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Abstract

This study examines the effects of automation on labor demand, focusing on the

power loom adoption in Japan’s early 20th century silk-weaving industry. Exploit-

ing plant-level panel data, we find that, compared to non-adopted plants, power loom

adaption increased the employment and wages for adult male workers likely engaged

in engineering tasks. Female adults, the main manual workforce, experienced stable

employment with wage increases despite displacement and task transitions. How-

ever, equilibrium spillover effects from imperfect labor market competition led to a

decrease in overall female adult employment in highly mechanized areas, primarily

driven by the exit of low-wage plants.



1 Introduction

The rapid advancement of automation technologies, such as artificial intelligence

(AI) and robotics, has surged the debate on how new technologies affect labor de-

mand. Despite the fact that automation has penetrated the entire process of mod-

ern technological advance since the Industrial Revolution (Acemoglu and Restrepo,

2018a, 2019; Johnson and Acemoglu, 2023), the most detailed evidence so far has

come from the studies focused on recent decades where abundant micro-level data

is available (Acemoglu et al., 2020, 2022, 2023; Aghion et al., 2023; Bessen et al.,

2023; Dauth et al., 2021; Koch et al., 2021). However, these recent efforts often

face challenges from the subtlety of technological changes, which have become more

incremental and continuous (Gordon, 2017; Bloom et al., 2020). Studying the early

stages of economic development thus provides a unique vantage point due to its

prevalence of distinct and discontinuous technological shifts.

Factory automation led by electrification was a pivotal epoch among the past

technological changes. Goldin and Katz (1998) argue that electrification initiated

the modern technology-skill complementarity (and technology-unskill substitution)

by enabling shifts to continuous mass production, increasing the demand for skilled

workers such as engineers and managers while reducing the demand for unskilled

manual workers. Their suggestive evidence in the U.S. is a positive correlation

between the capital-labor ratio in 1909-1919 and the fraction (and pay) of more ed-

ucated and nonproduction workers in 1940 at the industry level. Subsequent studies

by Katz and Margo (2014), Lafortune et al. (2019), and Atack et al. (2023b) provide

further supporting evidence using occupation-, county-, and industry-level varia-

tions, respectively, with Atack et al. (2023b) also directly exploiting variations of

electrification intensity.1 However, analyses relying on aggregate tabulations from

decennial census over extended periods may mask diverse and intricate economic

forces at play, such as multiple technological advances, changes in labor supply, and

non-technological labor demand shifts. Consequently, there is a lack of direct and

concrete casual micro-evidence on the labor market impacts of firms’ automation

and mechanization induced by electrification. Such evidence is also helpful in iden-

tifying how various channels of technological impact on labor demand operate at

firm level, namely machine displacement, productivity improvement, and reinstate-

ment via new task creation, as posited by the theoretical frameworks in Acemoglu

1The view of Goldin and Katz (1998) is, however, not without challenge. Gray (2013) and
Fiszbein et al. (2020) also utilize aggregated statistics in early twenty century and find a more
nuanced picture of ”hallowing out”—electrification increased both high-skill and low-skill jobs but
reduced middle-skill jobs. This observation echos the findings of ”deskilling” during the rise of
steam-powered factories at nineteenth century (Atack et al., 2004; Chin et al., 2006; Katz and
Margo, 2014; Atack et al., 2023a) and the findings of labor market polarization in recent decades
(Autor et al., 2006; Acemoglu and Autor, 2011; Autor and Dorn, 2013), indicating a task-based
view of technological change.
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and Restrepo (2018b, 2019).2 Moreover, aggregate-level analysis often obscures the

direct effect of technological adoption with spillover and market dynamics effects

due to imperfect product or labor market competition (Acemoglu et al., 2020, 2023;

Aghion et al., 2022, 2023), an issue that could be particularly pronounced in early

modern times with highly segmented markets and limited competition among firms.

To overcome the limitation of extant studies, this paper leverages granular data

within a specific historical context to conduct an in-depth examination on the inter-

twined effects of electrification-induced automation on labor demand. In particular,

we examine the impact of factory electrification and mechanization on labor demand

using plant-level panel data of the silk-weaving industry from the early 20th century

in Fukui Prefecture of Japan. Fukui Prefecture was one of Japan’s major centers of

silk fabric industry and witnessed a rapid transition from hand looms to power looms

in the early 1900s, largely due to the diffusion of electricity. The primary workforce

in these plants consisted of female adult workers engaged in manual and dexter-

ous weaving tasks, alongside a small amount of adult male workers in engineering

and managerial roles and child workers as inexperienced trainees. Historical studies

demonstrate that the adoption of the power looms replaced old manual tasks with

more non-routine ones, remarkably increasing the labor productivity by 2.6-2.7 fold

(Sanbe, 1961; Okazaki, 2021). We study how this drastic transition of production

technology affected labor demand of different worker groups.

Our data set is unbalanced plant-level panel data of over 1,300 plants from 1904

to 1914 that record the number of employees and average daily wages by gender ×
adult/child, along with the plant’s power source. We exploit the staggered adoption

of power looms to estimate the dynamic effects based on an event study design.

The plant-level analysis indicates that, employment for male adult workers doubled

after power loom adoption compared with the non-adopting plants in the same area

(village or town). In contrast, the increases in employment for female adult workers

were statistically insignificant following power loom adoption, and child workers also

saw no changes. Furthermore, power loom adoption led to around 10% increases in

average wages for both adult males and females, with no impact on children’s wages.

We interpret our results to suggest that at plant level, electricity-driven automation

substantially raised the demand for more-skilled workers without destroying the

demand for relatively low-skilled manual labor. These plant-level outcomes are thus

consistent with the claim of technological upskilling by Goldin and Katz (1998) and

subsequent studies based on aggregate tabulations, yet provide more nuance into

the unskill side: despite being displaced from incumbent routine manual tasks by

new technology, relatively low-skilled female workers in our case were immediately

2A recent study by Feigenbaum and Gross (2020) highlights the importance of distinguishing be-
tween consecutive displacement and reinstatement effects of historical automation by showing that
job displacement among female telephone operators due to mechanical switching in the early 1990s
was fully offset by increases in clerical and service jobs in the next cohort. However, their analysis
still largely relies on decennial city-industry-occupation level data and lacks firm perspective.
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reinstated into new tasks and enjoyed wage increases from productivity gains.

The impact of automation on plant-level employment and wages obtained from

event study analysis does not necessarily scale to market-level outcomes because

new technology adoption and diffusion can trigger potential spillover and market

dynamic effects in the context of imperfect labor market competition.3 Specifi-

cally, the adoption of power-looms by one firm can prompt wage and employment

adjustments among competitors due to oligopsonistic competition. Furthermore,

the exit of non-adopted plants and the entry of powered plants also influence over-

all employment and wage levels within the area. To identify the importance of

these effects, we examine the aggregate response of local-labor-markets to the dif-

fusion of power-looms by switching the unit of analysis from plant to area. We find

that area-level results show a dampened employment impact and escalated wage

effects compared to plant-level results: area-level mechanization reduced adult fe-

male employment by 19% without significantly affecting the adult male and child

employment, and increased the wages of adult males and females by 31% and 13%,

respectively. Moreover, the area-level mechanization intensity is associated with a

statistically significant reduction in the number of plants and an insignificant in-

crease in the area HHI, suggesting a net exit of smaller plants. Using a subsample

excluding powered entrants to isolate their positive impact, we find that area-level

automation is associated with a 32% decline in female employment and increases of

24% and 11% in male and female wage, suggesting the dominant role of spillover

and exit effects.

Lastly, we show that our plant-level and area-level empirical results can be ex-

plained by a theoretical model that integrates a task-based framework with imper-

fectly competitive labor markets. Female workers, subject to a negative displace-

ment effect, have a less positive demand impact than male workers. Low labor

market competition and high monopsony power dampen employment effects while

raising wages. When a firm adopts power looms, its augmented labor demand ƒrom
productivity gain leads competitors to reduce employment and bid up wages, gen-

erating the spillover effects that differentiate area-level results from plant-level find-

ings. These spillover effects also induce the exit of less efficient, low-wage plants,

further decreasing area-level employment and elevating area-level wages. There-

fore, our empirical and theoretical results illustrate the coexistence of upskilling

from electrification-induced automation and the displacement of low-skilled manual

workers due to subsequent market dynamics, paralleling findings in contemporary

literature of modern automation.

