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Abstract

In general, it is challenging to release differentially private (DP) versions of survey-

weighted statistics with low error for acceptable privacy loss. This is because

weighted statistics from complex sample survey data can be more sensitive to in-

dividual survey responses than unweighted statistics. However, when weighted
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and unweighted statistics are similar, privacy-preserving noise can dominate any

bias corrections for population representation. In this paper, we formalize this

three-way trade-off between bias, precision, and privacy; doing so demonstrates

the provable limitations of using survey weights as-is in DP analyses. To remedy

this, we present a DP method for estimating finite population quantities by first,

privately estimating a hyperparameter that determines how much to regularize or

shrink survey weights as a function of privacy loss. By adaptively navigating the

three-way trade-off of bias variance, and privacy, for each population quantity es-

timator, we release statistics with sensitivity tailored to the particular relationship

between survey weights and response variables. We illustrate the DP finite popula-

tion estimation using the Panel Study of Income Dynamics, showing that optimal

strategies for releasing DP survey-weighted mean income estimates require orders-

of-magnitude less DP noise than naively using the original survey weights without

modification.

Keywords: differential privacy; survey statistics

1 Introduction

Privacy protection is crucial for the public release of complex sample survey data. Ex-

isting applications of differential privacy (DP) [11, 12] are typically based on censuses or

administrative data, failing to account for the data collection process. Survey weights are

regularly available to adjust for the unequal probability of individual selection and balance

the sample decomposition with the target population. Weighted statistics offer unbiased

and consistent estimates for finite population quantities, such as the overall population

mean. Our goal is to apply DP to complex sample surveys in releasing survey-weighted

statistics.

Preliminary work at the intersection of DP and survey statistics has focused on syn-

thetic data generation including weights [16], survey statistics under classical sampling

designs like stratified sampling [19], and privacy interpretations of existing survey sam-

pling methods for their privacy amplification properties [7, 15]. Each of these approaches

attempts to utilize as much information as possible about the sampling process. How-

ever, weighting schemes can cause practical problems for DP, as weighted statistics have

significantly larger sensitivities than their unweighted counterparts, hence requiring sub-

stantially more noise to provide the equivalent level of DP protections at the sample

level of privacy loss [10]. Moreover, while survey weights may theoretically correct for

selection bias, weighted and unweighted estimates may be quite similar if the weights

are uncorrelated with a particular survey outcome [6]. Additionally, anomalously large

survey weights can significantly increase the variability of survey statistics, prompting

approaches to smoothing the estimates or regularizing survey weights [13, 4].
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Introducing DP into survey inference suggests that the degree of weight regularization

should depend on privacy loss budgets; just as there is a bias-variance-privacy trilemma

for mean estimation with independently identically distributed (iid) records [17], similar

three-way trade-offs must be made when analyzing survey-weighted quantities. Our work

proposes methods for DP survey-weighted estimates where the optimal degree of regular-

ization depends on the confidential data. In this setting, we must consume privacy loss

to estimate this optimal degree of regularization and the statistics of interest. Doing so

allows us to adaptively consume privacy loss budget for fine-tuning uncertainty quantifi-

cation when constructing interval estimates and assessing their coverage properties.

1.1 Contributions

We summarize our contributions here:

1. In Section 3, we analyze the three-way relationship between privacy loss, accuracy,

and bias emerging from survey data. To do this, we introduce a regularization pa-

rameter λ ∈ [0, 1] that linearly shrinks the survey weights to uniform when λ = 1.

For any survey sample, there exists an “optimal” value λ∗ which minimizes DP

mean-square error (for a fixed privacy loss) that depends on the sample size, re-

sponse range, possible weighting designs, and the difference between the unweighted

and weighted mean estimates. We prove that λ∗ > 0 (for any non-trivial sampling

design); similarly, we prove that for any fixed privacy loss, there is a limit to the

amount of bias that can be corrected by design-based weight adjustment without

requiring DP noise that exceeds said correction.

2. In Section 2.4, we propose a two-step procedure to estimate survey-weighted pop-

ulation means using ρ-zero-concentrated Differential Privacy ρ-zCDP [8]. First, we

use the exponential mechanism to estimate λ∗; then we use this output to shrink the

survey weights and estimate the population mean using the Gaussian mechanism.

We also provide different asymptotic and finite-sample approaches to quantifying

errors due to sampling, weight shrinkage, and DP noise, allowing users to construct

DP confidence intervals for our population mean estimates.

3. In Section 3, we demonstrate our methodology on survey microdata from the Panel

Study of Income Dynamics (PSID) [24], an economic survey of families designed

to oversample from lower income sub-populations. We show how different response

variables require different degrees of survey weight regularization, allowing us to

more efficiently tailor DP privacy loss budgets when estimating multiple population

means for different response variables. We also empirically validate our uncertainty

quantification properties, including accuracy and coverage.
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1.2 Related Literature

While there’s an extensive literature on differentially private statistical analyses (see [23]

for a review) and a separate literature on methods for shrinking, trimming, or otherwise

regularizing survey weights [14], there is little literature at their intersection. Many

DP algorithms rely on the ”amplification by sub-sampling” property, wherein applying a

DP algorithm on a simple random sample without replacement yields smaller privacy loss

than the same algorithm applied to the entire population [3]. However, for survey designs

besides simple random sampling, this property may not hold [7] nor would it always

improve accuracy [15]. Our work, alternatively, only considers design-based sampling

where the weights themselves contain all relevant sampling information and, therefore,

must be protected with DP. We do not consider the release of auxiliary data used to

construct design-based weights, instead isolating the privacy cost of incorporating survey

design exclusively within the weights.

