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Abstract

We develop a dynamic structural model of patent screening incorporating incentives, intrinsic moti-

vation, and multi-round negotiation. We use detailed data on examiner decisions and employ natural

language processing to create a new measure of patent distance that enables us to study strategic

decisions by applicants and examiners. We find that patent screening is moderately effective, given

the existing standards for patentability. Examiners exhibit substantial intrinsic motivation that sig-

nificantly improves the effectiveness of screening. A reform that limits negotiation rounds strongly

increases screening quality. We quantify the annual net social costs of patent screening at $25.5bn,

equivalent to 6.5% of U.S. private sector R&D.
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1 Introduction

Public institutions play a central role in promoting innovation. The two most important channels

are government support for public and private research, both in the form of direct funding and

indirect fiscal subsidies, and the allocation of property rights, in the form of patents, to enhance

innovation incentives for private sector R&D. To give a sense of the scale of investment, in 2015

the U.S. federal government financed 54.3% of overall R&D expenditures, or $151.5 billion (2023

U.S.D.), and 34.1% of university research. At the same time, the U.S. Patent and Trademark

Office (hereafter, Patent Office) issued nearly 400,000 new patents. These property rights promote

innovation by increasing the private returns to R&D, facilitating access to capital markets, and

underpinning the market for technology, especially for small, high-technology firms (Hall and

Lerner, 2010; Galasso and Schankerman, 2018). Moreover, the aggregate economic impact of

these investments and property rights for innovation is magnified by the extensive knowledge

spillovers they generate (Bloom, Schankerman, and Van Reenen, 2013).

Despite their evident importance, little is known about whether innovation-supporting public

institutions allocate resources efficiently and how organizational changes affect agency perfor-

mance. The aim of this paper, as part of a broader research program, is to show how structural

models can be used to study and improve the efficiency of resource allocation by innovation-

related public agencies. We study this topic in the context of the U.S. patent system, focusing on

the quality of screening—that is, the allocation of property rights for innovation—by the Patent

Office.

We develop a dynamic structural model of the patent screening process, which incorporates

incentives, intrinsic motivation, and the actual structure of multi-round negotiation in the current

system. We estimate the model using novel negotiation-round-level data on examiner decisions

and text data from 20 million patent claims. From the claim text data, we use modern natural

language processing (NLP) methods to develop a new measure of distance between patents, a key

ingredient for characterizing strategic decisions by patent applicants and examiners. We conduct

counterfactual analyses of how reforms to incentives, fees, and the structure of negotiations affect

the quality and speed of patent screening, and we develop an approach to quantify these impacts

and thus construct a “pseudo-welfare” measure of the quality of patent screening.

The effectiveness of patent screening and its implications for the quality of patents is a hotly

debated policy issue. Academic scholars and policymakers have argued that patent rights have

increasingly become an impediment to innovation rather than an incentive. These concerns have

been prominently voiced in public debates (The Economist, 2015; Federal Trade Commission,

1



2011), recent U.S. Supreme Court decisions (eBay Inc. v. MercExchange L.L.C., 547 U.S. 338,

2006), and the major statutory reform of the patent system, the Leahy-Smith America Invents

Act of 2011.

Critics of the patent system claim that the problems arise in large part from ineffective patent

office screening, where patents are granted to inventions that do not represent a substantial

inventive step—especially in emerging technology areas such as business methods and software

(Jaffe and Lerner, 2004). The issue is important because granting “excessive” patent rights

imposes static and dynamic social costs: higher prices and deadweight loss on patented goods,

greater enforcement (litigation) costs, and higher transaction costs of R&D and the potential for

retarding cumulative innovation (Galasso and Schankerman, 2015).

The patent prosecution process is an advantageous context to study the effects of incentives and

motivation on screening for two primary reasons. First, the patent application process has a clear

and well-documented structure that can be modeled. The multi-round negotiation between the

applicant and examiner fits naturally into a dynamic game, which forms the basis of our model.

The model involves an applicant who “pads” their patent application, attempting to extract

more property rights than their invention truly entails. The examiner’s role is to grant or reject

the application based on the existing judicial interpretation of statutory criteria as applied to

each claim in the patent application.

The fundamental trade-off for the applicant when choosing the level of padding is between the

benefits of increased patent scope and the costs of engaging in a lengthy and costly negotiation

with the examiner. The trade-off for the patent examiner for each specific application is between

the incentives to grant patents quickly and the intrinsic utility cost of awarding an inappropriate

degree of “patent scope”—i.e., granting only patent claims (after narrowing) that satisfy the

patentability criteria.1 The patent examiner searches prior art to estimate the appropriate scope

of patent protection for the invention, but this estimate contains error. Allowing for examiner

error is important because it implies that negotiation between the applicant and examiner, while

costly, may not always be socially wasteful.

The second advantage of the patent context is the quality of data. The Patent Office collects

detailed and extensive data on all applications, not just granted patents. We constructed a dataset

covering around 55 million patent application decisions across 20 million patent claims between

2010–2015 and we observe the examiner’s decisions on each patent claim over all rounds of the

1For a discussion of the economics and legal doctrines of patent scope, see Merges and Nelson (1990).
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negotiation. These data allow us to formulate and estimate a structural model that reflects the

actual patent application process.

Our estimates imply several key empirical findings. First, intrinsic motivation plays a significant

role in contributing to the accuracy of patent screening. Junior examiners are more motivated

than seniors on average, but both groups display substantial heterogeneity. Further, using the es-

timated parameters, counterfactual analysis shows that turning off intrinsic motivation increases

the frequency of examiners granting invalid patents four-fold. This finding highlights the impor-

tance of designing human resource policies that effectively select examiners with high intrinsic

motivation and ensure examiners sustain this motivation over their entire careers.

Second, we find that innovators substantially pad their patent applications, claiming (typically)

greater property rights than are warranted by the true “inventive step” of their innovation. More-

over, there is a large degree of heterogeneity in the extent of padding across patent applications.

This result highlights the importance of effective screening. An essential feature of our model is

that the extent of padding is endogenous and thus is affected by various counterfactual policy

reforms, which we detail later. We estimate the average level of padding at about 8%, rising to

10% when we weight by the value of the patent. This exaggerated scope of the patent applica-

tions is reflected in the fact that more than 80% of claims start below the distance threshold for

patentability—as measured by the minimum required distance to claims in prior patents—and

thus should be rejected.

However, the multi-round screening process is relatively effective at narrowing the scope of patent

rights sought and, in so doing, reducing the number of invalid claims to about 7% among granted

claims, but still, nearly one in five granted patents contains at least one claim that does not meet

the threshold. One implication of this finding is that the proportion of patent applications that are

granted—a commonly used indicator of the effectiveness of screening—is a misleading measure

because it does not capture the extent to which granted property rights are narrowed during the

screening process.

We evaluate counterfactual reforms involving changes to fees for the patent applicant, the struc-

ture of the negotiation process (e.g., limiting the number of rounds allowed), and the degree of

intrinsic motivation of patent examiners. We quantify the effects of counterfactual reforms along

three distinct dimensions. The first two relate to the accuracy of screening, meaning the degree of

alignment between the scope of property rights granted and the scope justified by the invention.

We assess accuracy in terms of granting claims that are not justified (false grants, or “type 1”

error) and not granting claims that should be (false rejections, or “type 2” error).
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Both errors carry their own social costs and benefits. Incorrect grants impose ex post welfare costs

(deadweight loss) from higher prices and litigation costs associated with enforcing these patents,

but at the same time may raise innovation incentives. False rejections dilute ex ante innovation

incentives and discourage the development of new inventions that would contribute positive social

value, but at the same time they reduce ex post deadweight loss. The last dimension is the speed

of patent examination, measured by the number of negotiation rounds in equilibrium. We develop

a method to quantify these impacts in terms of the associated net social costs and thus construct

a “pseudo-welfare” measure of the quality of patent screening. We estimate the total net social

cost of patent screening at $25.5bn per annual cohort of applications. This figure represents 6.5%

of total R&D performed by business enterprises in the United States.

The counterfactual analysis highlights two key conclusions. First, restrictions on the number of

allowable rounds of negotiation (currently absent in the U.S. patent system) significantly reduce

the net social costs of screening, with a reduction of 45% in the case of allowing only one round.

We show that these outcomes can be replicated through an equivalent fee per round for the

applicant, but the required fees are too high to be politically feasible. Second, given the high

levels of intrinsic motivation we estimate, extrinsic incentives are largely ineffective, leading to

almost no change in net social costs. Extrinsic incentives do affect outcomes in a scenario with

low intrinsic motivation, but they are counterproductive in that they raise the net social costs

of screening.

The paper is organized as follows. Section 2 briefly summarizes the related literature. Section

3 describes the datasets and summarizes key descriptive features. The structural model is pre-

sented in Section 4. Section 5 describes our estimation methods. Section 6 presents the empirical

estimates. Section 7 analyzes the impact of counterfactual reforms on the accuracy and speed of

patent screening, and Section 8 describes our quantification of the net social costs and benefits

associated with these counterfactual reforms.

2 Related Literature

Intrinsic Motivation in Public Agencies

We contribute to the literature that studies how intrinsic motivation affects the optimal design of

incentives in mission-oriented agencies. On the theoretical side, Benabou and Tirole (2003; 2006)

show conditions under which extrinsic rewards may crowd out intrinsic motivation. Particularly

relevant to our paper, Besley and Ghatak (2005) emphasize how intrinsic motivation—which

they define as the alignment between worker and agency objectives—induces welfare-improving

sorting of workers across entities with different goals and also affects the optimal design of
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incentives and authority.

Empirical studies use field experiments to analyze intrinsic motivation and public agency perfor-

mance. These rely on various proxies for motivation. Leading examples include Ashraf, Bandiera,

and Jack (2014), which evaluates the impact of extrinsic rewards on agents’ performance in a

public health organization in Zambia, and Ashraf, Bandiera, Davenport, and Lee (2020), which

studies whether career benefits induce sorting at the expense of “pro-social” motivation. Both

papers find that extrinsic rewards and intrinsic motivation are complementary.

Despite their interesting findings, these empirical studies cannot be used for counterfactual policy

analysis, for which structural models are more appropriate. Our paper is the first structural

model of a public agency that incorporates intrinsic motivation.2 In doing this, we follow Besley

and Ghatak’s definition of intrinsic motivation—alignment of workers’ objectives and the public

agency mission. In our context, the Patent Office’s mission is to award inventors property rights

over their invention, consistent with statutory and judicial prescriptions. We model intrinsic

motivation as an inherent disutility that examiners incur if they grant more intellectual property

rights than they believe the inventor deserves, based on the information the examiners have. We

show that patent examiners sometimes award patents to applications they believe are invalid due

to strategic considerations and the extrinsic pay scheme they face.

Finally, recent papers study how screening mechanisms affect the performance of public agencies.

Adda and Ottaviani (2023) develop a model of nonmarket allocation of resources, including but

not limited to the award of grants to research projects. The authors study how the design of

allocation rules and informational noise in the evaluation process affect the optimal design. In

two empirical papers, Li and Agha (2015) and Li (2017) analyze the allocation of research grants

at the National Institutes of Health (NIH) and show that peer review increases the effectiveness

of grants in terms of post-grant citations. Azoulay, Graff Zivin, Li, and Sampat (2018) study

the economic impact of these NIH grants, linking screening outcomes to publication citations

and other innovation outcomes. Our contribution is to quantify some of the forces these papers

identify and evaluate the equilibrium effects of various counterfactual reforms in the patent

context.

Patents and Innovation

We also contribute to the limited empirical literature on patent screening. In a first paper on the

2Egan, Matvos, and Seru (2023) develop a structural model of consumer arbitration in which arbitrators differ

in their idiosyncratic degrees of “slant” (or bias), which can be interpreted as a form of intrinsic motivation.
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topic, Cockburn, Kortum, and Stern (2003) show that patent examiner characteristics affect the

“quality” of issued patents, measured by subsequent citations and the frequency of litigation.

Frakes and Wasserman (2017) use data on promotions of patent examiners (which are accompa-

nied by lower extrinsic incentives) and show that promotions are associated with sharp increases

in grant rates. They interpret this result as less rigorous screening and lower quality patents.

While this is a striking finding, their analysis does not pin down whether it is driven by dif-

ferences in extrinsic incentives, intrinsic motivation, or examiner opportunity costs, which our

structural model will do.

Perhaps the most closely related paper is Schankerman and Schuett (2022), who develop an

integrated framework to study patent screening, encompassing the patent application decision,

examination, post-grant licensing, and litigation in the courts. They calibrate the model on data

for the U.S. and use it to evaluate various counterfactual patent and court reforms. Their model

estimates the effectiveness of patent examination, but they treat this as an exogenous parameter,

but they do not model the prosecution process. In contrast, we develop and estimate the first

equilibrium model of the patent examination process itself, which in turn allows us to investigate

how various reforms to the incentives and design of patent screening affect the performance of

this public agency.

Before turning to the data, we summarize a few key features of patents that guide our modeling

choices. The critical feature of the patent document is the list of independent claims, which

delineate the “metes and bounds,” or scope, of the property right. The examination process

involves assessing the patentability of each claim, not the patent as a single entity. In a departure

from most existing literature, we treat a patent as a collection of claims that differ in both their

private value and their similarity to previous patented claims. These two dimensions are a critical

feature in the model. This heterogeneity is a first-order feature necessary to match the actual

process of patent examination and to develop accurate statements about the potential effects of

regime changes on the patent examination process.

3 Data and Descriptive Results

In this section, we describe our primary data sources, focusing on datasets not previously used

in empirical studies of patents. We also present summary statistics and describe reduced-form

evidence. Online Appendix B provides hyperlinks to all publicly available datasets and data

sources we use in our empirical work.

Distance Metric
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We construct a new measure of independent claim distance. To create this, we exploit the

U.S.PTO Patent Application Claims Full Text Dataset and the Granted Patent Claims Full

Text Dataset. The first dataset contains the full text for all U.S. patent application claims be-

tween 2001 and 2014 and an indicator for whether the claim is independent. The Granted Patent

Claims Full Text Dataset records the full text for all U.S. patent claims granted between 1976

and 2014.

We summarize our approach to creating a distance measure here (see Online Appendix C for more

detail). The approach calculates distances by representing a patent claim’s text as a numerical

vector and calculating a metric on that vector space.3 We adopt the Paragraph Vector approach

of Le and Mikolov (2014), which uses an unsupervised algorithm to “learn” the meaning of words

by studying the context in which they appear and forming a vector representation for each word,

picking up the meaning of paragraphs as a by-product.4 As is common in the NLP literature,

we measure distances between numerical vectors using the angular distance metric. To reflect

distance to prior art, we compute the distance from each independent claim to every previously

granted independent claim.5

Rounds Data

Since we estimate a model of the patent prosecution process over multiple rounds, comprehensive

and reliable round-level data on the patent process are essential. We use the Transactions History

data in the Patent Examination (PatEx) Research Dataset to create a dataset on the round-by-

round evolution of utility patent applications between 2007 and 2014. In total, the transactions

dataset includes 275.6 million observations covering 9.2 million unique applications. For every

patent application, these data record examiner and applicant decisions at each round of the

examination process.

Sources Matched to Round Data

We match the round-level data to three other datasets on patent applications. The first is the

3Kelly, Papanikolaou, Seru, and Taddy (2021) use similar methods to calculate patent similarity.
4The standard method (bag-of-words) for representing the patent claim text as a numerical vector has two

significant weaknesses: it ignores the ordering and semantics of words.
5We conduct two falsification tests on our distance measure. First, we put independent claims into twenty, five-

percentile bins of the distance measure and then calculate the proportion of claims rejected on novelty/obviousness

grounds in each bin. We would expect that examiners are more likely to reject claims with a small distance to

existing claims based on novelty/obviousness criteria. Thus the proportion of first-round rejections should be a

declining function of the distance metric and the results confirm this prediction. Second, we conduct a similar test

on the average number of examination rounds for each granted patent, by five-percentile bins of average distance

of independent claims. Patents with higher average distance should be granted faster, and this is what we find.
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Application Data in the PatEx Dataset, which contains features of the patent application, such

as the identities of the applicant and examiner, the patent art unit (narrow technology classifi-

cations), and a binary indicator of the size of the applying firm (below or above 500 employees).