3We focus on imperfect labor market rather than product market competition, as in Acemoglu
et al. (2020) and Aghion et al. (2022), because in our case, the product is a homogeneous good
while the labor markets are highly segregated and concentrated. While both types of imperfect
competition can generate similar business stealing effects, assuming a perfectly competitive labor
market would predict no wage impact from new technology on adopting firms relative to non-
adopting ones, which contradicts our plant-level findings.
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2 The Silk Weaving Industry in Fukui, Japan

The pivot of the Japanese Industrial Revolution, propelled by the Meiji Restoration

in 1868 and the subsequent adoption of Western technologies and institutions, was

the textile industry that accounted for over 30% of total manufacturing production

until the early 1930s. Within the textile industry, the weaving industry contributed

to around 40% of the production. Our analysis focuses on the silk weaving indus-

try in Fukui Prefecture, which represented more than 8% of Japan’s total weaving

output and 2% of the entire manufacturing output during the 1900s and 1910s

(Table A1). Over 80% of Fukui’s manufacturing production in the early twentieth

century was in textiles, with the majority being silk fabric, particularly habutae, a

plain silk fabric constituting 71%–74% of its manufacturing output. In fact, Fukui

was responsible for over half of Japan’s habutae production, and maintained a rela-

tively stable output and export in the early 20th century.

During this period, the Japanese weaving industry underwent profound organi-

zational and technological transformations as factories with power looms became

increasingly prevalent. Fukui Prefecture was leading this trend of industrialization

and mechanization. From near zero in 1905, the ratio of power loom plants rose to

almost 80% among Fukui’s habutae producers by 1914 (Figure A1). Factors such as

the availability of inexpensive domestic power looms and access to electricity have

been argued to facilitate this transition.4 The combination of a relatively simple

product market structure and the rapid diffusion of new automation technology

makes Fukui silk industry an ideal context for examining the labor market impacts

of technological advancement.

The introduction of power looms led to a significant surge in labor productiv-

ity. As detailed by Okazaki (2021), an analysis of plant-level data for the habutae

industry in Fukui Prefecture indicates a 2.62-fold increase in labor productivity in

power loom factories compared to their nonpowered counterparts in 1913–1914, after

controlling for plant scale and working hours.5 This productivity gain was achieved

through the automation of existing manual tasks performed by (mostly adult fe-

male) workers and the creation of new tasks. Weaving, as a process, involves three

basic tasks: shuttle manipulation, warp thread regulation, and the beating of weft

threads (Bythell, 1969). The transition to power looms mechanized these tasks,

freeing workers from the physical constraints of handloom operation and allowing

them to manage multiple machines. The remaining tasks for an operative worker

involved halting the loom for thread resupply or thread repair (Uchida, 1960; Sanbe,

4See Kandachi (1974); Minami et al. (1982, 1983); Makino (1984); Saito and Abe (1987);
Kiyokawa (1995); Hashino (2012); Hashino and Otsuka (2013) and Okazaki (2021).

5This increase aligns with the narratives for this period. Sanbe (1961) notes that while a foot-
operated handloom could yield 1.5 tan of silk fabric daily, a power loom could produce 2 tan.
Furthermore, a worker who previously could only operate one hand-and-foot-operated handloom
could now manage two to three power looms. These two changes resulted in a total increase of
labor productivity by more than 2.67-fold—a figure closely matching Okazaki’s estimation.
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1961; Tsunoyama, 1983; Hunter, 2003). Another set of newly created tasks were the

installation and maintenance of powered machines, which could be only conducted

by male adults.6 As such, adopting power looms mechanizes existing tasks and gen-

erates new tasks, entailing a reallocation of workers with distinct skills into different

tasks.

Lastly, despite producing one homogeneous good, the local labor markets where

silk-weaving plants were located were largely not integrated. Kandachi (1974) inves-

tigates in detail the source of workers in Harue Village of Sakai County, which was

one of the centers of the silk fabric industry in Fukui Prefecture, to find that most

workers were from within the village and neighboring villages in the same county

(pp.260-261).

3 Data and Summary Statistics

The annual Statistical Yearbook published by Fukui Prefectural Government pro-

vides annual data on factories with ten or more workers from 1904 to 1917. It

includes specifics such as plant name, location (city, town, or village), owner name,

foundation year, major product, power source, total horsepower used, daily working

hours, and the number and daily wage of workers categorized by gender and age.

We restrict our analysis to the data before 1915 as a revision in the age category

that year complicates comparability with earlier data. By doing so, we also avoid

the potential distortions caused by the economic boom and inflation during World

War I.

We use all plants listed with products recorded as silk fabric or habutae. While

the dataset does not explicitly outline details on silk weaving technologies, we infer

the use of power looms by exploiting the documented information on power source.

That is, we regard those plants using inanimate power, water, steam, gas, or elec-

tricity, as power loom plants, and the other plants as handloom plants. Electricity

accounts for 88% of all power uses, followed by gas at 7% and steam at 4%.

We constructed our plant-level panel data by linking individual plants across

different years based on plant name, owner’s name, plant address, and foundation

year.7 Our data compilation process yielded a dataset of 1,362 distinct plants, con-

stituting 4,470 plant-year observations and spreading across 10 counties (including

Fukui city) and 135 distinct areas (towns or villages). To tailor our dataset for the

6Inoue (1913) reports that in the habutae industry in Fukui, Ishikawa and Toyama Prefectures,
there were three types of workers, namely workers for preparation, weavers and mechanics, and
that mechanics were ”those who took charge of all the maintenance works of weaving machines
including lubrication and repair, and this type of workers newly emerged after the adoption of
power looms” (pp.84-85, authors’ translation).

7Given the age of the data and the potential for documenting inaccuracies, we adopt a fuzzy-
matching strategy. Specifically, we regarded plants in different years as identical if they shared the
same plant addresses and at least two of the other three pieces of information—plant name, plant
owner’s name, and foundation year.
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event study analysis, we made a series of exclusions, leading to a focused dataset

of 697 plants and 3,231 plant-year observations distributed across 7 counties and

82 areas.8 Given the dynamic nature of the industry during this period, there were

numerous entries and exits over time, and our resulting panel data is thus unbal-

anced, with the average observation years of a plant being around 4.6 years. We

will utilize entries into and exits from the panel dataset to measure plant entry and

exit dynamics.

Table 1 presents the basic statistics derived from our data. A direct comparison

of the observation means reveals that powered plants employed around 50 percent

more workers and paid 0.22 log points higher wages. Our data further delineate three

distinct worker groups within each plant: female adults constitute the majority of

the workforce in silk weaving plants, especially in non-powered ones, while adult

male and child workers play relatively marginal roles. Our historical narratives

earlier suggest that demographic information can serve as a proxy for worker skills

and tasks, a method also employed in previous studies (Atack et al., 2004; Katz

and Margo, 2014). Consistently, Table 1 reveals that the average daily wages (in

sen= 1/100 yen) for adult workers significantly outstrip those for child workers.

Perhaps more intriguingly, we observe a mean wage reversal between adult males

and females when comparing powered and non-powered plants; male adults earn

less than their female counterparts in non-powered plants, while the opposite is true

in powered plants. This reversal hints at the potential for adult males to possess

skills more complementary to the tasks associated with power loom operation, such

as installation and maintenance of power looms.9

4 Plant-level Analysis

This section examines the impact of power loom adoption on labor demand and wage

structure at the plant level, utilizing both event study and difference-in-differences

(DiD) designs. Specifically, we scrutinize how adopting power loom affects a plant’s

employment and wages by worker categories comparing to non-adopting counter-

parts in the same local market.

8The exclusions were carried out in several steps. Firstly, 98 observations from three counties
(Nanjo, Onyu, Oi), where the habutae industry was underdeveloped, were removed. Secondly, we
excluded 195 observations from plants that exhibited records of power discontinuation after initial
adoption and 279 observations from plants that initially appeared in the dataset already using
power looms, thereby lacking pre-treatment data. Thirdly, plants with single year observation
and others not meeting our econometric specifications for the event study analysis in Section 4
were dropped. Our exclusion criteria also aids in addressing potential measurement errors from
historical sources. For the area-level analysis in Section 5, we reincorporated the plants excluded
in the last two steps for area-level aggregation.