The most direct line of work compared to ours uses methods that jointly generate

synthetic data samples containing survey responses and weights [16]. While these meth-

ods can produce synthetic data that’s interoperable with existing analyses and admits

combining-rules-based approaches to synthetic data, our approach differs in a few key

ways. First, our work provides finite-sample privacy and accuracy guarantees that do

not rely on combining rules which require multiple replicates of the synthetic data. Sec-

ond, our work provides decision-making guidelines for whether certain kinds of weighting

corrections can be sufficiently estimated using DP at a given sample size. Because the

underlying synthetic data models depend on more granular (i.e., sensitive) statistics than

those based on our estimates, privacy regimes where our methodology fails necessarily

implies DP synthetic data methods also fail.

2 Methods

2.1 Notation and Problem Definition

We consider a response variable and survey weights {(yi, wi)}Ni=1 lying within bounded

intervals [LY , UY ]× [LW , UW ] from a population of N observations, where we observe the

first i ∈ [n] units and we do not observe i ∈ {n + 1, n + 2, . . . , N}. For convenience,

we define ∆W ≜ UW − LW , and without loss of generality, we assume LY = 0 and

1 ≤ LW ≤ UW . We will use y and w to correspond to the vector of n observed samples

and weights, respectively.

Our goal is to estimate the population mean θ ≜ 1
N

∑N
i=1 yi using the survey-weighted

mean

θ̂(y,w) ≜
1

N

n∑
i=1

yiwi (1)
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assuming we only have access to the survey responses and the weights. The variability of

θ̂ about θ depends on our sampling mechanism, which we assume is fully characterized

by the survey weights (also known as the “design-based” setting in in the survey liter-

ature). This allows us to treat the yis and wis as fixed constants, making our analysis

consistent with DP approaches that treat confidential data entries as constants from a

fixed “schema” of possible values.

We focus on the case where the weights correspond to probabilities of inclusion, i.e.

w−1
i ≜ πi = P(Ii = 1). Doing so yields the classical Horvitz-Thompson variance estimator

V̂arHT[θ̂] ≜
1

N2

(
n∑

i=1

1− πi

π2
i

y2i +
n∑

i=1

∑
j ̸=i

(
πij − πiπj

πiπj

yiyj
πij

))
, (2)

where πij = P(Ii = 1, Ij = 1) is the joint probability of selecting units i and j. When

the second term in (2) is negative or 0, as can be the case in with-replacement sam-

pling, a conservative approximation uses only the first term in (2), yielding our simplified

estimator

V̂arApproxHT[θ̂] ≜
1

N2

n∑
i=1

1− πi

π2
i

y2i . (3)

The estimator in (3) is also the unbiased variance estimator of the population mean for

data collected by Poisson sampling, for which by design

πij = P(Ii = 1, Ij = 1) = P(Ii = 1)P(Ij = 1) = πiπj. (4)

2.2 Privacy Background

Next, we introduce our privacy definition. First, we define our adjacent datasets.

Definition 1 (Adjacency). We say that two observed samples of size n are adjacent if

and only if they differ on the contributions of one observed record, i.e.,

{(yi, wi)}ni=1 ∼M {(y′i, w′
i)}ni=1 ⇐⇒ #{i ∈ [n] | yi ̸= y′i or wi ̸= w′

i} = 1 (5)

Note that our analysis assumes that survey weights are fixed properties of individual

records that do not change depending on which units appear in the realized sample. This

helps align our analysis with standard DP analyses that treat observed confidential data

(in this case, survey responses and weights) as constants instead of random variables.

We additionally assume that the population and sample sizes, N and n, respectively,

are public information. While this assumption reflects standard practice for publishing

survey metadata, there may be confidentiality concerns if membership in the population

under study is privacy-concerning.

Next, we define our DP distance metrics.
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Definition 2 (ϵ-Differential Privacy [11, 12]). Let M be a randomized algorithm which

releases statistics based on {(yi, wi)}ni=1. We say that algorithm M satisfies ϵ-differential

privacy (ϵ-DP) if, for all adjacent observed samples,

d∞ (M(y,w) || M({y′,w′)) ≤ ϵ, (6)

where above, d∞(· || ·) is the log-max divergence.

Definition 3 (ρ-zero-concentrated Differential Privacy [8]). Let M be a randomized algo-

rithm which releases statistics based on {(yi, wi)}ni=1. We say that algorithm M satisfies

ρ-zero-concentrated differential privacy (ρ-zCDP) if, for all adjacent observed samples

and all α ∈ (1,∞),

dα (M(y,w) || M({y′,w′)) ≤ ρα, (7)

where above, dα(· || ·) is the α-Reyni divergence.

Lemma 1 ([8]). If M satisfies ϵ-DP, it also satisfies ϵ2

2
-zCDP.

To interpret Equation 7, DP provides numerous semantic privacy guarantees about

the ability for adversaries to distinguish between two adjacent databases under various

definitions of adjacency and data generating processes; see [18] for an example discussion

of these semantics. Many of these guarantees rely on independence, i.e., assuming that

data comes from an independent (but not necessarily identically) distributed process.