Second, we match our data to renewal decisions by patent holders using the U.S. PTO Mainte-

nance Fee Events Dataset. Third, since we focus on novelty/obviousness rejections, we require

data on the types of rejections of each claim at each stage of the process. We obtain this from

the U.S.PTO Office Action Research Dataset for Patents.

Legal Fees

For attorney fees, we use data from the 2017 American Intellectual Property Law Association

(AIPLA) Report of the Economic Survey. The survey reports means and percentiles of the dis-

tribution of hourly fees for different tasks, such as preparing and filing an application, issuing,

paying renewal fees, and amending applications, split into three broad technology areas (biotech-

nology/chemical, electrical/computer, and mechanical). We use these moments to estimate the

distributions of application and fighting costs for each patent application, adjusted for inflation.

Seniority and Technology Complexity Credit Adjustments

We obtained data on examiner seniority from Frakes and Wasserman (2017), who provide a

panel of General Schedule (GS) grades for examiners, including each examiner’s promotion dates.

Using this, we work out the seniority of the examiner for each application. Finally, we received

information on examiner extrinsic rewards from the Patent Office at the disaggregated U.S.

Patent Classification level and then aggregated them to the technology center level.

Descriptive Statistics

Several features of the data are worth noting (Table A.1 in the Online Appendix provides de-

tails). First, 70% of applications resulted in the issuance of a patent. However, this is a mis-

leading measure of the fraction of content granted because, as we will see, most applications

are heavily narrowed during the examination process. Second, the prosecution time varies across

applications—the mean duration is 2.96 years, and the mean number of rounds is 2.40. Third, the

mean, median, and modal number of independent claims is three. Fourth, 24% of applications

were by firms with fewer than 500 employees (a so-called “small entity”). Lastly, 46% of granted

patents were renewed to the statutory limit, and only 13% were not renewed at the first renewal

date.

Existing studies show that patent grant rates vary widely across technology centers and examiner

seniority, with more senior examiners granting more frequently (Frakes and Wasserman, 2017;

Sampat and Williams, 2019). In Online Appendix D, we confirm these findings about grant rates
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using our data, and we also show that the likelihood of multi-round negotiation (lasting beyond

one round) is much lower for senior examiners and varies substantially across technology centers.

In addition, small entities are less likely to negotiate. We also analyze the variation in these

outcomes for each examiner, decomposing variation in examiner-specific outcomes (such as their

grant rate) within and between technology center-seniority pairs.6 This decomposition shows

that 80% of the variation in examiner grant rates and 81% of the variation in each examiner’s

average number of rounds is within-group variation.

Our model allows for several factors that can explain the substantial variation in examiner

statistics even within seniority-technology-center dyads: we allow for a different distribution of

intrinsic motivation for junior and senior examiners, we incorporate differences in the examiner

credit structure across seniorities and technology centers, and we allow for heterogeneous legal

(fighting) costs for applicants across technology centers. Our parameter estimates will enable us

to disentangle the effects of these factors in explaining the variation in outcomes.

4 Model of the Patent Screening Process

We model the patent screening process as a dynamic game in technology center T , between an

inventor, a, and a realization of the examiner, e. There are four potential stages: (1) Application

Decision and Patent Drafting, (2) Examiner Search, (3) Negotiation, and (4) Renewal. Figure 1

depicts the extensive form of the model.

In the baseline model, we analyze patent screening conditional on the invention being developed.

For the validity of the structural model (and the counterfactual analysis), we do not need to

model the potential inventor’s decision whether to invest to develop their idea into an invention.

However, to quantify the net social costs associated with these errors, we need to model the

decision to develop (as well as how the patentee licenses their invention), which we do in Section

8.

Regarding the examiner, we present a model of how they act on one specific application. There-

fore, we focus on intra-application incentives and costs for the examiner, rather than inter-

application incentives induced by factors such as meeting their quarterly credit targets. A model

in which examiners make decisions over time with consideration of the complete set of examina-

tions in their docket would introduce significant complications and is not necessary to meet the

6Table D.2 provides more detail, along with the proportion of within-group variation for other dependent

variables, such as mean examination length, mean number of rounds, etc.
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Figure 1. Extensive Form of the Model
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aims of our model.

4.1 Application Decision and Patent Drafting

4.1.1 Inventor Type

An inventor is endowed with a developed invention they are considering patenting. The patent

application for the invention consists of M0 initial independent claims (C1, ..., CM0).
7 We char-

acterize an independent claim Cj by the pair (D∗
j , v

∗
j ) where D

∗
j ∼ GD(·) is the distance of the

7As we want to focus on the economic incentives for the applicant, we do not consider any agency issues between

the inventor and the patent attorney who actually drafts the application.
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true version of claim j to the nearest claim in any existing invention and v∗j ∼ Gv(·) denotes the
initial flow net returns generated by the true version of claim j once it is commercialized.8 We

define the returns v∗j as relative to the inventor’s outside option, e.g., protecting the invention

by trade secrecy.9

4.1.2 Application Decision

First, the inventor decides whether to apply. If they do not, the game ends, and their payoff is

zero. If they do, they become an applicant, and the game continues. The inventor, a risk-neutral

expected utility maximizer, chooses to apply if the expected utility of the game that follows

applying is positive (because flow returns are defined relative to the next best alternative).

4.1.3 Padding

After deciding to apply, the applicant chooses the amount to exaggerate the claims on their

patent application. We refer to this as the initial choice of padding, denoted p. Padding ob-

fuscates the true “metes and bounds” of the invention, thereby concealing the inventive step

and expanding the property rights claimed in the application. Padding allows the patent owner

to extract potentially more revenue, by working it themselves or licensing it. However, greater

padding also entails some obfuscation in defining the relationship between the actual invention

and the boundaries of the patent rights claimed and necessarily moves the application closer to

the prior art. Figure 2 illustrates the concepts of independent claims and padding.

There is a tradeoff for the applicant in the choice of padding. The advantage is that it increases

the initial returns of claim j for the applicant from v∗j to ṽ0j = V(v∗j , p), where the padded

value function V(·, ·) is increasing in both arguments. On the other hand, padding increases

the likelihood of examiner rejections during the examination process on the grounds of non-

obviousness (closeness to existing patents) and indefiniteness. Padding shrinks independent claim

distances from D∗
j to D̃0

j = D(D∗
j , p), where the padded distance function D(·, ·) is increasing in

D∗
j and decreasing in p. For simplicity, we assume that value (distance) is proportional (inversely

8We assume that distances and values are uncorrelated. Based on the theoretical literature on differentiated

products, the relationship is ambiguous. Other things equal, being further from rivals (in product space, which we

assume is correlated with claim distances) softens price competition and thus increases private value – implying

a positive correlation between distance and value. However, the distribution of demand will typically vary with

location, with firms endogenously locating (patenting) in areas of high demand. This implies a negative correlation

between distance to rivals and values.
9Table A.2 provides our choices for parameterized distributions of distances GD(·) and values Gv(·) (along with

all other distributions in the model).
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Figure 2. Distances and Padding

j

D∗
j

D̃j

Notes: The orange semicircle in the top left corner represents the closest existing invention to the independent

claim j, which is the small full blue circle in the bottom right corner. The applicant pads the true independent

claim to create the larger cross-hatched circle. The distance between the true independent claim and the nearest

existing invention is D∗
j , whereas the distance between the padded claim and nearest point is D̃j .

proportional) to the degree of padding: ṽ0j = p · v∗j and D̃0
j = D∗

j/p.

Finally, there is a direct cost of padding in the form of legal costs, which we assume is proportional

to padding because heavily padded applications require more time to craft.10 In particular, we

specify legal costs as Fapp = fapp · (1 + |p − 1|), where fapp is the attorney fees associated

with patent drafting (which is log-normally distributed across applicants). The motivation for

this specification is that it takes additional time for the attorney either to under-pad (p < 1) or

over-pad (p > 1); writing down the truth (p = 1) is quickest. We assume symmetry for simplicity.

4.1.4 Applicant Expected Utility

The applicant decides the initial level of padding without knowing the identity of the examiner the

Patent Office will assign. This feature is relevant because examiners differ in types (seniority, time

cost, and intrinsic motivation) and, thus, in their strategies. As a result, applicants make initial

padding decisions in light of the distribution of examiner types. The applicant chooses initial

padding to maximize their expected utility less application legal costs, where the expectation is

10The applicant may choose to understate the true scope of the invention (p < 1) and thus earn lower returns,

as it reduces the likelihood of rejection by the examiner (especially if there is a restriction of the number of rounds

allowed). We find some evidence of such under-padding in the empirical results.
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taken first over the roster of potential examiners e = 1, . . . E (where the random assignment of

applications implies an equally likely chance of each examiner in the relevant technology center),

over the error of the examiner ε ∼ Ge,ε(·), and potential obsolescence of their invention ω (all

described later).

Formally, the applicant’s optimal padding choice p0 maximizes the ex ante value of patent rights

Γ(p), defined11

Γ(p) = Ee,ε,ω
[
U0
a (e, ε,ω, p)

]
− Fapp(p),

where

Ee,ε,ω
[
U0
a (e, ε,ω, p)

]
=

1

E

E∑
e=1

∫
EωU

0
a (e, ε,ω, p) dGe,ε(ε),

and we define EωU
0
a (e, ε,ω, p), the applicant expected utility (over the full vector of obsolescence)

for a given examiner e and error ε, later in Equation (4).12 The applicant applies if

Γ∗ ≡ Γ(p0) ≥ 0. (1)

4.2 Examiner Search

4.2.1 Examiner Assignment

The patent office assigns the application randomly to an examiner within the relevant art unit

of the technology center. We characterize an examiner by the tuple (S, θ, π). The first term S

represents examiner seniority. The type θ ∼ GS,θ(·) corresponds to the level of intrinsic moti-

vation. Intrinsically motivated workers incur a disutility from awarding patent rights that do

not meet the patentability standard, based on the information available to them (see Section

4.4.3 for formalization of how this enters the examiner’s payoff). We let the distribution of θ

depend on seniority S. Finally, π ∼ Gπ(·) corresponds to the examiner’s cost of delay (i.e., the

extra effort cost for going another round plus any pressure costs associated with timely docket

management). The effort cost component will reflect the examiner’s productivity.

11Throughout, we use the notation Eω to denote expectations taken over the vector of obsolescence shocks that

are not yet realized. Before applying, this is the full vector of 20 possible shocks that could occur, one each year

after application. As the process continues, obsolescence shocks occur, and fewer shocks are left to be realized.

With a slight abuse of notation, whenever we use Eω with an emboldened ω, it refers to the sub-vector of ω that

have not yet occurred. The notation Eωr refers to an expectation over ω only in round r.
12We simplify notation by using e to denote both the random variable reflecting the (unknown) examiner prior

to application its realization after applying. The same holds for examiner errors.
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4.2.2 Examiner Grounds for Rejection

Once assigned, the examiner learns the applicant’s identity and thus their fighting costs. The

examiner also knows the padded value of the application to the applicant. The examiner reads the

application and independently searches the existing prior art to assess the grounds for rejection

throughout the negotiation process. There are three main grounds for rejection: novelty, non-

obviousness, and indefiniteness. Novelty requires that the claim has not been in use for one

year before filing. Non-obviousness requires that the claim makes an inventive step beyond the

closest existing invention that would not be immediate to anyone skilled in the relevant area.

Indefiniteness requires that the claim is precise and clear on the exact boundaries of claimed

property rights. In this paper, we focus on novelty/non-obviousness.13

After searching the prior art, the examiner assesses the obviousness/novelty of each claim j, with

their assessment denoted by D̂j and equal to

D̂j = D(D∗
j , p) · ε,

where ε denotes the drawn examiner error in assessing obviousness/novelty, which is assumed

to be independent of the true distances D∗
j . The distribution of search errors depends on the

seniority of the examiner and may also depend on the technology center since the number and

complexity of patents and other prior art vary across technology fields.

The distribution of search errors also depends on the intrinsic motivation of the examiner. We

specify that the mean of the search error distribution satisfies two criteria. The first is that the

mean of the error tends to one (the unbiased case) as θ → ∞. The second is that for all θ <∞, the

mean of the search error distribution is greater than one. We specify the second feature because

examiners who are not perfectly intrinsically motivated do not scour the literature so thoroughly,

thereby missing relevant prior art. When they miss relevant prior art, they perceive distances to

be larger than they are and hence have errors greater than one. However, these requirements do

not force one-sided examiner error since some draws may still be below one, even if the mean is

above one. Our functional form choice satisfying this assumption is µε = 1 +
1

θ
.

We say the examiner has grounds for an obviousness rejection if D̂j is less than an obviousness

13 Using the Office Action Research Dataset described in Section 3, which identifies the reasons the examiner

rejects claims in a patent at each round, we analyzed the overlap between novelty/non-obviousness (102/103)

and indefiniteness (112) rejections. We find that 73% of office actions containing a 112 rejection also contain a

102/103 rejection. Thus, novelty/non-obviousness rejections cover most of the observed indefiniteness rejections,

so omitting indefiniteness from the baseline model is a profitable abstraction.
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threshold τ . However, having grounds for rejection will not necessarily mean the examiner will

reject the claim. The examiner’s decision will be the one that maximizes their utility, taking into

account their explicit incentives (credits) and intrinsic motivation. This is a crucial point as it

implies that examiners’ decisions in the data may not align with decisions made solely on legal

grounds.

Finally, examiner errors are specified to be constant throughout the negotiation stage. In this

sense, there is no updating of examiner error. However, the grounds for rejection will be recal-

culated at every negotiation round as the applicant narrows the extent of padding in response

to a rejection by the examiner.

4.3 Information Structure

The information structure for the applicant and examiner is as follows. The inventor knows the

set of claims covered by the invention (given by nature), their true distance to all prior art, and

the private value of each claim. Before deciding whether to apply for a patent, the inventor does

not know which examiner will be assigned to the application. After assignment, the applicant

knows the characteristics of the examiner, including the level of intrinsic motivation, productivity,

seniority, and structure of patent office incentives the examiner faces. The applicant also knows

the structure of the process and the fees imposed by the patent office at each stage.

The assigned examiner does not observe the true claim distances or the applicant’s extent of

padding, only the padded distances, contaminated by examiner error, for each claim in the

application. The examiner does not know the error she makes in determining the claim distances

during the search of prior art. The examiner observes the fighting costs and padded private value

of the applicant’s claims.14 Since the examiner reports their assessment of the padded distance

to the applicant, the applicant knows the examiner’s error.

4.4 Negotiation

The Negotiation Stage is a finitely repeated version of the stage game shown in the “Negotiation”

section of Figure 1. At round r, if required to act, first, the examiner chooses whether to grant

or abandon and, if rejected, the applicant chooses whether to abandon or fight. In between the

examiner’s and applicant’s decision, the applicant’s invention can become obsolete, in which case

14We could assume that the examiner does not perfectly observe the private value, but instead obtains an unbi-

ased signal of the value. This feature would not deliver any additional insights and would increase computational

burden.
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the applicant abandons it immediately. The applicant and examiner discount each stage at rate

β.

Let xa and xe be the vector of strategies of the applicant and examiner, respectively, if the

invention is not obsolete.15 We detail the actions and payoffs obtained at the two decision nodes,

starting at the point at which the examiner has just rejected in round r so that xre = REJ.

4.4.1 Obsolescence and Credits

First, pre-grant obsolescence, denoted by ωr, is realized. If ωr = 1, the applicant’s invention

becomes obsolete. In this case, all returns shrink to zero permanently, and trivially, the applicant

abandons and obtains a period payoff of zero.16 In this case, the examiner obtains a period

payoff of credits grABN (S, T ). If the invention does not become obsolete, then ωr = 0, and the

applicant makes a non-trivial decision. Formally, obsolescence is a Markov process, where, for

all r, if ωr = 1, then ωr+1 = 1 (an absorbing state). Otherwise, if ωr = 0, ωr+1 is a Bernoulli

random variable with parameter Pω,pre if we are still in the application process, and parameter

Pω,post if a patent has been granted and we are in the renewals process.

