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Abstract: Accessing administrative data is crucial for improving evidence-based policymaking for

government officials, policymakers, researchers, and data practitioners. However, direct or secure

access to administrative data is often limited to specific government agencies, select researchers

collaborating with agency analysts, and highly exclusive research programs. To address these

limitations, institutions can employ methods such as synthetic data generation or developing a

validation server integrated with differential privacy (DP), to improve data accessibility while en-

suring data confidentiality. Initially proposed by Dwork et al. (2006), DP has gained significant

traction in recent decades and offers an automated review process, eliminating some elements of

human subjectivity. This paper introduces a framework for assessing the performance gap between

theoretical expectations and empirical outcomes of DP linear regression methods. Our comprehen-

sive simulation study systematically explores the accuracy and precision of DP regression methods

under various scenarios, including heteroscedastic errors and imbalanced categorical variables. We

also evaluate the performance of different DP mechanisms, strategies for specifying bounds for

unbounded continuous variables, and variations in the data-generating distribution. This simula-

tion study lays the groundwork for assessing future DP regression methods. Finally, we benchmark

users’ expectations and error tolerances on DP outputs, providing a practical measure for evaluating

current DP linear regression methods’ viability to meet users’ needs.
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1 The Value and Limitations of Administrative Data for Economic Research

Accessing administrative data is essential for improving evidence-based policymaking for gov-

ernment officials, policymakers, researchers, and data practitioners. For instance, Nagaraj and

Tranchero (2023) demonstrated how direct access to confidential administrative data impacted the

rate, direction, and policy relevance of economics research. In particular, one of their findings

showed that researchers with confidential administrative data access are more likely to produce

papers that receive more citations in public policy documents and produced 24% more publications

in top journals per year. Former Under Secretary for Economic Affairs in the Department of Com-

merce, Jed Kolko, wrote a blog post1 that states one of the three types of useful research comes

from papers focused on “...analyses that directly quantify or simulate policy decisions.” Conducting

relevant research for impactful policy work often requires accessing administrative data.

Yet, direct or secure data access to administrative data is often restricted to select government

agencies, a limited number of researchers working in collaboration with analysts in those agencies,

and highly selective research programs run by these agencies. For example, if a researcher wanted

access to U.S. taxpayer data, they must be a U.S. citizen before applying for a highly selective

research program2 through the Statistics of Income (SOI) Division at the IRS. If selected, the

researcher would then undergo an extensive clearance process that could take several months before

gaining access to the data at a secure data enclave. Many researchers in the United States do not

meet eligibility requirements, could not be selected for the program, or may not pass the clearance

process. Even the use of public use files (PUFs), such as the one produced by SOI, is highly

restricted and has become more limited in the amount of information provided over the years due

to growing data privacy concerns (Bryant et al., 2014).

To address these issues, multiple reports, such as the Advisory Committee on Data for Evidence

Building Year 2 Report3 and Committee on National Statistics report series on “Toward a 21st

1“The economic research policymakers actually need.” Accessed April 30, 2024.
https://www.slowboring.com/p/the-economic-research-policymakers

2“Statistics of Income Joint Statistical Research Program,” Accessed April 30, 2024.
https://www.irs.gov/statistics/soi-tax-stats-joint-statistical-research-program

3“Advisory Committee on Data for Evidence Building.” Accessed on April 30, 2024.
https://www.bea.gov/evidence
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Century National Data Infrastructure4,” propose creating new tiers of data access. For example,

the Urban Institute and SOI are improving the SOI PUF using synthetic data generation (Bowen

et al., 2022, 2020, 2022) and developing a validation server (Barrientos et al., 2021, 2024; Taylor

et al., 2021) to provide a tier of access between secure data access to the confidential data and the

public release of the synthetic SOI PUF.

A well-designed automated validation server system could provide consistent and robust privacy

protection with little or no human review, which is both safer and less labor-intensive than current

IRS research programs that involve subjective human review. Differential privacy (DP), a concept

proposed by Dwork et al. (2006) which has gained substantial traction in the past two decades,

provides an attractive option to automate the review process, removing the human element. At a

high level, DP and related formal privacy definitions provide an a priori privacy guarantee which

when applied consistently enables automatic privacy accounting, under a specific definition.

Several definitions of DP exist, which results in the ability to prove whether a method satisfies

that version of DP. We refer to such methods5 as DP (DP6) methods. Satisfying DP is a provable

feature of a method, not the data—a common misconception. We provide a brief review of the

the mathematical details for DP in the Appendix. While DP offers some desirable properties for

expanding access to administrative data, substantial barriers exist to implementing DP in practice

for statistical analysis (Snoke et al., 2023).

1.1 The Gap Between Theory and Practice in DP Linear Regression

This paper provides a framework for addressing one of the gaps identified in Snoke et al. (2023),

namely the difference between theoretical expectations surrounding the performance of DP linear

regression methods and the empirical performance on real data. A substantial literature exists

proposing DP mechanisms for linear regression, e.g., Alabi et al. (2022); Barrientos et al. (2024);

4“Toward a Vision for a New Data Infrastructure for Federal Statistics and Social and Economic Research
in the 21st Century.” Accessed on April 30, 2024. https://www.nationalacademies.org/our-work/toward-
a-vision-for-a-new-data-infrastructure-for-federal-statistics-and-social-and-economic-research-in-the-21st-
century

5A note on terminology: In the context of DP, the terms mechanism, algorithm, and method are often
used interchangeably to describe the process of releasing a private statistical output. We do not see a clear
delineation in the literature when using the three terms. More crucially is that anything referred to as a DP
method, DP mechanism, or DP algorithm must provably satisfy the relevant definition of DP.

6Note that we use DP as an acronym for both “differential privacy” and “differentially private”.
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Bernstein and Sheldon (2019); Ferrando et al. (2020, 2021); Sheffet (2017, 2019); Wang et al.

(2019); Wang (2018). Some privacy experts have an impression that DP linear regression is a

“solved” problem, given the numerous papers and the proposed method’s reasonable convergence

rates. However, Barrientos et al. (2024) ran the first large scale empirical study of DP multiple linear

regression methods on cross-sectional administrative and survey data and found the methods to be

largely lacking. The results from these studies showed that very few DP linear regression methods

provide multiple coefficient estimates with standard errors, making full inference impossible to

conduct. The methods which did produce uncertainty estimates added noise that either inflated

the confidence intervals so severely as to limit any conclusions that could be drawn from the data,

or the output did not appropriately account for the uncertainty and led to erroneous inferences.

As a follow-up study, Williams et al. (2023) conducted a convenience sample survey of members

of the American Economic Association to evaluate the amount of added noise typical economists

would tolerate prior to sacrificing access to administrative data. They found that most economists

would only accept levels of noise which were far less than the amount added through existing DP

linear regression methods at standard privacy budget levels. The conclusions from these studies

suggests that current DP linear regression methods can only be utilized at high costs to the accuracy

and precision of statistical inference or at high costs to the privacy budget.