9Given that our wage data is recorded daily wages, concerns might arise regarding variations
in working hours with the adoption of power looms potentially affecting our results. However,
this concern appears to be less warranted as Table 1 shows only a minor average discrepancy in
working hours—about 13 minutes—between non-powered and powered plants, with small standard
deviations in both categories.
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Let Yiat represent our dependent variable for plant i in area a at time t, which

can be various plant-level outcomes of interest such as employment or the natural

logarithm of the average wages. The specification of our event study analysis is as

follows

Yiat =
−2∑

k=−10

γk1 {t−Gi = k}+
5∑

k=0

γk1 {t−Gi = k}+ αi + δat + ϵit. (1)

where Gi is the first year of adopting the motor power by the plant i, αi represents

plant fixed effects, and δat signifies area-by-year fixed effects. The coefficients of

interest, γk, capture the dynamic effects pre- and post-event, with γ−1 normalized to

zero to serve as the baseline. We validate the causality of this specification through

a standard pre-trend falsification test, indicated by statistically insignificant lead

coefficients, and complement it with a sensitivity analysis as proposed by Rambachan

and Roth (2023), which tests the severity of potential violations of the parallel trends

assumption. Given the now well-known problem that two-way fixed effects (TWFE)

regression potentially introducing unwanted comparisons between treatment groups,

we employ the estimation method proposed by Sun and Abraham (2021) that solves

this issue by using never-treated and last-treated cohorts as comparison groups.10

In complement to the event study analysis, we also estimate a DiD model using a

single post-treatment indicator, which collapses all post-event dynamic effects into

a single, permanent effect. For both the event study and DiD analyses, we cluster

our standard errors at the plant level.

We start by exploring the impact of power loom adoption on employment. Fig-

ure 1 illustrates the event study outcomes, highlighting heterogeneous effects across

different worker categories and overall employment changes. We find a significant

rise in the demand for male adult workers following the power loom introduction,

starting with an initial addition of about 1.5 workers at event time (k = 0), and

extending to around 3 workers in subsequent periods. Given the average of fewer

than 2 male adult workers in nonpowered plants, this indicates a marked upsurge

in high-skilled labor demand. In contrast, for female adult workers, we observe

no statistically significant changes immediately after adoption. Although the coef-

ficients showing an upward trend, culminating in an average addition of 9 female

adult workers by period k = 4, we aware the potential for sample attrition across

different post-treatment periods and the level rather than growth (log) comparison

driving these dynamic effects.11 We thus cautiously posit that the power loom im-

10In the Appendix A.2, we further confirm the robustness of our findings using alternative meth-
ods proposed by Callaway and Sant’Anna (2021); De Chaisemartin and d’Haultfoeuille (2020);
Borusyak et al. (2021). Notably, in the specification of Callaway and Sant’Anna (2021), we in-
clude both never-adopted plants and not-yet-adopted plants as control groups. These alternative
estimators yield similar results to our baseline findings.

11Our area-level analysis in Section 5 reveals the exit of small non-adopted firms alongside power-
loom diffusion, potentially reducing the statistical power in later post-treatment periods. Also, our
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plementation did not generate an immediate and significant increase in adult female

employment compared with non-powered plant in the same area. For child work-

ers, the analysis yields no statistically significant power adoption impact across all

post-treatment periods. Lastly, our overall labor demand findings closely mirror the

patterns observed for female adult workers, which is expected given their dominant

role in the workforce. Our DiD analysis, presented in Table 2, corroborates the

event study findings. For male adults, there is a statistically significant increase of

2.20 workers post adoption, more than doubling the control group’s mean of 1.77.

However, the changes for female adults and children are statistically insignificant,

with coefficients of 1.06 and -1.26 (with control mean 16.55 and 4.10), respectively.

We next examine the impact on wages. Figure 2 displays the corresponding event

study results. Log wages for both adult male and female workers increase by around

0.1 log points following the adoption of power looms, and this increase remains stable

throughout the post-treatment periods. In contrast, log wages for child workers do

not exhibit statistically significant changes, if anything, they show a slight decreasing

trend in the first and second post-treatment periods, accompanied by larger standard

deviations. Overall, plant-level mean wage increases by about 0.1 log points and is

statistically significant. Our DiD outcomes in Table 2 Panel B again corroborate

these findings. Estimated treatment coefficients for the log wages of male adults,

female adults, and overall workers are 0.08, 0.10, and 0.09, respectively, while the

coefficient for child log wages is -0.16 and statistically insignificant. Therefore, power

loom adoption resulted in an average wage increase of 10 percent for most workers,

with the exception of inexperienced child workers.

While our event study plots show minimal evidence of pre-trends, particularly

in cases where significant post-treatment effects are observed, we do note small but

significant coefficients in several pre-treatment periods. To assess the robustness

of our findings, we apply the methods proposed by Rambachan and Roth (2023)

to evaluate how our results withstand potential violations of the parallel trends

assumption. Specifically, we explore the extent to which our significant results could

be overturned under varying magnitudes of post-treatment trend violations. The

robustness analyses presented in Figures A4 and A5 demonstrate that the post-

treatment parallel trend violations would need to be substantially more severe than

the worst or the linear violation observed in the pre-treatment periods to invalidate

the significant treatment effects, thereby lending credibility to the causality of our

results.12

robustness test using a log employment specification shows less an ascending trend in treatment
effects, suggesting that the result is partially due to a level-based parallel trends assumption.

12In this empirical context, our confidence in the causality lies on the rapid technology diffusion
within a short span, suggesting the exogeneity of new technology availability, and on the area-
year fixed effects controlling for other confounding determinants of labor demand. However, it’s
important to note that the lack of pre-trend violations does not necessarily imply that technological
adoption at each plant is exogenous and free from selection. Instead, our theoretical framework in
Appendix B. shows that in an oligopsonistic labor market, more efficient firms—those with larger
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To summarize, our plant-level event study and DiD analysis show an upskilling

of the workforce following power-loom adoption, with no discernible destruction

of incumbent jobs—at least not within the annual span of our data. Both male

and female adult workers, engaged in distinct tasks, experienced moderate wage

increases, likely due to productivity gains. The rise in the portion of adult males,

presumably tasked with machine installation and maintenance, is consistent with

the technology-skill complementarity documented in the literature. The sustained

employment levels among female workers, despite being displaced from previous

routine tasks by power looms and relocated into new tasks involving more advanced

machines, suggest that displacement effects were offset by productivity and rein-

statement effects.13 A note of caution, however, is that the effects we’ve estimated

are relative changes compared to the never-treated and last-treated cohorts within

an area. Therefore, the observed changes in labor demand may not reflect simi-

lar aggregate-level outcomes if power loom adoption triggers equilibrium spillover

effects on non-adopters or if other important market dynamics are at play.14 Con-

sequently, we will explore aggregate effects and these additional dynamics in our

area-level analyses in the next section.

5 Area-level Analysis

To investigate the impact of power looms at the area level, we aggregate plant-

level employment and calculate an employment-weighted average of plant wages (i.e.

Wat ≡
∑

i∈a sitWit, where sit is the employment share of plant i in area a in year t).

We do this for all worker categories and by using the full sample, including power

switchers, powered entrants, and other observations excluded from the plant-level

analysis. We similarly define an employment-weighted intensity of power adoption

in an area, Eat. We then estimate the following area-level TWFE model,

Yat = µEat + αa + δt + ϵat, (2)

where Yat represents the area-level aggregate employment or the natural logarithm of

area-level average wages. We control for area fixed effects, αa, and year fixed effects,

δt. The coefficient of interest is µ, which captures all potential effects from changes

employment and higher wages—are more likely to adopt automation technologies, a prediction
that we also observe in our data.

13The data limitation prevents us from identifying individual workers and their job switches,
making it difficult to distinguish selection with aforementioned effects. However, the low wage
variance across nonadopted and adopted plants suggests that selection is less likely an issue for
adult female workers.

14In other words, with equilibrium spillover effects from imperfect market competition, the stable
unit treatment value assumption (SUTVA) condition will be violated for our event study and DiD
analysis (Roth et al., 2023).
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in power intensity (Table B1).15 We cluster our standard errors at the area-level.

Table 3 Panel A displays the regression results of employment. The results show

that a shift in area power intensity from 0 (no adoption) to 1 (full adoption) did

not significantly affect male adults and children. However it led to a statistically

significant reduction in employment for female adults and overall employment by

19% and 13%, respectively, compared to the control mean. Since the area power

intensity increased from 0 to 80% between 1904 and 1914, female adult employment

and total employment in the Fukui silk weaving industry were reduced by 15% and

10%, respectively. Table 3 Panel B further shows the impacts of area mechanization

on average wages. A unit increase in power intensity lifted log wage by 0.27 log

points for male adults, 0.12 log points for female adults, and 0.14 log points for

overall workers. No statistically significant effects are observed for child workers.