We provide the full schedule of examiner credits in Appendix E. The most important feature

to note is that credits weakly decline as the applicant enters subsequent requests for continued

examination, which make early granting more attractive to the examiner.

4.4.2 Applicant Decision

Upon receiving a rejection, if the invention has not become obsolete, the applicant has two

choices. They can abandon (xra = ABN), in which case the applicant’s and examiner’s payoffs

are as described in the event of obsolescence. Instead of abandoning, the applicant can continue

the application (xra = FIGHT). Continuing involves narrowing rejected claims, which we model

as a reduction in padding p by proportion η.17 Hence for all rejected claims j, the padding

15Of course, the vectors include a rejection/acceptance decision and abandonment/fight decision for every round.

To check whether a strategy is optimal, we must specify what each player would do in every round, even if the

prior parts of the strategy dictate that this round will not be reached on the equilibrium path.
16The applicant obtains a period payoff of zero because the Patent Office reveals all applications (after 18

months), so their potential for appropriation of innovation returns (e.g., by trade secrecy as an alternative) has

essentially vanished.
17We could extend the model to allow the applicant to choose whether to narrow by proportion η with some

probability or respond by arguing that the examiner is in error and not narrow at all. However, our data on patent

word counts imply that this extension is empirically unimportant. To see this, we look at word counts on patents

granted with one rejection after publication and calculate the proportion of cases whether the applicant resubmits
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becomes pj,r+1 = ηpj,r. The padding level remains the same for all accepted claims.

Continuing involves a fighting cost to the applicant. The applicant must pay the attorney the

fee for amending the application, Famend. In the case of a Request for Continued Examination,

the applicant must pay the associated patent office fee, F rround. Continuation involves delay costs

for the examiner, denoted by π. After narrowing occurs, the applicant pays fighting costs, and

we move to round r + 1.

Formally, let the value function for the applicant upon being rejected in round r be U ra(ωr,xe).

Clearly, the value function for the applicant is a function of the future strategies of the examiner.

Further, because ω is a Markov process, the value function for the applicant only depends on the

realization of ω in period r. The term U ra(ωr,xe) is defined as follows. If the invention becomes

obsolete, so that ωr = 1, we have (for all xe)

U ra(1,xe) = 0. (2)

Otherwise,

U ra(0,xe) = max

{
0,−Famend − F r+1

round + β
(
1(xr+1

e = GR)[V r+1 − ϕ] (3)

+ 1(xr+1
e = REJ)Eωr+1U

r+1
a (ωr+1,xe)

)}
,

where 1(A) is the indicator function, equal to one if statement A is true and zero otherwise, V r+1

defines the ex post net expected benefits from patent rights if granted in round r+1, as given in

Equation (9) in Section 4.5, and ϕ is the finalizing fee. Equation (3) says that the value for the

applicant in round r, provided they are not obsolete, is either zero if it is optimal for them to

abandon or the sum of fighting costs, plus either the payoff of being granted in the next round

(if the examiner will grant them) or the expected value from round r + 1 if the examiner will

reject them in round r + 1 (both discounted by β).

If xr+1
e = GR, and ωr = 0, the applicant abandons in round r if

Famend + F r+1
round > β[V r+1 − ϕ]

and if xr+1
e = REJ, the applicant abandons in round r if

Famend + F r+1
round > βEωr+1U

r+1
a (ωr+1,xe).

an application with the same word count. This happens only 7% of the time, so we view the choice to ignore the

possibility of no narrowing as a profitable abstraction in the baseline.
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At this point, we can define the expected utility for the applicant before applying, for a given

choice of padding, as

EωU
0
a (e, ε,ω, p) = 1(x1e = GR)[V 1 − ϕ] + 1(x1e = REJ)Eω1U

1
a (ω1,xe), (4)

where all four terms on the right-hand side are (implicitly) functions of the level of padding.

4.4.3 Examiner Grant/Rejection

If the applicant fights (xra = FIGHT), we move to a new round r + 1, and the examiner obtains

updated assessments D̂r+1
j = D(D∗

j , p0η
r) on previously rejected claims. Based on their updated

assessment, the examiner recalculates the grounds for rejection and decides whether to grant the

patent.

Granting

Granting a patent in round r+1 (xr+1
e = GR) ends the negotiation game and moves the applicant

into the renewal stage. Let Rr+1 ∈ [0, 1] denote the proportion of claims the examiner thinks

they should reject on obviousness/novelty grounds. Then the immediate payoff to the examiner

from granting is

Gr+1 = gr+1
GR (S, T )− θRr+1.

Here gr+1
GR (S, T ) is the credit received by the examiner for granting at stage r + 1. The term

θRr+1 captures the intrinsic utility cost for the examiner. For intuition on this term, consider

the extreme cases. When Rr+1 = 0, the examiner believes there are no independent claims

on which they have grounds to reject and therefore feels no intrinsic disutility in granting the

application. On the other hand, when Rr+1 = 1, the examiner believes that they should reject

every independent claim, so the examiner is going against the organization’s mission statement in

granting a patent. The examiner’s intrinsic penalty from premature granting is the product of the

proportion of strategically incorrect claim acceptances and their intrinsic motivation parameter.

One might be concerned that our specification of intrinsic motivation also captures examiner

career concerns within the Patent Office. Even if the examiner were not intrinsically motivated,

their internal career prospects may depend on the frequency with which they grant invalid claims.

However, while the Office does have a “random review” of examiners’ decisions by a senior panel,

these reviews are very rare, they do not come with explicit punishments, and Patent Office data

confirm that decisions are frequently successfully appealed by the head examiner in the art unit.

Rejecting

If the examiner chooses not to grant in round r + 1 (xr+1
e = REJ) they get credits gr+1

REJ(S, T ),

and the stage game continues. The examiner follows this choice by rejecting any claim on which
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they believe there are grounds to reject. Hence, the examiner rejects any independent claim j

if D̂r+1
j < τ . After this, the application moves back into the hands of the applicant, at which

point another obsolescence realization occurs, and then the applicant decides again whether to

abandon or continue.

Formally, we define the value function for the examiner after rejecting in round r as W r
e (ωr,xa).

The value function for the examiner satisfies

W r
e (ωr,xa) =

g
r
ABN if xra = ABN or ωr = 1

−π + βmax
{
Gr+1, gr+1

REJ + Eωr+1
W r+1

e (ωr+1,xa)
}

if xra = FIGHT
(5)

In the bottom branch of Equation (5), where the applicant fights, the value to the examiner of

rejecting in round r is the cost π plus either the (discounted) benefits of granting in round r+1

or the net benefits of rejecting in round r + 1, whichever is larger.

Given the applicant’s strategy xa the examiner grants in round r if

Gr > grREJ + EωrW
r
e (ωr,xa).

This says that the examiner grants if the period payoff from granting exceeds the credits from

rejecting plus the expected continuation value from the point of having rejected in round r, with

expectation taken over obsolescence outcomes.

4.5 Renewal

We enter the renewals stage if the examiner grants the patent and the applicant pays the finalizing

fee. Our renewal model adapts Schankerman and Pakes (1986) to the United States context,

adding a probability of post-grant obsolescence in addition to deterministic depreciation. Suppose

the patent is granted in round r. The returns for each granted claim j start at ṽj,r = v∗j · pr and
depreciate at rate δ each period after grant. With probability Pω,post, the invention becomes

obsolete, at which point the returns shrink to zero permanently. To keep the patent rights, the

applicant must pay renewal fees F4, F8, and F12 at years four, eight, and twelve after grant. The

patent life ends at L = 20 years after submission of the patent application, at which point the

invention enters the public domain.

The renewal decisions by the applicant are those that maximize their expected utility from

retaining patent rights. Formally, define the expected returns from years t1 to t2 as

EωVt1,t2 =

t2∑
t=t1

[β(1− δ)(1− Pω,post)]
t−t1

∑
j

ṽj,r

19



and let It be equal to one if the applicant will renew at year t (provided the patent is not obsolete)

and zero otherwise. Then, the applicant will renew at year four if the net expected benefit after

year four is positive:

V N,r
4 ≡ EωV4,7 − F4 + I8β

4V N,r
8 > 0, (6)

where V N,r
8 is the net returns from patent rights after year eight, which is defined analogously.

The renewal decision at year eight is analogous, and the decision at year 12 is similar, except

there is no future renewal decision post year 12.18 Finally, we define the ex post net expected

benefits from patent rights, when granted in round r, denoted as V r (as in Equation (3), as

V r = EωV1,3 + I4β
4V N,r

4 . (9)

Characterizing the Equilibrium

For every given parameter vector and choice of padding, the negotiation game is a finite game

of perfect information, and hence has a subgame-perfect equilibrium that can be found through

backward induction. The equilibrium strategies (x∗
a and x∗

e) are characterized by (for all r):19

1. xr,∗e = GR if and only if

Gr > grREJ + EωW
r
e (ωr,x

∗
a).

2. If xr+1,∗
e = GR, xr,∗a = ABN if and only if

Famend + F r+1
round > β[V r+1 − ϕ].

3. If xr+1,∗
e = REJ, xr,∗a = ABN if and only if

Famend + F r+1
round > βEωr+1U

r+1
a (ωr+1,x

∗
e).

18To be precise, conditional on not becoming obsolete, the applicant renews at year eight if

V N,r
8 ≡ EωV8,11 − F8 + I12β

4V N,r
12 > 0, (7)

and, conditional on not becoming obsolete, the applicant renews at year 12 if

V N,r
12 ≡ EωV12,20−r − F12 > 0. (8)

19In practice, we limit the process to six rounds (around 95% of applications last at most three rounds of

negotiation and the modal number is two) so the characterization holds for r < 6. In the sixth round, if rejected,

we force the applicant to abandon. The examiner’s continuation value is therefore only g6ABN (S, T ).
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4. The terms U ra(1,x
∗
e), U

r
a(0,x

∗
e), and W

r
e (ωr,x

∗
a), and W

r
e (0,x

∗
a) satisfy Equations (2), (3),

and (5), respectively.

5. I4, I8, and I12 are equal to one if and only if inequalities (6), (7), and (8), respectively, are

satisfied.

We want to highlight the important advantages of modelling patents as comprised of multiple

claims rather than as a single object. First, a model with multiple claims allows a more realistic

description of the patent prosecution system and thus a tighter link to the data on which the

model parameters will be estimated. Second, endowing applicants with multiple claims allows for

specific claims to be narrowed only up to the round at which they are granted. Third, a multiple

claim model enables us to specify the examiners’ intrinsic motivation disutility as a function of

the proportion of granted claims they judge invalid.

5 Estimation

Our primary estimation method is simulated method of moments (SMM), though we estimate

some parameters outside the model. For reference, Online Appendix Table A.2 summarizes all

parameters and their associated distributional assumptions.

5.1 External Estimation

Discount Rate (β)

The data lack some detailed information for identifying all parameters. Specifically, discount

rates are traditionally difficult to identify. Hence, we set β = 0.95—as in most of the literature

(Pakes, 1986).

Distance Threshold (τ)

We estimate the distance threshold externally using observations on claim distances and exam-

iners’ grant decisions. For every examiner e, we calculate the minimum value of the distances

among claims they grant. This number corresponds to their “personal distance threshold,” de-

noted as τe = minj∈Je D̃j , where Je is the set of claims granted across all applications by examiner

e. Since examiners are not perfectly intrinsically motivated, some examiners’ personal thresh-

olds are below the true threshold τ in cases where they knowingly grant patents with relatively

small distances. However, we assume that the most intrinsically motivated examiner will have

a personal threshold τe equal to the true threshold τ . This assumption allows us to estimate

the distance threshold as the maximum of the distribution of examiners’ individual thresholds.

The validity of this approach relies on max
e=1,...,E

τe → τ as the number of examiners in the tech-

21



nology center E → ∞.20 We calculate these thresholds separately for each technology center to

create technology-center-specific thresholds. Notably, our estimates of the threshold in different

technology centers are very similar, ranging from 0.48 to 0.52.

Applicant Fighting Costs (f·)

We have data on the quantiles of the distributions of amendment, maintenance, and issuance

hourly fees charged by lawyers. We assume these three costs are log-normally distributed. Since

these moments directly correspond to the elements of applicant fighting costs and do not identify

any other parameters in the model, we estimate the mean and variances of the log of fighting

costs using the optimal two-step generalized method of moments estimation procedure for each

of the three negotiation-based fighting costs. The data allow us to estimate different negotiation

fighting cost distributions for simple applications (less than ten claims) and complex applications

in chemical, electrical, and mechanical fields.21

Depreciation of patent returns (δ)

Bessen (2008) estimates the combined effect of depreciation and the probability of obsolescence

at 0.14, using U.S. renewal data. In our context, this corresponds to (1−Pω,post) · δ+Pω,post · 1.
Hence, for each parameter guess of Pω,post, we extract the implied pure depreciation rate from

this relationship.

5.2 Simulated Method of Moments

We estimate the remaining set of model parameters using SMM. The model does not admit an

analytic solution for endogenous variables as a function of all the model primitives. Hence, the

goal is to choose the parameters that best match the moments of the data with the corresponding

moments computed from the model’s numerical solution. We estimate the model using moments

from the data described in Section 3, assuming the model’s equilibrium generates the data.

We denote the full vector of parameters to estimate as ψ = (ψe,ψa). The vector of applicant

parameters is ψa =
(
η, Pω,pre, Pω,post, αD, βD, µv, σv,µfapp ,σfapp

)
. We described the narrowing

20In practice, we experiment with the first and fifth percentiles as robustness checks. We also remove examiners

who have conducted fewer than a threshold number of examinations. We experiment with values of 50 and 100 for

this threshold and find only minor differences in all of these cases.
21On application fighting costs, though we have similar moments on lawyers’ application drafting fees, because

application fighting cost is proportional to padding in the model, its distribution is contaminated by the endogenous

choice of padding (which is a function of all model parameters). This feature means that we cannot estimate the

distribution of application fighting costs outside the model: we must estimate these parameters as part of the

simulated method of moments procedure described in the next subsection.

22



and obsolescence parameters in Section 4. For distances, we assume D∗
j is Beta distributed with

parameters (αD, βD). The Beta distribution is a natural choice as it provides a flexible distribu-

tion on the interval [0, 1], which coincides with the interval of our distance metric. Further, we use

a multivariate normal distribution copula to correlate claim distances within an application.22

Motivated by Schankerman and Pakes (1986), the log of initial claim flow returns is normally

distributed with mean µv and variance σ2v . Finally, we assume that the log of application draft-

ing legal fees per unit padding, fapp, are normally distributed with mean µfapp and variance

σ2fapp , with different parameters for simple and complex applications in chemical, electrical, and

mechanical fields.

The vector of examiner parameters is ψe = (µθ,junior, µθ,senior, σθ, µπ, σπ, σε). The first three

parameters (µθ,junior, µθ,senior, σθ) correspond to log-normal parameters for the distribution of

examiner intrinsic motivation. We estimate different µ parameters for “junior” (pre-GS-14 grade)

and “senior” examiners. Though we constrain the σ parameter to be the same for juniors and

seniors, given the log-normal specification, this does not force the variances (or even the variance

relative to the mean) to be the same for juniors and seniors. The log of examiner delay costs, π,

are normally distributed with mean µπ and variance σ2π. Finally, examiner errors are normally

distributed, with mean 1 +
1

θ
and variance σ2ε .