We see two main reasons exist for this gap between theoretical expectation and empirical

reality. First, we have a finite, often small, sample size when working with real data. This gap

has already been recognized as an issue in the DP literature (Slavković and Seeman, 2023) with

some methods designed specifically for statistical inference under finite samples in certain cases

(Awan and Slavković, 2018; Vu and Slavkovic, 2009). Second, and perhaps more substantially,

the simulation studies conducted in papers proposing new DP mechanisms only consider situations

where the assumptions of ordinary least squares (OLS) are satisfied and the coefficients have a strong

signal. This is not the case in many applications of linear regression for economic, statistical, and

social science research. Some examples are the residuals may be skewed or heteroscedastic, there

may be multicollinearity between predictor variables, or categorical variables may be imbalanced.

We are unaware of any prior work which considers the interaction of adding noise to satisfy DP for

4



OLS models where one or more of these violations exists.

1.2 A Framework for Benchmarking DP Regression Methods

The contribution of this paper is a framework for explicitly testing DP mechanisms under different

scenarios and findings from the application of this framework, so that we can better understand

how existing mechanisms will work (or not work) when applied to real data. To create a framework

for empirically benchmarking DP linear regression methods under different real-data scenarios, we

build on the results from past studies (Barrientos et al., 2024; Williams et al., 2023) to develop

a simulation framework that systematically explores the accuracy and precision of performing full

inference using the output from DP regression methods for multiple linear regression. Simply put,

our simulation study explores circumstances where linear regression assumptions are violated (e.g.

heteroscedastic errors) or the estimates without noise are uncertain (e.g., categorical covariates

have low-frequency levels). Our findings also help identify the privacy budget level needed under

different circumstances to receive sufficiently accurate DP statistics.

We test the best performing DP regression methods identified in Barrientos et al. (2024), which

are the Laplace mechanism (Ferrando et al., 2020) and the Analytic Gaussian mechanism (Balle

and Wang, 2018). One significant contribution from this paper is providing the infrastructure of

our assessment framework for future DP regression methods. We envision two applications for

our code base. One is for privacy researchers to assess new DP regression methods, with a focus

on statistical inferences rather than predictions. The other scenario involves potential users of a

validation server who may wish to formulate an analysis plan based on our assessment framework,

similar to a power analysis, on the synthetic data before accessing a validation server that produces

formally private outputs. Our code is available online7 for anyone interested in using this evaluation

framework.

Additionally, we use the results from Williams et al. (2023) to benchmark users’ expectations

and error tolerances on the DP outputs. The purpose of benchmarking against users’ expectations

and error tolerances is to provide a practical bar against which any viable method must pass. This

contributes to the literature by giving a measuring bar for the benchmarking framework that is

7GitHub repo website is forthcoming
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explicitly tied to users’ expectations. We expect future work can and should improve on this tool

through repeated surveys of different user groups.

We organize the remainder of the paper as follows. Section 2 outlines how we setup the

simulation study, what we consider the baseline scenario, and what assessment metrics we use to

evaluate the DP methods. Section 3 evaluates and compares the results across the assessment

metrics. We give our concluding remarks and suggestions for future work in Section 4. Details on

the definitions, theorems, and mechanisms underlying the DP methods discussed in this paper are

provided in the Appendix.

2 Empirical Study Design for Linear Regression under DP

For economists and social scientists, normal linear regression is one of the most popular and com-

monly used types of regression. In a setting where analysts cannot directly access the data, the

goal is to enable them to run a regression analysis while protecting individual private information.

Under DP, the analyst receives access to a noisy version of the estimates of interest from the regres-

sion analysis. Our empirical study considers the accuracy and precision of these noisy estimates

for performing full inference under a variety of different settings.

Various factors can influence a regression analysis, impacting inference and prediction. We

group these factors into three categories, with the first two applying to all cases of OLS whether

estimated under DP or not. The first group pertains to the data-generating distribution, without

implying a violation of the model assumptions. For instance, changes in the signal-to-noise ratio

(SNR), probabilities of observing specific categories in categorical variables, correlations among

continuous variables, and choices of reference levels in categorical variables. The second group

involves violations of model assumptions, such as non-normally distributed errors and non-constant

error variance. The last group relates to input parameters necessary for implementing DP, including

specifying variable ranges to bound global sensitivity, the privacy budget, and the noise injection

mechanism.

We could explore the influence of these factors in a theoretical manner. Although this approach

provides much value, we want to avoid making unrealistic assumptions. For example, DP methods
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reliance on large sample-based arguments, that lead to the gap between theoretical expectations

and empirical reality which we discussed earlier.

We empirically study the influence of these factors through a simulation study. While we

acknowledge the limitations of this approach, we argue that empirical studies can shed light on key

aspects. They aid in the prioritization of topics for theoretical investigation. Empirical studies can

also help practitioners understand which aspects of the data and implementation require caution

when employing DP in regression analysis. Furthermore, this empirical study can serve as an

example and provide a framework for assessing the influence of such factors when privacy researchers

introduce new DP regression approaches.

However, a challenge for studying the influence of the aforementioned factors is that each factor

may have many possible settings. The combinations of all the possible levels across each factor

results in an enormous number of simulation scenarios. Accordingly, we conduct our empirical

study in two stages. In both stages, our main approach is to primarily focus on combinations

centered around the levels of one or a few factors, while maintaining the other levels at a reference

condition.

In the first stage, we evaluate the performance of the DP mechanisms under favorable condi-

tions regarding the data generation mechanism. Specifically, we generate data from an underlying

generating distribution that does not violate any of the modeling assumptions. We refer to this

scenario as the baseline scenario. The results at this stage help determine the level we fix for some

factors in the second stage. For example, we fix the mechanism employed to achieve DP in the

second stage after determining the best one in the first stage.

For both stages, we run the DP approaches considering different values of SNR and privacy

budget. In the second stage, we assess the performance of the approaches under multiple alternative

scenarios characterized by violation of assumptions, multicollinearity, and categorical covariates

with low-frequency levels.

After completing the two stages, we leverage findings from both our simulation study and the

survey conducted in Williams et al. (2023). Specifically, we delve into economists’ perspectives on
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DP and usability expectations. Using the tolerance levels identified in Williams et al. (2023), we

examine user expectations in detail across the considered scenarios. The results shed light on the

implementation of validation servers and provide a guide on the allocation of privacy budgets to

meet users’ expectations.

2.1 Baseline Scenario

We utilize the following two-stage approach to simulate different linear regression scenarios. We

consider the multivariate normal linear regression model.

Y = Xβ + e, (1)

where Y = (Y1, . . . , Yn)
′ represents the response and X = [X ′

1, . . . , X
′
n]

′ defines the design matrix,

with Xi = (1, Xi,1, . . . , Xi,p)
′. The error, denoted by e = (e1, . . . , en)

′, has entries that are inde-

pendent and identically distributed according to a normal distribution with a mean of zero and a

variance equal to σ2. Here, n denotes the sample size.

We assume that there are p = 5 covariates, of which 2 are continuous and 3 are binary, that

is, Xi = (1, Xi,1 . . . , Xi,5)
′.

