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1 Introduction

The survey is the workhorse of statistical agencies. For example, the U.S. Census Bureau conducts

more than 100 surveys annually [U.S. Census Bureau, 2023] including key data collections such

as the American Community Survey (ACS), the Current Population Survey (CPS), the Survey of

Income and Program Participation (SIPP) and the new Annual Business Survey (ABS). The data

gathered through these surveys provide invaluable information on the US economy and on American

society more generally. They are used by various stakeholders – for example, businesses, researchers,

local and federal governments, media and not-for-profits – to make investment decisions, to inform

policy and to allocate government funding, among many other uses.

On the other hand, national statistical organizations (NSOs) have acknowledged for decades their

obligation to maintain the confidentiality of survey respondents due to legal and ethical considera-

tions, but also to safeguard institutional trust and thus sustain the quality of their data products.

To address these conflicting goals, various methods have been proposed over the years to protect the

confidentiality of survey respondents while still maintaining the value of the data for the different

stakeholders involved. In the last two decades, a new framework for assessing the privacy of statis-

tical data products has emerged: differential privacy (DP) [Dwork et al., 2006b]. This framework is

mathematically appealing as it offers a formal guarantee: any single unit’s influence on the probabil-
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ity of observing a specific output is bounded. This guarantee translates into quantifiable measures

of protection against an adversary seeking to learn the confidential responses, although not without

some complications [Cuff and Yu, 2016, Tschantz et al., 2020, Kifer and Machanavajjhala, 2011,

Bailie et al., 2024+b]. Beyond the formal guarantees, DP is attractive as it allows for full trans-

parency of the methods that were used to protect the output, without further loss to respondents’

privacy beyond that associated with publishing the outputted statistics and the DP specification.

This is in contrast to many methods that are currently employed at statistical agencies, which rely

on hiding some of the parameters of the privacy-protection mechanism (such as the variance of the

noise term when noise addition is used to protect a continuous attribute) to ensure privacy. With

DP, agencies typically release all details about the mechanism including the levels of the privacy

parameters. This implies that – at least in principle – users of the protected data will be able to

account for the additional uncertainty introduced through the protection step (although this turns

out to be difficult for many of the algorithms used in practice so far). Finally, DP offers several

additional properties such as immunity to postprocessing and composition of privacy budget (see

for example Dwork and Roth [2014]). This second property makes the DP framework specifically

interesting for statistical agencies as it allows for the quantification of the privacy loss over multiple

data releases.

These attractive features have motivated the adoption of DP in the private sector [Erlingsson et al.,

2014, Apple’s Differential Privacy Team, 2017, Ding et al., 2017, Messing et al., 2020, Uber Security,

2017], as well as at some NSOs such as the Census Bureau [Machanavajjhala et al., 2008, Foote

et al., 2019, Abowd and Hawes, 2023]. Still, all deployments of DP so far have focused on situations

in which the data to be protected coincided with the population of interest. As pointed out above,

this is rarely the case for data collected by NSOs. Except for censuses – which are typically only

conducted every five to ten years – and some administrative databases, most data at statistical

agencies are collected via probability surveys. In the survey context, information is only gathered

from a small fraction of the population, but the careful design of the selection process and several

adjustment steps after the survey has been conducted (such as weighting, editing and imputation)

ensure that the resulting data can be used to obtain approximately unbiased estimates for the

population of interest. (We will offer a more detailed review of the survey process in Section 2.3.)

However, how to properly account for these particularities within the framework of DP is currently

poorly understood (see Reiter [2019] and Drechsler [2023] for an in-depth discussion of the challenges

that will arise in this context). Gaining a better understanding is especially critical as the Census

Bureau has publicly committed to adopting DP for all its data products [US Census Bureau, 2018]

– a resolution that has been recently reaffirmed in US Census Bureau [2022]. (In fact, the Census

Bureau only recommitted to adopting “formal privacy”; however we are not aware of any other

formal privacy frameworks for statistical data apart for DP.) In the same 2022 press release, the

Census Bureau concluded that “the science does not yet exist” to implement DP for their flagship
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survey – the ACS – highlighting the need for additional research in this area.

We are aware of only a few papers that address DP in the survey context and, moreover, all these

papers only focus on specific aspects of this process. Lin et al. [2023] study how to estimate the

mean of a binary variable under DP assuming stratified sampling using proportional allocation

and simple random sampling within the strata. Bun et al. [2022] investigate if the complex sam-

pling designs commonly used in the survey context can offer increased privacy protection building

on previous results showing that simple sampling procedures such as simple random sampling or

Poisson sampling will amplify the privacy protection [Balle et al., 2020]. We will summarize their

findings in Section 4.1. Finally, in some preliminary work, Das et al. [2022] study the effects of

imputation. They find that if DP is only considered when analyzing the imputed data, the required

privacy loss budget can increase linearly with the number of missing cases. They also show that

this problem can be avoided – at least for certain imputation schemes – if DP is already considered

during imputation.

This paper aims to establish a framework for DP in the survey context by discussing the implications

of (for example) whether the privacy guarantees should hold only for the sampled units or the entire

population. We identify ten settings that vary in their assumptions about the data at different

levels (the responding sample, the selected sample, the sampling frame, and the target population).

Building on the framework introduced in Bailie et al. [2024+a], we formalize the DP flavors for

these settings and discuss their implications on both data utility and privacy.

2 Background

2.1 Notation

We typically denote sets by upper-case calligraphic letters (for example, S, T or D) and sets of sets

by upper-case script letters (for example, D or F ). Datasets are denoted by fraktur lower-case

letters (for example, d, d′, p, f or s) when they are not stochastic, and by upper-case letters (for

example, D,D′,P,F or S) when they are random variables. In general, we follow the convention

that lower-case letters denote realizations of the corresponding upper-case random variable. How-

ever, we use the sans-serif superscript R to denote a random set (for example, SR); an upper-case

calligraphic letter without this superscript often denotes a realization of the corresponding random

set (for example, S denotes a realization of the random set SR).

A record r is a set of attributes and a dataset d is a set of records. Every record r is associated with

a unit, which we denote by u(r). The units of a dataset d are given by the set U(d) = {u(r) | r ∈ d}.
We assume throughout that every unit is associated with at most one record in any given dataset,

although a unit will often have multiple records spread across different datasets. The unique record
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in the dataset d associated with unit i ∈ U(d) is denoted by di.

As an example, a unit could be a person, and the attributes of a record could describe some of the

characteristics of that person, such as their age, income and occupation, as well as some identifiers,

such as their name and address. Alternatively, a unit could be a company, and a record associated

with a company could detail some business characteristics of that company. Less frequently, a

unit may represent a group of people, or a population – in this way, we can encode population-

level information in a dataset. Occasionally, it will be important to distinguish between the unit

– which is an abstraction – and the real-world entity that is represented by the unit. Beyond

their philosophical differences, discrepancies between a unit’s data and the corresponding entity’s

characteristics can arise due to measurement error, non-response or imputation. Moreover, there can

be multiple units which represent the same entity. Such over-counting can occur when, for example,

units are constructed from a register of addresses (or phone numbers, identification numbers, etc.)

because a single entity can have multiple addresses. Duplication is a common problem in surveying,

particularly in the context of business statistics, and – as we will see – poses a complication for DP.

An attribute is a value of a variable. More exactly, an attribute of a unit i is the value of a variable

that is taken by i. (For example, an attribute could be the value 40 and the associated variable

could be Age (in years). This would signify that unit i has an age of 40 years.) Therefore, a record

r is uniquely specified by its unit u(r) and the variables associated to its attributes. Denote the

set of the variables in a record r by V(r) and the variables in a dataset d by V(d) =
⋃

i∈U(d) V(di).
Although we do not require it, usually every record in a dataset has the same variables: V(d) = V(di)
for all i ∈ U(d).

Given a set of units U and a set of variables V, let d(U ,V) denote the dataset {r | u(r) ∈ U ,V(r) =
V}. This dataset d(U ,V) is well-defined because every record is determined by its variables and its

unit. Given a variable x and a unit i, let xi denote i’s value of the variable x. We can re-express

d(U ,V) as
d(U ,V) =

{
{xi | x ∈ V}

∣∣∣ i ∈ U
}
.

2.2 Differential Privacy

DP studies data-release mechanisms – functions T which take as input a dataset d and a random

seed ω, and output a stochastic summary T (d, ω) of d.

Definition 2.1. A data-release mechanism is a function T : D0 × Ω → T where

• D0 is the data space, the set of all theoretically-possible datasets d;

• Ω is the probability space of the seed ω with σ-algebra FΩ and probability P;

• T is equipped with a σ-algebra FT ; and
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• T (d, ·) is measurable for all d ∈ D0.

(See Bailie et al. [2024+a] for a slightly more general definition and for additional context.) ⋄

Intuitively speaking, d is the data that is considered confidential and hence must not be disclosed

by the summary T (d, ω). DP measures how the probabilistic noise induced by the seed ω masks

this input dataset d.

