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Abstract

This project provides a framework and empirical example for the estimation of consumer de-

mand for published statistics, and incorporation of these estimates into the process of statistical

disclosure control (SDC). When implementing SDC methods, data providers are tasked with

balancing the benefits of published statistics with the risks of re-identification of entities in the

confidential micro-data. Typically, the benefit side of this calculation is reduced to maximizing

the number of published statistics, as opposed to assessing which statistics might be more useful

to downstream consumers. In the context of the cell suppression problem, data providers must

choose complementary suppressions to protect against secondary disclosure attacks, and in the

context of differential privacy data providers must choose how to allocate their privacy budgets

across different sets of output. Incorporating valuations over potentially published statistics

can help inform these decisions. Consumer demand for statistics is modeled using a discrete

choice nested logit model where individual statistics can vary by characteristics such as their

conditioning variables (e.g. labor data sliced by occupation versus industry). To illustrate its

feasibility, the framework is applied to the Census of Fatal Occupational Injuries. Preferences

are estimated using standard approaches on page-view data of public CFOI webpages, and the

parameter estimates are used to compute valuations which are leveraged in both cell suppression

and differential privacy approaches to protecting CFOI tables.
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1 Introduction

When data providers are tasked with protecting the confidentiality of entities whose information

contributes to published statistics they are implicitly forced to find a balance between public benefits

and private re-identification risk. While there has been ample research introducing new methods to

protect confidentiality, there has been relatively little study of how to set the associated parameters

that capture how much risk we are willing to accept or where the risk should be concentrated.

Without more research on how to factor in the public benefits of accurate statistics there is a

strong potential to inadvertently overprotect the statistics we value most. In this paper we provide

a novel framework for the estimation of data consumer’s valuations and how to incorporate these

into statistical disclosure control (SDC) methods. We additionally apply the proposed framework to

a real-world data set, the Census of Fatal Occupational Injuries, to demonstrate the entire pipeline

from preference estimation, to statistics valuation, to parameter decisions on two common SDC

methods.

The remainder of this paper is organized as follows. Section 2 lays out the model of consumer

preferences over published statistics including strategies for estimation. Section 3 describes two

common SDC methods, cell suppression and differential privacy, and how to generate valuations to

inform these methods. Section 4 presents an application of the entire framework to the Census of

Fatal Occupational Injuries, and section 5 concludes.

2 Model

In this section we describe a model that encapsulates the preferences of data consumers and serves as

the foundation for both the consumption behaviors over published data products and for decisions

surrounding statistical disclosure control methods.

2.1 Preferences Over Statistics

To establish the connection between core preferences over individual statistics and the consumption

habits of data users, we start be defining three objects.

Definition 1. A statistic, indexed by s ∈ S = {1, 2, · · ·nS}, is a single scalar communicating

information about the data set of interest.

Definition 2. A publication, indexed by p ∈ P = {1, 2, · · ·nP }, is a set of statistics, Sp ⊆ S,
collected together and formatted as a single document for consumption by the public.

Definition 3. A market, indexed by t, is a set of Pt publications from which a data consumer can

choose at time t.

The above definitions permit amply heterogeneity across what information could be commu-

nicated from the underlying data source. To solidify concepts Example 1 presents a situation

involving unemployment rates. For most national statistical agencies (NSAs) and data providers
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these statistics are likely to be simple descriptive measures such as counts or averages of various

variables, however the framework also permits more complicated objects such as elasticity estimates

from a large structural economic model.

Example 1. The estimated unemployment rate of 5.4%, for the construction industry in March of

2024 (Bureau of Labor Statistics 2024), is a statistic in our framework. If we were to collect all the

unemployment rates across various sectors (e.g. by 2 digit NAICS codes) and present them in either

a table or a chart, this object would constitute a publication. Finally, we could imagine multiple

different tables or charts that each present unemployment rates sliced along difference dimensions,

e.g. by industry, occupation, or geography. Collectively, these would make up a market of different

options that the downstream data consumer could choose among in their quest to learn about the

unemployment situation.

Statistics and publications each have associated characteristics, denoted by xs ∈ X ⊆ Rk and

zp ∈ Z ⊆ Rr respectively. Characteristics of a statistic could include the value of the statistic,

indicators of whether it conditions on a specific industry, or the type of statistic (e.g. count versus

average versus rate). For a publication, characteristics can include the number of statistics in the

publication, how many are suppressed, how the statistics are presented (e.g. table versus plot), or

even whether they involve a comparison across time versus a single period. For additional examples

refer to Table 1 for a list of the features leveraged in the application.

We model preferences using a standard nested logit model of preferences over the statistics and

publications. Let data consumer i have indirect utility from publication p in market t given by

Uipt =
1

|Sp|
∑
s∈Sp

xstβ + zptα+ ξpt︸ ︷︷ ︸
≡δpt

+ςig + (1− σ)ϵipt (1)

As introduced earlier, xst and zpt are vectors of observable attributes of the statistic and publication

respectively, while β and α are parameters representing consumer preferences over these observ-

able characteristics. The first error term, ξpt, includes any unobservable (to the econometrician)

preferences, and together with the first two terms make up the mean utility across individuals, δpt.

