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Abstract

What privacy guarantees can synthetic data satisfy even without
formal guarantees during the training of the synthesizer? In this paper,
we explore this question using synthesizers under simplified settings to
show that the privacy guarantees offered by these synthesizers can
be directly translated into a ρ-zCDP guarantee. We further explore
the conditions under which this equivalence holds and show that it
is significantly harder to get formal privacy guarantees for more re-
alistic synthetic data models. Furthermore, we discuss under which
conditions such synthetic data can be used to draw valid statistical
inferences.

1 Introduction

Synthetic data was first introduced as an idea for statistical disclosure lim-
itation (SDL) in 1993 (Rubin, 1993; Drechsler & Haensch, 2023) based on
Rubin’s seminal ideas on multiple imputation for nonresponse (Rubin, 1978,
1987). From the beginning, the primary motivation for the approach was to
offer a high level of data protection while making it as simple as possible for
the data users to obtain valid inferences, including valid confidence intervals
or significance tests. The methodology was proposed as an alternative to
other protection strategies such as noise infusion or swapping that require
complicated adjustment procedures to enable valid inferences from the pro-
tected data. The necessary theory to obtain valid variance estimates based
on the synthetic data was derived in Reiter (2002) and Raghunathan et al.
(2003). We will review these procedures in Section 3.

On the other hand, for many years, most of the published papers on
synthetic data, especially those focusing on fully synthetic data, i.e., datasets
in which all records have been replaced by synthetic values, did not try
to formally quantify the privacy guarantees offered by the synthetic data

1



approach. In his original paper, Rubin seemed to indicate that it would be
safe to release synthetic data simply because “not one unit of which [the
synthetic data] is an actual unit” (Rubin, 1993, p. 462). This strong belief
changed in recent years, and more and more metrics to measure the level
of protection of synthetic data generated without formal privacy guarantees
are being proposed in the literature (Reiter et al., 2014; Taub & Elliot, 2019;
van Breugel et al., 2023; Boudewijn et al., 2023). However, most of these
measures are post-hoc and instance-specific, i.e., they only try to measure
the risks for a specific generated dataset based on certain assumptions about
the background knowledge of an attacker and on the strategy that they
would use to learn information from the released synthetic data.

A completely different approach to synthetic data that gained popularity
in recent years is routed in the concept of differential privacy (Dwork et al.,
2006c). Differential privacy (DP) is a framework that offers formal privacy
guarantees by allowing to quantify the privacy loss of a data release mecha-
nism mathematically. With DP, the focus shifts from quantifying the level
of protection of the data to measuring the privacy guarantees of the mecha-
nism that produces these data. The major attractiveness of this framework
lies in the fact that it quantifies the privacy guarantees ex-ante, i.e., those
guarantees always hold irrespective of the input data. It also makes (al-
most) no assumptions about the attacker, implying that the guarantees will
still hold even if more information becomes available that might be used to
attack the data. Compared to the more hand-wavy approaches to measure
the level of protection of classical synthetic datasets generated without for-
mal guarantees, DP offers an elegant, theoretical approach to measure the
privacy guarantees that can be given. In addition, DP has some attractive
properties, such as immunity to post-processing and composition properties
that we will review in Section 2, which allow us to quantify the accumulation
of the privacy loss over multiple data releases.

There is a vast literature on differentially private synthetic data, starting
with the work of Barak et al. Barak et al. (2007) and Blum et al. Blum et al.
(2008). Ullman and Vadhan Ullman & Vadhan (2011) showed that releas-
ing differentially private synthetic is generally computationally intractable.
Hence, most of the literature has focused on methods that are efficient in
practical scenarios Hardt & Rothblum (2010); Gaboardi et al. (2014); Zhang
et al. (2017); Vietri et al. (2020); McKenna et al. (2021); Neunhoeffer et al.
(2021); McKenna et al. (2022); Liu et al. (2023); Wang et al. (2023).