Equation 4 ensures that these semantic privacy guarantees hold because we assume that

modifying one survey weight does not affect the others, both for our privacy analysis and

our data generating assumption analysis.

Next, we briefly introduce some mechanisms which satisfy ρ-zCDP, Our method com-

bines two common base algorithms used to satisfy DP: the Gaussian mechanism [8] and

the exponential mechanism [20]. We first introduce the Gaussian mechanism.

Definition 4 (Gaussian Mechanism [8]). Suppose the statistic

T : {[LY , UY ]× [LW , UW ]}n 7→ R

has sensitivity defined by

∆(T ) ≜ sup
(y,w)∼(y′,w′)

|T (y,w)− T (y,w)| . (8)

Then the mechanism M defined as

M(y,w) = T (y,w) + ε, ε ∼ N

(
0,

∆(T )2

2ρ

)
, (9)

satisfies ρ-zCDP.

6



Next, we introduce the exponential mechanism. This mechanism satisfies ϵ-DP, so we

use the conversion in Lemma 1 to modify its form.

Definition 5 (Exponential Mechanism [20]). Suppose the goal is to minimize a real-valued

loss function ℓ over output space Z,

ℓ : Z × {[LY , UY ]× [LW , UW ]}n× 7→ [0,∞).

Similarly, we define a functional analogue of the sensitivity given by

∆(ℓ) ≜ sup
(y,w)∼(y′,w′),z∈Z

|ℓ(z;y,w)− ℓ(z;y′,w′)|. (10)

Then releasing one sample from the distribution over Z with density given by

f(z) ∝ exp

(
−

√
2ρ

2∆(ℓ)
ℓ(z;y,w)

)
(11)

satisfies ρ-zCDP.

2.3 Bias-Variance-Privacy Trilemmas for DP Population

Estimates

In this section, we propose our DP algorithm for releasing population-level survey weighted

estimates and their intervals. Full derivations of results are available in Appendix ??.

To start, suppose we wanted to naively implement the Gaussian mechanism. In this

setting, the sensitivity of the weighted estimator is given by

∆(θ̂) = sup
(y,w)∼M (y′,w′)

∣∣∣θ̂(y,w)− θ̂(y′,w′)
∣∣∣ = UWUY

N
. (12)

So to satisfy ρ-zCDP, we could release

θ̂(ρ−zCDP)(y,w) ≜ θ̂(y,w) + ε, ε ∼ N

(
0,

∆(θ̂)2

2ρ

)
. (13)

This naive approach requires Gaussian noise with variance that grows with U2
W , which

could be prohibitively expensive if UW is large (i.e., if some units have a significantly

larger survey weight than others). Such issues are especially pronounced for surveys,

where typical sample sizes are much smaller than those used for DP evaluations [10].

To motivate an alternate approach, let θ̂0 be the unweighted sample mean, allowing

us to suggestively rewrite

θ̂ = θ̂0 + Sign(θ̂ − θ̂0)|θ̂ − θ̂0| (14)
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The first term in the estimand is the standard, low-sensitivity unweighted mean for

which classical DP release mechanisms offer optimal utility guarantees [2]. The second

term in the estimand contains two components which we call the weighting bias sign

and absolute weighting bias (AWB), respectively. The AWB’s high sensitivity makes

DP survey estimation difficult in practice; however, the actual value of AWB can be

quite close to zero for many response variables. Only when survey response variables

and survey weights are highly correlated do we see large AWB values; when the two

are less correlated, the AWB can be quite small. Therefore we should consider not only

whether it’s possible to inflate statistic sensitivities to accommodate survey weighting,

but whether such an inflation significantly changes our resulting inferences.

Alternatively, consider a regularization parameter λ ∈ [0, 1] that reduces our esti-

mand’s dependence on AWB in the form

θ̂λ ≜ θ̂0 + (1− λ) Sign(θ̂ − θ̂0)|θ̂ − θ̂0| (15)

We can interpret this as a linear “shrinking” of our design survey weights towards

uniform probabilities of selection: λ = 0 corresponds to the original weights and λ = 1

corresponds to uniform weights. We define this using the function Gλ so that

Gλ(w) ≜ (1− λ)w +
λN

n
1n, θ̂λ(y,w) = θ̂(y, Gλ(w)) (16)

By contrast, the sensitivity of θ̂λ is given by

∆(θ̂λ) = sup
(y,w)∼M (y′,w′)

∣∣∣θ̂λ(y,w)− θ̂λ(y
′,w′)

∣∣∣ = Gλ(UW )UY

N
(17)

The reduced sensitivity admits the new ρ-zCDP estimator,

θ̂
(ρ−zCDP)
λ (y,w) ≜ θ̂(y, Gλ(w)) + ε, ε ∼ N

(
0,

∆(θ̂λ)
2

2ρ

)
. (18)

This reduction in sensitivity comes at a cost based on the difference between θ̂(y, Gλ(w))

and θ̂(y,w). We give this quantity a name, mechanism bias, to quantify bias induced by

the DP mechanism, defined as

B(λ) ≜ Eε[θ̂
(ρ−zCDP)
λ (y,w)]− θ̂. (19)

This quantity measures the difference between our biased DP estimator’s expectation and

our unbiased non-DP estimator. For our proposed regularization strategy, the mechanism
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bias is linear in λ, i.e.

