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Abstract

Advancing innovative solutions to address significant global health challenges often requires individ-

uals who possess the necessary knowledge and skills to execute critical tasks. One possible way to shape

scientists’ research trajectories so that they develop the skills to undertake these tasks is through the pro-

vision of experience. This paper investigates how participation as a researcher in a clinical trial influences

the involvement of scientists in Sub-Saharan Africa in subsequent, similar projects. We document that sci-

entists who participate on the research team in a clinical trial are more likely to be involved in future trials,

particularly in the same disease area, with the most significant impact seen in scientists without prior trial

experience and for earlier career scientists. This suggests that knowledge and skills acquired in the initial

project are transferable to subsequent endeavors. However, we also find that scientists, and particularly

more experienced scientists, working in countries with lower initial trial capacity have limited increases in

subsequent clinical trial involvement following trial experience. The results suggest that efforts to improve

innovative capabilities to solve health challenges will require both investments in individuals to provide

the necessary experience and efforts to improve the institutional environments in which the researchers

are embedded.
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1 Introduction

In 2021, the world’s first malaria vaccine, Mosquirix, was approved for global use by the World Health

Organization. Development of this vaccine started in 1987, with Phase III clinical trials taking place from

2003 onwards across several African countries. Overall, the vaccine spent 23 years in trials and pilot stud-

ies prior to being licensed. Two years later, in 2023, a second malaria vaccine, Matrix-M, was approved for

regulatory use in Ghana. This time, the African-led Phase III trials for this vaccine started just two years

prior to vaccine approval. In speaking about his team’s role in the latter vaccine trials, Professor Abdoulaye

Djimde in Mali said: ‘We will utilize our more than two decades of experience in malaria vaccine testing towards

successful completion of this trial.’1 This example raises the question: How, and under what circumstances,

does the opportunity to gain experience in an innovative process shape a researcher’s future research tra-

jectory?

Developing effective treatments for high impact diseases such as malaria is an archetype of the global

grand challenges that can only be solved by coordinated action by a wide range of stakeholders (Arslan

and Tarakci, 2022; George et al., 2016; Howard-Grenville, 2021; George et al., 2024). Past research on grand

challenges has typically focused primarily on questions of governance across the range of actors involved

(Couture et al., 2023; Dentoni et al., 2018), how institutional reforms may incentivize actors to focus more on

grand challenges (Vakili and McGahan, 2016), or organizations’ prioritization of ‘responsible innovation’

(Owen et al., 2021). Other research has shown how changes in policy institutions, such as Intellectual Prop-

erty regimes, can also facilitate greater scientific research and diffusion of knowledge on neglected diseases

(Vakili and McGahan, 2016). However, far less research has focused on the scientists themselves who are

responsible for advancing solutions to grand challenges. Consider the research and development of vac-

cines and drugs for neglected diseases, for example. The innovation process underlying drug development

requires scientists with relevant capabilities to undertake essential tasks, from basic research to conduct-

ing large-scale clinical trials within affected populations. Given the central role of individuals with skills,

knowledge and preferences to study relevant topics in solving grand challenges, a better understanding of

how scientists’ research trajectories are shaped in this context is critical.

In this paper we highlight the role of experience in forming scientists’ research trajectories. Engaging

in specific innovative processes can foster ’learning by doing,’2 leading to the acquisition of specialized

knowledge and skills. Consequently, scientists can focus on research types that require these skills, thereby

shaping their research trajectory. Beyond skills, scientists could develop domain-specific infrastructure,

networks and could gain superior access to relevant opportunities as a result of an experience. This may

also shape their research trajectory because it makes participation in similar projects more accessible or

lower cost. In line with this argument, Azoulay et al. (2009) show that scientists tend to produce more

1https://www.ox.ac.uk/news/2021-05-07-promising-malaria-vaccine-enters-final-stage-clinical-testing-west-africa last accessed on
1.31.24

2For a review of the literature on learning by doing see (Argote et al., 2021)
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commercially oriented research following patenting of one of their ideas. The authors propose that these

scientists develop new relationships with industry-based researchers after a patenting experience which

exposes them to new questions, shaping the content of their research. That said, it is not immediately ob-

vious that scientists would be able, or willing, to select projects in line with their past experience. Project

selection is the culmination of a number of factors, ranging from existing incentives, financial reward avail-

able, competition in ideas space and the local environment and policies (see Teodoridis et al. (2022) for

a review of the literature on factors driving scientists’ project selection). In particular, scientists in envi-

ronments with fewer resources may lack opportunities to selectively participate in innovative processes in

specific domains0. This potentially constrains their capacity to accumulate highly specialized capabilities

and ultimately limiting the influence of experience on their research trajectory.

We explore the role of experience in scientists’ subsequent research trajectories in the context of clinical

trials in Sub-Saharan Africa. This is an important context to study these questions. More efficient testing

and development of potential drugs, vaccines, and treatment regimens that target diseases such as malaria,

TB and HIV that have a large burden in Sub-Saharan Africa, in particular, would have enormous impact

on the lives of those affected by these diseases. Yet, despite the disproportionate burden of global disease

faced by Sub-Saharan Africa, relatively few clinical trials take place in the region,3 and those that do take

place are predominantly supported by foreign funders.4. More broadly, there is growing recognition of the

importance of having diverse populations participate in clinical trials to ensure efficacy among the intended

recipient groups (Arslan and Tarakci, 2022). One major barrier to increasing the number of clinical trials

in Sub-Saharan Africa is a lack of experienced scientists and health professionals with the knowledge and

skills to carry out clinical trials (Alemayehu et al., 2018). While experience in the research team in a clinical

trial could present an opportunity for scientists to develop specific capabilities, positively impacting their

ability to participate in future similar clinical trials, there could be limits to the extent to which scientists

can leverage their experience. Namely, given a high reliance on attracting external resources in this setting,

access to opportunities to participate in subsequent clinical trials could be limited. For example, scientists’

countries may lack transparent regulatory systems with established procedures to facilitate trials (Taylor-

Robinson et al., 2021), making it harder for scientists to attract external sponsors.

We conduct our analysis using data on clinical trial participation of African scientists. The European

and Developing Countries Clinical Trial Partnership (EDCTP) is an EU-funded partnership between Euro-

pean and Sub-Saharan African countries that has funded more than 300 clinical trials in Africa to date, and

are the primary funder of clinical trials in Africa. These are primarily focused on HIV, malaria, and tuber-

culosis and are mostly at Phases II and III bringing together scientists from European and African countries

to work on a clinical trial. The EDCTP offers funding at both the trial level and for individual scientists’

career development by sponsoring their participation in a trial. We evaluate the relationship between par-
3The overwhelming majority of clinical trials take place in the United States and Europe. According to a recent assessment, only 2.5%
of trials take place in Sub-Saharan Africa (Taylor-Robinson et al., 2021)

4Funding for research in Africa is very low, with governments committing just 0.42% of GDP in 2019, compared to the global average
of 1.7% (Adepoju, 2022)
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ticipating in an EDCTP funded trial and subsequent trial participation and research trajectory of scientists

in Sub-Saharan Africa. To do so, we construct a panel dataset of 880 African scientists who participated in

an EDCTP trial between 2003 and 2015 and had an observable publication record prior to the trial. For our

analysis, we combine data on clinical trial involvement from ClinicalTrials.gov with publication data. We

complement the quantitative data with qualitative data gathered during interviews with clinical trial fun-

ders, scientists and regulatory and coordinating bodies. We match scientists who participated in an EDCTP

trial with a control group of scientists who are those who did not participate in an EDCTP trial but were

otherwise similar in terms of their career age, prior international collaborations, extent of previous clinical

trial and applied research, and their institution’s size and prior trial involvement.

We use difference-in-differences regressions to compare the within-scientist changes in scientists’ clinical

trial involvement and research output after they participate in an EDCTP-funded trial with the changes of

observably similar scientists who were not involved in an EDCTP-funded trial. We find that participation

in an ECDTP-funded trial is associated with scientists’ having greater subsequent involvement in clinical

trials and shifting their research to focus more on applied, disease-oriented research, particularly in their

trial’s disease. Treated scientists undertake future clinical trials at approximately three times the rate of

control scientists after participating in an EDCTP trial. This is an economically significant increase that

reflects a 300 percent increase relative to the mean rate of clinical trials. Interestingly, they do not increase

the rate at which they participate in African sponsored trials,5 but they do tend to be involved in both more

EU and US sponsored trials, implying that attracting external resources is critical in this context.

To understand how and why experience in trials is associated with scientists’ future research trajectory,

we unpack the heterogeneity in outcomes among those scientists who participate in the EDCTP program.