However, a significant downside of all these approaches is that it is tough
to quantify the amount of uncertainty and error introduced to ensure DP.
Ignoring this extra uncertainty will lead to invalid inferences for most anal-
yses. Still, this critical downside of these procedures received little attention
in the literature so far. Except for the paper of Charest (2011), which sug-
gested strategies for obtaining valid inferences from a DP synthesizer for
count data, we have yet to be aware that this problem has ever been ad-
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dressed in the literature. Thus, we currently live in a world in which we have
synthesis strategies based on the ideas of Rubin that –assuming correctly
specified synthesis models–allow us to obtain valid inferences that fully ac-
count for any errors introduced during synthesis but offer no quantifiable
privacy guarantees. While on the other hand, we have synthesizers based
on the concept of differential privacy that offer very strong formal privacy
guarantees, but make it almost impossible to obtain estimates based on the
synthetic data that fully capture the uncertainty in those estimates and thus
will generally lead to invalid inferences based on the synthetic data.

In this paper, we aim to address this gap by investigating which formal
privacy guarantees classical synthesizers based on Rubin’s approach can offer
and under which circumstances. We only focus on simple artificial examples
to illustrate that it is possible, at least in principle, to quantify the formal
guarantees of these synthesizers. We explore different data synthesizers and
show that the privacy guarantees offered by these synthesizers can be directly
translated into a ρ-zCDP guarantee (Bun & Steinke, 2016). We further
explore the conditions under which this equivalence holds. We hope that our
research will stimulate further research on this topic, allowing quantification
of the formal guarantees under more realistic settings in the future.

The remainder of this paper is organized as follows. In Section 2, we
review some background material on DP that will be relevant for the re-
mainder of the paper. Section 3 provides a brief overview of the inferential
procedures developed to enable valid inferences based on synthetic data
generated following Rubin’s proposal. In Section 4, we present our find-
ings regarding the privacy guarantees of traditional synthesizers generated
without formal guarantees. We limit our evaluations to univariate data and
parametric synthesis models based on a normality assumption. The paper
concludes with discussions on important research questions that still need to
be addressed to quantify the privacy guarantees of traditional synthesizers
in realistic settings.

2 Preliminaries on Differential Privacy

Differential privacy is a mathematical notion of privacy for statistical data
analysis that bounds the amount of information an adversary can learn
about any individual. Given a space of datasets X T , we say that two datasets
D,D′ are neighboring if they differ in one individual’s information.

Definition 2.1 (Differential Privacy Dwork et al. (2006b,a)) A ran-
domized algorithm M : X T → R is (ε, δ)-differentially private if for every
pair of neighboring datasets D,D′ ∈ X T , and for every subset of possible
outputs S ⊆ R,

P[M(D) ∈ S] ≤ eε · P[M(D′) ∈ S] + δ.
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Zero-concentrated differential privacy (zCDP)Dwork & Rothblum (2016);
Bun & Steinke (2016) is a variant of differential privacy that quantifies the
closeness of distributions differently and is especially amenable to analyzing
Gaussian noise addition.

Definition 2.2 (Zero-Concentrated Differential Privacy (zCDP) Bun & Steinke (2016))
A randomized algorithm M : X T → R is ρ-zCDP if for every pair of neigh-
boring datasets D,D′ ∈ X T , and for all α ∈ (1,∞), Dα(M(D)||M(D′)) ≤
ρα, where Dα denotes the Rényi divergence of order α.

A ρ-zCDP guarantee can be translated to a (ϵ, δ)-DP guarantee using
the following result from Bun & Steinke (2016): If M provides ρ-zCDP,

then M is (ρ+ 2
√
ρ log(1δ ), δ)-differentially private for every δ > 0.

Like ε-DP, zCDP offers two desirable properties: immunity to post-
processing and composition. Immunity to post-processing implies that any
function of an output satisfying ρ-zCDP also satisfies zCDP with the same
level of ρ. The composition property characterizes how privacy costs increase
as more statistics are released about the data.

Theorem 2.3 (zCDP Post-processing) Let M : X n → Y and f : Y →
Z be randomized algorithms. Suppose that M satisfies ρ-zCDP. Then f(M(x))
satisfies ρ-zCDP.

Theorem 2.4 (zCDP Composition) Assume M1 : X T → R is ρ-zCDP
and M2 : X T → R is ρ′-zCDP, then the mechanism defined as (M1,M2)
satisfies (ρ+ ρ′)-zCDP.