B(λ) = θ̂(y, Gλ(w))− θ̂(y,w) (20)

=
1

N

[
n∑

i=1

(Gλ(wi)− wi) yi

]
(21)

=
1

N

[
n∑

i=1

(
(1− λ)wi +

λN

n
− wi

)
yi

]
(22)

= λ

[
1

n

n∑
i=1

yi −
1

N

n∑
i=1

yiwi

]
(23)

= λ(θ̂0 − θ̂) (24)

where θ̂0 corresponds to the unweighted mean. Therefore, we can consider the mean-

square error introduced by DP as taking the form

ℓ(λ;y,w) ≜ Eε

[
(θ̂

(ρ−zCDP)
λ − θ̂)2

]
(25)

= Eε

[
(θ̂

(ρ−zCDP)
λ − θ̂λ + θ̂λ − θ̂)2

]
(26)

= Eε

[
(θ̂

(ρ−zCDP)
λ − θ̂λ)

2
]
+ (θ̂λ − θ̂)2 + 2Eε

[
θ̂
(ρ−zCDP)
λ − θ̂λ

] (
θ̂λ − θ̂

)
(27)

=
∆(θ̂λ)

2

2ρ
+B(λ)2 (28)

Equation 25 characterizes a three-way “bias-variance-privacy” trilemma for DP survey

estimation. As we reduce the mechanism bias of our survey estimates, we require more

additive noise to satisfy ρ-zCDP; moreover, this effect becomes more extreme as ρ gets

smaller.

If we were able to optimally navigate this trade-off for a fixed value of ρ, we could try

to minimize ℓ as a function of λ. This yields the following Lemma.

Lemma 2. Consider minimizing the loss function in Equation 25. Then...

1. The mean square error in Equation 25 is minimized by

λ∗ ≜ min

1,

UW

ρ

(
UY

N

)2 (
UW − N

n

)[
1
ρ

(
UY

N

)2 (
UW − N

n

)2
+ 2(θ̂0 − θ̂)2

]
 (29)

2. λ∗ > 0 iff UW > N/n.

3. λ∗ < 1 iff ∣∣∣θ̂0 − θ̂
∣∣∣ >√ U2

Y

2ρNn

(
UW − N

n

)
, (30)
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or, equivalently,

ρ >
U2
Y

2(θ̂0 − θ̂)2Nn

(
UW − N

n

)
. (31)

Lemma 2 has an interesting interpretation. First, if the weighting scheme is non-

trivial (i.e., if UW > N/n), then is it never optimal to use survey weights as-is without

some degree of regularization (i.e., λ∗ > 0). Second, if the effect of the mechanism bias

introduced by shrinking survey weights is not sufficiently large, or if ρ is sufficiently small

relative to U2
Y , then the optimal DP strategy to minimize ℓ(λ·;y,w) is to ignore the

survey weights entirely (i.e., λ∗ = 1).

To visualize this effect, suppose we are interested in estimating a binary proportion

where yi ∈ {0, 1} and ∆Y = 1 from a population of N = 108. We consider varying the

sample size n, the privacy loss budget for estimating ρ, and the weight ratio UWn/N , i.e.

the ratio of the maximum survey weight to the uniformly weighted equivalent. In each

case, we calculate the value for the AWB,
∣∣∣θ̂0 − θ̂

∣∣∣, where equality is achieved in Equation

30. This value represents the minimum difference in the population proportion with or

without using survey weights necessary to consider accounting for the weighting process

in a DP estimate. We plot the values in Figure 1. We see that, as expected, DP estimators

for the population mean can better incorporate weighting information as the sample size

increases, the weight ratio decreases, and as ρ increases. However, when these parameters

trend in the opposite direction, it becomes harder to justify incorporating survey weights

into the analysis. For example, in the extreme case where the weight ratio is 104 (meaning

one respondent can hypothetically contribute up to 104 more to a weighted mean) and

ρ = 1, we require at least a 10% difference between the weighted and unweighted statistics

for a sample of n = 103 respondents to justify incorporating survey weights. Results like

these can help determine the kinds of survey-weighting corrections that are feasible or

infeasible to consider with DP.

Figure 1: Minimum feasible values for
∣∣∣θ̂0 − θ̂

∣∣∣ as a function of sample size n, weight ratio

UWn/N , and privacy loss ρ, for a population proportion of size N = 108.
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2.4 Proposal: DP Survey Weight Regularization

The optimal degree of regularization λ∗ depends on the confidential data through the

AWB, |θ̂0 − θ̂|. Therefore, we propose the following two-step approach to estimating θ̂

using (ρ1 + ρ2)-zCDP, written out in Algorithm 1.

1. Estimate λ∗ while satisfying ρ1-zCDP by using the exponential mechanism by sam-

pling λ̂ρ1-zCDP from the density

f(λ) ∝ 1{λ∈[0,1]} exp

(
−

√
2ρ1

2∆(ℓ)
ℓ(λ;y,w)

)
, (32)

where we show ∆(ℓ) = (∆(θ̂)−∆(θ̂0))
2.

2. Using λ̂ρ1-zCDP, sample θ̂ρ2-zCDP

λ̂ρ1-zCDP according to the Gaussian mechanism using weights

shrunk with estimated optimal lambda value λ̂ρ1-zCDP.

