# Skill-Replacing Technology and Bottom-Half Inequality

Oren Danieli

NBER Wage Dynamics in the 21st Century, Fall 2024

# Inequality Trends at the Bottom 50%

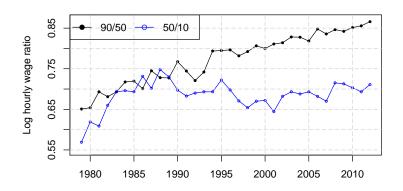


Figure: 90/50 and 50/10 Log Hourly Wage Ratio

Quantiles are calculated for all workers with positive earnings at the hours level, using sample weights multiplied by hours worked. Source: CPS Outgoing Rotation Groups

# Leading Hypotheses

In the early 1980s, inequality is rising in both parts of the distribution

Skill-Biased Technological Change (Katz & Murphy, 1992)

In late 1980s - 1990s inequality decreases at the bottom

- "Wage Polarization" decline in middle wages Figure
- Routine-Biased Technological Change (Autor, Katz & Kearney, 2006; Acemoglu & Autor, 2011)
- Decrease in demand for workers performing routine tasks
- Key support: job/employment polarization (Goos et al., 2014)

- Why should middle wages relatively decline?
  - Routine workers are dispersed almost equally at bottom 50%
  - Figure

- Why should middle wages relatively decline?
  - Routine workers are dispersed almost equally at bottom 50%
  - ▶ Figure
- Why did middle wages stopped declining around 2000?
  - Employment polarization continues long after

- Why should middle wages relatively decline?
  - Routine workers are dispersed almost equally at bottom 50%
  - Figure
- Why did middle wages stopped declining around 2000?
  - Employment polarization continues long after
- Why does the market adjusts almost entirely through quantities?
  - Price changes (wages) is too small to generate trend in wages
    - Autor, Katz & Kearney (2005) and Firpo, Fortin & Lemieux (2013)

- Why should middle wages relatively decline?
  - Routine workers are dispersed almost equally at bottom 50%
  - ▶ Figure
- Why did middle wages stopped declining around 2000?
  - Employment polarization continues long after
- Why does the market adjusts almost entirely through quantities?
  - Price changes (wages) is too small to generate trend in wages
    - Autor, Katz & Kearney (2005) and Firpo, Fortin & Lemieux (2013)

This Paper: A new theory for the trends in the bottom 50% of the income distribution that addresses these challenges

# This Paper

- Theory
  - Small (but important) modification to RBTC
  - Skill-Replacing RBTC
  - $\bullet$  Tech does not (directly) replace workers it replaces their skill

# This Paper

- Theory
  - Small (but important) modification to RBTC
  - Skill-Replacing RBTC
  - Tech does not (directly) replace workers it replaces their skill
- New Empirical Facts
  - Decline in return to skill in routine occupations
  - Reallocation of low-skill workers into routine occupations
  - Interactive-Fixed-Effect-Model

# This Paper

- Theory
  - Small (but important) modification to RBTC
  - Skill-Replacing RBTC
  - Tech does not (directly) replace workers it replaces their skill
- New Empirical Facts
  - Decline in return to skill in routine occupations
  - Reallocation of low-skill workers into routine occupations
  - Interactive-Fixed-Effect-Model
- Oecomposition
  - 93% of wage polarization can be attributed to SR-RBTC
  - Skewness Decomposition



# Assumptions

Building on Jung and Mercenier (2014) and Cortes (2016)

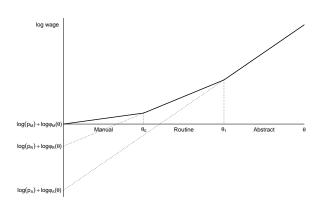
- ullet Workers have one-dimensional skill  $heta_i$ 
  - Most results hold for multi-dimensional skill
- Three occupations: Manual, Routine, Abstract
- Key Assumption: Comparative advantage

$$\forall \theta: \frac{\partial \log \varphi_{M}\left(\theta\right)}{\partial \theta} < \frac{\partial \log \varphi_{R}\left(\theta\right)}{\partial \theta} < \frac{\partial \log \varphi_{A}\left(\theta\right)}{\partial \theta}$$

**Theorem (JM):** Under these assumptions, there exist two thresholds  $\theta_0, \theta_1$  such that  $\theta < \theta_0$  sort into M,  $\theta_0 < \theta < \theta_1$  sort into R and  $\theta_1 < \theta$  sort into A.

