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Abstract

I propose a model of a skill-replacing routine-biased-technological-change (SR-

RBTC). In this model, technology substitutes the usage of skill in routine tasks, in

contrast to standard RBTC models which assume technology replaces the workers

themselves. The SR-RBTC model explains three key trends that are inconsistent with

standard RBTC models: why specifically middle-wages declined even though work-

ers in routine occupations are dispersed across the entire bottom half of the wage

distribution, why middle-wages stopped declining while the technological change

continued, and why there is no substantial decline in the average wage of workers

in routine occupations. I derive two new testable predictions from the model: a de-

crease in return to skill, and a decrease in skill level in routine occupations. I use an

interactive-fixed-effect model to confirm both predictions. Since SR-RBTC violates the

ignorability assumption required by standard decomposition methods, I introduce

“skewness decomposition” to show that SR-RBTC is the main driver of bottom-half

inequality trends.
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Recent trends in U.S. wage inequality are frequently attributed to technological ad-
vancements. In particular, several studies have proposed the model of routine-biased
technological change (RBTC), which posits that technology is substitutional to routine
workers since their performed tasks are easier to automate (Acemoglu and Autor, 2011).

However, the RBTC model cannot explain recent changes in the U.S. wage distribu-
tion, especially at the bottom. Figure 1 plots the evolution of the 90/50 and 50/10 wage
ratios over time. While inequality at the top has steadily increased, inequality at the bot-
tom has fluctuated. Even under more nuanced RBTC models, it remains unclear why
bottom-half inequality decreased in the 1990s, and even less clear why it increased again
after 2000. Thus, the prominent theories regarding the impact of technology on the wage
distribution do not align with the observed U.S. data.

In this paper, I propose a new theory for how new automation technology has affected
the bottom of the U.S. wage distribution in recent decades. My theory diverges from pre-
vious RBTC models by arguing that automation technology is skill-replacing (SR-RBTC).
Instead of assuming that new technology is replacing workers, I assume that it replaces
their skill. For example, calculators replace the need for arithmetic skills, enabling work-
ers with limited arithmetic abilities to perform calculations just as effectively. This model
can explain the recent trends of bottom-half inequality. I supplement this model with
new empirical evidence showing a decline in the return to skill in routine occupations,
as predicted. Furthermore, I find that routine occupations are increasingly filled by low-
skilled workers, as skill becomes less necessary in these roles. Finally, I use a “skewness
decomposition” to quantify that SR-RBTC can explain 93% of the discussed wage trends.

I start by outlining the theoretical framework of the paper. I construct a model in
which workers are characterized by a one-dimensional continuous skill. Workers are em-
ployed in one of three occupations that vary in their return to skill (similar to Jung and
Mercenier, 2014). In equilibrium, workers are allocated to occupations based on compar-
ative advantage. The lowest-skilled workers sort into the manual occupation, middle-
skilled to the routine occupation, and the highest-skilled to the abstract occupation.

The model diverges from most previous literature by assuming that the new technol-
ogy in the routine occupation substitutes the skill of workers in this occupation. This
skill-replacing technology reduces the return to skill in the routine occupation, leading
to larger wage decreases for higher-skilled routine workers. This differs from previous
models (i.e., Acemoglu and Autor, 2011; Cortes, 2016) which assume a skill-neutral tech-
nological change, where the wage effects are identical to all routine workers.It also differs
from skill-enhancing models (Jung and Mercenier, 2014) that make the opposite assump-
tion that technology increases the return to skill for routine workers. It is conceptually
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similar to Downey (2021) who argues new technology benefits low-skill workers.
There are numerous examples of skill-replacing technology in routine occupations.

Cashiers today do not need any arithmetic skills, as all calculations are automated; ad-
ministrators typically do not need to memorize any procedures or customer details be-
cause most are computerized; production workers rarely use physical strength anymore
as machines can perform many physical tasks. Yet, counterexamples exist as well. There-
fore, the empirical part of this paper tests how well the SR-RBTC model fits the data.

The SR-RBTC model explains three key stylized facts that previous (skill-neutral) RBTC
models could not. These unresolved puzzles leave room for consideration of other expla-
nations for the fluctuations in bottom-half inequality (Hunt and Nunn, 2022). First, as
shown in Figure 1, starting from the late 1980s, the median wage declined relative to
both high and low wages, a trend often referred to as “wage polarization”. Earlier RBTC
models argued that routine tasks, which are more easily automated, require middle-skill
workers. Hence, wages relatively decline predominantly in the middle of the wage distri-
bution. However, empirical evidence suggests that routine workers are dispersed almost
equally across the entire bottom half of the wage distribution (Autor and Dorn, 2013).
Therefore, a skill-neutral RBTC model would predict wage decreases across the entire
bottom half of the income distribution, not just the middle, in contrast to the observed
trend in the data.

By contrast, SR-RBTC predicts a decline in middle wages. A decrease in return to
skill in the routine occupation would generate the largest wage decreases for the highest
earning routine workers. Empirically, these highest earning routine workers used to be
concentrated in the middle of the wage distribution. Consequentially, a decrease in their
wages would generate wage polarization.

The second fact is that the decline in middle wages stopped around the year 2000. If
RBTC was generating the decline in middle wages, it is unclear why this decline stopped.
This is especially puzzling since the decline in routine employment suggests that RBTC
continues long afterward (Autor, 2014).

This fact can be explained by SR-RBTC, which predicts a non-monotonic relationship
between technological advancement and inequality at the bottom half of the distribution.
At some point, the return to skill in the routine occupation would fall below its level in
the manual occupation. When such a reversal of comparative advantage occurs, workers
would reallocate and only the lowest-skilled workers would choose to work in the routine
occupation. After this reversal, SR-RBTC would reduce wages for the remaining routine
workers who would be at the bottom of the wage distribution. SR-RBTC would not affect
middle-wage workers directly, as they would no longer work in the routine occupation.
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Therefore, inequality at the bottom of the distribution would rise.
The third fact is that the average wage declines in routine occupations are relatively

modest compared to the substantial decline in employment. It is unclear why the market
adjusts to the decline in demand for routine workers almost mainly through quantities
(employment), rather than prices (wages). Moreover, different decomposition methods
found that the wage decrease in routine occupations is too small to account for the afore-
mentioned wage trends (Autor et al., 2005; Firpo et al., 2013). In SR-RBTC, even though
employment declines, the average wage in the routine occupation does not necessarily
decrease. Wages fall for the highest-skilled workers in the routine occupation. However,
lower-skilled routine workers may benefit from the change. As a result, the average rou-
tine wage may not decline.

To directly test the model, I derive two new predictions that can distinguish a skill-
replacing RBTC from a skill-neutral or skill-enhancing RBTC. First, the model predicts a
decrease in return to skill in the routine occupation. Second, it predicts a gradual decline
in the skill level of workers in the routine occupation. These trends should continue
throughout the entire period of RBTC, starting in the late 1980s. At some point, the return
to skill in the routine occupation should fall below the return in the manual occupation,
leading to a reversal of comparative advantage. Following such reversal, the average skill
level should be lower in the routine occupation, compared to the manual occupation.

To test these predictions, I estimate an interactive fixed-effects model (IFEM). IFEM is
a more general version of the standard fixed-effects model. It regresses log wages on a set
of independent variables, including worker fixed effects that capture unobserved skill.
The only difference from a standard fixed-effects model is that the worker fixed effects
are interacted with the year and occupational category. This interaction allows the return
to the unobserved skill to vary over time and across occupations, as the SR-RBTC model
predicts. Since the unobserved skill is estimated with noise, I instrument for it with years
of schooling to prevent an attenuation bias. For this exercise, I use data from the Panel
Study of Income Dynamics (PSID) between 1980–2017.

The results from the IFEM generate new empirical facts that are consistent with both
model predictions. I find a sharp decrease in the return to skill in routine occupations
starting in the late 1980s, exactly when inequality at the bottom half of the distribution
started to decline. The return to skill in routine occupations continued to decrease for
more than two decades. I also find that the average skill level in routine occupations,
as measured using the IFEM, steadily fell during this period. As a result, workers in
routine occupations became more concentrated at the bottom income quintile, instead of
working in middle-wage jobs. Previous work investigating the compositional change in
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routine occupations has focused mainly on the decline in employment in routine occu-
pations (Goos and Manning, 2007; Goos et al., 2009; Goos et al., 2014), and the flow of
workers in and out of routine occupations (Cortes, 2016; Cortes et al., 2020). Consistent
with my findings, Dicandia (2023) finds that the share of white workers in routine occu-
pations has also decreased. However, there has been little discussion on the impact of
these employment trends on the average skill level in routine occupations.

Estimates from the IFEM are consistent with a reversal of comparative advantage at
the bottom of the distribution. I find that around 1987, before inequality started to de-
cline at the bottom of the distribution, the return to skill was slightly higher in routine
occupations compared to manual occupations. During this time, the average skill level
of workers in routine occupations was substantially higher than the skill level of man-
ual workers. Over time, the return to skill in routine occupations fell far below its value
in manual occupations. The average skill level of workers in routine occupations also
declined and by 2015, it fell below the average skill level in manual occupations. As a
result, workers in routine occupations and especially those in administrative or operator
occupations have the lowest level of skill across all occupational categories.1

In the final part of the paper, I use a skewness decomposition to show that SR-RBTC is
not only consistent with recent inequality trends, it is also substantial enough to account
for almost the entire wage trend. I introduce a novel decomposition that is based on
the skewness of the log wage distribution. In analogy to inequality that can be measured
with the second moment of the log wage distribution, wage polarization can be measured
with the third moment of that distribution, namely, skewness. When inequality increases
at the top and decreases at the bottom, the log wage distribution becomes more positively
skewed and this moment increases. For this analysis, I use the Current Population Survey
Outgoing Rotation Groups (CPS-ORG). As expected, the skewness increases precisely
when wage polarization occurs.

The main advantage of using skewness to measure wage polarization is that it can
be decomposed into three independent components. In my main analysis, I decompose
the rise in skewness by occupations. Similar to variance decomposition, skewness de-
composition has a between-occupations and a within-occupations components. A skill-
neutral RBTC is expected to reduce wages equally for all workers in routine occupations.
Therefore, this model predicts that most of the rise in skewness would be driven by the
between-occupations component. By contrast, in an SR-RBTC model, the third compo-
nent is expected to rise. The third component captures the correlation between occupa-

1Manual workers still earned less than workers in routine occupations on average, despite having a
higher skill level. One reason for this is that routine workers are more experienced (Autor and Dorn, 2009).
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tion wage level and occupation inequality. Hence, if wage gaps decrease in lower-paying
routine occupations, while they increase in higher-paying abstract occupations, as the
SR-RBTC model predicts, this correlation will increase and generate a rise in skewness.

The decomposition results indicate that RBTC is skill-replacing. I find that 78% of
the overall increase in skewness is driven by the correlation component. The correlation
component increases mainly because of a decrease in inequality in routine occupations,
exactly as predicted by the SR-RBTC model. For comparison, trying to decompose the
increase in skewness by industries or education generates a much larger increase in the
within component. This implies that the rise in skewness is driven primarily by an occu-
pational trend, which also occurs within industries and education categories.

The results of skewness decomposition are distinct from previous decomposition at-
tempts of wage polarization because it does not rely on the “ignorability assumption".
Previous attempts to decompose wage polarization have found that technological changes
and occupational trends in general, cannot generate wage polarization (Autor et al., 2005;
Firpo et al., 2013).2 The most common decomposition methods (e.g., Juhn et al., 1993;
DiNardo et al., 1996; Firpo et al., 2009) rely on an assumption called ignorability (Fortin
et al., 2011). As a result, these previous decomposition papers only quantified the de-
crease in average routine wages. However, the increase in skewness is driven by the
decline in inequality in routine occupations. This trend was previously documented by
Lemieux (2007), and causally identified by Gaggl and Wright (2017). Using skewness
decomposition I find that the decrease in inequality in routine occupations is the main
driver of wage polarization. Skewness decomposition was previously discussed in labor
economics (Mincer, 1974) but was never applied to economics data.

I conclude this paper by discussing alternative explanations for these wage trends and
why they are less consistent with my findings. Additionally, I briefly discuss bottom-half
inequality trends in other developed countries and their potential explanation.

1 Model

1.1 Occupational Sorting by Skill

I outline a model that highlights the difference in return to skill in each occupation, build-
ing on earlier work by Jung and Mercenier (2014) and Cortes (2016). Assume that work-

2Acemoglu and Restrepo (2022), show that technological change can explain the majority of the rise of
inequality between skill groups. I show that SR-RBTC can explain both the increase and the decrease in
inequality, for the entire bottom-half of the distribution, and not just across skill groups.
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ers have a one-dimensional skill, θi with some density function f (θi). This assumption
is more general than the assumption of a discrete number of skill levels (Katz and Mur-
phy, 1992; Autor et al., 2006; Acemoglu and Autor, 2011), but less general than assuming
multidimensional skills (Roy, 1951), which I discuss in an extension in Appendix B.3.

Occupations differ in their return to skill. To simplify, I will assume three occupations:
manual, routine, and abstract. In each occupation j ∈ {M, R, A}, workers produce an
intermediate good with a production function φj (θi). Assume that in baseline

∀θi :
∂ log φM (θi)

∂θi
<

∂ log φR (θi)

∂θi
<

∂ log φA (θi)

∂θi
(1)

so that the manual occupation has the lowest return to skill, and the abstract occupation
has the highest. Assume also that for every θi and every occupation

∂ log φj(θi)
∂θi

> cj for
some constant cj > 0, implying that the return to skill is strictly positive at any level.

Under the assumption of perfect competition, wages are set at the marginal produc-
tivity. Let pj be the price of the intermediate good in occupation j. Therefore, if worker i
is working in occupation j, she will earn

wj (θi) = pj φj (θi)

Workers sort into occupations based on comparative advantage. Condition 1 guaran-
tees the existence of two thresholds θ0, θ1 such that any worker with θi < θ0 choose to
work in the manual occupation, any worker with θ0 < θi < θ1 choose the routine occu-
pation, and any worker with θi > θ1 choose the abstract occupation (Jung and Mercenier,
2014). Workers with a skill level that exactly equals the threshold will be indifferent; hence
the following two equations hold in equilibrium:

pM φM (θ0) = pR φR (θ0)

pR φR (θ1) = pA φA (θ1)
(2)

Figure A1 shows this graphically, by plotting the equilibrium log wages by skill level θi.

1.2 Routine-Biased Technological Change

I focus on technological change that improves productivity in the routine occupation. For
simplicity, I assume that the technological change affects only φR directly, as this change
is sufficient for explaining the inequality trends at the bottom of the wage distribution.
Hence, φM, φA are left unchanged. However, wages in the manual and abstract occupa-
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tions are affected as well in a general equilibrium.
Specifically, I assume that the production of a routine worker is a function of θi their

skill, and τ the level of technology, φR(θi, τ). I assume that production is monotonically
increasing in both inputs, ∂φR

∂θi
, ∂φR

∂τ > 0. RBTC would then be modeled as an increase
in the technology level τ over time. This technology growth increases the productivity
of every routine worker. Therefore, it enables the production of the same quantity with
fewer workers.

While RBTC makes all workers in the routine occupation more productive, some
workers may experience larger productivity gains than others. Formally, use ϵ to mark
the effect of technology on the return to skill

ϵ =
∂2 log φR

∂θi∂τ
. (3)

I assume that the sign of ϵ is the same for all workers for a given technology level.
I distinguish between three types of RBTC. If ϵ = 0, RBTC is skill-neutral as in Cortes

(2016). The effect of technology on log productivity (∂ log φR
∂τ ) would be the same for all

workers in the routine occupation.3 If ϵ > 0, as hypothesized by Jung and Mercenier
(2014), technology is skill-enhancing. That is, technology increases the productivity gaps
by skill. If ϵ < 0, technology is skill replacing, and the return to skill declines.

In Appendix B I discuss two alternative micro-foundations for RBTC that provide in-
sight into when RBTC would be skill-neural, -enhancing, or -replacing. In Appendix B.1,
an increase in τ represents the full automation of some of the tasks previously performed
by workers in the routine occupation. Such automation allows these workers to allocate
more time to other tasks. In this model, the RBTC type (skill-neutral/enhancing/replacing)
is determined by the importance of skill in the automated task. If the automated task
is more skill-intensive than the average task, RBTC is skill replacing. For example, for
cashier workers, technology replaced the task of arithmetic calculations, which is rela-
tively skill-intensive, and hence technology is skill-replacing. Alternatively, an increase
in τ can also represent an improvement in the quality or quantity of computers or robots.
Appendix B.2 discusses such a model when φR has constant returns to scale (CRS). In this
case, the RBTC type depends on the elasticity of substitution between skill and technol-
ogy. If skill and technology are substitutes, RBTC is skill replacing.

The type of RBTC determines the effect of technology on income gaps in the routine
occupation. A skill-neutral RBTC would not affect inequality among workers in the rou-
tine occupation as stated in the following theorem.

3While the effect on productivity is skill-neutral, the effect on wages varies by skill (Cortes, 2016).
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Theorem 1. Let θa, θb ∈ (θ0, θ1) be the skill levels of two workers in the routine occupation where
θa < θb. Let wa, wb denote their corresponding equilibrium wages. The effect of an improvement
in technology τ on the wage ratio wb

wa
depends on the sign of ϵ such that

sign

(
∂ wb

wa

∂τ

)
= sign (ϵ)

All proofs are given in Appendix C. In the next parts of the paper I show evidence that
this sign is negative, and therefore RBTC is skill-replacing.

1.3 General Equilibrium

I assume that the three intermediate goods are used jointly to produce a final good. I also
assume that workers with different skill levels are perfect substitutes in the production
of the intermediate good. I use M, R, A to denote the total amount produced from each
intermediate good, which equals

M =
∫ θ0

θmin
φM (θi) dθi

R =
∫ θ1

θ0
φR (θi) dθi

A =
∫ θmax

θ1
φA (θi) dθi

(4)

The final good is the output of a CES function with ρ < 0,

Y = (Mρ + Rρ + Aρ)
1
ρ (5)

The three intermediate goods are complementary, as found by Jaimovich et al. (2021).
While RBTC increases the production of routine goods R, routine workers do not nec-

essarily benefit. This depends on whether there is a sufficient demand increase for addi-
tional routine goods. The price of one unit of the routine good pR would decrease due to
the rise in quantity. Because of the complementarities (ρ < 0), the increased productivity
in the routine occupation, increases demand for manual and abstract workers and raises
the prices of the goods they produce. Overall the share of the total output that is spent on
workers in the routine occupation pRR

Y declines (as found by Eden and Gaggl, 2018). This
is summarized in the following theorem.

Theorem 2. RBTC (i.e., an increase in τ) generates:

1. An increase in the production of the routine good ( dR
dτ > 0).
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2. A decrease in the absolute price of the routine good ( dpR
dτ < 0) and the relative price compared

to the abstract/manual good (
dpR/pj

dτ < 0 for j ∈ {M, A}).

3. A decrease in the share of the total income that is spent on routine goods ( d pRR
Y

dτ < 0).