Therefore, the area-level results reveal more dampened employment effects and

stronger wage effects compared to plant-level outcomes. The equilibrium spillover

effects from strategic responses under imperfect market competition, and from the

resulting exit of low-productivity, low-wage plants due to intensified mechaniza-

tion, can generate these results, as we will elaborate in Section 6 and Appendix B..

Conversely, the entry of power-loom adopted plants should mechanically increase

employment and raise wages due to the productivity effects discovered in our plant-

level analysis. To show this, we isolate the entry effect by redoing the area-level

analysis described in Equation (2) with a sample that excludes powered entrants.

The results, shown in Table A2, reveal that now one unit increase in power inten-

sity was associated with a 32% and 25% decline in female and overall employment,

respectively, and increases of 0.22 and 0.1 log points in male and female log wages,

indicating the dominant role of spillover and exit effects. We further verify the net

exit and changes in market structure resulting from area power penetration by di-

rectly incorporating the number of plants and the employment concentration as the

area-level outcomes (Yat) in our estimation of Equation (2). The results reported in

Table 3 Panel C confirms our hypothesis: the transition from no power to full power

reduced the number of plants in the area by about 1.05 plants, where the average

is 4.49 in a non-electrified area. Meanwhile, the employment Herfindahl-Hirschman

Index (HHI) increased insignificantly by 0.046 points from a control mean of 0.5,

suggesting the exit of firms with relatively lower employment than new entrants.

Without powered entrants, as shown in Table A2 Panel C, area mechanization led

to a reduction of 1.5 plants and an increase of 0.08 points in HHI, both statistically

significant.

Lastly, we characterize the selection of the plants induced by power loom pene-

15The reason we are rather confident in using a simple TWFE regression here is that our event
study analysis reveals minimal dynamic effects from power loom adoption, and that exit and entry
effects are inherently instantaneous. It also facilitates direct comparison to the existing studies
using aggregate data.
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tration. To this end, we estimate the following equation to assess the determinants

of plant exits:

Exitit+1 = β1∆Eat+1 + β21(W < Med)at + β3
¨Eat+1 · ¨1(W < Medat) + uit, (3)

where Exitit+1 indicates whether a plant exits between t and t + 1, ∆Eat+1 is the

change in the power penetration between t and t + 1, and 1(Wage < Med)at is

an indicator for plants with wage below the median in area a at time t, serving as

a proxy for less efficient plants. The interaction term is defined using deviations

from the sample mean, denoted by Ẍ. The results reported in the first column of

Panel D shows that the penetration of power loom inducd the exit of plants and

that lower wage plants were more likely to exit. The impact of power loom adoption

on plant exit is about two times larger for low-wage plants than for high-wage

plants. To avoid the mechanical link between plant exit and area-level power-loom

intensity, we try an alternative specification that uses the lagged variable of ∆Eat

as an explanatory variable. The results reported in the second column indicate that

the results are robust in this alternative specification. Overall, our results show

that the penetration of new technology accelerates the exit of less efficient plants,

depressing area-level employment but raising average wages.

6 Theoretical Explanations for the Plant-level and

Area-level Results

To facilitate the interpretation of our estimation results, we build a theoretical model

in Appendix B. that integrates the task-based framework developed by Acemoglu

and Restrepo (2018a,b) with the oligopsony framework proposed by Berger et al.

(2022). Our model assumes that local labor markets are oligopsonistic, but prod-

uct and machine markets are perfectly competitive. These assumptions are realistic

given high commuting/immigration costs comparing to integrated product and ma-

chine markets at that era. The model can fully account for plant-level and area-level

empirical results outlined as follows:

(i) The model shows that workers directly displaced by new automation tech-

nologies are subject to a negative displacement effect on labor demand, offsetting

the positive productivity effect from enhanced efficiency (see Equation (B16)). In

our case, this explains why male adults, whose tasks are not replaced but possibly

extended, exhibit stronger labor demand compared to female adults and children,

whose tasks are directly susceptible to machine replacement. The retained adult fe-

male workers, reinstated to new tasks, benefit from the productivity effect, thereby

experiencing wage increases.

(ii) The model suggests that whether the increased labor demand from power
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machines and productivity gains manifests in increased employment or raised wages

hinges on the elasticity of labor supply (see Equations (B14) and (B15)). The

subdued employment response among adult females at the plant-level, alongside a

wage increase, can be thus ascribed to an inelastic intra-market labor supply for this

group. In contrast, the notable employment rise and moderate wage escalation for

adult males are likely to be a joint result of their more elastic intra-market labor

supply, which is reasonable given their lesser utilization in the industry, and the

spillover effects described next.

(iii) Under the assumption of greater intra-market labor supply elasticity com-

pared to inter-market elasticity (Assumption (B11)), the model predicts that in-

creased labor demand from an adopting plant will trigger both a decline in com-

petitors’ employment and an elevation in their wages (see Equation (B17)). The

intuition behind is that in a Cournot competition labor market, firms act as strate-

gic substitutes in employment and strategic complements in wage setting. Hence, at

the market level, we would expect to see a more subdued employment impact and

a more pronounced wage effect from power loom diffusion compared to plant-level

results. This is exactly what we find in our area-level analysis.

(iv) Additionally, the model exposes an extensive margin of business stealing.

Less efficient firms that forgo new technology adoption face increased labor costs

due to competitors’ automation and labor market competition, leading to continual

profit declines and eventual market exit (see Equation (B18)). This exit effect thus

aggravates the intensive spillover effects at the market level: overall market labor

demand diminishes and market wages rise as inefficient, low-wage firms are phased

out. Our area-level analysis confirms this market dynamic: with the proliferation of

power looms, low-wage firms are edged out. This dynamic explains the significant

decrease in female adult employment observed at the area level.

The consistency between the model’s predictions and the empirical findings

demonstrates that the local labor markets of our study can be effectively char-

acterized by the task-based framework’s representation of technological evolution

and the oligopsony model’s depiction of labor market dynamics.

7 Conclusion

This study examined the impact of automation of silk-weaving plants brought by

electrification on employment and wages across demographic groups using early

20th-century plant-level panel data from Japan. The plant- and area-level evidence

picture a remarkable dynamism brought to the local labor market by automation.

The technological change was skill-biased, as shown by the substantial increase in

employment and wages for adult male workers skilled in engineering jobs. The

automation technology was also displacing and destructive at least in the short-

12



run—the area-level employment for adult female workers engaged in manual tasks

decreased by 19 percent despite their productivity in new tasks being doubled. This

negative aggregate employment effect mainly stemmed from the the exit of less effi-

cient plants under rapid diffusion of new technologies, and was only partially miti-

gated by new powered entrants. Perhaps interestingly, our empirical findings about

the relatively rudimentary technologies during the period of factory electrification—

that labor demand was retained at adopted plants but destroyed due to market

dynamics—largely resonate with evidence newly discovered by the emerging liter-

ature on more recent automation technologies (Acemoglu et al., 2020; Aghion et

al., 2022). Unlike the modern literature, which focuses on business stealing effects

from product market competition, our study highlights a similar effect arising from

imperfect labor market competition, which was presumably pervasive during the

early modern periods. These findings suggest that technological displacement may

be more a consequence of market competition dynamics than of the technologies

themselves. Further research into how the combination of new technologies and

evolving market competition dynamics affects labor market demand is promising.
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Figure 1: The Plant-Level Impacts of Power Adoption on Employment
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(a) Male Adult
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(b) Female Adult
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(c) Child
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(d) Overall

Note: This figure reports the results of plant-level event studies on employment across dif-
ferent worker categories and overall. In particular, the dot plots are the estimated γk in
Equation (1), i.e. the coefficients for the lead and lag event-time dummies, and the error
bar indicates the 95% confidence intervals based on the standard errors clustered at the
plant level. Both plant fixed effects and area-by-year fixed effects are controlled. The esti-
mation follows the method proposed by Sun and Abraham (2021) and uses never-treated
and last-treated cohorts as control groups.
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Figure 2: The Plant-Level Impacts of Power Adoption on ln(Wage)
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(b) Female Adult
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(d) Overall

Note: This figure reports the results of plant-level event studies on employment across dif-
ferent worker categories and overall. In particular, the dot plots are the estimated γk in
Equation (1), i.e. the coefficients for the lead and lag event-time dummies, and the error
bar indicates the 95% confidence intervals based on the standard errors clustered at the
plant level. Both plant fixed effects and area-by-year fixed effects are controlled. The esti-
mation follows the method proposed by Sun and Abraham (2021) and uses never-treated
and last-treated cohorts as control groups.
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Table 1: Summary Statistics
NonPowered Plants