We emphasize that, in order for T to be well-defined (as a function D0 × Ω → T ), its input d

must contain all the data which has a non-zero probability (with respect to P) of being used by T .

That is to say, the output T (d, ω) can only depend on data which is in d, or data that is generated

from d and ω, but not on other data. While it may seem we are belaboring an obvious point – of

course, by definition T (d, ω) cannot be a function of anything but d and ω – the input dataset d

is surprisingly slippery to specify in the context of surveying, as we illustrate with the following

simplistic example.

Example 2.2. Suppose that a government agency is conducting a survey on the health of people

in Massachusetts. The agency has a list of Massachusettsans (a frame f, see Subsection 2.3 below)

from which they will randomly select a sample of individuals. They will then collect data S on

some of the health characteristics of the sampled individuals (e.g. blood pressure, heart rate, etc.)

and publish some aggregate statistics based on these collected data.

As we will expand upon later in this article, the agency may decide to include the sampling procedure

in their data-release mechanism T , since this can potentially increase the efficiency of the privacy-

utility tradeoff (see Subsection 4.1). In this case, T takes as input the frame f; it “performs” the

sampling and data collection steps outlined above; and then it calculates and outputs the aggregate

statistics. There are two options for how T can “collect” the data S. The first option is that

the data S is generated (or modelled, depending on one’s perspective) within the data-release

mechanism T – i.e. S is a function of T ’s input data and seed. The second option is that the data

S is itself included as part of T ’s input data.

We will see in Section 5 that the DP guarantee does not necessarily apply to data generated within

a DP mechanism – it only applies to the mechanism’s input data.1 Hence, the first option is

not appropriate if we want to guarantee the privacy protection of the sampled individuals’ health

characteristics. We must therefore resort to the second option and include the data S as input to

T . However, we do not know a-priori which individuals will be sampled. Since any individual in

the frame f has a non-zero probability of being sampled, any of the records in d(U(f),V(S)) may

appear in the sample data S. As such, all of these records must be included as input – that is, T

requires as input f∗ = d(U(f),V(f) ∪ V(S)).

1This discussion is still missing at this point, but will be included in the final version of the paper.
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We refer to f∗ as the augmented frame, since it includes all the variables that are collected in the

survey as well as all the frame variables. In the context of survey sampling, f∗ is never observed.

Yet, it must nevertheless serve as input to any data-release mechanism T , whenever T includes

a sampling step and we wish to provide the sample data with a DP guarantee. The data in

d(U(f),V(S)) are not available to the government agency at the time it starts its data collection.

Rather, d(U(f),V(S)) is the ‘theoretical’ dataset from which the agency collects the survey data.

While the input f∗ described above can be observed if the agency surveyed all units in the frame,

in some situations it is not even theoretically possible to observe the input to a DP data-release

mechanism. It is not uncommon that a survey includes a minor intervention as part of its data

collection. For example, the Massachusetts health survey could require administering an oral glucose

load as part of a glucose tolerance test in the diagnosis of diabetes [Phillips, 2012], or it could direct

the survey respondent to exercise on a stationary bike as part of a cardiac stress test [Bruce and

McDonough, 1969]. Alternatively, in the context of a medical trial, the sampled individuals could be

randomly assigned to receive a treatment or a placebo. In these cases, the data we wish to protect

– the outcomes of these health tests – are only realized during the data collection process. When

this data collection process is included within the data-release mechanism – as must necessarily be

the case when the data-release mechanism T includes the sampling step of the survey – these data

cannot possibly be included as input into T , because they do not even exist at the time the data-

release mechanism begins! (One may argue that the process of any data collection or measurement

– such as checking blood pressure – is itself an intervention and the collected data only come into

existence at the point of collection. Under this perspective, the following remarks apply to all data.)

In such cases, the input data must necessarily include the potential outcome of each of the possible

interventions (or treatments). To those familiar with causal inference, the dataset of these potential

outcomes is known as the science table [Rubin, 2005]. The science table is never fully observable

because the potential outcome under a counterfactual treatment is always unknown. Yet, if we

want to protect the outcome under the non-counterfactual treatment – which is unknown at the

start of T – we must include it as input to T , and we can only ensure it is included as input if we

include all the potential outcomes as input.

We end this example by noting that, if T does not include a sampling step, then T need not include

the data collection step either. As such, T ’s input data is simply the collected data, without concern

to the counterfactual potential outcomes. ⋄

It is convenient to think of a data-release mechanism as a function d 7→ Pd(T ∈ ·). Here the

probability distribution Pd(T ∈ ·) of the summary T (d, ω) is the push-forward measure induced by
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the distribution P of the random seed ω ∈ Ω, taking d as fixed:

Pd(T ∈ E) := P({ω ∈ Ω : T (d, ω) ∈ E}),

where E ∈ FT is any measurable subset of the output space T . DP is the condition that the data-

release mechanism is Lipschitz continuous – i.e. that the distance dPr(Pd,Pd′) between outputs

Pd and Pd′ is at most a multiplicative factor of the distance dD0
(d, d′) between the corresponding

inputs d and d′.

Example 2.3. For pure ε-DP, as defined in Dwork et al. [2006b], the multiplicative factor is ε; the

distance between inputs d and d′ is the Hamming distance; and the distance between outputs Pd

and Pd′ is the multiplicative distance:

dMult(Pd,Pd′) = sup
E∈FT

∣∣∣∣ln Pd(T ∈ E)

Pd′(T ∈ E)

∣∣∣∣,
(For readers that are familiar with the definition of pure ε-DP in terms of neighboring datasets d

and d′, the Lipschitz condition for non-neighbors is implied by group privacy. Hence, the neighbor

definition of pure ε-DP is the equivalent to the above definition.)

For approximate (ε, δ)-DP [Dwork et al., 2006a], the multiplicative factor is again ε; the distance

between inputs is given by

dneighborsD0
(d, d′) =


0 if d = d′,

1 if d and d′ are neighbors,

∞ otherwise;

and the distance between outputs is given by

dδMult(Pd,Pd′) = sup
E∈FT

{
ln

[Pd(T ∈ E)− δ]
+

Pd′(T ∈ E)
, ln

[Pd′(T ∈ E)− δ]
+

Pd(T ∈ E)
, 0

}
,

(where [x]+ = max{x, 0}). Note that dneighborsD0
and dδMult are not distances in the mathematical

sense of a metric; we will instead refer to them as premetrics from herein. Since dδMult does not

satisfy the triangle inequality, approximate (ε, δ)-DP’s group privacy budget does not increase

linearly with the group size; hence we cannot replace dneighborsD0
with the Hamming distance, as we

did for pure ε-DP. ⋄

By definition, a data-release mechanism T satisfies DP if it is Lipschitz continuous. There are

different flavors (i.e. types or versions) of DP; each of these flavors correspond to different ways
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to specify continuity. For our purposes, there are four components to the specification of Lipschitz

continuity. Most obviously, there are the premetrics dD0(d, d
′) and dPr(Pd,Pd′). These premetrics

measure the ‘distance’ between any two inputs d and d′, or between any two output probabilities

Pd and Pd′ . Secondly, there is the domain D0 of the data-release mechanism, which – as we shall

see – serves as the parameter space of the attacker’s inferential model.2 Finally, there is the data

multiverse D , which allows the data custodian to restrict the Lipschitz continuity condition to

certain pairs of inputs – as is often desirable in practice. For example, we may only want to

compare samples drawn from the same population. This restriction is achieved by specifying the

data multiverse D .

Definition 2.4 (Bailie et al. [2024+a]). A differential privacy flavor is a quadruple (D0,D , dD0
,

dPr) where:

1. The domain D0 is the data space – the set of all (theoretically-possible) input datasets.

2. The multiverse D ⊂ 2D0 is a set of universes, which are denoted by D or D′.

3. The input premetric dD0
is a premetric on D0 – i.e. a function D0 × D0 → R≥0 such that

dD0
(d, d) = 0 for all d ∈ D0.

4. The output premetric dPr is a premetric on the space of all probability distributions P – i.e.

a function P × P → R≥0 of probabilities P,Q ∈ P such that

• dPr(P,P) = 0 for all P ∈ P; and

• dPr(P,Q) = ∞ for probabilities P,Q which live on different measurable spaces. ⋄

Once we have specified the four components for Lipschitz continuity via a DP flavor, we also need

to specify the multiplicative constant (known as the Lipschitz constant) which controls the rate

between input and output variations. Together, choices for these five components are called a DP

specification:

Definition 2.5. A differential privacy specification is a quintuple (D0,D , dD0
, dPr, εD) consisting

of a DP flavor (D0,D , dD0
, dPr) and a privacy-loss budget εD : D → R≥0. We denote a DP

specification by εD-DP(D0,D , dD0
, dPr).