This allows us to focus on how individual and national level factors affect how scientists leverage trial

experience in their subsequent research. At the individual-level, we find that the increase in clinical trial

involvement is most pronounced for scientists without prior participation in clinical trials. In fact, scientists

who have previously worked on clinical trials show little evidence of increased participation in future trials

relative to matched control scientists with similar prior clinical trial experience. We find that the trial-linked

publications of scientists without prior trial experience include a greater share of new keywords that have

not previously been indexed to the scientist’s research, compared to those with prior trial experience. This

is in line with an interpretation in which working on a first clinical trial is important for scientists to build

the knowledge and skills that facilitates participation in future trials, with diminished returns to repeat

participation.

Finally, we document that scientists in countries with higher levels of prior trials are more likely to

participate in subsequent clinical trials compared to those in countries with fewer trials. Moreover, the dif-

ference in change in trial participation between scientists with and without prior experience is more salient

in countries with fewer trials overall . This finding implies that the availability of trial opportunities in

5African sponsors accounted for just 3% of sponsor of clinical trials in our sample.
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constrained environments significantly influences scientists’, and particularly more experienced scientists’,

ability to leverage clinical trial experience to shift their research trajectory.

While there are limitations to making causal claims in the study, the paper does provide insight into

how the trajectory of scientists’ research is shaped. With this, we aim to make several contributions. First,

we contribute to literature on the determinants of research direction. While prior research in this area

has explored the role of funding availability (Myers, 2020), exposure to problems (Truffa and Wong, 2022;

Fry, 2023), peers (Catalini, 2018; Azoulay et al., 2019), and access to data and tools (Nagaraj et al., 2020;

Furman and Teodoridis, 2020), in this paper we highlight the role of experience in shaping the research

trajectory of scientists. Namely, we demonstrate the path dependency of science and provide evidence that

participation in a single project can, in some instances, substantially alter the long-term orientation of a

scientist’s agenda. Closest to our study is (Azoulay et al., 2009) who demonstrate that scientists tend to

orient their research toward more commercializable projects following the patenting of an idea. We extend

this work by showing that project experience can determine a scientist’s long-run research trajectory and

that learning curves can be surmounted relatively quickly, but that there are limits to the influence of an

experience on future research. Namely, we show that the wider environment affects research direction,

and that path dependency is not a given for scientists with environmental constraints. This implies that

organizations seeking to foster individuals with specific capabilities can effectively increase this through

providing experiences to a more diverse set of scientists, but that they might also consider investments in

their supporting infrastructure and provision of follow on opportunities to nurture these new skills.

Second, we contribute to a growing literature on the role of formative experiences on scientists’ ca-

reers. Prior research has documented the impact of researchers’ human capital investments, or efforts to

develop knowledge and skills through education, training, and experience, on their individual and orga-

nizational performance (Fong Boh et al., 2007; Jain, 2013; Roche, 2023; Levin and Stephan, 1991; Stephan,

2012; Shibayama, 2019; Conti et al., 2013; Kaiser et al., 2018; Zwick et al., 2017; Azoulay et al., 2017, 2009), re-

source acquisition (Kolympiris et al., 2019; Hoenen and Kolympiris, 2019; Stephan, 2012) and career choices

(Gambardella et al., 2015; Azoulay et al., 2021; Agarwal and Ohyama, 2013; Sauermann and Roach, 2012;

Ginther and Heggeness, 2020). We show that project experience is an important factor in ensuring that

scientists have the necessary capabilities to increase their engagement in similar innovative projects, in this

case, clinical trials.

Third, we contribute to research on the role of national institutions in shaping innovation (Fry and

Furman, 2023; Vasudeva et al., 2013; Wang, 2015) by demonstrating the importance of national innovative

capacity in determining scientists’ ability to apply any benefits gained from research experiences.

More broadly, we respond to calls for researchers in the strategy and management fields to contribute

insights from our disciplines to help find solutions to global grand challenges, and, in particular, to those

in global health (George et al., 2016; Howard-Grenville, 2021; George et al., 2024; Arslan and Tarakci, 2022).

We contribute to this literature by highlighting the important role of the development of the knowledge
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and skills amongst the people carrying out research to solve grand challenges.

2 Theoretical Development

Innovation to solve global grand challenges requires high skilled human capital, or individuals who

possess relevant knowledge, skills and preferences, to work on these problems. However, research skills

and domain specific knowledge are challenging and costly to develop, requiring time actually doing the

task to become proficient and often exchange with experts. Even if researchers develop the relevant skills

and knowledge, directing scientists towards solving specific problems raises its own set of challenges. Ex-

tant empirical evidence demonstrates that researchers’ project selection is influenced by a number of factors,

including reputational concerns (Fry et al., 2023; Franzoni et al., 2011), peers and competition in ideas space

(Catalini, 2018; Azoulay et al., 2019), exposure to problems (Truffa and Wong, 2022; Fry, 2023), finances

available (Myers, 2020) and access to data and tools (Nagaraj et al., 2020; Furman and Teodoridis, 2020),

and that re-directing scientists efforts is costly (Myers, 2020), and requires significant complementary assets

to be accessible to individual scientists (Fry, 2023).

Less attention in this literature has been devoted to exploring the connection between the develop-

ment of knowledge and skills and a researcher’s orientation-and, in particular, the possibility that a single

project experience could shape a scientist’s research trajectory. Providing scientists opportunities to work

on projects in which they can develop additional expertise may be an effective tool for policymakers to

re-direct the scientists’ efforts towards particular types of research. In this paper, we examine how, and un-

der which circumstances, the opportunity to gain experience in an innovative process shapes a researcher’s

future research trajectory.

2.1 (When) can experience shape scientists’ research trajectories?

Becker (1962) established the importance of human capitall—people’s knowledge and skills—to their

ability to carry out productive activities. Across a wide-range of tasks, individuals, groups, and organiza-

tions become more productive as their stock of experience with that type of task increases (Argote, 2012;

Argote and Miron-Spektor, 2011). Early research in psychology established that learning curves exist at an

individual level, with completion times and error rates on tasks decreasing in an individual’s task experi-

ence (Ebbinghaus, 1885; Thurstone, 1919). The basic idea is that investing in accumulating knowledge and

skills enables more effective work on the set of tasks for which this human capital is relevant. Learning

through experience and working with peers can be especially important where knowledge or skills involve

a tacit component that cannot be easily learned from codified sources (Polanyi, 1966; Raelin, 1997; Chan

et al., 2014). Learning curves are scaled as individuals’ expertise increases in their experience of task, or set

of tasks, increasing the quality of their performance (Chase and Simon, 1973; Ericsson et al., 1993), and their

understanding of where and when to apply those skills (Simon, 1991; Dane, 2010; Greenwood et al., 2019).
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Prior research has documented the importance of learning curves for performance in a wide range

of settings. These include manufacturing (Argote et al., 1990; Adler and Clark, 1991; Epple et al., 1991;

Thompson, 2007) and service industries (Darr et al., 1995), alongside highly knowledge intensive settings

such as medicine (Pisano et al., 2001; Reagans et al., 2005), software development (Fong Boh et al., 2007),

and biotechnology research (Jain, 2013). One relatively understudied context in which learning curves are

likely to be particularly important is amongst scientists. As science advances, the stock of knowledge that

scientists require to carry out research at the frontier of their field becomes ever greater (Jones, 2009). This

leads to scientists developing a narrower, more specialized research focus and increases the amount of

time they must spend engaged in learning in order to develop needed knowledge and skills (Jones, 2009;

Stephan, 2012; Agrawal et al., 2016). For scientists, accumulated prior research experience in a particular

domain can increase productivity in that domain by providing a larger stock of knowledge and skills upon

which they can draw. Laboratory-based training at undergraduate, graduate and post-doctoral levels facili-

tate scientists’ acquisition and refinement of skills through carrying out research activities with experienced

scientists (Ravetz, 1971). Beyond the development of knowledge and skills, accumulated experience could

result in the development of domain-specific infrastructure, and superior access to networks and relevant

opportunities, enhancing productivity and lowering the costs of engaging in particular scientific areas. Re-

gardless of the channel, experience in an innovative process can alter both a scientists’ overall productivity

as well as their propensity to focus on a particular type of research insofar as they are able to, and have

a preference to, select projects that will utilize their experience and benefit from the potential of increased

productivity and lower costs in one domain over another.

In sum, scientists’ ability to take advantage of specific learning opportunities may have important impli-

cations for their future research trajectories. An emerging body of prior work points to this idea, document-

ing the influence of formative experiences on scientists’ careers and research output. For instance, Roche

(2023) shows that doctoral students whose mentors are more engaged with start-ups and provide less in-

tensive mentoring opportunities to students have lower research productivity after graduation. Azoulay

et al. (2021) examine recently graduated medical doctors who received a laboratory research fellowship at

the U.S. National Institutes of Health. The authors find that doctors who took part in the fellowship had

significantly higher rates of engagement in research, in particular in translational research, later on in their

careers compared to the applicants who passed screenings for the program but failed to find a laboratory

match. Azoulay et al. (2017) show that scientists’ attitudes to research commercialization can be imprinted

in early career experiences with advisers. Further, Azoulay et al. (2009) show that scientists tend to produce

more commercially oriented research following a patenting experience, driven in part by the development

of new relationships with industry based researchers which exposes them to new questions.