(Mean)
Powered Plants

(Mean)
Powered

- NonPowered
Total Worker Per Plant 22.42 34.14 11.71

[17.69] [31.92] (1.01)
- Male Adult Worker 1.77 4.69 2.93

[2.55] [5.77] (0.16)
- Female Adult Worker 16.55 26.91 10.36

[13.56] [25.38] (0.78)
- Child Worker 4.10 2.53 -1.57

[6.41] [5.35] (0.31)
Work Hour Per Day 11.46 11.68 0.22

[1.35] [1.17] (0.07)
Average Daily Wage Per Plant 16.87 23.60 6.73

[4.14] [4.20] (0.20)
- Male Adult Worker 14.31 26.51 12.20

[11.47] [11.17] (0.56)
- Female Adult Worker 17.60 23.71 6.11

[4.03] [4.22] (0.20)
- Child Worker 1.85 0.91 -0.94

[2.14] [1.34] (0.10)
Observations 2743 488 3231

Note: Means are reported. Standard deviations are reported in square brackets;
Standard errors are reported in parentheses

Table 2: The Plant-Level Effect of Power Introduction
on Employment and Wages

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on employment
Power 2.202 1.059 -1.264 1.997

(0.697) (1.954) (0.757) (2.365)
Control Means 1.77 16.55 4.10 22.42
N 3,231 3,231 3,231 3,231
Panel B: Effect on Ln(Wages)
Power 0.084 0.096 -0.163 0.092

(0.021) (0.017) (0.123) (0.018)
Control Means 3.15 2.94 0.85 2.89
N 2,001 3,220 1,882 3,231

Notes: This table reports the regression coefficients of
plant-level employment (Panel A) or the natural logarithm
of average wages (Panel B) on the indicator variable for
adopting power. The unit of observation is plant. Cluster-
ing robust standard errors against the plant-level correla-
tions are reported in parentheses. All specifications include
firm and area × year fixed effects.
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Table 3: The Area-Level Effect of Power Introduction on Employment
and Wages

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on Employment
Area Power Intensity 2.484 -14.679 -1.090 -13.303

(2.198) (6.332) (3.665) (7.017)
Control Means 7.73 76.81 20.10 104.64
N 898 898 898 898
Panel B: Effect on ln(Wage)
Area Power Intensity 0.269 0.120 0.045 0.141

(0.067) (0.029) (0.156) (0.033)
Control Means 3.13 2.94 0.86 2.88
N 736 898 647 898
Panel C: Effect on Market Structure

# of Plants HHI
Area Power Intensity -1.048 0.046

(0.362) (0.039)
Control Means 4.49 0.50
N 898 898
Panel D: Effect on Plant Exit between t and t+ 1
∆ Area Power Intensity 0.140 0.140

(0.051) (0.061)
Wage < Median 0.026 0.031

(0.013) (0.015)

∆ ¨Area Power Intensity 0.276 0.229

× ¨Wage < Median (0.094) (0.110)
∆ Area Power Intensity t, t+ 1 t− 1, t
N 2,826 2,582

Notes: This table reports the regression coefficients of area aggregate em-
ployment (Panel A), employment weighted average of the natural loga-
rithm of average wages (Panel B), or area-level market structure (Panel C)
on the employment weight averaged indicator variable for adopting power.
The unit of observations is area × year. Clustering robust standard errors
robust against the area-level correlations are reported in parentheses. All
specifications include area and year fixed effects. Panel D reports the re-
sults of regressing an plant-level exit dummy at period t+1 (where exit is
defined by the first year a plant disappeared in our data set) on the first
difference of area power intensity, the dummy variable indicating that the
plant wage is below the area-level median wage, the interaction between
the mean deviations of two variables. The second column reports the re-
sults of the specification with the lagged first difference of area power in-
tensity. All the observations in the first and the last year of panel data
and belonging to power entrants and power changers are dropped in this
analysis.
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Appendix A. Additional Figures and Tables

A.1 Historical Background and Dataset

Figure A1: Trend of Power Adoption
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Source: The panel dataset used in the main text.

Table A1: Composition of Sector Production in Early 20th Century Japan

A. Japan total B. Fukui Prefecture
Year 1909 1914 1909 1914
Agriculture 1,314,000 1,549,000 13,543 15,672
Manufacturing total 1,970,203 2,552,945 28,800 32,181
Textile 619,617 830,482 23,976 26,514
Weaving 265,331 326,467 22,399 26,514
Silk 100,234 102,482 21,116 24,821
Habutae 38,599 39,636 20,412 23,777
Mixture of silk & cotton 26,233 25,543 317 547

Cotton 116,412 150,386 303 333

Source: The data on Japan total are from Umemura et al. (1966), and Shinohara (1972),
pp.142-143. The data on Fukui Prefecture are from Statistical Yearbook of Fukui Prefec-
ture, 1909 and 1914 issues.
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A.2 Robustness on Event Study Estimation

Figure A2: Comparison of estimators for plant-level event-study estimation (em-
ployment)
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(b) Female adult
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(c) Child

-2
0

0
20

40
Av

er
ag

e 
ca

us
al

 e
ffe

ct

-4 -3 -2 -1 0 1 2 3 4
Periods since the event

OLS Sun-Abraham (2020)
Borusyak et al. (2021) de Chaisemartin-D'Haultfoeuille (2020)
Callaway-Sant'Anna (2020)

(d) Overall

Note: This figure reports a robustness check of the plant-level event studies on employ-
ment in Figure 1 under different estimators. In particular, we test with five estimators
that has been used in the literature: the OLS estimator, the Sun and Abraham (2021)
estimator (the baseline one used in the main text), the Callaway and Sant’Anna (2021) es-
timator, the De Chaisemartin and d’Haultfoeuille (2020) estimator, and the estimator in
Borusyak et al. (2021). In the case using Callaway and Sant’Anna (2021) estimator, we in-
clude also the not-yet-adopted firms in the control group, in addition to the never-treated
or last-treated plants used in our baseline estimation. Since the estimators of Callaway
and Sant’Anna (2021) and Borusyak et al. (2021) require more data for statistical power,
we replace the area-by-year fixed effects used in our main text with simply year effect and
county-by-year effect, respectively. We follow the suggestions in Roth (2024) to ensure
that the plots produced by the methods of Callaway and Sant’Anna (2021) and De Chaise-
martin and d’Haultfoeuille (2020) are comparable to conventional event-study plots.
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Figure A3: Comparison of estimators for plant-level event-study estimation (log
wage)
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(b) Female adult
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(c) Child
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(d) Overall

Note: This figure reports a robustness check of the plant-level event studies on log wage
in Figure 2 under different estimators. In particular, we test with five estimators that has
been used in the literature: the OLS estimator, the Sun and Abraham (2021) estimator
(the baseline one used in the main text), the Callaway and Sant’Anna (2021) estimator,
the De Chaisemartin and d’Haultfoeuille (2020) estimator, and the estimator in Borusyak
et al. (2021). In the case using Callaway and Sant’Anna (2021) estimator, we include
also the not-yet-adopted firms in the control group, in addition to the never-treated or
last-treated plants used in our baseline estimation. Since the estimators of Callaway and
Sant’Anna (2021) and Borusyak et al. (2021) require more data for statistical power, we
replace the area-by-year fixed effects used in our main text with simply year effect and
county-by-year effect, respectively. We follow the suggestions in Roth (2024) to ensure
that the plots produced by the methods of Callaway and Sant’Anna (2021) and De Chaise-
martin and d’Haultfoeuille (2020) are comparable to conventional event-study plots.
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Figure A4: Sensitivity analysis on parallel trends using relative magnitudes restric-
tions
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Note: This figure reports a robustness check of the parallel trend assumption required for
the plant-level event study analysis, employing the methods proposed by Rambachan and
Roth (2023). Specifically, it displays robust confidence intervals (95% including the true
parameter) under the restrictions that the maximum deviation from parallel trends in the
post-treatment period does not exceed an M̄ -fold of the worst pre-treatment trend devia-
tion. For the pre-treatment periods, we use periods from k = −4 to k = −2, same as the
ones we use in event study plots. For the assessed post-treatment effects, we average the
effects over periods k = 1 to k = 3. The analysis reveals that substantial post-treatment
violations of parallel trends would be necessary to nullify the observed significant treat-
ment effects on male adult employment, and male and female adult log wages.
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Figure A5: Sensitivity analysis on parallel trends using smoothness restrictions
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Note: This figure reports a robustness check of the parallel trend assumption required
for the plant-level event study analysis, employing the methods proposed by Rambachan
and Roth (2023). Specifically, it displays robust confidence intervals (95% including the
true parameter) under the restrictions that the maximum deviation from parallel trends
in the post-treatment period does not exceed a symmetric slope range [−M,M ] centered
on the linear extrapolation of pre-treatment trends. In conducting this robustness check,
we use pre-treatment periods from k = −4 to k = −2, mirroring the time frames in our
event study plots. The post-treatment effects are averaged over the post-treatment pe-
riods k = 1 to k = 3. The analysis reveals that only a considerable departure from the
linearly extrapolated pre-treatment trend approximating the magnitude of the original ef-
fect would overturn the significant treatment effects observed on male adult employment,
and on the log wages for both male and female adults.
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A.3 Additional Results on Area-level Impact