These predictions coincide with predictions of various other skill-neutral models for
RBTC. In the next two sections, I will derive unique predictions for the case of a skill-
replacing technology.

1.4 Skill-Replacing RBTC: First Phase

I now examine in more detail the case of SR-RBTC, where technology and skill are sub-
stitutes (ϵ < 0). In contrast to other models of RBTC, in this model, the impact of tech-
nology on bottom-half inequality is non-monotonic. I start with the first phase, where the
increase in τ is still relatively small, such that the comparative advantage at Condition 1
still holds. A small increase in τ generates wage polarization and additional predictions
that can be tested against the data.

Theorem 3. Assume a skill-replacing technology (ϵ < 0). RBTC (i.e., an increase in τ) would
generate the following:

1. A decrease in wage gaps between workers in the routine occupation who do not switch occu-
pations.

2. The highest skill routine workers would leave the routine occupation ( ∂θ1
∂τ < 0).

3. The wage for the highest-skilled routine worker (θ1) would decrease relative to all other
workers.

Figure 2a illustrates the results of Theorem 3. Since technology is skill-replacing, the
return to skill in the routine occupation becomes flatter. This generates lower gaps be-
tween workers who stay in the routine occupation. A relative drop in middle-wages
occurs since the most significant wage drop is for the highest-earning routine workers,
which (empirically) are concentrated in the middle of the overall distribution of skill. As
the return to skill declines, some of the highest-skilled routine workers will have their
comparative advantage in the abstract occupation, and so θ1 will drop.

The effect on θ0 could go either way. If ρ approaches −∞ (Leonteif) θ0 will increase,
while if ρ is closer to 0 (Cobb–Douglas) θ0 will decrease. Empirically, it seems that during
the 1990s employment in manual jobs did increase, but not as fast as in abstract occu-
pations (Acemoglu and Autor, 2011). In case θi is distributed uniformly, this could only
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occur if θ0 increased, but by a smaller level compared to the decline in θ1. The following
theorem derives additional empirical implications for this particular case. Appendix C
proves a more general version of this theorem for any continuous distribution of θi.

Theorem 4. Assume a skill replacing technology (ϵ < 0), θi ∼ U
[
θ, θ̄
]
, and 0 < dθ0

dτ <
∣∣∣ dθ1

dτ

∣∣∣. In
the routine occupation, RBTC would generate a decrease in: (i) employment, (ii) within-occupation
inequality, and (iii) mean skill level. Inequality within the abstract and manual occupation will
rise. The overall inequality trend is asymmetric. Below θ1, wage gaps would (weakly) decrease
between every two workers. At the top, the wage gap between abstract workers and high-skill
routine workers will increase. See Appendix C for formal definitions.

The asymmetric trend in inequality can be seen in the difference between the red line
and the black line in Figure 2a. The productivity increase for workers in the routine
occupation is offset by the drop in prices. Therefore wages in the routine occupation
fall relative to the other two occupations. Moreover, among workers in the routine oc-
cupation, the relative drop in wages is most significant for the highest-skilled workers.
The abstract occupation expands and now includes some additional less-skilled workers,
which increases its within-occupation inequality. Taken together these trends generate
a U-shaped pattern where wages increase the most at the tails, and decrease the most
around the middle of the skill distribution at the new value of θ1.

In addition to the impact on wages, SR-RBTC also has an effect on employment in
each occupation. Since there is not enough demand for all the new routine goods workers
could potentially produce, some of them leave and employment in the routine occupa-
tion falls.4 This decline in employment is driven primarily by the higher-skilled routine
workers. As a result, workers in the routine occupation become less skilled on average.

Along with employment, inequality within the routine occupation also declines for
two separate reasons. First, it declines directly due to the decrease in the productivity gap.
Second, it declines indirectly due to the compositional changes that make the remaining
workers in the routine occupation more homogenuous in their skill level.

1.5 Skill-Replacing RBTC: Second Phase

Wage polarization stops when middle-skilled workers’ comparative advantage is no longer
in the routine occupation. Assume that at some point the return to skill in the routine oc-

4This employment decline is sometimes referred to as “job polarization”. However, since routine work-
ers are dispersed across the entire bottom half of the income distribution, routine occupations are often not
middle-wage occupations. Hence, a decrease in their employment might not generate “job polarization”,
consistent with the empirical evidence by Hunt and Nunn (2022).
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cupation drops to a level that is below the return to skill in the manual occupation. At that
point, the comparative advantage is reversed. The lowest-skilled workers sort into the
routine occupation. Any further increase in τ will still reduce wage gaps among workers
in the routine occupation. However, since the routine occupation employs the lowest-
skilled workers, wages relatively decline for low-paid workers, as shown in Figure 2b.
Hence, inequality at the bottom of the wage distribution could in fact increase.5

However, while wage trends change, the decline in employment continues as workers
continue to leave the routine occupation. Since wages decline in the routine occupation,
more workers would prefer to leave and join the manual occupation. These predictions
are summarized in the following theorem.

Theorem 5. Assume a skill-replacing technology (ϵ < 0) and that there exists a τ̃ such that for
any τ ≥ τ̃ and for any θi

∂ log φR (θi; τ)

∂θi
<

∂ log φM (θi)

∂θi
(6)

When τ ≥ τ̃ workers in the routine occupation earn the lowest wages. Any additional SR-RBTC
(τ ↑) decreases employment in the routine occupation (dθ0

dτ <0), as well as wage gaps among workers
in the routine occupation who do not switch occupations.

The key reason why the impact of SR-RBTC on the wage distribution changes over
time is the change in the composition of workers in the routine occupation. At first,
when workers in the routine occupation are middle-skilled, the main negative effect is
concentrated around the median of the distribution. Later, when the routine occupation
becomes a low-skilled job, the negative impact of SR-RBTC is concentrated at the bottom
of the distribution.

This model of SR-RBTC is consistent with recent trends in bottom-half inequality,
which were previously documented, but could not be explained in terms of a skill-neutral
technological change. Specifically, a skill-neutral technological change cannot explain
why inequality at the bottom of the distribution rose again after its initial decline. It also
cannot explain why the relative wage decrease was concentrated in the middle of the dis-
tribution when most workers in routine occupations are concentrated below the median.
The first phase of SR-RBTC corresponds to trends in the late 1980s and 1990s and the
second phase to trends in the 2000s and onwards. Appendix B.3 presents a more general
model in which workers use different skills in different occupations. The predictions of
the more general model are also consistent with recent bottom-half inequality trends.

5Given that inequality declines among workers in the routine occupation while it increases between
manual and routine workers the overall impact of SR-RBTC on inequality at this phase is ambiguous.
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The model generates two new predictions that can be tested against the data. First, it
predicts a decline in the return to skill in the routine occupation. This generates a decrease
in wage gaps for routine workers who do not switch occupations. Second, it predicts a
decline in the average skill level of workers in routine occupations. Both trends should
be sufficiently large so that at some point a reversal of comparative advantage occurs
whereby the return to skill and the average skill level become higher in the manual than
in the routine occupation. In the following sections of the paper, I test these empirical
predictions and show that they fit well with the data.

2 Methodology

This paper uses two separate empirical techniques. To test the predictions of the SR-RBTC
model, I use an interactive fixed-effects model (IFEM). Then, to quantify the share of the
overall wage trend that can be attributed to SR-RBTC, I use skewness decomposition.

2.1 Interactive Fixed-Effects Model

To test whether RBTC is skill-replacing, skill-enhancing, or skill-neutral, I estimate the
return to skill directly, using an interactive fixed-effects model (IFEM). Specifically, I esti-
mate the following equation for a worker i in occupation j in year t:

log wijt = β jtXit + λjt + αjtθi + εijt, (7)

where λjt are occupation-year fixed effects and Xit is an additional control for experience
squared.6 The individual fixed effects θi represent permanent wage differences across
workers, which correspond to the notion of skill in the theoretical model in Section 1. The
key parameters of interest are the coefficients αjt, the return to skill in any combination
of occupational category and year. I use either three occupational categories (abstract,
routine, manual) or nine (defined by the first digit of the occupational code).

When the return to skill is constant across occupational categories and over time
(αjt = 1), the model is identical to a standard fixed effects model. Worker fixed effects
are frequently applied to account for permanent unobserved skill differences. It allows
for overcoming differences in the composition of workers between occupations and over
time. The concern of compositional change is particularly relevant given the substantial

6I do not control for education level and experience as they are collinear with θi and λjt.
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decrease in employment in routine occupations, driven prominently by the highest- and
lowest-earning workers in those occupations (Cortes, 2016; Böhm et al., 2019).

The IFEM model is a more general version of the fixed-effects model, which accommo-
dates variation in the return to skill, as posited by the SR-RBTC model. The parameters
αjt capture changes in the return to skill across occupations and over time. Specifically,
the model predicts that αR,t, the return to skill in routine occupations, will decrease as
technology advances if and only if the technology is skill-replacing (Theorem 1).

I search for a combination of parameters that minimize the expected mean square
errors, E

[
ε2

ijt

]
. The first-order condition moments of this minimization problem imply

that for every occupational category j and every year t

E
[
εijt|i ∈ Ejt

]
= E

[
Xitεijt|i ∈ Ejt

]
= E

[
θiεijt|i ∈ Ejt

]
= 0, (8)

where Ejt is the set of workers in occupational category j in year t. Moreover, deriving

the first order conditions by θi imply that for every worker i, E
[
αj(i,t)tεij(i,t)t|i

]
= 0. From

this moment, one can derive an estimator θ̂i, given the other parameters

θ̂i

(
log wi, Xi, α̂, β̂, λ̂

)
=

∑t α̂j(i,t),t

(
log wij(i,t)t − β̂ j(i,t)tXit − λ̂j(i,t)t

)
∑t α̂2

j(i,t),t
. (9)

Like a standard fixed-effects model, the interactive fixed-effects model also suffers
from the incidental parameter problem (Lancaster, 2000). Each θ̂i is estimated only from
the finite-sample observations of a specific worker. Hence, the estimator θ̂i would be noisy
and would not converge to θi. Although the values of the θi parameters are not the focus
of the analysis, this would still bias the estimates for αjt. While in a standard fixed-effects
model, the fixed-effects can be absorbed by demeaning the data, this approach would not
work in an IFEM.

The estimates of αjt will suffer from a measurement error. Formally, appendix D.1
shows that the while for the true parameters E

[
θiεijt|i ∈ Ejt

]
= 0, the empirical moment

does not converge to zero (E
[
θ̂i ε̂ijt|i ∈ Ejt

]
̸= 0). The measurement error in θ̂i implies

that the least square estimator for αjt is inconsistent (Bound et al., 1994). Appendix D.1
provides an analytical expression for the bias.

A common solution to handle measurement error problems is to use an instrumental
variable (Wald, 1940; Durbin, 1954).7 In particular, let Z be an IV satisfying the following

7For example, Holtz-Eakin et al. (1988) estimate an IFEM with lagged outcomes as IVs. This assumes
that εijt are not serially correlated. Alternatively, Ahn et al. (2001) assume that εijt has a constant variance
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condition for all j, t,
E
[
Ziεijt|i ∈ Ejt

]
= 0. (10)

Appendix D.1 shows that under strict exogeneity (similar to a standard fixed effects
model as in Chamberlain, 1984) this condition implies that the IV is uncorrelated with
the measurement error in θ̂i.

With the IV, the model parameters can be estimated using the method of moments.
Specifically, I find the vector of parameters that solve the following equations for every
combination of occupational category and year,

m1
j,t (α, β, λ) = 1

|Ejt| ∑i∈Ejt

(
log wijt − β jtXit − λjt − αjtθ̂i (log wi, Xi, α, β, λ)

)
= 0

mX
j,t (α, β, λ) = 1

|Ejt| ∑i∈Ejt
Xit

(
log wijt − β jtXit − λjt − αjtθ̂i (log wi, Xi, α, β, λ)

)
= 0

mZ
j,t (α, β, λ) = 1

|Ejt| ∑i∈Ejt
Zi

(
log wijt − β jtXit − λjt − αjtθ̂i (log wi, Xi, α, β, λ)

)
= 0

.

(11)
The model includes 3× J × T − 2 independent parameters where J is the number of occu-
pational categories, and T is the number of time periods.8 Because of linear dependence
between the equations, there are also exactly 3 × J × T − 2 independent equations, and
the model is exactly identified.9

While the estimation procedure is not identical to two-stage least squares (TSLS), the
intuition is very similar. In Appendix D.1 I show that the α estimates satisfy

α̂jt =
COV

(
Zi, l̃og wi|i ∈ Ejt

)
COV

(
Zi ,̃ θ̂i|i ∈ Ejt

) , (12)

where l̃og wi,
˜̂θi are the residuals of log wi, θ̂i from a regression on all interactions of Xit.

occupational categories and year dummies. This estimator is the coefficient on the IV in
the reduced form (where the outcome is log wages), divided by the coefficient on the IV
in the first stage (where the outcome is θ̂i). Since the IV is uncorrelated with the residuals
or the measurement error, it yields a consistent estimator for αjt.10

I use years of schooling as the IV. Based on Equation 12, the estimator α̂jt is the pre-

instead of using an IV.
8There are two degrees of freedom since θi can be identified only up to a linear transformation. There-

fore, I pin αAbstract,1980 = 1 and λAbstract,1980 = 0.
9From the construction of θ̂i, there exists a linear combination of the moments m1

j,t (α, β, λ) as well as

mZ
j,t (α, β, λ) that equals zero for each choice of parameters.
10A TSLS estimator cannot be applied since the value θ̂i depends on the value of αjt.
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mium for a year of schooling in occupational category j in year t, divided by the link
between years of schooling and the estimated skill θ̂i in the same category and year.
Therefore, the link between schooling and skill is allowed to vary across occupations
and change over time. This is a critical feature of this design, as the model emphasizes
that the composition of skills is different across occupations and to change over time.11

Intuitively, this estimator solves the measurement error bias by aggregating across many
observations. While θ̂i is noisy, the noise converges asymptotically to zero when averag-
ing over all workers in the same schooling category.

I use a sensitivity analysis (Andrews et al., 2017) to show that the changes in the return
to skill within an occupational category are estimated based on workers staying in this
category. Intuitively, within an occupational category, αjt would decrease (increase) over
time if on average the wage gap between workers with different levels of θi would de-
crease (increase). The results are presented in Appendix D.2. I find that the changes in αjt

within an occupational category are almost entirely driven by workers in that category.
By contrast, differences in the return to skill across occupational categories are esti-

mated based on movers between the categories. The sensitivity analysis shows that the
difference in αjt across occupations depends on workers in both occupational categories.
Intuitively, the differences in αjt across two categories depend on whether the wage gap
between high- and low-skilled workers increases or decreases when they both switch
between these two categories. These results clarify that if moves are not exogenous (a
violation of strict exogeneity), this will bias the differences in αjt between occupations.
However, it will not affect the trend within the routine occupation as it is identified by
workers who stay in the routine occupation.

The model is biased if the IV does not satisfy the condition in Equation 10. This will
occur when the IV is correlated with skills that are not captured in θi. For example, the
condition would be violated if θi captures mainly cognitive analytical skills, yet years
of schooling is also correlated with other psychological skills that affect wages such as
persistence or self-control.12

Even if the model assumption does not hold, the results would still be informative on
whether technology is skill-replacing. Appendix D.3 derives an analytical expression for
the αjt parameters in a case of a simple multi-skill setting. In this case, θi is a weighted av-

11Carneiro and Lee (2011) show empirically that the composition of skill by years of schooling changes
over time.

12Equation 10 does not imply that years of schooling must have a causal effect on wages. Since I am
estimating the return to skill and not the return to education, concerns about selection to education are
irrelevant. For example, in a pure signaling model in which workers choose years of schooling only based
on their skill θi, and education has no causal effect on wages, this condition will hold.

15



erage of skills that have large impact on wage and whose returns experience similar time
trends. However, when using an IV, the estimated returns to skill α̂jt reflect the weighted
average of returns to skills that are correlated with the IV. While this does not capture
the return to θi, this still quantifies the trend in the return to skills that are correlated with
years of schooling. Therefore, the estimates are still informative about the aggregate trend
in return to skills across occupations.

The sensitivity analysis in Appendix D.2 can also be used to bound the potential bias.
To generate a bias in the trend of αR,t, there must be a trend in the correlation of years of
schooling with the error term. Given reasonable values for the overall correlation of years
of schooling with log wages I calculate conservative bounds for the bias. I find that even
a large bias is unlikely to change the estimated trend in αR,t substantially.

2.2 Decomposing Wage Polarization

Even if all the predictions of the SR-RBTC model were corroborated by the data, it would
not disqualify other mechanisms that are potentially occurring simultaneously. For exam-
ple, institutional changes such as an increase in the real minimum wage (Piketty, 2014),
or a decrease in the unionization rate (Firpo et al., 2013) can also coincide with SR-RBTC
and potentially explain a significant portion of the trends as well.

Quantifying the importance of various potential explanations is often done using de-
composition methods. These methods were proven especially useful in the study of the
rise in income inequality in the 1980s. By showing that a large portion of the rise in in-
equality is driven by the rise in the return to education, they provided some of the most
important evidence for skill-biased technological change.

Previous decomposition attempts have found that RBTC can account only for a small
portion of the wage trends at the bottom of the distribution (Autor et al., 2005; Firpo et
al., 2013). Earlier models of (skill-neutral) RBTC hypothesized that the recent wage trends
were driven by changes in occupation premiums. Such changes are expected to be cap-
tured by the price component of various decomposition methods (e.g., Juhn et al., 1993;
DiNardo et al., 1996; Firpo et al., 2009). Yet, the price component was not large enough to
explain the main wage trends during this period, leaving room for other potential drivers.

Moreover, the decomposition methods discussed above are unable to quantify the im-
pact of SR-RBTC, as SR-RBTC violates the ignorability assumption that underlies them.
Commonly used decomposition methods assume that the distribution of wages condi-
tional on observables does not change when the distribution of observables changes.13 In

13Formally, ignorability assumes that the conditional distributions of wages Fw|X (w|X = x) does not vary
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this context, the critical observables are occupations or occupation characteristics. This
assumption is innocuous if wages decline uniformly for all workers in routine occupa-
tions, as the skill-neutral RBTC model predicts. However, in an SR-RBTC the distribution
of wages within occupations changes considerably, violating this assumption. This is
because both the distribution of skill and the return to skill are changing within occupa-
tions. This generates a change in the wage distribution that is driven by the interaction
of an observed characteristic (occupations) and an unobserved characteristic (skill). Most
decomposition methods cannot accommodate such interactions without making strong
assumptions, such as ignorability, which are violated in SR-RBTC (Fortin et al., 2011).

Igorability is also assumed in a recentered influence function (RIF) regression. This
method was used by Firpo et al. (2013) to show that at least some share of wage po-
larization can be attributed to RBTC. Firpo et al. (2013) were the first to document that
inequality trends within occupations are asymmetric, and inequality drops in routine oc-
cupations, as predicted by the SR-RBTC model. They also suggested a model where the
return to skill varies by occupation. However, the RIF regression they used cannot fully
account for the impact of these trends on the overall wage polarization, due to the ignor-
ability assumption. Specifically, RIF regression is valid when either skill and occupations
are independent, or when the distribution of unobserved skill is held fixed within occu-
pations (Firpo et al., 2009). These assumptions are violated in the model, as well as in the
data, as I will show.