For the continuous covariates, assume that

Xi,1

Xi,2

 i.i.d.∼ Normal


0

0

 ,

 σ2
X σX1,X2

σX1,X2 σ2
X


 , i = 1, . . . , n, (2)

where σX1,X2 = 0 and σ2
X = 1.

For the three binary variables, we specifically assume that they represent two categorical

variables: one with three categories {a, b, c} and another one with two {d, e}, with probabilities

(πa, πb, πc) and (πd, πe) such that πa + πb + πc = 1 and πd + πe = 1. That is,

Xi,3

Xi,4

 i.i.d.∼ Multinomial(1, (πa, πb, πc))

Xi,5
i.i.d.∼ Bernoulli(πd), i = 1, . . . , n. (3)
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Finally, it is assumed that (Xi,1, Xi,2), (Xi,3, Xi,4), and Xi,5 are independent.

In the baseline scenario, we simulate N = 100 datasets of size n = 100, 000, setting σ2 = σ2
X =

1, πa = πb = 1/3, and πd = 1/2. The choice of a sample size of 100,000 is primarily influenced by

Barrientos et al. (2024), which conducted regression analysis under DP using datasets of a similar

scale. This study serves as a follow-up to that work, hence the consideration of this specific sample

size. Additionally, theoretical assumptions in DP linear regression often necessitate sufficiently

large datasets to ensure certain properties. Future work will explore smaller sample sizes to better

understand the impact of sample size on accuracy and precision of statistical estimates. Different

values for β are also considered to achieve various SNR, defined as

SNR =
Var(Xiβ)

σ2
. (4)

The β values are set such that SNR = {0, 0.5, 1, 3, 6}, resulting in a total of 500 simulated datasets.

To perform regression analysis under DP, we privatize S = [X,Y ]t[X,Y ]. This term is the

sufficient statistic for the normal linear model, resulting in the DP statistic SH = S +H, where H

represents the added noise. We incorporated the noise using the ϵ-DP Laplace mechanism (Dwork

et al., 2006) and the (ϵ, δ)-DP Analytic Gaussian mechanism (Balle and Wang, 2018). We employ

two different strategies to generate inferences about the regression coefficients β. The first strategy

relies on a modified version of Algorithm 3 from Ferrando et al. (2020). We use Monte Carlo

simulation to approximate the sampling distribution of an estimator of β based on SH , accounting

for the randomness in both e and H. The modified version of their algorithm can be found in

Algorithm 1 in the supplemental material of Barrientos et al. (2024). It introduces regularization

to ensure that SH is positive definite and addresses the challenge of having an unknown sample

size n. The second strategy employs the regularized version of SH described in Barrientos et al.

(2024) and substitutes it into the formulas of the maximum likelihood estimator without DP. This

strategy is justified by Theorem 1 in Ferrando et al. (2020), which demonstrates that the effect of H

becomes negligible when the sample size is sufficiently large, particularly regarding the asymptotic

distribution of the estimator of the regression coefficients. In testing all our methods, we run the

DP methods using ϵ = {0.5, 1, 5, 10, 106} and δ = 10−7.
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For both the Laplace and Analytic Gaussian mechanisms, it is necessary to specify lower and

upper bounds for the response variable and the two continuous covariates. Specifying the bounds of

these variables is crucial when implementing DP because the larger the distance between the lower

and upper bounds, the larger the variance of noise produced from the mechanism. Additionally,

there is a trade-off. Narrower bounds decrease the variance of the mechanism but may introduce

some bias in the estimates, and vice versa. For this reason, we consider three different strategies

to set these bounds.

The first strategy sets the bounds for a given dataset using the observed minimum and max-

imum, which is equivalent to using local sensitivity or the perfect information scenario. We refer

to these bounds as local bounds. The second strategy uses the maximum and minimum of each

variable over the simulated 100 datasets for a given SNR, and we refer to them as group bounds.

The third strategy defines the bounds using a DP mechanism for quantiles proposed by Gillenwater

et al. (2021). The idea is to use part of the privacy budget to query large and small quantiles and

use them as bounds. The queried quantiles we use are those that accumulate 0.001 and 0.999 of

the relative frequency. Although the approach proposed by Gillenwater et al. (2021) also requires

specifying bounds as input parameters, we decide to specify those bounds to be roughly 100 times

wider than observed ones. We believe that providing bounds that are excessively large is a more

realistic situation for an analyst compared to expecting the use of bounds that closely match the

observed range.

2.2 Assessment Metrics

To assess the effect of satisfying DP in linear regression, we rely on metrics that compare coefficient

estimates, uncertainty measures, and predictions to those produced under no privacy and to the

underlying truth. For each scenario, SNR, and scenario-specific condition, we simulate N = 20

datasets of size n = 100, 000. The employed metrics are described below.

- Effective sample size. In Bayesian statistics, a prior distribution for the parameters in the

normal linear model is the unit information prior (see Hoff, 2009, for a description). This prior

distribution is derived from the fact that the Fisher information based on a sample of n obser-

vations is σ−2XTX and the “average information” in one observation is σ−2XTX/n. Since
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σ2(XTX)−1 is the covariance matrix of the maximum likelihood estimator of the regression

coefficients β̂, we can consequently argue that the “average variance” of the j-th regression

coefficient estimator resulting from using a single observation is given by nVar(β̂j), where

Var(β̂j) is the j-th component of the diagonal of σ2(XTX)−1.

Under DP, there is also the variance associated with the regression coefficient estimates β̂dp.

We denote the variance of the j-th regression coefficient estimator under DP as Var(β̂dp
j ).

We can then define the effective sample size nESS,j as the number of observations such that

a variance without privacy would equal Var(β̂dp
j ). Therefore, nESS,j is of the form

nESS,j = n
Var(β̂j)

Var(β̂dp
j )

,

which can be estimated using estimates of Var(β̂j) and Var(β̂dp
j ).

- Coverage probability and bias. For both private and nonprivate approaches, we compute

point estimates and confidence intervals for each βj . Subsequently, we employ Monte Carlo

simulation to approximate the absolute and relative bias of the point estimators and the

coverage of the confidence intervals. For the coverage probability, we compute the fraction

of times that the interval contains the true value of βj . Ideally, this probability is expected

to be close to the specified confidence level.

- Matching sign and significance. We check if the sign of β̂dp
j matches that of β̂j , and if the

decision on H0 : βj = 0 versus HA : βj ̸= 0 remains consistent with and without privacy.

We utilize Monte Carlo simulation to approximate the probability of matching signs and

decisions.

- Confidence interval ratio. We calculate a ratio of the confidence intervals with noise to the

confidence intervals without noise, which gives us a measure of the increased uncertainty due

to the added noise.

