1. Firms enter, exit, and adopt power to maximize expected discounted profits
- 2. Firms compete in local product markets
- 3. Transition path along $c_t^S
 ightarrow \underline{c}^S$

Distributional Assumptions

Operation/exit cost shocks

$$\varepsilon_{jt}^k \stackrel{\text{iid}}{\sim} \text{GEV}(\rho_1^k), \quad \forall (k, j, t)$$

Adoption cost shocks

$$\varepsilon_{jt}^{R} \stackrel{\text{iid}}{\sim} \text{GEV}(\rho_{2}), \quad \forall (R, j, t)$$

Baseline productivities

$$\phi_{jt} \sim egin{cases} \mathcal{N}(\kappa + \pi \phi_{jt-1}, \sigma^2) & ext{if } j ext{ is incumbent} \\ \mathcal{N}\left(rac{\kappa}{1-\pi}, rac{\sigma^2}{1-\pi^2}
ight) & ext{if } j ext{ is entrant} \end{cases}$$

Within-Region Moments (Stylized Facts)

Between-Region Moments (*Effects of Lower Waterpower*)

Model Validation

Within-Region Moments (Stylized Facts)

- 1. Fixed costs of entry/operation \leftarrow Entry/exit rates
- 2. Steam adoption costs \leftarrow Steam adoption rates over time
- 3. Switching costs \leftarrow Adoption rates of incumbents vs. entrants
- 4. Steam productivity \leftarrow Relative size of steam plants

Between-Region Moments (Effects of Lower Waterpower)

Model Validation

Within-Region Moments (Stylized Facts)

- 1. Fixed costs of entry/operation \leftarrow Entry/exit rates
- 2. Steam adoption costs \leftarrow Steam adoption rates over time
- 3. Switching costs \leftarrow Adoption rates of incumbents vs. entrants
- 4. Steam productivity \leftarrow Relative size of steam plants

Between-Region Moments (Effects of Lower Waterpower)

- 1. Water costs by region \leftarrow Initial water adoption by LW
- 2. Elasticity of demand across sectors \leftarrow Initial economic activity by LW
- 3. Steam agglomeration \leftarrow Additional economic growth by LW

Model Validation

Within-Region Moments (Stylized Facts)

- 1. Fixed costs of entry/operation \leftarrow Entry/exit rates
- 2. Steam adoption costs \leftarrow Steam adoption rates over time
- 3. Switching costs \leftarrow Adoption rates of incumbents vs. entrants
- 4. Steam productivity \leftarrow Relative size of steam plants

Between-Region Moments (Effects of Lower Waterpower)

- 1. Water costs by region \leftarrow Initial water adoption by LW
- 2. Elasticity of demand across sectors \leftarrow Initial economic activity by LW
- 3. Steam agglomeration \leftarrow Additional economic growth by LW

Model Validation

• Rationalize diffusion curves across regions?

Model Fit

	Moment	Years	Model	Data						
	Baseline Region									
c(W,S)	Water Choice Differential: Water Incumbents vs. Entrants	1850-1880	0.552	0.553						
c(S, W)	Steam Choice Differential: Steam Incumbents vs. Entrants	1850-1880	0.977	0.977						
$c_S^{(init)}$	Steam Adoption Rate	1850	0.102	0.103						
$c_S^{(term)}$	Steam Adoption Rate	1880	0.393	0.393						
f_o^E	Log Sales Differential: Incumbents vs. Entrants	1850-1880	0.132	0.131						
f_o^W	Water Exit Rate	1850-1880	0.789	0.789						
f_o^S	Steam Exit Rate	1850-1880	0.835	0.835						
γ	Log Sales Differential: Steam vs. Water Users	1850-1880	0.855	0.855						
	Differences Between Low Water an	d Baseline Re	gion							
$c_L(W)$	Steam Adoption Rate	1850	0.089	0.089						
η	Log Total Output	1850	-0.876	-0.876						
κ	Change in Steam Adoption Rate	1850-1880	0.092	0.092						
α	Growth of Output	1850-1880	0.525	0.525						