→ General Equilibrium

# Jung & Mercenier Sorting



Focus only on effect on the routine production  $\varphi_R(\theta_i; \tau)$ 

ullet au is the technology that is common across all workers

Focus only on effect on the routine production  $\varphi_R(\theta_i; \tau)$ 

- ullet au is the technology that is common across all workers
- Example 1: share of tasks automated

Focus only on effect on the routine production  $\varphi_R(\theta_i; \tau)$ 

- ullet au is the technology that is common across all workers
- Example 1: share of tasks automated
- Example 2: quality/quantity of automation capital

Focus only on effect on the routine production  $\varphi_R(\theta_i; \tau)$ 

- ullet au is the technology that is common across all workers
- Example 1: share of tasks automated
- Example 2: quality/quantity of automation capital
- ullet  $\varphi_R$  increases in both skill  $\theta_i$  and technology au

Focus only on effect on the routine production  $\varphi_R(\theta_i; \tau)$ 

- ullet au is the technology that is common across all workers
- Example 1: share of tasks automated
- Example 2: quality/quantity of automation capital
- ullet  $\varphi_R$  increases in both skill  $\theta_i$  and technology au
- RBTC is  $\tau\uparrow$

Focus only on effect on the routine production  $\varphi_R(\theta_i; \tau)$ 

- ullet au is the technology that is common across all workers
- Example 1: share of tasks automated
- Example 2: quality/quantity of automation capital
- ullet  $\varphi_R$  increases in both skill  $\theta_i$  and technology au
- RBTC is  $\tau \uparrow$

Define RBTC type  $\epsilon$  as

$$\epsilon = \frac{\partial^2 \log \varphi_R}{\partial \theta_i \partial \tau}$$

- $\epsilon = 1$  skill neutral similar to Acemoglu & Autor (2011)
- $\epsilon > 0$  skill enhancing
- $\epsilon < 0$  skill replacing

# Skill Replacing Technology

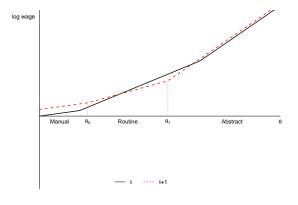
I will focus on the case of Skill-Replacing RBTC

• Increase in au when  $\epsilon < 0$ 

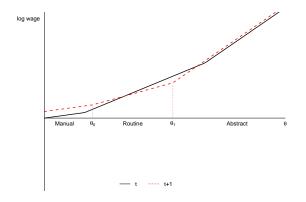
#### Examples:

- Arithmetic skills are replaced with calculators
- Memory skills are replaced with computers
- Physical strength is replaced with machinery

# First Stage: Wage Polarization



# First Stage: Wage Polarization

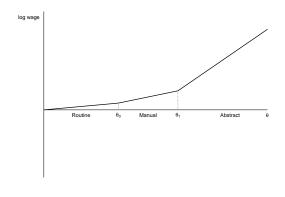


# 1. Why should middle wages relatively decline?

A: Because these are the highest skill routine workers

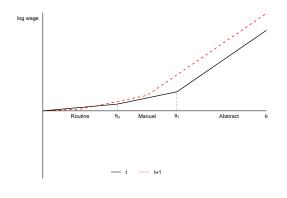
# Second Stage: Bottom 50% Inequality Rises

Large SR-RBTC: comp. advantage flips  $\frac{\partial \log \varphi_R(\theta;\tau)}{\partial \theta} < \frac{\partial \log \varphi_M(\theta)}{\partial \theta}$ 



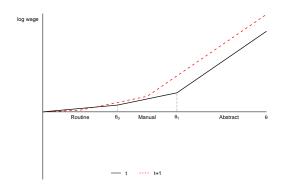
# Second Stage: Bottom 50% Inequality Rises

Large SR-RBTC: comp. advantage flips  $\frac{\partial \log \varphi_R(\theta;\tau)}{\partial \theta} < \frac{\partial \log \varphi_M(\theta)}{\partial \theta}$ 



# Second Stage: Bottom 50% Inequality Rises

Large SR-RBTC: comp. advantage flips  $\frac{\partial \log \varphi_R(\theta;\tau)}{\partial \theta} < \frac{\partial \log \varphi_M(\theta)}{\partial \theta}$ 



#### 2. Why did middle wages stopped declining around 2000?

A: Middle-wage workers are no longer in the routine occupation

bottom 50% inequality could increase

# List of New Predictions

Decline in return to skill in routine occupations

# List of New Predictions

- Decline in return to skill in routine occupations
- 2 Routine workers gradually become less skilled
  - Eventually, routine workers have less skill than manual

# List of New Predictions

- Decline in return to skill in routine occupations
- 2 Routine workers gradually become less skilled
  - Eventually, routine workers have less skill than manual
- Soutine workers become more concentrated at lower wages

# Empirical Results

#### **IFEM**

#### Skill is not directly observed

• I use panel data, assume that skill is constant over time Use Interactive Fixed Effect Model (IFEM) • Why?

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \frac{\alpha_{jt}}{\beta_{i}} \theta_{i} + \varepsilon_{ijt}$$

*i* - worker, *j* - 3 occupation categories, *t* - year and  $X_{it}$  experience  $^{2}$ .

#### We are interested in:

- 1 How  $\alpha_{routine,t}$  changes with time
- ② How average routine skill  $\frac{1}{N_R} \sum_{i \in R} \widehat{\theta}_i$  change

#### **IFEM**

#### Skill is not directly observed

• I use panel data, assume that skill is constant over time Use Interactive Fixed Effect Model (IFEM) • Why?