2.3 Alternative Scenarios

Based on the results of the baseline scenario analyses, we proceed to run each alternative scenario

using only one of the DP mechanisms while still considering different values of SNR, different

privacy budgets, and different bounds. We consider the following alternative scenarios.
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- Imbalanced categorical predictor. For this scenario, we simulate data considering different

values of πd in Equation 3. The values for πd range from 0.01 to 0.99. When the values for

πd are large, it implies that the values for πe are small. Under this scenario, we can observe

the effect of having a dummy variable where the probability of being equal to one is low, as

well as the effect of having a reference level with low frequency, which is expected to impact

the intercept.

- Collinearity. In this setup, we simulate data where the continuous predictors are correlated

to varying degrees, that is, considering different values of σX1,X2 in Equation 2, ranging

from moderate to high levels of correlation. We consider σX1,X2 ∈ {0, 0.5, 0.9} This scenario

allows us to observe how collinearity affects the estimation of regression coefficients and the

associated uncertainties under DP.

- Heteroscedasticity. The normal linear model assumes that the errors follow a normal distri-

bution with constant variance. Heteroscedasticity violates this assumption. We can simulate

the data in different ways that violate this assumption. We choose to simulate data such

that the variance of the errors σ2 in model 1 is a function of the continuous variable X1.

Specifically, we replace σ2 in model 1 with σ2
X1

= (1−τ/2)+τ exp(X1)/(1+exp(X1)), where

τ ∈ [0, 2] controls how fast σ2
X1

grows as a function of X1. If τ = 0, then σ2
X1

= 1 for any

value of X1. If τ increases, then σ2
X1

increases at a faster rate. Figure 1 displays σ2
X1

for the

values of τ we consider {0, 0.5, 1, 2}, representing no, low, medium, and high heteroscedas-

ticity, respectively. In this scenario, a scatter plot of X1 versus e would display a pattern

often observed in practice, resembling a fan or cone shape. The definition of σ2
X1

ensures

that E(σ2
X1

) = 1. Under this scenario, we determine the value of β assuming that the SNR

is redefined as Var(Xiβ)/E(σ2
X1

).

- Skewed Residuals. Another assumption we consider is the normality of the errors. In this

scenario, we test the effect of having errors that are not normally distributed but instead

asymmetric. To do so, we rely on the skew normal distribution. A random variable Zi is

skew-normal distributed if its density is defined as 2ϕ(z)Φ(αz), where α is a parameter which

regulates asymmetry, and ϕ and Φ are the probability density function and the cumulative

distribution function of the standard normal distribution, respectively. To ensure that the
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errors ei have zero mean and variance equal to one, we define them to be equal to (Zi −

E(Zi))/
√
V ar(Zi). Figure 1 displays the different degrees of asymmetry we consider by

setting α to take values in {0, 1, 3, 50}, representing no, low, medium, and high asymmetry,

respectively.

0.0

0.5

1.0

1.5

2.0

−4 −2 0 2 4
X1

σ X
1

2

Heteroscedasticity None Low Medium High

0.0

0.1

0.2

0.3

0.4

0.5

−4 −2 0 2 4
error

D
en

si
ty

Asymmetry None Low Medium High

Figure 1: Two scenarios considered in the simulation study: heteroscedasticity and asymmetry.
The left plot illustrates varying levels of heteroscedasticity, where the variance of errors σ2

X1
is

controlled by the parameter τ , which takes values in {0, 0.5, 1, 2} representing no, low, medium,
and high heteroscedasticity, respectively. The right plot displays the distribution of errors generated
using the skew normal distribution with parameter α regulating asymmetry. As α varies across
{0, 1, 3, 50}, different degrees of asymmetry are represented, ranging from none to high.

2.4 Users’ Expectations

Finally, we compare the results of the simulations to the findings in Williams et al. (2023) based on a

survey of American Economic Association members’ views on DP and the usability of noise-infused

data. One aspect of the survey focused on querying respondents about their tolerance for error

before sacrificing access to administrative data. Specifically, the questionnaire asked about four

different ways that error might affect the results of a statistical query: (1) significance mismatch of

confidential and noisy statistics, (2) sign mismatch of confidential and noisy statistics, (3) absolute

relative bias in the point estimate, and (4) the confidence interval ratio between confidential and

noisy confidence intervals.

Using the tolerances quantified in Williams et al. (2023), we use this simulation study to
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investigate whether users’ expectations are met under the baseline and alternative scenarios, as

well as different values of the privacy budget. This additional analysis provides practical values

against which we assess the benchmarking simulation. For example, it helps determine how much of

the privacy budget might need to be allocated to ensure that the released results meet expectations.

3 Results

3.1 Baseline Simulations

Table 1 shows the relative bias for each mechanism and each value of the privacy-loss budget (ϵ).

Relative bias is the estimated bias of the estimate divided by the population parameter. All of the

relative biases are less than 0.01, which indicates a bias of less than 1%. The relative biases are

comparable for the Laplace mechanism and Analytic Gaussian mechanism.

Mechanism ϵ Simulated repetitions Relative bias
1 analytic gaussian 0.5 2400 -0.0052
2 analytic gaussian 1 2400 -0.0003
3 analytic gaussian 5 2400 -0.0018
4 analytic gaussian 10 2400 -0.0016
5 analytic gaussian 1,000,000 2400 -0.0008
6 laplace 0.5 2400 -0.0032
7 laplace 1 2400 -0.0030
8 laplace 5 2400 -0.0016
9 laplace 10 2400 -0.0015
10 laplace 1,000,000 2400 -0.0008

Table 1: Summary Relative Bias for Mechanism and Privacy-Loss Budget. The table only shows
results using the bootstrap confidence intervals and DP range method for determining sensitivity.
The estimated statistics combine different signal-to-noise ratios and coefficients results. Simulated
repetitions is the number of coefficients for each relative bias estimate

Table 2 shows the coverage probability for a 95% confidence interval for each mechanism and

each value of the privacy-loss budget (ϵ). All of the values of the coverage probability are close

to 95%. This holds true for small values of ϵ, which suggests the confidence intervals account for

the large amount of noise added to the regression models by the DP mechanisms. The coverage

probabilities for the Laplace mechanism and Analytic Gaussian mechanism are comparable.

Figure 2 shows the effective sample sizes for each estimated coefficient using the Laplace and

Analytic Gaussian mechanisms with sensitivities determined by the observed ranges of the data.
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Mechanism ϵ Simulated repetitions Coverage probability
1 analytic gaussian 0.5 2400 0.9450
2 analytic gaussian 1 2400 0.9542
3 analytic gaussian 5 2400 0.9492
4 analytic gaussian 10 2400 0.9429
5 analytic gaussian 1,000,000 2400 0.9396
6 laplace 0.5 2400 0.9446
7 laplace 1 2400 0.9592
8 laplace 5 2400 0.9483
9 laplace 10 2400 0.9379
10 laplace 1,000,000 2400 0.9400

Table 2: Summary Coverage Probability for a 95% Confidence Interval for Mechanism and Privacy-
Loss Budget. The table shows results using the bootstrap confidence intervals and DP range method
for determining sensitivity. The estimated statistics combine different signal-to-noise ratios and
coefficients results. Simulated repetitions is the number of coefficients for each coverage probability
estimate.