Establishment-Level Census of Manufactures, 1880

10 L	_							1		2	_			F	LOT	R	ING	A	ND	GR	IST-	MILL	8.	1 4	-	1	h	WER	UNKD I	N MANUFACTOR			
2						h		-			WAG	IS AND B	ouns o	F LADOR.		-		****			1		111	1				.,	-		11		
ANI OF C	INDI TO TI		COM- PRO- DE OF	CAPITIAL (AND PE ALL INVI IN THE NEEL	REAL Maria	Greatest semiler of hands on at any one time derive the	Reinstein Hynn.	Family and the state	Children and youth.	And a state of the	BELL MANAGE	· ····································				On full time.	(in the spectra state ship.	Constituenty.	4	Number of runs of store.			All the state of t	la fare sa departe com	And the leader	ha what riv (fee set	ter below.)	E Reportation for	1	Kind.		a lander per	2 Respect
wid took fo	een de	.01	ŝ.m L	40	00	3 3	* 3 3	•	•	* /0 /2	• 10 10	• 3,00 2.00	10 1,4~4 1,5 d	15	200	" ¥ /2		*	18	10 2 3 3	17 70 120	1 lo	in chin chi	9. 		Kulka Spen	plank but	14 42 9	1 2 1	Vensher Suntino Zaubino	1- 8	1 70 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	243
	<u></u>									10	10																	1 1 1				-	-
12.		1	19.20		1.1	1.1						123		FLOU	RIN	G	AN	D	3RJ	BT-	MIL	LS C	ontinued.	-		-			Institute		-		inter 1
THE LE	T.S	1	t-similar						-	man								1					G	1	PRODUCT		R. C	Ŧ	177	1	1	11	
11			-12			-			of least			Talua.		Fail and a		a value	e of all	,	712	120	- 2	natur of rots of sys Boar.		-	Number of 1		Number of C	4	Sale	7	-	Total va	
11	1	1					-		4	173	-		-	34	-	33		+	-		-	87		29		in s	6					Ś	55
-	-	-	-	000	6	600	1	4	100		1.	200	0	400	17	27	120	7		800	0		12000		8000	200	42.00	00			000	20	00
	-	1	9	000	12	000		12	200		-	600	0	570 300	18	8	00	-	1	800	2	50	50000		2000	200	28	00	-			10.	00
1	K	. 1																				line in									-		

Geographic Spread of Production

Power Use By Sector, output-weighted

Share of Power in Grist + Lumber

Fact 1: Entrants more likely to use steam

Steam Users Are Younger, More Likely Immigrant, and Professional Millers

	Mean Value				
	(1)	(2)	(3)	(4)	(5)
Immigrant	0.069	0.076			0.075
	[0.253]	(0.015)			(0.015)
Age, in years	44.7		-0.0018		-0.0016
	[13.3]		(0.0002)		(0.0002)
Professional Miller	0.395			0.041	0.035
	[0.489]			(0.006)	(0.006)
# Mills	30,777	30,777	30,777	30,777	30,777
Mean of Dependent Variable		0.203	0.203	0.203	0.203

Fact 4: Steam Diffuses to Smaller Mills over Time (Within-County

▶ Back

County-Level Activity

	Population (1)	Mills Per Capita (2)	Mill Revenue Per Capita (3)
Panel A. Differences in Lower Waterpower Counties:			
In 1850	-0.284	-0.672	-0.592
	(0.226)	(0.233)	(0.232)
Panel B. Growth in Lower Waterpower Counties:			
From 1850 to 1860	0.094	0.126	0.088
	(0.029)	(0.065)	(0.082)
From 1860 to 1870	0.067	0.046	0.136
	(0.040)	(0.060)	(0.066)
From 1870 to 1880	0.075	0.017	0.065
	(0.024)	(0.044)	(0.101)
# County-Industries		1,199	1,199