The final two error terms represent unobservable consumer level idiosyncratic shocks. The nest

or group shock, ςig, is common across all publications found in nest g and models the potential

correlation between certain sets of publications (e.g. if a group of publications is all accessed via the

same primary website). The idiosyncratic error, ϵipt, includes all other unobserved consumer level

preferences. These two shocks are assumed to follow a Cardell distribution and a Type 1 Extreme

Value distribution respectively which ensures that the total idiosyncratic error, ςig + (1 − σ)ϵipt,

follows a Type 1 Extreme Value distribution (Cardell 1997). This distributional assumption is

desirable because we will see shortly that it results in a closed form solution for the share of each

publication chosen.

Note that the preferences over the statistic’s characteristics enter the utility function as an

average over included statistics. This modeling choice helps to address the issues inherent in
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comparing publications that condition on different dimensions with different numbers of cases. For

example, a publication of unemployment rates by state would naturally have 50 statistics while a

publication of unemployment rates by occupation codes might have more than 500 statistics which

might artificially inflate the estimated valuation of conditioning on occupation. By averaging the

contribution we can disentangle the effect of the conditioning dimension chosen (e.g. conditioning

on state versus occupation) from the resulting number of statistics reported. For use cases where

the valuation of the number of statistics is important, we suggest including this characteristic in

zpt. For parsimony sake, throughout the remainder of the paper we will collapse this average into

x̃pt so that

Uipt = x̃ptβ + zptα+ ξpt + ςig + (1− σ)ϵipt where x̃pt =
1

|Sp|
∑
s∈Sp

xst. (2)

Though the line between statistic characteristics and publication characteristics can sometimes be

ambiguous, especially when a characteristic is constant across statistics within a publication, the

linearity of the model implies that the distinction is often only superficial.

Given the model for preferences over statistics and publications we now discuss the consumption

behavior of consumers. Following Berry (1994), we can derive the share of consumption of each

of these options under the distributional assumption described earlier. Under the previous utility

model, if consumers in market t are presented with Pt publication options, Mt = {S1,S2, . . . ,SPt},
and they choose exactly one option that maximizes their indirect utility then the share, ypt, of

consumers choosing publication p is given by

ypt =
exp

(
δpt
1−σ

)
Dσ

g

∑
hD

1−σ
h

where Dg =
∑
k∈g

exp

(
δkt

1− σ

)
. (3)

Though it is rare that we observe the individual choices of all consumers, there are many scenarios in

which we observe either the aggregate counts of certain choices or the percentage of consumers that

make a certain choice. Equation (3) provides a link between the underlying consumer preference

parameters and potentially observable information.

2.2 Identification and Estimation of Preferences

The primary objects of interest in the model are the preference parameters, β and α, since they

can be used to derive valuations over potentially published statistics and publications (as we will

illustrate in Section 3.3). The identification and estimation of these parameters can be achieved

in several ways as illustrated by the breadth of the literature on discrete choice models (see ?).

For simplicity sake we take the route of Berry (1994) by transforming the nonlinear relationship of

equation (3) into a linear one that relates the observable characteristics with an observable outcome

variable. This “inversion step” is one of the most attractive features of the nested logit model and

likely motivates its utilization across a number of disciplines and fields. Following a little bit of

algebra, it can be shown that

ln ypt − ln y0t = x̃ptβ + zptα+ σ ln yp|g + ξpt (4)
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where yp|g is the share of publication p chosen among options in nest g.

There are two beneficial consequences of this transformation. The first is that establishing

identification of the model parameters, (β, α, σ), is made easier given the familiarity of linear models.

In particular, since the left hand side is observable then standard econometric theory dictates that

the parameters are identified provided we can find suitable instruments for the observable variables,

(x̃pt, zpt, ln yp|g), with respect to the unobservable error ξpt. The existence of such instruments

will depend on the specific context and characteristics of the particular data set being used to

estimate these preferences (see section 4.3 for an example in the application). In some situations the

characteristics may be plausibly exogenous, however it is important to note that yp|g is endogenous

by construction and will always require instrumentation.

The second advantage of this form is that it permits the use of more tractable estimation

strategies, such as instrumental variables regression, rather than the more demanding methods

typically required for nonlinear models. These methods have closed form solutions and therefore

do not suffer from the various difficulties inherent to optimization-based estimators.

3 Statistical Disclosure Control

The methods for protecting the confidentiality of the microdata are myriad and diverse. Though

the results of estimating user preferences can no doubt inform several different approaches to SDC,

we focus on two of the most predominant methods found in practice. The first is cell suppression,

where potentially disclosive cells are omitted from publication, and the second is differential privacy,

which typically involves injecting noise into published statistics. In this section we describe both

approaches and layout how estimates from the preference framework can be used to bolster and

guide the tuning of these methods.