The Gaussian mechanism (Dwork & Roth, 2014; Bun & Steinke, 2016)
with parameter σ2 takes in a function f , dataset D, and outputs f(D) +

N (0, σ2). The variance of the Gaussian distribution is specified as σ2 = ∆2

2ρ ,
given the privacy parameter ρ and sensitivity of the function f , ∆.

3 Synthetic Data Based on Rubin’s Approach

Most of the approaches that propose synthetic data as a strategy for facil-
itating access to sensitive data generate synthetic data by fitting a model
to the original data and then drawing new values from this model that
are disseminated instead of the original data. The main difference between
synthetic data generators proposed in the CS literature and the approach
proposed by Rubin is that the letter allows for the direct incorporation of the
extra uncertainty introduced through the synthesis process. Rubin takes a
Bayesian approach to address this problem, similar to his ideas for multiple
imputations for nonresponse. He assumes that the synthetic data are gener-
ated by random draws from the posterior distribution of the synthetic data
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given the observed data. Instead of generating only one synthetic dataset,
he suggests generating multiple copies of the synthetic data. The extra un-
certainty from the synthesis process can then be quantified easily by looking
at the variability of the results obtained from the different datasets.

We will only review the inferential procedures for univariate estimates
here, borrowing heavily from Drechsler (2011b) and Drechsler & Haensch
(2023). The interested reader is referred to Reiter & Raghunathan (2007),
which thoroughly reviews all inferential procedures for synthetic data and
the nonresponse context.

3.1 Inferential Methods for Rubin’s Approach to Synthetic
Data

To understand the procedure of analyzing multiply imputed synthetic datasets,
think of an analyst interested in an unknown scalar parameter Q, where Q
could be, for example, the mean of a variable, the correlation coefficient
between two variables, or a regression coefficient in a linear regression. For
simplicity, assume that there are no data with items missing in the observed
dataset. Inferences for Q derived from the original dataset usually are based
on a point estimate q, an estimate for the variance of q, u, and a normal or
Student’s t reference distribution. For analysis of the synthetic datasets, let
q(i) and u(i) for i = 1, ...,m be the point and variance estimates for each of
the m synthetic datasets. The following quantities are needed for inferences
for scalar Q:

q̄m =

m∑
i=1

q(i)/m,

bm =

m∑
i=1

(q(i) − q̄m)2/(m− 1),

ūm =

m∑
i=1

u(i)/m.

The analyst can use q̄m as an unbiased point estimate for Q under the
assumption that the synthesis models are correctly specified (that is, they
match the true data-generating process) and that q would be an unbiased
estimate for Q based on the original data. Its variance can be estimated
using.

Tf = (1 +m−1)bm − ūm,

Where bm is an estimate for the variability of the point estimates between
the synthetic datasets and ūm is an estimate for the sampling variance.
When n is large, inferences for scalar Q can be based on t distributions with
degrees of freedom νf = (m− 1)(1− ūm/((1 +m−1)bm))2.
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3.2 An Alternative Variance Estimator for Fully Synthetic
Data

Raab et al. (2016) proposed an alternative variance estimator extending
earlier ideas in Drechsler (2011a) that is more suitable for most of the sce-
narios considered in this paper as it doesn’t require a Bayesian approach for
synthesis. Instead, it assumes that maximum likelihood estimates are used
directly when generating synthetic data. This variance estimator is given
by:

Ts =

(
nsyn

norg
+

1

m

)
ūm,

where nsyn is the number of synthetic records and norg is the number of
records in the original dataset.

If synthetic data are generated following a Bayesian approach as envi-
sioned by Rubin, the variance estimator becomes

TPPD =

(
nsyn

norg
+

1 + nsyn/norg

m

)
ūm,

The subscript PPD indicates that the synthetic data are obtained by taking
draws from the posterior predictive distribution.

Note that these variance estimators do not rely on the between imputa-
tion variance bm. This offers three crucial advantages compared to Tf , the
variance estimator for fully synthetic data discussed above: (i) the estima-
tors can never be negative, (ii) they have less variability than Tf , and (iii)
valid variance estimates can be obtained from a single synthetic dataset.
See Drechsler (2018) for further discussion of the advantages and disadvan-
tages of the different synthesis strategies and which variance estimator is
appropriate in which scenario.