To address this problem, I use a different decomposition, based on the skewness of
the log wage distribution. Wage polarization can be measured with skewness, the third
standardized moment.14 For a random variable Y skewness is defined as

S(Y) = E

[(
Y − E [Y]

σ

)3
]

(13)

It provides a measure of the asymmetry of the distribution relative to the mean. Appendix
Figure A2 demonstrates the link between skewness and wage polarization by plotting
the derivative of the empirical influence function at each quantile for a standard normal
distribution. Intuitively, the figure shows the effect of a small increase in log wages on the
skewness, for each quantile of the distribution, when log wages are normally distributed.

over time. This assumption implies invariance to conditional distributions, where Fw|X (w|X = x) does not
change when the marginal distribution of X (FX) changes.

14In other contexts, polarization is typically measured with the fourth moment of the distribution (kur-
tosis). However, the term wage polarization refers to the polarization of the change in wages, where wages
increase mostly at the top and at the bottom. The log wage distribution itself is not becoming more polar-
ized or bipolar, and therefore the kurtosis will not necessarily change.
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In particular, it shows that skewness increases exactly when wages at the edges increase
relative to the middle. This pattern aligns quite well with the observed trends in wages
by quantile that were shown by Autor et al. (2006) and I replicate in Section 6.1.

The main advantage of using skewness is that it has a simple decomposition. Let-
ting Y be the standardized logarithmic wages, X be the category by which we wish to
decompose, and µ3 be the third centralized moment (µ3 (Z) = E

[
Z3 − E [Z]3

]
), we get

S(Y) = µ3 (Y) = E [µ3 (Y|X)]︸ ︷︷ ︸
Within

+ µ3 (E [Y|X])︸ ︷︷ ︸
Between

+ 3COV (E [Y|X] , V [Y|X])︸ ︷︷ ︸ .

Correlation

(14)

This decomposition was discussed by Mincer (1974), but was never used on economics
data. It is the third-moment equivalent of the variance decomposition formula.15

The first and second components are quite standard. The first component E [µ3 (Y|X)]

can be thought of as a “within” component. It captures the remaining skewness within
each category. This component increases when the division into categories is orthogonal
to the increase in skewness, and therefore can be thought of as a residual component.
The second component, µ3 (E [Y|X]) captures skewness between groups, which is the
skewness due to differences between group averages. This component increases if wage
polarization is due to a similar change in wages for all workers in a group, compared to
other groups (e.g., a relative decline in routine wages).

The third component captures the correlation between wage levels and inequality in
each categorical group. Formally, this component measures the covariance between the
conditional mean and variance for each value of X. When highly paid groups also have
larger inequality, inequality will be higher at the top than at the bottom of the overall
distribution, making the distribution more positively skewed.

With this covariance component, we can capture trends that violate ignorability. The
covariance component allows us to have interactions between unobserved characteristics
(e.g., skill), and observed characteristics (e.g., occupation). Hence it can quantify changes
to the wage structure that cannot be detected by other methods.

Thus, the covariance component allows us to measure the wage impact of SR-RBTC.
According to SR-RBTC, inequality increases in the abstract occupation, since skill gaps in-
crease when lower-skilled workers join this occupation. By contrast, inequality decreases
in the routine occupation (Theorem 4). The effect on inequality in the manual occupation
could go either way, yet since manual occupations are only a small portion of all occupa-

15Variance can be decomposed into V (log w) = E [V (log w|X)]︸ ︷︷ ︸
Within

+ V (E [log w|X])︸ ︷︷ ︸
Between

.
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tions, their overall impact would be small. Taken together, we expect a wage trend that is
exactly captured by this component: inequality is rising in the higher-paying abstract oc-
cupations and declining in the lower-paying routine occupations. Indeed, the covariance
component will turn out to be responsible for most of the increase in skewness during the
period of wage polarization.

Skewness decomposition also provides another suggestive test of whether RBTC is
skill-replacing or skill-neutral. In SR-RBTC, most of the increase in skewness is due to the
increase in the covariance component. By contrast, in a skill-neutral RBTC, most of the
increase in skewness should be due to the between component. This is because according
to a skill-neutral RBTC, recent wage trends are driven mostly by the decrease in price of
routine goods pR. Such a decrease in price has an identical effect on all workers in a given
occupation. This is exactly the case when we expect a large effect on the between com-
ponent. However, this test on its own is insufficient, since the covariance component can
also increase in a skill-neutral RBTC due to some particular compositional changes. This
is why I also estimate the IFEM, which shows that inequality within routine occupations
declines regardless of any compositional changes.

Skewness decomposition has several important properties that make its results more
robust. It allows quantifying wage polarization using a single index. Similar to variance
decomposition, skewness decomposition breaks skewness into independent components.
This means that there is no problem of path dependence nor any need to arbitrarily define
a baseline year, as in other popular decomposition methods (Fortin et al., 2011).

While in this paper I use skewness decomposition to study wage polarization, it could
also be applied to any distribution where the third moment is of interest. There are vari-
ous cases in economics where skewness has important implications. Some examples are
the distribution of the return to patents, firm productivity, the distribution of capital own-
ership, and raw wages (without logs). Any variation in these distributions over time or
across places can be analyzed with skewness decomposition. To simplify and encourage
the usage of skewness decomposition by more researchers, I provide an R package that
implements it.16

3 Data

This paper combines three data sources. To estimate the interactive fixed-effects model
panel data is required. I use the Panel Study of Income Dynamics (PSID) between 1980–

16The package implements both skewness and variance decomposition and provides an analytical calcu-
lation of the standard errors.
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2017. This data was chosen due to its long panel. I measure income using hourly wage
(annual income divided by hours worked) as this best captures the real price of labor,
which is the focus of the model.I use the full core sample (SRC) without weights for every
individual whose wage is available.

Whenever a panel structure is not needed, including the skewness decomposition
exercise, I use a larger dataset from the Current Population Survey Outgoing Rotation
Group (CPS-ORG). The CPS-ORG provides the most accurate representative sample of
hourly wages (Lemieux, 2006a). I use the same sample definition as given in Acemoglu
and Autor (2011). Observations with missing wages are dropped. The main results hold
when using imputations instead. Sampling weights are used in all analyses.

One important limitation of hourly wage data is its relatively high level of measure-
ment errors. This problem is particularly severe at both tails of the distribution. Misre-
porting of working hours could lead to extremely high or extremely low values of hourly
wages. Therefore, I drop the top and bottom 5% of the positive wages throughout the
paper. The level of 5% minimizes the loss of data, without generating substantial fluctu-
ations between consecutive years in the skewness estimator. It is also similar to the data
cuts made in earlier papers in this literature (Katz and Murphy, 1992; Autor et al., 2008).
Smaller cuts also yield similar but noisier results, particularly for skewness estimates.17

Most of the skewness decomposition analysis is focused on the years between 1992–
2002. This is due to a significant revision of the occupational classification system that
took place before and after this period, which makes comparisons to other years less pre-
cise. As I will show, most of the increase in polarization occurred during this time period.
For robustness, I also implement an analysis over a longer period using the occupational
crosswalk constructed by Autor and Dorn (2013), and show the main results hold.

I maintain a consistent definition for routine occupations, similar to earlier papers in
the literature. I first translate all versions of occupational coding into a uniform coding,
using the Autor and Dorn (2013) crosswalk. I then define all administrative, operator,
and production occupations as routine, based on their 1-digit category. All managerial,
professional, and technician occupations are classified as abstract. Sales, services, and
agricultural occupations are classified as manual.18 This is a similar classification to that
used in previous studies (e.g., Acemoglu and Autor, 2011) with one exception: I do not
classify sales occupations as routine occupations.19 The analysis by 1-digit occupational

17Cornfeld and Danieli (2015) analyze skewness in Israeli data where measurement errors are less severe,
using the entire distribution. Their results are similar to the U.S. results I document in this paper.

18Unlike some of the other papers in this literature, I do not exclude agricultural workers.
19Classifying sales as a routine occupation does not strongly affect the results as it is a small share of

workers compared to the other routine occupations.
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category is fully consistent with previous literature.
Finally, I use data from the Occupational Information Network (O*NET) to measure

the routine intensity of each occupation more accurately, in cases where a continuous
index can be accommodated. This dataset contains 400 scales to describe various aspects
of each occupation, based on a worker survey. I use the same index for routine intensity as
Acemoglu and Autor (2011). This index summarizes six questions that proxy the routine
level of the job.

More details on the data are provided in the data appendix (E).

4 The Decline in Return to Skill in Routine Occupations

The main prediction of the SR-RBTC model is that the return to skill declines in the routine
occupation. Based on Theorem 1, such a decrease in the skill gap is only consistent with
a skill-replacing RBTC (ϵ < 0). In this section, I provide empirical evidence for this
prediction. I first show reduced-form evidence that the education premium has declined
in routine occupations. I then use an interactive fixed-effects model to get a direct estimate
of the return to skill and its trends in all occupational categories.

4.1 The Education Premium in Routine Occupations

In cross-sectional data, the education premium reflects not only the return to education
but also potential differences in unobserved ability between education groups (Card,
1999). Therefore, any changes in the education premium over time could reflect both
changes in the return to skill and changes in the skill composition of workers across edu-
cation levels. In order to focus on the changes in the return to skill, I measure the changes
in the education premium in a panel setting, controlling for differences in ability.

I estimate the education premium using a (standard) fixed-effects model. I define
education level by years of schooling. Specifically, I use the following model to estimate
the education premium for the subsample of workers in routine occupations in the PSID

log wit = γtSi + ψt + θi + ρtXit + εijt (15)

where Si measures years of schooling, ψt are year fixed effects, θi are worker fixed ef-
fects, and Xit is an additional control for experience squared. I focus on the coefficient
γt, which captures how much the wage gap between more- and less-educated routine
workers changes over time.
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This specification focuses on changes in the return to education, holding skill compo-
sition fixed. This is done by focusing on wage changes over time. Assuming that the skill
differences between workers is constant over time, the fixed effects (θi) guarantee that any
trend in γt is not driven by compositional changes, which are controlled for. For instance,
if γt > γt+1 , it implies that for a given set of workers, the gap between more and less
educated workers is decreasing over time.

I find that the wage gap between more and less educated workers has decreased since
the late 1980s. Appendix Figure A3 plots the estimated coefficient γt relative to its highest
value in 1987.20 The results indicate that since the late 1980s the education premium has
declined in routine occupations. This is consistent with the timing when bottom-half
inequality starts to decrease. In order to account for skill differences within education
levels, compare the trends in routine occupations to abstract and manual occupations,
and improve precision, I estimate the interactive fixed-effects model.

4.2 IFEM Results

The IFEM estimation results are consistent with the predictions of the SR-RBTC model. I
estimate Equation 7 as described in Section 2.1. I start by analyzing the estimation results
in detail for a specific year, before analyzing the full sample period.

In 1987, approximately the last year before bottom-half inequality starts to decline, the
estimation results are consistent with the initial pre-SR-RBTC model predictions. Panel
A of Figure A4 plots the expected log wage of workers in 1987 as a function of their
skill θi in the three different occupational categories. This figure highly resembles the
theoretical prediction in Figure 2a. Return to skill, αjt, which corresponds to the slopes in
the graph is highest in the abstract category, lower in the routine category, and lowest in
the manual category. As a result, the lowest-skilled workers can earn their highest wage
in manual occupations, the highest-skilled workers can earn the highest wage in abstract
occupations and middle-skilled workers earn the highest wage in routine occupations.
Moreover, the indifference point between routine and abstract occupations is very close
to zero, which is the average skill level in the economy. Hence, if workers sort optimally
into occupations, the highest-skilled routine workers have an average skill level.

Figure 3 extends the analysis over more years and shows that the return to skill has
steadily declined in routine occupations since the late 1980s. This is approximately when
wage polarization and the decline in routine employment start. The figure plots αj,t in
log units for the three broad occupational categories. Since there is a degree of freedom

20Since this specification is only focused on changes, it cannot estimate the absolute return to education.
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in this estimation, I pin log αA,1980 to 0. The figure shows that the return to skill in routine
occupations has dropped substantially. The value of log αR,t decreased by more than 0.7,
which correspond to a 50% cut between its peak value in 1987 and 2017. This means
that conditional on experience, the average return to skill was reduced by more than half.
Hence, skill gaps were substantially compressed in routine occupations among stayers.

The other two occupational categories did not see a similar sharp decline. For man-
ual occupations, log αM,t remains very stable at around -0.3. In the late 1980s, the return
to skill in manual occupations was below that in routine occupations, as assumed in the
model (Condition 1). Yet because the return to skill declined in routine occupations while
remaining relatively stable in manual occupations, their ranking reversed in the 1990s.
This matches the prediction of Theorem 5. Abstract occupations also see some decline
in return to skill, mostly after 1994, supporting recent evidence on a reversal in demand
for cognitive skills (Beaudry et al., 2016). While interesting in itself, this decline is signifi-
cantly smaller compared to the decline in routine occupations and is not large enough to
change the ranking of occupational categories based on their return to skill.21

The same pattern of results emerges when using nine occupational categories based
on 1-digit occupational coding. I estimate Equation 7 allowing the return to skill (αjt)
to vary by 1-digit occupation category and year. Figure 4 plots the coefficient for αjt in
log units for each 1-digit occupation category in three years: 1985, 1997, 2011.22 In 1985,
before wage polarization starts, the return to skill is in accordance with the assumption
of the model: the return to skill is largest in the abstract occupations (managers, profes-
sionals, and technicians), lowest in the service occupations, and in between for routine
occupations (administrative, operator and production). One noticeable exception is sales
occupations, which seem to have a return to skill in the range of the abstract occupations
despite often being classified as routine.

The return to skill then drops only in the routine occupations. All four routine occu-
pations, including sales, experienced a decline in return to skill between 1985–1997. At
the same time, the other four occupations (managers, professionals, technicians, and ser-
vices) experience an increase in their return to skill. Later, between 1997–2011, there is a
decline in the return to skill in all occupations, but it is sharper in the routine ones, and
especially in the administrative category. By 2011, the categories with the lowest return

21Figure 3 documents a decline only in return to skill in abstract occupations ( ∂ log φA(θi)
∂θi

), and not a gen-
eral decline in the occupation premium (pA). Wages in abstract occupations are still higher relative to other
occupations in the end of the period. Inequality within abstract occupations is also still rising, possibly due
to lower-skilled workers joining these occupations. See Section 6.2 for further discussion.

22The trend for agricultural workers, who comprise only a small share of the labor force, is similar to
other manual workers in the service sector, and reported in Appendix Figure A5.
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to skill are the four routine occupations. Appendix Figure A5 shows the trends in more
detail and plots the value of αj.t for each 1-digit occupational category by year.

Overall, these results fit well with the predictions of the skill-replacing RBTC model.
Theorem 1 shows that a decrease in the skill premium is consistent only with a skill-
replacing technology (and not with a skill-neutral or skill-enhancing technology). The
IFEM shows since the late 1980s, wages of workers who stay in routine occupations has
become more similar over time, consistent with the prediction of Theorems 3 and 5.

The IFEM assumes a one-dimensional skill as in the model in Section 1. This implies
that the wages of workers in one occupational category would be correlated with their
wages if they move to another occupational category. In other models, this prediction
would not necessarily hold. In a multi-dimensional skill model (Appendix B.3), the wages
of workers would be correlated across occupations only if skills are correlated. Similarly,
Acemoglu and Restrepo (2024) propose a model in which automation decreases inequal-
ity among workers in routine occupations by decreasing rents. If higher wages in routine
occupations reflect mostly rents, then the high-earning workers in routine occupations
would not be high earners in another occupational category.

Appendix F shows two empirical exercises that support the unidimensional skill as-
sumption. First, I measure the rank correlation of movers across the three occupational
categories. Second, I estimate a more general IFEM with multidimensional skills in which
θij can vary by occupational category. I find that both wages and skills are highly corre-
lated across occupational categories. This is consistent with a decrease in returns to a skill
that is at least correlated with the relevant skills in other occupations.

5 The Reversal of Comparative Advantage

This section presents evidence that the employment decline in routine occupations was
predominantly driven by higher-skilled routine workers. As a result, routine occupations’
average skill level fell below that of manual workers. This explains why inequality at the
bottom of the distribution stopped declining and started rising back, even though SR-
RBTC continued.

I estimate each worker’s skill using the interactive fixed-effects model. For each worker
i, I estimate θ̂i using Equation 9. Since θ̂i is estimated separately for each worker, it is based
only on a small number of observations, making it a very noisy estimate. To solve this
problem, I analyze the average value of θ̂i for large groups of workers.

Specifically, I examine the average value of θ̂i for each occupational category in a given
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year. I do this either by dividing occupations into the three main categories (abstract,
routine, manual) or by the 1-digit classification. I normalize θ̂i to have a mean of zero for
each cohort based on the year in which the worker entered the labor market. Therefore
this is an analysis of relative skill within cohorts.

I find a substantial and steady decline in the average skill level of workers in routine
occupations. Figure 5 plots the average skill level by occupational category and year. At
the beginning of the sample period, in the early 1980s, workers in routine occupations
were middle-skilled. Their average θ̂i was very close to zero, which is the population
average. Over the next three decades, the skill composition of workers in routine occu-
pations steadily declined, reaching -0.2 at the end of the period. Since the return to skill
in routine occupations in 2017 (αR,2017) was about 0.3 (-1.2 in log units), it follows that
if workers in routine occupations in 2017 had been as skilled as they were in 1980 their
wages would have been 6% higher.

At the end of the sample period, routine occupations employed the lowest-skilled
workers. While the average skill level of workers in routine occupations declined, the
average skill level of manual and abstract workers remained fairly stable. As a result, in
2015, the average skill level of routine workers fell for the first time below that of manual
workers.23 In appendix G I show evidence that the decline in the average skill in routine
is driven primarily by a decrease in the share of middle-skill workers who join routine
occupations when they enter the labor force.

I find very similar trends using the 1-digit classification of occupations. Figure 6 plots
the average skill level in 1985, 1997, and 2011. At the beginning of the period, routine
occupations were middle-skilled, where all four routine occupational categories (includ-
ing sales) had a skill level between -0.1 to 0.1. In the following periods, administrators,
operators, and production workers became significantly less skilled.

Other occupations, such as services, saw an increase in the average skill level of their
workers. In 2011, service workers had higher skills than administrative workers and
operators. This fits well with the prediction of the model that since the lowest-skilled
workers were now employed in routine occupations, manual occupations such as services
would see an increase in the skill level of their workers. Appendix Figure A6 plots the
results for all years.