▶ Back

Sample Selection in the Historical Water Census

County-Level Activity

	Estimated Impact of LowerWater on:					
	Establishment growth			Steam diffusion		
	50-60	50-70	50-80	50-60	50-70	50-80
	(1)	(2)	(3)	(4)	(5)	(6)
Baseline specification	0.299	0.447	0.593	0.090	0.091	0.065
	(0.069)	(0.069)	(0.079)	(0.019)	(0.019)	(0.025)
Restrict to counties with \geq 3 mills in 1850	0.264	0.395	0.519	0.090	0.099	0.064
	(0.074)	(0.075)	(0.076)	(0.019)	(0.019)	(0.026)
Restrict to counties with \geq 5 mills in 1850	0.224	0.365	0.479	0.088	0.100	0.063
	(0.071)	(0.066)	(0.069)	(0.018)	(0.019)	(0.028)
Restrict to counties with ≥ 1 mill 1850-1880	0.323	0.456	0.606	0.090	0.091	0.065
	(0.067)	(0.070)	(0.080)	(0.019)	(0.019)	(0.025)
Exclude largest 20 cities in 1850-1880	0.292	0.444	0.610	0.105	0.114	0.098
	(0.077)	(0.076)	(0.088)	(0.021)	(0.027)	(0.040)
Control for 1850 agri. employment share	0.266	0.396	0.537	0.082	0.079	0.049
	(0.069)	(0.069)	(0.071)	(0.015)	(0.016)	(0.020)
Control for precipitation and temperature	0.238	0.363	0.489	0.059	0.064	0.029
	(0.079)	(0.098)	(0.103)	(0.026)	(0.026)	(0.031)
Control for all resource regions	0.276	0.421	0.537	0.066	0.055	0.029
	(0.056)	(0.073)	(0.092)	(0.024)	(0.019)	(0.022)
Control for all resource subregions	0.246	0.371	0.502	0.054	0.046	0.027
	(0.073)	(0.098)	(0.118)	(0.027)	(0.029)	(0.039)
Control for longitude and Atlantic coastline	0.202	0.357	0.462	0.029	0.034	0.018
	(0.065)	(0.077)	(0.097)	(0.020)	(0.018)	(0.030)

County-Level Activity

	Estimated Impact of LowerWater on:					
	Establishment growth			Steam diffusion		
	50-60	50-70	50-80	50-60	50-70	50-80
	(1)	(2)	(3)	(4)	(5)	(6)
Baseline specification	0.299	0.447	0.593	0.090	0.091	0.065
	(0.069)	(0.069)	(0.079)	(0.019)	(0.019)	(0.025)
Control for the 13 original colonies	0.227	0.368	0.498	0.059	0.044	0.028
	(0.071)	(0.076)	(0.097)	(0.018)	(0.018)	(0.022)
Control for State fixed effects	0.126	0.243	0.343	0.039	0.031	0.016
	(0.067)	(0.071)	(0.084)	(0.018)	(0.014)	(0.021)
Control for 1850 population	0.277	0.417	0.559	0.078	0.079	0.049
	(0.068)	(0.069)	(0.077)	(0.016)	(0.019)	(0.028)
Control for 1850 output	0.198	0.313	0.443	0.066	0.063	0.031
	(0.069)	(0.067)	(0.074)	(0.016)	(0.016)	(0.025)
Control for time-varing market access	0.272	0.431	0.564	0.078	0.082	0.051
	(0.071)	(0.073)	(0.083)	(0.018)	(0.017)	(0.024)
Control for 1870 acres of woodland	0.301	0.449	0.596	0.091	0.093	0.066
	(0.068)	(0.069)	(0.078)	(0.019)	(0.019)	(0.025)
Control for 1850 access to banks	0.274	0.436	0.587	0.086	0.093	0.071
	(0.073)	(0.075)	(0.087)	(0.019)	(0.018)	(0.030)
Control for 1850 machine producers/engineers	0.247	0.402	0.541	0.082	0.076	0.047
	(0.068)	(0.067)	(0.073)	(0.016)	(0.019)	(0.028)
Control for coal resources	0.281	0.423	0.560	0.076	0.074	0.047
	(0.067)	(0.075)	(0.086)	(0.020)	(0.018)	(0.020)

Solving the Firm's Dynamic Program

Expected value of operation (given paths $\{c_t^S, P_{ct}, s_{ct}\}_t$)

$$\mathbb{E}_{\varepsilon}[V_{ct}^{o}(R,\varphi)] = \log\left[\sum_{R'} \exp\left(\frac{1}{\rho}(-c_{ct}^{RR'} + \pi_{ct}(R,\varphi') + \delta\mathbb{E}_{\varphi'}\max\{\mathbb{E}_{\varepsilon}[V_{ct+1}^{o}(\varphi',R')] - f^{o},0\})\right)\right]$$

1. At period T, solve stationary value function by iteration (contraction mapping)

2. From period T, solve value function by backward recursion in $T - 1, T - 2, ..., t_0$

Dynamic Equilibrium

An equilibrium of county c is a time path for the mass of entrants M_{ct} , the mass of operating firms $F_{ct}(R,\varphi)$, and the policy functions for operation/exit $O_{ct}(R,\varphi)$ and power $R'_{ct}(R,\varphi)$, such that taking the time path of steam costs $c_{ct}(S)$ as given:

- 1. Firms enter, exit, and adopt power sources to maximize expected discounted profits.
- 2. Firms source inputs x to maximize flow profits period-by-period.
- 3. Output markets clear:

$$P_{ct}Y_{ct} = wX_{ct} + \Pi_{ct},$$

where $\Pi_{ct} = \int \pi_{ct}(R,\varphi) dF_{ct}(R,\varphi)$ are total local profits, and $X_{ct} = \int x_{ct}(R,\varphi) dF_{ct}(R,\varphi)$ is local demand for inputs. We assume inputs are elastically supplied at price w.