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \theta_i + \varepsilon_{ijt}$$

*i* - worker, *j* - 3 occupation categories, *t* - year and  $X_{it}$  experience  $^2$ .

#### We are interested in:

- 1 How  $\alpha_{routine,t}$  changes with time
- ② How average routine skill  $\frac{1}{N_R} \sum_{i \in R} \widehat{\theta}_i$  change

#### **IFEM**

#### Skill is not directly observed

• I use panel data, assume that skill is constant over time Use Interactive Fixed Effect Model (IFEM) • Why?

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \frac{\alpha_{jt}}{\beta_{i}} \theta_{i} + \varepsilon_{ijt}$$

*i* - worker, *j* - 3 occupation categories, *t* - year and  $X_{it}$  experience  $^{2}$ .

#### We are interested in:

- 1 How  $\alpha_{routine,t}$  changes with time
- ② How average routine skill  $\frac{1}{N_R} \sum_{i \in R} \widehat{\theta}_i$  change

# Estimation

**Problem:** Measurement error in  $\widehat{\theta_i}$  will create bias in LS estimates for  $\alpha_{jt}$ 

#### Estimation

**Problem:** Measurement error in  $\widehat{\theta}_i$  will create bias in LS estimates for  $\alpha_{jt}$ 

**Solution:** Use an IV - years of schooling  $S_i$ 

- Use method of moments similar to 2SLS
- Intuition:averaging over many workers reduces the error

#### Estimation

**Problem:** Measurement error in  $\widehat{\theta}_i$  will create bias in LS estimates for  $\alpha_{jt}$ 

**Solution**: Use an IV - years of schooling  $S_i$ 

- Use method of moments similar to 2SLS
- Intuition:averaging over many workers reduces the error

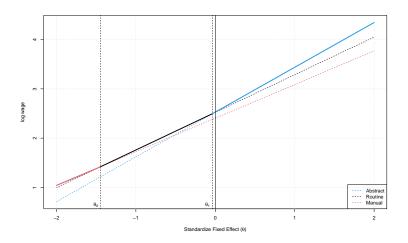
**Concern:** What if the IV is invalid?

- Sensitivity analysis (Andrews et al., 2017) bias is small
- Weighted average of return to skills correlated with  $S_i$

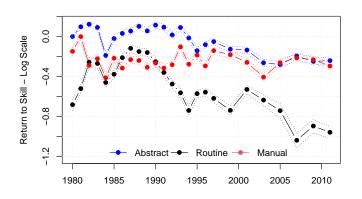
→ Details

# Results for 1-Year: 1987

Predicted log wage in each occupation as a function of skill  $\boldsymbol{\theta}$ 



## Long Term Trend of $\alpha_{jt}$



▶ 1-Digit Occupational Category

Can we just use years of schooling  $S_i$  as a proxy for skill?

Can we just use years of schooling  $S_i$  as a proxy for skill?

 No. Composition of workers changes both by education (Carneiro and Lee, 2011) and by occupation (Cortes, 2016)

Can we just use years of schooling  $S_i$  as a proxy for skill?

- No. Composition of workers changes both by education (Carneiro and Lee, 2011) and by occupation (Cortes, 2016)
- IFEM: allows the link from skill to education ("first stage") to change by year and occupation

Can we just use years of schooling  $S_i$  as a proxy for skill?

- No. Composition of workers changes both by education (Carneiro and Lee, 2011) and by occupation (Cortes, 2016)
- IFEM: allows the link from skill to education ("first stage") to change by year and occupation

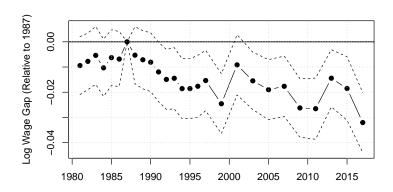
An alternative approach: look at changes within person

- Are less educated routine workers see a larger wage growth?
- For workers in routine occupations estimate:

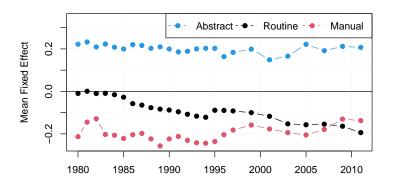
$$\log w_{it} = \frac{\gamma_t S_i}{\gamma_t S_i} + \psi_t + \theta_i + \rho_t X_{it} + \varepsilon_{ijt}$$

Fixed-effects solve change in composition

### Reduced Form Results

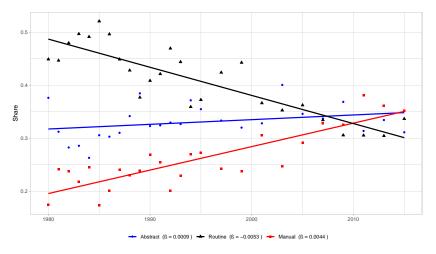


## Decline in Skill in Routine Occupations



▶ 1-Digit Occupational Category

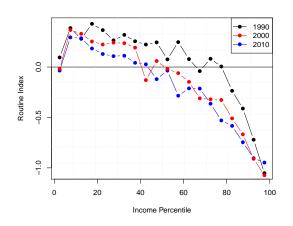
## Dynamics: Decline in New Entries of Middle-Skilled