I also find that while in 1990 many middle-wage workers worked in routine occupa-
tions, by 2010 this is no longer the case. Figure 7 plots the average routine intensity index

23Workers in the routine occupations still earn higher wages than those in manual occupations. One
reason for this is their higher level of experience (Autor and Dorn, 2009), which is not reflected in this
within-cohort analysis.
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for 20 quantiles of the wage distribution. This index is based on the routine intensity
of the occupations of workers in this quantile (see Appendix E for more details on the
index). Between 1990 and 2000, routine intensity fell mostly for wages above the 40th
percentile. In the following decade between 2000–2010, routine employment fell mostly
between the 20th and 40th wage percentiles, perhaps because not many workers in rou-
tine occupations were left in higher percentiles.

There are at least two potential explanations for this decline in the number of middle-
wage routine workers. First, the decline could be driven by middle-skilled workers leav-
ing or never joining routine occupations. Workers in the middle and upper half of the
wage distribution may have switched to occupations with a lower routine intensity. This
corresponds to a decline in θ1 in the SR-RBTC model, as predicted by Theorems 3 and 5.
Second, the decline could be driven by lower wages in routine occupations. This corre-
sponds to a decline in pR, as predicted by Theorem 2 and empirically shown by Cortes
(2016). In either case, workers in routine occupations are now concentrated in much lower
percentiles of the wage distribution than they were in the past. Therefore, any further
RBTC is not expected to generate a decline in middle wages.

These findings fit very well with the model’s predictions. Since wages decline mostly
for the highest-skilled routine workers, they are the first to leave these occupations, as
predicted by Theorem 3. As a result, the overall skill level decreases, as predicted by
Theorem 4. At some point, the average skill level of workers in routine occupations falls
below that of manual workers, as predicted by Theorem 5.24

This compositional change explains why inequality at the bottom of the distribution
stopped decreasing and started increasing. Once middle-wage workers were no longer
employed in routine occupations, they were no longer affected by SR-RBTC as before.
Since workers in routine occupations were now the lowest-skilled workers, any further
SR-RBTC was working mostly against the lowest earning workers. This generated an
increase in inequality at the bottom half of the wage distribution.

6 Quantifying the Overall Impact of SR-RBTC

So far, I have shown that the main predictions of the model are consistent with the data.
This section shows that SR-RBTC is also substantial enough to account for almost the
entire trend of wage polarization. Using skewness decomposition, I show that wage po-
larization is driven almost entirely by occupational trends. Moreover, the effect is not

24Under particular parameters, the average skill could also decline in a skill-neutral RBTC. However, a
skill-neutral RBTC is inconsistent with the decline in return to skill (Figure 3).
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driven by the drop in the premium in routine occupations as predicted by a skill-neutral
RBTC. Instead, I find that the decline in inequality in low-paying routine occupations is
the main driver of wage polarization, consistent with the SR-RBTC model.

6.1 Evidence From Skewness Decomposition

I start by showing that skewness is indeed a good measure of wage polarization. Figure 8
shows the trend in skewness between 1979–2012. The rise in skewness aligns very well
with the timing of wage polarization as depicted in Figure 1. Skewness increased between
the late 1980s and the early 2000s, exactly when the 90/50 gap was rising and the 50/10
gap was falling.

The rise in skewness is driven by trends in all parts of the wage distribution. An
increase in skewness occurs when the distribution becomes more tilted toward the left-
hand side. This corresponds to an increase in the gap between middle and high wages
and a decrease in the gap between middle and low wages. Appendix Figure A7 presents a
bin scatter of the change in wages between 1992–2002, for 20 quantiles. The figure shows
a U shape pattern, as previously shown by Autor et al. (2006) and Autor et al. (2008). The
U shape received qualitatively resembles the EIF derivative plotted in Figure A2. This
suggests that skewness rose in this period because of the rise in wages both at the top and
at the bottom of the distribution, making it a good fit to measure wage polarization.

I decompose the rise in the skewness of the distribution into three components, namely,
within, between, and covariance components, as described in Equation 14, for different
choices of categorical groups (X). I first focus on the period between 1992-2002 since data
on other years uses different occupational coding (see Section 3). As Figure 8 shows, this
time period includes a big portion of the overall increase in skewness.

Decomposing by occupations can explain almost the entire rise in skewness. Table 1
presents the decomposition of the rise in skewness between 1992–2002 by 3-digit occupa-
tional coding. I report the values of each component and its overall contribution to the
rise in skewness. Figure 9 depicts the annual change in each component, as well as in the
sum of the three, which equals the total change in skewness.25 The first conclusion from
this exercise is the importance of occupational trends in explaining the rise in skewness.
The within component, which captures the part that is unrelated to occupational trends,
explains only 7% of the overall increase. That small share might also be the result of
classification errors. Hence 93% of the rise in skewness is related to occupational trends.

25Appendix Figure A8 performs the same exercise using imputed wages for observations where wages
are not reported and reaches very similar results.
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Most of the increase in skewness is driven by the covariance component. This is in-
dicated by the blue area in Figure 9, which captures 79% of the rise in skewness. These
results imply that the rise in skewness is driven primarily by the increasing correlation
between the mean and the variance of log wages in occupations. In other words, the rise
in skewness is due to the growing correlation between wage levels and inequality levels
in each occupation. As I discussed in Section 2, this type of correlation is not captured by
other decomposition methods, which is why earlier work potentially underestimated the
contribution of occupational trends.

These results align better with the hypothesis that RBTC is generating wage polariza-
tion than with institution-related hypotheses. The theory of RBTC argues that its effect is
driven predominantly through occupations. Therefore, the fact that wage polarization, as
measured with skewness, is driven by occupations greatly supports this hypothesis. By
contrast, institutional changes do not operate directly through occupations.

Moreover, the results are most consistent with a skill-replacing RBTC. Earlier models
of a skill-neutral RBTC (Autor et al., 2006; Acemoglu and Autor, 2011) argue that there is
a drop in the price of routine tasks, which makes wages fall equally for all workers in rou-
tine occupations. Such a trend would have been captured by the between component as
it generates the same effect for all workers in the same occupation. However, this compo-
nent generates only 15% of the overall rise in skewness. Instead, the substantial rise in the
covariance component suggests that the effect is mostly driven by the asymmetric trends
within occupations. This is consistent with a decrease in the return to skill in low-paying
routine occupations, as described in the SR-RBTC model.

The results are not driven by any other worker characteristic in the data. Since occu-
pations are correlated with workers’ skill levels or industries, I verify that occupations
are not proxying for some other worker characteristics. In Appendix Figures A9 and A10
I show the same decomposition results by industry, education, and experience. Clearly,
in those cases the within component is much larger, suggesting that a great portion of the
trend in skewness is unrelated to these categories. Moreover, most of the increase in the
between and covariance components in those decompositions is due to their correlation
with occupations. Appendix H discusses how to decompose by more than one category
using a linear model. I use this method to decompose jointly by occupation and industry
or education. The results in Appendix H show that the increase in skewness is driven
almost entirely by occupation and not other observables.

Looking at a longer time period yields similar results. Appendix Figure A11 plots
a decomposition by occupations between 1988, when skewness starts to rise, and 2012.
Within this time period the occupational coding changes and therefore I use the Autor
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and Dorn (2013) occupational crosswalk that generates a unified coding across periods.
However, changes in the baseline coding might still generate a measurement error when
the coding changes between 1991–1992 and between 2002–2003. With that caveat in mind,
we still see a similar pattern in the earlier period between 1988–1992. Most of the increase
in skewness is driven by the covariance component. In the period after 2002, when wage
polarization stops, skewness is stable, as are the three different components.

6.2 The Decline in Inequality Within Routine Occupations

The increase in correlation between wage levels and inequality that drives wage polariza-
tion could be attributed to different explanations. The increase could be due to trends in
wage levels, wage inequality, or perhaps the composition of workers in each occupation.
The following section presents evidence that the main driver is the decrease in inequality
in low-paying routine occupations, as predicted by Theorem 4.

During the 1990s, inequality trends within occupations were strongly correlated with
the wage levels in those occupations. High-paying occupations saw an increase in in-
equality while low-paying occupations saw a decrease (Lemieux, 2007). Figure A12 repli-
cates this by plotting the change in the variance of log wages from the beginning of the
studied period (1992/3) to its end (2001/2) as a function of mean log wages. Changes in
inequality, measured with the variance of log wages, are correlated with the occupation
wage levels.

In fact, the trends in within-occupation inequality can explain the full rise in the co-
variance component. The covariance component equals

COV (E [Y|X] , V [Y|X]) = ∑
x

Pr (X = x) E [Y|X = x]V (Y|X = x)

where in this case Y is log wages and X is 3-digit occupations. Most of the increase
stems from changes in the variance of log wages in different occupations, V (Y|X = x).
To show this, I fix the share of workers and the expected log wage in each occupation to
their averages throughout the period. Thus, I allow only the variance to vary between
years. Formally, I calculate the following counterfactual partial-equilibrium covariance
for t between 1992 and 2002:

C̃OV
(

E [Yt|Xt], V [Yt|Xt]
)
= ∑

x
Pr (X = x) E [Y|X = x]V (Yt|Xt = x) (16)

where Pr (X = x) and E [Y|X = x] are simple averages of the share of workers and mean

29



log wages over all years between 1992–2002.
I find that the asymmetric trends in within-occupation inequality can explain the en-

tire increase in covariance. Figure 10 compares the real value of the covariance to its
counterfactual value from Equation 16. The counterfactual trend closely follows the real
trend. Therefore, if the share of workers and the mean log wage in each occupation were
held fixed, we would still get the same increase in the covariance, and hence the same
increase in skewness and wage polarization. Letting the share of workers or the expected
log wage vary while holding other factors fixed does not yield any similar results. This
exercise demonstrates that the increase in covariance, and hence the increase in wage po-
larization, is mostly the result of the asymmetric changes in within-occupation inequality,
as measured with the variance of log wages. I.e., inequality is increasing in high-paying
occupations and decreasing in low paying occupations.

The drop in inequality in low-paying occupations is driven mostly by routine occupa-
tions. Figure A13 presents a bin scatter plot of the changes in within occupation variance
for routine and non-routine occupations. I divide occupations into 10 bins separately for
routine and non-routine occupations, based on their initial wage decile in 1992. I then
plot the mean change in the variance of log wages between 1992–2002. While there is
some drop in inequality in low-paying occupations that are non-routine, the trend is sub-
stantially stronger for routine occupations. This is consistent with the findings in Firpo
et al. (2013) who show using O*NET data that routine occupations tend to have a stronger
decrease in variance.

Overall, these findings fit well with the predictions of the model. Most of the wage
polarization is related to occupational trends, which supports the explanation of RBTC.
The trend is driven mostly by the asymmetric trends in within-occupational inequality.
Inequality is decreasing in low-paying, mostly routine occupations, while it is increasing
in high-paying occupations. This fits well with the predictions of the SR-RBTC model in
Theorem 4, and explains why we see a U-shaped wage trend during the 1990s.

7 Discussion and Alternative Explanations

I conclude this paper by summarizing the empirical puzzles that the SR-RBTC model is
able to address, as well as the new empirical facts I document, which also align with this
model. I then discuss alternative explanations and highlight which empirical facts they
are unable to explain.

The SR-RBTC model explains three empirical facts that could not be explained with a
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skill-neutral RBTC model (e.g., Acemoglu and Autor, 2011). First, it explains why middle
wages declined in the 1990s, even though workers in routine occupations were dispersed
across the entire bottom half of the income distribution. The SR-RBTC model predicts
that wages would decrease for the highest-earning routine workers, who are empirically
located exactly in the middle of the income distribution. It also explains why middle
wages stopped declining around the year 2000. The SR-RBTC model predicts that, over
time, middle-wage workers would prefer to work in the abstract occupation, as observed
in the data. Therefore they are no longer negatively affected by RBTC. Finally, the model
explains why we observe only mild wage decreases for workers in routine occupations
on aggregate— while wages fall for routine workers with higher skill they increase for
routine workers with lower skill. Hence, most of the wage adjustment occurs not for the
average routine wages, but for the inequality level within the routine occupation.

I document new empirical facts that are consistent with the SR-RBTC model. I find
that the return to skill declined in routine occupations significantly more than it did in
other occupations. I also show evidence that the average skill level declined substan-
tially in routine occupations. Together, this leads to a concentration of workers in routine
occupations in lower parts of the income distribution. Finally, using skewness decompo-
sition, I show that wage polarization is driven primarily by the inequality trends within
occupations—in particular, the decrease in inequality in low-paying routine occupations.

Other explanations do not fit these empirical patterns as well as SR-RBTC. Several
alternative explanations for the decline in bottom-half inequality in the 1990s focus on
institutional changes, such as an increase in the real minimum wage (Piketty, 2014) or a
decline in unionization (Lemieux, 2007). Other explanations focus on high growth and
low unemployment rates as potential drivers for the increase in lower wages. Finally, it
is possible that trade shocks have led to some of the changes in the wage distribution
(Autor et al., 2013). However, none of these explanations is expected to work through
occupations more than through education levels or industries. For example, while some
occupations are more unionized than others, industries are likely better proxies for union-
ization status. Moreover, while these mechanisms could generate a decrease in inequality
within lower-paying occupations, as part of the overall decrease in lower-half inequality,
it is unclear why their impact would be mostly on low-paying routine occupations and
not, for example, service occupations.

Among theories that focus on occupational-related trends, SR-RBTC best fits the em-
pirical findings. Generally, theories related to technology seem to fit the data better, as
most of the trends are related particularly to routine occupations, which can be automated
more easily (Autor et al., 2006; Goos et al., 2014). Skill-neutral or skill-enhancing RBTC
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models are inconsistent with the clear decline in return to skill in routine occupations.
They also do not predict the decrease in skill level in routine occupations.

Jaimovich et al. (2021) suggest a multi-skill model with a skill-neutral technological
change. The multi-skill model is potentially more realistic and explains several empirical
facts that I did not focus on in this paper. However, it does not explain some of the
key facts that were the focus of this paper, including the decline in middle wages, the
halt of this decline around 2000, the decrease in the return to skill, and the decline in
the average skill level for workers in routine occupations. To explain these facts, the
multi-skill model needs to accommodate a skill-replacing technology, as in the multi-skill
model in Appendix B.3. The results in Appendix F suggest that the correlation between
skills is likely high, at least for workers who switch occupational categories (which are
the majority of workers). This correlation also supports the interpretation of a decline in
return to skill, rather than a decline in rents (Acemoglu and Restrepo, 2024).

Another theory that could potentially explain the bottom-half inequality trends is a
positive demand shock for service occupations (Autor and Dorn, 2013). SR-RBTC also
predicts an increase in demand for manual occupations due to the complementarities be-
tween occupations. Therefore, several predictions of the SR-RBTC model overlap with
the predictions in Autor and Dorn (2013). But one important distinction is the effect on
the skill composition of workers in routine occupations. A demand shock in service oc-
cupations should attract more workers from the bottom of the skill distribution and so
reduce the share of low-skilled routine workers, as they have a comparative advantage
in service jobs. However, most of the decline in employment in routine occupations is
driven by the highest-skilled routine workers, making it more consistent with SR-RBTC.

Institutional explanations are potentially more relevant for bottom-half inequality in
other countries. Other developed countries have more dominant labor market institu-
tions compared to the U.S. (Blau and Kahn, 2002). Such institutions tend to have a larger
impact on bottom half compared to upper-half inequality. For example, Broecke et al.
(2016) find that minimum wage levels are substantially more associated with bottom half
inequality than with upper half inequality. As a result, technological changes could have
less effect on bottom-half inequality in other developed countries. This could explain why
similar inequality patterns are not seen in other countries, despite having similar patterns
of employment decline in routine occupations (Naticchioni et al., 2014; Goos et al., 2014).
Interestingly, in Israel, which is one of the few countries to experience similar fluctuations
in bottom-half inequality, similar patterns are detected (Cornfeld and Danieli, 2015).

While this paper does not provide causal identification, my findings are consistent
with those of previous papers that have studied the causal effect of RBTC on firm wage
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distribution. Gaggl and Wright (2017) exploit a natural experiment where exposure to
technology varies by firm. They find that the new technology generates wage compres-
sion among workers in routine occupations in a given firm. In this paper, I show that this
wage compression is the main driver of wage polarization and not a side effect.

It is possible that other technological advancements that are not only automating rou-
tine tasks have also a skill-replacing nature. This could create a decrease in inequality for
workers in non-routine occupations. For example, Noy and Zhang (2023) use a lab ex-
periment to show that generative AI yields a larger productivity boost for lower-skilled
workers. Beaudry et al. (2016) argue that after a technology is adopted, the demand for
high-skill abstract workers declines. Whether new technology is skill-replacing or not is
a critical question that could determine the future of inequality in the labor market.
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Figures and Tables

Tables

Year Total Skewness Within Between 3COV

1992 .0946 .0334 -.04171 0.1030
N = 130, 502 (.0037) (.0032) (.0053)

2002 .1898 .0397 -.0276 0.1777
N = 108, 145 (.0045) (.0036) (.0062)

∆ 1992-2002 .0951 .0063 .0141 0.0747
(.0058) (.0048) (.0081)

100% 6.6% 14.9% 78.5%

Table 1: Skewness Decomposition by 3-Digit Occupation
Skewness decomposition based on Equation 14. The three components sum to the overall skewness (Equation 14). Wages at the top
and bottom 5% were dropped (see Section 3). Standard errors are calculated analytically (using the delta method).
Source: CPS Outgoing Rotation Groups
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Figure 1: 90/50 and 50/10 Log Hourly Wage Ratio
Quantiles are calculated for all workers with positive earnings at the hours level, using sample weights multiplied by hours worked.
Source: CPS Outgoing Rotation Groups (N = 4, 401, 711)
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Figure 2: Illustrated Changes in Log Wages by Skill
These figures illustrate the equilibrium sorting of workers into occupations and their log wages as a function of their skill θi . The
dashed red line represents equilibrium log wages in a later time period when technology has further advanced (increase in τ). Panel
A represents a small technological change, that reduces the slope of log wages as a function of θi only in the routine occupation. Panel
B describes the equilibrium after a large technological advancement and a reversal of comparative advantage such that the slope in
the routine occupation is lower than the slope in the manual occupation (Condition 6 replaces Condition 1).

38



1980 1990 2000 2010

−
1.

0
−

0.
5

0.
0

R
et

ur
n 

to
 S

ki
ll 

−
 L

og
 S

ca
le

Abstract Routine Manual

Figure 3: Return to Skill (ajt) by Occupational Category
This figure presents the return to skill (αjt) in log units for the three occupational categories. Return to skill is calculated using an
interactive fixed-effects model (Equation 7). The log return to skill in the abstract occupation in 1980 is fixed to zero, hence all other
values are relative to that year and occupational category. Routine workers are defined as workers in administrative, production, or
operator occupations, classified by the first occupational coding digit. Abstract workers include managers, technicians, and profes-
sionals. Manual includes service, sales and agricultural occupations. Autor and Dorn (2013) occupational crosswalk is used for a
consistent definition of occupations over time. Dashed lines represent 95% confidence intervals.
Source: PSID (N = 122, 162)

Manager Professional Technician Admin Operator Production Sales Service

R
et

ur
n 

to
 S

ki
ll 

−
 L

og
 S

ca
le

Manager Professional Technician Admin Operator Production Sales Service

1985       
1997
2011

−
0.