3.1 Cell Suppression

Cell suppression for disclosure control is the simple process of omitting any statistics, such as cells

in a larger table, that are deemed to sufficiently threaten the confidentiality of the underlying

microdata. Suppression methods were considered by NSAs long ago (Fellegi 1972) and research

into their subtleties and implementation also has a long history (Fischetti and Salazar 2001).

Implementing cell suppression typically consists of a two step procedure. First, cells or statistics

whose publication are deemed sensitive are marked for primary suppression according to some rule

defined by the data provider. Potential measures of sensitivity are numerous and the thresholds

for primary suppression vary both by the context of the microdata and the NSA’s level of aversion

to disclosure risk. In the second step, the remaining cells that are being considered for publication

must be reviewed to ensure that their publication does not implicitly reveal any cells that were

suppressed in step one. These implicit revelations come about from the natural relationships

among the presented statistics, for example row or column totals in the same or a related table. A

selection of cells are then identified for complementary (also known as secondary) suppression to
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prevent disclosure risk of all suppressed cells. However, there is often room for choice about which

cells can be marked for complementary suppression and this is where estimated valuations over the

statistics can provide guidance.

The complete cell suppression problem (CSP) is as follows. Let x ∈ X = Rn represent a vector

of n statistics being considered for publication. Suppose they satisfy the known bounds, xlb ≤ xs ≤
xub, and the known linear constraint Ax = b. The linear constraint represents the relationships

among the statistics such as published totals of other published statistics. Let q(ps) ∈ Q = {0, 1}n

be a primary suppression vector such that q
(ps)
s = 1 indicates that statistic s is marked for primary

suppression. Similarly, let q(cs) ∈ Q = {0, 1}n indicate the complementary suppressions, and finally

let q ∈ Q = {0, 1}n indicate either suppression (i.e. qs = 1{q(ps)s = 1 or q
(cs)
s = 1}). Let the

value associated with a given set of published statistics be given by f : X × Q → R. A common

assumption of this valuation function is the independence of valuations across statistics within a

publication so that f(x, q) =
∑

s vs(1 − qs) where vs is the valuation (or weight) of publishing

statistic s. Finally, most CSP statements also include a set of bounds defining the desired level of

protection guaranteed on suppressed cells which may or may not be cell specific. Given cell specific

bounds, lbs and ubs, we want to guarantee that the implied value of a suppressed cell s contains

the interval (xs − lbs, xs + ubs).

The CSP consists of finding an optimal set of suppressions conditional on an intruder doing

their best to identify suppressed cells. The intruder’s problem is to take the available information,

i.e. the published statistics (x∗ = {xs : qs = 0}) and known constraint (Ax = b), and determine the

set of implied potential values of the suppressed statistics. Due to the linearity of the constraint

this takes the form of determining the interval, (xs, xs), of potential values for each suppressed

statistic:

xs(x
∗, q) = min

r∈Rn
rs s.t.

Ar = b, xlb ≤ r ≤ xub

rj = x∗j for qj = 0

xs(x
∗, q) =max

r∈Rn
rs s.t.

Ar = b, xlb ≤ r ≤ xub

rj = x∗j for qj = 0

The data provider’s objective is to choose complementary suppressions that maximize the value of

the published data product while ensuring the solution to the intruder’s problem satisfies the level

of protection defined earlier:

max
q∈Q∗

f(x, q) where Q∗ = {q ∈ Q :

qs = 1 ∀ s with q(ps)s = 1,

xs(x
∗, q) ≤ xs − lbs ∀ s with qs = 0

xs(x
∗, q) ≥ xs + ubs ∀ s with qs = 0 }

(5)

The domain over which this optimization occurs, Q∗, consists of the set of suppressions that respect

the designated primary suppressions and the protection bounds.

Though the objective statement is straightforward, the CSP is NP-hard (Kelly et al. 1992) which

means it can quickly become intractable when involving large sets of statistics. Substantial research
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has been conducted to provide and compare methods for solving this problem, including heuristic

methods to accommodate scenarios where data size makes complete algorithms unfeasible. For

reviews of methods and work in the area of implementation see Castro (2012) and Castro (2023).

3.2 Differential Privacy

Since the publication of Dwork et al. (2006) there has been significant research effort put toward

expanding, assessing, and implementing the space of SDC methods with formal privacy guarantees.

The majority of the approaches involve a stochastic element, such as noise injection, to help mask

the likelihood of identifying individual entities in the microdata from published statistics. For

the purposes of this paper we focus on the original property of pure ε differential privacy (ε-DP),

however, many of the extensions and relaxations of ε-DP can also be used in the contexts we

describe with some alteration.

Let the underlying microdata be represented by D ∈ D and let x ∈ X = Rn represent a vector

of n statistics generated from the microdata by function g, so that g(D) = x. Rather than publish

these exact statistics, the data provider instead considers using a mechanism which is a stochastic

function mapping each statistic to a new perturbed statistic, M : X → X ∗. This mechanism is

said to have the property of ε-Differential privacy if it satisfies the following definition.