Share of middle-skilled workers who join each occupational category

## Routine by Income Percentile

Routine task intensity measured by occupation with O\*NET



## Quantifying the Role of SR-RBTC

Using Skewness Decomposition

## Why Decompose?

#### SR-RBTC is consistent with the data

- But is it large enough to explain the full wage trend?
- Or maybe other explanations also play a role

### This is the motivation for decomposition exercise

- Which share of the overall trend can be attributed to different hypotheses
- Focus in the period of "wage polarization"
- Inequality at the bottom is relatively stable afterwards

## Skewness Decomposition

Can measure wage polarization with the third-moment: Skewness

$$\mu_3(Y) = E\left[\left(\frac{Y-\mu}{\sigma}\right)^3\right]$$

## Skewness Decomposition

Can measure wage polarization with the third-moment: Skewness

➤ Skewness Over Time → Influence Function

$$\mu_3(Y) = E\left[\left(\frac{Y-\mu}{\sigma}\right)^3\right]$$

Similar to variance, skewness has a simple decomposition

$$\mu_{3}\left(Y\right) = \underbrace{E\left[\mu_{3}\left(Y|X\right)\right]}_{\textit{Within}} + \underbrace{\mu_{3}\left(E\left[Y|X\right]\right)}_{\textit{Between}} + \underbrace{3\textit{COV}\left(E\left[Y|X\right],\textit{V}\left[Y|X\right]\right)}_{\textit{Correlation}}$$

### Interpretation

$$\mu_{3}(Y) = \underbrace{E\left[\mu_{3}(Y|X)\right]}_{Within} + \underbrace{\mu_{3}\left(E\left[Y|X\right]\right)}_{Between} + \underbrace{3COV\left(E\left[Y|X\right],V\left[Y|X\right]\right)}_{Correlation}$$

### Set X to be occupation

- Within component non-occupation explanations (residual)
- Between component skill-neutral RBTC: decrease in routine wages
  - Should be main change in Acemoglu & Autor (2011) ( $p_R \downarrow$ )
- Correlation component higher if:
  - High paying occupations have higher inequality.
  - Low paying occupations have lower inequality.
  - SR-RBTC: decrease in inequality within (low-paid) routine occupations
  - Captures violation of ignorability

## Skewness Decomposition by Occupation

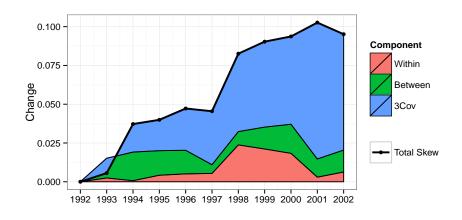


Figure: Skewness Decomposition Changes 1992-2002



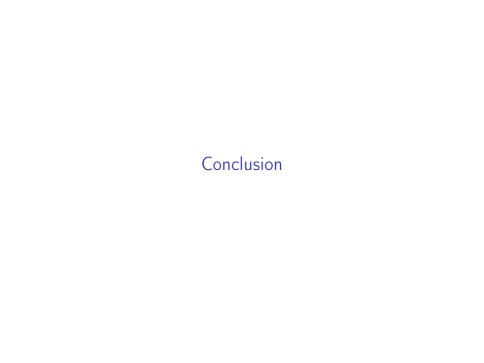
## Changes in Variance

- Increase in the covariance component is driven by within-occupation inequality Details
- Inequality is increases at high-paying and decreases at low-paying occupations
- This decrease in inequality is concentrated in routine occupations

## Changes in Variance

- Increase in the covariance component is driven by within-occupation inequality Petails
- Inequality is increases at high-paying and decreases at low-paying occupations
- This decrease in inequality is concentrated in routine occupations

3. Why does the market adjust through quantities?
A: Significant wage changes within routine occupations



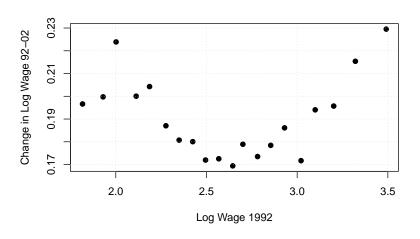
## Key Takeaways

- SR-RBTC model can explain the puzzles with RBTC
  - Why middle wage decline in 1990s
  - Why inequality at the bottom fluctuates
  - Why previous decomposition methods did not work
- 2 Predictions of the model are verified in the data
- Skewness Decomposition shows this explains most of the trend
  - R-package available at CRAN