9
−

0.
7

−
0.

5
−

0.
3

−
0.

1
0.

1

Figure 4: Return to Skill (αjt) by 1-Digit Occupational Category
This figure presents the return to skill (αjt) in log units for eight 1-digit occupational categories. The log return to skill in administrator
occupations in 1980 is fixed to zero, hence all other values are relative to that year and occupational category. Results for all years are
available in Appendix Figure A5. Return to skill are calculated in an interactive fixed-effects model (αjt, using Equation 7). αjt varies
by 1-digit occupation and year. Autor and Dorn (2013) occupational crosswalk is used for a consistent definition of occupations over
time.
Source: PSID (N = 105, 248)
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Figure 5: Mean Skill Level (θ̂i) by Occupational Category
Mean level of θ̂i by occupational category and year. θ̂i is calculated using Equation 9, and demeaned at the cohort level, where cohorts
are defined based on year of entry into the labor market. Routine workers are defined as workers in administrative, production, or
operator occupations, classified by the first occupational coding digit. Abstract workers include managers, technicians, and profes-
sionals. Manual workers include service, sales, and agricultural occupations. Autor and Dorn (2013) occupational crosswalk is used
for a consistent definition of occupations over time.
Source: PSID (N = 124, 407)
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Figure 6: Mean Skill level (θ̂i) by1-Digit Occupational Category
Mean level of θ̂i by occupational category and year. θ̂i is calculated using Equation 9 and demeaned at the cohort level, where cohorts
are defined based on year of entering the labor market. The Autor and Dorn (2013) occupational crosswalk is used for a consistent
definition of occupation over time.
Source: PSID (N = 108, 413)

40



−1.0

−0.5

0.0

0.5

0 25 50 75 100
Income Percentile

R
ou

tin
e 

In
de

x

1990 2000 2010

Figure 7: Routine Intensity of Occupation by Wage Percentile
This figure plots the average routine intensity by wage bins for 20 equal-sized bins. Bins are based on workers’ hourly wages. The
routine intensity is calculated at the occupational level as in Acemoglu and Autor (2011). It is the average of routine manual and
routine cognitive indices, both standardized, such that the population average is 0. More details are provided in Appendix E. I use
the occupation classification in Autor and Dorn (2013) for consistency across decades. Sample weights are used.
Source: CPS Outgoing Rotation Groups and O*NET (N1990 = 147, 851; N2000 = 105, 461; N2010 = 101, 915)
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Figure 8: Skewness of Log Hourly Wage
Skewness (Equation 13) of the log wage distribution by year. Sample weights are used. Vertical lines represent changes in occupational
coding. Wages at the top and bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups (N = 4, 401, 711)
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Figure 9: Skewness Decomposition by 3-Digit Occupation
Skewness decomposition based on Equation 14. Changes in each component (within, between, covariance) are plotted relative to the
baseline year (1992). The three components sum to the overall skewness (Equation 14). Wages at the top and bottom 5% were dropped
(see Section 3).
Source: CPS Outgoing Rotation Groups (N = 1, 208, 151)
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Figure 10: Covariance of Expectation and Variance of Log Wages by Occupation
This figure plots the covariance of mean log wage and variance of log wage by occupation, COV (E [log w|occ] , V (log w|occ)) (black
line). The counterfactual covariance (in blue) is calculated by fixing E [log w|occ], and the share of workers in each occupation to their
average throughout the period, allowing only the variance within each occupation to change (Equation 16.) Wages at the top and
bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups (N = 1, 208, 151)
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A Appendix Figures and Tables
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Figure A1: Equilibrium Log Wage by Skill
Sorting into occupations in a Jung and Mercenier (2014) model. The bold line represents equilibrium log wages as a function of θi .
Dashed lines are off-equilibrium wages in other (suboptimal) occupations. θ0, θ1 are the threshold skill levels in which workers are
indifferent between two occupations.
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Figure A2: Derivative of EIF on Skewness for Standard Normal Distribution
The empirical influence function is a function from the value of a given observation xi to some statistic Tn (x) (in this case, the
empirical skewness), taking the other observations x−i as given. I calculate this for a sample of n = 100. I sample 1,000 samples of 100
observations from a standardized Normal distribution, and calculate numerically the derivative at the kth-order statistic at the sample
point. The figure shows the mean over the 1,000 samples of this derivative.
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Figure A3: Education Premium in Routine Occupations
This figure plots the change in wage gaps between workers with different years of schooling relative to 1987. Education premium is
estimated with coefficient γt in Equation 15. Data includes all routine workers in the PSID. See Section 3 for a definition of routine
occupations.
Source: PSID
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Figure A4: IFEM Expected Log Wage by Occupational Category - 1987
This figure plots the expected log wage as a function of the standardized worker fixed effect θi and occupational category for the years
1987 and 2011 using the estimation of the IFEM (Equation 7). The slope in each occupation is determined by the parameter αj,t, where
a higher slope implies a larger return to skill. Worker fixed effects are standardized to have a mean of zero in every cohort and a
standard deviation of 1 overall. The bold line represents the highest expected wage for each skill level. The dashed vertical lines mark
the indifference points between two occupational categories that correspond to θ0 and θ1 in the model.
Source: PSID
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(d) Administrators
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(f) Production
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(g) Sales
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Figure A5: Return to Skill (αjt) by1-Digit Occupation
Returns to skill are calculated in an interactive fixed-effects model (αjt, using Equation 7). αjt varies by 1-digit occupation and year.
The Autor and Dorn (2013) occupational crosswalk is used for a consistent definition of occupations over time.
Source: PSID
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Figure A6: Mean Skill Level (θ̂i) by1-Digit Occupation
Mean level of θ̂i by occupational category and year. θ̂i is calculated using Equation ??, and demeaned at the cohort level, where cohorts
are defined based on year of entering the labor market. The Autor and Dorn (2013) occupational crosswalk is used for a consistent
definition of occupations over time.
Source: PSID
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Figure A7: Bin Scatter Plot - Change in Log Wages 1992–2002
Change in log wages in each of 20 equal-sized quantiles. Quantiles are calculated separately for both 1992 and 2002. The x-axis shows
the value of the mean log wage in each quantile. The y-axis plots the difference in mean log wages in each of the 20 quantiles between
1992–2002. Sample weights are used.
Source: CPS Outgoing Rotation Groups
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Figure A8: Skewness Decomposition by 3-Digit Occupation with Imputed Wages
Skewness decomposition based on Equation 14. This figure replicates the results in Figure 9 including imputed wages. Changes in
each component are plotted relative to the baseline year (1992). Wages at the top and bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups
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Figure A9: Skewness Decomposition by 3-Digit Industry
Skewness decomposition (Equation 9) by 3-digit industry categories. Changes in each component are plotted relative to the baseline
year (1992). Wages at the top and bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups
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Figure A10: Skewness Decomposition by Education and Experience
Skewness decomposition (Equation 9) by the interaction of years of schooling and years of experience. Changes in each component
are plotted relative to the baseline year (1992). Wages at the top and bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups
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Figure A11: Skewness Decomposition by Occupation 1988–2012
This figure repeats the exercise of Figure 9 for a longer time period. Decomposition is based on Equation 36. Vertical lines represent
changes in 3-digit occupational coding. Occupational coding is based on the Autor and Dorn (2013) crosswalk. Changes are reported
relative to the baseline year (1988), which is approximately the beginning of the rise in skewness. Wages at the top and bottom 5%
were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups
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Figure A12: Changes in Occupational Inequality 1992/3–2001/2 by Mean Log Wages
This figure plots all occupations with at least 0.5% of the total working hours (top 47 out of 501 occupations that include 53% of the
total working hours). The expected log wage (X-axis) is the average log wage in an occupation during the entire period (1992–2002).
Change in Variance (Y-axis) is the difference between the average of the first and last two years (I pool two years together to reduce
errors due to small sample size). The line is the best linear fit to the points. Wages at the top and bottom 5% were dropped (see
Section 3).
Source: CPS Outgoing Rotation Groups
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Figure A13: Binned Changes in Occupational Inequality by Mean Log Wages 1992-2002
This figure plots the change in occupational variance as a function of occupation mean separately for routine and non-routine 3-digit
occupations. Occupations are binned based on occupation mean log wage separately for routine and non-routine occupations using
10 equal-sized bins (deciles) of occupations, weighted by occupation size. Each point displays the mean log wage in the baseline year
1992, and change in the variance between 1992–2002 when occupational coding is fixed. Routine occupations include all occupations
classified as administrators, operators, and production workers based on 1-digit occupation coding.
Source: CPS Outgoing Rotation Groups
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Figure A14: Indifference Curve in Multidimensional model
This figure illustrates the indifference curve between the routine occupation, and another non-routine occupation j (manual or abstract)
in the multi-skill model in Section B.3. The figure shows the solutions to Equation 18, which are combinations of routine skill θR,i and j
skill θj,i for which workers would be indifferent between the two occupations. Workers below the indifference curve would prefer the
routine occupation, while workers above the indifference curve would prefer occupation j. The black solid line depicts the indifference
curve in the initial point. The dashed red line represents the indifference curve in a later time period when technology has advanced
further (increase in τ). The dotted (striped) area represents workers who sort into the routine (j) occupation at period t and sort into
occupation j (routine) at period t + 1.
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Figure A15: Sensitivity Analysis
These figures report results of the Andrews et al. (2017) sensitivity analysis for changes in the return to skill. Panel A measures the
sensitivity for changes in routine occupations (log αR,t − log αR,t−2) and Panel B measures the sensitivity for the differences between
the routine and manual occupations (log αR,t − log αM,t). Each point represents the average sensitivity of the log ratios to a correlation
of the IV (years of schooling) with the error term in that occupational category and year. The bias can be calculated using γZ

j′ t+k

(Equation 31), the coefficient of the IV on the error term in occupational category j′, and year t + k. For a speculated value of γZ
j′ t+k ,

the average bias is γZ
j′ t+k times the reported sensitivity in the figure. The figure shows the average sensitivity over all years t. For each

year t, I calculate the sensitivity as ΩΛv where Λ is the sensitivity matrix, Ω the covariance matrix of {1, Xit, Zi} interacted with an
indicator for i ∈ Ejt, and v is the gradient of the log ratios in all model parameters. See Andrews et al. (2017) for details. I then average
over all the sensitivity values calculated in each year, for any given combinations of occupation category j′ and years t + k, where k is
the distance from year t.
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Figure A16: Share of Workers Who Join Each Occ. Category From Outside the LF
This figure plots the share of transitions from non-employment into each of the three occupational categories by year, separately for
workers for each third of the skill distribution. Workers are assigned to each third based on their estimated skill (θ̂i), residualized by
cohort. For each year t, I follow all workers who did not report income in that year, and report their occupational category two years
after, conditional on reporting that they were employed. Each dot represents the share of workers in each occupational category, for
all workers who joined the labor market. The lines report the best-fitted line for this category from a linear regression of the shares in
this category on the year.
Source: PSID
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Figure A17: Skewness Decomposition by Occupation and Industry
Linear skewness decomposition (See Appendix H) by occupation and industry (Equation 36). COV

(
occ, ε2) (in blue) and

COV
(
ind, ε2

i
)

(in green) are the covariance of occupation and industry premiums with the unexplained variance and are plotted
separately. All other terms are aggregated (in red). Changes in each component are plotted relative to the baseline year (1992). Wages
at the top and bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups
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Figure A18: Skewness Decomposition by Occupation, School, Experience
Linear skewness decomposition (see Appendix H) by occupations, years of schooling and years of experience, where education and
experience premiums are separated into the occupation mean and a residual (Equation 37). The covariances with the unexplained
variance are plotted separately while all other terms are aggregated. occ is the occupation premium for each 3-digit occupation
(conditional on education and experience), E [βX|iocc] is the mean of education and experience premiums in each 3-digit occupation,
and βXi − E [βXi |occi ] are the demeaned premiums for education and experience. Changes in each component are plotted relative to
the baseline year (1992). Wages at the top and bottom 5% were dropped (see Section 3).
Source: CPS Outgoing Rotation Groups
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Wage Fixed Effects
Abstract Routine Manual Abstract Routine Manual

(1) (2) (3) (4) (5) (6)

Abstract 0.50 0.53 0.44 1

Routine 0.48 0.52 0.40 .74 1

Manual 0.45 0.35 0.51 .83 .69 1

Table A1: Correlation of Wages and Fixed Effects of Movers
This table shows the correlation in wages and fixed effects for workers who switch occupational categories in the PSID. Columns 1–3
present the rank correlation of wages before and after the move, for workers who switched their three-digit occupation classification
within 6 years. The rows represent the occupational category before the move and the columns are the occupational category after
the move. In each combination of origin and destination categories, and in every year between 1980-2011 in the PSID data, I calculate
the rank correlation between wages before and after the move. I then present the average correlation across all years. Workers who
remained in the same three-digit occupation are excluded from the analysis. Columns 4–6 present the Pearson correlation coefficient
between θ̂ij0 , θ̂ij1 for pairs of occupational categories. The values of θ̂ij are estimated using Equation 7, allowing θi to vary by the three
occupational categories. Routine workers are defined as workers in administrative, production or operator occupations, classified by
the first occupational coding digit. Abstract workers are defined as workers in managerial, professional and technician occupations.
Manual workers are defined as workers in service, sales, and agriculture. Each correlation is calculated using all workers who ever
worked in both categories.

B Model Extensions

B.1 Task Model for RBTC
In this section, I present a model of RBTC as task automation, where the effect of RBTC on
the return to skill depends on the type of tasks that are automated. In this model, workers
allocate their time across different tasks, each with a different return to skill. The tasks are
complementary and each worker is required to perform all of them. Automation replaces
workers in a subset of these tasks, allowing them to allocate more time to the other tasks, thus
increasing their productivity. The effect of RBTC on the return to skill depends on whether
the automated tasks have a relatively high or low return to skill.

Assume that the production function in the routine occupation φR aggregates a contin-
uum of tasks indexed by k ∈ [0, 1]. Workers with skill θi allocate t (k, θi) of their time to task
k. Each task has the following production function

yk (θi) = t (k, θi) exp [α (k) θi] .

The parameter α (k) ≥ 0 represents the skill intensity in this task. For example, in the context
of cashier workers, arithmetic calculations would have a higher α than bagging, as they have
a higher return to skill.

Assume that some tasks can also be automated and performed using technology instead
of workers. Let τ ∈ [0, 1] denote the share of tasks that can be automated. Without loss of
generality, assume that tasks are ordered by their automation order such that tasks with a
lower k index are automated first. Therefore, for a given value of τ tasks [0, τ] are automated,
while tasks (τ, 1] are not. An increase in τ implies that more tasks can be automated. Also,
assume that once a task is automated, employers would always prefer to use automation, as
machines are more cost-effective than humans.

Assume that there are strong complementarities between the different tasks, which is rep-
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resented in a Leontief production function,

φR (θi, τ) = min
k

yk (θi) .

Workers allocate their time between tasks, under the constraint that their total working time
is one unit,

∫ 1
τ t (k, θi) dk = 1. To maximize productivity, workers would set

t (k, θi) =
exp (−α (k) θi)∫ 1

τ exp (−α (k′) θi) dk′
.

Intuitively, lower-skilled will allocate a relatively larger portion of their time to tasks that
depend more on skill. By contrast, high-skilled workers can complete tasks that depend on
skill more quickly and allocate more time for other tasks. For example, high-skilled cashiers
would spend relatively less time on arithmetic calculations, allowing them to devote more
time to other tasks and serve more customers.

In this setting, the overall production for a given worker is

φR (θi, τ) = yk′ (θi) =

[∫ 1

τ
exp (−α (k) θi) dk

]−1

.

The return to skill in this model is a weighted average of α (k), where the weights depend
on the time spent on each task. I denote this weighted average by α (θi, τ).

d log φR (θi, τ)

dθi
=
∫ 1

τ
α (k) t (k, θi) dk = α (θi, τ) . (17)

Whether new technology is skill-replacing, skill-enhancing or skill-neutral depends on
the return to skill in the marginal task, compared to the average return to skill. Formally, the
type of RBTC depends on the sign of ϵ (Equation 3), the derivative of the return to skill in
the routine occupation by technological progress, τ. If an increase in technology τ generates
a decrease (increase) in the return to skill, then RBTC is skill-replacing (-enhancing), and if
the return to skill does not change, RBTC is skill-neutral. Taking the derivative of the average
return to skill (17) by the technology level, we get that

ϵ =
d2 log φR

dτdθi
=

dα (θi, τ)

dτ
= (α (θi, τ)− α(τ))t(τ, θi).

Therefore, RBTC is skill-replacing (ϵ < 0) if the average return to skill α (θi, τ) is smaller than
the return to skill in the marginal task α(τ) (the task most recently automated). For simplicity,
assume that α is monotonic in k, so the sign of α′(k) is constant. In this case,

sign (ϵ) = sign
(
α′ (k)

)
.

If α′ (k) < 0, the tasks with the highest return to skill are the first to be automated. This
would decrease the return to skill and generate an SR-RBTC. By contrast, if α′ (k) > 0, the
tasks with the lowest return to skill would be automated, which would increase the return to
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skill (skill-enhancing RBTC). If the return to skill is equal for all tasks, α′ (k) = 0, technology
would be skill neutral. The empirical results in the paper are most consistent with skill-
replacing RBTC.

Under a stronger assumption, this model would generate a reversal of comparative ad-
vantage, as described in Theorem 5. Assume a skill-replacing technology (α′ < 0). Assume
also that for some task k∗ < 1, the return to skill is lower than the lowest return to skill in the
manual occupation (cM). Marking τ̃ = k∗, yields the condition of Theorem 5.

B.2 CES Production
If workers’ production has a constant elasticity of substitution (CES) between skill and tech-
nology, then the RBTC type depends only on this elasticity. Assume that production in the
routine occupation follows the following CES function,

φR(θi, τ) = (θ
η−1

η

i + τ
η−1

η )
η

η−1.

The parameter τ can represent the quantity or quality of technology such as computers or
robots. The elasticity of substitution between skill and technology is η > 0.

In this setting, an increase in technology allows all workers to produce more ( ∂ log φR
∂τ >

0). However, the increase in productivity can be different for workers with different skills.
Therefore, ϵ can be positive, zero, or negative. Specifically, the value of ϵ satisfies

sign(ϵ) = sign(1 − η).

If η = 1, the production function φR converges to a Cobb-Douglas function, and technology
is skill-neutral. If η < 1, skill and technology are complements and the technology is skill-
enhancing.

RBTC is skill-replacing in the case of η > 1. In this case, skill and technology are substi-
tutes. An increase in technology would decrease the productivity (and therefore wage) gaps
among workers in the routine occupation. Moreover, the return to skill declines to zero as
technology progresses (limτ→∞

∂ log φR(θi,τ)
∂θi

= 0). Therefore, at some technology level τ̃, there
must be a reversal of comparative advantage—the return to skill in the routine occupation
would drop below the return to skill in the manual occupation, and Theorem 5 would hold.