Definition 4. For ε > 0, the mechanism M is said to satisfy ε-differential privacy if for any two

adjacent data sets, D and D′, that differ in exactly one element and for all outcomes A ∈ X ∗ we

have

Pr [M(g(D)) ∈ A]

Pr [M(g(D′)) ∈ A]
≤ eε.

This property essentially ensures that there is sufficient noise in the published statistics, x∗,

such that it cannot be determined, up to a certain level, whether the microdata that generated the

statistics does or does not contain a specific individual. In this definition ε, often called the privacy

budget, can be thought of as the amount of privacy a data provider can spend in order to safely

publish the information produced by the underlying microdata and mechanism. Setting smaller

values of ε suggests that there is little room between publishing the statistics and re-identification

of the underlying microdata, so a mechanism must typically inject a large magnitude of noise in

order to achieve ε-DP. Conversely, larger values of ε suggest there is ample room for publishing

the statistics with less worry of re-identification, which means mechanisms do not need to inject as

much noise.

Beyond establishing a formal mathematical privacy guarantee, this property also has several

other advantageous characteristics including composability and invariance to post-processing.

Lemma 1 (Composability). Let M1, . . . ,Mk be k independent mechanisms that each satisfy ε-DP

with respective guarantees of ε1, . . . , εk. If we consider the joint mechanism, M = (M1, . . . ,Mk),

then M also satisfies ε-DP with guarantee ε =
∑k

i=1 εi.
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Lemma 2 (Invariance to post-processing). Let the mechanism M satisfy ε-DP and let g be any

function of the output of M. Then the mechanism g(M) also satisfies ε-DP.

Composability will be especially useful in later discussion regarding the allocation of a privacy

budget. Refer to Dwork (2008) for a discussion of multiple facets of differential privacy.

3.3 Leveraging Preferences in SDC

Once preferences have been estimated according to the model and methods outlined in Section 2.1

they can be incorporated into the the SDC methods being utilized. In this section we describe how

to leverage these estimates in each of the SDC approaches introduced, and discuss a few aspects of

this process that should be considered. The approach outlined below consists first of establishing a

valuation for a potential publication and then illustrating how that valuation can be used in each

of the SDC methods previously described.

Suppose there are P potential publications under consideration consisting of S1, . . . ,SP sets of

statistics respectively. Note that each publication may consist of exactly one statistic (|Sp| = 1). As

described in Section 2.1, each of these publications have characteristics given by x̃p and zp. Given

consistent estimates for the primary preference parameters, β̂ and α̂, one approach to generating

a valuation for each of these publications would be to compute the expected indirect utility using

equation (2)

E [Uip|x̃p, zp] = x̃pβ̂ + zpα̂,

however these valuations would be problematic for a number of reasons. The ordinal nature of

utility coupled with the fact that they are normalized so the utility of outside option is 0 make the

exact value of E [Uip] difficult to interpret. Moreover, since there are no quantitative constraints,

i.e. estimated utilities could be negative, the estimated utilities are impossible to compare outside

of simple preference orderings.

To create valuations that are more amenable to comparison and usable in SDC methods we will

transform them according to the discrete choice model described earlier.

Definition 5. Given P publications with respective characteristics x̃p and zp and estimated pref-

erence parameters (β, α), let the valuation of publication p be denoted by vp and given by

vp =
exp (E [δp|x̃p, zp])∑
k exp (E [δk|x̃k, zk])

=
exp (x̃pβ + zpα)∑
k exp (x̃kβ + zkα)

. (6)

This approach essentially supposes a hypothetical market that consists of only the P potential

publications, and the valuation is then defined as the share of consumers that would choose that

publication. This hypothetical market is simplified along two dimensions: all choices are assumed

to share the same nest and there is no outside option. This ensures that valuations are dictated by

the estimated substitution patterns between choices rather than with the outside option.

This definition of valuation not only maintains the preference ordering of the estimated mean

utilities, but also has additional desirable properties. Under this definition all valuations are
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bounded, vp ∈ [0, 1], and are easily interpretable through the lens of the hypothetical market.

For example, the relative valuations can be utilized more easily since one publication having a

valuation that is twice another does in fact indicate twice the desirability within the context of the

hypothetical market.

Given estimates of the preference parameters, β̂ and α̂, we can easily construct estimated

valuations using the plug-in version of equation (6):

v̂p =
exp

(
x̃pβ̂ + zpα̂

)
∑P

k=1 exp
(
x̃kβ̂ + zkα̂

) . (7)

Provided there is at least one publication with a finite mean utility, E [δp], then this plug-in valuation

estimator is continuous over the relevant parameter space. This fact coupled with the continuous

mapping theorem implies that our valuation estimator is consistent for the true valuation, v̂p →p vp.

Leveraging these newly estimated valuations in the context of the cell suppression problem is

straightforward. Since we need to assess the relative valuations of each cell within the table we

define our publications so that each consists of exactly one cell in the relevant tables, Sp = {sp},
and therefore v̂p = v̂s. With the objective already defined in equation (5) the data provider can

simply substitute these estimated valuations in for the weights:

v̂s = v̂p =
exp

(
x̃pβ̂ + zpα̂

)
∑P

k=1 exp
(
x̃kβ̂ + zkα̂

) ⇒ max
q∈Q∗

∑
s

v̂s(1− qs).