Table A2: The Effect of Area Power Intensity on Area Level Out-
comes (Powered Entrants Excluded)

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on Employment
Area Power Intensity -0.871 -24.206 -0.959 -26.036

(1.778) (6.479) (3.585) (7.689)
Control Means 7.74 76.63 19.45 103.82
N 882 882 882 882
Panel B: Effect on ln(Wage)
Area Power Intensity 0.223 0.100 0.050 0.106

(0.067) (0.029) (0.151) (0.032)
N 711 882 632 882
Panel C: Effect on Market Structure

# of Plants HHI
Area Power Intensity -1.505 0.081

(0.446) (0.039)
Control Means 4.47 0.50
N 882 882

Notes: This table reports the area-level regression results similar to the
analysis in the main text but using a subsample for aggregation. In
particular, the area-level data is now aggregated from a sample that
excludes plants with power loom adopted at entry, with discontinua-
tion in power use, and with only single observation year. This sample
is thus more restrictive and contain less measurement errors. It helps
to distinguish the dynamic effects of power loom diffusion in the local
labor market especially separated from the channel of power-equipped
new entrants. For other information see the note in Table 3.
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Table A3: The Effect of Area Power Intensity on Never
Adopted Plants

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on Employment
Area Power Intensity -0.171 0.993 -1.398 -0.575

(0.474) (1.597) (1.148) (2.014)
N 2,168 2,168 2,168 2,168
Panel B: Effect on ln(Wage)
Area Power Intensity 0.160 0.122 -0.299 0.133

(0.069) (0.038) (0.242) (0.047)
N 1,260 2,158 1,306 2,164

Notes: This table reports the results of the regression of area-level
power intensity on the employment and wages of never adopted
plants. The measure of area-level power intensity is same as the
one in Table 3.
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Appendix B. Theoretical Framework

In this section, we construct a theoretical framework to better interpret our empirical

findings in the main text, by integrating the task-based framework of Acemoglu and

Restrepo (2018a,b) with the oligopsony framework proposed by Berger et al. (2022).

We assume local labor markets are imperfectly competitive but the product and

machine markets are perfectly competitive. Our focus on an oligopsony setting in

the local labor market instead of a monopoly or oligopoly one (see, e.g., Acemoglu et

al. (2020); Koch et al. (2021)) is motivated by the fact that the silk-weaving plants

under our study predominantly produced one homogenous raw good, habutae, and

that wage dispersed significantly for different plants in our data. With a perfectly

competitive labor market, which is likely to be infeasible especially in our historical

context, plants would react to any technological or demand shocks exclusively by

adjusting employment levels, leaving wages unaffected. Nevertheless, our model

retains the business stealing effect highlighted in Acemoglu et al. (2020) and Aghion

et al. (2022), manifested through the competition in the local labor market.

Production. Consider a firm i located in a local labor market j populated with

number of firms nj. All firms in this market produce one homogeneous good with its

price normalized to one. As suggested by the task-based literature, the production

is achieved by completing a set of different tasks ranging from N − 1 to N :

lnYi = ln zi

∫ N

N−1

ln yi(x)dx, (B1)

where Yi represents total production of the good, y(i) denotes task-level production,

and zi stands for firm specific productivity. Each task is produced according to the

following technological regime:

yi(x) =


γl(x)li(x) + γm(x)mi(x) if x ∈ [N − 1, I]

γl(x)li(x) if x ∈ (I, I ′)

γh(x)hi(x) if x ∈ [I ′, N ],

(B2)

where I and I ′ represent technological and skill thresholds, and γ are continuous

functions indicating the productivity of three inputs: machine m, low-skilled labor

l, and high-skilled labor h, across different tasks. Tasks lying between N − 1 and

I can be carried out either by low-skilled labor l or machinery m in a perfectly

substitutive manner. Beyond I, a task can be only produced by human labor, and

thus I implies a technological constraint on current automation technologies. An

additional constraint in Equation (B2) is that low-skilled worker and high-skilled

worker conduct separate tasks with the boundary defined by I ′. In our case, this

constraint could arise from either distinct comparative advantages between men and
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women or social and cultural norms that dictated the roles of men and women during

that historical era. As a result, new automation technologies modeled as an increase

in I would directly replace low-skilled labor l but not high-skilled labor h.16

To simplify, we assume that machinery m is competitively supplied by external

producers at a fixed rate R. In contrast, both types of labor, l and h, are supplied

elastically in the local labor market.

Household and local labor market. We assume that the representative house-

hold in the local labor market j faces the following problem,

max
Ci,Li,Hi

Uj

C− L
ϕL+1

ϕL

ϕL+1
ϕL

− H
ϕH+1

ϕH

ϕH+1
ϕH


s.t. C =

∑
i∈j

WiLLi+
∑
i∈j

WiHHi +Πj, L =

(∑
i∈j

L
ηL+1

ηL
i

) ηL
ηL+1

, and H =

(∑
i∈j

H
ηH+1

ηH
i

) ηH
ηH+1

,

(B3)

where Li =
∫ N

N−1
li(x)dx and Hi =

∫ N

N−1
hi(x)dx are the firm-level labor inputs, and

Πj is the aggregated firm profits in location j. The use of the aggregate indexes L

andH, which do not correspond to any real aggregates, is a convenient way to model

the oligopolistic competition between mj firms in the local labor market j. Berger

et al. (2022) shows that this supply system can be derived from a microfundation

of heterogeneous agents making discrete job choices on heterogeneous firms. The

elasticity parameters ηL > 0 and ηH > 0 captures the extent of competition in the

local labor market, similar to the elasticity of substitution in a monopoly or oligopoly

setting. In other words, ηL and ηH capture the degree of differentiation among

employers within an area. The larger the ηL and ηH are, the less the employers

are differentiated, and the more competitive are the local labor markets. In the

extreme case where ηL → ∞ or ηH → ∞, the local labor market tends to perfect

competition and marginal products are equalized at a single wage in an area. In

addition, parameters ϕL > 0 and ϕH > 0 capture the labor supply elasticities at the

market level, which could potentially reflect either the household’s trade-off between

work and leisure or housework, or the labor market competition across different

locations, or both. As we will not explicitly model the between-market competition,

hereafter we omit the subscript j and focus on the analysis of a particular labor

market. Solving the household problem gives us the labor supply curve that firms

16While we follow the convention and use the terms “low-skilled” and “high-skilled,” one can
equally use alternative terms to distinguish these two types of labor as “routine” and “non-routine,”
or more accurately, “displaceable” and “non-displaceable.” The essential distinction lies in the na-
ture that the tasks conducted by one type of labor to be supplanted by automation in the impending
technological advance while the tasks of the other type remain unaffected or complemented. In
fact, under certain conditions, we can have “low-skilled” labor being paid even higher wage than
“high-skilled” labor before the introduction of the new automation technology.
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face:

WiS = S
1

ϕS
− 1

ηS S
1
ηS
i for S ∈ {H,L}, (B4)

where WiS is the wage of labor S setting by firm i.

Characterization. We now solve the firm’s optimization problem in two steps

and then characterize the market equilibrium.

Firstly, given machine price R and the firm-level optimal choices of wages and

input uses, firms optimally allocate resources into the production of different tasks.