Moreover, the effect of experience on scientists’ future research trajectories may be limited by a range

of contextual factors (Argote and Miron-Spektor, 2011). Factors such as individuals’ networks, access to

resources, and organizational structures may affect how they are able to leverage learning opportunities
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(Bunderson and Boumgarden, 2010; Reagans and McEvily, 2003; Contu and Willmott, 2003). In the specific

context of scientific research, scientists may be reliant on other actors to obtain external research funds and

attract collaborators with complementary knowledge to complete a project (Wuchty et al., 2007; Haeus-

sler and Sauermann, 2020; Jones, 2021; D’Este and Perkmann, 2011; Roach and Sauermann, 2010). In turn,

this may affect scientists’ ability to apply the knowledge and skills gained from one experience to subse-

quent projects. In environments with significant resource and institutional constraints, such as Sub-Saharan

African science, these constraints may be more likely to bind than in environment where research funds are

more munificent and there is a more extensive network of potential collaborators.

Not only might opportunities to apply accumulated knowledge and skills be limited, but the combina-

tion of the importance of learning through experience and scarcity of research resources leads to a tension

for the researcher. On the one hand, if opportunities to develop expertise are rare, scientists may need to

focus their research on areas where they have had the chance to enhance their knowledge and skills in order

to maximize their research quality and impact. In settings where specialized skills are relatively rare, but

crucial for a particular type of project, the returns to being a specialist may be high as a scientist becomes a

crucial member of research teams (Teodoridis, 2018). On the other hand, by specializing narrowly into one

area of research, scientists may miss opportunities to access knowledge and resources from other domains

and be limited in the range of projects they can undertake (Conti et al., 2013; Nagle and Teodoridis, 2020).

We focus our hypotheses on a setting in which experience is likely to be important for scientists’ future

research careers, but where there may be limits to the benefits from experience: clinical trials in Sub-Saharan

Africa.

2.2 The role of clinical trial experience on follow-on research amongst developing

country scientists

Developing new and more effective treatments for high impact diseases affecting the Global South are

widely seen as global grand challenge (George et al., 2016; Howard-Grenville, 2021; George et al., 2024).

These are highly complex, long-term, global challenges that are difficult to overcome precisely because

they require actors with disparate interests to work together to identify and mitigate barriers to progress

(Couture et al., 2023; Ferraro et al., 2015). For example, Sustainable Development Goal 3 commits U.N.

member states “[t]o ensure healthy lives and promote well-being for all at all ages.” A core implementation

target of this goal is to “[s]upport the research and development of vaccines and medicines for the commu-

nicable and noncommunicable diseases that primarily affect developing countries.” Such a goal, by its very

nature, requires significant coordination across the wide range of globally distributed actors involved in

basic scientific research, early-stage drug development, clinical trials, and the manufacturing and distribu-

tion of pharmaceutical products. Universities and research funders, pharmaceutical companies, regulatory

agencies, governments, and non-profit organizations all have important roles in the process of generating

and translating scientific ideas into products that benefit patients globally.

8



Clinical trials are a critical part of the development process for new drugs, vaccines and diagnostics.

Before a company or non-profit can access a market with a new drug or vaccine, they must go through a

process of registration and regulation. As a part of this process, governments, or international regulatory

agencies, require evidence that the drug is both safe and efficacious in humans. The evidence for this comes

from clinical trials. There are various phases of clinical trials that every drug must go through. Phase I trials

test for safety and tolerability of the drug in healthy volunteers, Phase II trials assess preliminary efficacy

of the drug, while Phase III clinical trials assess the safety and efficacy in a larger population, and are often

carried out at several sites, spanning the globe. Lastly, Phase IV trials typically take place after regulatory

approval and aim to provide evidence on longer-term side effects.

Clinical trials from Phase II onwards are enormously expensive (DiMasi et al., 1991), costing up to half of

all drug development costs. The median cost of a clinical trial is around USD $19 million (Moore et al., 2018).

The enrollment of willing patients, specialized skills, staff and equipment are just some factors driving high

costs of clinical research around the world.

2.2.1 Global patterns of clinical trials

The cost, time and difficulty of running a clinical trial varies significantly around the world (Qiao et al.,

2019). The location of experienced staff, sensitized patient groups and specialized equipment and proce-

dures, or trial capacity, is not evenly distributed, as evidenced in part by the observable variation in the

extent to which countries host clinical trials. Recent evidence (Thiers et al., 2008) suggests that costs and

time of the trial can vary widely from country to country, and firms seek to place their trials to minimize

costs and time. Using data from ClinicalTrials.gov, we show that the proportion of trial sites around the

world for all clinical trials is changing somewhat between 2000 and 2015 (Figure 1). That said, despite

being home to more than 1 billion people, and home to much of the world’s disease burden, particularly

‘neglected tropical diseases’ which account for a high proportion of disease and death in these regions, Sub-

Saharan Africa hosts only a small fraction of global trials. Even within the region, there is variation in trial

density (Figure 2). Beyond absolute volume of trials, the main partners and sponsors on trials vary around

the world, with a large proportion of trials in Sub-Saharan Africa being sponsored by academic partners,

as opposed to industry sponsors.6

[Figure 1 about here.]

[Figure 2 about here.]

This under-representation of trials has implications for the development of drugs and vaccines for prob-

lems affecting these locations. It is important to have trial capacity in disease-endemic settings in order to

complete product development for these diseases.

6https://www.clinicaltrialsarena.com/features/academic-commercial-clinical-trials/?cf-view
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2.2.2 Opportunities to gain experience in clinical trials

Most of the funding for clinical trials in developing countries comes from external organizations, includ-

ing foreign governments, non-profit organizations, and pharmaceutical companies, and most clinical trial

projects involve foreign collaborators. Funders and collaborators require that clinical trials are executed suc-

cessfully and need to work with researchers who have the necessary scientific knowledge, research skills,

and project management skills on the ground. Such necessary skills include sample collection, data entry,

laboratory analysis, trial management, patient recruitment, and regulatory approval navigation (Franzen

et al., 2017; Alemayehu et al., 2018). As an interviewee noted to one of the authors: “one of the major rea-

sons why industry doesn’t want to site trials in developing countries. There aren’t investigators on whom they can

rely. . . .”

One plausible way for Sub-Saharan African scientists to acquire this expertise would be from experience,

for instance, by working on a trial, particularly alongside scientists who have experience running clinical

trials. Science is a context in which tacit knowledge gained learning from others is highly important for

technical research skill development and for understanding how to design and manage research projects

(Polanyi, 1958; Senker, 1995; Ravetz, 1971). For example, through working on a research project, scientists

learn how to take and manage samples, carry out laboratory analysis, record results, and prepare data,

and over time may learn other managerial skills such as coordinating others’ workstreams and managing

relationships with external stakeholders. In addition, a project experience can lead to improvements in

infrastructure, development of relevant networks, increased visibility and elevated awareness of future

relevant opportunities in the space. In turn, providing scientists with an opportunity to gain an experience

may have a significant impact on their subsequent research decisions. For example, Franzen et al. (2017) cite

a Cameroonian scientist who explained to the authors that: “Getting exposed to different aspects of research and

working with different groups of people is an experience you really can only have if you are part of it [clinical trial].

Your knowledge increases, your understanding, you have to think deeper. Interacting with high profile professors who

are very experienced, I learned a lot.”

Opportunities to learn from experience may not only improve scientists’ task-associated capabilities, but

also help scientists develop knowledge about how to apply those knowledge and skills in different contexts

(Chase and Simon, 1973; Ericsson et al., 1993; Simon, 1991; Dane, 2010; Greenwood et al., 2019). Knowledge

for running clinical trials may extend to other types of research study that involves similar tasks, including

sample collection, data entry, laboratory analysis, trial management, and patient recruitment.

We hypothesize that participating in clinical trials provides opportunities for scientists to develop rel-

evant capabilities related to managing clinical trials and that can be applied to related types of research.

Scientists will benefit by increasing their research focus on areas where these capabilities are most relevant,

rendering them more likely to pursue future clinical trials research opportunities. In addition, in our context

there may still be relatively few opportunities to work on clinical trials. As a result, following trial experi-

ence, we expect scientists will also lead pursue research projects that applies their capabilities to proximate
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types of research, such as clinically focused projects on a disease in which they gained experience. This

leads to Hypothesis 1:

H1. Developing country scientists with clinical trial experience are more likely to pursue subsequent clinical trials

and more applied, disease focused research.

2.3 Who benefits from clinical trial experience?

Much of scientific knowledge is cumulative; scientists need to master basic ideas and skills in order to

develop advanced research capabilities, as exhibited by the extensive time invested in doctoral and post-

doctoral training (Jones, 2009). In the context of clinical trials, if expertise is slow to develop and requires

extensive experience, this may limit the impact of clinical trial experience on future research direction.