We estimate ψ using a minimum-distance estimator that matches moments of the data with the

corresponding moments implied by the model. More specifically, for any value of ψ, we solve

the model for several simulated draws from the distributions of exogenous variables. Then, we

calculate moments of the endogenous variables across the simulated observations. The minimum-

distance estimator minimizes the SMM objective function:

ψ̂ = argmin
ψ

(m(ψ)−mS)
′Ω (m(ψ)−mS) ,

where m(ψ) is the vector of simulated moments computed from the model when the parameter

vector is ψ, mS is the vector of corresponding sample moments, and Ω is a symmetric, positive-

definite weighting matrix.23

22Specifically, in the simulation, for each application, we draw a vector of size M0 from a standard multivariate

normal with correlation coefficient ρ. We apply the quantile function of the normal to the draws to create correlated

uniform random variables. Then for the estimation guess (α̃D, β̃D), we apply the inverse CDF of a Beta distribution

with these parameters to the uniform draws to generate correlated beta distributed initial distances. For ρ, we use

the empirical correlation of granted distances. Simulations confirm that the correlation of the multivariate copula

is very close to the correlation of the distances. See Nelsen (2007) for details.
23For the weighting matrix we use a diagonal matrix that scales moments to a uniform scale. We cannot use

the optimal two-step weight matrix because we do not have application-specific data on fighting costs that can
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5.3 Choice of Moments

We now briefly describe our choice of moments for the SMM estimation. In Online Appendix

F, we provide some intuition about how these moments aid in identifying the parameters we

estimate.

The number of moments we can calculate on endogenous variables in the model far exceeds

the number of model parameters. To select a subset of moments for our estimation procedure,

we followed a rigorous, data-driven methodology, based on the sensitivity matrix of parameter

estimates to the inclusion of particular moments (Andrews, Gentzkow, and Shapiro, 2017), along

with plots of how estimated model moments (and separately, the value of the SMM objective)

vary with parameter values. We provide details on the complete set of moments we considered and

our pruning procedure in Appendix F. Through this procedure, we pruned the set of moments

down to 40 that clearly assist in estimating the parameters.

The selected moments corresponding to outcomes for examiners are the proportion of appli-

cations granted by round and seniority, the standard deviation of examiner rejection rates by

seniority, and the proportion of patents granted containing an invalid claim (again, by seniority

and round). The selected moments corresponding to outcomes for applicants are the proportion

of abandonments by round and examiner seniority, patent renewal rates, means and standard de-

viations of granted claim distances by round granted, and means and medians of legal application

fees by technology class.

6 Empirical Results

In this section, we present and interpret our parameter estimates and briefly discuss model fit and

robustness. For model estimates, we bootstrap standard errors. Standard errors are negligible

for all parameters, which is unsurprising since we calculate data moments using millions of

observations.

6.1 Applicant Parameters

Table 1 presents the estimates for parameters relating to the applicant. First, we estimate the

proportion of narrowing per round as 1 − η = 0.25. This estimate indicates that screening

substantially narrows over-claiming by the applicant. Second, we estimate two probabilities of

allow us to compute the correlation between these moments and others. Details on computation and numerical

optimization are available on request.
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Table 1. Applicant Parameter Estimates

Parameter Symbol Estimate S.E.

Per-round narrowing 1− η 0.25 0.000

Pre-grant obsolescence Pω,pre 0.14 0.001

Post-grant obsolescence Pω,post 0.04 0.000

Initial returns log-mean µv 10.55 0.077

Initial returns log-sigma σv 1.32 0.022

Initial distance alpha αD 4.57 0.003

Initial distance beta βD 7.74 0.004

Simple application fighting cost log-mean µf,simple 8.53 0.011

Simple application fighting cost log-sigma σf,simple 0.87 0.054

Notes: This table provides the applicant’s model parameters. Standard errors are boot-

strapped. Table A.3 provides fighting cost parameters by technology area.

obsolescence: a pre-grant probability during the application process and post-grant obsolescence

during the patent’s life. The estimated pre-grant obsolescence probability is 14% for each nego-

tiation round. The post-grant rate is 4% per year, which is broadly similar to other estimates in

the literature.24 The probability of obsolescence is higher during the application process for two

reasons. First, applicants are more likely to discover their invention to be obsolete earlier in its

life cycle (e.g., discovering that commercialization costs make the project unviable). Second, the

prosecution stage contains applications that are eventually granted and those who abandon, and

many of those who abandon do so precisely because they become obsolete.

Third, the distribution of initial returns from an unpadded independent claim is highly skewed.

Though the mean is $91,046, the median is $38,069, and the modal value of initial returns for

an unpadded independent claim is $6,656. To understand the distribution of unpadded initial

returns on the application, we take the distribution of the number of independent claims and

use it to construct sums of draws from the distribution of claim returns. For example, the first

patent application in our dataset has two independent claims. Hence, we draw two values from

the distribution of claim initial unpadded returns and add them to get the total initial unpadded

24Using data for three European countries, pooled across technology fields, Pakes (1986) calculates values of 6%,

4% and 1% for the likelihood of obsolescence in the first, second and third year after grant, respectively. Using

German data, disaggregated by four technology areas, Lanjouw (1998) estimates a range of 7-12%.
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returns on that application. The median initial unpadded returns from a patent application are

$129,659.

It is difficult to compare our estimates of initial returns to existing estimates in the literature on

total patent returns since we estimate the distribution of initial returns for (a) all applications

(not just granted ones) and (b) unpadded claims. Nonetheless, it is worth noting that Bessen

(2008) estimates the mean net present value of patents (adjusted to 2018 U.S.D) for all U.S.

patentees as $78,168 and $113,067 for just U.S. public firms in manufacturing.

Next, we discuss the implied distribution of initial unpadded distances and fighting costs. The

mean distance is 0.37, and the distribution is approximately symmetric. Given that our estimated

thresholds are between 0.48 and 0.52, these estimates imply that about 83% of application

claims have distances below the threshold. Despite this, many applications are eventually granted

because of extensive narrowing and examiners granting invalid claims. Fighting costs for simple

applications are lower than all other categories. Recall that legal costs per application are specified

as Fapp = fapp · (1 + |p − 1|), where fapp is the attorney fees associated with patent drafting.

Evaluated at the mean levels of p and fapp, we estimate these transaction costs at $7,920 for

simple applications and $12,333 for electrical applications.

Padding (overclaiming property rights)

We compute statistics on the model’s endogenous variables by simulating the model at our

estimates. Relating to the applicant, we calculate the distribution of optimal initial padding for

those who apply. The mean padding level is 8%, with 70th and 90th percentiles equalling 18%

and 31%, respectively. These results suggest that many applicants substantially exaggerate the

true extent of their invention when they apply for patent rights.

We also compute two weighted averages of padding, where our weights are either the mean (over

claims) of initial unpadded distances (D̄∗
s) or initial unpadded values (v̄∗s). The weighted average

of padding rises to 10% when weighted by values and 9% when weighted by distances, indicating

that inventors increase padding for applications with claims that are more valuable and distant

from the prior art (where such padding is less likely to induce the examiner to reject).

6.2 Examiner Parameters

Table 2 presents the estimates of the examiner parameters. To understand examiner costs and

intrinsic motivation, we provide a slight digression on the units of examiner payoffs in the model,
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Table 2. Examiner Parameters Estimates

Parameter Symbol Estimate Standard Error

Junior intrinsic motivation log-mean µθ,junior 3.92 0.004

Senior intrinsic motivation log-mean µθ,senior 3.38 0.005

Intrinsic motivation log-sigma σθ 0.77 0.055

Delay cost log-mean µπ 0.19 0.006

Delay cost log-sigma σπ 0.27 0.015

Error standard deviation σε 0.02 0.000

Notes: This table provides the model parameters relating to the examiner. Standard errors are

bootstrapped.

which we call “normalized credits.”25 The Office adjusts each examiner’s credits based on their

seniority and the technological complexity of applications. We use the same adjustments when

we model payoffs for examiners.26 These normalized credits are the unit of examiner payoffs.

This ensures that payoffs are in the same units for all examiners, regardless of their seniority and

technology center.

We start by interpreting the parameters of intrinsic motivation. To our knowledge, these are

the first structural estimates of intrinsic motivation in a public agency. We estimate σθ as 0.77,

which implies, by the properties of the log-normal distribution, a coefficient of variation of 0.82

(82%). This estimate implies substantial variation in intrinsic motivation across examiners, even

within seniority category. We estimate µθ,junior = 3.92 and µθ,senior = 3.38, which implies that,

on average, junior examiners are more intrinsically motivated than senior examiners. Figure 3

plots the distribution of intrinsic motivation for junior and senior examiners as implied by the

log-normal assumptions. It is clear that the distribution of senior examiners’ intrinsic motivation

(yellow solid) is generally lower than that of junior examiners (maroon dashed). At least two

countervailing forces influence the relationship between seniority and intrinsic motivation. In-

25Online Appendix Section E provides a detailed derivation of the examiners’ credit structure.
26For example, an examiner receives two credits for granting a patent in the first negotiation round. We adjust

these credits by dividing by a seniority factor (for example, by 1.25 for a senior GS-14 examiner) and multiplying

by a technology correction (say, 29 for the relatively complex category of computer networks). Therefore, a GS-14

examiner in technology center “computer networks” receives 46.4 normalized credits for granting a patent in the

first round. Tables E.1 and E.2 report the values of seniority and technology corrections across all seniorities and

technology centers, respectively.
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Figure 3. Density of examiner intrinsic motivation
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Notes: Orange solid curve represents the distribution for senior examiners; maroon dashed curve represents the

distribution for junior examiners. To interpret the x-axis, consider an examiner in technology center 36, where the

technology correction is 22.4. Dividing the values on the x-axis by 22.4 yields the number of credits the examiner

pays as an intrinsic motivation cost to a GS-12 examiner for granting a patent for an application on which every

claim is invalid.

trinsic motivation will fall with seniority if examiners become “jaded” with experience. However,

selection cuts the other way since the least intrinsically motivated examiners are likelier to move

to the private sector with higher remuneration. The evidence thus indicates that the jading effect

dominates the selection effect.

To interpret the magnitude of intrinsic motivation, we calculate the associated cost for a median

intrinsically motivated GS-12 (junior) examiner in a selected technology center 36 (“Miscella-

neous” category). For this examiner, the seniority correction is one and the technology correction

is 22.4. Recall that intrinsic motivation cost (in terms of normalized credits) is CIM = θR, where

θ is the intrinsic motivation parameter, and R is the proportion of claims the examiner believes

invalid. We divide CIM by 22.4 to change the units back to pure credits. Hence, in terms of

raw credits, this examiner’s intrinsic motivation cost is 2.25R, which means that the examiner

faces a cost of 2.25 credits for knowingly granting a patent with 100% of its claims as invalid.

This cost is equivalent to the credits the examiner obtains for making three final rejections. This

example is only an illustration, but our estimates generally imply that intrinsic motivation costs

are sizeable relative to extrinsic rewards.

Next, we consider examiner delay costs. The coefficient of variation of examiner costs is 0.08,

ten times smaller than examiner intrinsic motivation. Moreover, delay costs are estimated to be
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small, with the median cost for a GS-12 (junior) examiner in technology center 36 paying an

equivalent of 0.05 credits to go an extra round on this particular application. The fact that these

costs are so small suggests that examiners are not pressured explicitly to finish applications fast

and that the opportunity cost of devoting more time to this application relative to the next

on their desk is small. This finding is intuitive since the most time-consuming activity for the

examiner is their initial literature search. Hence, continuing to make decisions on an application

they have already reviewed is less time-intensive than starting a new application (though also

less compensated).

Finally, we discuss examiner error parameters. Recall that examiner errors are normally dis-

tributed, with an estimated standard deviation and mean equal to µε = 1 +
1

θ
, where θ is the

examiner’s intrinsic motivation. The error that an examiner draws multiplies padded distances

to create the examiner’s distance assessment. Since junior examiners are more intrinsically mo-

tivated on average, the mean of the junior examiners’ error distribution is closer to one. We

estimate the standard deviation of examiner errors to be 0.02, indicating that errors are modest,

typically within 4% of the examiner-specific mean.

Calculating Examiner Errors

We compute statistics on two kinds of examiner errors by simulating the model with our baseline

estimates. The first error occurs when an examiner grants a patent with invalid claims. We refer

to this as a “type 1” error. We calculate that this happens for 19% of grants, suggesting that

while examiners are screening out some invalid patents, nearly one in five applications contain

some claims that should not have been granted. The last statistic represents the “extensive”

margin of this type of examiner error; we can also calculate an “intensive margin” error. Among

all granted claims, 7% are invalid (compared to 83% of claims whose unpadded distance is below

the threshold), implying that most invalid patents contain only a few invalid claims.

We also calculate the weighted errors (focusing on the intensive margin), where weights reflect

the distance of the claim from the patentability threshold. Among simulations, indexed by s, let

SG be the set granted and j represent a claim. We calculate the measure∑
s∈SG

∑
j

wsj∑
s′∈SG

∑
j′ ws′j′

E1sj,int, (10)

where E1sj,int is equal to one if claim j on simulation s is invalid (has a distance below the

threshold) and zero otherwise, and the weight wsj = |D̃sj−τs|, where τs is the threshold relevant

to simulation s. The idea is to put more weight on errors where claims are further away from

the threshold (making the error more “egregious”). If the weighted average is lower than the

unweighted average, it implies that errors occur in marginal cases in which it is not obvious
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whether the patent is valid. Indeed, the weighted error is 2%, much lower than the unweighted

value of 7%, suggesting that most errors occur in cases of marginal validity.27

The other kind of “error” (or “undesirable” outcome) occurs when an applicant abandons an

application that contains valid claims. We refer to these as “type 2” errors. Approximately 36%

of abandonments have at least one valid claim. Strictly speaking, these are not a mistake by the

examiner since they should only grant patents to applications on which all claims are valid. At

the intensive margin, among all claims the applicant abandons, 18% are valid.

Similar to Equation (10), we calculate a weighted average of type 2 intensive margin errors,

where the weights are the same as before—the distance of a claim from the threshold. In this

case, the weighted error falls to 6%, again implying that abandonments occur on marginally valid

claims rather than clearly valid ones. When we compute the extensive margin weighted error,

the proportion of abandoned applications with at least one valid claim is 11%.

Model Fit and Robustness

We compare the values of simulated moments, calculated at the estimated parameters, with

moments in the data.28 As expected, we match most of the internal moments well (two exceptions

are described in Online Appendix F). The real test of model fit, however, is how well we match

moments that are not used in the estimation procedure. Online Appendix Figure A.2 displays

these comparisons for the excluded moments described in Appendix F, which include percentiles

on granted distances in each round, the mean of distances for latter rounds, and means and

percentiles of round one rejection rates across seniority categories. We match all of these moments

well.

We run a series of robustness checks on our baseline model (Online Appendix Table A.5 sum-

marizes the results). First, we examine changes to how we define the distance threshold for

patentability. In the baseline, we define each examiner’s “revealed” threshold as the minimum

distance they grant and then take the threshold as the maximum of those values over examiners.

We experiment with using the first and fifth percentile of distances granted for each examiner,

which allows for measurement error in their personal threshold. We also check robustness to a

discount factor of 0.99 and a broader definition of examiner seniority. In all cases, the parameter

estimates are generally robust.

27We also calculate weighted averages for the extensive margin type 1 errors (details available on request). The

weighted error in this case is 5.1%, similarly suggesting that most errors occur in marginal cases.
28Online Appendix Figure A.1 displays the full set of comparisons.
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Table 3. Counterfactual Experiments

Counterfactual Not Apply Pad Rounds R1 Gr T1 T2

(%) (%) (%) (%) (%)

Baseline 6.3 8.0 2.5 11.5 18.8 36.5

25K Round Fee 8.4 6.6 2.4 12.8 18.0 37.9

50K Round Fee 12.2 5.9 2.4 14.2 17.7 39.8

Three Rounds 27.2 3.6 2.1 15.1 15.9 49.2

Two Rounds 51.1 0.8 1.6 25.8 11.9 56.1

One Round 79.6 -2.3 1.0 98.4 0.5 91.7

15% IM 3.9 8.0 2.1 30.2 89.3 22.4

Credit↘ 6.3 7.9 2.5 11.5 18.7 36.3

Credit↘ + 15% IM 3.4 18.1 2.1 32.8 88.9 17.7

Notes: “Not Apply’ is the percent of inventors who do not apply for a patent; Pad is the mean

level of padding. Rounds is the mean number of rounds. “R1 Gr” is the percent of applications

granted in Round 1. T1 represents the proportion of granted patents with some invalid claims.