Since low-skilled labor and machine are perfect substitutes for tasks between N − 1

and I, a firm’s optimal input choices on these tasks are determined by comparing

the marginal rate of substitution, γl(x)/γm(x), with the ratio of marginal costs,

mciL/mcm. Given our setting, the marginal cost for machine, mcm, is just the ma-

chine price R, while the marginal cost for low-skilled labor, mcl, is larger than the

firm wage, WiL, due to the fact that firms face an upward-sloping labor supply curve

under the existence of monopsony. In particular, we have mciL = WiL/µiL, where

µiL ∈ [0, 1] represents the inverse of firm-specific markdown on labor l, with the

expression we will derive below. If mciL
R

> γl(I)
γm(I)

, firm i’s input choice is technolog-

ically bounded, i.e. although using machines for tasks beyond I can be potentially

more productive or cost-saving than using human labor, such technology is currently

unavailable. Otherwise, firm i is not technologically constrained and will choose an

interior threshold I∗i < I. In the oligopolistic case where more productive firms will

employ more workers, pay higher wages, and have higher markdowns, as we will

show below, our model suggests that large firms, faced with higher marginal costs

on labor, is more likely to be technologically constrained. Consequently, our model

can predict that larger firms are more likely to adopt new automation technologies

following a technological breakthrough, which is consistent with our data. However,

to ease the analysis, we abstract from any ex-ante difference in the technological

thresholds among firms by assuming

mciL
R

>
γl(I)

γm(I)
∀i (B5)

.17 In other words, we assume that, prior to the coming of new power loom tech-

nology, all firms in our case had their input choices technological bounded, that is,

I∗i = I ∀i, and thus the adoption of the new automation technology (an increase in

I) will induce increased use of machinery and enhanced production efficiency.

17While the study of endogenous technological adoption in our framework is itself interesting,
it complicates our analysis by allowing additional adjustment on the endogenous technological
threshold, and adds little additional insights into our primary objective—assessing the technolog-
ical impact on labor demand. One interesting feature when we combine endogenous technology
adoption and oligopsony framework is that the adoption by one firm could potentially increase
the wages of other firms through oligopsonistic competition and thus force them to follow up in
adoption, generating technological diffusion.
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Given the same input prices across different tasks at firm level, a firm will equalize

the marginal product for tasks that utilize identical inputs (i.e. m, l, or h). Under

our Cobb-Douglas form of task aggregation, this results the same amount of inputs

being used across tasks utilizing the same input type. Thus we can rewrite the firm

production function in Equation (B1) as a function of firm level input uses (Mi, Li,

and Hi):

Yi = Bi(
Mi

I −N + 1
)I−N+1(

Li

I ′ − I
)I

′−I(
Hi

N − I ′
)N−I′ , (B6)

where Bi = zi exp

(∫ I

N−1

ln γm(x) +

∫ I′

I

ln γl(x) +

∫ N

I′
ln γh(x)dx

)
.

As a typical result of the task-based framework, the technological threshold I directly

enters the share term of the input that can be substituted (here L), leading to a direct

displacement effect under advancement in automation technology. In comparison,

factor-augmenting technological changes, represented by increasing in γ terms, only

affect the factor-neutral productivity, Bi, and thus always result in a positive effect

on labor demand.

Equation (B6) provides us the marginal product for each type of input use at

firm level, through which we can link to the labor supply side and characterize the

firm optimal choices. In particular, our second step is to solve the firm problem of

profit maximization:

Πi = max
Hi,Li,Mi

Yi −WiHHi −WiLLi −RMi (B7)

s.t. WiS

(
Si, S

∗
−i

)
= S

1
ϕS

− 1
ηS S

1
ηS
i and S

(
Si, S

∗
−i

)
=

[
S

ηS+1

ηS
i +

∑
k ̸=i

S
∗ ηS+1

ηS
k

] ηS
ηS+1

for S ∈ {H,L}.

Here the firm takes the actions of its competitors as given and a Nash equilibrium is

achieved when all firms in the local labor market are making their optimal choices.

The first order conditions are
∂Yi

∂Mi

= R (B8)

∂Yi

∂Si︸︷︷︸
Marginal product: mpSi

= WiS +
∂WiS

∂Si

∣∣∣∣
S∗
−i

Si︸ ︷︷ ︸
Marginal cost: mcSi

for S ∈ {H,L}.
(B9)

Following the derivation in Berger et al. (2022), we can rewrite Equation (B9) as

mpiS = WiS/µiS,where µiS =
εiS

εiS + 1
,

εiS :=

[
∂ lnWiS

∂ lnSi

∣∣∣∣
S−i

]−1

=

[
(1− eiS)

1

ηS
+ eiS

1

ϕS

]−1

and eiS =
WiSSi∑
i WiSSi

.
(B10)

Here, µiS denotes the inverse of the markdown of firm i on input S ∈ {H,L}, εiS
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is the inverse of the firm’s wage elasticity of labor supply on S, and eiS denotes

the firm’s share of input S’s wage bill in the local labor market. In the case where

ηS > ϕS, i.e. the substitution between firms within the market is more elastic

than the market-level labor supply elasticity, firms with higher marginal products

will offer higher wages, employ more workers, attain a larger share of the labor

market, and end up facing a less elastic labor supply curve and experiencing a higher

markdown (i.e. greater market power). Given that this is the most relevant case in

the empirical literature (Berger et al., 2022), we will maintain this assumption in

our analysis of technological impact, i.e.

ηS > ϕS for S ∈ {H,L} (B11)

.

Our final step of characterization is to integrate the labor demand and labor

supply sides by using wage rate, WiS. In particular, from Equations (B4), (B6)

and (B10), we have

WiL = µiLmpLi = µiL(I
′ − I)Yi/Li (labor demand of L)

WiL

(
Li, L

∗
−i

)
= L

1
ϕL

− 1
ηLL

1
ηL
i (labor supply of L),

(B12)

and
WiH = µiHmpHi = µiH(N − I ′)Yi/Hi (labor demand of H)

WiH

(
Hi, H

∗
−i

)
= H

1
ϕH

− 1
ηH H

1
ηH
i (labor supply of H).

(B13)

The market equilibrium for this local economy is thus defined as a set of input uses

{Mi, Li, Hi}i∈j and firm-specific wages {WiL,WiH}i∈j such that, given the machine

price R, the Equations (B8), (B12) and (B13) are satisfied for each firm i in the

local labor market j.

Technological impact. With above framework in hand, we are now poised to

examine the influence of new technology adoption on both a firm’s own labor demand

and that of its competitors, providing context for interpreting our empirical results.

Specifically, we characterize a technology adoption event as an increase in the I

for a particular firm i while keeping other competing firms’ Is unchanged. We

first analyze the first-round effect of a technology adoption event, i.e. how changes

in Ii affect the firm i’s optimal allocations, without considering any subsequent

interactions and spillover effects arising from labor market competition triggered by

this technological shift.18 Combining the labor demand and labor supply equations

in Equations (B12) and (B13) to obtain equilibrium employment and wages, and

18Alternatively, this is the case of a monopsonistic firm in the local labor market.
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then taking derivatives, we have

d lnWiL

dI
=

1

1 + ηL

(
d lnµiL

dI
+

d ln(I ′ − I)

dI
+

d lnYi

dI

)
+

ηL − ϕL

ϕL(1 + ηL)

d lnL

dI

d lnLi

dI
=

ηL
1 + ηL

(
d lnµiL

dI
+

d ln(I ′ − I)

dI
+

d lnYi

dI

)
+

ϕL − ηL
ϕL(1 + ηL)

d lnL

dI
,

(B14)

and
d lnWiH

dI
=

1

1 + ηH

(
d lnµiH

dI
+

d lnYi

dI

)
+

ηH − ϕH

ϕH(1 + ηH)

d lnH

dI

d lnHi

dI
=

ηH
1 + ηH

(
d lnµiH

dI
+

d lnYi

dI

)
+

ϕH − ηH
ϕH(1 + ηH)

d lnH

dI

(B15)

.19 Notably, equations in Equations (B14) and (B15) can be rewritten as

d ln(WiLLi)

dI
=

d lnµiL

dI︸ ︷︷ ︸
Markdown effect <0

+
d ln(I ′ − I)

dI︸ ︷︷ ︸
Displacement effect <0

+
d ln(Yi/Li)

dI︸ ︷︷ ︸
Productivity effect >0

d ln(WiHHi)

dI
=

d lnµiH

dI︸ ︷︷ ︸
Markdown effect <0

+
d ln(Yi/Hi)

dI︸ ︷︷ ︸
Productivity effect >0

(B16)

.20 It is thus clear from Equation (B16) that an increase in I would generate a more

positive impact on high-skilled labor demand (WHH) compared to low-skilled labor

demand (WLL) ceteris paribus since the latter faces an additional, negative direct

displacement effect. This could explain why we observe a stronger overall demand

impact on male adults compared to female adults post power-looms adoption in our

estimation results, indicate the task-biased nature of the automation technologies

during the historical time.21

Given that elastic labor is inherent in our oligopsony setting (i.e. even if the la-

bor supply is perfectly inelastic at market level firms can still adjust workers as long

as η > 0), the extent of technological impact on labor employment versus wages de-

pends on the wage elasticity of labor supply from within-market competition, i.e. the

level of imperfect labor market competition. By comparing the equations inEqua-

tions (B14) and (B15), it is clear that the impact of technological change would be

larger on employment than wage when η is large, i.e. when the labor market is more

19In particular, the formulas for the equilibrium employment and wages are WiL =

(µiL(I
′ − I)Yi)

1
1+ηL L

ηL−ϕL
ϕL(1+ηL) , Li = (µiL(I

′ − I)Yi)
ηL

1+ηL L
ϕL−ηL

ϕL(1+ηL) , and WiH = (µiH(N −
I ′)Yi)

1
1+ηH H

ηH−ϕH
ϕH (1+ηH ) , Hi = (µiH(N − I ′)Yi)

ηH
1+ηH H

ϕH−ηH
ϕH (1+ηH ) .