4 On the equivalence of Gaussian Synthetic Data
and the Gaussian Mechanism

We start with the following setting: A data curator (e.g., a researcher or a
statistical agency) collects data and wishes to release a synthetic data set
that preserves some information about the original data. For simplicity,
we assume the data is univariate and follows a normal distribution with
parameters µ and σ2. The normality assumption is only required to obtain
valid inferences based on the procedures discussed in Section 3. The privacy
guarantees of the synthesizer discussed below still hold, even if the normality
assumption is violated.

The data curator observes a sample of n observations from that distri-
bution, where each observation is drawn according to

Xi ∼ N (µ, σ2).
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They then set up a parametric model to provide synthetic data to end
users by drawing from

Xsyn
i ∼ N (µ̂, σ̂2).

Depending on the different settings discussed below, the parameters µ̂
and σ̂2 are either treated as known, directly estimated from the data (for the
plug-in approach), or based on posterior draws (for the Bayesian approach).

We want to know to what extent such a synthetic data generator offers
formal privacy guarantees.

4.1 Plug-in Synthesis with Known Variance

We start by analyzing a simplified setting, which assumes that the pop-
ulation variance σ2 can be treated as public knowledge. From a privacy
perspective, this information does not need to be protected. Still, it also
means the data curator using the plug-in approach can set up the following
synthetic data model:

Xsyn
i ∼ N (X̄, σ2), (1)

where X̄ =
∑n

i=1
Xi
n denotes the sample mean.

We can compare this model to the ρ- zero concentrated differentially
private estimate of the mean using the Gaussian mechanism(Bun & Steinke,
2016):

X̃ = X̄ +N (0,
∆2

2ρ
), (2)

where ∆ denotes the sensitivity of the mean, i.e., the maximum possible
difference between the mean X̄ and the mean on a neighboring data set X ′.
If we assume bounded DP1 and data that is bounded on the interval [−d, d]
(i.e., any value outside this interval is clamped to the closest boundary point

of the interval), ∆ = |2d|
n

2 Now, if we compare Equation (1) with Equation
(2) and solve for ρ, we see that generating a single synthetic record based

on Equation (1) offers ρ- zero concentrated DP with ρ = 4d2

2n2σ2 . Using the
composition property of ρ- zero concentrated DP, this implies that releasing
m copies of synthetic data3, each containing nsyn records based on this
model will imply a privacy loss of

ρ =
mnsyn4d

2

2n2σ2
.

1Bounded DP assumes that the neighboring datasets X and X ′ are obtained by chang-
ing one record in the data but keeping the size of the data fixed.

2This worst case is obtained if a row of X changes from −d to d.
3The idea of releasing m synthetic copies of a single variable is contrived as releasing

m copies of synthetic data with nsyn records is conceptually the same as releasing a single
dataset containing mnsyn synthetic records. It only serves to illustrate the impacts of
releasing multiple copies of synthetic data.
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Figure 1: Simulations assume the original data are drawn from a standard
normal, with n = 1, 000. The purple line shows the privacy distribution of
the Gaussian mechanism with ρ = 0.5 and ∆ = 8

1000 (i.e., clamping to the
interval [-4,4]), assuming the sample mean exactly matches the true mean,
X̄ = 0. The dotted teal line shows the sampling distribution of the mean
from synthetic data with X̄ = 0, σ2 = 1, and nsyn = 15625.

Equivalently, we can determine the number of synthetic samples we can
release for any desired level of privacy ρ as

nsyn =
2n2ρσ2

4d2m
.

In Figure 1 we show that when the number of synthetic samples nsyn

is chosen according to this equivalence, and the synthetic data are used to
estimate µ, The distribution of the estimated mean of the synthetic data
over repeated simulations is the same as the distribution if the Gaussian
Mechanism is used to compute a DP mean from the original data.