A data-release mechanism T : D0 × Ω → T satisfies the DP specification εD-DP(D0,D , dD0 , dPr)

if, for all data universes D ∈ D , and all d, d′ ∈ D,

dPr

[
Pd(T ∈ ·),Pd′(T ∈ ·)

]
≤ εDdD0

(d, d′). (2.1)

2This discussion is still missing at this point, but will be included in the final version of the paper.
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Let M(D0,D , dD0 , dPr, εD) denote the set of data-release mechanisms which satisfy the DP speci-

fication εD-DP(D0,D , dD0 , dPr). ⋄

For the purposes of understanding DP in the context of survey sampling, the relevant components

of a DP flavor (D0,D , dD0
, dPr) are its domain D0 and its multiverse D .

We need the following technical definition:

Definition 2.6. Let D0 be a domain and D ,D ′ ⊂ 2D0 be two multiverses of D0. We say D ′ is a

coarsening of D if, for all D ∈ D , there exists D′ ∈ D ′ with D ⊂ D′. ⋄

When D ′ is a coarsening of D we write D ≤ D ′. The following lemma justifies this notation by

establishing that D is a weaker condition than D ′ if D ≤ D ′.

Lemma 2.7. Let D0 be a domain and D ,D ′ ⊂ 2D0 be multiverses such that D ≤ D ′. Then, for

all budgets εD′ : D ′ → R≥0,

M(D0,D
′, dD0

, dPr, εD′) ⊂ M(D0,D , dD0
, dPr, εD),

where εD = inf{εD′ : D′ ∈ D ′ s.t. D ⊂ D′}.

Definition 2.8. Given a DP flavor (D0,D , dD0
, dPr), the multiverse D is complete if dD0

(d, d′) < ∞
for all d, d′ ∈ D and all D ∈ D . ⋄

Definition 2.9. Given a DP flavor (D0,D , dD0
, dPr), two datasets d, d′ ∈ D0 are comparable when

1) d ̸= d′; 2) dD0
(d, d′) < ∞ or dD0

(d′, d) < ∞; and 3) there exists a data universe D ∈ D such that

d, d′ ∈ D. ⋄

Definition 2.10. Given a DP flavor (D0,D , dD0
, dPr), denote the protection objects connected to

d ∈ D0 by

[d] = {d′ ∈ D0 : dD0(d, d
′) < ∞}.

Then the completion D of the data multiverse D is defined as

D = {D ∩ [d] : D ∈ D , d ∈ D}. ⋄

Lemma 2.11. Let (D0,D , dD0
, dPr) be a DP flavor where dD0

is a metric. Then, the completion

D of D is complete and, for all budgets εD : D → R≥0,

M(D0,D , dD0
, dPr, εD′) = M(D0,D , dD0

, dPr, εD),

where

εD′ = inf{εD : D ∈ D s.t. D′ ⊂ D}.
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2.3 Survey Sampling

Surveys are conducted to learn some characteristics of a well-defined population by collecting infor-

mation from a random subset of this population. Most survey sampling processes rely on three key

ingredients: the target population of interest; the sampling frame from which the random sample

to be surveyed is drawn; and the sampling design for drawing this sample.

The target population (also known as the universe in some survey sampling texts, although we will

not use this term to avoid confusion with the notion of a universe D in a DP flavor) is the scope of the

survey; it is the population the survey is aiming to learn about. It is typically defined conceptually,

while the sampling frame f, on the other hand, is an existent register containing names (or other

identifiers), contact information (postal or physical address, email, and/or telephone number) and

possibly some basic demographic information of the survey units. The sampling frame f serves as

the source from which the sample is drawn. For the discussions in the remainder of the paper

it is important to clearly distinguish between the target population and the sampling frame f.

While the sampling frame aims to cover all the units from the target population, it might include

units that are not part of the target population (overcoverage), and it might also miss units that

should be included (undercoverage). To formalize the difference between the target population

and the sampling frame, we suppose that the frame is not constructed from the target population

data, but from a fixed dataset we term the pseudo-population dataset p. Typically, the frame is

constructed from previous censuses’ data, administrative records and canvassing. The pseudo-

population dataset p is the collection of all such data, so that U(f) ⊂ U(p). By introducing

the concept of the pseudo-population, we allow for undercoverage and overcoverage, as well as

duplications in the frame (where a single unit in the target population corresponds to multiple

units in the frame).

The sample is the set UR(S) of units of the sample dataset S. The sample is a random set whose

distribution is given by the sampling design. The sampling design is defined as a probability measure

τf on 2U(f). The units UR(S) of the sample dataset S are a draw from τf. That is, UR(S) ∼ τf. For

each subset S ⊂ U(f), τ(S) is the probability that the realized sample U(s) is S. Sometimes the

frame f contains basic demographic information on the survey units, which can be used to construct

the sample selection probabilities τ(S). The sampling designs used in practice are often complex

multi-stage designs, with different sampling strategies (e.g. cluster sampling, stratified sampling,

probability-proportional-to-size (PPS) sampling) for each of the different stages. In determining

the sample design τf, the frame f is usually taken into consideration, which can complicate the

deployment of DP.

To illustrate the relevance of this discussion, we look at the Current Population Survey (CPS)

conducted by the Census Bureau for the Bureau of Labor Statistics (BLS). The target population
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of the CPS is the civilian noninstitutionalized population in the US, or, more exactly,

“all people residing in the 50 states [of the US] and the District of Columbia who are

not confined to institutions such as nursing homes and prisons, and who are not on

active duty in the US Armed Forces. Included are citizens of foreign countries who

reside in the United States but do not live on the premises of an embassy. The civilian

noninstitutional population ages 16 and older is the base population group used for CPS

statistics” [U.S. Bureau of Labor Statistics, 2018].

The survey uses two different sampling frames: one for households and one for group quarters.

Both are derived from the master address file (MAF) of the Census Bureau: “The MAF is a

national inventory of addresses that is continually updated by the U.S. Census Bureau to support

its decennial programs and demographic surveys” [U.S. Census Bureau, 2019]. The CPS uses a

stratified two-stage sampling design. In the first stage, the population is divided into geographical

clusters and one cluster is sampled within each stratum using PPS sampling. A small group of

households is selected in the second stage using systematic sampling based on a list sorted by

demographic composition and geographic proximity. (See Section 2.2 in U.S. Census Bureau [2019]

for a full description of the sampling methodology.)

2.4 Survey Weights

A distinctive feature of survey data is that they typically contain survey weights. Survey weights

are provided by statistical agencies as a convenient tool to account for the sampling design and ad-

ditional data preparation steps such as nonresponse adjustments when analyzing the data. Because

complex sampling designs are often used (as we described in the previous section) and because

not all sampled units actually respond to the survey, the resulting dataset cannot be treated as a

simple random sample from the target population. Most estimators need to be adjusted to take

these complications into account. For example, the (unweighted) sample mean can no longer be

treated as an unbiased estimator for the mean in the population if the probability of being included

in the responding-sample varies between the units. Instead, it is typical to use weighted estimators,

where individual data points are weighted according to their survey weights.

Survey weights are typically generated in three stages. In the first stage, design weights are gen-

erated that reflect the sampling design. In the second stage, nonresponse adjustment weights are

used to account for different response propensities in different subgroups of the population. Finally,

calibration weights try to correct for any deficiencies in the sampling frame and also help to reduce

the variance of the final estimates.

The design weights wD are defined as the inverse of the probability of selection: wD
i = 1/πi, where

πi is the probability that unit i ∈ U(f) is selected into the sample UR(S). Nonresponse adjustment

11



weights try to adjust for potential biases that might arise due to unequal response propensities. The

idea is to estimate the probability to respond for each unit. The nonresponse adjustment weights

wNR are calculated as the inverse of the estimated response probabilities pRi ; that is, w
NR
i = 1/pRi

for i ∈ UR(S). Note that the response probabilities can be used to compute the final probability

to be included in the sample: p
(inc)
i = πip

R
i . Hence, the inverse of p

(inc)
i can be used as a weight

that accounts for both the complex sampling design and the nonresponse.

The final weighting step is commonly to calibrate the survey data to information that is known

about the population of interest from other sources. For example, the total number of people living

in the U.S. by age and gender might be known from the previous Census. Common calibration

techniques are post-stratification, raking or the GREG estimator. Describing the details of these

adjustment methods is beyond the scope of this paper (see Valliant et al. [2018] for further details).

It suffices to note that all these methods can be reflected by adjusting the survey weights obtained

from the previous two steps.

3 DP Flavors for Survey Statistics

As we have seen in Subsection 2.3, there are multiple phases in the creation of survey statistics:

defining the target population, compiling the sampling frame, selecting the sample according to

the sampling design, and collecting data from the responding units. (From herein, we use the term

‘target sample’ to refer to the sample of units selected by the sampling design from the sampling

frame, in order to differentiate this sample with the responding sample – the set of units which were

selected and responded.) The data output by each phase of this pipeline is fed into the subsequent

phase as input. For example, data about the target population is used to compile the frame and

data on the frame is used to select the sample.