In this case, participation in one trial may not give scientists the requisite knowledge and skills, or the

opportunity to establish more developed working relationships, to be an attractive partner for carrying out

future trials. In these instances, there would be cumulative advantages to those with more prior clinical

trials experience (Merton, 1968; Bol et al., 2018).

On the other hand, there could be diminishing marginal returns to clinical trials experience. In some

instances, for example, if the tasks required are relatively more routine or the infrastructure and networks

are straightforward to develop, scientists may not need extensive clinical trial experience to have sufficient

capabilities to shift their research towards more clinical trials and related projects. Instead, the necessary

capabilities may be gained relatively quickly as scientists gain experience participating in trials. In our

research, one clinical trial participant noted: “I was site investigator for multiple sites. . . We collected data during

the process and it handed over to the NIH team. I think it was sent back to America. . . we realized that it wasn’t

that difficult to draw up a research program and execute it.” For scientists who already have complementary

scientific knowledge, the pace of learning additional skills for clinical trials tasks may be relatively rapid.

Franzen et al. (2017) cite the comments of a head of a scientific department that participated in a clinical

trial consortium in Cameroon who noted: “Participating [in X consortium] has given us this opportunity to build

collaborations with very good researchers. People now know that we exist, and that is good. We have the capacity now

to go and develop. All my students are going to learn clinical training. I don’t have any problem with that now I have

an infrastructure.”

If learning is rapid, the gains to additional trial experience may be relatively small. Even if there are

meaningful gains to additional experience for those scientists with prior clinical trial experience, they may

have other binding constraints that limit their ability to apply the knowledge and skills gained in subse-

quent trials. Those who have made a prior choice to pursue clinical trials research may have individual-

level capacity constraints in the number of trials they can—or would choose to—carry out at a point in time.

Running clinical trials may be a time-consuming type of research with a ceiling on the number of trials can

run. Alternatively, in an environment where research funding is uncertain, scientists may choose not to

specialize very narrowly into one type of research. More widely applicable human capital—i.e., from hav-
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ing more of a generalist research program—may be valuable in these settings because it enables a scientist

to take advantage of a wider range of opportunities in their environment (Nagle and Teodoridis, 2020). As

a result, there may be limits on the extent to which scientists choose to focus efforts on clinical trials at the

expense of other types of research. The discussion in this section leads to our second hypothesis:

H2. Prior experience in clinical trials negatively moderates the relationship between clinical trial experience and

subsequent clinical trials.

3 Setting, Empirical Strategy and Data

3.1 The European and Developing Countries Clinical Trial Partnership

In a recognition of a need to run trials and develop trial capacity in Sub-Saharan Africa, The European

and Developing Countries Clinical Trial Partnership (EDCTP) was established in 2003. EDCTP is an EU

funded partnership between 15 European countries and 25 African countries. Their mission is to support

collaborative research and accelerate the development of new or improved medical interventions for the

identification, treatment and prevention of infectious diseases in Sub-Saharan Africa, through all phases of

clinical trials, with an emphasis on Phase II and III trials.

During the first program (EDCTP-1, 2003-2015), EDCTP supported clinical research and career develop-

ment, PhD and masters fellowships on treatment drugs, vaccines and diagnostics, focusing on HIV/AIDS,

malaria and tuberculosis. With a budget of over 1 billion euros, EDCTP-1 was the first, and largest pro-

gram to support clinical trials in Sub-Saharan Africa at the time. Prior to the EDCTP-1 program there were

limited opportunities to participate in clinical trials in Sub-Saharan Africa.

EDCTP-1 funded various types of project, including providing full funding for collaborative clinical tri-

als, fellowships, MSc and PhD scholarships, and a handful of ethics, regulatory and network strengthening

projects. We focus on the funded projects that can be identified as a single trial: either collaborative trials

themselves, or fellowship/scholarship projects that provide funding to support either a senior, or an early

career individual within an identifiable clinical trial.

One such sponsored trial was a trial known as TaMoVac-01, which was a Phase I/II randomized con-

trolled trial in adults in Tanzania to study the safety of a HIV vaccine candidate. Started in 2008, this 4

year project was led by Muhammad Bakari at the Muhimbili College of Health Sciences in Tanzania, with

collaborators from Europe and other African institutions.

3.2 Empirical Strategy

In this paper we estimate the relationship between being involved in an EDCTP sponsored clinical

trial and subsequent trial involvement and research agenda of African scientists. Our empirical strategy

compares the change in outcomes of scientists who participate in a trial to that of matched control scientists
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in a difference in differences framework.

3.3 Sample construction

3.3.1 EDCTP trial participants - treated scientists

We identified 1,198 scientists who participated in an EDCTP trial between 2005 and 2014, were affiliated

with an African institution, and could be matched to a publication record in the Elsevier Scopus publication

database. Out of the 1,190 scientists, 433 participated in HIV trials, 356 in malaria trials, and 434 in TB trials

(with some overlap between TB and HIV trials in instances where trials were multi-disease focused). As for

location of the researchers, 22 percent were from South Africa, 10 percent from Tanzania, 11 percent from

Uganda and 9 percent from Kenya. Overall, 880 of the 1,198 scientists had a publication record prior to the

trial, and are included in our analysis.

3.3.2 Control scientists

To account for trends over time and over a scientist’s career, we incorporate a control group of scientists

who are also affiliated with African institutions, but who are not involved in an EDCTP trial. We use the

Elsevier Scopus publication database, and institutional affiliations in publication records, to extract the full

set of publishing scientists in Africa between 2005 and 2015. From this set of scientists we extract a smaller

sample who are carefully matched with the treated scientists. Namely, for each treated scientist we use

a coarsened exact matching procedure to identify a set of control scientists who are precisely matched on

variables such as career age, OECD collaborations, disease focus of research, applied nature of research,

clinical trial involvement and institutional level size and trial involvement in the three years prior to the

treated scientist’s EDCTP trial. Unmatched treated scientists are discarded. The matching procedure leaves

us with 794 treated scientists (or just over 90 percent of our original EDCTP participant sample), and 144,475

control scientists. Each control scientist is assigned a counterfactual EDCTP trial which corresponds to the

trial participated in by their closest matched treated peer.

3.4 Variables and Measures

The data in our sample is constructed from three main sources. We draw on clinical trials data from

ClinicalTrials.gov, publications data from Scopus, and link publications in Scopus to the keywords indexed

to papers in the PubMed database. The ClinicalTrials.gov database is managed by the US National Library

of Medicine within the National Institutes of Health and was created in 1997 following the Food and Drug

Administration Modernization Act.7 There are currently more than 470,000 ongoing and completed clinical

trials in the database, each with a unique trial identifier. We use the ClinicalTrials.gov database to identify

7After additional requirements were introduced in 2007, the Sponsor or Principal Investigator of a clinical trial has been required
by law to register and report results for clinical trials of drugs, biologics, and devices that are subject to FDA regulation with the
exception of certain Phase 1 trials.
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clinical trials involving the treated and control scientists in our sample using a matching procedure that

included investigator name and publication outputs from trials that we linked to Scopus records. We also

identify the location of each clinical trial site in the database using a key word search, and use the results of

this search to generate measures of annual clinical trials taking place at the country level.

We augment this data by building a rich bibliographic dataset based on scientists’ publications. We

use the Elsevier Scopus author identifier to extract each sample scientist’s publications recorded in this

database. We use the bibliographic data in Elsevier Scopus to identify the diseases of focus in scientists’

papers, based on keywords in their abstracts, the publication outlet of each paper, scientists’ institutional

affiliations over their careers, and the affiliations of their co-authors. We also use the PubMed identifiers

of papers recorded in Elsevier Scopus to link these publications to MeSH terms, or descriptor terms used

to organize concepts in research.8 Each paper in our sample is placed at a particular point in the space

of scientific concepts based on its content. This allows us to track changes in the direction of scientists’

research over time according to changes in the location of their papers in MeSH space.

We combine the data from each source to create a panel dataset at the scientist-year level. This contains

scientists’ career histories with yearly observations of variables that measure scientists’ participation in

clinical trials, co-authorship relationships, and publication outcomes for the four years before, and ten

years after the EDCTP trial (or counterfactual trial in the case of the control scientists).

3.4.1 Measures

Our first set of dependent variables build on the data from ClinicalTrials.gov. We are interested in how

participation in an EDCTP trial is associated with future clinical trial participation. Our primary dependent

variable to test this relationship is the number of clinical trials in which scientist i participates in year t

(based on the year of a trial’s start date). Second, we create separate dependent variables according to

whether the drugs or vaccines in a clinical trial are targeting a disease that was a focus of the initial EDCTP

program that the focal scientist was involved in, or a different disease. This enables us to examine how

experience in an EDCTP-supported trial is linked to scientists participating in clinical trials for other types

of disease. We also restrict the dependent variable to trials with sponsoring organizations from different

regions to analyze how EDCTP participation affects the integration of African scientists into the global

system of clinical trials.