By using λ̂ρ1-zCDP as a noisy proxy for λ∗, we still maintain a high probability of

reducing the noise needed to satisfy zCDP when adding Gaussian noise to the weighted

mean estimate.

Theorem 1. Algorithm 1 satisfies (ρ1 + ρ2)-zCDP.

Algorithm 1 DP regularized survey-weighted population estimate

Require: ρ1, ρ2 ∈ (0,∞), {(yi, wi)}ni=1 ∈ {[LY , UY ]× [LW , UW ]}n, N ∈ N.
Sample λ̂ρ1-zCDP from the density f(λ) where

f(λ) ∝ 1{λ∈[0,1]} exp

(
−

√
2ρ1

2∆(ℓ)

(
∆(θ̂λ)

2

2ρ2
+B(λ)2

))
(33)

Sample θ̂ρ2-zCDP

λ̂ρ1-zCDP where

θ̂ρ2-zCDP

λ̂ρ1-zCDP ∼ N

(
θ̂λ̂ρ1-zCDP(y,w),

1

2ρ2

(
1

N
[Gλ̂ρ1-zCDP(UW )UY ]

)2
)

(34)

return

(
λ̂ρ1-zCDP

θ̂ρ2-zCDP

λ̂ρ1-zCDP

)

Next, we discuss errors due to DP using Algorithm 1 by quantifying the concentration

around θ̂ρ2-zCDP

λ̂ρ1-zCDP about θ̂. The Gaussian mechanism noise error is trivial to quantify. For

the mechanism bias, we can lower bound an estimate of λ̂∗ using λ̂ρ1-zCDP. Since λ∗

decreases as AWB increases, lower bounding λ̂∗ with high probability allows us to upper

bound AWB with high probability. This yields the following result.
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Theorem 2. Let

(
λ̂ρ1-zCDP

θ̂ρ2-zCDP

λ̂ρ1-zCDP

)
be the output of Algorithm 1. Then we have

P
(
|θ̂ρ2-zCDP

λ̂ρ1-zCDP − θ̂|≤ C∗
)
≤ 1− α (35)

where

C∗ =
B−
(
λ̂ρ1−zCDP + zα/4

√
supy,w [σ2∗(y,w)]

)
λ̂ρ1−zCDP

+ zα/4
Gλ̂ρ1-zCDP(UW )UY

N
√
2ρ2

(36)

and

B−(λ) ≜

√√√√1

2

[
UW

ρ2

(
UY

N

)2 (
UW − N

n

)
λ

− 1

ρ2

(
UY

N

)2(
UW − N

n

)2
]

(37)

Proof. First, we quantify the magnitude of the mechanism bias. In the absence of DP,

when λ∗ ∈ (0, 1), we have a bijection between λ∗ and |θ̂ − θ| of the form:

|θ̂0 − θ̂|=

√√√√1

2

[
UW

ρ2

(
UY

N

)2 (
UW − N

n

)
λ∗ − 1

ρ2

(
UY

N

)2(
UW − N

n

)2
]
≜ B−(λ∗). (38)

Using the functional form of f(λ), λ̂ρ1-zCDP follows a truncated normal on [0, 1] with

variance parameter

σ2∗(y,w) ≜

(√
2ρ1

∆(ℓ)

[
1

2ρ2

(
∆Y

N

)2(
N

n
− UW

)2

+ (θ̂0 − θ̂)2

])−1

. (39)

Independent of any confidential data, we have

sup
y,w

[
σ2∗(y,w)

]
≜

(√
2ρ1

∆(ℓ)

[
1

2ρ2

(
∆Y

N

)2(
N

n
− UW

)2
])−1

(40)

As λ∗ increases, |θ̂0 − θ̂| decreases. Therefore if we lower bound λ∗ using λ̂ρ1−zCDP with

high probability, we can upper bound |θ̂λ̂ρ1−zCDP − θ̂| with high probability, i.e.

P

(
λ∗ ≥ λ̂ρ1−zCDP + zα/2

√
sup
y,w

[σ2∗(y,w)]

)
≥ 1− α (41)

which implies

P

(
|θ̂0 − θ̂|≤ B−

(
λ̂ρ1−zCDP + zα/2

√
sup
y,w

[σ2∗(y,w)]

))
≥ 1− α, (42)
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and therefore,

P

|θ̂λ̂ρ1−zCDP − θ̂|≤
B−
(
λ̂ρ1−zCDP + zα/2

√
supy,w [σ2∗(y,w)]

)
λ̂ρ1−zCDP

 ≥ 1− α. (43)

We make a few comments about Theorem 2. First, note that we used a union bound

to establish our concentration around the two parameters. Depending on prior beliefs

about the relative magnitude of errors due to mechanism bias or Gaussian noise addition,

one could place more weight on either component in the concentration inequality. Next,

note that we can use our estimated regularization parameter as a noisy “plug-in“ proxy

for estimating AWB with ρ1-zCDP (with the caveat that this plug-in estimator is high-

sensitivity, like our original estimand). To do this, suppose θ̂0 > θ̂; then

|θ̂0 − θ̂|≈ B−(λ̂ρ1−zCDP) =⇒ E
[
θ̂ρ2−zCDP

λ̂ρ1−zCDP + λ̂ρ1−zCDPB−(λ̂ρ1−zCDP)
]
≈ θ̂ (44)

Finally, Theorem 2 does not directly considered the weighting bias sign, Sign(θ̂ − θ̂0), as

only the AWB shows up in the proof. If this sign is unknown a priori, one can modestly

estimate it using an instantiation of the exponential mechanism. However, for many

surveys in practice, the sign of the bias can safely be assumed to be public information.