This simple equivalence is helpful to formalize some intuitions about the
privacy guarantees of synthetic data. First, we cannot use synthetic data to
get meaningful privacy guarantees if the original data has no variance. This
makes intuitive sense, as any one synthetic sample released from such a
constant data set would release all the information about the original data.
Hence, limσ2→0 ρ = ∞. This, in turn, also means that the release of such
parametric synthetic data is not formally private in all cases. In contrast,
the Gaussian mechanism could still release formally private statistics about
such a constant data set. However, it is reasonable to assume that σ > 0
for most useful social science applications. Second, releasing more synthetic
samples using such a parametric model leads to less privacy and vice versa.
Intuitively, if we release no synthetic data, we would perfectly protect the
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privacy of everyone in the original sample (ρ = 0). The more synthetic data
we release, the more precise information we release regarding the sample
mean. Third, to get any meaningful formal privacy guarantees when releas-
ing synthetic data, we need to limit the influence that any single observation
can have on the parametric model’s sufficient statistic(s). If the influence of
any single observation is unbounded, the only way to preserve privacy is by
not releasing any synthetic data.

4.2 Bayesian Synthesis with Known Variance

Assuming a known fixed variance, Bayesian synthesis of a normally dis-
tributed variable would proceed in two steps. In the first step, a new value
for the mean would be drawn from its posterior distribution:

µ∗|X,σ2 ∼ N(X̄, σ2/n).

In the second step, synthetic data will be generated by repeatedly drawing
from

Xsyn
i |X,µ∗, σ2 ∼ N (µ∗, σ2).

Given that both steps require drawing from a normal distribution, the syn-
thesis can be conducted in one step by integrating over µ∗ and drawing new
synthetic records from

Xsyn
i |X,σ2 ∼ N (X̄, σ2(1 + 1/n)).

Thus, the privacy loss of the Bayesian synthesis approach is

ρ =
mnsyn4d

2

2n2σ2(1 + 1/n)
.

Equivalently, the number of synthetic samples that can be released for a
fixed privacy level ρ is given by

nsyn =
2n2ρσ2(1 + 1/n)

4d2m
.

Interestingly, the Bayesian approach allows for an alternative interpre-
tation, in which the draw of µ∗ is interpreted as the Gaussian mechanism,
and the synthetic data generation is treated as post-processing. Under this
setting, the privacy loss would be

ρ =
4d2n

2σ2
.

Note that since the actual synthesis step is considered post-processing under
this setting, the privacy loss no longer depends on the number of synthetic
records generated. In most cases, the privacy loss under this setting will
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be larger than the loss that accounts for both steps of the synthesis. The
approach relying on post-processing will only lead to less privacy loss in
cases, in which the number of synthetic records to be released is substantially
larger than the number of records in the original data, specifically if n2(n+
1) < mnsyn

4.3 Plug-in Synthesis with Unknown Variance

Moving to the more realistic case of releasing synthetic data with unknown
variance complicates matters, as the equivalence of the Gaussian mechanism
and the Gaussian synthetic data generator only holds when the variance can
be treated as public knowledge. Yet, the intuition that limiting the number
of synthetic samples should provide privacy guarantees also holds for this
case.

Under this scenario, the data curator using the plug-in approach will
generate synthetic data based on the following model:

Xsyn
i ∼ N (X̄, s2),

where s2 = 1
n−1

∑n
i=1(Xi−X̄)2 denotes the estimated variance based on the

sample.
To analyze the privacy guarantees of synthetic data generated based

on this model, it is important to note that the mean and the variance are
sufficient statistics for the normal distribution. This implies that all that can
be learned from the synthetic data are the sample mean and sample variance
of the original data. Thus, it should be sufficient to limit the privacy leakage
about these two statistics to quantify the privacy guarantees.

For the sample mean, the results from Section 4.1 still hold, with the
slight modification that σ2 is replaced by s2. This also has the significant
drawback that ρ is now data dependent and thus can no longer be released to
the public without leaking information about the original data. Therefore,
although formal privacy can still be achieved under this setting, the funda-
mental DP principle of full transparency about the protection measures is
violated.

We compute the privacy loss random variable for the sampling variance
to obtain bounds on the sampling variance and identify suitable bounds
using (ε, δ) − DP . The privacy loss random variable is the logged ratio
of the densities of the output of interest computed over two neighboring
datasets X and X ′, i.e.,

L = log
P (M(X) = τ)

P (M(X ′) = τ)
,

where M is some randomized mechanism generating the output.
In our case, the output of interest is the sampling variance estimated from

the synthetic data, and M is the mechanism that first generates synthetic
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data according to the model defined above and then estimates the sample
variance based on the generated data.