Second, we create a set of dependent variables to track changes in scientists’ publications over time. We

are interested in the changes in the rate and direction of scientists’ after participating in the EDCTP program

and any changes in their patterns of collaboration with other scientists. We create a series of variables to

measure these using bibliographic data from Scopus. To measure changes in the rate of scientists’ research,

8The Medical Subject Headings vocabulary is managed by subject-specific experts at the National Library of Medicine. There are
approximately 30,000 descriptor terms in the MeSH vocabulary, which are used to organize concepts in medicine and life sciences
research into a hierarchical tree format. Indexing is independent of article authors. Terms are assigned by indexers at the NLM who
select them based on a specific protocol. The OpenAlex database records the MeSH terms of included publications, which we match
to our Scopus sample using the PubMed IDs common to both databases.
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we create variables measuring: the number of publications in Scopus on which scientist i is an author in

year t; the number of publications on which scientist i is an author in year t weighted by journal impact

factor; and the number of publications on which scientist i is the first or last author in year t. To measure

changes in the direction of scientists’ research we create variables that separately count scientist i’s number

publications in year t according to the diseases that are the focus of each publication. We also examine

changes in the commercial relevance of scientists’ research. We define an applied scientific publication as

a publication in a journal for which the Journal Commercial Impact Factor is strictly positive (Bikard and

Marx, 2020), basic otherwise. To measure changes in the collaboration patterns of scientists we examine

the location of their co-authors. In particular, we create two separate variables counting the number of

scientist i’s publications in year t that involve co-authors from OECD and non-OECD countries respectively.

Again, we apply the inverse hyperbolic since transformation to the raw number of each type of trial when

constructing the dependent variables.

Finally, we create dependent variables based on the MeSH terms that are independently indexed to

scientist i’s publications by the National Library of Medicine. We use these to analyze the extent to which

scientists build new knowledge and skills through trial participation. First, we restrict our sample to the set

of publications that are identified as being linked to a specific EDCTP supported trial. We create a variable

that measures the share of MeSH terms indexed to one of these trial-linked publications by scientist i, which

had not been indexed to any of scientist i’s publications from prior years. This provides a proxy measure of

how far scientist i is developing new knowledge and skills in the EDCTP clinical trial. Second, we create a

dependent variable that measures the number of MeSH terms that were used in post-treatment publications

more generally that were a. used for the first time in EDCTP trials, and b. used in an EDCTP trial, but not

for the first time for that scientist.

3.4.2 Descriptive statistics

Table 1 presents any differences in clinical trial participation, publications, institutions, co-authorship

relationships, and experience between treated and control scientists in the three years prior to the EDCTP

trial in a three-year period prior to the year in which the treated scientists in a given stratum first partici-

pated in the EDCTP program (or counterfactual).

There is no significant difference between treated and control scientists in their individual rate of prior

clinical trial participation, the number of clinical trials in which scientists at their organization participated,

the size of the institution with which they are affiliated (based on the number of researchers working at

that organization), their number of co-authors from OECD countries, and their career age at the time of

the EDCTP trial. However, treated scientists have a slightly higher number of publications in the three

years prior to the treatment event. Treated scientists also have more publications than the control scientists

on HIV, malaria, and tuberculosis, which were the three diseases of focus in the EDCTP grant program.

In online appendices we run a number of tests to confirm that this difference is not driving the observed
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effects. Moreover, the significant differences in publications numbers between treated and control scientists

are only present among scientists matched in the tuberculosis arm of the EDCTP program. Our results are

robust to excluding all tuberculosis trial scientists and their matched controls from the analysis.

[Table 1 about here.]

4 Results

We now turn to examining how scientists’ participation in an EDCTP funded trial corresponds to future

participation in clinical trials and any changes in their scientific research output. We use difference-in-

differences analysis to analyze treated scientists’ outcomes after participating in the program to those of

matched control scientists.

Our strategy allows us to account for individual level heterogeneity, career age trends and year trends

through the use of fixed effects. Specifically, our core regression model applied to a scientist year level

dataset includes scientist and year fixed effects to control for time-invariant heterogeneity linked to scien-

tists’ characteristics and wider variation in trial or publication outcomes over time. We also include a ’career

age’ fixed effect, defined as the number of years since a scientist’s first publication recorded in the Elsevier

Scopus database to control for changes in research over career lifecycles. We also include a fixed effect that

measures the number of years before or after an EDCTP grant is received for each treated scientist and their

matched controls. Our key identifying assumption is that the treated and control scientists would follow

the same trajectory in terms of clinical trial involvement and publication outcomes in the absence of the

treatment.

Formally, we estimate the following regression model for each of our dependent variables:

yit = EDCTPGrantee × PostGrantit + si + tt + cit + dit + εit (1)

The variable EDCTPGrantee × PostGrant is our treatment variable which takes the value of 1 if an indi-

vidual is involved in an EDCTP trial and the observation year is post EDCTP trial. Finally, si represents

the scientist fixed effect, tt represents the year fixed effect, cit represents the career age fixed effect, and dit

represents the time to/from treatment fixed effect for the scientists. Standard errors are clustered at the

scientist level.

4.1 Participation in Clinical Trials

Our first set of results concerns the relationship between participating in the EDCTP program and sci-

entists’ future participation in clinical trials. Our primary dependent variable is the number of clinical trials

in which scientist i participates in year t.
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[Table 2 about here.]

The results in Column 1 of Table 2 show that there is a significant increase in the number of clinical

trials per year in which scientists participate after EDCTP treatment. If we interpret the point estimate of

the coefficient relative to the sample mean, scientists who participated in the EDCTP program are about

three times as likely as matched controls to participate in a clinical trial in a given year. In Column 2, we

show that this does not seem to be driven by changes in the overall research productivity of scientists. If

we control for the number of publications a scientist has in a given year, the estimates are very similar. In

online appendices we illustrate the robustness of these results to alternative functional forms, including

Poisson maximum likelihood and linear probability models.

In an illustration of the dynamics of the effect, Figure 3 shows in the raw data how treated and control

scientists have very similar rates of participation in clinical trials (excluding those supported by an EDCTP

grant) before a scientist participates in the EDCTP program. However, following EDCTP participation,

scientists begin to participate in other clinical trials at a higher rate than control scientists. Figure 4 show

how the magnitude of the difference in trial participation changes over time after scientists participate in

the EDCTP program using an event study. There is not an immediate divergence in trial participation.

The difference between treated and control scientists’ participation in trials grows over time. This is not

surprising. Clinical trials take multiple years to design, recruit, and run and so we would expect a lag to

allow for the EDCTP trial to finish and subsequent trials to be initiated.

[Figure 3 about here.]

[Figure 4 about here.]

We next examine how participation in the EDCTP program corresponds to participation in subsequent

clinical trials across different diseases. If treated scientists are subsequently more likely to work on clinical

trials in disease areas distinct from that of their initial trial, this would suggest that the knowledge and

skills developed by participating in an EDCTP trial can be transferred to projects in other disease areas.

The results in Columns 3 and 4 of Table 2 show that this is the case. Treated scientists are relatively more

likely to participate in subsequent clinical trials for both the same disease as their initial trial, and other

diseases.

Finally, in Columns 5 and 6, we show that increases in trial participation is reflected in the impact of

scientists’ trial-related research output. Treated scientists experience a significant increase in the production

of trial publications (weighted by source normalized impact per paper, a quality measure). This suggests

that treated scientists’ increase in trial participation is not driven by low quality trials. In addition, we show

that there is a small, and weakly significant change in the rate at which treated scientists are the first or last

author on trial publications, implying that they are slightly more likely to occupy leadership positions on

subsequent clinical trials.
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In the event that there are positive spillovers to other scientists in the same institution, but who are

not involved in the EDCTP trial, we run the same analysis excluding those in the same institution. The

results provided in the online appendix show that our main estimations are a lower bound estimate, but

that results remain qualitatively similar.

[Table 3 about here.]

The EDCTP program was funded by the European Union and involved collaborations between African

scientists and European partners. If participating scientists develop knowledge and skills that transfer to

projects funded by other organizations, we should see some evidence that scientists are more likely to work

on clinical trials with new partners after participating in the EDCTP program. In Table 3, we examine

changes in the rate at which treated scientists participate in clinical trials with sponsors from the EU, US,

or Africa. There are significant increases in treated scientists’ participation in clinical trials sponsored by

EU and US organizations. The increase in participation in US-sponsored trials indicates that treated scien-

tists are working on trials with new funders and suggests that the increase in scientists’ subsequent trial

participation is not driven by partner-specific relationships. However, we find little conclusive evidence of

changes in scientists’ rate of participation in Africa-sponsored clinical trials after the EDCTP program.