The data custodian (e.g. the NSO) could plausibly start the data-release mechanism T at any

point along this data pipeline. That is, the data-release mechanism could take as input the dataset

corresponding to any of the various phases. Moreover, the custodian could also plausibly condition

on previous phases in the data pipeline (taking their data as invariant). Thus, the data custodian

is faced with two decisions: what should the protection domain D0 be? And what should the data

multiverse D be?

In this section, we formalize the various options for these two decisions in terms of their correspond-

ing DP flavors. In Sections 4 and 5, we show why these two decisions are important by describing

the consequences of each option on both data utility and privacy.

Definition 3.1. Let Dpp
0 be the set of all possible pseudo-population datasets; Dfr

0 the set of all

possible frames (from all possible pseudo-populations); Dsamp
0 the set of all possible target sample

12



datasets (from all possible frames); and Dresp
0 the set of all possible responding sample datasets

(from all possible target samples). We say that a DP flavor (D0,D , dD0 , dPr) is population-level

if D0 = Dpp
0 . The definitions of frame-level, (target-)sample-level and responding-sample-level DP

flavors are analogous. ⋄

In the above definition, we have been deliberately vague in specifying Dpp
0 . The precise definition of

the set Dpp
0 depends on the data custodian’s assessment of what pseudo-populations are considered

‘possible’. In general, ‘possible’ should be interpreted liberally, so that this set Dpp
0 is generously

large. (See Section 5 for an explanation of why this matters and Bailie et al. [2024+a] for a more

extensive discussion.)

We can be more specific in the definition of Dfr
0 , since the construction of a frame is a real-world

process undertaken by an NSO (although in practice this process is often messy, complex and hard

to precisely describe). This process takes as input a pseudo-population p ∈ Dpp
0 and outputs a

frame for that population. Then Dfr
0 is the set of all outputs from this process, across all possible

pseudo-populations p ∈ Dpp
0 .

When defining the set Dsamp
0 of all possible samples, we assume that there is a given sampling design

τf and we only consider those sample datasets s with non-zero probability τf(U(s)) > 0. However,

as is frequently the case, the sampling design τf can depend on the realized frame f. (For example,

the stratum sample sizes are part of a stratified sampling design, and these sizes are partially based

on the sizes of the strata in the frame f.) Thus,

Dsamp
0 = {s : τf(U(s)) > 0, f ∈ Dfr

0 }.

Definition 3.2 (Primitive data multiverses). Define the primitive data multiverses:

1. Dfr|pp = {Dp : p ∈ Dpp
0 }, where Dp is the set of all possible frames constructed from the

pseudo-population p ∈ Dpp
0 ;

2. Dsamp|pp = {Dp : p ∈ Dpp
0 }, where Dp is the set of all possible target sample datasets drawn

from the pseudo-population p ∈ Dpp
0 :

Dp = {s : τf(U(s)) > 0, f is a possible frame constructed from the pseudo-population p}.

3. Dsamp|fr = {Df : f ∈ Dfr
0 }, where Df is the set of all possible target samples drawn from the

frame f ∈ Dfr
0 :

Df = {s : τf(U(s)) > 0}.

4. The data multiverses Dresp|pp,Dresp|fr and Dresp|samp can be defined analogously, as the set of
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Dpp
0 population agnostic

Dfr
0 population agnostic population invariant

Dsamp
0 +frame agnostic +frame agnostic +frame invariant

Dresp
0 +sample agnostic +sample agnostic +sample agnostic +sample invariant

Table 3.1: Overview of the possible settings for the different levels.

data universes Dd, with Dd the set of all possible responding samples drawn from, respectively,

the population, frame, or target sample d. ⋄

Definition 3.3 (Population-, frame- and sample-invariance). A DP flavor (D0,D , dD0
, dPr) is:

1. population-invariant if D ≤ D·|pp, where

• for frame-level flavors: D·|pp = Dfr|pp,

• for sample-level flavors: D·|pp = Dsamp|pp, and

• for responding-sample-level flavors: D·|pp = Dresp|pp;

2. frame-invariant if D ≤ D·|fr, where

• for sample-level flavors: D·|fr = Dsamp|fr, and

• for responding-sample-level flavors: D·|fr = Dresp|fr;

3. sample-invariant if D ≤ Dresp|samp (for responding-sample-level flavors). ⋄

The intuition behind these definitions is very simple. The idea is to restrict the comparable datasets

(Definition 2.9). Population-invariance means that comparable frames (or samples or responding

samples) must be from the same pseudo-population. (That is, a pair of frames are comparable only

if they are constructed from the same pseudo-population.) Analogously, frame-invariance means

that comparable sample datasets must be drawn from the same frame.

If a DP flavor is not population-invariant (resp. frame-invariant or sample-invariant), then we say

it is population-agnostic (resp. frame-agnostic or sample-agnostic). Frame-agnosticism implies that

there are two comparable samples which are drawn from different frames.

Because invariance at one level implies invariance at previous data pipeline phases, we identify

ten settings (which together exhaust the potential options for where the DP mechanism starts and

which phases are taken as invariant): one setting for population-level flavors; two for frame-level

flavors; three for sample-level flavors; and four for responding-sample-level flavors (see Table 3.1 for

illustration.)
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4 Utility Considerations

In this section we consider the possible implications of the different DP flavors on the achievable

level of accuracy of the noisy outcome given a desired level of privacy (expressed by fixing the

privacy parameters). Two components are relevant when evaluating the accuracy for DP estimates

from survey data: the privacy amplification effects from sampling, which imply that less noise needs

to be infused to achieve a given privacy level and the increased sensitivity of the weighted estimator

(where weights are included to account for the sampling design, nonresponse, and potentially for

other data deficiencies such as over- or undercoverage of the sampling frame), which typically implies

that more noise is required. We discuss the effects of the different flavors on both components in

the following chapters.

4.1 Privacy Amplification via Sampling

Previous research has shown that simple sampling designs offer privacy amplification, that is, the

privacy offered when running a DP algorithm on a random subset of the population is higher than

if the same algorithm with the same privacy parameters is run on the full population. Balle et al.

[2018] proof the following theorem for simple random sampling with replacement (they also obtain

similar results for Poisson sampling and simple random sampling without replacement):

Theorem 4.1 (Balle et al. [2018]). Let C be a sampling scheme that uniformly randomly samples

n values out of N possible values without replacement. Given an (ε, δ)-bounded differentially private

mechanism M, we have that M◦C is (ε′, δ′)-bounded differentially private for ε′ = log(1+ n
N [eε−1])

and δ′ = n
N δ.

In this theorem bounded differential privacy refers to the scenario in which neighboring datasets are

obtained by changing the values of one record in the data while keeping the size of the data fixed.

Note that for small ε and small sampling rates this implies that ε′ ≈ n/Nε, i.e., the amplification is

proportional to the sampling rate. Based on these results Bun et al. [2022] studied to what extent

privacy amplification can also be achieved for the more complex sampling designs commonly used

at statistical agencies. Their findings can be summarized as follows:

• Cluster sampling using simple random sampling without replacement to draw the clusters

offers negligible amplification in practice except for small ε (less than 0.5) and very small

cluster sizes (less than 15 units).

• With minor adjustments, stratified sampling using proportional allocation can provide privacy

amplification.

• Data dependent allocation functions such as Neyman allocation for stratified sampling will

15



likely result in privacy degradation (the effects will depend on the sensitivity of the allocation

function).

• With PPS sampling at the individual level, the privacy amplification will linearly depend on

the maximum probability of inclusion (for small ε).

• Systematic sampling will only offer amplification if the ordering of the population is truly

random. In all other cases, systematic sampling will suffer from the same effects as cluster

sampling leading to no amplification (assuming the ordering is known to the attacker).

In practice this implies that for the multi-stage sampling designs that typically start with (multiple

stages of) stratified cluster sampling, amplification effects can generally only be expected from those

stages at which individual units are selected (typically the last stage of selection).

4.2 Privacy Amplification for Different DP Flavors

Before discussing the implications of the DP flavors introduced in Section 3, it is important to

consider at which stages of the data production pipeline amplification effects could occur. Con-

ceptually, three different sampling steps can be defined when moving from the population to the

responding sample. The most obvious step (and the only one that is fully controlled) is the selection

of the target sample from the sampling frame. However, if nonresponse is treated as a stochastic

process (as is commonly done in the survey literature), moving from the target to the responding

sample can be interpreted as another sampling step. The same is true when moving from the

pseudo-population to the sampling frame if we assume that each unit in the pseudo-population

has a certain probability to be included in the frame. Still, the amplification effects of these two

steps are difficult to take into account in practice as the inclusion probabilities are unknown and

would need to be estimated. Errors when modeling these probabilities would lead to invalid state-

ments regarding the amplification effects. Besides, the amplification effects when moving from the

pseudo-population to the sampling frame will typically be negligible given that the probability to

be included in the frame should be well above 90% for high quality frames.