20Acemoglu and Restrepo (2019) derive a decomposition equation of technological impact similar
to Equation (B16). In their setting, labor inputs are perfectly inelastic, and thus demand shocks
would entirely manifest as changes in wages. Moreover, our oligopolistic framework brings an
additional markdown effect, which will be negative under Assumption (B11), reflecting the labor
demand depression effect from increased labor market power.

21When the machine supply is perfect elastic, the net of the displacement effect and productivity
effect is always positive. While the markdown effect is negative under Assumption (B11), it is an
indirect and second order effect following the direct demand changes, thus will not alter the signs.
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competitive.This is intuitive: in a more competitive labor market, a productive firm

can more easily poach workers from its competitors without significantly increas-

ing wages. Conversely, in a highly oligopolistic labor market, expanding the labor

force necessitates substantial wage increases, thus deterring firms from augmenting

employment following the adoption of more efficient technologies. Therefore, our

event study findings, which show a relative wage increase for female adult workers

at adopting firms compared to non-adopters, alongside a subdued employment im-

pact, could be attributed to the inelastic labor supply of female adult workers. In

contrast, the marked increase in employment for male adult workers, disproportion-

ate to their wage increase, may be ascribed to a more elastic labor supply and a

more competitive labor market. This is consistent with the lower use of male adults

in the weaving sector of the local labor markets. However, this explanation does

not entirely capture the dynamics at play, as the event study outcomes derived from

comparing treated and non-treated groups may also be shaped by strategic behavior

under oligopsonistic competition, as explored subsequently.

To analyze the strategic responses of competitor firms upon the technology adop-

tion by firm i, we can again use the equilbrium employment and wage that derive

Equations (B14) and (B15), but now substituting firm i with firm k ̸= i:

d lnWkS

dI
=

1

1 + ηS

d lnµkS

dekS

dekS
deiS

deiS
dI︸ ︷︷ ︸

+

+
ηS − ϕS

ϕS(1 + ηS)

d lnS

dSi

dSi

dI︸ ︷︷ ︸
+

d lnSk

dI
=

ηS
1 + ηS

d lnµkS

dekS

dekS
deiS

deiS
dI︸ ︷︷ ︸

+

+
ϕS − ηS

ϕS(1 + ηS)

d lnS

dSi

dSi

dI︸ ︷︷ ︸
−

(B17)

. This shows us the second-round effect induced by the first-round own effect of

technological adoption. Under Assumption (B11), the first term on the right hand

side of two equations in Equation (B17) is positive, reflecting that a reduced market

share encourages competing firms to offer higher wages and increase employment.

However, the second term on the right hand side will be positive for wage (WkS)

but negative for employment (Sk), reflecting the firm’s adjustment of optimal labor

input choices under a less elastic labor supply curve resulted from the increased

local market employment. It turns out that the effect of the second term, result-

ing from the changes in aggregate labor indexes (L and H), would dominate the

effect of the first term. In other words, if a firm that has adopted new technology

increases its employment to meet higher labor demand, then, under Assumption

(B11), this would induce its competitors to reduce employment and increase wage

levels. The intuition behind this result is simply that firms are strategic substitutes

in employment and strategic complements in wage setting under Cournot compe-

tition. Consequently, in our context, any employment increase post power loom

adoption observed in our event study analysis may be overestimated, as the com-
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petitors (i.e. the control group) are likely to respond simultaneously by reducing

their employment. Conversely, the wage increase detected in the event study could

be underestimated, given that competitors are correspondingly bidding up wages.

This scenario is particularly pertinent for male adult workers, where we have ob-

served a substantial rise in employment but only a relatively modest increase in

wages. For female adult workers, the strategic responses of competitor firms are

likely to be less pronounced due to a limited labor demand increase of adopted firms

under highly inelastic labor supply (i.e. ηL is low and close to ϕL). This model

characterization also predicts that, at (local labor) market level, we would observe a

more subdued increase in employment and a more significant rise in wages as power

loom adoption proliferates, compared to the plant-level results. This is exactly what

we observe in our area-level results.

The strategic response of competitors upon a firm’s adoption of new technology

and subsequent labor demand increase thus introduces an intensive margin of the

business stealing effects, akin to what is highlighted in monopoly or oligopoly settings

(Acemoglu et al., 2020; Aghion et al., 2022). Facing a left-shifted labor supply curve,

those competitors would have to reduce labor inputs and, consequently, their output

and market shares. In addition, an extensive margin of business stealing, operating

under a similar mechanism, also comes into play in our framework. To see this, note

that the profit of a firm can be written as

Πi = Yi [1− (1 + µiL) (I
′ − I)− (1 + µiH) (N − I ′)] (B18)

. This profit is greater for more productive firm that achieve a larger production

(Yi) and higher markdowns (i.e. low values of µiL and µiH). Confronted with their

competitors’ automation and increased labor demand, “luddite” firms that refuse

power adoption are forced to contend with more costly labor, resulting in reduced

output, eroding market shares, and shrinking markdowns (i.e. increase in µ’s). As

a result, non-powered firms experience a continual decrease in profits along with

intensified mechanization in the local market. This attrition could thus lead to

the exit of the least productive firms when their profits turn negative or plummet

below operational fixed costs. This extensive margin of business stealing works in

the same direction as the intensive margin at the market level: it reduces overall

market employment and possibly elevates market wages by stripping out low-pay

firms.22 This prediction again finds support in our area-level results, which indicate

a significant reduction in area employment among female workers, despite plant-level

data showing stable employment figures. Furthermore, we show direct evidence of

a reduction in firm numbers and the exit of low-wage firms concurrent with the

22In this case, there is another counteracting effect on market wages: the exit of firms reduces
labor market competition, potentially allowing surviving firms to exert greater labor market power
and suppress wages. However, as the exiting entities are typically the least efficient and smallest
firms, the net effect on market wages remains an empirical question.
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diffusion of power looms.

Therefore, our model illustrates that even when new technologies intrinsically

generate a sufficiently large productivity effect (and potentially also a reinstatement

effect that we abstract here) and augment labor demand at adopting firms, the

spillover effects—encompassing both the intensive and extensive margins of busi-

ness steeling—could still dampen overall labor employment, leading to the observa-

tion of labor displacement at market level. In fact, in the case of perfectly elastic

labor markets (ηS, ϕS → ∞), productivity-boosting technological adoption invari-

ably enhances labor demand (see Equations (B14) and (B15)), and eliminates any

spillover effects that would otherwise dampen market labor employment (see Equa-

tion (B17)). One potential force that could offset the negative spillover effects on

market employment is the entry of high productivity and high wage firms with new

technologies adopted. This behavior depends on fixed cost, entry cost, and the pro-

ductivity draw of new firms, along with other market structure parameters. The net

effect on market employment when all market dynamics are incorporated remains an

empirical question although the market wage levels always rise up. We summarize

the signs of all potential effects at market level in Table B1.

Table B1: Market-level Impact of Technological Diffusion

Adoption Effect Spillover Effect Exit Effect Entry Effect

Market Employment + - - +
Market Mean Wage + + + +

Notes: This table reports our model predictions of various effects of new automation technol-
ogy diffusion on market employment and wage level under Assumption (B5) and Assumption
(B11). The adoption effect depicts the direct first-round effect of the technology adoption of a
firm. The spillover effect describes the strategic responses of competitors located in the same
labor market induced by the adoption effect due to oligopsonistic competition. Exit effect in-
dicates the exit of marginal firms further induced by this spillover effect that raises market
wage. Finally, entry effect depicts the entry of new technology adopted firms, which have high
productivity and wage levels.
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