4.2 Changes in Research Direction

We now examine other changes in scientists’ research after participating in the EDCTP program. For

example, they may focus subsequent research more on applied topics or research on the same diseases if

they acquired relevant knowledge and skills during the EDCTP program.

[Table 4 about here.]

The results in Columns 1 and 2 of Table 4 show that there is an increase in the rate at which scientists’

publications have specific diseases as a topic after treatment, alongside a decrease in non-disease focused

publications, even after controlling for overall publications. The results in Columns 3 and 4 show that this

is driven entirely by treated scientists increasing the rate at which they publish research on their EDCTP

trial diseases, with no change on publications focused on other diseases. Finally, the results in Columns

5 and 6 show that treated scientists experience a relative increase in the rate at which scientists’ publica-

tions contain applied research and appears in more commercially-relevant journals and a decrease in basic

research publications after participating in the EDCTP program.

4.3 Heterogeneity by Prior Trial Participation

Participation in a first clinical trial might be especially important to scientists if there are steep returns to

an initial exposure to an experience, either because prior to an exposure, access to similar opportunities was
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not possible or because there are diminishing returns to learning-by-doing in the context of clinical trials

in Sub-Saharan Africa. If this were the case, we would expect to find that scientists who had previously

participated in a clinical trial prior to participating in the EDCTP program would have a smaller increase

in subsequent trials than scientists for whom the EDCTP program offered a first clinical trial experience.

We augment our core model with interaction effects to capture prior trial experience. In particular, we cre-

ate a triple interaction between the Post and Grantee variables with an indicator variable PriorTrial. This

additional variable denotes whether scientist i had participated in a clinical trial recorded in the Clinical-

Trials.gov database in the three years prior to EDCTP grant (or counterfactual). To saturate the model we

also interact our Post variable with the PriorTrial variable. Since both the Grantee and PriorTrial variables

are time-invariant, they are absorbed by the scientist fixed effects in the model. Formally, we estimate the

model:

yit = EDCTPGrantee × PostGrant × PriorTrialit+

EDCTPGrantee × PostGrantit + PostGrant × PriorTrialit

+si + tt + cit + dit + εit

(2)

The results in Tables 6 and 5 replicate those from Table 2 using our triple interaction model. There is a

clear pattern in which the relationship between EDCTP trial involvement and subsequent trial participation

are smaller for scientists who participated in the EDCTP program and had prior clinical trial experience rel-

ative to those for whom the EDCTP program offered a first experience of clinical trials, and for those with

fewer years of research experience more generally. Notably, the estimates in Column 1 of Table 6 suggest

that scientists with prior trial experience had no observable increase in subsequent trial participation after

the EDCTP grant. However, for scientists without prior trial experience, participation in the EDCTP pro-

gram is associated with an increase in the rate of subsequent trial participation that is approximately 40%

greater than that in the full sample estimates in Table 3.

[Table 5 about here.]

[Table 6 about here.]

In Table 7 we explore whether the heterogeneous results for those with and without prior trials is driven

by career age retirement concerns, or by differences in overall productivity, exposure to research, research

focus or prior networks of the focal scientist. We control for any differences in changes in trial participa-

tion by these additional scientist level factors, and whilst not exhaustive, this provides limited evidence of

alternative explanations driving the results.

[Table 7 about here.]
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4.4 Evidence of Learning-by-doing

We now turn to providing more evidence of the mechanisms through which this individual-level het-

erogeneous effect is taking place. On the one hand, scientists may develop relevant knowledge and skills

by participating in a first clinical trial in the EDCTP program, which facilitates participation in subsequent

trials with other sponsors. In this case, learning-by-doing would build individual scientists’ capabilities for

clinical trial research. The knowledge and skills scientists developed by first trial participation would then

be transferable to future projects with other partners. On the other hand, participating in their first trial

may have helped scientists increase their network of collaborators or gain greater global visibility, which

would help access partners with whom they could carry out future trials. In this case, trial participation

would not be leading to individual-level learning, but rather provide African scientists with greater access

to the networks of global scientific research. In turn, this would help them build partnerships for future

trials.

To test these competing mechanisms, we carry out two sets of additional analyses. First, we examine

whether participation in a trial through the EDCTP program is associated with increased scientific visibility

(in terms of scientists’ raw and impact-factor adjusted publications) or with increased numbers of collab-

orations with global scientists. Second, we analyze the MeSH terms indexed to the specific publications

of our treated scientists to examine whether there is evidence that scientists develop knowledge of new

concepts or skills by participating in a clinical trial that is subsequently re-used in their future research.

[Table 8 about here.]

Since we only find an increase in the rate of future trial participation among scientists working on a first

clinical trial, if this increase is driven by a visibility or network mechanism, we should find evidence that

these scientists also have larger increases in their research productivity or their number of collaborations

relative to those with prior trial experience. The results in Table 8 show that this is not the case. The results

in Columns 1 and 2 indicate that scientists with and without prior trial experience have similar increases in

the annual number of publications. We also find no evidence that first-time trial participants extend their

network of collaborators more than repeat trial participants. Interestingly, the results in Column 3 do show

that repeat trial participants increase the rate at which they are the first or last author on publications after

EDCTP participation by more than first time trial participants. This indicates that these scientists may be

building on the EDCTP grant to take on more leadership roles in research projects, rather than increasing

their rate of trial participation. The results in Columns 4 and 5 show that there is also no evidence of

significant differences in the rate at which first time and repeat trial participants collaborate with other

scientists.

Next, we examine the concepts associated with scientists’ publications to examine whether there is

evidence of learning-by-doing. We use the MeSH terms indexed to the treated scientists post-treatment

papers to analyze whether scientists’ research involves new-to-the-scientist concepts in their publications
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linked to EDCTP trials (i.e., terms that had not been indexed to scientist i’s research in prior years). If first

participation in a clinical trial is associated with learning-by-doing, we should find first time trialists have

a greater share of new-to-the-scientist terms linked to their trial publications compared to repeat trialists.

[Table 9 about here.]

Our unit of analysis is the publication, and in Table 9 Column 1 our sample is just publications linked to

treated scientists’ EDCTP trial. In Columns 2 to 5, the sample is all post-treatment publications of treated

scientists. The results in Column 1 of Table 9 show that treated scientists with prior trial experience have a

lower share of brand new (to them) MeSH terms indexed to their EDCTP trial publications as compared to

treated scientists without prior trial experience. That is, their trial publications cover new scientific concepts

at a higher rate than scientists participating in an EDCTP trial who have prior trial experience. Those with

prior trial experience appear to re-use existing knowledge and skills at a higher rate.

In Column 3, we show that, conditional on the number of new-to-the-scientist MeSH terms indexed

to their trial publications, first-time trialists’ subsequent research is indexed to these new-to-the-scientist

concepts at a higher rate than those with prior trial experience. This suggest that novice trialists’ research

direction shifts more to incorporate new knowledge or skills developed during a trial than the research

direction of scientists with prior experience of clincial trials. Conversely, in Column 4 and 5, we show

that the rate at which repeat trialists’ subsequent research is indexed to MeSH terms that were associated

with both their EDCTP trial publications and their pre-EDCTP publications is higher than for first time

trialists. This is consistent with repeat trialists having a greater range of relevant knowledge and skills

before participation in the EDCTP program that is relevant to their ongoing research. The MeSH terms

corresponding to these concepts would then be indexed to the subsequent publications.

4.5 Heterogeneity by Country Trial Capacity

Lastly, we explore heterogeneity by focal scientist’s country trial capacity to assess the extent to which

institutional constraints might be limiting benefits from an experience. Unfortunately, data on the insti-

tutions required to efficiently run trials in countries (for example, regulatory and ethical bodies) is not

available. Thus we use a proxy for these institutions which is the number of trials taking place in a focal sci-

entist’s country prior to the EDCTP trial. Namely, in Table 10 we interact the post grant and EDCTP grantee

dummy by an indicator that takes the value of 1 if a focal scientist is affiliated with an African country that

has above median number of trials in the three years prior to the EDCTP trial in the same calendar year, 0

otherwise.

We find that on average the number of trials is influenced by country level capacity, and in particular,

more senior scientists in countries with more prior trials experience some increase in trials. This is in

contrast to scientists in countries with lower capacity, whereby only scientists with no prior experience

increase their trial participation. This implies a ceiling to trial participation in some environments. In
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online appendices we show that this result is robust to including variation according to country level GDP,

and to variation in terms of individual scientist’s productivity and research agenda. Country level trial

capacity also doesn’t appear to influence overall changes in research productivity or networks. Together,

this provides suggestive evidence that country level trial capacity can play a role in specialization patterns

following an domain specific experience.

[Table 10 about here.]

5 Discussion

In this paper, we examine how a scientist’s experience gained through participating as a researcher in

a clinical trial corresponds to follow on involvement in clinical trials and their broader research trajectory.