Considering the DP flavors, we can distinguish four scenarios: If the responding sample dataset is

given as input, the DP mechanism can only be applied at the responding sample level. This scenario

boils down to the standard setting considered in most DP papers. There is no (sub)sampling step

within the data release mechanism T and thus there is no amplification effect. Interestingly, this

scenario offers the same privacy guarantees as the more restrictive assumption that the attacker

knows who participated in the survey. In all other scenarios, privacy is amplified through the

(sub)sampling process.

In the second scenario, the DP flavor is at the target sample-level. In this scenario, amplification can
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only arise from the subsampling step when moving from the target sample to the responding sample.

As response rates are often less than 20% in practice, this subsampling might offer some privacy

amplification. However, as mentioned earlier, quantifying this effect will be difficult in practice as

response probabilities are unknown and will likely differ between the units. In the third scenario,

the (augmented) frame f∗ is taken as input to the data-release mechanism. This scenario will offer

privacy amplification as discussed in Bun et al. [2022] in addition to the theoretical amplification

offered from nonresponse. Finally, if the DP flavor has domain Dpp
0 , a third layer of amplification

is possible by moving from the pseudo-population to the sampling frame. As discussed above, this

layer will typically be negligible for sampling frames commonly used in practice.

4.3 Weighting

Using weighted estimators generally increases the amount of noise that needs to be added to achieve

a desired level of privacy protection. This is because the sensitivity of the result, i.e., the maximum

possible change in the result when changing a single record, increases when incorporating the survey

weights. To illustrate, we can consider the simple example of a counting query. A counting query

simply counts the number of units in a database that satisfy a given set of conditions, for example,

the total number of unemployed men between 30 and 40. Counting queries are attractive under DP

as they have low sensitivity and thus require limited amounts of noise to achieve DP (as the noise

scales with the sensitivity of the query). Under unbounded DP (i.e., defining neighboring datasets

by adding or removing one record) the sensitivity of a counting query is 1.

In the survey literature a counting query is called a total and the most convenient way to esti-

mate a total for complex sampling designs is to use the Horvitz-Thompson estimator [Horvitz and

Thompson, 1952], which provides approximately unbiased estimates for most sampling designs. The

Horvitz-Thompson estimator for a total is given as t̂x =
∑

i∈UR(S) wixi, where t̂x is the estimated

total in the population for the target variable x and wi is the survey weight for unit i. In our

example, xi is a binary indicator which equals 1 if unit i satisfies the conditions of interest (i.e. unit

i is unemployed, male, and between 30 and 40 years old) and is zero otherwise. Using the Horvitz-

Thompson estimator, the L1-sensitivity increases to max(wi) (where the maximum is taken either

over the records in the sample (under target sample invariance), the frame (under frame invariance)

or over the entire population (under population invariance)).

Since the amount of noise that is required typically scales with the sensitivity of the output, this

implies that much more noise needs to be added when trying to protect a weighted survey estimate.

However, the considerations so far assume that the weights can be considered fixed. This assumption

is never justified for the final survey weights. This is because the nonresponse adjustments and

calibration steps rely on models that are estimated from the data. Changing one record in the

data will change these models and thus the weights. How to account for this variability in the final
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DP Setting Effects on Design Weights

Target sample invariance Can be treated as fixed
Frame invariance Can be treated as fixed
Population invariance Sensitivity needs to be considered
Population agnostic Sensitivity needs to be considered

Table 4.1: Overview of the implications on the design weights for different types of invariance. We
note that the final weights that also account for nonresponse can never be treated as fixed.

DP Setting Amplification from

Responding-sample level Dresp
0 –

Target-sample level Dsamp
0 NR

Frame level Dfr
0 NR&S

Population level Dpp
0 FR&S&NR

Table 4.2: Overview of the implications on privacy amplification for different levels of DP. (The
abbreviations are NR=nonresponse,S=sampling,FR=frame).

weights when computing the sensitivity of a survey weighted estimate has not been addressed in

the DP literature so far.

But even if we only consider the design weights, the assumption of constant weights is only justified,

if changing one record in the database does not change the probability of inclusion for any of the

records in the pseudo-population. Whether this is a realistic assumption will depend on the DP

flavor to be considered but also on the properties of the sampling design.

In general, the design weights can only be treated as fixed under the frame-invariant or target

sample invariant scenario. In all other scenarios the weights will typically change. How much the

weights will change will depend on the sensitivity of the sampling design, which in turn depends on

how data dependent the sampling design is. To illustrate, data dependence will be small for single

stage cluster sampling designs especially if the clusters are selected using simple random sampling

(such a design is used for example for the German Microcensus). For such a design, the probability

of selection does not change over neighboring frames (as long as the definition of the clusters does

not change). On the other hand, PPS sampling will generally be highly data dependent as the

probability of selection directly depends on some features of the data. This will be less problematic

if PPS sampling is used to select the clusters as the probability of selection will only depend on

the size of the clusters and these sizes will only change by one record over neighboring databases.

However, if PPS sampling is used to select individual units, the probabilities of selection can change

arbitrarily over neighboring datasets. Thus, for these designs the sensitivity of the final estimate

might increase considerably and it seems difficult to correctly quantify this sensitivity in practice.
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Tables 4.1 and 4.2 summarize the implications of the different DP flavors considered in this paper.

Together they highlight the inherent trade-off between the various flavors of DP for survey estima-

tors. For example, considering the frame as invariant implies that the DP flavor is at the target-

or responding-sample level and hence no utility improvements through amplification by sampling

can be achieved. On the other hand, frame invariance allows treating the weights as fixed, which

will generally reduce the sensitivity of the final estimates and thus the noise that needs to be added

to ensure privacy. For the other flavors, utility improvements could be achieved through privacy

amplification, but this benefit comes at the cost that the sensitivity of the weights needs to be

considered. This increase might outweigh the benefits of amplification from sampling, especially

since as Bun et al. [2022] have shown, the amplification effects tend to be small for sampling designs

commonly used in practice. Which of the flavors will be most attractive from a utility perspective

will crucially depend on the sampling design in practice as the design will have an effect on both

the amplification and the sensitivity of the weights. It will also depend on the question whether

response probabilities can be determined reliably.

4.4 Sensitivity Reduction from the Sampling Design

When the DP flavor is frame-invariant, the sampling design τf can reduce the sensitivity of a query

such as the Horvitz-Thompson estimator. This is because only samples with non-zero probability are

considered. Comparable sample datasets s, s′ must both have non-zero probability of being realized

under the same sampling design τf. This restricts the number of comparable sample datasets, and

hence potentially reduces the sensitivity of a query.

For example, if the sampling design τf includes stratification, then the stratum sample sizes are

constant between comparable sample datasets s, s′. Thus, if s and s′ differ only on a single record,

that record must belong to the same stratum in both s and s′. When the difference between the

possible values of xi within strata is smaller than their difference across strata (which typically is the

case whenever stratification is used to reduce the uncertainty in survey estimates), the sensitivity

of the Horvitz-Thompson estimatoris reduced when the DP flavor is frame-invariant.

4.5 Utility Implications for the Horvitz-Thompson Estimator

In this section, we use the Horvitz-Thompson estimator t̂x =
∑

i∈UR(S) wixi discussed in Section 4.3

to illustrate the utility implications of the different settings. For simplicity, we assume the output

of t̂x is protected using the Laplace mechanism (we do not claim this mechanism is optimal for this

estimator).
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4.5.1 The Laplace Mechanism for the Horvitz-Thompson Estimator

If the Horvitz-Thompson estimator must be differentially private, the corresponding Laplace mech-

anism can be used in place of t̂x.

Definition 4.2 (Dwork et al. [2006b]). Let εD-DP(D0,D , dD0 , dPr) be a DP specification with dPr =

dMult. Suppose q : D0 → Rk is a non-stochastic function. The Laplace mechanism corresponding

to q is the data-release mechanism

Tq,Lap(d, ω) = q(d) + ∆q([d]D)ω,

where

• the seed ω ∈ Rk is a vector of k iid Laplace random variables, each with PDF f(ωi) =
1
2 exp(−|ωi|),

• [d]D is the connected component

[d]D = {d′ ∈ D0 | there exists D ∈ D s.t. d, d′ ∈ D and dD0(d, d
′) < ∞},

• for D∗ ⊂ D0, ∆q(D∗) is the ε-adjusted L1-sensitivity

∆q(D∗) = sup
D∈D
D⊂D∗

sup
d,d′∈D

∥q(d)− q(d′)∥1
εDdD0

(d, d′)
,

(with ∥·∥1 the L1-norm, 0/0 := 0 and sup ∅ := 0). ⋄

Theorem 4.3. The Laplace mechanism Tq,Lap satisfies εD-DP(D0,D , dD0
, dPr).