Solving this CSP can then be done with whichever method is appropriate given the context and

computational resources available to the data provider.

In the context of differential privacy a simple heuristic approach can be used to incorporate

the valuations. Given a previously established privacy budget, ε, the choice at hand is how to

allocate this budget across the P potential publications. Assuming the data provider wishes to

exhaust the entire budget on these publications, and not leave any privacy budget left for future

publications, a natural approach is to simply allot the budget in proportion to the estimated

valuations. Specifically, publication p would be given v̂p of the budget, i.e. for that publication use

the established mechanism that provides v̂pε differential privacy. The construction of the estimated

valuations, which ensure
∑

p v̂p = 1, coupled with the composability of independent mechanisms

means that the joint mechanism that produces all publications together will satisfy ε differential

privacy. This allocation will also imply that publications with higher valuations will have more of

the privacy budget, less noise injected, and therefore more accuracy with respect to the underlying

truth. In other words, those statistics deemed more valuable will be reported more accurately.

4 Application

In this section we take a real world data product and apply the entire process, from the estimation

of preferences over statistics to the incorporation of those estimates into SDC methods. Though
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this framework is not currently in use for the data set of focus, this application illustrates the

feasibility and benefits of the framework described earlier.

4.1 Census of Fatal Occupational Injuries

For this application we focus on the Bureau of Labor Statistics’s Census of Fatal Occupation Injuries

(CFOI). The CFOI is an annual census of workplace fatalities that is compiled via a joint partnership

between states and the federal government. Since 1992 this effort has included the collection of

documents from numerous sources (e.g., death certificates, coroner reports, OSHA reports, and

public news articles), verification of information, assessment for inclusion, and standardization of

the accumulated data. With this microdata BLS publishes annual statistics related to the incidence

of workplace fatalities across a number of dimensions including geography, injury characterization,

industry, occupation, and demographics. The BLS also offers a comprehensive public data query

tool1 where individuals can query the microdata along custom dimensions that are not included in

the typical annually published tables. For more details about the CFOI’s scope and collection see

the Handbook of Methods (Bureau of Labor Statistics 2020)

Protecting the confidentiality of the underlying CFOI microdata poses unique challenges that

make it a prime candidate for studying disclosure risk. Beyond just being mandated by CIPSEA,

mitigating disclosure risk is especially important since the context surrounding a workplace fatality

can sometimes include sensitive health information. The commonplace reporting of fatalities in

public new sources adds additional risk even when those news articles do not reveal specifics about

the decedent. The risk is further elevated by the relative rarity of these events. For example,

tabulations across seemingly broad dimensions can still result in table cells with small counts which

can be potentially disclosive. Finally, while many statistics produced from other data products

at the BLS involve statistical transformations which can help mitigate disclosure worries (e.g.,

occupational wage estimates are computed using weighted averages across sampled individuals),

the statistics produced using CFOI are typically counts or simple unweighted incidence rates.

4.2 Google Analytics Data

To estimate preferences over statistics we will be leveraging Google Analytics (GA) data across

numerous BLS websites which contain published statistics from the CFOI. GA is a resource provided

by Google which tracks website traffic over several dimensions and provides various methods of

querying this information so businesses and institutions can better understand when, where, and

how their sites are being visited.

Figure 1 illustrates an example of data that can be extracted via GA. This figure plots the

weekly count of unique views of a webpage that presents a table of fatality counts across industry

and the event that resulted in the fatality.2 Each times series represents the table for a different

1https://data.bls.gov/cgi-bin/dsrv?fw
2An example of this table for the most recent reference year, 2022, can be seen here: https://www.bls.gov/iif/

fatal-injuries-tables/fatal-occupational-injuries-table-a-1-2022.htm
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reference year. For example, we can see that for fatalities which occurred in reference year 2020 the

table was first published at the end of 2021 where the time series begins collecting information. This

figure alone depicts how pageviews might convey data preferences since we can see a sharp decline

in visits for any reference year as soon as any new year’s statistics are first published, suggesting a

strong preference for the most recent year’s statistics. This stylized fact coupled with the variation

in presented information across CFOI webpages is what motivates the use of pageviews to estimate

preferences over the data published.

Figure 1: Google Analytics Data Example

For the purposes of this project we collected weekly counts of unique visitors to 28 different

types of CFOI publications across more than 50 URLs from December 2017 to April 2023. Given

that URLs have changed over time during website redesigns, ample effort was put into stitching

together the site visitation histories for the same presented statistics across different URLs. For

every URL the various characteristics of both the individual statistics and the entire presentation,

i.e. publication, were manually coded. See Table 1 for a complete list of the characteristics that

were constructed for this analysis.