B.3 Model with Multidimensional Skills
This section outlines a generalization of the model in Section 1, with multidimensional skills.
In this version, workers use a different skill in each occupation. Hence, a worker can be very
productive in one occupation but not in another. I find that the core empirical predictions of
the model in Section 1 persist in this more general setting. Specifically, I replicate the results
that an SR-RBTC reduces the skill premium in the routine occupation, and reduces wages for
high-skilled routine workers relative to all other workers. Moreover, I show that high-skilled
routine workers leave the routine occupation while low-skilled routine workers join it.
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B.3.1 Setup

Assume that workers have a three dimensional skill vector θi = (θM,i, θR,i, θA,i). In each
occupation j ∈ {M, R, A}, workers use only the relevant skill for production, and can produce
an intermediate good φj (θi) = φj

(
θj,i
)
, with φ′

j > 0.
Wages are set in perfect competition as before

wj (θi) = pj φj
(
θj,i
)

.

Workers sort into the occupation that maximizes their wages. Since skill is multidimensional,
there are indifference curves instead of a single threshold. The indifference curve between
two occupations j, j′ is the set of skill vectors θi that satisfy

pj φj
(
θj,i
)
= pj′ φj′

(
θj′,i

)
.

RBTC is modeled similarly to Section 1. I assume the same production function in the rou-
tine occupation, which depends only on the routine skill and technology φR (θR,i, τ) . RBTC
is an increase in τ as before. Once again, the effect on wage gaps in the routine occupation
depends on ϵ, the derivative of the return to skill in the routine occupation by technological
progress (Equation 3) in the same manner:

Theorem 6. Let θR,a, θR,b be the routine skill levels of two workers in the routine occupation where
θR,a < θR,b. Let wa, wb denote their corresponding equilibrium wages. The effect of an improvement
in technology τ on the wage ratio wb

wa
depends on ϵ such that

sign

(
∂ wb

wa

∂τ

)
= sign (ϵ)

All proofs are given in Section C.1. Therefore, in an SR-RBTC (ϵ < 0), wage gaps in the
routine occupation decline.

I define the total amount produced in each intermediate good by M, R, A as before (Equa-
tion 4), and the final good is produced using the same CES function as in Equation 5. The
general equilibrium effects of an RBTC are exactly the same as before.

Theorem 7. RBTC (i.e., an increase in τ) generates:

1. An increase in the production of the routine good ( dR
dτ > 0).

2. A decrease in the absolute price of the routine good ( dpR
dτ < 0) and the relative price compared to

abstract/manual good (
dpR/pj

dτ < 0 for j ∈ {M, A}).

3. A decrease in the share of the total income that is spent on routine goods ( d pRR
Y

dτ < 0).

B.3.2 Skill Replacing RBTC

I now examine the impact of a skill-replacing RBTC, which is an increase in τ when ϵ < 0.
This model yields similar trends as in the unidimensional model (Theorem 3).
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Theorem 8. Assume a skill-replacing technology (ϵ < 0). RBTC (i.e., an increase in τ) would
generate the following:

1. A decrease in wage gaps between workers in the routine occupation who do not switch occupa-
tions.

2. The highest-skilled routine workers are less likely to work in the routine occupation.

3. The wage for the highest-skilled routine workers would decrease relative to all other workers.

Figure A14 shows the effect of an increase in τ on the indifference curve between the rou-
tine occupation and an alternative occupation j (either manual or abstract). The indifference
curve can be written as the set of skill combinations θj,i, θR,i for which

log φj
(
θj,i
)
= log

pR
pj

+ log φR(θR,i). (18)

The initial indifference curve is plotted in black. Workers whose skill combination (θj,i, θR,i)
falls below the indifference curve prefer the routine occupation over j, while those with skill
above the curve prefer occupation j over routine (some workers on both sides of the curve
may prefer the third option). The curve is upward sloping as higher routine skill generates
higher routine wages, and therefore requires higher j skill to prefer occupation j.

The dashed red line plots the indifference curve in a later period. Since ϵ < 0, an increase
in τ decreases d log φR(θR,τ)

dθR
hence the slope of the indifference curve is lower. Let θ∗R,i note the

routine skill level where the two indifference curves cross (so θj,i

(
θ∗R,i

)
does not change when

τ rises).
While there is no clear cutoff between occupations as in the unidimensional case, the

multi-skill model preserves the result that high-skilled routine workers leave the routine
occupation. The high-skilled routine workers (with θR > θ∗R) experience a decrease of the
indifference curve. Hence, some of these workers would move from R to j. These workers
are marked in the dotted area in Figure A14, to the right of θ∗R,i.

Moreover the multi-skill model also preserves the result that low-skill workers join the
routine occupation. The striped area in Figure A14, to the left of θ∗R,i marks workers who
would join the routine occupation from occupation j. In contrast to the single skill case, in
the multi-skill model this is not a result of a reversal of comparative advantage. Therefore,
there is an increase in the number of low-skill routine workers from the onset of the SR-RBTC
process, and not only after a certain point in time. The following theorem summarizes these
results:

Theorem 9. Define Θj1
j2
(τ) as the set of skill vectors of workers who shift from occupation j1 to j2

for an infinitesimal rise in technology τ (see formal definition in the proof section, C.1). Then for
every worker who shifts from routine to occupation j (θ1 ∈ ΘR

j ) and every worker who shifts from

occupation j to routine (θ2 ∈ Θj
R) the routine skill is higher for those who leave:

θR,1 > θR,2.

To conclude, the multi-skill model yields similar predictions to the single-skill model.
Therefore, it is also consistent with the empirical finding of the paper, including a decrease
in the return to skill, and a decrease in the average skill level, both in the routine occupation.
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Moreover, under certain parametric assumptions, this model can also generate fluctuations
in bottom-half inequality, as documented in the data. This model predicts that high-skilled
routine workers would suffer the largest relative decline in wages and consequentially would
shift to other occupations. Therefore, wages are expected to initially decrease around the
middle of the income distribution where the high-skilled routine workers are located. Over
time, high-skilled routine workers are expected to be mainly in lower parts of the income
distribution, which would generate a decrease in wages at lower percentiles.

C Proofs
Theorem 1 Let θa, θb ∈ (θ0, θ1) be the skill levels of two workers in the routine occupation
where θa < θb. Let wa, wb denote their corresponding equilibrium wages. The effect of an
improvement in technology τ on the wage ratio wb

wa
depends on ϵ such that

sign

(
∂ wb

wa

∂τ

)
= sign (ϵ) .

Proof. The log wage ratio is

log wb − log wa = log φ(θb, τ)− log φ(θa, τ) =
∫ b

a

∂φ(θi, τ)

∂θi
dθi.

Taking the derivative by τ yields

∂ log wb − log wa

∂τ
=
∫ b

a

∂2φ(θi, τ)

∂θi∂τ
dθi =

∫ b

a
ϵ(θi, τ)dθi.

Since the sign of ϵ is assumed to be the same for all workers,

sign

(
∂ wb

wa

∂τ

)
= sign(

∂ log wb − log wa

∂τ
) = sign (ϵ) .

Theorem 2 RBTC (i.e., an increase in τ) generates:

1. An increase in the production of the routine good ( dR
dτ > 0).

2. A decrease in the absolute price of the routine good ( dpR
dτ < 0) and the relative price

compared to the abstract/manual good (
dpR/pj

dτ < 0 for j ∈ {M, A}).

3. A decrease in the share of the total income that is spent on routine goods ( d pRR
Y

dτ < 0).

Proof. The proof follows the order of the claims in the theorem:
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1. Under the same allocation of workers, when τ increases R increases while M, A are not
changed. Hence, Y must be larger in GE (otherwise, Y is not maximized). If R does
not increase then M, A must increase in order for Y to increase. Assume without lost of
generality that A increases. From the FOC of the CES function we have

pR
pA

=

(
R
A

)ρ−1

Hence, if A increases and R decreases, pR/pA increases. Therefore, for the previous
equilibrium level of θ1

pR φR (θ1) > pA φA (θ1)

which implies that θ1 increases until equality is reached. Therefore, A must decrease, in
contradiction to the assumption.

2. From the FOC we have

pR =

(
R
Y

)ρ−1

Hence, it is sufficient to show R increases more than both M, A such that R
Y increases

(and pR declines). Assume without loss of generality that R/A decreases. By a similar
argument as before, if R/A decreases, θ1 increases and hence A decreases (contradic-
tion). Hence, R/A must increase and hence so must R

Y .

Relative prices must also decrease since pR
pA

=
(

R
A

)ρ−1
and ρ − 1 < 0.

3. The share is
pRR

Y
=

Rρ

Yρ =
Rρ

Mρ + Rρ + Aρ =
1(

M
R

)ρ
+
(

A
R

)ρ
+ 1

since R increases relative to both M, A,
(

M
R

)ρ
and

(
A
R

)ρ
increase and therefore pRR

Y
decreases.

Theorem 3 Assume a skill-replacing technology (ϵ < 0). RBTC (i.e., an increase in τ) would
generate the following:

1. A decrease in wage gaps between workers in the routine occupation who do not switch
occupations.

2. The highest skill routine workers would leave the routine occupation ( ∂θ1
∂τ < 0).

3. Wages for the highest skill routine worker (θ1) would decrease relative to all other work-
ers.

Proof. 1. By theorem 1.

2. By the following lemma (where φR
τ (θ0, τ) =

∂φR(θ0,τ)
∂τ )
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Lemma 10. φR
τ (θ0,τ)

φR(θ0,τ) >
Rτ
R =

∫ θ1
θ0

φR
τ (θi,τ)∫ θ1

θ0
φR(θi,τ)

> φR
τ (θ1,τ)

φR(θ1,τ)

Proof. We use ϵ =
∂2 log φ
∂τ∂θi

< 0. Hence, for any positive b > a, we have

φτ (a, τ)

φ (a, τ)
>

φτ (b, τ)

φ (b, τ)

φτ (a, τ)

φτ (b, τ)
>

φ (a, τ)

φ (b, τ)
.

Defining b = θ1 and taking the integral over a between [θ0, θ1] yields Rτ
R =

∫ θ1
θ0

φR
τ (θi,τ)∫ θ1

θ0
φR(θi,τ)

>

φR
τ (θ1,τ)

φR(θ1,τ) . Similarly defining a = θ0, taking the inverse of the above inequality, and inte-

grating over b ∈ [θ0, θ1] yields φR
τ (θ0,τ)

φR(θ0,τ) >
Rτ
R .

Using this lemma we can show that θ1 decreases. To do so, we use the equations

pR φR (θ1) = pA φA (θ1)

pR φR (θ0) = pM φM (θ0) ,

and the CES structure

log φA (θ1)− log φR (θ1, τ) = log pR − log pA = (ρ − 1) log R − (ρ − 1) log A

and similarly for M. Define two functions of θ0, θ1, τ such that

fM = log φM (θ0)− log φR (θ0, τ) + (ρ − 1)m (θ0)− (ρ − 1) r (θ0, θ1, τ)

fA = log φA (θ1)− log φR (θ1, τ) + (ρ − 1) a (θ1)− (ρ − 1) r (θ0, θ1, τ)

where m (θ0) = log M (θ0), r (θ0, θ1) = log R (θ0, θ1), and a (θ1) = log A (θ1). In equilib-
rium fM, fA = 0 as the FOCs hold. Using the implicit theorem function we can derive
dθ1
dτ . Taking the derivative by τ we have

∂ fM
∂τ

= − φR
τ (θ0, τ)

φR (θ0, τ)
− (ρ − 1)

Rτ

R

∂ fA
∂τ

= − φR
τ (θ1, τ)

φR (θ1, τ)
− (ρ − 1)

Rτ

R
> 0

where the last inequality is from the previous lemma and ρ < 0. Taking the derivative
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by θ0, θ1 and using Condition 1

∂ fM
∂θ0

=
φ′

M
φM

−
φ′

R
φR

+ (ρ − 1)m′ (θ0)− (ρ − 1)
Rθ0

R
< 0

∂ fA
∂θ1

=
φ′

A
φA

−
φ′

R
φR

+ (ρ − 1) a′ (θ1)− (ρ − 1)
Rθ1

R
> 0

∂ fA
∂θ0

= − (ρ − 1)
Rθ0

R
< 0

∂ fM
∂θ1

= − (ρ − 1)
Rθ1

R
> 0.

From the implicit function theorem we have

∇θi (τ) = −
(

∂ fM
∂θ0

∂ fM
∂θ1

∂ fA
∂θ0

∂ fA
∂θ1

)−1 (
∂ fM
∂τ

,
∂ fA
∂τ

)
or

∇θi (τ) = − 1
det

(
∂ fA
∂θ1

− ∂ fM
∂θ1

− ∂ fA
∂θ0

∂ fM
∂θ0

)(
∂ fM
∂τ

,
∂ fA
∂τ

)
The determinant is negative. Hence, there is c > 0 such that

∂θ1

∂τ
= c ∗

(
−∂ fA

∂θ0

∂ fM
∂τ

+
∂ fM
∂θ0

∂ fA
∂τ

)
∂θ0

∂τ
= c ∗

(
∂ fA
∂θ1

∂ fM
∂τ

− ∂ fM
∂θ1

∂ fA
∂τ

)
.

Plugging in the values that were previously calculated and using Lemma 10 yields

∂θ1

∂τ
=

(
φ′

M
φM

−
φ′

R
φR

+ (ρ − 1)m′ (θ0)

)
∂ fA
∂τ

− (ρ − 1)
Rθ0

R

(
∂ fA
∂τ

− ∂ fM
∂τ

)
=

=

(
φ′

M
φM

−
φ′

R
φR

+ (ρ − 1)m′ (θ0)

)
∂ fA
∂τ

− (ρ − 1)
Rθ0

R

(
− φR

τ (θ1, τ)

φR (θ1, τ)
+

φR
τ (θ0, τ)

φR (θ0, τ)

)
< 0

Howevre, for θ0 we have an expression with a sign that could go both ways,

∂θ0

∂τ
=

(
φ′

A
φA

−
φ′

R
φR

+ (ρ − 1) a′ (θ1)

)
∂ fM
∂τ

− (ρ − 1)
Rθ1

R

(
− φR

τ (θ0, τ)

φR (θ0, τ)
+

φR
τ (θ1, τ)

φR (θ1, τ)

)
.

3. Among workers in the routine occupation, ϵ < 0 implies that the largest decline in
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wages is for the highest-skilled workers. Their wages also fall compared to those of
abstract workers since abstract workers see a change only in pA and at θ1:

∂ log pR
∂τ

+
∂ log φR

∂τ
(θ1)−

∂ log pA
∂τ

+ 0 < 0 (19)

as otherwise θ1 would not go down.

Finally, for manual workers, if dθ0
dτ ≥ 0 (employment in the manual occupation is weakly

increasing) then at θ0 we have

∂ log pR
∂τ

+
∂ log φR

∂τ
(θ0)−

∂ log pM
∂τ

+ 0 < 0

and since ∂ log φR
∂τ (θ1) <

∂ log φR
∂τ (θ0) we get

∂ log pR
∂τ

+
∂ log φR

∂τ
(θ1) <

∂ log pM
∂τ

(20)

and so wages at θ1 fall relative to all manual jobs.

If dθ0
dτ < 0 then dM

dτ < 0, and since dA
dτ > 0 it must be that

d(M
A )

ρ−1

dτ > 0. Using pM
pA

=(
M
A

)ρ−1
we get that wages in the manual occupation increase faster than in abstract

occupation and using 19 we get that 20 also holds.

Theorem 4 Assume a skill replacing technology (ϵ < 0), and∣∣∣ dF(θ1)
dτ

∣∣∣
dF(θ0)

dτ

>
E [θi|θ0 < θi < θ1]− θ0

θ1 − E [θi|θ0 < θi < θ1] .
(21)

In the routine occupation, RBTC would generate a decrease in :

1. Employment (F(θ1)− F(θ0))

2. Within-occupation inequality (V [wi|θi ∈ [θ0, θ1]])

3. Mean skill level (E [θi|θi ∈ [θ0, θ1]]).

In the other occupations, inequality within the abstract occupation (V [wi|θi > θ1]) and man-
ual occupation (V [wi|θi < θ0]) will rise.

The overall inequality trend is asymmetric. Wage gaps are decreasing at the bottom
such that for every two workers with skill level θa < θb ≤ θ1, the wage gap between them

decreases
d wb

wa
dτ ≤ 0. At the top, the wage gap between abstract workers and high-skill routine

workers increases. Formally, there exists a value θ0 < θ∗ < θ1 such that for every high skill
routine worker θ∗ < θa < θ1), and every abstract worker θb > θ1, the wage gap between them

increases
d wb

wa
dτ ≥ 0.
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Note: This is a more general version of the theorem in the main text. Specifically, when
θi ∼ U, condition 21 is equivalent to 0 < dθ0

dτ < | dθ1
dτ |.

Proof. In the routine occupation employment decreases since θ1 decreases (Theorem 3) and
θ0 increases (by Equation 21).

Within the routine occupation, inequality would decrease since the skill distribution is
now more equal (V [θi|θi ∈ [θ0, θ1]] decreases), and conditional on skill wage gaps are smaller
(Theorem 1). Same argument will also apply for other inequality measures.

Mean skill is E [θi|θi ∈ [θ0, θ1]] =

∫ θ1
θ0

θi f (θi)dθi∫ θ1
θ0

f (θi)dθi
. Taking the derivative yields

[
dθ1
dτ θ1 f (θ1)− dθ0

dτ θ0 f (θ0)
] ∫ θ1

θ0
f (θi) dθi −

∫ θ1
θ0

θi f (θi) dθi

(
dθ1
dτ f (θ1)− dθ0

dτ f (θ0)
)

(∫ θ1
θ0

f (θi) dθi

)2

which is always positive when condition 21 holds.
Within the other occupations, inequality increases as there is a larger variation in skill.
The overall inequality trend is asymmetric. This is because for manual workers, the wage

effect is d log pM
dτ . For workers in the routine occupation, it is d log pR

dτ +
d log φR

dτ . And for abstract

workers, it is d log pA
dτ . The wage increase in the abstract occupation is larger than that in the

routine occupation close to θ1 because from the decrease in θ1 if follows that

d log pR
dτ

+
d log φR (θ1)

dτ
<

d log pA
dτ

.

Among workers in the routine occupation, wages increase relatively for the lower-skilled
since ϵ < 0. And manual workers see a larger increase from the wage change in θ0 since

d log pR
dτ

+
d log φR (θ0)

dτ
<

d log pM
dτ

as otherwise θ0 would not increase.
Within the manual and abstract occupations, wage impact is the same.

Theorem 5 Assume a skill-replacing technology (ϵ < 0) and that there exists a τ̃ such that
for any τ ≥ τ̃ and for any θi

∂ log φR (θi; τ)

∂θi
<

∂ log φM (θi)

∂θi
.

When τ ≥ τ̃ workers in the routine occupation earn the lowest wages. Any additional SR-
RBTC (τ ↑) decreases employment in the routine occupation ( dθ0

dτ <0), as well as wage gaps
within workers in the routine occupation who do not switch occupations.