The results are limited to three coefficients and the bootstrap method of estimating standard errors.

The ideal effective sample size, 100,000 observations, is represented by the horizontal red line.

First, Figure 2 shows the dramatic reduction in effective sample size caused by the DP mecha-

nism even for large values of ϵ. For example, when ϵ = 5 and the SNR is 3, the effective sample size

of the intercept approximately drops by one third and the effective sample size of the continuous

variable X1 drops by a half. Second, the figure shows the reduction in sample size worsens as the

SNR increases. Finally, the figure demonstrates that the two mechanisms have comparable results.

We will focus on the Laplace mechanism because it has a slightly stricter privacy guarantee and

does not require specifying δ in addition to ϵ.

Figure 3 compares the effective sample size of estimates using the local bounds with the

alternative approaches of using the DP range bounds and grouped local bounds. The diagonal red

line indicates equivalent effective sample size for each comparison. The points are overwhelmingly

above the red line for the DP range bounds. Extreme percentiles (0.001, 0.999) are approximations

of minima and maxima and introduce truncation error. In the baseline scenario, the introduced

truncation error is smaller than the reduction in error caused by using smaller sensitivities when

fitting the noisy regression model. However, the DP range bounds use the exponential mechanism,

which provides extremely poor results in a small fraction of cases. The differences between the local
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Figure 2: Figure includes the results for selected coefficients and are limited to the bootstrap confi-
dence intervals and DP range bounds.

bounds and DP range bounds are dramatic. When ϵ = 5 and the SNR is 3, the effective sample

size of the intercept drops by a half instead of dropping by one third. The effective sample size

of the continuous variable X1 drops by two thirds instead of halving when using the local bounds

instead of the DP range bounds. The grouped local bounds consistently lowers the effective sample

size of estimates more than the local bounds. This makes sense because the grouped local bounds

is always greater than or equal to the local bounds.

Absent clear ranges on the data, for example, limiting ages to prime working ages, calculating

sensitivities with DP percentiles is a realistic process that could be used on an automated validation

server. Unless otherwise noted, we will focus exclusively on determining the sensitivities using the

DP range approach (DP range bounds).

Figure 4 shows the coverage probabilities for asymptotic and bootstrap confidence intervals

for different values of ϵ and different methods for calculating sensitivities. The asymptotic confi-

dence intervals have poor coverage probabilities for most values of ϵ. Alternatively, the bootstrap
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Figure 3: Figure shows ϵ ∈ {1, 5, 10} and uses the Laplace mechanism and bootstrap confidence
intervals.

confidence intervals demonstrate reliable coverage probabilities for all three sensitivities. For this

reason, we focus on the bootstrap confidence intervals for all results.

3.2 Alternative Scenario Simulations

Table 3 shows the three worst relative biases for each detailed scenario and each value of the

privacy-loss budget (ϵ). The table combines SNR and coefficients to boost sample sizes. All of the

relative biases are less than 0.01, which indicates a bias of less than 1%.

Table 4 shows the coverage probability for a 95% confidence interval for each detailed scenario

ϵ = 5. The table combines SNR and coefficients to boost sample sizes. Differences can largely be

explained by the number of data replicates for the alternative scenario. The baseline run uses 100

data replicates and nearly perfectly hits 0.95. The values of the alternative scenarios are slightly

noisier because they rely on 20 data replicates.

Table 3 suggests that all alternative scenarios have reasonable amounts of bias. Table 4 suggests

that all alternative scenarios have reasonable coverage probabilities. Next, we look at the effective
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Figure 4: The results are a mix of coefficients, terms, and signal-to-noise ratios. Each point
represents 3,000 coefficients.

sample sizes for each alternative scenario for ϵ = 5. We choose to present the results for this privacy

budget value because it was the smallest one identified in Barrientos et al. (2024), which yielded

reasonable performance for DP approaches most of the time.

3.2.1 Class Imbalance

Figure 5 shows the effective sample size for the intercept, one of the continuous variables, and the

Bernoulli variable when ϵ = 5 for different SNR and different amounts of class imbalance. When

πd = 0.5, the probability for the Bernoulli random variable is 0.5 and the scenario aligns with the

baseline scenario. As πd increases, the effective sample sizes for the intercept and X5 diminish.

As πd decreases, the effective sample size for X5 diminishes. The effective sample sizes for other

estimates in the model are mostly unchanged.

Including categorical variables with sparse categories as predictors in linear regression models

does not violate any assumptions of linear regression models, but it does increases variances for

estimates of the coefficient for the categorical variables. Here, it appears that DP may add an extra
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Deatiled scenario ϵ Simulated repetitions Relative bias
1 imbalanced categories 0.5 0.5 480 0.0044
2 multicollinearity 0.9 0.5 480 -0.0040
3 imbalanced categories 0.1 0.5 480 0.0035
4 imbalanced categories 0.01 1 480 0.0051
5 baseline 1 2400 -0.0030
6 skewed residuals 3 1 480 -0.0024
7 baseline 5 2400 -0.0016
8 imbalanced categories 0.01 5 480 -0.0015
9 heteroscedasticity 2 5 480 -0.0015
10 heteroscedasticity 2 10 480 -0.0015
11 baseline 10 2400 -0.0015
12 skewed residuals 50 10 480 -0.0013
13 heteroscedasticity 2 1,000,000 480 -0.0014
14 skewed residuals 50 1,000,000 480 -0.0012
15 imbalanced categories 0.99 1,000,000 480 -0.0012

Table 3: Three Worst Biases for Detailed Scenarios and Privacy-Loss Budgets. Results only in-
clude the Laplace mechanism with sensitivities determined with DP ranges and bootstrap confidence
intervals. Simulations with Signal-to-Noise Ratio = 0 are excluded. Simulated repetitions is the
number of coefficients for each relative bias estimate.

penalty to estimates of coefficients in the presence of sparse categories.

3.2.2 Multicollinearity

Figure 6 shows the effective sample size for the intercept, both continuous variables, and the

Bernoulli variable when ϵ = 5 for different SNR and different amounts of covariance between the two

continuous predictors. When covariance σX1,X2 is 0, the scenario aligns with the baseline scenario.

As covariance increases, the effective sample size for X1 and X2, the two continuous variables

decreases. The effective sample sizes for other estimates in the model are mostly unchanged.