4.3 Preference Estimation

Each website can be thought of as a collection of CFOI statistics that can be chosen and consumed

once the page is visited. Therefore, each specific website is considered to be a publication as

described in the model of section 2. The set of potential pages that can be chosen to visit at any

given time will then constitute the market for our purposes. More specifically, a market is defined

to be all identified BLS URLs within a given week that present CFOI statistics, which gives us a

total of 277 markets across the time horizon of this estimation exercise. Nests are defined such that

each represents a set of URLs that are all accessible from a common parent website. This results

in the following 3 nests:
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Variable (Characteristic) Descriptions

Variable Level Description

Emp. Status statistic Indicates conditioning on the employment status

Industry statistic Indicates conditioning on broad industry categories

Occupation statistic Indicates conditioning on the decedent’s occupation

Gender statistic Indicates conditioning on the decedent’s gender

Injury Event statistic Indicates conditioning on the broad injury event (event OIICS

code)

Age statistic Indicates conditioning on the decedent’s age

Geo. State statistic Indicates conditioning on the decedent’s state of residence

Race/Ethnicity statistic Indicates conditioning on the decedent’s race/ethnicity

Doc. Source statistic Indicates conditioning on the document sources used in collection

Stat. Type statistic Indicates if it is a count, rate, or percent (count is the base case)

Ref. YYYY statistic Indicates if conditioning on CFOI reference year YYYY

Current Year statistic Indicates conditioning on the most current reference year

Form publication Indicates if presented as a table, bar chart, or line chart (table is

the base case)

Multiple Years publication Indicates if it includes data from multiple CFOI ref. years

Num. Cells publication The number of potential statistics included (i.e. includes sup-

pressed cells)

Num. Stats. publication The number of published statistics included (i.e. omits suppressed

cells)

Table 1: List of variable descriptions included in the estimated models the object (statistic vs

publication) that each variable is associated with.

� Nest 1: Primary tables of CFOI statistics.3

� Nest 2: Interactive charts of CFOI statistics.4

� Nest 3: Other CFOI tables presented through BLS economic news releases.5

By using common parent pages to define nests, this allows the preference model to capture associ-

ation across publication choices that is driven by common navigation routes throughout the BLS

website.

Estimation of the preference parameters is done using instrumental variables regression after

leveraging the inversion property described in equation (4). Given that the structure of the chosen

3See examples of included publications linked here: https://www.bls.gov/iif/fatal-injuries-tables.htm
4See examples of included publications linked here: https://www.bls.gov/charts/

census-of-fatal-occupational-injuries/
5See examples of included publications linked here: https://www.bls.gov/news.release/cfoi.nr0.htm
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tables and charts have been relatively static over time, we can safely assume that all characteristics

of the publications are exogenous and do not require instrumentation. However, the nest share

variable, ln sp|g, is endogenous by construction. As is common practice for the estimation of nested

logit models, we use the number of choices in a nest as the instrument for the nest share to identify

σ.

A selection of parameter estimates is presented in Table 2. Two sets of estimates are provided,

with the only difference being that model (2) estimates heteroskedasticity-robust standard errors

while model (1) does not. All included characteristics are statistically significant, and the estimate

for σ falls within the interval (0, 1) without enforcing a constraint on the estimation. Direct

interpretation of the magnitudes of these estimated preference parameters is difficult given the

nature of utility. However, their ordinality does communicate several interesting aspects of the

preferences of the average consumer of CFOI statistics. For example, regarding which dimensions

are of highest interest to slice CFOI statistics along these estimates tell us consumers prefer (from

highest to lowest) employment status, gender, industry, geography, event, occupation, race, and

then finally age. They also prefer count based statistics over percentages or rates, and tables over

Table 2: Preference Estimation Results

(1) (2)

Employment Status 0.518∗∗ 0.518∗∗

(0.037) (0.038)

Industry -0.112∗∗ -0.112∗∗

(0.030) (0.033)

Occupation -0.459∗∗ -0.459∗∗

(0.034) (0.036)

Gender 0.069 0.069

(0.072) (0.058)

Injury Event -0.453∗∗ -0.453∗∗

(0.025) (0.029)

Age -0.525∗∗ -0.525∗∗

(0.042) (0.038)

Geo. State -0.350∗∗ -0.350∗∗

(0.088) (0.107)

Race/Ethnicity -0.509∗∗ -0.509∗∗

(0.034) (0.034)

Document Source -0.958∗∗ -0.958∗∗

(0.054) (0.061)

** indicates significance at the 0.01 level.

(1) (2)

Type: Percent -0.482∗∗ -0.482∗∗

(0.075) (0.062)

Type: Rate -0.179∗∗ -0.179∗∗

(0.036) (0.034)

Form: Bar Chart 0.337∗∗ 0.337∗∗

(0.051) (0.060)

Form: Line Chart 0.660∗∗ 0.660∗∗

(0.058) (0.051)

Multiple Years -0.274∗∗ -0.274∗∗

(0.021) (0.025)

Current Year 1.170∗∗ 1.170∗∗

(0.059) (0.080)

Nest Shares 0.358∗∗ 0.358∗∗

(0.029) (0.037)

Constant -3.308∗∗ -3.308∗∗

(0.182) (0.118)

Mkt FE Yes Yes

Robust SE No Yes

N 5870 5870

** indicates significance at the 0.01 level.
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bar charts or line charts. Finally we see a strong preference for data about the most current year’s

fatalities which mirrors the stylized fact depicted in Figure 1.