For example, our later data analysis considers cases where it’s known a priori that our

survey design oversamples families from lower incomes, allowing us to reasonably treat

the bias direction as public information.

2.5 Sampling Error Accounting

In this subsection, we investigate different approaches to simultaneously quantifying er-

rors due to survey sampling and errors due to DP. These approaches differ in their finite-

sample and asymptotic coverage guarantees. We discuss their theoretical differences here,

which are further investigated empirically in the next section.

First, we consider a global upper bound on the the distance between θ̂ and θ using

concentration inequalities. Following [9], if there exists ky, kw < ∞ and integers p, q such

that pq ≥ p+ 2q and[
1

N

N∑
i=1

|yi|p
]1/p

≤ ky,

[
1

N

N∑
i=1

(wiπ)
q

]1/q
≤ kw (45)
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where π is the average probability of inclusion. Then setting r ≜ 1− 1/p− 1/q, we have

Var[θ̂] ≤ UV ≜
k2
ykw

πN
+ k2

ykw

[
1

N2

∑
i ̸=j

∣∣∣∣P(Ii = 1|Ij = 1)− P(Ii = 1)

π

∣∣∣∣1/r
]r

. (46)

Note that under the same Poisson sampling setting assumption, the second term in Equa-

tion 46 reduces to 0 as Ii and Ij are independent. For this, we have global moment bounds

of the form[
1

N

N∑
i=1

|yi|p
]1/p

≤ UY ∀p ∈ N,

[
1

N

N∑
i=1

(wiπ)
q

]1/q
≤ UW

LW

∀q ∈ N. (47)

This approach has pros and cons. On the one hand, the formulation gives exact accuracy

guarantees that depend exclusively on public quantities, therefore requiring no additional

privacy loss expenditure. However, in practice, the constants may be prohibitively large

to admit reasonable interval estimates for the population mean. For the small sample

sizes in our data analysis, we are in the latter regime.

Alternatively, we consider the asymptotic analysis of our estimator. Under the clas-

sical, mild asymptotic conditions in [5], as sample size increases relative to population

size, we have θ̂ →D N (θ,VarHT(θ)). This allows to construct asymptotically consistent

confidence intervals using standard plug-in estimators for the mean and variance.

Because V̂arApproxHT[θ̂] depends on the confidential data, we must estimate it with

zCDP. By spending an additional ρ3 of privacy loss, we can estimate V̂ρ3-zCDP and con-

struct asymptotically consistent confidence intervals using Algorithm 2. Note that we

do not want to underestimate the sampling variance of our estimator by using shrunk

survey weights. Therefore we do not use the regularization parameter here. Additionally,

we introduce a new parameter αv ∈ (0, 1) to calculate a (1 − αv)% upper bound on the

confidential V̂arApproxHT[θ̂]. This allows us to account for uncertainty in V̂ρ3-zCDP when

constructing our intervals.

Algorithm 2 DP regularized survey-weighted population confidence interval

Require: ρ1, ρ2, ρ3 ∈ (0,∞), {(yi, wi)}ni=1 ∈ {[LY , UY ]× [LW , UW ]}n, N ∈ N, α ∈ (0, 1),
αv ∈ (0, 1).
Sample λ̂ρ1-zCDP and θ̂ρ2-zCDP

λ̂ρ1-zCDP according to Algorithm 1.
Sample

V̂ρ3-zCDP ∼ N

(
V̂arApproxHT[θ̂],

∆(V̂ )2

2ρ3

)
, ∆(V̂ ) = ∆(θ̂)2 (48)

return

θ̂ρ2-zCDP

λ̂ρ1-zCDP ± zα/2

√√√√∆(λ̂ρ1-zCDP)2

2ρ2
+ V̂ρ3-zCDP + zαv/2

√
∆(V̂ )2

2ρ3
(49)
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Theorem 3. Algorithm 2 satisfies (ρ1 + ρ2 + ρ3)-zCDP.

Theorem 4. Let θ̂∗ be an arbitrary new population mean estimate, drawn from the same

sampling scheme. Under the regularity conditions in [5] as N, n → ∞

P

θ̂∗ ∈

θ̂ρ2-zCDP

λ̂ρ1-zCDP ± zα/2

√√√√∆(λ̂ρ1-zCDP)2

2ρ2
+ V̂ρ3-zCDP + zαv/2

√
∆(V̂ )2

2ρ3


→P 1−α (50)

Proof. As N, n to ∞ under the conditions in [5], the mechanism bias converges to 0, i.e.

λ̂ρ1-zCDP →P 0 =⇒ θ̂λρ1-zCDP
→P θ̂ (51)

Similarly, the sensitivities of θ̂ρ2-zCDP

λ̂ρ1-zCDP and V̂ρ3 decrease to 0 as N, n → ∞ under the

conditions in [5]. Combining all the above, we have that the interval in Equation 49

converges to the classical non-DP normal approximation interval, yielding the result.

Note that the asymptotic consistency of our DP confidence interval does not require

adjustments for uncertainty in λ̂ρ1-zCDP. Instead, we rely on the estimation of λ̂ρ1-zCDP to

determine the degree to which AWB might affect our inferences. Alternatively, we could

use the plug-in bias estimate from Equation 44 in place of our mean estimate to offer a

partial, noisy bias correction.