T2 represents the proportion of abandoned applications with some valid claims.

7 Counterfactual Analysis

We use the estimated model to conduct a series of counterfactual analyses to examine the impacts

of various reforms on the speed and quality of the screening process and the degree of padding in

patent applications. The counterfactual scenarios we examine include removing intrinsic motiva-

tion, and changing the level of patent office fees, the number of allowable rounds in the process,

and examiner extrinsic incentives (credits).

Table 3 presents the results. We focus on four endogenous outcomes. The first is the proportion

of applicants who choose not to apply for a patent on their developed invention. The second

is the applicant’s choice of how much to pad the application. The third set of outcomes is the

proportion of grants in round one and the average number of rounds (speed of resolution). The

fourth set, relating to screening quality, is the proportion of granted patents with at least one

invalid claim (type 1 error at the extensive margin) and abandoned applications with at least one

valid claim (type 2 error at the extensive margin). We note but do not report that the changes

in these errors at the intensive margin errors are similar.

Fees

In the baseline, there are relatively low fees for applicants throughout the prosecution process.
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In the first counterfactual, we introduce a substantial per-round fee that the applicant must

pay for each negotiation (not just for an RCE).29 This fee acts as a marginal cost per round

of negotiation. Since each round is now more expensive, applicants have increased incentives

to exit the patent process as soon as possible, and less incentive to apply in the first place. A

substantial $50,000 fee for every extra round reduces padding by a quarter (from 8.0% to 5.9%)

and slightly reduces the mean number of rounds, from 2.5 to 2.4. The proportion of grants in

round one increases from 11.5% to 14.2%, reflecting the reduced padding, and the fraction of

granted patents with some invalid claims (type 1 error) falls slightly. However, the rounds fee

increases type 2 error—rising from 36.5% to 39.8%. The trade-off between these two types of

errors is a feature of many of the counterfactuals we analyze.

It is at first surprising that per-round fees as high as $50,000 do not substantially change the

speed or quality of patent prosecution. The explanation is that the private value of patent rights

is large enough to make applying for a patent on many of these inventions worthwhile, even

with high per-round fees. Further, the applicant has the option to apply and then abandon after

the first rejection, without paying any negotiation fee. Fees would have to be much higher to

substantially impact outcomes.30

Restricting the Number of Rounds

Instead of using fees, we consider limiting the maximum number of rounds of negotiation between

the applicant and examiner. We consider a maximum of three rounds, then a maximum of

two rounds (equivalent to removing all RCEs, allowing only one round of interaction between

applicant and examiner), and finally, we allow for only one round (that is, no negotiation between

applicant and examiner so that the examiner’s first decision is final). These counterfactuals are

motivated by a 2007 U.S.PTO proposal to restrict the number of RCEs. The proposed rulemaking

was challenged in federal court, which judged the restrictions as an overreach of Patent Office

29We also consider substantially increasing the application fees to as much as $50,000. However, because this is

a fixed fee paid upon application, provided it is still profitable to apply, applicants will not change their padding

decision. Even at this level, the fee does not materially alter average padding and, since there is practically

no change to the proportion of inventors who choose to apply, introducing an application fee acts mainly as a

transfer from applicants to the Patent Office, with minimal changes to quality or speed of prosecution. If the

additional resources from the higher application fee were reinvested in patent office examination, there would be

improvements. This finding—that application fees only really help if they are reinvested—is similar to the findings

in Schankerman and Schuett (2022), who use a completely different theoretical model and data.
30Of course, these fees would be significant for small firms or single inventors who may be cash constrained.

However, round fees for small and micro entities could be reduced, as the Patent Office already does for other

types of fees.
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authority.31 The court decision did not consider the quantitative impact of such changes on

patent office screening quality or its welfare effects, which our paper makes possible.

Round restrictions have material consequences on screening outcomes. Removing all RCEs (al-

lowing only two rounds) would lead to half of all inventors not applying for a patent and would

virtually eliminate padding. In this case, 25.8% of applicants are granted in the first round, and

because applicants respond to the restriction by reducing padding, the proportion of patents

granted with invalid claims falls. In particular, with only one opportunity for negotiation, type

1 error falls sharply, from 18.8% to 11.9%.

The disadvantage of limiting the scope for negotiation is that it increases the proportion of

abandoned applications with valid claims. With no RCEs, this proportion rises from 36.5% to

56.1%. As with fees, making the process tougher for applicants through fewer allowable rounds

generally reduces the granting of invalid claims and speeds up the process but leads to the

abandonment of valid claims. As we discuss in the next section, granting invalid claims and not

granting valid claims each imposes social costs, and we need to measure these to evaluate the

overall impact of the reforms.

Finally, we compare the effectiveness of fees and round restrictions (“price versus quantity”

instruments) by computing the equivalent per-round fee—in the sense of equalizing the mean

number of rounds in equilibrium—to restrictions on the number of RCEs. The simulations show

that the fee equivalent to removing all RCEs is a massive $600,000 per round. Using fees generally

produces lower type 1 and type 2 errors than their rounds equivalents, but such fee levels are

politically unpalatable.

Removing Intrinsic Motivation

Next, we evaluate the impact of removing intrinsic motivation by reducing it for every examiner

to 15% of its original value.32 Knowing that examiners will be more unwilling to grant invalid

patents, only 3.9% of inventors do not apply, the number of rounds falls from 2.5 to 2.1, and the

31The proposed changes are in U.S.PTO Changes to Practice for Continued Examination Filings, Patent Appli-

cations Containing Patentably Indistinct Claims, and Examination of Claims in Patent Applications—the “New

Rules” (SmithKline Beecham Corp. v. Dudas, 541 F. Supp. 2d 805, 2008). The court decided that the “New Rules”

were substantive and that the Patent Office did not have the rulemaking authority to make substantive changes,

though the Court noted that the Patent Office could make procedural changes, such as fees. As we will show, one

can achieve the same equilibrium number of rounds with an “equivalent” fee, so from an economic point of view,

this distinction is problematic.
32We cannot fully remove intrinsic motivation because our specification of mean error being inversely related to

IM implies that IM cannot be exactly zero. We provide the reason behind our choice of 15% in Section 8.
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proportion of applications granted in round one almost triples, increasing from 11.5 to 30.2. Not

surprisingly, type 1 error jumps sharply to 89.3%, while type 2 error declines. This counterfactual

highlights the quantitative importance of intrinsic motivation on the quality of patent screening

and confirms its potential salience for economic analyses of other public agencies.33

Removing Credits

Finally, we consider changes to the structure of credits for examiners. We remove all credits

for the examiner after the first round. If it is the case that examiner costs of delay represent

the marginal cost of an extra examination round, then such a policy change could be justified

on efficiency grounds of “marginal cost pricing” since we estimated examiner delay costs to be

small.34 When we remove all credits after the first round in the baseline model, there are minimal,

if any, impacts on any of the outcome variables. This result suggests that our baseline estimates of

intrinsic motivation are sufficiently large for examiners to want to avoid granting invalid patents

even in a context where they will receive no further extrinsic reward if they do so. This striking

finding reflects the extent to which patent office examiners are intrinsically motivated. The results

are not consistent with extrinsic incentives crowding out intrinsic incentives.

To complement this exercise, we also analyze the effect of removing all credits after the first

round alongside reducing intrinsic motivation to 15% of its value (at any higher value of intrinsic

motivation, removing credits has no material effect). In this case, we find non-trivial impacts of

credits consistent with economic intuition. First, padding doubles, up to 18% (relative to 8.0%

when only intrinsic motivation is changed) and first-round grants increase from 30.2% to 32.8%.

Type 2 error declines because the increased padding means that abandonments are less likely to

include valid claims. These results indicate that extrinsic incentives and intrinsic motivation are

substitutes, not complements, as sometimes found in the experimental literature (see Section 2

for citations): credits only work as an effective device to incentivize examiners when examiners

are not intrinsically motivated (and even then, as we show in the next section, credits do not

reduce social costs of screening).

33Interestingly, increasing intrinsic motivation (not reported) does not have much impact in reducing padding

or type-1 error. The explanation for this outcome is that examiners are already sufficiently intrinsically motivated

to get most of the benefits, so further increases do not have much bite.
34This counterfactual has limitations that the others do not because our model is focused on optimal decisions

on a given patent application. It does not incorporate any interactions between different applications the examiner

faces, such as optimizing docket management across applications (including meeting quarterly or annual targets).

This counterfactual is best thought of informing an examiner that for one of the new applications in their docket,

they will only receive credits for the first round.
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In summary, these counterfactual experiments show that no reform we consider unambiguously

improves both prosecution speed and quality. There is typically a trade-off: policies that make

prosecution stricter lead to fewer grants of invalid patents but increased abandonments of valid

applications. Evaluating reforms requires converting these outcomes into social costs, which we

do in the following section.

8 Quantifying the Social Costs of Patent Screening

We classify net social costs into three categories: type 1, type 2, and prosecution costs. Type

1 costs refer to the costs induced by granting invalid claims. Type 2 costs refer to the social

value of inventions that are not developed ex ante because of the potential threat of not being

granted valid claims. Type 1 benefits refer to the social value of inventions that would not be

developed ex ante without type 1 error. Type 2 benefits refer to the ex post deadweight loss not

incurred when inventors abandon valid claims. Prosecution costs are the Patent Office’s costs

of examining applications plus the legal fees incurred by the applicants during the negotiation

process. In what follows, we summarize our quantification approach; full details are in Online

Appendix G. We start with the costs of each type of error and then discuss the benefits.

8.1 Type 1 Costs

There are two sources of costs from type 1 error: the deadweight loss associated with the royalties

extracted by the patentee and the litigation costs associated with legal challenges against invalid

patents that are granted (and that are valuable enough to warrant a challenge).

Deadweight loss from royalties

We assume that the patentee charges the Arrow royalty equal to the unit cost savings due to the

invention, ∆c. The deadweight loss from royalties depends on the market structure of licensees.

Our baseline specification is perfect competition among licensees, with a linear demand and

constant unit cost.35 In this case, the deadweight loss is

DWL =
1

2
∆℘∆q =

λ

2

∆℘

℘
Ṽ ,

where ℘ is the initial price (without the royalty associated with the claim), ∆℘ = ∆c with perfect

competition, Ṽ = q∆℘ denotes total royalty payments, and λ is the elasticity of product demand

35In Online Appendix G, we extend the approach to Cournot competition. Our calibration indicates that this

extension yields quantitatively very similar results.
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(in absolute value).36 To calibrate this expression, we follow Schankerman and Schuett (2022),

who estimate the ratio of corporate licensing revenue from intangible industrial property to R&D

at 39.3%. Multiplying this ratio by the ratio of R&D to sales in manufacturing in 2002 (4.1%),

we take
∆℘

℘
= 1.61%. We do the computation for values of the demand elasticity λ ∈ (1, 3) and

report λ = 2 in the main analysis (qualitative conclusions hold for the other values).

Cost of litigation on invalid patents

The social cost of type 1 error also involves litigation costs on invalid patents. Not all invalid

patents are “exposed” to litigation because their private value is not large enough to justify the

litigation expense. Letting GṼ (·) denote the distribution of the value at stake Ṽ , we take the

proportion of patents not exposed to litigation from Schankerman and Schuett (2022) (v̌ = 89.6%)

and calculate the v̌st percentile of the value at stake distribution, V̌ = G−1
Ṽ

(v̌). Then, all patents

with Ṽ exceeding the threshold V̌ are exposed to litigation.

The social cost for invalid patents not exposed to litigation is only the deadweight loss from roy-

alties. From Schankerman and Schuett (2022), exposed invalid patents have a 16.3% probability

of being litigated, in which case, we assume that courts are perfect and thus always invalidate

wrongly granted claims. In this case, the social cost is the sum of litigation costs for the patentee

and challenger, each denoted C(Ṽ ).37 The remaining 83.7% of exposed invalid patents are not

litigated and only impose the deadweight loss.38

In summary, the expected social cost of granting an invalid patent of value Ṽs is

S1s = IsDWLs + (1− Is)
[
0.837 ·DWLs + 0.163 · 2C(Ṽs)

]
, (11)

where Is = 1(Ṽs ≤ V̌ ) is an indicator equal to one if the patent is not exposed to litigation.

Then, the total type 1 cost is

T1 =
∑
s∈SG

E1sS1s (12)

where E1s is equal to one if a granted application s ∈ SG is invalid and zero otherwise.

36For invalid patents, we cannot use the model estimates of values of patent rights V to represent royalty

payments for invalid patents Ṽ , since our estimates of V are contaminated with potential legal costs (explained in

the next subsection). In Online Appendix G, we explain how we overcome this challenge to calculate type 1 costs.
37We take C(Ṽ ) as linear in Ṽ and calibrate the coefficients using AIPLA data.
38Patentees with invalid patents can pre-empt a challenge by charging a royalty payment (typically a lump sum)

equal to the cost of litigation for the challenger (this is commonly referred to as “trolling” behavior). For these

cases, the social cost is only the deadweight loss associated with the patent, since the payment is a pure transfer

from the licensee to the patentee (we ignore possible R&D incentive effects of the transfer). See Schankerman and

Schuett (2022) for more discussion.
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8.2 Type 2 Costs

From the ex post perspective, there is no social cost from type 2 errors because the innovation has

already been produced and the R&D cost is sunk (this is essentially ex post hold-up). Therefore,

it only makes sense to analyze the social cost of type 2 errors from the ex ante (incentive)

perspective. Type 2 error reduces the expected value of patent protection for the inventor and,

thus, the ex ante decision of inventors to develop their (exogenous) ideas. We want to calculate

the social value of the set of socially valuable inventions that are not developed when there is

the possibility of type 2 error but which would be developed in the absence of type 2 error.

This task requires us to construct a simple model of development. We emphasize that we do not

require this extension to estimate the screening model, nor to calculate padding, the number of

equilibrium rounds, type 1 and type 2 errors, type 1 social costs, and prosecution costs.

The decision to develop an idea into an invention depends on three things: the ex ante value of

patent rights (Γ∗), the value of the invention without patent rights (π), and the development

cost (κ). To compute Γ∗, we use our model to calculate the ex ante value of patent rights (net

of all costs), as in Equation (1). To calculate the private value of the invention without patent

rights, we define the patent premium (ξ) as the percentage increase in private value due to patent

protection. Hence, for positive Γ∗, by definition Γ∗ = ξπ, implying a set of values of π. We assume

that the patent premium is constant across inventions and calibrate it based on existing estimates

from the literature on patent renewal models (Schankerman, 1998).39 For the cost of developing

an idea into an invention, κ, we draw values from the distribution estimated by Schankerman

and Schuett (2022).40

An inventor does not invest to develop an idea i if

NDi ≡ Bi − κi ≤ 0,

where Bi ≡ πi+max{Γ∗
i , 0} is the private benefit of development. An idea is socially valuable to

develop if the net social benefit of development,

S2i ≡
ρsoc
ρpriv

Bi − κi,

39This is a strong assumption, but it is not feasible to identify πs if we allow the patent premium to vary. The

reason is that we do not have any information on who develops their ideas, which might allow us to back out π

from the decision to develop and our estimated value of Γ∗. Furthermore, we must specify π for inventions with

negative ex ante value of patent rights. To do this, we draw from the distribution of π created from positive values

of patent rights.
40An alternative approach is to assume that inventors do not know their development cost, and thus use the

mean cost κ̄. We experimented with this approach and qualitative conclusions are robust.
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is positive (where ρpriv and ρsoc denote the private and social rates of return). We use a conser-

vative estimate of
ρsoc
ρpriv

= 2 from Bloom, Schankerman, and Van Reenen (2013).

