

INEQUALITY AND OPTIMAL MONETARY POLICY IN THE OPEN ECONOMY

Sushant Acharya¹ Edouard Challe²

¹Bank of Canada and CEPR

²Paris School of Economics and CEPR

NBER ISoM 2024

The views expressed herein are those of the authors and not necessarily those of the Bank of Canada

MOTIVATION

- How do aggregate shocks affect domestic inequality in SOE, and how should CB respond?

MOTIVATION

- How do aggregate shocks affect domestic inequality in SOE, and how should CB respond?
- **Open-Eco HANK** literature (2021–) focuses on propagation of aggregate & policy shocks
[Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22...]

MOTIVATION

- How do aggregate shocks affect domestic inequality in SOE, and how should CB respond?
- **Open-Eco HANK** literature (2021–) focuses on propagation of aggregate & policy shocks
[Auclert et al. '21, Bayer et al. '23, De Ferra et al. '21, Druedahl et al. '22; Guo et al. '22; Oskolkov '23; Zhou '22...]
- This paper: **normative** perspective on monetary policy in Open-Eco HANK

MAIN TRADEOFFS AND RESULTS

Aggregate shocks \Rightarrow output, national income \Rightarrow consumption risk & inequality

TRADE-OFFS

Stabilizing consumption inequality

vs

Closing output gap + stabilizing inflation + manipulating ToT

closed-eco RANK

open-eco RANK

RESULTS

Conditions for "SOE-HANK divine coincidence"

Plausible calibration \Rightarrow More output and exch-rate stabilization than in RANK

Model

HOUSEHOLDS

- SOE à la Galí Monacelli (2005) + incomplete markets
- Perpetual youth demographics with turnover rate $1 - \vartheta$
- 2 groups of HHs:
 - **Unconstrained** (share $1 - \theta$) \Rightarrow trade **non-state contingent** 1-period real actuarial bond
 - **Hand-to-Mouth** (share θ) \Rightarrow cannot access asset markets
- All HHs subject to uninsured idiosyncratic shocks – in addition to aggregate shocks
- **CARA-Normal** structure as in Acharya et al. (2023)

UNCONSTRAINED HOUSEHOLDS

- CARA-Normal structure \Rightarrow linear policy rules \Rightarrow **linear aggregation**
- Group- u Euler equation:

$$\Delta c_{t+1}(u) = \underbrace{\frac{1}{\gamma} \ln \left(\frac{\beta R_t}{1 + \tau^*} \right)}_{\text{intertemporal substitution}} + \underbrace{\frac{\gamma}{2} \sigma_{c_u, t+1}^2}_{\text{prec. saving}}$$

where

$$c_t(u) = (1 - \vartheta) \sum_{s=-\infty}^t \vartheta^{t-s} \int c_t^s(i, u) di$$

and

$$\sigma_{c_u, t} \approx \mu \sigma_{y, t} + (1 - \mu) \sigma_{c_u, t+1}, \quad \sigma_{y, t} = \sigma_y e^{-\varphi \hat{y}_t}$$

details

HAND-TO-MOUTH HOUSEHOLDS

- Consume current income so that

$$\begin{aligned} c_t(h) &= (1 - \vartheta) \sum_{s=-\infty}^t \vartheta^{t-s} \int c_t^s(i, h) di \\ &= \frac{P_{H,t}}{P_t} y_t \end{aligned}$$

where

$$\frac{P_{H,t}}{P_t} = \left(\frac{1 - \alpha Q_t^{1-\eta}}{1 - \alpha} \right)^{\frac{1}{1-\eta}} \equiv p_H(Q_t)$$

- Consumption of HtM highly responsive to Q_t ("real income channel")

HOUSEHOLDS: DEMAND SYSTEM AND LABOUR SUPPLY

- Demand system as in Galí-Monacelli with home bias $1 - \alpha$ and elasticities [details](#)
 - η btw. H vs. F goods
 - ν across countries
 - ε across varieties
- Utilitarian unions set wages and demand uniform labor from HHs [details](#)
- Flexible wages + sticky prices as in Galí-Monacelli (2005)

REST OF MODEL

- **NKPC:**

$$\pi_{H,t} = \kappa (\hat{w}_t - z_t - \hat{p}_{H,t}) + \beta \pi_{H,t+1}$$

- **Home goods:**

$$\frac{z_t n_t}{1 + \frac{\Psi}{2} (\ln \Pi_{Ht})^2} = y_t = c_{Ht}(Q_t, c_t) + c_{Ht}^*(Q_t, c^*)$$