3 Data Analysis

3.1 Data: Panel Study of Income Dynamics

To demonstrate the methodology above, we apply it to the the Panel Study of Income Dy-

namics (PSID), a longitudinal survey containing family-level statistics on income sources

and other sociodemographic information [24]. We use family-level data published from

2019, consisting of n = 9420 families from a population of N ≈ 1.29× 108. For the pur-

poses of this evaluation, we treat the provided survey weights as design-based (although

the full methodology contains model-based adjustments; see [24] for details). Under this

weighting scheme, UW = 6 × 104. Our goal is to estimate population mean quantities

from the variables of interest in Table 1 using ρ-zCDP. Additionally, we include one syn-

thesized random variable, bern, which contains iid Bernoulli draws to simulate a random

survey response that’s independent of the survey weights by construction.

PSID facilitates research on employment, income, wealth, health, family and child

development, and other sociodemographic and economic topics. In order to maintain

national representativeness, lower-income families are intentionally oversampled in the

survey. We plot the bivariate relationship between survey weights and inc3 in Figure
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Variable Description UY θ̂0 − θ̂
inc3 Cube-root family income 150 -.67
pov 1 if family income below poverty line, else 0 1 .022
nf Number of family members 20 .27

bernoulli iid Bernoulli(.5) r.v. 1 .004

Table 1: Selected PSID variables

Figure 2: Bivariate scatter plot of survey weights (x-axis) and inc3 (y-axis), with uni-
variate histograms on the margins and a spline estimate of the central tendency in blue.

2. The final composite survey weights are weakly correlated with family income (Spear-

man’s rank correlation of approximately .14). Similarly, we plot the distribution of survey

weights for families below and above the poverty line in Figure 3, where we see a visible

difference in distributions. These are reflected in the biases from Table 1; by ignoring

survey weights, we would underestimate the national average family income and overes-

timate the national poverty rate, as expected.

3.2 Theoretical Analysis of Privacy-Utility-Bias Trade-Offs

Next, we use the results from Lemma 2 to show how the more privacy loss we are willing

to spend, the more fine-grained the AWB corrections can become. Figure 4 is similar

to 1 with realized values from the two income-related PSID response variables. For

demonstration purposes, we theoretically vary the sample size n (represented by the

different colored lines). The x-axis represents the privacy loss budget spent on estimating

the population mean, and the y-axis refers to the smallest possible weighting bias for

which λ∗ < 1, i.e. for which we still benefit from accounting for survey weighting in DP

inference. As expected, smaller AWB values can be accommodated with larger sample
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Figure 3: Histograms of survey weights for respondents above and below the 2019 poverty
lines (left and right, respectively).

sizes and privacy loss budgets. The horizontal dashed lines refer to the realized AWBs for

the two variables of interest (in a pure DP analyses, these would be confidential). Values

above these lines refer to realized biases that would admit non-trivial bias corrections at

the allowed privacy loss budget level a priori.

Next, we visualize the privacy-bias-variance trade-off for the population mean es-

timates of our different variables. Figure 5 shows how the theoretical bias-variance-

privacy trade-off manifests for estimating the survey-weighted average cube-root income

(inc3) and proportion of families below the 2019 poverty line (pov). For comparison pur-

poses, we also include two hypothetical responses: simulated iid Bernoulli(.5) responses

(bernoulli) and a copy of the survey weights themselves (wgt), representing minimal

and maximal correlation between survey weights and responses. We plot the noise-to-

signal ratio as the theoretical MSE over the weighted mean estimate on the y-axis, with

the regularization parameter λ on the x-axis. We see that as the magnitude of the bias

decreases (moving from top left subfigure to bottom right subfigure), the optimal MSE

is achieved at larger values of λopt for the same privacy loss budget ρ2. Moreover, as ρ2

decreases, λopt increases for each response variable under consideration. We see that for

reasonably small choices of ρ2, we tend to reject small λ to optimize the bias-variance

trade-off at each fixed ρ2 value.

Figure 6 shows the sampling distribution of λ̂ for estimating cube-root income at

different values of ρ1 and ρ2. By construction, this statistic is the most sensitive by

depending on the gap between the weighted and unweighted population means. Therefore

we do not sample λ particularly close to the optimal λ̂ without a large ρ1. However, even

for small values of ρ1, we can reasonably avoid sampling small values of λ with high

probability, which allows us to avoid the worst of the sensitivity inflation in the next

stage.

Figure 7 shows the sampling distribution of the plug-in bias estimate B−(λ̂ρ1-zCDP)

at different levels of ρ1. As expected, when ρ1 is small, we are more likely sample larger

λ̂ρ1-zCDP values which implies we underestimate the magnitude of the bias. As expected,
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Figure 4: Theoretical minimum AWB for which λ∗ < 1 (y-axis) i.e., survey weighting
design is non-ignorable under ρ-zCDP, as a function of sample size n (colored lines) and
privacy loss budget ρ. Subplots and horizontal dashed lines refer to realized AWBs for
two variables: inc3 (left) and pov (right).

however, the plug-in estimate improves as ρ1 increases.