Let Υ0 denote the set of ideas that are socially beneficial to develop (S2i > 0) but which are

not developed (NDi ≤ 0). To calculate type 2 social cost, we compute the subset of Υ0, which

we denote Υ1, that would develop in the absence of type 2 error. To do this, we simulate the

outcome from a “counterfactual” patent prosecution where, at the point of patent abandonment,

the inventor obtains the value of all valid claims in that patent. By definition, in this scenario,

all abandoned claims are invalid, so there is no type 2 error. Let Γ′ denote the expected value of

patent rights in this new scenario. The idea i would be developed in this scenario if

ND′
i ≡ πi +max{Γ′

i, 0} − κi > 0.

We then compute type 2 costs as

T2 =
∑
i∈Υ1

S2i, (13)

where Υ1 is the subset of Υ0 with ND′
i > 0. This is the set of ideas that are socially beneficial to

develop, that are not developed in the scenario with type 2 error, but that would be developed

in the absence of any type 2 error.

8.3 Patent Prosecution Costs

The social cost of patent prosecution for each application s consists of two components: applicant

legal costs of amending the application each round and Patent Office administrative costs. The

amendment cost is the per-negotiation cost Famend,s drawn from the estimated distribution,

multiplied by the equilibrium number of negotiations for application s (equal to the number of

rounds rs minus 1). For the administrative cost, we calculate the patent operations budget per

application as $4,117 (in 2018 dollars). This value excludes patent office fees, as these are transfers

from the applicant to the patent office, as well as loss in patent value associated with pre-grant

obsolescence since that, too, is a transfer from the applicant to the owner of the invention that

superseded it. We divide the operations budget per application by the average number of rounds

across all simulations and by the average number of independent claims in an application, to

create the average patent office cost per round and claim, denoted by RCC. Then, the total

social cost of patent prosecution is

T3 =
∑
s

(rs − 1)Famend,s︸ ︷︷ ︸
Applicant Fighting Costs

+
∑
s

M0,srsRCC,︸ ︷︷ ︸
Office Costs

(14)

where M0,s is the initial number of claims in application s.

38



8.4 Benefits of Type 1 and Type 2 Errors

There are also benefits from errors. In the type 1 case, when invalid patents are incorrectly

granted, the ex ante incentives for inventors to develop and patent their ideas are increased.

This is analogous to the costs of type 2 error. We compute these benefits as the sum of social

development benefits from welfare-enhancing projects that would not be developed without type

1 error but that are developed with type 1 error.41 The method is similar to the approach

described in Section 8.2.

Further, there are benefits from type 2 errors. Not granting valid patents saves the deadweight

loss on those patents. We compute these benefits as described in Section 8.1. Note that there

is no benefit associated with litigation cost savings since, under our assumption of costly but

perfect courts (always upholding valid patents and overturning invalid ones), valid patents that

are granted would not be challenged.

One important point to note is that the quantification of net social costs in this section is based

on the presumption that the patentability threshold used by the Patent Office corresponds to

the social optimum, that is, the threshold that only grants patents to inventions that are welfare-

enhancing but would not be developed without patent rights. To see this, suppose the threshold

is too low (the conventional wisdom) so that some patents are considered “valid” and granted

despite not being welfare-enhancing. We would incorrectly not count these as a type 1 error,

so they would not contribute to our measure of type 1 social costs. Thus, we would understate

type 1 costs (and type 2 benefits). By an analogous argument, we would overstate type 2 costs

(and type 1 benefits). Therefore, if the threshold is too low, the consequence is that we would

understate net type 1 social costs and overstate net type 2 social costs. It remains an open

and important research question to determine the “optimal” distance threshold, that is, the one

that grants patents only to inventions that are welfare-enhancing and not otherwise developed

(Schankerman and Schuett, 2022).

8.5 Social Costs in Counterfactual Reforms

Table 4 summarizes the three components of net social costs for the baseline model and the set

of counterfactual reforms.42 The baseline row approximates the net social costs associated with

41The “counterfactual” patent prosecution in this case is one where, at the point of patent grant, the inventor

only obtains the value of the valid claims in the patent.
42The table presents the values of net social costs for λ = 2, ρsoc

ρpriv
= 2, ξ = 0.1, and development costs drawn.

The qualitative conclusions are similar for a range of other parameter values. In Appendix A, we provide results

for the cases of a 5% patent premium with ρsoc
ρpriv

equal to 1.5 and 2, and a 10% patent premium with ρsoc
ρpriv

equal
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a yearly cohort of ideas, averaged over 2011–2013 (Appendix G explains how we calibrate the

annual number of ideas). Subsequent rows provide the net social costs in that counterfactual

scenario. All values are adjusted for inflation, presented in 2023 U.S. dollars.

In the baseline, total type 1 net costs equal $6.4bn, total type 2 net costs are $1.5bn, and

prosecution costs equate to $17.6bn. In the final column, we sum these three net costs and

estimate the total net social cost of patent screening at $25.5bn. This total constitutes 6.5% of

total R&D performed by business enterprises in the U.S. in 2011.43

Introducing a per-round fee lowers type 1 and prosecution costs because it discourages applica-

tions and lowers padding for those that do apply. This, in turn, implies that fewer grants are

invalid and that grants occur in fewer rounds. However, a round fee increases type 2 costs as

applicants are more likely to abandon with some valid claims in a scenario with high negotiation

fees. With a $25,000 round fee, the latter effect dominates, so the total net social cost increases

by a very modest 1.9%. As mentioned earlier, for sufficiently large rounds fees (likely to be po-

litically infeasible), the reductions in type 1 and prosecution costs eventually dominate. Further,

in these counterfactuals, the extra revenues generated by the fees are not reinvested in more

intensive or faster examinations. If they were reinvested, social costs from introducing fees would

be mitigated or even converted to social gains.

Restrictions on the allowable number of negotiation rounds have qualitatively similar effects on

social costs as rounds fees, but the impacts are much larger. Removing all RCEs (two rounds)

yields a 10.4% fall in total social costs relative to the baseline. Restricting the process to one

round reduces net social costs by 45%.

Removing intrinsic motivation (down to 15% of its original level) increases the total social cost by

68.6%. When examiners have almost no intrinsic motivation, they are willing to grant applications

fast, even if they are padded. As a result, administrative costs fall when intrinsic motivation is

removed.44 However, the grants of patents with invalid claims cause type 1 net costs to triple

and consequently lead to an overall rise in net social costs. This finding confirms the critical role

to 1.5. We do not present results for different values of λ because quantitative values in this case are very similar

to the baseline.
43It is worth noting that this is at the lower end of estimates of the private value of patent rights (Pakes, 1986;

Schankerman, 1998). This suggests that the patent system, as it is currently configured, generates net positive

social value. For similar findings in a different framework, see Schankerman and Schuett (2022).
44The decrease in prosecution costs is countervailed by the fact that when intrinsic motivation is low, there is

an extensive margin increase in the number of inventors applying for patent rights.
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Table 4. Net Social Costs of Patent Prosecution

Counterfactual T1 T2 T3 Total

Baseline ($Bn) 6.4 1.5 17.6 25.5

25K Round Fee 5.9 3.7 16.4 26.0

50K Round Fee 6.1 6.3 15.1 27.5

Three Rounds 4.9 10.1 10.2 25.1

Two Rounds 2.9 15.6 4.7 23.1

One Round 0.0 13.4 0.7 14.1

15% IM 25.8 2.3 15.0 43.0

Credit↘ 6.4 1.5 17.6 25.5

Credit↘ + 15% IM 15.9 4.0 15.8 35.7

Notes: Equation (12) defines T1; Equation (13) defines T2,

respectively; Equation (14) defines T3; Total sums the three

kinds of costs. The “baseline” row provides the total social

costs in billions of 2023 U.S. dollars.

that intrinsic motivation plays in this public agency.

Finally, with the baseline level of intrinsic motivation, removing all examiner credits after the

first round for one examination has almost no effect on social costs – precisely as we would

expect, given the negligible changes to any endogenous variables. In fact, examiners’ intrinsic

motivation must be as low as 15% of original values for credits to have any effect on net social

costs. With 15% intrinsic motivation, type 2 gross (and net) costs, prosecution costs, and type

1 gross costs all increase when credits are removed. As a result, when intrinsic motivation is

lowered by 85%, removing credits increases total gross social costs. Yet, total net social costs

decrease, suggesting that credits are counter-productive even when intrinsic motivation is low.

This finding is driven by a large increase in type 1 benefits (and hence a decrease in type 1 net

social costs) from removing credits. This result highlights the importance of accounting for the

increased development from relaxed patent granting, as opposed to just the ex post social costs

that arise through deadweight losses and litigation.

9 Conclusion

In this paper, we develop and estimate a structural model of the patent screening process.

The model incorporates incentives, intrinsic motivation, and multi-round negotiation between

the examiner and applicant. The paper shows how structural modeling of the incentives and
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organization of innovation-supporting public agencies can be used to design reforms to improve

agency performance. Our paper highlights the fact that, to analyze the impact of reforms on the

effectiveness of screening, it is critical to incorporate both the agency’s decision-making and the

endogenous responses of applicants being screened.

Our findings show that patent screening is moderately effective given the statutory and judicial

standards for patentability within which the Patent Office is required to operate. This effective-

ness is driven by substantial intrinsic motivation of examiners. We find that restrictions on the

number of allowable rounds of negotiation reduce the social costs of screening. This outcome can

be replicated through an equivalent round fee for the applicant, but the required fees are too

high to be politically feasible. Finally, we estimate the total net social cost of patent screening

at $25.5bn per annual cohort of applications. This figure represents 6.5% of R&D in the United

States performed by business enterprises.

This paper studies patent screening and instruments to improve its effectiveness at the pooled

technology level. A fruitful extension would be to estimate the model for individual technology

fields, such as biotechnology and software, which would allow for the evaluation of the differential

effectiveness of various instruments in different areas. More generally, we hope this paper illus-

trates the value of using structural models to inform decisions on how to reform public agencies,

particularly those that affect the allocation of R&D resources, including leading institutions like

the National Institutes of Health and National Science Foundation, and similar institutions in

other countries.
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William Matcham and Mark Schankerman

A Additional Tables and Figures

Table A.1. Summary Statistics

Variable Observations Mean Median Std. Dev.

Issued 4,846,053 0.70 1.00 0.46

Duration of Prosecution (years) 4,846,053 2.96 2.67 1.57

Number of Rounds 4,608,833 2.40 2.00 1.45

Independent Claims 3,838,553 2.99 3.00 2.94

Small Entity 4,781,012 0.24 0.00 0.43

Not Renewed at 4 410,667 0.13 0.00 0.33

Renewed at 4, not at 8 410,667 0.19 0.00 0.39

Renewed at 8, not at 12 410,667 0.23 0.00 0.42

Renewed at 12 410,667 0.46 0.00 0.50

Notes: Sample sizes are lower for rounds, claims, and examiner variables since

the datasets containing these variables cover a subset of the years 2001-2017. On

renewal variables, we restrict attention to patents granted before 2006 to ensure

that we have full renewal data on all granted patents. Categorical variables may

not sum to one due to rounding.
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Table A.2. Estimated and Assigned Parameters

Estimated Parameters

Variable Notation Distribution Parameters

Examiner

Intrinsic motivation θ ∼ GS,θ(·) Log-normal σθ, µθ,junior or µθ,senior

Examiner Delay Cost π ∼ Gπ(·) Log-normal µπ , σπ

Error ε ∼ Ge,ε(·) Normal σε

Applicant

Initial claim returns v∗j ∼ Gv(·) Log-normal µv , σv

Initial claim distances D∗
j ∼ GD(·) Beta αD, βD

Obsolescence ω Bernoulli Pω,pre or Pω,post

Application legal costs fapp Log-normal µf,app, σf,app

Issuance legal costs fiss Log-normal µf,iss, σf,iss

Maintenance legal costs fmain Log-normal µf,main, σf,main

Amendment legal costs famend Log-normal µf,amend, σf,amend

Narrowing η - -

Assigned Parameters

Variable Notation Values

Discount rate β 0.95

Depreciation δ
0.14−Pω,post

1−Pω,post

Threshold by technology center τ Range from 0.48 to 0.52

Credits gr(S, T ) -

Finalizing fee ϕ $2,268

RCE fees F 3
round = F 5

round $1,034

F4 $1,685

Renewal fees F8 $3,791

F12 $7,792

Table A.3. Application Fighting Costs by Technology Area

Parameter Symbol Estimate S.E.

Chemical application fighting cost log-mean µf,chem 9.15 0.008

Chemical application fighting cost log-sigma σf,chem 0.38 0.010

Electrical application fighting cost log-mean µf,elec 9.18 0.010

Electrical application fighting cost log-sigma σf,elec 0.57 0.014

Mechanical application fighting cost log-mean µf,mech 9.02 0.008

Mechanical application fighting cost log-sigma σf,mech 0.47 0.011

Notes: Standard errors are bootstrapped.
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Table A.4. Applicant Fighting Costs by Technology Area

Parameter Symbol Estimate

Simple amendment fighting cost log-mean µf,amend,simp 7.60

Simple amendment fighting cost log-sigma σf,amend,simp 0.37

Chemical amendment fighting cost log-mean µf,amend,chem 8.13

Chemical amendment fighting cost log-sigma σf,amend,chem 0.45

Electrical amendment fighting cost log-mean µf,amend,elec 8.07

Electrical amendment fighting cost log-sigma σf,amend,elec 0.38

Mechanical amendment fighting cost log-mean µf,amend,mech 7.95

Mechanical amendment fighting cost log-sigma σf,amend,mech 0.43

Issuance cost log-mean µf,iss 6.54

Issuance cost log-sigma σf,iss 0.62

Maintenance cost log-mean µf,main 5.67

Maintenance cost log-sigma σf,main 0.46
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Table A.5. Robustness of Estimates

Parameter Symbol Baseline 1% τ 5% τ β = 0.99 Definition of Seniority

(GS13 + GS14)

Junior intrinsic motivation log-mean µθ,j 3.92 3.96 3.96 3.90 4.16

Senior intrinsic motivation log-mean µθ,s 3.38 2.90 2.73 3.18 2.93

Intrinsic motivation log-sigma σθ 0.77 0.82 0.79 0.90 0.99

Examiner delay cost log-mean µπ 0.19 0.16 0.18 0.49 0.12

Examiner delay cost log-sigma σπ 0.27 0.37 0.42 0.10 0.60

Error standard deviation σε 0.02 0.02 0.02 0.03 0.02

Initial returns log-mean µv 10.55 10.59 10.88 10.07 10.28

Initial returns log-sigma σv 1.32 1.13 1.61 2.94 0.57

Initial distance alpha αD 4.57 3.92 3.90 4.56 3.75

Initial distance beta βD 7.74 6.72 6.22 7.79 7.15

Narrowing probability η 0.75 0.73 0.74 0.75 0.72

Application obsolescence probability Pω,pre 0.14 0.13 0.13 0.12 0.14

Renewal obsolescence probability Pω,post 0.04 0.04 0.04 0.04 0.04

Simple application fighting cost log-mean µf,simple 8.53 8.43 8.56 8.60 8.53

Simple application fighting cost log-sigma σf,simple 0.87 0.97 0.79 0.74 0.95

SMM Objective 1.23 1.47 1.29 1.25 1.33

Notes: This table provides estimates of the model parameters across various model alternatives. The baseline model defines

senior examiners as those at the GS14 level. The last column expands this to include GS13 and GS14.
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Table A.6. Net Social Costs of Patent Prosecution: Robustness

Patent Premium (ξ) = 0.10 Patent Premium (ξ) = 0.05

Counterfactual T1 T2 (1.5) T3 Total T1 T2 (1.5) T2 (2.0) T3 Total (1.5) Total (2.0)