4.5.2 Sensitivity of the Horvitz-Thompson Estimator

Suppose that dD0
is the Hamming distance; the budget εD = ε is constant in D; and q is the Horvitz-

Thompson estimator t̂x =
∑

i∈UR(S) wixi, with wi the design weights. Consider sample-level DP:

the domain D0 is the set of all possible samples s. For

Df = {s : τf(U(s)) > 0},

define the (unadjusted) L1-sensitivity as

∆q(Df) = sup
s,s′∈Df

|q(s)− q(s′)|.
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In this section, we will prove that the L1-sensitivity ∆q(Df) is bounded by |maxi∈f(wixi)−mini∈f(wixi)|.
This is the relevant L1-sensitivity for frame-invariant DP flavors. For frame-agnostic DP flavors,

the relevant L1-sensitivity is the global L1-sensitivity ∆q(D0), which can only be bounded by the

worst-case

|maxwixi −minwixi|+ (n− 1)(maxwi −minwi)(|maxxi| ∨ |minxi|),

where n is the (fixed) size of the target sample and the maximums and minimums are all over

i ∈ U(p) and all possible p because, in general, changing a single record may change the design

weights of all other records.

5 Privacy Considerations

5.1 Privacy Semantics

5.1.1 Posterior-to-Posterior Comparisons

The aim of the posterior-to-posterior framework is to compare what an attacker would learn about

a single unit, if this unit is included in the input dataset relative to a counterfactual world in which

the unit is not included or his or her record is not used.

Adopting notation similar to that of Kifer et al. [2022], let PA be the attacker’s prior on the domain

D0, i.e., the prior implies that the input dataset is treated as a random variable D on the space

D0. The goal of the attacker is to infer information about the record Di of a single unit i ∈ UR(D)

in the input dataset D. For this to be well-defined, we must assume that the units of D are fixed

(that is, U(D) is a fixed set). A common practice in the literature is to assume that the units of D

are identified by the indices 1, . . . , n, where n = |U(D)|. Throughout this section we assume dD0
is

the Hamming distance. For simplicity, we also assume that D0 and T are countable spaces.

Let t ∈ T denote a realized output of the data release mechanism T . The posterior-to-posterior

framework as adopted in Kifer et al. [2022] compares the posterior distribution PA(Di ∈ · | T (D) =

t) with the counterfactual world in which the information of the selected unit is replaced by a

random draw from the posterior distribution of the attacker assuming knowledge of everybody else.

Let psample[d] ∼ PA(D | D− = d−) denote this random draw, where D− and d− denote the random

variable D and dataset d with the selected record (Di or di respectively) being removed. As shown

in Kifer et al. [2022] the ratio of these two posteriors is given by

PA(Di = r | T (D) = t)

PA(Di = r | T (psample[D]) = t)
=

∑
d− PA(d

−)PA(r | d−)Pd−∪{r}(T = t)∑
d− PA(d−)PA(r | d−)

∑
r′ PA(r′ | d−)Pd−∪{r′}(T = t)

. (5.1)
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For ε-DP,

e−ε ≤
Pd−∪{r}(T = t)

Pd−∪{r′}(T = t)
≤ eε,

and hence the ratio of posteriors (5.1) is bounded between e−ε and eε, for all possible values r of

Di (see Theorem 7.1 in Kifer et al. [2022]).

5.1.2 Implications for the Different Settings

The posterior-to-posterior semantics apply to the possible values r of a record di from the input

dataset d ∈ D0, which varies depending on the DP setting. Of particular importance is the domain

D0 of the DP flavor, since this determines what dataset – the (augmented) pseudo-population

dataset p∗, the (augmented) frame f∗, the sample dataset s, or the responding-sample dataset r

– is protected. Although not explicitly stated, the classical framework considered in most of the

DP literature assumes the responding-sample-level setting, in which the domain D0 is the set of

possible responding-sample datasets, Dresp
0 . In this case, the data-release mechanism takes as input

the fixed responding sample r. As such, the protections supplied by the data-release mechanism

– as measured by the posterior-to-posterior framework – apply to a record ri from the responding

sample. That is, an ε-DP mechanism with domain Dresp
0 ensures that the posterior-to-posterior

ratio for a responding sample record ri is bounded in the interval [e−ε, eε].

If we change the DP flavor to be at the frame-level – so that we may benefit from privacy am-

plification by sampling – then the input to the data-release mechanism is the augmented frame

f∗. As such, an ε-DP mechanism under this setting will protect an augmented frame record f∗i –

rather than a responding sample record ri – within the nominal interval [e−ε, eε]. This distinction

is important, because protection at one level does not imply protection at another level. In fact, we

will see in Subsection 5.1.4 that whenever there is privacy amplification due to sampling, a sample

record’s posterior-to-posterior ratio is not bounded within [e−ε, eε] for an ε-DP mechanism at the

frame-level.

Beyond looking at the different starting points of the data release mechanism, it is also important to

consider the impacts of different types of invariances. For example, treating the frame as invariant

implies that neighboring datasets must come from the same fixed frame. This enforces restrictions

on the possible values r of Di. As a consequence two data release mechanisms that start at the

same level, for example, Dfr
0 and use the same privacy loss budget ε, will offer different privacy

guarantees, if one of them is frame-invariant while the other is frame-agnostic. This illustrates the

ever existing trade-off between utility and privacy. From a utility perspective, it seems desirable

to identify scenarios, in which enforcing invariance substantially restricts the possible values of

Di as this might considerably reduce the sensitivity of the query of interest. On the other hand,

shrinkingn the data univeres D ∈ D will implicitly reduce the privacy guarantees even if the privacy
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loss parameter is held constant.

5.1.3 No Privacy Amplification if the Attacker Knows that Unit i Is in the Sample

In this section, we show that we cannot hope for privacy amplification by sampling if we assume that

the attacker knows that unit i is included in the sample UR(S). This is a risk scenario that statistical

agencies commonly need to consider in practice. In the statistical disclosure control literature, this

is often referred to as the “nosy neighbor” scenario, since a possible scenario in which this kind

of knowledge is realistic is the situation in which a neighbor witnesses an interviewer entering the

house next door and then hopes to learn sensitive information about the neighbor by trying to

reidentify him or her in the data.

To illustrate, we consider a data-release mechanism that starts at the frame level and thus should

offer privacy amplification from sampling. Specifically, suppose that T is a data-release mechanism

at the sample-level and let S(·) be the sampling function, which takes an frame f and outputs the

sample according to the given sample design τ . (That is, P(S(f) = S) = τ(S) for all S ⊂ U(f).)
The data-release mechanism that starts at the frame level is therefore the composition T ′ = T ◦ S.
Conditioning on the fact that unit i is included in the sample, the lower bound of the posterior-to-

posterior ratio under the assumption that T is ε-DP is (below we write SR for the sample UR(S)):

PA(F
∗
i = r | T ′(F∗) = t, i ∈ SR)

PA(F∗
i = r | T ′(psample[F∗]) = t, i ∈ SR)

=

∑
f∗− PA(f

∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)Pf∗−∪{r}(T
′ = t | i ∈ SR)∑

f∗− PA(f∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)
∑

r′ PA(r′ | f∗−, i ∈ SR)Pf∗−∪{r′}(T ′ = t | i ∈ SR)

≥
∑

f∗− PA(f
∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)Pf∗−∪{r}(T

′ = t | i ∈ SR)∑
f∗− PA(f∗− | i ∈ SR)PA(r | f∗−, i ∈ SR)eεPf∗−∪{r}(T ′ = t | i ∈ SR)

= e−ε.

Whenever the mechanism T is optimal (i.e. it achieves the bound Ps(T = t)/Ps′(T = t) = ϵ for

some s, s′ with dD0
(s, s′) = 1), the above inequality is achieved for some choice r and i. Using a

similar argument, the upper bound of the ratio is eε. Thus, while the data release mechanism T ′

satisfies ε′-DP for ε′ < ε, the posterior-to-posterior protection provided by T ′ when the attacker

knows i ∈ UR(S) is not bounded within the interval [e−ε′ , eε
′
] but only in the interval [e−ε, eε].

That is, the protection due to privacy amplification from sampling is lost: T ′ provides the same

level of protection as T when the attacker knows the unit i is in the sample.
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5.1.4 The Journalist and Sampling Amplification

In this section, we show that privacy amplification by sampling is not possible when the attacker

does not have a particular target unit in mind, but instead wishes to learn about an arbitrary

record. In the statistical disclosure control literature, this is often referred to as the “journalist”

scenario, since a journalist often wants to expose the vulnerability of a data-release mechanism by

learning any record, rather than focusing on attacking a particular record (e.g. the record belonging

to their neighbor). In this situation, it makes sense for the journalist to focus on a record that is

in the sample, since these records have the most influence on the data-release mechanism’s output.