- **Home savings:**

$$\underbrace{(1 - \theta) \vartheta a_{t+1}}_{A_{t+1}} = R_t \underbrace{[(1 - \theta) \vartheta a_t + p_{Ht} y_t - c_t]}_{A_t}$$

- **RIR parity:**

$$\ln R_t = \ln R_t^* + \ln \frac{Q_{t+1}}{Q_t} - \wp a_{t+1}$$

Optimal policy

SOCIAL WELFARE FUNCTION

Planner maximises

$$W_0 = \sum_{t=0}^{\infty} \beta^t \left[(1 - \vartheta) \underbrace{\sum_{s=-\infty}^t \vartheta^{t-s} \int u(c_t^s(i)) di}_{\text{flow utility to planner at time } t} - v(n_t) \right]$$

SOCIAL WELFARE FUNCTION

Planner maximises

$$W_0 = \sum_{t=0}^{\infty} \beta^t \left[\underbrace{u(c_t)}_{(< 0) \text{ felicity of notional RA}} \times \underbrace{\Sigma_t}_{\text{welfare cost of inequality}} - v(n_t) \right]$$

SOCIAL WELFARE FUNCTION

Planner maximises

$$W_0 = \sum_{t=0}^{\infty} \beta^t \left[\underbrace{u(c_t)}_{(< 0) \text{ felicity of notional RA}} \times \underbrace{\Sigma_t}_{\text{welfare cost of inequality}} - v(n_t) \right]$$

RANK: $\Sigma_t = 1$

SOCIAL WELFARE FUNCTION

Planner maximises

$$W_0 = \sum_{t=0}^{\infty} \beta^t \left[\underbrace{u(c_t)}_{(< 0) \text{ felicity of notional RA}} \times \underbrace{\Sigma_t}_{\text{welfare cost of inequality}} - v(n_t) \right]$$

RANK: $\Sigma_t = 1$

HANK: $\Sigma_t > 1$

WELFARE COST OF INEQUALITY Σ_t

- Overall index Σ_t combines **within** ($\Sigma_{u,t}, \Sigma_{h,t}$) and **between** (Υ_t) group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma\theta\Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma(1-\theta)\Upsilon_t} \Sigma_{h,t}$$

WELFARE COST OF INEQUALITY Σ_t

- Overall index Σ_t combines **within** ($\Sigma_{u,t}, \Sigma_{h,t}$) and **between** (Υ_t) group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma\theta\Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma(1-\theta)\Upsilon_t} \Sigma_{h,t}$$

- Within **unconstrained**:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_{u,t}}^2}{2}} [1 - \vartheta + \vartheta \Sigma_{u,t-1}]$$

WELFARE COST OF INEQUALITY Σ_t

- Overall index Σ_t combines **within** ($\Sigma_{u,t}$, $\Sigma_{h,t}$) and **between** (Υ_t) group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma\theta\Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma(1-\theta)\Upsilon_t} \Sigma_{h,t}$$

- Within **unconstrained**:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_{u,t}}^2}{2}} [1 - \vartheta + \vartheta \Sigma_{u,t-1}]$$

- Within **HtM**:

$$\Sigma_{h,t} = \frac{1 - \vartheta}{e^{-\frac{\gamma^2 \sigma_{y,t}^2}{2}} - \vartheta}$$

WELFARE COST OF INEQUALITY Σ_t

- Overall index Σ_t combines **within** ($\Sigma_{u,t}, \Sigma_{h,t}$) and **between** (Υ_t) group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma\theta\Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma(1-\theta)\Upsilon_t} \Sigma_{h,t}$$

- Within **unconstrained**:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_{u,t}}^2}{2}} [1 - \vartheta + \vartheta \Sigma_{u,t-1}]$$

- Within **HtM**:

$$\Sigma_{h,t} = \frac{1 - \vartheta}{e^{-\frac{\gamma^2 \sigma_{y,t}^2}{2}} - \vartheta}$$

- Between**:

$$\Upsilon_t = c_t(u) - c_t(h)$$

WELFARE COST OF INEQUALITY Σ_t

- Overall index Σ_t combines **within** ($\Sigma_{u,t}, \Sigma_{h,t}$) and **between** (Υ_t) group inequalities

$$\Sigma_t = (1 - \theta) e^{-\gamma\theta\Upsilon_t} \Sigma_{u,t} + \theta e^{\gamma(1-\theta)\Upsilon_t} \Sigma_{h,t}$$