# Thank You!



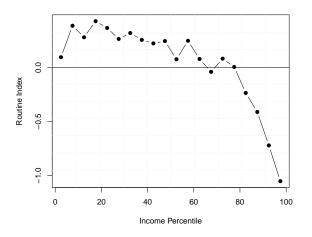
## Wage Growth by 5% Bins





## Routine Level by Income Percentile

Replication of Figure in Autor & Dorn (2013, Fig 4)



Routine index is defined using O\*NET data Details





### Routine Index O\*NET

Following Acemoglu-Autor (2011) use O\*NET to take the average of

- Pace determined by speed of equipment
- Controlling machines and processes
- Spend time making repetitive motions.
- Importance of repeating the same tasks
- Importance of being exact or accurate
- Structured v. Unstructured work (reverse)

## Proposition 1

**Proposition:** Let  $w_a < w_b$  denote wages of two routine workers.

The effect of RBTC  $(\tau\uparrow)$  on the wage ratio  $\frac{w_b}{w_a}$  depends on

$$sign\left(rac{\partial rac{w_b}{w_a}}{\partial au}
ight) = sign\left(1-\sigma
ight)$$



### **RBTC**

Focus only on effect on the routine occupation. RBTC is  $\tau\uparrow$ 

$$\varphi_{R}\left(\theta_{i};\tau\right)=\left(\theta_{i}^{\frac{\sigma-1}{\sigma}}+ au^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- $\sigma=1$  skill neutral similar to Acemoglu & Autor (2011)
- ullet  $\sigma < 1$  skill enhancing
- $\sigma > 1$  skill replacing
- Return

## General Equilibrium • Return

Total amount produced from each intermediate good

$$M = \int_{\theta_{min}}^{\theta_0} \varphi_M(\theta) d\theta \quad R = \int_{\theta_0}^{\theta_1} \varphi_R(\theta) d\theta \quad A = \int_{\theta_1}^{\theta_{max}} \varphi_A(\theta) d\theta$$

## General Equilibrium • Return

Total amount produced from each intermediate good

$$M = \int_{\theta_{min}}^{\theta_0} \varphi_M(\theta) d\theta \quad R = \int_{\theta_0}^{\theta_1} \varphi_R(\theta) d\theta \quad A = \int_{\theta_1}^{\theta_{max}} \varphi_A(\theta) d\theta$$

The final good is the output of a CES function with ho < 0

$$Y = (M^{\rho} + R^{\rho} + A^{\rho})^{\frac{1}{\rho}}$$

Manual and abstract workers become more productive through complementarities



### SR-RBTC

I will focus on the case of Skill-Replacing RBTC

• Increase in  $\tau$  when  $\sigma > 1$ 

As technology advances ( $\tau \uparrow$ ) the routine occupation see a decline in:

- Price of routine goods  $(p_R)$
- Employment

### **SR-RBTC**

I will focus on the case of Skill-Replacing RBTC

• Increase in  $\tau$  when  $\sigma > 1$ 

As technology advances ( $\tau \uparrow$ ) the routine occupation see a decline in:

- Price of routine goods  $(p_R)$
- Employment
- Mean skill level  $(E[\theta_i|R])$
- Inequality within the routine occupation

## SR-RBTC: First Stage

Impact on bottom 50% inequality changes with time

• Divide it into two stages

In the first stage,  $\tau$  is still "small"

- Comparative advantage still holds
- Returns to skill are higher in R then M

During the first stage, overall wage trend would be U-Shaped

● Theorems

### **GE** Theorem

### Theorem

Assume  $\rho$  < 0, so  $\tau$   $\uparrow$  implies decrease in  $p_R$  and the income share of routine workers

- ullet Does not depend on  $\sigma$
- Empirically shown by Cortes (2016), Eden & Gaggl (2018)

→ Return

## Weaker Assumptions

### **Theorem**

Assuming a skill replacing technology ( $\sigma > 1$ ). An RBTC (increase in  $\tau$ ) would generate:

- A decline in gaps between routine workers who do not switch occupations
- ② The most skilled routine workers would leave the routine occupation  $(\frac{\partial \theta_1}{\partial \tau} < 0)$
- **3** Wages for the highest skill routine worker  $(\theta_1)$  would fall relative to any other worker.

## Stronger Assumptions

Assume 
$$0<rac{d heta_0}{d au}<\left|rac{d heta_1}{d au}
ight|$$
 as seen in the data.

#### Theorem

### SR-RBTC generates

- Decline in: employment, within occupation inequality and mean skill level in the routine occupation.
- 2 Overall wage trend would be U-shaped ("wage polarization")

▶ Return

### **Theorem**

### **Theorem**

There exists  $\widetilde{\tau}$ , such that for every  $\tau \geq \widetilde{\tau}$ 

$$\frac{\partial \log \varphi_{R}\left(\theta;\tau\right)}{\partial \theta} < \frac{\partial \log \varphi_{M}\left(\theta\right)}{\partial \theta}$$

and routine workers would earn the lowest wages.