Baseline ($Bn) 6.4 0.7 17.6 24.7 6.6 0.0 0.2 20.6 27.2 27.4

25K Round Fee 5.9 1.8 16.4 24.1 6.3 0.7 1.4 19.1 26.1 26.8

50K Round Fee 6.1 3.1 15.1 24.2 5.5 1.7 3.5 17.1 24.7 26.1

Three Rounds 4.9 4.8 10.2 19.8 5.4 1.9 3.9 11.5 18.8 20.8

Two Rounds 2.9 7.4 4.7 14.9 2.9 3.2 6.6 5.2 11.4 14.8

One Round 0.0 6.3 0.7 7.0 0.0 1.6 3.3 0.8 2.4 4.1

15% IM 29.0 1.1 15.0 45.1 31.6 0.4 0.8 17.3 50.1 49.8

Credit↘ 6.4 0.7 17.6 24.7 6.5 0.0 0.2 20.6 27.2 27.3

Credit↘ + 15% IM 24.3 1.9 15.8 42.0 23.7 0.7 1.5 18.2 47.8 43.3

Notes: This table provides the values of net social costs for alternative values of the patent premium and social multiplier. Columns denoted T2

(1.5) and T2 (2.0) provide values of type 2 net social costs when ρsoc
ρpriv

is equal to 1.5 and 2.0, respectively. Columns Total (1.5) and Total (2.0)

provide the total net social costs when ρsoc
ρpriv

is equal to 1.5 and 2.0, respectively.
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Figure A.1. Match of internal data and model moments
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Figure A.2. Match of external data and model moments

Round 1 rejection rate GS 13 mean

Round 1 rejection rate GS 13 75th

Round 1 rejection rate GS 13 25th

Round 1 rejection rate GS 12 mean

Round 1 rejection rate GS 12 75th

Round 1 rejection rate GS 12 25th

Round 1 rejection rate GS 11 mean

Round 1 rejection rate GS 11 75th

Round 1 rejection rate GS 11 25th

Round 1 rejection rate GS 09 mean

Round 1 rejection rate GS 09 75th

Round 1 rejection rate GS 09 25th

Number of rounds skewness

Number of rounds kurtosis

Granted claims distance round 6 sd

Granted claims distance round 6 mean

Granted claims distance round 6 75th

Granted claims distance round 6 25th

Granted claims distance round 5 sd

Granted claims distance round 5 mean

Granted claims distance round 5 75th

Granted claims distance round 5 25th

Granted claims distance round 4 sd

Granted claims distance round 4 mean

Granted claims distance round 4 75th

Granted claims distance round 4 25th

Granted claims distance round 3 75th

Granted claims distance round 3 25th

Granted claims distance round 2 75th

Granted claims distance round 2 25th

Granted claims distance round 1 75th

Granted claims distance round 1 25th

0.0 0.5 1.0

Moment Data Model

Model and Data Moments: External

7



B Data Sources

If the links are broken, the documents are available upon request.

B.1 Publicly Available Datasets

1. U.S.PTO Patent Application Claims Full Text Dataset and U.S. PTO Patent Claims Full

Text Dataset : https://www.uspto.gov/learning-and-resources/electronic-data-p

roducts/patent-claims-research-dataset

2. Patent Examination Research Dataset : https://www.uspto.gov/ip-policy/economic-r

esearch/research-datasets/patent-examination-research-dataset-public-pair

3. U.S.PTO Maintenance Fee Events Dataset : https://developer.uspto.gov/product/pa

tent-maintenance-fee-events-and-description-files

4. U.S.PTO Office Action Research Dataset : https://www.uspto.gov/ip-policy/econom

ic-research/research-datasets/office-action-research-dataset-patents

5. Frakes and Wasserman (2019): https://dataverse.harvard.edu/dataset.xhtml?pers

istentId=doi:10.7910/DVN/ABE7VS

B.2 Data from Public Documents

6. GDP Deflator: https://fred.stlouisfed.org/series/GDPDEF.

7. AIPLA Report of the Economic Survey : See https://www.aipla.org/detail/journal

-issue/economic-survey-2017 for 2017.

8. Industry concentration: https://www.census.gov/content/dam/Census/programs-sur

veys/economic-census/data/archived_tables/2007/sector31/2007_31-33_Con_Ra

tios_US.zip.

9. Patent Office fees: https://www.govinfo.gov/content/pkg/CFR-2011-title37-vol1/

pdf/CFR-2011-title37-vol1.pdf or from https://www.uspto.gov/sites/default/fi

les/aia_implementation/AC54_Final_Table_of_Patent_Fee_Changes.pdf.

10. Patent operations costs:

2005: https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY

2005PAR.pdf

2010: https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY

2010PAR.pdf
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https://developer.uspto.gov/product/patent-maintenance-fee-events-and-description-files
https://developer.uspto.gov/product/patent-maintenance-fee-events-and-description-files
https://www.uspto.gov/ip-policy/economic-research/research-datasets/office-action-research-dataset-patents
https://www.uspto.gov/ip-policy/economic-research/research-datasets/office-action-research-dataset-patents
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ABE7VS
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ABE7VS
https://fred.stlouisfed.org/series/GDPDEF
https://www.aipla.org/detail/journal-issue/economic-survey-2017
https://www.aipla.org/detail/journal-issue/economic-survey-2017
https://www.census.gov/content/dam/Census/programs-surveys/economic-census/data/archived_tables/2007/sector31/2007_31-33_Con_Ratios_US.zip
https://www.census.gov/content/dam/Census/programs-surveys/economic-census/data/archived_tables/2007/sector31/2007_31-33_Con_Ratios_US.zip
https://www.census.gov/content/dam/Census/programs-surveys/economic-census/data/archived_tables/2007/sector31/2007_31-33_Con_Ratios_US.zip
https://www.govinfo.gov/content/pkg/CFR-2011-title37-vol1/pdf/CFR-2011-title37-vol1.pdf
https://www.govinfo.gov/content/pkg/CFR-2011-title37-vol1/pdf/CFR-2011-title37-vol1.pdf
https://www.uspto.gov/sites/default/files/aia_implementation/AC54_Final_Table_of_Patent_Fee_Changes.pdf
https://www.uspto.gov/sites/default/files/aia_implementation/AC54_Final_Table_of_Patent_Fee_Changes.pdf
https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY2005PAR.pdf
https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY2005PAR.pdf
https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY2010PAR.pdf
https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY2010PAR.pdf


2015: https://www.uspto.gov/sites/default/files/documents/USPTOFY15PAR.pdf

11. Patent applications: https://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_sta

t.htm.

12. R&D expenditures: https://www.nsf.gov/statistics/infbrief/nsf14307/.

C Distance Measure

This section provides details on how we construct our patent distance metric. We describe our

preferred choice, the paragraph vector approach.1 The method consists of four steps: (1) stan-

dardizing the independent claim text, (2) turning the text into a numerical vector, (3) calculating

the distances between a focal patent claim on an application to all existing granted patent claims

and (4) calculating the distance to the closest existing independent claim.

The first step before converting text into a numerical vector is text standardization. We perform

basic changes to the content of the text and remove words that carry no informational content.

Once we standardize the text, we drop any claims with fewer than two words or illegible text.

We use the paragraph vector approach to represent the text of a patent claim as a numerical

vector. The paragraph vector approach is an improvement of the word vector approach. We

implement the Paragraph Vector approach using Gensim’s Doc2Vec Python model (Řeh̊uřek and

Sojka, 2010).

The step above converts all patent claims, including those on applications and those granted,

into a numerical vector. The next step involves taking every focal application patent claim vector

and calculating its distance to every existing granted claim at the point of application. After

representing a patent claim’s text as a numerical vector, we use cosine similarity and angular

distance, both of which are standard in the text matching and the NLP literature. We compute

the cosine similarity (CS) between claim text vectors x and y as

cs(x, y) =

∑
i xiyi√∑

j x
2
j

∑
j y

2
j

.

Then, we calculate the angular distance (AD) metric, AD(x, y) = arccos(cs(x, y))/π and then

double AD to obtain a normalized distance in the interval [0, 1].

1At the time of writing this paper, we used the state-of-the-art approach, but there is a fast-moving frontier.

The most recent approaches use GPT-4 or BERT word embeddings integrated directly into Neural Networks. See

Elliot and Hansen (2023) for details on text algorithms.
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With all distances computed, it is a simple step to find the closest 50 claims to each application.

We experiment with different choices on which percentile of the closest 50 distances to use.

We also experimented with taking an average of the five closest distances for example, and the

resulting distances were similar.

D Descriptive Results

We show how patent application outcomes vary with technology center and examiner seniority.

First, we regress a binary variable equal to one if the application process lasts more than one

round against fixed effects for examiner seniority grade, technology center, year of application,

and a small entity indicator (applying firm having fewer than 500 employees). The results in

Column (1) of Table D.1 reveal substantial variation across technology centers; e.g., Computer

Networks (TC-24) has a 12 percentage point higher likelihood of multi-round negotiation than the

reference category, Biotechnology (TC-16). Further, the likelihood of any negotiation decreases

with the seniority of the examiner, with senior (GS-14) examiners nine percentage points less

likely to require negotiation relative to the most junior, holding technology center and application

year fixed. Further, small entities are 12 percentage points less likely to negotiate (all else fixed).

In Column (2), we do the same analysis for the dependent variable equal to one if the examiner

grants a patent. We match the findings of Frakes and Wasserman (2017) – senior examiners are

more likely to grant and grant rates vary substantially across technology centers. In our model,

we explain this variation by letting the distribution of intrinsic motivation vary with seniority

level, by incorporating differences in the credit structure for examiners that vary across seniority

and technology centers, and by allowing fighting costs to differ for applicants, with technology

category-specific distributions. Our parameter estimates enable us to disentangle the effects of

these factors in explaining the variation in outcomes, as we discuss in the text.
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Table D.1. Regression Results

(1) (2)

Variable Negotiation Grant

Intercept 0.7433 (0.006) 0.542 (0.005)

GS-7 -0.002 (0.004) 0.003 (0.005)

GS-9 -0.016 (0.004) 0.035 (0.004)

GS-11 -0.020 (0.004) 0.066 (0.004)

GS-12 -0.034 (0.004) 0.092 (0.004)

GS-13 -0.045 (0.004) 0.126 (0.004)

GS-14 -0.091 (0.004) 0.178 (0.004)

Chemicals (17) 0.064 (0.002) 0.067 (0.002)

Comp. Software (21) 0.105 (0.002) 0.196 (0.002)

Comp. Networks (24) 0.123 (0.002) 0.192 (0.002)

Communications (26) 0.047 (0.002) 0.198 (0.002)

Electronics (28) -0.010 (0.001) 0.244 (0.001)

Other (36) 0.065 (0.002) 0.136 (0.002)

Mech Engineering (37) 0.042 (0.002) 0.139 (0.001)

Small Entity -0.120 (0.001) -0.170 (0.001)

Year FE Yes Yes

N 1,641,333 1,759,313

Notes: Omitted grade is GS-5 and omitted technology center is Biotechnology

and Organic Fields (16). Technology center “Other” refers to Center 3600, which

is “Transportation, Electronic Commerce, Construction, Agriculture, Licensing

and Review.” Following Frakes and Wasserman (2017), we omit GS-15 grade

examiners. We report heteroskedasticity robust (HC1) standard errors in paren-

theses.

These results show stark differences in average grant rates and likelihood of negotiation across

technology centers and examiner seniority grades. Next, we investigate the variation in examiner-

specific decisions within and between seniority grades and technology center pairs. To do this, we

calculate examiner-specific outcomes (average grant rates, number of rounds, length of examina-

tion period, probability of negotiation, etc.) within each seniority grade examiners are in at the

time. We decompose the variation in these examiner averages into within and between seniority

grade-technology center pairs by introducing dummies for each seniority-grade-technology-center

dyad in Table D.2. The proportion of within-group variation in examiner grant rates is 80%, im-
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Table D.2. ANOVA Results

Variable Grade × TC Fixed Effects

Grant rate 79.84

Duration of examination (years) 75.79

Number of rounds 80.89

No negotiation (one round) 89.53

Independent claims granted 74.93

Notes: For each variable y, and an examiner e when they are in seniority grade

S and technology center T , we calculate ȳeST . Then we regress ȳeST on a set of

interactive dummies for seniority grade and technology center. We report 1−R2

(as a percentage) for these regressions, thereby providing the proportion of within

group variation.

plying substantial variation in examiner grant rates not explained by seniority and technology

centers. Our model explains this variation in examiner-specific grant rates within the technology

center and seniority groups by incorporating group-specific distributions of examiner intrinsic

motivation and costs of delay.

E Examiner Credit Structure

Here we provide expressions for grGR(S, T ), g
r
ABN (S, T ), grRCE(S, T ) and grREJ(S, T ). For y ∈

{GR, ABN, REJ, RCE}, we write gry(S, T ) = νry · c(S, T ), and give expressions for νry and

c(S, T ) separately.

E.1 Credits

Granting in the first round gives the examiner a payoff of ν1GR = 2 credits. Rejecting in the

first round gives ν1REJ = 1.25. If the applicant abandons in round one, the examiner obtains

ν1ABN = 0.75. Granting in the second round gives ν2GR = 0.75 credits. Rejecting in the second

round gives ν2REJ = 0.25 credits, with an extra ν2ABN = ν2RCE = 0.5 credits whether the applicant

abandons or continues to an RCE. Ultimately, the examiner obtains two credits irrespective of

what happens in the first two rounds. The only difference is whether they obtain the credits

immediately (say, from an immediate grant) or spread out over two rounds.

The structure of the payoffs in the first RCE are the same, except ν3REJ = 1 and ν3GR = 1.75. In

this case, irrespective of what happens in the RCE, the examiner will obtain 1.75 credits. The
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Table E.1. Seniority Corrections

Seniority Grade Signatory Authority cSEN (S)

GS-5 None 0.55

GS-7 None 0.7

GS-9 None 0.8

GS-11 None 0.9

GS-12 None 1.0

GS-13 None 1.15

GS-13 Partial 1.25

GS-14 Partial 1.25

GS-14 Full (primary examiner) 1.35

Notes: This table provides the seniority factors for credit adjustment.

In the empirical work, we use 1.15 for GS-13 and 1.25 for GS-14.

difference comes from whether they receive all 1.75 credits at once by granting, or 1 credit from

their non-final rejection and ν4REJ = 0.25 plus ν4ABN = ν4RCE = 0.5 credits from the applicant’s

response.

In the second and any subsequent RCEs, the structure of the payoffs is still the same, except

ν2r+1
REJ = 0.75 and ν2r+1

GR = 1.5 (r > 1). As before, the examiner will receive 1.5 credits from second

and subsequent RCEs. The difference comes from whether they receive all 1.5 credits at once from

granting, or 0.75 credits from their non-final rejection and ν2r+2
REJ = 0.25 plus ν2r+2

ABN = ν2r+2
RCE = 0.5

credits from the applicant’s response.

E.2 Seniority and Technology Complexity Adjustments

The seniority and technology complexity adjustment term is

c(S, T ) =
cTECH(T )

cSEN (S)
.

Table E.1 gives the values of cSEN (S) across the GS categories. Higher seniority factors imply

larger values of cSEN , and therefore lower values of credits. Table E.2 gives the values of cTECH(T )

we created for the different technology centers and use in the estimation of the model. The Patent

Office does not have adjustments at the technology center level, but rather at the more detailed

U.S. Patent Class (USPC) level. We obtained the adjustments at the USPC level from the Patent

Office and constructed a patent-application weighted average for each technology center.
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Table E.2. Technology Center Adjustments

Technology Center T U.S.PTO Number Correction (cTECH(T ))

Chemical and Materials Engineering 17 22.2

Computer Architecture Software and Information Security 21 31

Computer Networks, Multiplex, Cable and Cryptography/Security 24 29

Communications 26 26.5

Semiconductors, Electrical and Optical Systems and Components 28 21.4

Transportation, Electronic Commerce, Construction, Agriculture... 36 22.4

Mechanical Engineering, Manufacturing and Products 37 19.9

F Moment Selection and Identification Intuition

First, we provide further details on the possible moments we could use to estimate our model.