Like with class imbalance, including predictors with non-perfect collinearity does not violate

any assumptions of linear regression models. It does, however, increase the variance of estimates

of the coefficients for the collinear predictors. Here, it appears that DP may add an extra penalty

to estimates of coefficients in the presence of collinearity.
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Deatiled scenario ϵ Simulated repetitions Coverage probability
1 baseline 5 3000 0.9497
2 heteroscedasticity 0 5 600 0.9467
3 heteroscedasticity 0.5 5 600 0.9417
4 heteroscedasticity 1 5 600 0.9200
5 heteroscedasticity 2 5 600 0.9450
6 imbalanced categories 0.01 5 600 0.9550
7 imbalanced categories 0.1 5 600 0.9567
8 imbalanced categories 0.5 5 600 0.9550
9 imbalanced categories 0.9 5 600 0.9633
10 imbalanced categories 0.99 5 600 0.9400
11 multicollinearity 0 5 600 0.9617
12 multicollinearity 0.5 5 600 0.9300
13 multicollinearity 0.9 5 600 0.9317
14 skewed residuals 0 5 600 0.9367
15 skewed residuals 1 5 600 0.9467
16 skewed residuals 3 5 600 0.9467
17 skewed residuals 50 5 600 0.9350

Table 4: Summary Coverage Probability for a 95% Confidence Interval. The table shows the results
to the Laplace mechanism, bootstrap confidence intervals, and DP range bounds. Simulated repeti-
tions is the number of coefficients for each relative bias estimate.

3.2.3 Skewed Residuals

Figure 7 shows the effective sample size for the intercept, one continuous variable, and the Bernoulli

variable when ϵ = 5 for different amounts of skewness in the residuals and different approaches to

determining sensitivities. When α = 0, the scenario aligns with the baseline scenario. The effective

sample sizes don’t change when α is changed.

Errors that aren’t normally distributed are typically only a problem for linear regression mod-

els with small sample sizes. DP dramatically reduces effective sample sizes. But, with 100,000

observations, the effective sample sizes in these simulations are typically large enough to avoid

issues with skewed residuals. It’s possible that smaller sample sizes would have worse results, but

these simulations don’t show any specific challenges for skewed residuals.

The different rows in figure 7 demonstrate the effect of different bounds on the effective sample

sizes. The middle row shows the grouped local bounds. This means using the minima and maxima

within a SNR for the bounds of the data. This plausible approach dramatically reduces the effective
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Figure 5: Figure includes results for selected coefficients and are limited to ϵ = 5, the Laplace
mechanism, bootstrap confidence intervals, and DP range bounds.

samples compared to the local bounds and DP range bounds.

3.2.4 Heteroscedasticity

Figure 8 shows the effective sample size for the intercept, one continuous variable, and the Bernoulli

variable when ϵ = 5 for different amounts of heteroscedasticity and different approaches to deter-

mining sensitivies. When heteroscedasticity is 0, the scenario aligns with the baseline scenario.

The effective sample sizes remain constant when heteroscedasticity is changed.

Heteroscedasticity limits the ability to generalize variance estimates without necessarily in-

creasing variance estimates. The average variance of the residuals remains unchanged in the al-

ternative scenarios even though the shape of the residuals changes. So the effective sample sizes

remain constant. It’s possible that a different pattern for heteroskedasticity would result in worse

results. It’s also likely that the results have poorly calibrated prediction intervals and could result

in poor inferences in certain scenarios.
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Figure 6: Figure includes results for selected coefficients and are limited to ϵ = 5, the Laplace
mechanism, bootstrap confidence intervals, and DP range bounds.

The different rows in figure 8 demonstrate the effect of different bounds on the effective sample

sizes. The middle row shows the grouped local bounds. This means using the minima and maxima

within a SNR for the bounds of the data. This plausible approach dramatically reduces the effective

samples compared to the local bounds and DP range bounds.

3.3 Users’ Expectations

Effective sample size, bias, and coverage ratio are useful ways to evaluate DP regression methods.

In this section, we use a different set of metrics to evaluate the noisy regression output against users’

expectations from Williams et al. (2023). Their paper surveys members of the American Economic

Association and asks respondents how much error they would tolerate before sacrificing access to

the administrative data. Here, we focus on sign mismatch, significance mismatch, absolute relative

error, and confidence interval ratio.

Sign mismatch is the relative frequency with which a noisy estimate is expected to have a

different sign (positive or negative) than an estimate without noise (Williams et al., 2023). The
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Figure 7: Figure includes results for selected coefficients and are limited to ϵ = 5, the Laplace
mechanism, bootstrap confidence intervals, and DP range bounds.

median respondent would tolerate a sign mismatch rate of 5%. Figure 9 shows the proportion of

simulations that meet the median user’s expectations for each coefficient, ϵ, and SNR and for the

most extreme parameterization of each alternative scenario. Many simulations have sign mismatch

when the SNR is 0. The overwhelming majority of baseline simulations and alternative scenario

simulations with a positive SNR have no sign mismatch. The one exception is class imbalance,

although the failure to meet users’ expectations disappears with larger values of ϵ.

Significance mismatch is the relative frequency with which a noisy estimate has a different

statistical significance (assume 0.05 level) than the estimate without noise (Williams et al., 2023).

The median respondent would tolerate a significance mismatch rate of 10%. Figure 10 shows the

proportion of simulations that meet the median user’s expectations for each coefficient, ϵ, and SNR
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Figure 8: Figure includes results for selected coefficients and are limited to ϵ = 5, the Laplace
mechanism, bootstrap confidence intervals, and DP range bounds.

and for the most extreme parameterization of each alternative scenario. Many simulations lead

to significance mismatch when the SNR is 0. The overwhelming majority of baseline simulations

and alternative scenario simulations with a positive SNR have no significance mismatch. The one

exception is class imbalance, although the failure to meet users’ expectations disappears with larger

values of ϵ.

Absolute relative error is the amount of noise introduced into an estimate divided by the

estimate without noise (Williams et al., 2023). The median respondent would tolerate absolute

relative error of 10%. Figure 11 shows the proportion of simulations that meet the median user’s

expectations for each coefficient, ϵ, and SNR and for the most extreme parameterization of each

alternative scenario.
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Figure 9: Each line represents the most extreme specification for a scenario. The results are limited
to the Laplace mechanism, bootstrap confidence intervals, and DP range bounds.

Many simulations lead to large absolute relative errors when the SNR is 0. This is likely

because the estimate without noise, which is in the denominator of the metric, is exceptionally close

to zero. The overwhelming majority of baseline simulations and alternative scenario simulations

with a positive SNR meet the median user’s expectations. Specific coefficients fall short for the

class imbalance and multicollinearity scenarios, whereas the failure to meet users’ expectations

disappears with larger values of ϵ.

Confidence interval ratio is the width of the noisy confidence interval divided by the width

of the confidence interval without noise (Williams et al., 2023). The median respondent would

tolerate a confidence interval ratio of 1.25. That means the noisy confidence interval is 25% wider

than the confidence interval without noise. Figure 12 shows the proportion of simulations that

25



Figure 10: Each line represents the most extreme specification for a scenario. The results are
limited to the Laplace mechanism, bootstrap confidence intervals, and DP range bounds.

meet the median user’s expectations for each coefficient, ϵ, and SNR and for the most extreme

parameterization of each alternative scenario.

None of the simulations meet the median user’s expectations when ϵ < 5. When ϵ = 5, the

width of the confidence interval varies with the SNR and the scenario. Even when ϵ = 10, the class

imbalance and multicollinearity scenarios often fail to meet the median user’s expectations.