As in the previous subsection, let T be an ε-DP mechanism, S(·) be the sampling function and

T ′ = T ◦ S, so that T ′ is ε′-DP with ε′ < ε. As is common convention, let us identify the units of

S as i = 1, . . . , n, where n =
∣∣UR(S)

∣∣. Then
PA(Si = r | T ′(F∗) = t)

PA(Si = r | T ′(psample[F∗]) = t)

=

∑
s− PA(s

−)PA(Si = r | s−)PA(T
′(F∗) = t | S = s− ∪ {r})∑

s− PA(s−)PA(Si = r | s−)
∑

r′ PA(Si = r′ | s−)PA(T ′(F∗) = t | S = s− ∪ {r′})

=

∑
s− PA(s

−)PA(Si = r | s−)Ps−∪{r}(T = t)∑
s− PA(s−)PA(Si = r | s−)

∑
r′ PA(Si = r′ | s−)Ps−∪{r′}(T = t)

≥
∑

s− PA(s
−)PA(Si = r | s−)Ps−∪{r}(T = t)∑

s− PA(s−)PA(Si = r | s−)
∑

r′ PA(Si = r′ | s−)eεPs−∪{r}(T = t)

= e−ε.

As in the previous subsection, if T is optimal then the above inequality is achieved for some choice

of t, r and i. Analogous working shows that this posterior-to-posterior ratio is bounded above by eε,

and moreover, this bound is achieved when T is optimal. Hence, as in the previous subsection, the

additional privacy protection due to amplification from sampling is lost when the attacker targets

an arbitrary record in the sample. That is, a sample record is not protected by the mechanism T ′

at the nominal privacy level ϵ′ of T ′, but only at the privacy level ϵ.

Note that this result and the accompanying discussion applies more generally beyond the context of

survey sampling. They holds for any DP mechanism T ′ which employs amplification by sampling.

Such mechanisms are frequently used as modules in sanitized (i.e. privacy-protected) machine

learning and neural networks as amplification by sampling is key to sanitized stochastic gradient

descent algorithms [Abadi et al., 2016, Bu et al., 2020].
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Figure 5.1: The total privacy loss over two mechanisms T ′
1 and T ′

2 which share the same sampling
step. Here, T ′

i = Ti ◦ S where S is simple random sampling without replacement (with sampling
fraction f = n/N = 0.1). Both T1 and T2 satisfy ϵ-DP with privacy loss ϵ given on the x-axis.
The total privacy loss of the composition of the two mechanisms T ′

1 and T ′
2 is given on the y-axis.

The näıve calculation (in red) is given by the standard composition result of ϵ-DP which states
that the privacy loss of (T ′

1, T
′
2) is the sum of privacy losses of T ′

1 and T ′
2. That is, the red line is

2 log(1 + f [exp(pl(T1)) − 1]), where pl(T1) is the privacy loss of T1. (We assume pl(T1) = pl(T2).)
The true total privacy loss (in blue) is given by first composing T1 and T2 and then applying privacy
amplification (Theorem 4.1): pl(T ′

1, T
′
2) = log(1 + f [exp(2pl(T1))− 1]).
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5.2 Amplification by Sampling and Composition

An important consideration when discussing the benefits of privacy amplification from sampling is

whether the composition property of DP still hold. Composition refers to the fact that the total

privacy loss of two DP mechanisms with privacy loss ε1 and ε2, respectively is upper bounded by

the sum ε1+ε2 of the two losses. This is an important property as it helps to track the privacy loss

over multiple data releases. This property is lost, however, in the context of privacy amplification

through sampling as the following example illustrates: Consider two pure ε-DP mechanisms T1

and T2 with privacy loss ε = 1 and ε = 2 respectively. Suppose that they are two outputs from

the same sample survey (i.e. they always use the same sample). For example, T1 is the Laplace

mechanism for querying the number of males in the sample and T2 is the Laplace mechanism for

querying the number of people in the sample with incomes over $100,000. Suppose for simplicity

that the sampling mechanism for the survey was simple random sampling without replacement

(SRSWOR) with sampling fraction f = n/N = 0.1. Let T ′
1 and T ′

2 be the mechanisms which

apply the sampling step and then run T1 or T2 respectively. These mechanisms have privacy loss

0.16 and 0.49 respectively (by amplification by sampling results given in Theorem 4.1). A näıve

interpretation of the composition theorem implies that their composition (T ′
1, T

′
2) has privacy loss

0.65. However, the correct calculus would consider the composition (T1, T2) – which has privacy

loss ε = 3 – and then apply the amplification by sampling result to get a privacy loss for the

composition (T ′
1, T

′
2) of 1.07. We note that for small sampling rates f and small values (≪ 1) for

both ε1 and ε2, the composition properties based on the amplified privacy guarantees would still

hold approximately since these conditions would imply that the privacy loss of T ′
i is approximately

ε′i ≈ n/Nεi, and thus ε′1 + ε′2 ≈ n/Nε1 + n/Nε2 = n/N(ε1 + ε2). However, for larger f or εi, the

gap between the true privacy loss and the näıve calculation can be substantial, as illustrated by

Figure 5.1.

The source of this apparent contradiction is the composition theorem’s implicit assumption that

the seeds ω′
1 and ω′

2 of T ′
1 and T ′

2 are independent. This assumption does not hold when T ′
1 and

T ′
2 always select the same sample. More generally, suppose that T ′

1 and T ′
2 are mechanisms which

include sample procedures with designs τ1 and τ2 respectively. Then the composition theorem’s

assumption is violated whenever the sample designs τ1 and τ2 are dependent. In such cases, the

calculation of the total privacy loss across T ′
1 and T ′

2 cannot rely on applying the composition

theorem to T ′
1 and T ′

2. Instead, this calculation requires analyzing the privacy amplification of the

sample designs τ1 and τ2 jointly, which will be difficult in general.

Dependency between sample designs is unfortunately a common occurrence at many NSOs. Beyond

the above example where T ′
1 and T ′

2 use the same sample, there are (at least) two other common

scenarios which lead to violations of the composition theorem’s independence assumption. Firstly,

because NSOs run many different survey collections concurrently, modern sample designs aim to
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reduce respondent burden by controlling the overlap between the samples of different surveys. (For

example, if a unit was selected for one survey, they will have a lower (or zero) probability of being

selected in the near future for a different survey.) This introduces dependence between the sample

designs of the NSO’s different surveys. Secondly, sample rotation – which is a common feature in

the collection of time series data, such as labor force statistics – introduces dependency between

the sample designs across time for the same survey.

In all three of these scenarios, frame- (or population-)level DP mechanisms will not have independent

seeds and hence the standard composition theorem does not apply to these mechanisms. This is

an important consideration in determining the total privacy loss of an NSO across their multiple

surveys. In situations traditionally encountered in the DP literature, the composition theorem

allows for modular privacy analyses, but – without a generalized composition theorem which can

account for dependency between seeds – an NSO will be forced to resort to a joint privacy analysis

which must simultaneously analyze all the NSO’s surveys. Therefore, an important (and novel, as

far as we are aware) future research is to understand the composition property of DP under varying

levels of seed dependency. Such an understanding will enable modular privacy analyses of dependent

DP mechanisms to be combined into an overall privacy loss – as the standard composition theorem

currently enables for independent DP mechanisms.

We conclude this subsection with the general comment that the composition of multiple mechanisms

becomes more complex when these mechanisms share data-processing steps in common. Sampling

is an example of one such data-processing step, but it is by no means the only example. Population-

level DP mechanisms will also share the same process of frame construction (even if they use different

frames, it is likely that there are dependencies between the construction of the two frames), which

must be accounted for when determining the overall privacy loss.

6 Discussion

This paper develops theory for understanding and implementing differential privacy in the context

of survey statistics. By recognizing the major phases in the survey-data pipeline, we identified

ten different settings of DP. These settings correspond to different choices for 1) where the DP

data-release mechanism starts in this pipeline; and for 2) which of the previous phases are taken as

invariant. Section 3 formalized these ten settings into ten different conditions on the DP flavor.

Sections 4 and 5 show that the choice of the setting has significant impacts in terms of both pri-

vacy and utility. Therefore, while DP is invariant to post-processing, pre-processing steps matter.

Moreover, the data custodian must necessarily choose a setting – they cannot implement DP with-

out first deciding (perhaps implicitly) where the DP mechanism starts and which pre-processing

steps are taken as invariant. Hence, contrary to commonly-held beliefs, DP does make important
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assumptions on the data and on the attacker, because the data custodian’s decision impacts both

the utility and privacy semantics of the DP-outputted data.