Then, we provide some information on our methods to prune moments from the full set. Finally,

we provide some intuition on how the moments identify the model parameters.

F.1 Available Moments

We have seven sets of moments available, which we describe in turn.

Our first group of moments corresponds to examiners’ issuance and applicants’ abandonment

decisions. For each round in the model and each seniority level, we calculate the proportion of

applications examiners grant and the proportion that applicants abandon. Since there are nine

seniority grade-signatory authority pairs, and we observe at least six rounds, this implies at least

108 moments on grants and abandonments.

Second, we observe the distribution of the proportion of claims rejected, both by round (six)

and by seniority grade-signatory authority pair (nine). These observations generate another 54

moments. Third, we observe the proportion of granted patents that renew at four, eight, and

twelve years after issuance. These observations generate four moments on patent renewals (don’t

renew at four, renew at four but not eight, renew at eight but not twelve and renew at twelve).

Fourth, we calculate the distribution of claim distances by round. We calculate the mean and

standard deviation of the distance distribution by round for at least six rounds, implying at

least 12 moments on distance. Another moment comes from the within-application distance

correlation. Fifth, at each of the nine seniority grades, we calculate each examiner’s leniency,

which is their average rejection rate across all the applications they examine. Hence for each

seniority grade-signatory authority pair, we obtain a distribution of examiner rejection rates, for
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which we can calculate the mean and standard deviation of the distribution of examiner fixed

effects. From this we obtain another 18 moments.

Next, given that we can identify the distance threshold externally, we calculate the proportion of

granted patents containing at least one invalid claim (that is, a claim whose distance is below the

distance threshold). Hence, for each round and each seniority level, we calculate the proportion

of patents granted containing an invalid claim, implying another 54 moments.

Finally, we observe the distribution of application fighting costs. We have six moments on the

distribution of legal application fees for four technology categories (simple, chemical, electrical

and mechanical), which we match to the technology centers on which we estimate the model.

This implies another 24 moments.

F.2 Choosing Moments

We have more than two hundred data moments that we can calculate from endogenous variables

in the model. Since we have 21 model parameters to estimate with simulated method of moments,

in principle, we are over-identified. However, not all moments will aid the estimation procedure

in identifying the parameters, so we begin by pruning the set of moments for estimation.

We follow a rigorous, data-driven methodology to create a subset of the moments that best

estimate the parameters. To do this, we calculate the sensitivity matrix described in Andrews,

Gentzkow, and Shapiro (2017). As the authors explain, “sensitivity gives a formal, quantitative

language in which to describe the relative importance of different moments for determining the

value of specific parameters.” If a moment had a small value in the sensitivity matrix for all

parameters, we considered it as not useful in estimating our model. Further, as described in

Jalali, Rahmandad, and Ghoddusi (2015), for each parameter and moment, we plot the value of

the moment for different values of the parameter, fixing the other parameters at their estimates.

If this curve is flat, this parameter does not influence on the value of the moment. For a given

moment, if the curve is flat across all parameters, it suggests that the moment offers no useful

variation to identify the parameters.

For each parameter, we also plot the value of the SMM objective across all values of the parameter,

fixing other parameters at their estimates. Ideally, the SMM will be U-shaped in each parameter

to ensure a well-defined global minimum exists. By doing this, we learn how well we pin down

parameters based on the set of moments we have available.

By combining the sensitivity matrix with moment and SMM plots, we pruned the set of moments
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down to those that offer some assistance in estimating the parameters. Since we split many

parameters into two seniority groups (junior and senior), we split some of our moments into the

same seniority categories.

F.3 Full Set of Moments

The full set of moments we use for estimation is as follows. The selected moments corresponding

to outcomes for examiners are:

(i) The proportion of applications granted in each round for juniors and seniors, for rounds

one, two, three, and all rounds after four combined [eight moments]

(ii) The standard deviation of the distribution of examiner rejection rates for the six seniority

categories used by the Patent Office (GS levels 7, 9, 11, 12, 13, and 14) [six moments]

(iii) The proportion of patents granted containing an invalid claim (for juniors and seniors) for

rounds one and two [four moments]

The moments corresponding to outcomes for applicants are:

(i) The proportion of abandonments in each round, when the assigned examiner is junior and

senior, for rounds one and two [four moments]

(ii) The proportion of granted patents not renewed, renewed at year four but not eight, renewed

at year eight but not twelve, and renewed at year twelve [four moments]

(iii) The mean and standard deviation of the distribution of granted claim distances for rounds

one, two, and three [six moments]

(iv) Mean and median of legal application fees for simple applications and complex applications

in electrical, mechanical, and chemical technologies [eight moments]

F.4 Identification

A model is either point identified or not, and technical conditions on the required variation in

exogenous variables determine whether a model is identified (Andrews, Gentzkow, and Shapiro,

2017). Due to our model’s complicated and nonlinear nature, we cannot calculate these con-

ditions. Identification with simulated method of moments is based on how different moments

are affected by specific parameters. While we cannot identify this link exactly, we provide some

intuition of how moments aid in pinning down specific parameters of the model.

We start with the parameters relating to the applicant. The renewal rates, together with first-

round abandonment decisions, aid in identifying the parameters of the distribution of flow returns,
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i.e., µv and σv. This is because, all else equal, an applicant with higher returns is less likely to

abandon after learning their examiner and more likely to renew their patent, conditional on being

granted. The renewal moments also aid in identifying the post-grant obsolescence probability

Pω,post. Similarly, the ex post claim distribution of padded distances, as calculated using the

distance between text vectors, aids in identifying the parameters of the distribution of ex ante

unpadded distance, i.e., αD and βD. Moments on application fighting costs directly pin down

the distribution of application fighting costs, µfapp , and σfapp .

Regarding pre-grant obsolescence Pω,pre, the only case in which an applicant abandons in interim

rounds two to four is when they become obsolete. If an applicant, upon learning their examiner

calculates that they will want to abandon in any round after the first, they will abandon im-

mediately in round one. Therefore, interim round abandonments offer substantial assistance in

identifying the obsolescence probability in the application process.

Intuition for examiner parameters is more complicated. Observing that examiners grant several

invalid patents could result from low intrinsic motivation, high examiner error, or high examiner

delay costs. Three factors make this challenge less formidable. First, since we assume that only

intrinsic motivation varies by seniority, differences in grant rates and examiner errors by seniority

pick up the value of intrinsic motivation, µim by seniority, and differences in the variation in

examiner-specific grant rates by seniority capture the variation in intrinsic motivation, σθ by

seniority.

Second, we assume that each examiner has the same delay cost across all applications and rounds

but faces varying intrinsic motivation costs at each round of every application (because Rr, the

proportion of invalid independent claims varies across rounds and applications). This implies

that the proportion of invalid patents granted in rounds one and two offer the best assistance

in identifying the mean examiner intrinsic motivation and mean examiner delay costs. Third,

examiner error is two-sided and symmetric. This feature creates cases where examiners do not

grant valid patents, whereas intrinsic motivation and delay costs only incentivize examiners

to grant when they should not. Otherwise, we know that an examiner, making no mistake, and

facing a fully valid patent, will always issue it. Together, this implies that we can use the residual

variation in grant rates (valid and invalid) by round and seniority to learn about the distribution

of examiner error.

F.5 Details on Model Fit

As shown in Figure A.1, we match most of the internal moments well, though there are two

exceptions. The first is the proportion of fully renewed patents, which we overestimate. The
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other exception is the second-round grant rate. This moment is difficult to match with our

model because examiners have incentives to wait until the third round and obtain RCE credits if

they do not choose to grant in the first round. Since examiners have incentives and targets across

applications on their desks (docket management), they are more likely to grant in the second

round than our baseline model predicts.

G Quantification of Social Costs

G.1 Implementing Type 1 Social Cost Calculation

As indicated in the text, a key challenge in implementing our calculation of type 1 social costs

comes from the fact that the estimates of the value of patent rights for invalid patents include

potential litigation costs. To impute the “value at stake” in litigation for these patents, we need

to adjust our methodology to exclude these costs.

To do this, we make two assumptions:

A1: Valid patents are not litigated. This assumption holds in a model with perfect courts, where

a competitor knows (or can pay a fee to discover) whether a patent is valid or not, and then

choose whether to litigate based on the result.2 This assumption allows us to calculate the

value of patent rights for valid patents, Ṽ , as equal to the observed value since there are

no litigation costs to net out.

A2: The distribution of the value at stake, GṼ (·), is the same for valid patents as invalid patents.

The basis for this assumption is that initial distances and values are uncorrelated in the

model. This assumption allows us to draw values from the observed distribution of Ṽ = V

for valid patents and use them as draws from the distribution of Ṽ for invalid patents.

Given A1 and A2, the procedure for calculating type 1 social costs is as follows:

1. Estimate the parameters of a log-normal distribution for the value at stake for valid

patents.3 Let the estimated distribution be denoted as ĜṼ (·).

2This assumption is not at odds with Schankerman and Schuett (2022), where high types are litigated with

some probability even though they will not be invalidated. The important point is that high types in their model

(patents that would not be developed without patent rights) are not the same as valid patents in our model, which

are defined as those with distance larger than the threshold.
3The sum of log-normal distributions is approximately log-normal (Dufresne, 2004), which our simulation here

exhibits.
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2. Let P̄ be the total number of invalid patent grants for the given period we simulate. Then,

for each p = 1, . . . , P̄ :

(a) Take a draw from the estimated distribution of valid patents’ value at stake (ex post

value), ĜṼ (·), to represent the value at stake for the invalid patent p

(b) Using the draw, calculate S1p from Equation (11).

3. Calculate the total social cost of type 1 error as

P̄∑
p=1

S1p.

Finally, note that we calculate the threshold for exposure to litigation from the empirical distri-

bution of the value at stake for valid patents, ĜṼ (·).

G.2 Implementing Type 2 Social Cost Calculation

The primary challenge in implementing our calculation of type 2 social costs comes from cal-

ibrating the value of the invention without patent rights (π), particularly for inventions with

Γ∗ ≤ 0, where we cannot use the patent premium. In a similar vein to our approach to type 1

social costs, we assume that the distributions of π for those with positive and negative Γ∗ are

the same and then draw values of π from this distribution for those inventions.

To be precise, our specific implementation is as follows:

1. Draw a pilot set of potential inventions, used to calculate a distribution of π. Run these

set of potential inventions through the model and calculate Γ∗. For those with positive Γ∗,

create a distribution of π using the relationship Γ = ξπ.

2. Now start the simulation for type 2 social costs by drawing a new set of potential inventions

(returns, distances, number of claims, fighting costs, examiner etc.). For each potential

invention i, calculate Γ∗
i . If Γ

∗
i > 0, calculate πi =

Γ∗
i

ξ
. If Γ∗

i ≤ 0, draw a value of πi from

the distribution calculated in 1. Also, draw a development cost κi.

3. For each of the potential inventions i, work out the set i = 1, . . . , Ino dev that do not develop

as those with max{Γ∗
i , 0}+ πi < κi

4. For i = 1 . . . , Ino dev, run the potential invention through a model where, at the point of

abandonment, the inventor obtains all valid claims they have, and so obtains the patent

value of their valid claims, instead of a payoff of 0. By definition, this scenario has the

property that all abandoned claims are invalid, so that there is no type 2 error. Let Γ′
i

denote the expected value of patent rights in this new scenario.
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5. For i = 1 . . . , Ino dev, calculate the set i = 1, . . . , Inow dev who have max{0,Γ′
i} + πi ≥ κi.

This is the set who do not develop because of type 2 error but do develop in the absence

of type 2 error.

6. For i = 1, . . . , Inow dev, calculate S2i =
ρsoc
ρpriv

(
max{0,Γi}+ πi

)
−κi and calculate the total

type 2 social cost as

T2 =

Inow dev∑
i=1

S2i.

G.3 Calibrating Deadweight Loss

In the derivation of deadweight loss, note that

DWL =
1

2
∆℘∆q =

1

2

∆q

q
q∆℘ =

λ

2

∆℘

℘
Ṽ ,

by the definitions of Ṽ and λ. Further, note that

∆℘

℘
=

q∆℘

q℘
=

lic. rev

sales
=

lic. rev

R&D
· R&D

sales

As described in the text, we use Schankerman and Schuett (2022) for the ratio of licensing revenue

to R&D, and data from the Bureau of Economic Analysis for the ratio of R&D to sales.

G.4 Deadweight Loss Under Cournot Competition

In the main text, we compute deadweight loss from a patented invention assuming symmetric

licensees operate in a perfectly competitive industry. Suppose instead that the licensees compete

in a Cournot setting. By standard calculations, the equilibrium price-cost margin is
℘− c

℘
=

m∗

λ

where m∗ =
1

N
is the average market share and λ is the demand elasticity. We write this as

℘− c

℘
= He

η where He is the symmetric-equivalent Herfindahl index of concentration. Thus for

He < 1

℘ =
c

1− He

λ

.

With imperfect competition, the change in equilibrium price is larger than the Arrow royalty

due to double marginalization: ∆℘ = ∆c
1−He

λ

> ∆c. The associated deadweight loss with Cournot

competition is

DWLcournot =
1

2
∆℘∆q =

1

2

∆c

1− He

λ

∆q = DWLpc ·
1

1− He

λ

,

where it should be noted that in this case Ṽ = q∆c denotes total royalty payments. Since

He ∈ (0, 1) and we require that |λ| > 1, deadweight loss in this imperfect competition setting is

larger than in perfect competition case.

20



Using U.S. Census data for 2007, the value added weighted-average Herfindahl index for manu-

facturing industries (based on the 50 largest firms), H, for manufacturing sectors is 0.05. As is

well-known,the Herfindahl index can be decomposed as H = 1
N +N ·Var(m) = He+N ·Var(m),

where m is the market share of each firm. Thus, the observed H overstates the unobserved He,

so the computed deadweight loss will be an upper bound to the true value of DWL. Despite

this, the upper bound for the Cournot setting is not materially different from the competitive

case in the text.

The value ofH varies widely across industries. We do not compute deadweight loss using industry-

specific values because it is difficult to assign patents in different patent classes to industries,

and the existing Patent Office concordance is problematic (e.g., the mapping is not unique).

G.5 Calibrating Litigation Costs

To calibrate litigation costs, C(Ṽ ), we use data from the American Intellectual Property Law

Association (AIPLA) surveys on litigation costs as a function of (intervals) of the value at stake,

which we assume is the same for the patentee and challenger. We use the linear specification

C(Ṽ ) = ℓ0 + ℓ1Ṽ

Using this same specification, Schankerman and Schuett (2022) estimate ℓ0 = $624, 000 and

ℓ1 = 0.162 (2018 USD). Note that this calibration of legal costs is at the patent, not claim, level.

G.6 Calibrating Development Costs

We apply the estimates from Schankerman and Schuett (2022) to our context. They assume that

development costs κ are exponential, with mean equal to k0+k1s, where s is the size reduction of

the invention and k0 and k1 are estimated as 254.6×103 and 2.33×1010, respectively. Regarding

the size reduction, they assume that s is log-logistic distributed with parameters β0 = 1.02 and

β1 = 1.14× 10−6. We use the mean value of s in our calibration.

In the baseline quantification, we draw values of κ from the distribution described above, which

assumes that development costs are independent of Γ∗ and π. In this model, inventors know their

development costs prior to their decision to develop their idea. We also experiment with another

model, which makes the opposite assumption that inventors do not know their development costs

and thus use the mean value, κ̄ = k0 + k1s̄, to make their development decision. Both models

produce similar conclusions; results are available upon request.
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G.7 Calibrating the Number of Ideas

To compute the number of ideas, we start with the average annual number of utility patent

applications in the period 2011–2013. We convert this number into the number of ideas in two

steps. First, we use the estimates from Schankerman and Schuett (2022) that about two-thirds of

applications are “low type” inventions (defined by them as those that would have been developed

even without patent protection), and second, that one-third of ideas become a low type patent

application. Together, this implies about one million ideas for potential inventions for each cohort

of applications.
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