Any additional SR-RBTC  $(\tau \uparrow)$  would (still)

- Decrease employment in the routine occupation  $(\frac{d\theta_0}{d\tau} < 0)$
- Decrease gaps between routine workers who do not switch occupation

→ Return

### Testing Decline in Return to Skill

The key prediction of the model is that inequality is declining within routine occupations

- But this is only for "stayers" those who do not switch occupations
- Overall inequality in routine occupations is affected by compositional changes

# Testing Decline in Return to Skill

The key prediction of the model is that inequality is declining within routine occupations

- But this is only for "stayers" those who do not switch occupations
- Overall inequality in routine occupations is affected by compositional changes

There are several challenges in measuring inequality for stayers

- Regression to mean
- Selected sample (especially over long time periods)
- Oan be confused with income volatility

→ Return

Goal: find parameters that minimize EMSE  $E\left[arepsilon_{ijt}^{2}\right]$ . FOC are

$$E\left[\varepsilon_{ijt}|j,t\right] = E\left[X_{it}\varepsilon_{ijt}|j,t\right] = E\left[\theta_{i}\varepsilon_{ijt}|j,t\right] = 0$$

# Testing Decline in Return to Skill

The key prediction of the model is that inequality is declining within routine occupations

- But this is only for "stayers" those who do not switch occupations
- Overall inequality in routine occupations is affected by compositional changes

There are several challenges in measuring inequality for stayers

- Regression to mean
- Selected sample (especially over long time periods)
- 3 Can be confused with income volatility

→ Return

Goal: find parameters that minimize EMSE  $E\left[arepsilon_{ijt}^{2}\right]$ . FOC are

$$E\left[\varepsilon_{ijt}|j,t\right] = E\left[X_{it}\varepsilon_{ijt}|j,t\right] = E\left[\theta_{i}\varepsilon_{ijt}|j,t\right] = 0$$

Can only get noisy estimate of  $\widehat{\theta}_i$  based on a small number of observations.  $\bullet$  Details

41

#### IV Solution

Measurement errors biases can be solved with an IV (Wald, 1940, Durbin 1954).

ullet Replace moments  $E\left[\widehat{ heta}_i\widehat{arepsilon}_{ijt}|j,t
ight]
eq 0$  with

$$E\left[Z_{i}\widehat{\varepsilon}_{ijt}|j,t\right]=0$$

- Holtz-Eakin et al. (1988), Ahn et al. (2001) Details
  - ullet Relatively strong assumption about arepsilon second moments

### IV Solution

Measurement errors biases can be solved with an IV (Wald, 1940, Durbin 1954).

ullet Replace moments  $E\left[\widehat{ heta}_i\widehat{arepsilon}_{ijt}|j,t
ight]
eq 0$  with

$$E\left[Z_{i}\widehat{\varepsilon}_{ijt}|j,t\right]=0$$

- Holtz-Eakin et al. (1988), Ahn et al. (2001) → Details
  - ullet Relatively strong assumption about arepsilon second moments

I use years of schooling  $S_i$  as an IV

- Solves attenuation problem
- Still concern that  $S_i$  correlated with  $\varepsilon_{ijt}$ 
  - Results are still informative about return to skill (in 2 slides)

### Method of Moments

With the IV can find the parameters that solve the following 3JT equations:

• For every *j*, *t* 

$$\frac{1}{|E_{jt}|} \sum_{i \in E_{jt}} \left( \log w_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i \right) = 0$$

$$\frac{1}{|E_{jt}|} \sum_{i \in E_{jt}} \left( \log w_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i \right) X_{it} = 0$$

$$\frac{1}{|E_{jt}|} \sum_{i \in E_{jt}} \left( \log w_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i \right) Z_i = 0$$

#### Method of Moments

With the IV can find the parameters that solve the following 3JT equations:

• For every *j*, *t* 

$$\frac{1}{|E_{jt}|} \sum_{i \in E_{jt}} \left( \log w_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i \right) = 0$$

$$\frac{1}{|E_{jt}|} \sum_{i \in E_{jt}} \left( \log w_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i \right) X_{it} = 0$$

$$\frac{1}{|E_{jt}|} \sum_{i \in E_{jt}} \left( \log w_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i \right) Z_i = 0$$

The solution is similar to 2SLS

$$\widehat{\alpha_{jt}} = \frac{COV\left(Z_i, \widetilde{\log w_i}|j, t\right)}{COV\left(Z_i, \widetilde{\widehat{\theta_i}}|j, t\right)}$$

### Informative Under Bias

What if  $E[S_i \varepsilon_{ijt}] \neq 0$ ?

- For example,  $\theta_i$  captures mostly analytical skills
- But  $S_i$  is also correlated with other skills (self-control) in  $\varepsilon_{ijt}$

#### Informative Under Bias

What if  $E[S_i \varepsilon_{ijt}] \neq 0$ ?