3.3 End-to-end DP Inferences

In this section, we simulate DP confidence intervals using Algorithms 1 and 2 for the

survey weighted population mean of inc3, assessing their width and coverage properties.

We consider ρ1, ρ2, ρ3 ∈ [10−3, 10−1], which covers the full spectrum of regularization

from λ∗, as shown in Figure 5. We also vary αv to show trade-offs between coverage and

interval width.

Figure 8 shows boxplots of samples for θ̂ρ2-zCDP

λ̂ρ1-zCDP at different values of ρ1 and ρ2. The

red and green dashed lines refer to the unweighted and weighted non-DP estimates,

respectively. As ρ2 increases (subplots), we are able to accommodate greater survey

weighting corrections relative to the additive noise magnitude. Moreover, for smaller

values of ρ2, spending more on ρ1 (colored boxplots) reduces the overall variability of the

point estimate.

Figure 9 compares the interval widths of Algorithm 2 to their non-DP counterparts.

For each violin plot, we show the distribution of the ratio for the DP confidence interval

over the non-DP confidence interval. The dashed horizontal line at 1.0 corresponds to

equality. As expected, increasing either ρ1, ρ2, or ρ3 decreases the DP confidence interval

width relative to the non-DP interval width. Of particular interest is different values

for αv, represented by the different violin plot colors (.5, .05, and .01, respectively).

As expected, decreasing αv gives us wider confidence intervals by accounting for more
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Figure 5: Realized noise-to-signal (DP mean square error divided by non-DP mean es-
timate, y-axis) as a function of λ (x-axis) for different values of privacy loss budget ρ2
(colored lines). Subplots are ordered with decreasing correlation between response vari-
able and survey weights. Points refer to theoretical minimum values, which depend on
confidential data and do not satisfy DP.
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Figure 6: Kernel density estimates for the distribution of λ̂ρ1-zCDP for different values of
ρ1 (colored density plot lines) and ρ2 (subfigures) for inc3. Black dashed vertical lines
refer to the confidential λ∗ for each subplot.

Figure 7: Kernel density estimate for the distribution of the plug-in estimates for AWB
for diffferent values of ρ1 (colored density plot lines) for inc3. Black dashed vertical line
refers to the confidential AWB
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Figure 8: Boxplots of empirical simulations from Algorithm 1 for inc3 at different values
of ρ1 (color) and ρ2 (subfigures). Boxplot outlines refer to the raw estimate (dashed) and
the plug-in bias-adjusted estimates (solid). Green dashed line refers to the confidential
weighted mean estimate, and the red dashed line refers to the confidential unweighted
mean estimate.

potential uncertainty in V̂ . This greatly improves coverage, which we’ll see next.

Figure 10 estimates the average empirical coverage for 95% confidence intervals as a

function of ρ1, ρ2, ρ3, and αv. To do this, we simulate a “true” parameter θ from the

non-DP normal approximation for each estimate sample, and we empirically average the

proportion of intervals covering this simulated ground truth. The dashed line represents

95% coverage, the intended target. As expected, as all the ρ values increase, the empirical

coverage tends towards the equivalent non-DP coverage. Similarly, decreasing αv increases

the empirical coverage probability; in particular, when ρ3 decreases, more conservative

values of αv admit better coverage, as expected.

4 Discussion

This paper theoretically and empirically suggests that survey weight regularization, when

used appropriately can drastically reduces the amount of additional noise needed to pre-

serve DP. By adaptively considering how much to shrink weights while satisfying DP, we

produce methods which are operationally feasible while allowing uncertainty quantifica-

tion at different precisions throughout the entire decision-making process.

While our proposed statistics can admit the construction of valid finite-sample con-

fidence intervals and asymptotic confidence intervals, different methods may produce

intervals that are too conservatively wide or liberally narrow in practice. When selecting
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Figure 9: Ratio of DP to non-DP confidence interval widths (y-axis) by values of ρ1 (x-
axis), ρ2 (subplot columns), ρ3 (subplot rows), and αv (colors). Dashed line corresponds
to equality (1:1 ratio).
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Figure 10: Empirical 95% confidence interval coverage from simulated ground truth popu-
lation estimates (y-axis) by values of ρ1 (subplot columns), ρ2 (x-axis), ρ3 (subplot rows),
and αv (colors). Dashed line corresponds to 95% coverage, the intended target.
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privacy loss budgets for each stage of the algorithm, we recommend incorporating as

much domain knowledge as possible. For example, by simulating a distribution of plausi-

ble AWB values from prior knowledge, one can establish which kinds of survey weighting

biases could be correctable a priori at different privacy loss budgets without peeking at

the confidential data.

In future work, we will investigate more complex privacy and utility trade-offs be-

tween pure DP and relaxations of DP where not all statistics are subject to the same

DP protections. While DP theoretically forbids using data-dependent hyperparameters

without DP mechanisms, many commonly used DP algorithms and analyses do not ad-

here to this rule [1, 25], necessarily yielding additional privacy vulnerabilities in practice

[22, 21]. It could be the case that certain hyperparameters could substantially improve

the end-to-end usefulness of our estimators at a modest expense to privacy risk, but this

would require a much more extensive and nuanced privacy analysis than that offered by

a naive comparison of privacy loss budgets. Still, such an analysis could be helpful to

understand where DP itself fundamentally limits the kinds of statistical validity offered

in survey settings, where worst-case data generating scenarios may be highly unrealistic

in practice.
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