Based on the discussions in the previous sections, we can offer some recommendations on the

settings a data custodian might want to choose. Firstly, we advice against the population-level

setting (i.e. using the domain D0 = Dpp
0 ). Compared to the frame-level setting (D0 = Dfr

0 ),

the only advantage of the population-level setting would be potential amplification gains because

the frame could be treated as a random subset of the pseudo-population. However, quantifying

the resulting privacy amplification effects seems difficult, if not impossible, in practice. Moreover,

for high quality frames the amplification effect should be small since the fraction of the pseudo-

population on the frame would be high. On the other hand, using Dpp
0 would always require the

DP flavor to be frame-agnostic, implying that the design weights could no longer be treated as

fixed. This would potentially increase the sensitivity of the output of interest and would make the

computation of the sensitivity challenging in most cases.

Secondly, opting for the frame-level setting (D0 = Dfr
0 ) offers amplification from sampling, but

requires a frame agnostic DP flavor, implying that the sampling weights still cannot be treated

as fixed. Since previous research has shown that amplification effects tend to be small for many

complex sampling designs [Bun et al., 2022] and privacy amplification is only achievable if the nosy

neighbor and the journalist scenario discussed in Sections 5.1.3 and 5.1.4 are unrealistic threat

models, it seems that the benefits of amplifications are outweighted by the disadvantages of this

DP setting.

Thirdly, when using one of the sample-level settings, it seems preferable to work under Dsamp|fr,

i.e., treating the frame as invariant, as this would allow the design weights to be treated as fixed.

These benefits should outweight the fact that treating the frame as invariant will increase the risks

by limiting the space of neighboring datasets. These constraints on the possible values of a record si

may be small in practice, although more research is needed to verify this.3 In principle, the sample-

level setting would also offer amplification from nonresponse. However, as discussed previously,

quantifying these amplification effects would require knowledge of the true response mechanism.

Finally, we do not see any benefits from starting the data release mechanism only at the responding

sample. If the data custodian still prefers to choose this option, we would recommend using Dresp|fr
and not Dresp|samp. Our concern is that treating the target sample as fixed might enforce strong

constraints on the possible values of a record ri in some circumstances. Whether one can find

examples where this is really the case would be an interesting area for future research.

3In the final version of this paper, we will address this question in further detail.
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Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-preserving

ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 1054–1067, 2014.

A. D. Foote, A. Machanavajjhala, and K. McKinney. Releasing earnings distributions using

differential privacy: Disclosure avoidance system for post-secondary employment outcomes

(pseo). Journal of Privacy and Confidentiality, 9(2), 2019. doi: 10.29012/jpc.722. URL

https://journalprivacyconfidentiality.org/index.php/jpc/article/view/722.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a finite

universe. Journal of the American statistical Association, 47(260):663–685, 1952.

D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In Proceedings of the 2011

International Conference on Management of Data - SIGMOD ’11, pages 193–204, Athens, Greece,

2011. ACM Press. ISBN 978-1-4503-0661-4. doi: 10.1145/1989323.1989345.

30

http://arxiv.org/abs/2206.15063
http://arxiv.org/abs/2206.15063
https://doi.org/10.1080/01621459.2022.2161385
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/722


D. Kifer, J. M. Abowd, R. Ashmead, R. Cumings-Menon, P. Leclerc, A. Machanavajjhala, W. Sex-

ton, and P. Zhuravlev. Bayesian and frequentist semantics for common variations of differential

privacy: Applications to the 2020 Census. Technical Report arXiv:2209.03310, Sept. 2022.

S. Lin, M. Bun, M. Gaboardi, E. D. Kolaczyk, and A. Smith. Differentially private confidence

intervals for proportions under stratified random sampling. arXiv preprint arXiv:2301.08324,

2023.

A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory meets

practice on the map. In Proceedings of the 2008 IEEE 24th International Conference on Data

Engineering, pages 277–286. IEEE Computer Society, 2008.

S. Messing, C. DeGregorio, B. Hillenbrand, G. King, S. Mahanti, Z. Mukerjee, C. Nayak,

N. Persily, B. State, and A. Wilkins. Facebook Privacy-Protected Full URLs Data Set.

https://doi.org/10.7910/DVN/TDOAPG, 2020.

P. J. Phillips. Oral glucose tolerance testing. Australian Family Physician, 41(6):

391–393, June 2012. ISSN 0300-8495. https://www.racgp.org.au/afp/2012/june/

oral-glucose-tolerance-testing.

J. P. Reiter. Differential privacy and federal data releases. Annual review of statistics and its

application, 6:85–101, 2019.

D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of

the American Statistical Association, 100(469):322–331, Mar. 2005. ISSN 0162-1459, 1537-274X.

doi: 10.1198/016214504000001880.

M. C. Tschantz, S. Sen, and A. Datta. SoK: Differential privacy as a causal property. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 354–371. IEEE, 2020.

Uber Security. Uber releases open source project for differential privacy. https://medium.com/uber-

security-privacy/differential-privacy-open-source-7892c82c42b6, 2017.

U.S. Bureau of Labor Statistics. Current Population Survey: Concepts. https://www.bls.gov/

opub/hom/cps/concepts.htm, Apr. 2018.

US Census Bureau. Protecting the confidentiality of America’s statistics: Adopting modern dis-

closure avoidance methods at the Census Bureau. https://www.census.gov/newsroom/blogs/

research-matters/2018/08/protecting_the_confi.html, Aug. 2018.

U.S. Census Bureau. Design and methodology: Current Population Survey. Technical Paper 77,

2019.

31

https://www.racgp.org.au/afp/2012/june/oral-glucose-tolerance-testing
https://www.racgp.org.au/afp/2012/june/oral-glucose-tolerance-testing
https://www.bls.gov/opub/hom/cps/concepts.htm
https://www.bls.gov/opub/hom/cps/concepts.htm
https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_the_confi.html
https://www.census.gov/newsroom/blogs/research-matters/2018/08/protecting_the_confi.html


US Census Bureau. Disclosure avoidance protections for the American Community

Survey. https://www.census.gov/newsroom/blogs/random-samplings/2022/12/

disclosure-avoidance-protections-acs.html, Dec. 2022.

U.S. Census Bureau. List of Surveys. https://www.census.gov/programs-surveys/surveyhelp/

list-of-surveys.html, 2023. Accessed: 12/12/2023.

R. Valliant, J. A. Dever, and F. Kreuter. Practical tools for designing and weighting survey samples.

Springer, 2 edition, 2018.

A Proofs

Proof of Lemma 2.7. Let T ∈ M(X ,D ′, dD0
, dPr, εD′). Take some D ∈ D and some x,x′ ∈ D.

Then

dPr(Pd,Pd′) ≤ inf{εD′dD0(x,x
′) : D′ ∈ D ′ s.t. x,x′ ∈ D′}

≤ inf{εD′dD0
(x,x′) : D′ ∈ D ′ s.t. D ⊂ D′}

= εDdD0
(x,x′),

where

εD = inf{εD′ : D′ ∈ D ′ s.t. D ⊂ D′}. □

Proof of Lemma 2.11. LetD′ ∈ D . Then there exists someD ∈ D and x ∈ D such thatD′ = D∩[x].
Since every x′,x′′ ∈ [x] are connected, it follows that every x′,x′′ ∈ D′ are also connected. This

proves that D is complete.

Suppose that T ∈ M(X ,D , dD0
, dPr, εD′). Take some D ∈ D and some x,x′ ∈ D. We wish to show

that

dPr(Pd,Pd′) ≤ εDdD0
(x,x′). (A.1)

We may assume without loss of generality that dD0
(x,x′) < ∞. Define D′ = D∩ [x]. Since D′ ∈ D

and x,x′ ∈ D′, we know that

dPr(Pd,Pd′) ≤ εD′dD0(x,x
′).

(A.1) then follows by observing that εD′ ≤ εD.
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Suppose that T ∈ M(D0,D , dD0 , dPr, εD). Take some D′ ∈ D and some x,x′ ∈ D′. Then

dPr(Pd,Pd′) ≤ inf{εDdD0
(x,x′) : D ∈ D s.t. x,x′ ∈ D}

≤ inf{εDdD0(x,x
′) : D ∈ D s.t. D′ ⊂ D}

= εD′dD0
(x,x′). □

Proof of Theorem 4.3. Let D ∈ D and x,x′ ∈ D. The density of Pd(T ∈ ·) is

fx(t) = (2∆q([x]D))−k exp

(
−
∥t− q(x)∥1
∆q([x]D)

)
.

Thus,

dMult(Pd,Pd′) = sup
t∈R

∣∣∣∣ln fx(t)

fx′(t)

∣∣∣∣
= sup

t∈R

∣∣∣∣∥t− q(x′)∥1 − ∥t− q(x)∥1
∆q([x]D)

∣∣∣∣
≤ εdD0

(x,x′),

where the first line follows by Proposition 38 of Bailie and Gong [2024], the second because [x]D =

[x′]D and the third by the reverse triangle inequality. □
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