4.4 Statistical Disclosure Control

Turning to statistical disclosure control, we now demonstrate how the preference parameter esti-

mates of the previous section are employed. For both cell suppression and differential privacy we

will illustrate this using a pair of potentially publishable tables displayed in Table 3. Though the

data contained in these tables is entirely fictitious, they represent a simplified version of the types

of publications about CFOI that BLS currently produces. Table 3a collects counts of fatalities by

age bin and year while Table 3b zooms in on reference year 2021 and collects fatality counts by age

and industry.

If published in their current state, there is potential disclosure risk since some of the small

cells may result in the identification of the underlying decedents. For example, knowing there was

exactly one occupational fatality in 2021 with a decedent under the age of 20 may, when coupled

with other public information, be sufficient to identify this individual. To mitigate this risk we will

consider the two SDC methods, suppression and differential privacy, as discussed in Section 3.

Table 3: Fictitious Potential Publications

(a) Fatalities by Age and Year

Year

Age 2019 2020 2021 Total

< 20 2 3 8 13

20-34 29 27 34 90

35-54 51 46 55 152

≥ 55 49 43 57 149

Total 131 119 154 404

(b) Fatalities by Age and Industry

Industry (for 2021)

Age Cons. Mfg. Trade Total

< 20 4 3 1 8

20-34 15 9 10 34

35-54 29 15 11 55

≥ 55 31 12 14 57

Total 79 39 36 154

Starting with the suppression approach to SDC the first step is to identify cells for primary

suppression. Suppose the disclosure methods dictated that primary suppressions must be applied

to any cell with fewer than 4 fatalities, then 4 of the 40 cells would need to be suppressed. As

discussed in section 3.1, additional complementary suppressions are required to protect the sup-

pressed cells, however there is flexibility about which cells could be used. Using the estimated

preference parameters we can estimate the valuation of each cell according to (7). As a reminder,

these estimated valuations are derived from pretending a consumer were given the option to choose

1 out of these 40 statistics (i.e. each is considered to be a separate publication) and defining the

estimated valuation as the expected share of consumers to choose that cell. Table 4 presents a

visual representation of the estimated valuations of each cell that are implied by the previously es-

timated preference parameters. Various stylized facts are revealed, such as the higher value placed
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Table 4: Potential Publications with Cell Valuations

(a) Fatalities by Age and Year

Year

Age 2019 2020 2021 Total

< 20 2 3 8 13

20-34 29 27 34 90

35-54 51 46 55 152

≥ 55 49 43 57 149

Total 131 119 154 404

Value

5%

2.5%

0%

(b) Fatalities by Age and Industry

Industry (for 2021)

Age Cons. Mfg. Trade Total

< 20 4 3 1 8

20-34 15 9 10 34

35-54 29 15 11 55

≥ 55 31 12 14 57

Total 79 39 36 154

on marginal cells versus inner joint cells in either table, and also higher value being placed on the

finer industry breakdown in Table 4b as compared to the aggregated breakdown in Table 4a.

Inserting these valuations into the CSP optimization defined in (5) is fairly straightforward. For

a problem of this size, nearly any optimization method can be employed to arrive at an optimal

set of complementary suppressions given the cell valuations. While a solution can be easily found,

careful observation will reveal that there are in fact multiple optima in this case. This stems from

the fact that cell valuations are constant across sets of cells which leads to several options for

complementary suppressions that are each optimal. For example in Table 4b, to protect the (Trade

Industry, Age < 20) cell we can pick either (Trade Ind., Age 20-34), (Trade Ind., Age 35-54),

or (Trade Ind., Age ≥ 55) for complementary suppression since they all have identical estimated

valuations. Rather than a flaw in the design, this highlights that the granularity in which you are

able to estimate valuations will depend on the variation across publications that exists in the data

set used to estimate the preference parameters. While the CFOI publications covered in the GA

data do contain tables that breakdown fatalities by age bin, there are not separate publications

that look at each age bin so we are unable to identify and estimate a separate valuation by age

group. Future work that utilizes requests for data from the CFOI public query tool, which is highly

specific, would be able to estimate more granular preference parameters and provide more variation

across the estimated valuations.

Next we turn to differential privacy as an alternative SDC method for protecting Tables 3a and

3b. Starting with the assumption that the data provider has already determined the value of ε that

encodes their acceptable level of aggregate risk, the choice to be made concerns how to allocate this

privacy budget across these potential applications. For pedagogical simplicity suppose the data

provider plans to treat each table as a separate publication and is considering how much noise to

inject into the cells of each table.

As with the cell suppression approach, we can construct the valuations of each table via our

hypothetical market, and we find that Table 3a and Table 3b have respective valuations of 0.361

and 0.639 respectively. Note that the valuation of a table is not the sum of the valuations of the
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cells due to the nonlinearity of equation (7). Following the allocation approach described in Section

3.2, we then protect Table 3a using a mechanism with privacy budget 0.361ε and protect Table 3b

using a privacy budget of 0.639ε.