Since the synthetic data are generated from a normal distribution, the
sampling distribution of the estimated variance based on the synthetic data
follows a Gamma distribution G(α, β) with shape parameter α =

nsyn−1
2 and

rate parameter β =
nsyn−1

2s2
, where both α > 0 and β > 0.

We need to analyze the privacy loss random variable to compute the
privacy guarantees by looking at the maximum possible difference between
M(X) andM(X ′). Given that the sensitivity of the sample variance is ∆S =
|2d|2
n , we know that the maximum difference is obtained if X has estimated

sample variance s2. The estimated sample variance of X ′ is s2+ |2d|2
n . Under

this scenario, the privacy loss random variable is given as:

ln


nsyn−1

2s2

nsyn−1
2

Γ(
nsyn−1

2
)

x
nsyn−1

2
−1e−

nsyn−1

2s2
x

nsyn−1

2s2+
|2d|2
n

nsyn−1
2

Γ(
nsyn−1

2
)

x
nsyn−1

2
−1e

− nsyn−1

2s2+
|2d|2
n

x

 =

= ln


nsyn−1

2s2

nsyn−1

2 e−
nsyn−1

2s2
x

nsyn−1

2s2+
|2d|2
n

nsyn−1

2 e
− nsyn−1

2s2+
|2d|2
n

x

 =

= ln

(
nsyn − 1

2s2

nsyn−1

2

e−
nsyn−1

2s2
x

)
− ln

(
nsyn − 1

2s2 + |2d|2
n

nsyn−1

2

e
− nsyn−1

2s2+
|2d|2
n

x
)

=

=
nsyn − 1

2
ln

(
nsyn − 1

2s2

)
− nsyn − 1

2s2
x− nsyn − 1

2
ln

(
nsyn − 1

2s2 + |2d|2
n

)
+

nsyn − 1

2s2 + |2d|2
n

x =

=
nsyn − 1

2
ln

(
2s2 + |2d|2

n

2s2

)
−

(nsyn − 1) |2d|
2

n

2s2(2s2 + |2d|2
n )

x

To bound this ratio, we consider its absolute value:

|nsyn − 1

2
ln

(
2s2 + |2d|2

n

2s2

)
−

(nsyn − 1) |2d|
2

n

2s2(2s2 + |2d|2
n )

x|.

Since the Gamma distribution is not symmetric, we need to look at both
neighboring cases, i.e., the case where an observation changing from the

minimum −d to the maximum d increases the sample variance of X ′ by |2d|2
n ,

and the case where the change decreases the variance by |2d|2
n , separately.
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Now to bound the privacy loss, we need to choose a sensible value
for δand look up the δ

2 and 1 − δ
2 percentiles of the Gamma distribution

G(nsyn−1
2 ,

nsyn−1
2s2

). The maximum then gives

ϵ ≥

max(|nsyn − 1

2
ln

(
2s2 + |2d|2

n

2s2

)
−

(nsyn − 1) |2d|
2

n

2s2(2s2 + |2d|2
n )

x|,

|nsyn − 1

2
ln

(
2s2 − |2d|2

n

2s2

)
−

(nsyn − 1) |2d|
2

n

2s2(2s2 − |2d|2
n )

x|),

evaluated at the values of the percentiles for the chosen δ of the Gamma
distribution.

Getting the overall privacy guarantee of the synthesis with unknown vari-
ance requires to compose the guarantees for the mean and the variance. For
example, by translating the guarantee for the mean to an (ϵ, δ)−DP guar-
antee and sequentially composing the two guarantees. That means, for two
mechanisms satisfying (ϵ1, δ1)−DP and (ϵ2, δ2)−DP, the overall guarantee is
(ϵ1 + ϵ2, δ1 + δ2).

5 Discussion

In this paper, we showed that simple parametric synthetic data models
can satisfy formal privacy guarantees. However, we also show that mov-
ing towards more realistic synthetic data models is complicated. We plan
to extend this work by analyzing multivariate synthetic data models. For a
multivariate normal synthetic data model with a known variance-covariance
matrix, we expect similar results as described for the plug-in synthesis with
known variance in section 4.1. We expect that moving to the multivari-
ate normal case with unknown variance-covariance matrix is significantly
harder than the univariate case. An open research question is whether and
to what extent non-parametric synthetic data models can satisfy formal pri-
vacy guarantees.
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