We examine the EU’s EDCTP grant program to provide evidence that participating in a clinical trial is

strongly associated with higher likelihoods of future trial participation. We find that this increase is largest

for scientists participating in a clinical trial for a first time. We also provide indicative evidence of learning-

by-doing. Where scientists have participated in other trials prior to treatment, their publications linked to

a focal clinical trial involve a relatively lower share of novel scientific concepts than novice’s trial-linked

publications. Finally, we document that subsequent clinical trial involvement is greater for scientists based

in countries with high levels of prior trials.

Our results contribute to the literature on the determinants of research direction. While prior research on

the determinants of research direction has explored the role of funding availability (Myers, 2020), exposure

to problems (Truffa and Wong, 2022; Fry, 2023), peers (Catalini, 2018; Azoulay et al., 2019), and access to

data and tools (Nagaraj et al., 2020; Furman and Teodoridis, 2020), in this paper we highlight the role of

experience in shaping the research trajectory of scientists. Our key contribution is to propose that in some

contexts, path dependency of science is not a given. Namely, we show that environmental constraints limit

the extent to which experience shapes research direction. We also contribute to the literature on the role

of formative experiences on scientists’ research trajectories (Roche, 2023; Shibayama, 2019; Azoulay et al.,

2021; Conti et al., 2013; Azoulay et al., 2017). In line with this literature, we show that, in some contexts, a

formative experience can shape the careers of scientists, specifically by shaping their trajectory of research.

This work also contribute to research demonstrating the important role of institutional environments in

innovative outcomes (Fry and Furman, 2023; Vasudeva et al., 2013; Wang, 2015) by hypothesizing and

documenting the importance of national innovative capacity in determining scientists’ ability to apply the

benefits gained from research experiences.

More widely, we respond to calls for researchers in the strategy and management fields to contribute

insights from our disciplines to help find solutions to global grand challenges, and, in particular, to those in

global health (George et al., 2016; Howard-Grenville, 2021; George et al., 2024; Arslan and Tarakci, 2022). We

shed light on how interactions between the human capital of the people working to solve grand challenges
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and the institutional environment shape individuals’ ability to apply their human capital to solving grand

challenges. In the context of global clinical trials, we show that coordinated action at both the micro- and

macro-level will be necessary to increase clinical trial capacity in resource constrained environments. On

the one hand, there is a need for coordination across organizations funding scientific research and drug

development to help scientists learn and fill skills gaps so that there are people with the individual-level

capabilities to carry out clinical trials. On the other hand, these individual-level capabilities will only be

applied to trials that seek to solve global health challenges if governments in resource constrained countries

are able to create supportive infrastructure to attract partners from other countries to work with domestic

scientists on clinical trials.

Our results have some important limitations. First, our results can not be interpreted as causal. How-

ever, given the nature of the under-studied context in this study, and the detailed evidence we provide on

heterogeneity and mechanisms driving any observed effects, we maintain that these findings provide an

important step forward in our understanding of the drivers of scientists research trajectories. That said,

future research should seek to exploit additional experimental and quasi-experimental methods to further

our understanding of this highly understudied population of scientists. Second, we cannot infer the opti-

mal trajectory of research for sample scientists. Future work should seek to understand the broader effects

of experience and the follow-on research trajectories of scientists on macro-level labor force trends, health

and economic outcomes.

Overall, the findings in this paper suggest that efforts to improve clinical trials capabilities to solve

health challenges affecting the Global South will require both coordinated investments in individuals to

provide the necessary experience to work on trials and efforts to improve the regulatory and policy envi-

ronments to attract trial resources to scientists in countries with resource and institutional constraints.
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Figure 1: Global locations of clinical trials over time

Panel A: 2000 Panel B: 2015

Notes: We plot the density of clinical trials indexed in ClinicalTrials.gov starting in 2000 (Panel A) and 2015 (Panel B) around the world.

Figure 2: Clinical trials in Sub-Saharan Africa

Notes: We plot the density of clinical trials indexed in ClinicalTrials.gov starting between 2000 and 2015 in countries in sub-Saharan Africa.
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Figure 3: Changes in clinical trial participation after receiving an EDCTP grant

Notes: Raw trends of average clinical trials participated in per researcher in the treated and control group for the are plotted for the four years before and
and ten years after the grant (or counterfactual).

Figure 4: Differences in clinical trial participation between treated and untreated scientists

Notes: Coefficient estimates stemming from conditional (scientist) fixed effects ordinary least squares specifications in which inverse hyperbolic sine clin-
ical trials are regressed onto year effects, scientist age effects, as well as interaction terms between treatment status and the number of years before/after
the EDCTP grant (or counterfactual). The 90% confidence interval robust standard errors clustered around the institution is plotted with solid bars.
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Table 1: Differences in pre-treatment variables between EDCTP and matched control scientists
Treated

Scientists
Control

Scientists
Difference
in Means

P-Value of
Differences

Number of Clinical Trials 0.329 0.358 -0.030 0.526
Number of Trials at Institution 43.288 43.652 -0.39 0.935
Size of Institution 227.78 248.95 -21.16 0.305
Number of OECD Co-authors 6.600 6.365 0.235 0.668
Number of Publications 6.246 5.596 0.650 0.012
Number of HIV/TB/Malaria Publications 2.257 1.423 0.840 0.000
Career Age in Treatment Year 9.208 9.009 0.198 0.544
Number of Scientists 794 144,475

Notes: Differences between treated and matched control scientists during the three-year period before the treated scientists
first receive the EDCTP grant (and counterfactual control grant). Career age is measured in the final year before a scientist’s
treatment event.

Table 2: Changes in clinical trial participation after receiving an EDCTP grant
Number of

Clinical
Trials

EDCTP
Disease
Trials

Non-EDCTP
Disease
Trials

SNIP Weighted
Trial Publications

First or Last
Authored

Trial Publications

(1) (2) (3) (4) (5) (6)
EDCTP Grantee × Post-Grant 0.0365∗∗∗ 0.0339∗∗∗ 0.0234∗∗∗ 0.0169∗∗ 0.0272∗∗∗ 0.0060∗

(0.010) (0.010) (0.005) (0.008) (0.008) (0.004)
Total Observations 1832217 1832217 1832217 1832217 1832217 1832217
Mean of Dep. Variable 0.0179 0.0179 0.0018 0.0161 0.0067 0.0031
Author FE X X X X X X
Year FE X X X X X X
Career Age FE X X X X X X
Time Since Grant FE X X X X X X
Annual Pubs X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts of non-EDCTP clinical trials.
[b] Heteroskedastic robust standard errors are given in parentheses.

Table 3: Clinical trial sponsorship
EU

Sponsored
Clinical
Trials

US
Sponsored

Clinical
Trials

Africa
Sponsored

Clinical
Trials

(1) (2) (3)
EDCTP Grantee × Post-Grant 0.0056∗ 0.0228∗∗∗ 0.0043

(0.003) (0.007) (0.003)
Total Observations 1832217 1832217 1832217
Mean of Dep. Variable 0.0022 0.0075 0.0014
Author FE X X X
Year FE X X X
Career Age FE X X X
Time Since Grant FE X X X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts.
[b] Heteroskedastic robust standard errors are given in parentheses.
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Table 4: Changes in scientists’ research direction after receiving an EDCTP grant

Number of
Publications
on Diseases

Number of
Non-Disease
Publications

Number of
Publications
Trial Disease

Number of
Publications

Non-Trial Disease

Number
Basic

Publications

Number
Applied

Publications

(1) (2) (3) (4) (5) (6)
EDCTP Grantee × Post-Grant 0.1277∗∗∗ -0.0555∗∗∗ 0.1768∗∗∗ -0.0061 -0.0285∗ 0.0722∗∗∗

(0.014) (0.014) (0.019) (0.017) (0.015) (0.014)
Total Observations 1832217 1832217 1832217 1832217 1832217 1832217
Mean of Dep. Variable 0.3266 0.5489 0.0836 0.2601 0.3713 0.2892
Author FE X X X X X X
Year FE X X X X X X
Career Age FE X X X X X X
Time Since Grant FE X X X X X X
Annual Pubs X X X X X X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts.
[b] Heteroskedastic robust standard errors are given in parentheses.