Overall, this set of simulations meet’s users’ expectations according to these four metrics. Sign

mismatch and significance mismatch are very sensitive to sample size and effect size. With 100,000

observations, even dramatic reductions in the effective sample size are not enough to drive sign

mismatch and significance mismatch. This could easily change with fewer observations or SNR

between 0 and 0.5. Large absolute relative errors when the SNR is 0 are somewhat artificial. When
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Figure 11: Each line represents the most extreme specification for a scenario. The results are
limited to the Laplace mechanism, bootstrap confidence intervals, and DP range bounds.

the SNR is greater than 0, then absolute relative error is sensitive to effective sample size and these

results would change with different sample sizes and scenarios. Confidence interval ratio is most

sensitive to ϵ and SNR. The bootstrap confidence intervals have good coverage probabilities, so

changes in confidence interval ratio are likely tied directly to the infusion of noise. The confidence

interval ratio is directly tied to the idea of effective sample size.
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Figure 12: Each line represents the most extreme specification for a scenario. The results are
limited to the Laplace mechanism, bootstrap confidence intervals, and DP range bounds.
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4 Discussion

This paper introduces a framework for evaluating inferences from DP multiple linear regression

methods on simulated data. This framework provides two key contributions. First, most privacy

literature focuses the evaluation of DP regression methods on prediction instead of inference. Our

framework provides useful tools for ensuring DP linear regression methods are useful to social

scientists who focus on inference. Second, the framework could be useful for people who want

to understand the error rates of a DP regression method before running the method. This would

resemble power analysis but for statistical data privacy methods, and it would be particularly useful

for users of a validation server who do not have access to the confidential data.

Our framework offers the novel contribution that we consider alternative scenarios where the

data generating process does not perfectly satisfy the OLS assumptions. As two examples, we

present a comparative analysis of results for alternative scenarios related to low-level frequencies

and multicollinearity, using simulated datasets generated from a data-generating mechanism that

maintains a consistent SNR. Different options exist for simulating many of the alternative scenarios

we describe, and future work will be focused on exploring these different simulation strategies to

assess their robustness and impact on findings.

We only explored a small subset of possible alternative scenarios. Future research will seek

to extend this framework to consider other violations of normal linear model assumptions, such

as non-linearity, independence of errors, and zero conditional mean assumption. Additionally, we

will explore aspects like omitted variable bias, varying sample sizes and the number of predictors,

incorporating different regularization strategies, and considering different privacy budgets to es-

tablish DP bounds for continuous unbounded variables. Moreover, we will introduce new utility

metrics, such as the coverage of predictive intervals, to provide a more comprehensive evaluation

framework.

Researchers interested in evaluating DP methods for regression via simulation studies must

carefully consider how to set bounds for continuous unbounded variables. As observed in this

simulation study, the different bounds significantly impacts method performance. Therefore, we

recommend that simulation studies for regression analysis should involve unbounded continuous
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variables and systematically test the robustness of results under various strategies for setting up

bounds.

In general, the DP regression models we test do not perform well for inference unless the SNR

is high and all the assumptions of OLS are satisfied. Under these conditions with 100,000 obser-

vations, the DP-based inference did not result in many mismatched signs or inferences. Applying

these mechanisms to smaller data sets, which are common in the social sciences, would probably

significantly impact inference under many privacy-loss budgets. It’s striking that the quality of

the results varied significantly with relatively modest changes to the scenarios. For example, the

modest changes to the approach for generating sensitivities resulted in wildly different effective

sample sizes. Outside of a simulation environment, it will be difficult for analysts and users of DP

tools to anticipate the exact impact of DP noise on linear regression results, but the simulations

help users get a much better idea than what theory might suggest.

Social scientists need methodologies like the ones evaluated in this paper that will allow them

to evaluate “practical significance” while maintaining “practical privacy.” In the future, we will

test other proposed approaches, such as those relying on the observed/local sensitivity methods,

such as Chetty and Friedman (2019), or DP Bayesian linear regression methods. Barrientos et al.

(2024) initially did not incorporate local sensitivity based methods, because they focus on whether

DP or formally private methods could produce accurate results. Barrientos et al. (2024) also did

not evaluate DP Bayesian methods because they are still in early stages and are not as feasible

to implement in a validation server framework. Hence, Barrientos et al. (2024) did not include

Bayesian DP methods. However, as the literature provides promising new Bayesian methods that

could be feasible, so we hope to expand this simulation study to include these new methods.

Finally, we adopt a user-centered approach where we evaluate the results against the expecta-

tions of potential users of results of DP regression. We believe any work putting DP into practice

must tether evaluations to users’ expectations. Follow-up work could involve collecting feedback

from potential users about effective sample size, bias, and coverage probability, which we believe are

more useful for evaluating results than sign mismatch, significance mismatch, and absolute relative

error.
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Mironov, I. (2017). Rényi differential privacy. In Institute of Electrical and Electronics Engineers

30th Computer Security Foundations Symposium, pp. 263–75. Institute of Electrical and Elec-

tronics Engineers.

Nagaraj, A. and M. Tranchero (2023). How does data access shape science? evidence from the

impact of us census’s research data centers on economics research. Technical report, National

Bureau of Economic Research.

Nissim, K., S. Raskhodnikova, and A. Smith (2007). Smooth sensitivity and sampling in private data

analysis. In Proceedings of the 39th Annual Association for Computing Machinery Symposium

on Theory of Computing, pp. 75–84. Association for Computing Machinery.

34



Sheffet, O. (2017). Differentially private ordinary least squares. In International Conference on

Machine Learning, pp. 3,105–114. Proceedings of Machine Learning Research.

Sheffet, O. (2019). Old techniques in differentially private linear regression. In Algorithmic Learning

Theory, pp. 789–827. Proceedings of Machine Learning Research.
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Appendix: Background on Differential Privacy

Differential privacy (DP) is a mathematical framework that provides a provable and quantifiable

amount of privacy protection. There are several definitions and theorems of DP. In this section,

we review two definitions of DP and three key theorems used in our simulation study. We use

the following notation: X ∈ Rn×r is the confidential dataset representing n data points and r

variables and M : Rn×r → Rk denotes the statistical query, i.e., M is a function mapping X to k

real numbers. We denote randomized versions of M as M with the same domain and range. When

appropriately parameterized, randomized mechanisms M can be said to implement particular DP

frameworks.

Definitions of Differential Privacy

Definition 1. Differential Privacy (Dwork et al., 2006): A sanitization algorithm, M, satisfies

ϵ-DP if for all subsets S ⊆ Range(M) and for all X,X ′ such that d(X,X ′) = 1,

Pr(M(X) ∈ S)

Pr(M(X ′) ∈ S)
≤ exp(ϵ) (5)

where ϵ > 0 is the privacy loss budget and d(X,X ′) = 1 represents the possible ways that X ′ differs

from X by one record.