- ullet For example,  $heta_i$  captures mostly analytical skills
- But  $S_i$  is also correlated with other skills (self-control) in  $\varepsilon_{ijt}$

 $\widehat{\alpha}_{jt}$  captures the return on skills most correlated with  $S_i$ 

- I show this using a simple multi-skill model Details
- Still informative about return to skill by occupation

#### Informative Under Bias

What if  $E[S_i \varepsilon_{ijt}] \neq 0$ ?

- ullet For example,  $heta_i$  captures mostly analytical skills
- But  $S_i$  is also correlated with other skills (self-control) in  $\varepsilon_{ijt}$

 $\widehat{lpha}_{jt}$  captures the return on skills most correlated with  $S_i$ 

- I show this using a simple multi-skill model Details
- Still informative about return to skill by occupation

Moreover, the expected bias is small

 Show this using Andrews, Gentzkow, Shapiro (2017) sensitivity analysis Details For a given set of parameters, the least-squares estimator for  $\theta$  is

$$\widehat{\theta}_{i}\left(\log w_{i}, X_{i}, \widehat{\alpha}, \widehat{\beta}, \widehat{\lambda}\right) = \frac{\sum_{t} \widehat{\alpha}_{j(i,t),t} \left(\log w_{ij(i,t)t} - \widehat{\beta}_{j(i,t)t} X_{it} - \widehat{\lambda}_{j(i,t)t}\right)}{\sum_{t} \widehat{\alpha}_{j(i,t),t}^{2}}$$

▶ Return

# IFEM Results in Multi-skill Setting

Consider a simple case with one occupation, K skills and T periods where

$$\log w_{it} = A_t' \Theta_i + \varepsilon_{it}$$

 $A_t$  is a vector of returns to skill and  $\Theta_i$  is vector of skills.

- IFEM will estimate vector  $\alpha_1, ..., \alpha_t$  that captures largest return to skill
- $\alpha_1, ..., \alpha_t$  is the first eigenvector of A'A.

Using an IV  $Z_i$  that satisfies  $E[Z_i\varepsilon_{it}]$  yields:

$$\widehat{\alpha}_t = A_t' COV (\Theta_i, Z_i)$$

Aggregate return to skill, weighted by correlation with IV.



### Sensitivity Test

I implement sensitivity analysis as proposed by Andrews et al. (2017)

- Assume an omitted variable s.t.  $\varepsilon_{ijt} = \gamma_{jt} Z_i + \nu_{ijt}$ .
- This analysis calculate the bias in any parameters function.
- Given vector of sensitivity results  $r_{jt}$  the bias is

$$\sum_{j}\sum_{t}r_{jt}\gamma_{jt}$$

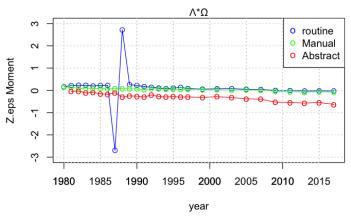
What is a reasonable value for  $\gamma_{jt}$ ?

- $\gamma_{jt}$  is the premium for years of schooling that is not captured by  $\theta_i$ .
- A reasonable number is likely smaller then 0.03
- A trend is  $\gamma_{jt}$  is therefore likely less than 0.003 (otherwise it can double/disappear) in 10 years

### Sensitivity Test Results

I look at the sensitivity for log  $\frac{\alpha_{R,88}}{\alpha_{R,87}}$  - a trend of 0.003  $\to$  bias < 0.01.

#### alpha.routine.1988-alpha.routine.1987





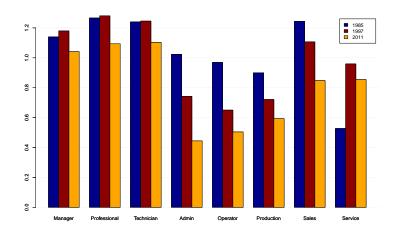
### Three Skills

#### Estimate IFEM with

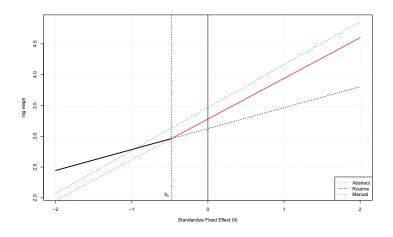
$$\log w_{ijt} = \beta_{ijt} X_{it} + \lambda_{jt} + \alpha_{jt} \theta_{ij} + \varepsilon_{ijt}$$

|          | Abstract | Routine | Manual |
|----------|----------|---------|--------|
| Abstract | 1        |         |        |
| Routine  | .74      | 1       |        |
| Manual   | .83      | .69     | 1      |