Table 5: Heterogeneity in changes in scientists’ clinical trial participation by prior trial experience
Number of

Clinical
Trials

EDCTP
Disease
Trials

Non-EDCTP
Disease
Trials

SNIP Weighted
Trial Publications

First or Last
Authored

Trial Publications

(1) (2) (3) (4) (5) (6)
EDCTP Grantee × Post-Grant
× Prior Trial -0.0687∗∗ -0.0688∗∗ -0.0580∗∗∗ -0.0018 0.0010 -0.0022

(0.034) (0.034) (0.016) (0.031) (0.030) (0.013)

EDCTP Grantee × Post-Grant 0.0524∗∗∗ 0.0496∗∗∗ 0.0365∗∗∗ 0.0177∗∗∗ 0.0267∗∗∗ 0.0066∗∗

(0.008) (0.008) (0.005) (0.006) (0.006) (0.003)
Total Observations 1832217 1832217 1832217 1832217 1832217 1832217
Mean of Dep. Variable 0.0179 0.0179 0.0018 0.0161 0.0067 0.0031
Author FE X X X X X X
Year FE X X X X X X
Career Age FE X X X X X X
Time Since Grant FE X X X X X X
Annual Pubs X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts. The variable Prior Trial takes the value of 1 if a focal scientist has
participated in a clinical trial in the 3 years prior to the EDCTP trial, 0 otherwise. [b] Heteroskedastic robust standard
errors are given in parentheses.
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Table 6: Heterogeneity in changes in scientists’ clinical trial participation by career age
Number of

Clinical
Trials

EDCTP
Disease
Trials

Non-EDCTP
Disease
Trials

SNIP Weighted
Trial Publications

First or Last
Authored

Trial Publications

(1) (2) (3) (4) (5) (6)
EDCTP Grantee × Post-Grant
× Senior Scientist -0.0301∗ -0.0291∗ 0.0056 -0.0344∗∗ -0.0087 -0.0101

(0.017) (0.017) (0.010) (0.014) (0.013) (0.006)

EDCTP Grantee × Post-Grant 0.0566∗∗∗ 0.0534∗∗∗ 0.0196∗∗∗ 0.0399∗∗∗ 0.0330∗∗∗ 0.0127∗∗∗

(0.011) (0.011) (0.007) (0.009) (0.008) (0.004)
Total Observations 1832217 1832217 1832217 1832217 1832217 1832217
Mean of Dep. Variable 0.0179 0.0179 0.0018 0.0161 0.0067 0.0031
Author FE X X X X X X
Year FE X X X X X X
Career Age FE X X X X X X
Time Since Grant FE X X X X X X
Annual Pubs X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts. The variable Senior takes the value of 1 if the focal scientist has
more than 5 years since their first publication at the time of the EDCTP trial. [b] Heteroskedastic robust standard errors are
given in parentheses.
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Table 7: Alternative explanations for heterogeneous changes by prior trials
Number of

Clinical
Trials

(1) (2) (3) (4) (5) (6)
EDCTP Grantee × Post-Grant
× Prior Country Trials -0.0687∗∗ -0.0625∗ -0.0677∗ -0.0656∗ -0.0594∗ -0.0653∗

(0.034) (0.034) (0.035) (0.034) (0.034) (0.035)

EDCTP Grantee × Post-Grant 0.0524∗∗∗ 0.0769∗∗∗ 0.0484∗∗∗ 0.0502∗∗∗ 0.0503∗∗∗ 0.0558∗∗∗

(0.008) (0.013) (0.009) (0.009) (0.010) (0.010)

EDCTP Grantee × Post-Grant
× Career Age -0.0025∗∗

(0.001)

EDCTP Grantee × Post-Grant
× JIF Pubs -0.0001

(0.001)

EDCTP Grantee × Post-Grant
× OECD Pubs 0.0008

(0.003)

EDCTP Grantee × Post-Grant
× Applied Pubs -0.0016

(0.004)

EDCTP Grantee × Post-Grant
× HIV, Malaria, TB Pubs -0.0028

(0.004)
Total Observations 1832217 1832217 1832217 1832217 1832217 1832217
Mean of Dep. Variable 0.0179 0.0179 0.0179 0.0179 0.0179 0.0179
Author FE X X X X X X
Year FE X X X X X X
Career Age FE X X X X X X
Time Since Grant FE X X X X X X
Annual Pubs
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts.
[b] Heteroskedastic robust standard errors are given in parentheses.
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Table 8: Changes in research output and collaborations by prior trial experience

Number of
Publications

Impact Factor
Weighted

Publications

First or Last
Authored

Publications

Number of
OECD

Coauthored
Publications

Number of
Non-OECD
Coauthored
Publications

(1) (2) (3) (4) (5)
EDCTP Grantee × Post-Grant
× Prior Trial 0.0148 0.0814 0.1072∗∗ 0.1698∗∗ -0.0163

(0.082) (0.098) (0.047) (0.073) (0.068)

EDCTP Grantee × Post-Grant 0.5497∗∗∗ 0.6005∗∗∗ 0.0783∗∗∗ 0.3461∗∗∗ 0.3932∗∗∗

(0.032) (0.036) (0.014) (0.027) (0.027)
Total Observations 1832217 1832217 1832217 1832217 1832217
Mean of Dep. Variable 0.8755 0.8663 0.1882 0.3350 0.5445
Author FE X X X X X
Year FE X X X X X
Career Age FE X X X X X
Time Since Grant FE X X X X X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts. The variable Prior Trial takes the value of 1 if a focal scientist has
participated in a clinical trial in the 3 years prior to the EDCTP trial, 0 otherwise.
[b] Heteroskedastic robust standard errors are given in parentheses.

Table 9: Use and reuse of new knowledge and skills developed in EDCTP trial, by prior trial experience

Number of
New-to-the-

Scientist
Terms in

Trial Pubs

Number of
Repeated

New-to-the-
Scientist

Trial Terms

Number of
Repeated

New-to-the-
Scientist

Trial Terms

Number of
Repeated

Previously
Indexed

Trial Terms

Number of
Repeated

Previously
Indexed

Trial Terms
(1) (2) (3) (4) (5)

EDCTP Grantee × Prior Trial -0.3695∗∗∗ -0.0794 -0.0873∗ 0.3339∗∗∗ 0.3376∗∗∗

(0.057) (0.048) (0.047) (0.075) (0.073)
Total Observations 1218 26653 26653 26653 26653
Mean of Dep. Variable 0.3478 0.9003 0.9003 2.7748 2.7748
Year FE X X X X X
Career Age FE X X X X X
Time Since Grant FE X X X X X
Terms in Trial Pub X
Total Trial Terms X X X X
Total New-to-Scientist Trial Terms X
Total Previously Indexed Trial Terms X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from ordinary least squares regression specifications at the publication level. In Model 1, the
dependent variable is the inverse hyperbolic sine transformed count of MeSH terms indexed to a publication linked to an
EDCTP trial that have not previously been indexed to a scientist’s publications prior to the trial. We control for the total
number of terms indexed to that trial-linked publication. In Models 2 to 5, the dependent variables are inverse hyperbolic
sine transformed counts of terms indexed to a scientist’s publications measured at the publication level. These are defined
according to whether a term from a publication linked to an EDCTP trial was new-to-the-scientist (columns 2 and 3) or
had previously been indexed to a scientist’s publications prior to their participation in an EDCTP trial (columns 4 and 5).
We control for the number of terms indexed to the scientist’s papers across all their trial-linked publications.
[b] Sample in Model 1 only includes publications from trials linked to EDCTP-sponsored trials and includes only treated
scientists. The sample in other Models includes all publications among treated scientists from the first year of participation
in the EDCTP trial onwards. In Model 3, we control for the number of new-to-the-scientist terms that were indexed to their
EDCTP trial publications. In Model 5, we control for the number of previously-indexed terms that were indexed to their
EDCTP trial publications. Only publications with indexed MeSH terms in PubMed are included in the samples.
[c] Heteroskedastic robust standard errors are given in parentheses.
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Table 10: Heterogeneity in changes in scientists’ research trajectory by country level prior trials
Number of

Clinical
Trials

Low Capacity Country

Number of
Clinical
Trials

High Capacity Country

(1) (2) (3) (4) (5) (6)
EDCTP Grantee × Post-Grant
× Prior Trial -0.1473∗∗ -0.1473∗∗ -0.0402 -0.0404

EDCTP Grantee × Post-Grant 0.0168 0.0528∗∗∗ 0.0519∗∗∗ 0.0418∗∗∗ 0.0497∗∗∗ 0.0459∗∗∗

(0.018) (0.014) (0.014) (0.012) (0.009) (0.010)
(0.060) (0.060) (0.041) (0.041)

Total Observations 816371 816371 816371 1015844 1015844 1015844
Mean of Dep. Variable 0.0152 0.0152 0.0152 0.0201 0.0201 0.0201
Author FE X X X X X X
Year FE X X X X X X
Career Age FE X X X X X X
Time Since Grant FE X X X X X X
Annual Pubs X X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: [a] Estimates stem from fixed effects ordinary least squares regression specifications in which dependent variables
are inverse hyperbolic sine transformed annual counts. The variable Prior Country Trials takes the value of 1 if a focal
scientist is affiliated with a country which is above the median sample value in terms of the number of clinical trials taking
place in that country in the 3 years prior to the EDCTP trial, 0 otherwise. [b] Heteroskedastic robust standard errors are
given in parentheses.
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