Definition 1 is known as ϵ-DP. At a high level, DP links the potential for privacy loss to how

much the answer of a query (e.g., statistic) is changed given the presence or absence of any possible

person’s data from any possible data set. The role of ϵ is to control the privacy loss. Intuitively,

when ϵ decreases, the maximum distance between the probability distributions ofM(X) andM(X ′)

become smaller, indicating that M(X) and M(X ′) are less distinguishable in distribution. Hence,

users cannot determine whether the mechanism’s outputs are based on X or X ′, which in turn

protects the confidential information of that record that distinguishes X and X ′. Thus, low values

of ϵ indicate high privacy levels and vice versa. ϵ-DP can also be interpreted from a more statistical

perspective in the context of hypothesis testing and under both frequentist (Wasserman and Zhou,

2010) and Bayesian (Kasiviswanathan and Smith, 2014) paradigms.

Two definitions exist on what it means to differ by one record (Kifer and Machanavajjhala,
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2011). One definition assumes the presence or absence of a record, where the dimensions of X

and X ′ differ by one row, making X and X ′ unbounded neighbors. The other definition assumes

a change in the value of one record, where X and X ′ have the same dimensions, making X and

X ′ bounded neighbors. Kifer and Machanavajjhala (2011) refers to these as unbounded DP for

presence or absence of a record and bounded DP for the change of a record. Li et al. (2016) state

that unbounded DP satisfies an important composition theorem, which we will discuss later in this

section (see Theorem 1), whereas bounded DP does not. In this paper, we assume unbounded DP,

because we rely on Theorem 1.

Several relaxations of ϵ-DP have been developed in order to inject less noise into the output,

such as (ϵ, δ)-DP (Dwork et al., 2006), probabilistic DP (Machanavajjhala et al., 2008), concentrated

DP (Dwork and Rothblum, 2016), Rényi DP (Mironov, 2017), and zero-concentrated DP (Bun and

Steinke, 2016). Although these definitions use the same provable privacy framework, they utilize

alternative parameters offering different privacy guarantees. In return, they allow more possibilities

for the type of noise added. We only review probabilistic DP, because it is the only other formally

private definition used in our simulation study.

Definition 2. (ϵ, δ)-Differential Privacy (Dwork et al., 2006): A sanitization algorithm, M,

satisfies (ϵ, δ)-DP if for all X,X ′ that are d(X,X ′) = 1,

Pr(M(X) ∈ S) ≤ exp(ϵ) Pr(M(X ′) ∈ S) + δ (6)

where δ ∈ [0, 1].

Definition 2 provides a simple relaxation of Definition 1 by adding the parameter δ, which

allows the privacy loss associated with the ϵ bound to fail at a rate no greater than δ. Definition 1

can also be defined as a special case of (ϵ, δ)-DP when δ = 0.

Global Sensitivity and DP Mechanisms

In this section, we introduce the concept of global sensitivity and present three of the fundamental

mechanisms that satisfy ϵ-DP and (ϵ, δ)-DP and form the building blocks of the DP algorithms we

test in this paper.
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Independent of the values of ϵ and δ, an algorithm that satisfies ϵ-DP or (ϵ, δ)-DP must adjust

the amount of noise added to the output based on the maximum possible change between any two

databases that differ by one row. This is commonly referred to as the global sensitivity (GS), given

in Definition 3.

Definition 3. l1-Global Sensitivity (Dwork et al., 2006): For all X,X ′ such that d(X,X ′) = 1,

the global sensitivity of a function M is

∆1(M) = sup
d(X,X′)=1

∥M(X)−M(X ′)∥1 (7)

We can calculate global sensitivity under different norms. For instance, ∆2(M) represents the

l2 norm GS (l2-GS) of the function M . Although the definition is straightforward, calculating the

GS can often be difficult in practice. For instance, we cannot calculate a finite GS of one of the most

common statistics, the sample mean, if the variable is not bounded (or the bound is not known).

A commonly used mechanism satisfying ϵ-DP is the Laplace mechanism, given in Definition 4.

Dwork et al. (2006) proved it satisfies ϵ-DP and uses the l1-GS. Another popular mechanism is the

Gaussian mechanism, given in Definition 5, which uses the l2-GS of the statistical query. Dwork

and Roth (2014) showed the Gaussian mechanism satisfies (ϵ, δ)-DP.

Definition 4. Laplace mechanism (Dwork et al., 2006): Given any function M : Rn×r → Rk,

the Laplace mechanism is defined as:

M(X) = M(X) + (η1, . . . , ηk). (8)

where (η1, . . . , ηk) are i.i.d. Laplace(0, ∆1(M)
ϵ ).

Definition 5. Gaussian mechanism (Dwork and Roth, 2014): Given any function M : Rn×r →

Rk, the Gaussian mechanism is defined as:

M(X) = M(X) + (η1, . . . , ηk). (9)
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where (η1, . . . , ηk) are i.i.d. N

(
0, σ2 =

(
∆2(M)

√
2 log(1.25/δ)

ϵ

)2
)
.

Composition and Post-processing Theorems

Lastly, we introduce the important concepts of composition and post-processing. These enable the

development of more complex algorithms that combine DP mechanisms with post-processing to

release multiple statistics with additional structural or noise-reducing enhancements. The com-

position theorems given in Theorem 1 formalize the concept of totaling the privacy loss incurred

across multiple queries or datasets.

Theorem 1. Composition Theorems (Bun and Steinke, 2016; Dwork and Rothblum, 2016;

McSherry, 2009): Suppose a mechanism, Mj, provides (ϵj, δj)-DP for j = 1, . . . , J .

a) Sequential Composition: The sequence of Mj(X) applied on the same X provides

(
∑J

j=1 ϵj ,
∑J

j=1 δj)-DP.

b) Parallel Composition: Let Xj be disjoint subsets of the dataset X, j = 1, . . . , J . The

sequence of Mj(Xj) provides (maxj∈{1,...,J} ϵj ,maxj∈{1,...,J} δj)-DP.

If we want to make J statistical queries on X and we want the total privacy loss to equal ϵ,

the composition theorems state under what conditions we may allocate portions of the overall ϵ to

each statistic. Under sequential composition, a typical appropriation is dividing ϵ and δ equally

by J . For example, a data practitioner might want to query the mean and standard deviation of

a variable. These two queries will require using the sequential composition, allocating an equal

amount of privacy budget to each query. Dwork et al. (2010) proposed other forms of sequential

composition, but the methods we test do not rely on these works.

Conversely, parallel composition does not require splitting the budget because the noise is

applied to disjoint subsets of the input domain. For example, privacy experts will often leverage

parallel composition to sanitize histogram counts, assuming that the bins are disjoint subsets of

the data. Noise can then be added to each bin independently without needing to split ϵ or δ.

Theorem 2 (post-processing) states that any function applied to the output of a DP mechanism

also satisfies DP. Some DP methods, as will be shown later, use the post-processing theorem to
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correct any inconsistencies or values that are not possible and to compute additional summaries

required to perform statistical inference.

Theorem 2. Post-Processing Theorem (Bun and Steinke, 2016; Dwork et al., 2006; Nissim

et al., 2007): If M be a mechanism that satisfies (ϵ, δ)-DP and g be any function, then g (M(X))

also satisfies (ϵ, δ)-DP.
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