# $lpha_{jt}$ by 1-Digit lacktream

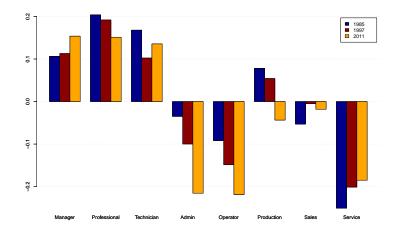


### IFEM 2011

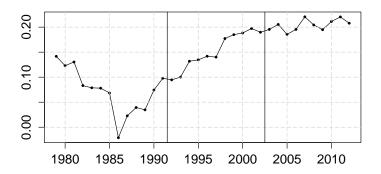


→ Return

# Decline in Skill in Routine: 1-Digit Return



### Skewness Trend Back



The vertical lines are where changes in occupational coding took part. Source: CPS Outgoing Rotation Groups

### Robustness Back

Looking by other categories yields large residual component

- 3 digit Industry
- Years of School

Decomposing jointly shows occupations explain the large increase

- Details
- 3 digit Industry
- Years of School

Longer time period Details

Using imputed wages Details

# Changes in Variance 1992-2002 • Return



Documented before by Firpo et al. (2013)

• Explains full increase in covariance component • Decompose

### Variance Trends in Other Decades Return

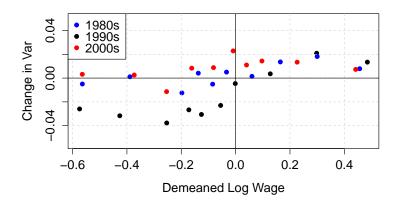


Figure: Change in  $V[\ln w|occ]$  by  $E[\ln w|occ]$  - Binned Scatter Plot

Data resource: CPS-ORG

# Variance Trend in Routine/Non-routine Occupations • Return

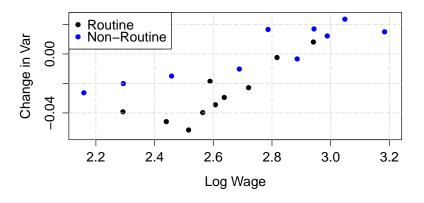


Figure: Change in  $V [\ln w | occ]$  by  $E [\ln w | occ]$  1992-2002

Data resource: CPS-ORG. Routine occupations are administrators, producers and operators. Categories are divided same as in Acemoglu & Autor (2011)

### Counterfactual Covariance Return

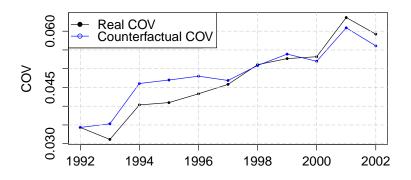
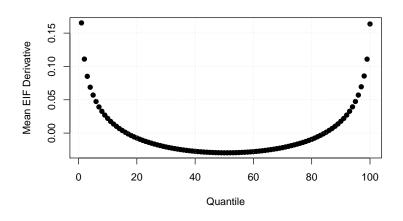


Figure: Covariance of Expectation and Variance of Log-Wage

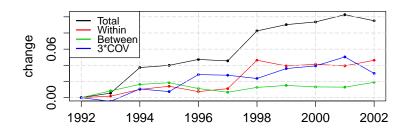
Data resource: CPS-ORG return

### Influence Function



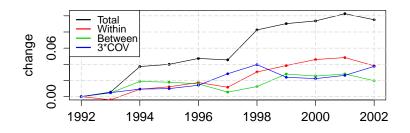


# Decomposing by Industry





# Decomposing by Education and Experience





### Linear Skewness Decomposition

If  $Y = \sum_i X_i$  can write

$$\mu_{3}(Y) = \sum_{i} \mu_{3}(X_{i}) + \sum_{i} \sum_{j \neq i} COV(X_{i}^{2}, X_{j}) + \sum_{i} \sum_{j \neq i} \sum_{k \neq i, j} E[X_{i}X_{j}X_{k}]$$
(1)

and decompose into several components. The simple skins decomposition is for  $Y = E[Y|X] + \varepsilon$ 

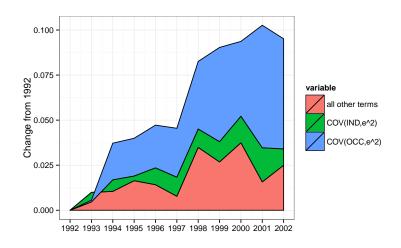
Can first run a regression such as

$$\ln w_i = occ_i + ind_i + \varepsilon_i$$

and decompose by each component.

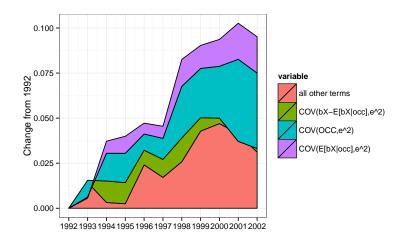
→ Return

# Joint Occupation-Industry Decomposition



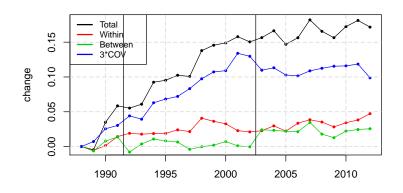


### Joint Occupation-School-Experience Decomposition





# Decomposition with Imputed Wages





# Decomposition with Imputed Wages