Proof. Wage gaps in the routine occupation fall based on Theorem 1.
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I now prove that dθ0
dτ < 0. The equilibrium condition that determines θ0 is

log φM (θ0)− log φR (θ0, τ) = log pR − log pM = (ρ − 1) log R − (ρ − 1) log M

Defining

f (θ0, τ) = log φM (θ0)− log φR (θ0, τ)− (ρ − 1) log R + (ρ − 1) log M

and using the implicit function theorem we get

∂ f
∂τ

= − φR
τ (θ0, τ)

φR (θ0, τ)
− (ρ − 1)

Rτ

R
> 0

where the last inequality follows from Lemma 10 (for which now the upper bound of the
routine occupation is θ0).

Taking the derivative by θ0, we have

∂ f
∂θ0

=
φ′

M
φM

−
φ′

R
φR

+ (ρ − 1)m′ (θ0)− (ρ − 1)
Rθ0

R
> 0

where m′ (θ0) < 0 as a result of the following lemma:

Lemma 11. When τ ≥ τ̃ sign
(

dM
dτ

)
= sign

(
dA
dτ

)
Proof. When τ ≥ τ̃, θ1 separates between manual and abstract workers. Using the equilib-
rium condition we have

log φM (θ1)− log φA (θ1) = log pA − log pM = (ρ − 1) log A − (ρ − 1) log M

If dM
dτ > 0⇒ dA

dτ > 0; else
d pA

pM
dτ > 0⇒ d log φM(θ1)−log φA(θ1)

dτ > 0 ⇒ dθ1
dτ < 0, where the last

part is because

d log φM (θ1)− log φA (θ1)

dτ
=

∂ log φM (θ1)− log φA (θ1)

∂θ1

∂θ1

∂τ

By this lemma, if θ0 increases and M increases, A increases as well, implying that θ1 de-
creases, which is a contradiction (M cannot increase if θ0 increases and θ1 decreases).

Taken together
dθ0

dτ
= −

∂ f
∂τ
∂ f
∂θ0

< 0

65



C.1 Multidimensional Model Proofs
Theorem 6
Proof. Similar to Theorem 1.

Theorem 7
Proof. We first prove that R

A and R
M both increase with τ.

Assume without lost of generality that M
A weakly decreases. Assume by contradiction that

R
A ↓. From the FOC of the CES function we have

pR
pA

=

(
R
A

)ρ−1
,

pM
pA

=

(
M
A

)ρ−1
. (22)

Since ρ < 1, pR/pA increases and pM/pA weakly increases. The indifference curve between
the two occupations R, A is

φA (θA,i) =
pR
pA

φR (θR,i, τ) ,

and between M, A
φA (θA,i) =

pM
pA

φM (θM,i) .

Both pR
pA

, φR (θR,i) increase. Hence the indifference abstract skill level θA,i (θR,i) increases for
every θR,i. Similarly θA,i (θM,i) is weakly increasing. Therefore, for every pair (θM,i, θR,i), the
employment level at A are lower. Hence, the overall intermediate good A is decreasing. Since
M
A , R

A are assumed to decrease, this implies that both M and R are also decreasing. Since all
intermediate goods decline Y must be lower. However, under the same allocation of workers
into occupations, when τ increases R increases while M, A are unchanged. Hence, Y must be
larger in GE (otherwise, Y is not maximized), a contradiction.

Therefore R
A is increasing, and since M

A is weakly decreasing, R
M = R

A
A
M is also increasing.

If M
A is weakly increasing, a similar argument applies.
We can now prove the theorem following the same order.

1. If R does not increase then either M or A must increase in order for Y to increase. As-
sume without lost of generality that A increases. Hence R

A ↓, contradicting our previous
claim.

2. From the FOC we have

pR =

(
R
Y

)ρ−1
=

 R

(Mρ + Rρ + Aρ)
1
ρ

ρ−1

=

((
M
R

)ρ

+ 1 +
(

A
R

)ρ) 1−ρ
ρ

.

Since M
R , A

R decrease and ρ < 0 pR decreases.

Relative prices must also decrease since pR
pA

=
(

R
A

)ρ−1
and ρ − 1 < 0.
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3. The share is
pRR

Y
=

Rρ

Yρ =
Rρ

Mρ + Rρ + Aρ =
1(

M
R

)ρ
+
(

A
R

)ρ
+ 1

since R increases relative to both M, A,
(

M
R

)ρ
and

(
A
R

)ρ
increase and therefore pRR

Y
decreases.

Theorem 8 Assume a skill-replacing technology (ϵ < 0). An increase in τ would generate
the following:

1. A decrease in wage gaps between workers in the routine occupation who do not switch
occupations.

2. The highest skill routine workers are less likely to work in the routine occupation. For-
mally, use r (θR) to note the probability of workers with routine skill level θR to choose
to work in the routine occupation. ∃θ∗R such that

∀θR > θ∗R :
dr (θR)

dτ
< 0.

3. The wage for the highest-skilled routine workers would decrease relative to all other
workers. Formally, ∃θ∗∗R such that the set of “high-skilled routine workers”,

R = {θi = (θM,i, θR,i, θA,i) |θR,i ≥ θ∗∗R ; j (θi) = R}

satisfies

∀ (θ1, θ2) ∈ R × RC :
d log w (θ1)

dτ
<

d log w (θ2)

dτ

where RC is the complement set of R and w (θi) is the wage at the chosen occupation.

Proof. 1. By theorem 6.

2. Define θmax
R = sup θR,i. Assume WLOG that

d pM
pA

dτ ≥ 0. Therefore we have

d log
(

pR
pA

φR
(
θmax

R , τ
))

dτ
≥

d log
(

pR
pM

φR
(
θmax

R , τ
))

dτ
.

Assume by contradiction that

d log
(

pR
pA

φR
(
θmax

R , τ
))

dτ
≥ 0. (23)
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Because ϵ < 0 ( d2 log φR(θR,τ)
dτdθR

< 0) we get,

∀θR,i < θmax
R :

d log
(

pR
pA

φR (θR,i, τ)
)

dτ
>

d log
(

pR
pA

φR
(
θmax

R , τ
))

dτ
≥ 0. (24)

The indifference curve θA,i (θR,i) can be written as the solution to

log φA (θA,i) = log
(

pR
pA

φR (θR,i, τ)

)
. (25)

From Equation 24, the RHS of Equation 25 is increasing in τ for every value of θR,i. Since

log φA is monotone then θA,i(θR,i) is also increasing. By the assumption that
d pM

pA
dτ ≥ 0

then the indifference curve θA (θM) also increases for every θM. Together, this implies
that the total production in A declines ( dA

dτ < 0).
However, rewriting Equation 23 we get

d log φR
(
θmax

R , τ
)

dτ
≥

d log pA
pR

dτ
.

From Lemma 10 and using ρ < 0 and
d log pA

pR
dτ > 0 (Theorem 7) we can write

d log R
dτ

>
d log φR

(
θmax

R , τ
)

dτ
≥

d log pA
pR

dτ
>

1
1 − ρ

d log pA
pR

dτ
.

Therefore, using Equation 22

d log A
dτ

=
d log R

(
pR
pA

) 1
1−ρ

dτ
=

d log R
dτ

− 1
1 − ρ

d log pA
pR

dτ
> 0.

Therefore, dA
dτ > 0, a contradiction. Hence,

0 >
d log

(
pR
pA

φR
(
θmax

R , τ
))

dτ
≥

d log
(

pR
pM

φR
(
θmax

R , τ
))

dτ

and therefore both the indifference curves decline at θmax
R when τ increases

dθA
(
θmax

R
)

dτ
,

dθM
(
θmax

R
)

dτ
< 0.
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Therefore
dr(θmax

R )
dτ < 0. From continuity of r, ∃θ∗R such that ∀θR > θ∗R : dr(θR)

dτ < 0 .

3. Assume again WLOG that
d pM

pA
dτ ≥ 0. Define θ∗∗R as the solution to

d log pR
pA

φR (θ∗∗R , τ)

dτ
= 0.

If such a solution does not exist then define θ∗∗R = inf θR. From the previous proof
d log pR

pA
φR(θmax

R ,τ)
dτ < 0. Therefore ∀θR,i ∈

(
θ∗∗R , θmax

R
)

d log pR
pA

φR (θR,i, τ)

dτ
< 0,

and hence
d log pR φR (θR,i, τ)

dτ
<

d log pA
dτ

<
d log pM

dτ
.

Since
d log wR(θR,i)

dτ =
d log pR φR(θR,i,τ)

dτ and
d log wj(θj,i)

dτ =
d log pj

dτ for j ∈ {M, A} we can write

d log wR (θR,i)

dτ
<

d log wA
dτ

<
d log wM

dτ
.

Hence wages for workers in the routine occupation with θR > θ∗∗R are falling relative to
wages of abstract and manual workers. Wages also fall relative to all workers in the routine
occupation with θR ≤ θ∗∗R based on part 1.

Theorem 9 Use j (θi, τ) to mark the set of occupations that maximizes wages for a worker
with a skill vector θi for for a given technology level τ.26 Define the set of skill vectors of
workers who shift from occupation j1 to j2 for an infinitesimal rise in technology τ as

Θj1
j2
(τ) = {θ|j1 ∈ j (θ; τ) , j2 ∈ j (θ; τ + ε)}

for ε > 0 when ε → 0. Then for every workers who shifts from routine to occupation j with
skill vector θ1 ∈ ΘR

j , and every worker who shifts from occupation j to routine with skill

vector θ2 ∈ Θj
R, the routine skill is higher for those who leave the routine occupation

θR,1 > θR,2.
26While j (θi, τ) is typically a singleton, it could contain two or more occupations for workers whose skill

levels are on the indifference curve.
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Proof. Since θ1 ∈ ΘR
j , θ2 ∈ Θj

R the indifference curve declines at θR,1 and increases at θR,2

d log pR+log φR(θR,1;τ)−log pj
dτ < 0

d log pR+log φR(θR,2;τ)−log pj
dτ > 0.

Therefore
d log φR (θR,2; τ)

dτ
>

d log φR (θR,1; τ)

dτ

and since ϵ < 0, θR,1 > θR,2.

D Interactive Fixed Effects Model Appendix

D.1 Estimation Details
Estimation Goal The goal of the IFEM estimation is to find the set of parameters that min-
imizes the expected squared error. That is, solve

α, β, λ, θ = arg min
α,β,λ,θ

E
[(

log wijt − β jtXit − λjt − αjtθi
)2
]

. (26)

Writing Ejt as the set of workers in occupation j in year t, these parameters provide the
best approximation of the conditional expectation of E

[
log wijt|Xit, i ∈ Ejt

]
given this specifi-

cation. The first-order conditions are

E
[
εijt|i ∈ Ejt

]
= E

[
Xitεijt|i ∈ Ejt

]
= E

[
θiεijt|i ∈ Ejt

]
= E

[
αj(i,t)tεi,j(i,t)t,|i

]
= 0,

where εijt = log wijt − β jtXit − λjt − αjtθi is the minimized error. From the last condition,
we can find an expression for the least-squares estimator of θ̂i given the other parameters
(Equation 9).

Measurement Error While the true parameters would satisfy the first-order conditions in
Equation 26, they would not satisfy the corresponding empirical moments due to measure-
ment errors. Under the true parameters

θ̂i (log wi, Xi, α, β, λ) = θi +
∑t αj(i,t),tεij(i,t)t

∑t α2
j(i,t),t

= θi + νi,

where νi =
∑t αj(i,t),tεij(i,t)t

∑t α2
j(i,t),t

is the error in the estimation of θi, and is a linear function of all

residuals εijt for person i. Then, the empirical estimator of ε̂ijt is

ε̂ijt (log wi, Xi, α, β, λ) = log wijt − β jtXit − λjt − αjtθ̂i (log wi, Xi, α, β, λ) = εijt − αjtνi. (27)
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The moments E
[
θ̂i ε̂ijt|i ∈ Ejt

]
do not equal to zero in expectation since

E
[
θ̂i ε̂ijt|i ∈ Ejt

]
= COV

(
νi, εijt − αjtνi

)
= −αjtV (νi) + COV

(
νi, εijt

)
̸= 0.

When the number of observations for every individual workers goes to infinity, E
[
θ̂i ε̂ijt|i ∈ Ejt

]
→

0, and the model is consistent. However, many workers are observed only in a small number
of periods. Therefore, a least square estimator would be asymptotically biased. In particular
the least square estimator for αjt is

α̂LS
jt =

∑i∈Ejt

(
log wij(i,t)t − β̂ jtXit − λ̂jt

)
θ̂i

∑i∈Ei,t
θ̂2

i

.

This estimator is not consistent as it converges to

plimN→∞α̂LS
jt =

E
[(

αjtθi + εijt
)

θ̂i | i ∈ Ejt

]
E
[
θ̂2

i | i ∈ Ejt

]
= αjt

E
[
θ2

i | i ∈ Ejt
]

E
[
θ2

i | i ∈ Ejt
]
+ V

(
νi | i ∈ Ejt

)︸ ︷︷ ︸
attenuation bias

+
COV

(
εijt, νi | i ∈ Ejt

)
E
[
θ2

i | i ∈ Ejt
]
+ V

(
νi | i ∈ Ejt

)︸ ︷︷ ︸
correlated errors

.

Instrumental Variable An IV Zi can be used to solve the asymptotic bias. Equation 10
guarantees that the IV is uncorrelated with the error εijt. Guaranteeing that Zi is also uncorre-
lated with the measurement error νi requires strict exogeneity, similar to standard fixed-effects
models. In standard fixed-effect models, the error is assumed to be mean independent of all
control variables (Chamberlain, 1984). Together with the independence from the IV, this is

E
[
εijt|Ci1, ..., CiT, Zi

]
= 0, (28)

where Cit are the control variables in time t (Xit and indicators for employment in each oc-
cupational category). Under this assumption, the IV is uncorrelated with the measurement
error,

E [Ziνi] = E

[
Zi

∑t αj(i,t),tεij(i,t)t

∑t α2
j(i,t),t

]
= ECi1,...,CiT

∑t αj(i,t),tE
[

Ziεij(i,t)t|Ci1, ..., CiT

]
∑t α2

j(i,t),t

 = 0,

where the second equality is by the law of iterated expectations and the third equality is from
Equation 28. Therefore, under the true parameters, an IV would satisfy E[Zi ε̂ijt|i ∈ Ejt] = 0.

The parameters can be estimated using the method of moments.

Theorem 12. Let Zi be an IV that satisfies strict exogeneity (Equation 28). The parameters that solve
Equation 26 are the solution of the system of equations specified in Equation 11.
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Proof. Based on the law of large numbers, plimN→∞mW
jt = E[Wi ε̂ijt|i ∈ Ejt] for W ∈ 1, X, Z

(where mW
jt is as defined in Equations 11). From the first-order conditions, the conditional

expectations E[ε̂ijt|i ∈ Ejt], E[Xi ε̂ijt|i ∈ Ejt] equal zero for the parameters that solve Equation
26. The conditional expectation E[Zi ε̂ijt|i ∈ Ejt] is zero from Equation 28.

TSLS Intuition The estimator received from solving the system of equations in 11 is not a
TSLS estimator, since θ̂i is a function of the other parameters. However, it can be written in a
similar manner.

Theorem 13. Let α̂jt, β̂ jt, λ̂jt be the solution to Equations 11 with a an IV Z that satisfies strict
exogeneity (Equation 28). Then

α̂jt =
COV

(
Zi, l̃og wi|i ∈ Ejt

)
COV

(
Zi ,̃ θ̂i|i ∈ Ejt

) ,

where l̃og wi,
˜̂θi are the residuals of log wi, θ̂i from a regression on 1, Xit interacted with occupational

category and year dummies.

Proof. We can write θ̂i (given the other parameters α̂jt, β̂ jt, λ̂jt) as

θ̂i = ϕjtXit + µjt + ρjrZi + ϑijt, (29)

where ϕjt, µjt, ρjt are the OLS parameters from a regression of θ̂i on 1, Xit, Zi interacted with
occupational category and year dummies. This is similar to the first stage equation a 2SLS.
Define the first-stage predictor of θ̂i as θ̂FS

ijt = ϕjtXit + µjt + ρjrZi. We can also write a second-
stage equation,

log wijt = β̂ jtXit + λ̂jt + α̂jtθ̂
FS
ijt + ζijt, (30)

where ζijt = α̂jt(θ̂i − θ̂FS
ijt ) + εijt. By the construction of θ̂FS

ijt as an OLS predictor, (θ̂i − θ̂FS
i ) is

orthogonal to all the regressors of Equation 29. Since these parameters solve the system of
equations in 11, εijt is also orthogonal to the same regressors. Therefore, ζijt is orthogonal
to the regressors of Equation 29 as well. Because θ̂FS

ijt is a linear combination of this set of
regressors (Equation 29), it is orthogonal to ζijt as well. Therefore, ζijt is orthongal to all
regressors in Equation 30 and the parameters α̂jt, β̂ jt, λ̂jt can be derived from an OLS estimate
of this equation.

Since both Equations 29 and 30 represent OLS estimates, Frisch–Waugh–Lovell theorem
implies that we can residualize both equations by any subset of the regressors. Residualizing
by the interaction of 1, Xit with all occupational categories and year dummies yields

˜̂θFS
ijt = ρjtZ̃i + ϑ̃ijt

˜log wijt = α̂jt
˜̂θFS
ijt + ζ̃ijt

.

Plugging in the residualized first-stage equation in the second-stage equation yields the resid-
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ualized reduced-form equation

˜log wijt = α̂jtρjtZ̃i + ξijt,

with ξijt = ζ̃ijt + α̂jtϑ̃ijt. Therefore, α̂jt is the division of the first-stage and reduced-form
equations

α̂jt =
COV

(
Z̃i, ˜log wijt

)
COV

(
Z̃i,
˜̂θi

) =
COV

(
Zi, ˜log wijt

)
COV

(
Zi,
˜̂θi

)
where the last equality is because for any two variables W1, W2 COV

(
W̃1, W̃2

)
= COV

(
W1, W̃2

)
.

D.2 Sensitivity Analysis
In this section, I discuss a sensitivity analysis (Andrews et al., 2017) to study how the various
moments in Equation 11 affect the estimated parameters. This analysis shows that changes
in αjt over time in a given occupational category are driven almost entirely by workers in
this category. By contrast, differences in αjt between two occupations are driven by workers
in these two occupations. Moreover, this analysis shows that even under relatively large
violations of the model assumptions, the key results would still hold.

The estimated error under the target parameters (Equation 27) can be written as

ε̂ijt = γ1
jt + γX

jt Xit + γZ
jt Zi + ζijt (31)

where ζ satisfies

E
[
ζijt|i ∈ Ejt

]
= E

[
Xitζijt|i ∈ Ejt

]
= E

[
Ziζijt|i ∈ Ejt

]
= 0.