The exact mechanism leveraged can be chosen according to the constraints and context. A

rudimentary mechanism would add noise using a Laplace distribution, Lap(λ), parameterized by λ

with density fLap(x) =
1
2λ exp{−|x|

λ }. Specifically, we could add independent draws from Lap( 1
0.361ε)

to the cells of the first table and draws from Lap( 1
0.639ε) to the cells of the second table. This specific

mechanism would yield a few oddities such as potentially negative cell values and inconsistencies

across totals and tables. However, other more complex ε-DP mechanisms for adding noise to

contingency tables exist (see ? and ?) which could be applied using the privacy budget allocations

specified here.

5 Conclusion

In this paper we have tackled the question of how to improve the implementation of statistical

disclosure control methods by incorporating consumer valuations for the statistics being produced.

Our focus is on informing decisions surrounding the intensive margin of SDC methods, e.g. which

complementary cells to suppress or how to allocate a privacy budget, rather than on the extensive

margin, e.g. which cells to mark for primary suppression or how to choose the overall privacy budget

ε. We introduced a simple model of consumer choice over publications, consisting of sets of statistics,

that can be estimated and used to produce expected valuations over new potential statistics or

publications. The incorporation of these valuations into SDC methods was presented for two

common SDC approaches: suppression and differential privacy. Finally we supplied an application

using a real-world data set, the Census of Fatal Occupational Injuries, where pageview consumption

patterns were leveraged to demonstrate a potential data source for preference estimation, and how

the estimated preferences could be used to find optimal solutions to the Cell Suppression Problem

or allocate a given privacy budget across potential publications.

Given the relatively nascent field of research studying how to better account for the consumer’s

value of published information in SDC decisions, there are many more facets of this discussion to

investigate and ways to further extend the relatively simple framework introduced here. Though

we took cell suppression and differential privacy as prime examples of SDC methods, there are

many other existing methods for which the presented framework might be applied or adapted. It

would also be worthwhile to study other sources of information from which we can elicit estimated

valuations of published data, such as the distribution of published empirical work using data sets

or the analysis of public social media posts that mention statistics published by a data provider.

15



References

Berry, S. T. (1994). Estimating discrete-choice models of product differentiation. The RAND

Journal of Economics, 25(2):242–262.

Bureau of Labor Statistics (2020). Handbook of Methods: Census of Fatal Occupational Injuries

(CFOI). https://www.bls.gov/opub/hom/cfoi/.

Bureau of Labor Statistics (2024). Table A-31: Unemployed persons by industry, class of worker,

and sex. https://www.bls.gov/web/empsit/cpseea31.htm. Accessed 2024-04-28.

Cardell, N. S. (1997). Variance components structures for the extreme-value and logistic distribu-

tions with application to models of heterogeneity. Econometric Theory, 13(2):185–213.

Castro, J. (2012). Recent advances in optimization techniques for statistical tabular data protection.

European Journal of Operational Research, 216(2):257–269.

Castro, J. (2023). Thirty years of optimization-based sdc methods for tabular data. Transactions

on Data Privacy, 16(1):3–13.

Census Bureau (2021). Census bureau sets key parameters to protect privacy in 2020 census results.

https://www.census.gov/newsroom/press-releases/2021/2020-census-key-parameters.

html. Press Release: 2021-06-09.

Dwork, C. (2008). Differential Privacy: A Survey of Results, pages 1–19. Springer Berlin Heidel-

berg.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating Noise to Sensitivity in

Private Data Analysis, pages 265–284. Springer Berlin Heidelberg.

Fellegi, I. P. (1972). On the question of statistical confidentiality. Journal of the American Statistical

Association, 67(337):7.

Fischetti, M. and Salazar, J. J. (2001). Solving the cell suppression problem on tabular data with

linear constraints. Management Science, 47(7):1008–1027.

Kelly, J. P., Golden, B. L., and Assad, A. A. (1992). Cell suppression: Disclosure protection for

sensitive tabular data. Networks, 22(4):397–417.

US Congress (2002). Confidential Information Protection and Statistical Efficiency Act. https:

//www.bls.gov/bls/cipsea.pdf.

16

https://www.bls.gov/opub/hom/cfoi/
https://www.bls.gov/web/empsit/cpseea31.htm
https://www.census.gov/newsroom/press-releases/2021/2020-census-key-parameters.html
https://www.census.gov/newsroom/press-releases/2021/2020-census-key-parameters.html
https://www.bls.gov/bls/cipsea.pdf
https://www.bls.gov/bls/cipsea.pdf

	Introduction
	Model
	Preferences Over Statistics
	Identification and Estimation of Preferences

	Statistical Disclosure Control
	Cell Suppression
	Differential Privacy
	Leveraging Preferences in SDC

	Application
	Census of Fatal Occupational Injuries
	Google Analytics Data
	Preference Estimation
	Statistical Disclosure Control

	Conclusion