4. The free entry condition holds:

$$\mathbb{E}_{\varphi}\left[V_{ct}(E,\varphi)\right] \leq f^{e}.$$

5. The evolution of firm masses $\{F_{ct}\}_t$ is consistent with the policy functions $\{O_{ct}, R'_{ct}\}_t$.

Modeling the Arrival of Steam

1. Prior to 1830, agents anticipate

$$\mathbb{E}_t[c^{\mathcal{S}}_{ au}] = \infty, \quad t < 1830, \, orall au$$

- 2. At 1830, news of breakthrough inventions
- 3. From 1830, agents correctly foresee

$$\mathbb{E}_t[c_{\tau}^S] = c_{\tau}^S, \quad t \ge 1830, \, \forall \tau$$

with
$$dc_t^S/dt < 0$$
 and $c_t^S
ightarrow \underline{c}^S$ as $t
ightarrow 1900$

Solving and Simulating the Steam Arrival

- 1. Solve the initial steady state in t = 1830, in which agents expect that steam adoption cost will stay at \bar{c}^{S} forever (shooting algorithm for the masses of operating firms and entrants)
- 2. Solve the terminal steady state at t = 1900, in which agents expect that steam adoption cost will stay at \underline{c}^{S} forever
- 3. From t > 1830, feed in expectation of

$$\mathbb{E}_t[c_\tau^S] = c_\tau^S, \quad \tau \ge t$$

- 4. Solve the transition path from 1830 to 1900
- 5. Simulate the economy from 1830 to 1900, verifying convergence to the terminal steady state at 1900

Higher water costs cause faster steam adoption, especially among entrants

Proposition: Let $\mathbb{P}_{ct}^{E}(S)$ and $\mathbb{P}_{ct}^{I}(S)$ denote the shares of entrant and incumbent mills that use steam. Higher costs of water induce faster steam adoption, especially among entrants:

$$rac{d}{dc_c^W}\mathbb{P}^{\sf E}_{ct}(S)>rac{d}{dc_c^W}\mathbb{P}'_{ct}(S)>0$$

Sketch of proof: Higher water costs affect steam adoption through

- + Technology costs
- + Productivity selection
- + Competition
- + Agglomeration

Incumbents differ from entrants due to switching costs, which make their steam adoption decisions less responsive to the cost of waterpower.

Higher water costs cause faster growth, especially through entry

Proposition: Let N_{ct} denote the total number of mills and N_{ct}^E the number of entrants. Higher costs of water induce faster growth of mills, especially of entrant mills:

$$rac{d}{dc_c^W}\Delta \log \textit{N}_{ct}^\textit{E} > rac{d}{dc_c^W}\Delta \log \textit{N}_{ct} > 0$$

Sketch of proof: Higher water costs affect operating values through

- + Technology costs (especially for entrants)
- + Agglomeration (especially for entrants)
- Competition (for all mills)

Unclear if incumbents are crowded out in counties with higher water costs

Proposition: Let S_{ct} denote the survival rate of mills. It is unclear if higher costs of water hurt or help the survival of incumbent mills when steam arrives:

$$\frac{d}{dc_c^W}\mathbb{S}_{ct} \gtrless 0.$$

Incumbents are crowded out if switching costs are prohibitively high.

Sketch of proof: Higher water costs affect operating values of incumbents through

- + Option value of steam power (if switching costs are low)
- Competition from new entrants

Parameters and Moments

- 1. Power switching costs $c_o^R \leftarrow$ Power adoption DiD
- 2. Power adoption costs $c_b^R \leftarrow$ Power diffusion rates
- 3. Power cost shocks $\rho_2 \leftarrow \text{Overlap}$ in adoption
- 4. Steam productivity $\gamma \leftarrow$ Size premium of steam users
- 5. Baseline productivity $(\pi, \sigma) \leftarrow$ Autocorrelation and dispersion of firm sales
- 6. Entry cost $f^e \leftarrow$ Entry rates
- 7. Operating cost $f^o \leftarrow \text{Exit rates}$
- 8. Operating cost shocks $\rho_1 \leftarrow$ Overlap in exit

Model Counterfactuals: No Switching