The γ parameters are the population-level OLS of the errors ε̂ijt on 1, Xit, Zi for workers em-
ployed in occupational category j at time t. Under strict exogeneity (Equation 28) γ = 0 and
the target parameters are identified. However, if strict exogeneity does not hold γ ̸= 0, the
error is correlated with the regressors and the estimated parameters would be biased. The
coefficients γ1

jt, γX
jt are by construction small since the true parameters satisfy Equation 8.27 I

therefore focus on γZ
jt which potentially could have larger deviations from zero. This param-

eter is large when the IV is strongly correlated with the errors.
The sensitivity analysis by Andrews et al. (2017) enables quantifying the link between

the bias indicated by γZ
jt and any function of the model parameters. This process involves

calculating the sensitivity matrix Λ, which delineates the first-order relationship between

27Equation 8 guarantees that E
[
εijt′ |i ∈ Ejt

]
= E

[
εijt′Xit|i ∈ Ejt

]
= 0 for t′ = t. Since ε̂ijt is close

to εijt (Equation 27), γ1
jt, γX

jt will be close to zero. However, if strict exogeneity (Equation 28) does

not hold, then for t′ ̸= t, E
[
εijt′ |i ∈ Ejt

]
and E

[
εijt′Xit|i ∈ Ejt

]
might not equal zero and therefore

E
[
ε̂ijt′ |i ∈ Ejt

]
, E
[
ε̂ijt′Xit|i ∈ Ejt

]
̸= 0.
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each moment and each parameter. Since the number of parameters equals the number of
moments, the sensitivity matrix is calculated directly from the Jacobian of the moments on the
parameters G using Λ = −G−1. I focus on the relative difference between two αjt parameters:

log
αj0t0
αj1t1

. Therefore, I multiply the matrix Λ by vector v which is the derivative of log
αj0t0
αj1t1

by all the model parameters.28 I follow Andrews et al. (2017) and multiply Λ by Ω, the
covariance of all combinations of 1, Xit, Zi interacted with an indicator for i ∈ Ejt. Andrews

et al. (2017) show that the bias in log
αj0t0
αj1t1

is γ′ΩΛv, where γ is the vector of γ1
jt, γX

jt , γZ
jt for all

j, t. Therefore, given a speculated bias level γ, one can asses the magnitude of the bias.
I first examine the potential bias in the estimate of a two-year relative change in α in

routine occupations. For every year t, I calculate the bias in log αR,t
αR,t−2

for a deviation from zero

in γZ
j′t+k, for every possible combination of occupation category j′ and even year distance k.

That is, I calculate how much a correlation between the IV and the error term in occupational
category j′ and year t + k would bias the estimate for the trend in the return to skill in routine
occupations, αR, between years t − 2 and t. Figure A15a shows the average results over all
years in the sample. Each point represents an occupational category j′ and the distance years
k in γZ

j′t+k.
I find that the trend in αR is driven almost entirely by workers in routine occupations in

the relevant years. Figure A15a shows that for the abstract and manual categories, as well as
for other years in the routine category, the value is close to zero. This implies that even a very
strong correlation between years of schooling and the residual ε̂i,j′,t+k in these occupations or
years will not change the results. This also implies that the estimate for log αR,t+2

αR,t
is driven

almost entirely by workers in routine occupations in those years. If years of schooling had
a large correlation with the errors in other occupations or years (high value of γZ

j′t+k), the
results will barely change. The results for abstract and manual occupations are qualitatively
similar and are therefore unreported.

Figure A15a also shows that any bias in the trend in α in the routine occupation is likely
small. A constant bias (γZ

Rt = c for all t) would have no impact on the estimated trend. This
is because γZ

R,t−2 and γZ
R,t cancel each other out almost exactly. Therefore, if schooling also

affects wages not through θi, and the effect is stable over time, the bias in the trend would be
very small.

To generate a bias in log αR,t
αR,t−2

, the bias coefficient γZ
Rt must change over time. Consider a

simple case where this change is linear and

γZ
Rt = a + b ∗ t.

In this case the bias would be approximately 4γZ
Rt − 4γZ

Rt−2 = 8b based on the values of
Figure A15a.

Reasonable values for b imply that the bias would change the trend in αR by less than 10%.
The premium for one year of schooling is approximately .07 (Lemieux, 2006b). Most of the
return to schooling represents permanent income differences and is therefore captured in θi.
Therefore, the coefficient of ε̂ijt on years of schooling is likely much lower, and so presumably
below .02. An extreme scenario where this coefficient doubled itself between 1987-2007 would
imply that b = 0.001. In this case the bias is 8b = 0.008. The overall bias in the course of these

28The vector v equals α−1
j0,t0

for αj0,t0 , α−1
j1,t1

for αj1,t1 and zero for every other parameter.
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twenty years would be .08. This is approximately 10% of the measured decrease in αR,t in this
period.

Figure A15b shows that the differences between occupational categories are identified
mainly by workers in these categories in that year. For every year t, I calculate the bias in
log αR,t

αM,t
for a deviation from zero in γZ

j′t′ , for every combination of occupational category and
year, j′, t′. Figure A15b then shows the average results over all years. This shows that the
differences in α between routine and manual occupations in year t are mainly driven by the
return to schooling in this occupation in that year. Similar results are received for the other
two pairs of occupations and are not reported.

D.3 Interactive Fixed Effects Model With Multiple Skills
In this section, I derive an analytic solution to the IFEM parameters in a simple multi-skill
setting. I show that the target IFEM parameters are the first principal component of the matrix
of the returns to the different skills over time. The parameters estimated using an IV are a
weighted average of the returns to different skills, where the weights are proportional to the
correlation of each skill with the IV. Hence, while using years of schooling as an IV would
not yield the target parameters, it would still be informative about the aggregate trends in the
returns to skills that are correlated with education.

I analyze a model in which workers use multiple skills simultaneously to produce. The
skills have different returns that change over time. Let µi be the vector of K skills for each
worker i. Without loss of generality, assume that skills are uncorrelated and standardized
such that V (µi) = I. For simplicity, assume only one occupation and full employment in
each period.29 Let akt be the return to skill k in period t. The matrix A denotes the return to
each skill in each period ([A]kt = akt).

Log wages are the product of the skills and their return, together with an idiosyncratic
zero-mean shock

log wit = a′tµi + εit.

In matrix form, the vector of log wages for worker i in all periods is

log wi = ATµi + εi.

The IFEM is misspecified under this data-generating process (DGP). However, the IFEM
can find the best approximation of this DGP with only one skill. In particular, it searches for
a vector α = (α1, ..., αT) of return to skill in each period, and a function θ (µi) : RK → R that
aggregates the skills into one dimension. Formally, it solves

min
α,θ

T

∑
t=1

E
[(

a′tµi − αtθi (µi)
)2
]

. (32)

The solution to this minimization problem can be derived analytically.

Theorem 14. Let the vector of parameters α and function θ be the solution to Equation 32. Then α
is the first (non-centralized) principal component of AT, and θ is a linear combination of the different
skills, where the coefficients are the loadings of the first PCA component.

29This model is different from the model in Appendix B.3 as workers use multiple skills simultaneously
in the same job.
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Intuitively, this theorem implies that the IFEM estimates θ̂i is a weighted average of skills
and α is the weighted average of the returns of these skills. The weights are set such that the
IFEM predictions are closest to the actual log wages. Hence, skills that have higher returns
and that are more internally correlated will have larger weights in θ, and so larger impact
on α.

Proof. Taking first order conditions by θi(µi), yields

θi(µi) = ∥α∥−2α′ATµi,

therefore, θi is a linear function, θ (µi) = b′µi, for some K-dimensional b vector. Define
B = bα′, where b, α are the solution to Equation 32. This matrix satisfies rank (B) = 1 by
construction, and any matrix that satisfies rank (B) = 1 can be written as B = bα′. Therefore,
Equation 32 can be rewritten in matrix form as

min
B|rank(B)=1

E
[
µ′

i (A − B) (A − B)T µi

]
.

We assumed that V (µi) = E
[
µ′

iµi
]
= I. Therefore, the minimized expression equals

tracE
[
(A − B) (A − B)T

]
,

which is known as the Frobenius norm of A − B. Hence, the true IFEM parameters solve

min
B|rank(B)=1

∥A − B∥F . (33)

Equation 33 is the well-known “low-rank approximation” problem whose solution is
given by the Eckart–Young–Mirsky theorem. The solution is given by the first dimension
of the singular value decomposition of the return matrix A. Therefore, α is the first eigenvec-
tor of AT A, which is also the first (non-centralized) principal component of matrix AT. Hence,
α is a linear combination of the returns to various skills and θ (µi) is a linear combination of
the same skills (the PCA loadings).

This model also yields an informative analytic solution for estimating IFEM using an IV.

Theorem 15. Let α̂ be the vector of IFEM parameters, estimated with an IV Z. Then

α̂ = A · COV (µi, Zi) .

This theorem implies that when using an IV, α̂ is a weighted average of the return to
different skills. The weights are set by COV (µi, Zi), and therefore depend on the correlation
of the IV with different skills. For example. if the IV is years of schooling, the vector α̂
represents the trend in the average return to skill for skills correlated with schooling. The
estimated parameter would not be equal to the target parameter, as it does not necessarily
minimize the EMSE (Equation 32). However, it still captures an aggregate trend in the returns
to the skills most correlated with schooling.
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Proof. When using an IV Z, the IFEM finds α̂, b which solve

E
[(

A − α̂b′
)

µiZi
]
= 0. (34)

The expression E [µiZi] = COV (µi, Zi) is the K-dimensional correlation of the IV with each
one of the skills. The expression b′COV (µi, Zi) is a scalar. Since there is a degree of freedom,
this scalar can be set to 1. Therefore, Equation 34 can be written as

α̂ = A · COV (µi, Zi) .

E Data Appendix

E.1 CPS-ORG
The CPS-ORG provides the most accurate representative sample of hourly wages (Lemieux,
2006a). I use the same sample definitions as Acemoglu and Autor (2011), who kindly made
their cleaned data files available online. See Acemoglu and Autor (2011) data appendix for
exact definitions of the sample. Observations with missing wages are dropped. The main
results hold when using imputations instead. Sampling weights are used in all CPS-ORG
analyses. Education categories are equivalent to those employed by Autor et al. (2003) based
on the consistent classification system proposed by Jaeger (1997).

One important limitation of the CPS data is its relatively high level of measurement errors.
This problem is particularly severe at both tails of the distribution. Misreporting of working
hours could lead to extremely high or extremely low values of hourly wages. Moreover,
the CPS applies top coding to prevent the identification of individuals with extremely high
income. Therefore, I drop the top and bottom 5% of the positive wages. Similar methods
have been applied in previous work that used this data (Katz and Murphy, 1992; Autor et al.,
2006; Autor et al., 2008; Acemoglu and Autor, 2011).

Since my analysis focuses on hourly wages, I multiply the CPS weights by the number
of hours worked to obtain the real price of an hour of labor, as explained in Lemieux (2010).
This procedure is also consistent with the literature.

E.2 PSID
I merge data from the individual survey and the family survey. The over-sampling of low-
income households and immigrants samples are not used as it was added only in the 1990s.
Therefore, I do not use sampling weights (similar to Cortes, 2016). I drop observations with
hourly wages at the top or the bottom 5%, as with the CPS. Observations in which wage is
imputed are also omitted.

The education variable is defined based on a survey question that inquires about the high-
est grade/years of schooling that the respondent has completed. A value of 16 indicates a
college graduate. This variable is capped at 17. Occupations are coded using the Autor and
Dorn (2013) occupational crosswalk for census coding.
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E.3 O*NET
Routine Index: Acemoglu and Autor (2011) construct two indices: routine-manual and routine-
cognitive. These indices are based on occupational averages of survey responses in the
O*NET database (version 14). I take the average of both (standardized) indices. The rou-
tine manual index includes questions on:

• Pace determined by speed of equipment.

• Controlling machines and processes.

• Spend time making repetitive motions.

The routine cognitive index includes questions on:

• Importance of repeating the same tasks.

• Importance of being exact or accurate.

• Structured v. unstructured work (reverse).

I thank the authors for sharing their data with me.

F Cross-Occupation Wage Rank
In this section, I test to what extent are wage ranks preserved across the three different occu-
pational categories. The results are presented in Appendix Table A1. In columns 1–3, I present
the rank correlation of wages before and after the move, for workers who changed their three-
digit occupation classification (51% of the sample). The table reports the average correlation
across all survey years. Occupational switches are generating some change in ranking even
for workers who remain in the same occupational category, with a rank correlation of around
0.5. When workers switch to a different occupational category, the rank correlations are only
slightly lower, ranging between 0.35–0.53.

One reason why ranking changes across workers is short-term fluctuations in wages. To
examine longer-term rankings, I estimate Equation 7 allowing θi to vary by the three broad
occupational categories. This allows for a different skill to be used in each occupational cat-
egory, as in the multi-skill model in Appendix B.3. I find that the (Pearson) correlations be-
tween θij for a given value of i are between 0.69–0.83 as shown in columns 4–6 of Table A1.
Since θij is measured with a high level of noise, the results are downward biased.

These relatively high levels of correlations suggests that the long-term wage gaps within
occupations seem to be a result of skill differences, that are relevant across occupations.
Differences in rents (as in Acemoglu and Restrepo, 2024) are more likely to be occupation-
specific. While workers are likely using different skills in different occupations, these skills
are sufficiently correlated, at least for movers, who are the majority of the sample.

G Occupational Choice of New Hires
In this section, I show a substantial decline in the share of workers who join the labor market
and choose to work in routine occupations, especially among middle-skilled workers. Pre-
vious work has found that the decline in routine employment is primarily driven by entry
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and exit from the labor force, and not by direct occupation transitions (Cortes et al., 2020).
In an unreported analysis, I also find only a small number of switches between occupational
categories. However, I do not find an increase in the share of exits from routine occupations
outside of the labor market. Therefore, I focus primarily on the changes in entries.

Figure A16 looks at the share of new hires in each occupational category by year. I divide
workers into three equal-sized bins based on their estimated θ̂, redisualized by the cohort
of entry to the labor force. For each bin, I plot the share of workers in each occupational
category as a share of the total number of workers who were out of the labor force in that
year and joined the labor force two years later.

Panel B of Figure A16 finds a substantial decline in the share of middle-skilled workers
who join the labor force and are employed in routine occupations. In the early 1980s, almost
half of the middle-skilled workers (based on their estimated θ̂i) joined routine occupations.
This number decreased to around 33% after 2010. At the same time, there has been a substan-
tial increase in the likelihood of middle-skilled workers joining manual occupations. After
2010, middle-skill workers are almost equally likely to join each of the occupational cate-
gories.

Panels A and C show smaller declines in the share of new routine workers from the top
and bottom thirds of the skill distribution. In both panels, there is a decrease in the share
of workers who join the labor market and work in a routine occupation. There is also an
increase in the share of workers who join manual occupations. However, these trends are not
as substantial as for middle-skilled workers. Estimating a linear trend for the share of middle-
skilled workers who join a routine occupation when they enter the labor market, I find a
decrease of 0.53 percentage points decline per year. This is compared to a 0.39 percentage
point decline per year in the top third and a 0.25 percentage point decline per year in the
bottom third.

These results imply that the decline in the average skill of workers in routine occupations
(Figure 5) is primarily driven by the composition of new entries from outside the labor mar-
ket. Over time, workers who join routine occupations from outside the labor market are more
likely to arrive from the bottom of the skill distribution.

H Decomposing by More Than One Category
As variance decomposition, skewness decomposition can also be easily extended to accom-
modate linear models. Assume the following simple linear model when Y is standardized:

Y = ∑
i

Xi

Using simple algebra we get

µ3 (Y) = ∑
i

µ3 (Xi) + ∑
i

∑
j ̸=i

COV
(

X2
i , Xj

)
+ ∑

i
∑
j ̸=i

∑
k ̸=i,j

E
[
XiXjXk

]
(35)

Therefore, we can decompose the skewness of Y into a linear combination of: (i) the skewness
within the linear components, (ii) the covariance of the second and first moments of the linear
components, and (iii) the triple multiplication of all three distinguished components. Though
this decomposition includes a large number of different terms, many of them equal zero.
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For example, writing Y as the sum of its conditional expectation in X and a residual ε

Y = E [Y|X] + ε

and using Equation 35 yields Equation 14, by the law of iterated expectations over X.
Linear skewness decomposition can be applied to decompose any linear model. This is

useful for comparing occupations directly to other categories, such as industry and education.
I show this for the equation

ln wi = occi + indi + εi, (36)

where occi and indi are occupation and industry dummies. I then decompose the increase in
skewness using Equation 35. Figure A17 presents the results. Most of the increase in skew-
ness is generated by the increase in the correlation between the occupation premium occi and
the residual variance ε2

i . The equivalent component for industries (in green) is negligible.
All other components, such as the skewness between occupations or industries, the corre-
lation between the occupation premium and the industry premium variance and others are
aggregated and plotted in red. Altogether, they comprise only a small share of the increase.

To do the same exercise for occupations with observable skills I estimate a Mincer equation
with occupational dummies

ln wi = occi + βXi + εi (37)

where Xi includes years of schooling, experience and experience squared.
In this estimation, the occupation premiums are conditional on the workers’ observed

skills. Therefore, I decompose βXi into mean occupation skill level and within-occupation
skill difference

E [βXi|occi] + (βXi − E [βXi|occi]) ,

such that the first component captures the average skill level in an occupation and the second
component captures the skill part that is orthogonal to the occupation.

I implement a linear skewness decomposition into four components using the equation

ln wi = occi + E [βXi|occi] + (βXi − E [βXi|occi]) + εi.

Figure A18 plots the results. I find that the two main components are the correlation of ε2 with
both occi and E [βXi|occi]. This means that the correlation of the inequality of the unobserv-
ables (the variance of ε) with occupational wage levels is due to both occupation premium
(occi) and the mean skill level at the occupation (E [βXi|occi]). Hence, inequality is large in
occupations that pay more and have higher-skilled workers, consistent with the SR-RBTC
model. Categories that are unrelated to occupations are still negligible.

80


	Model 
	Occupational Sorting by Skill 
	Routine-Biased Technological Change
	General Equilibrium
	Skill-Replacing RBTC: First Phase
	Skill-Replacing RBTC: Second Phase

	Methodology 
	Interactive Fixed-Effects Model
	Decomposing Wage Polarization

	Data
	The Decline in Return to Skill in Routine Occupations 
	The Education Premium in Routine Occupations
	IFEM Results

	The Reversal of Comparative Advantage
	Quantifying the Overall Impact of SR-RBTC
	Evidence From Skewness Decomposition
	The Decline in Inequality Within Routine Occupations

	Discussion and Alternative Explanations
	Appendix Figures and Tables
	Model Extensions 
	Task Model for RBTC
	CES Production
	Model with Multidimensional Skills
	Setup
	Skill Replacing RBTC


	Proofs
	Multidimensional Model Proofs

	Interactive Fixed Effects Model Appendix
	Estimation Details 
	Sensitivity Analysis 
	Interactive Fixed Effects Model With Multiple Skills

	Data Appendix
	CPS-ORG
	PSID
	O*NET

	Cross-Occupation Wage Rank
	Occupational Choice of New Hires
	Decomposing by More Than One Category