- Within **unconstrained**:

$$\Sigma_{u,t} = e^{\frac{\gamma^2 \sigma_{c_{u,t}}^2}{2}} [1 - \vartheta + \vartheta \Sigma_{u,t-1}]$$

- Within **HtM**:

$$\Sigma_{h,t} = \frac{1 - \vartheta}{e^{-\frac{\gamma^2 \sigma_{y,t}^2}{2}} - \vartheta}$$

- Between**:

$$\Upsilon_t = c_t(u) - c_t(h)$$

- $\Upsilon_t > 0 \Rightarrow$ relatively less weight on inequality within group u

POLICY INSTRUMENTS

- **Fiscal policy:** $\{\tau, \tau^*, \tau^w, \tau_t^a\}$ optimally set ex ante and unresponsive to aggregate shocks
- **Monetary policy:** $\{i_t\}$ adjusted optimally in response to aggregate shocks

POLICY INSTRUMENTS

- **Fiscal policy:** $\{\tau, \tau^*, \tau^w, \tau_t^a\}$ optimally set ex ante and unresponsive to aggregate shocks
 - τ balances monopolistic distortions
 - τ^w balances labour-wedge distortions
 - τ^* kills steady-state capital outflow
 - τ_0^a kills unhedged interest-rate exposure
 - results in **constrained-efficient** steady state
- **Monetary policy:** $\{i_t\}$ adjusted optimally in response to aggregate shocks

Domestic productivity shocks

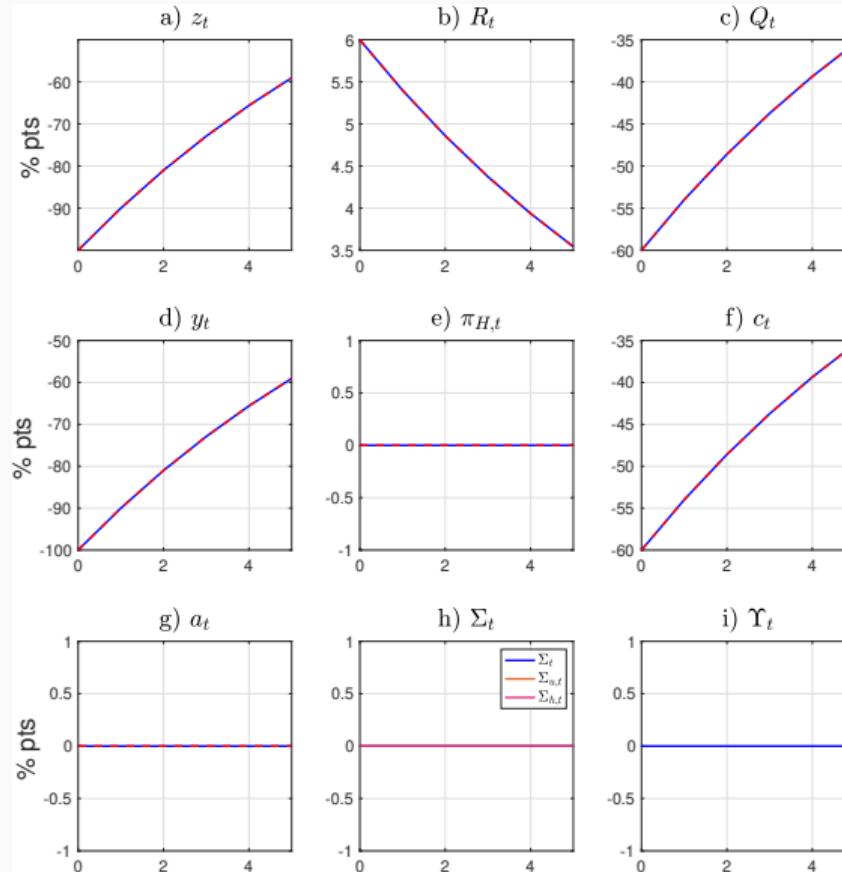
DOMESTIC PRODUCTIVITY SHOCK

- **RANK** benchmark: Galí & Monacelli (2005)
- With $\gamma = \eta = \nu = 1$, **domestic PPI stability** is optimal \Rightarrow “inward-looking” policy
- Optimal allocation features

$$c_t = p_H(Q_t)y_t \quad a_t = 0 \quad \Pi_{H,t} = 1 \quad \forall t \geq 0$$

- Implementable by monetary policy **with or without** international risk sharing
(in latter case, HHs **choose** not to borrow/lend from abroad)

z_t -SHOCK (RANK)



SOE-HANK DIVINE COINCIDENCE

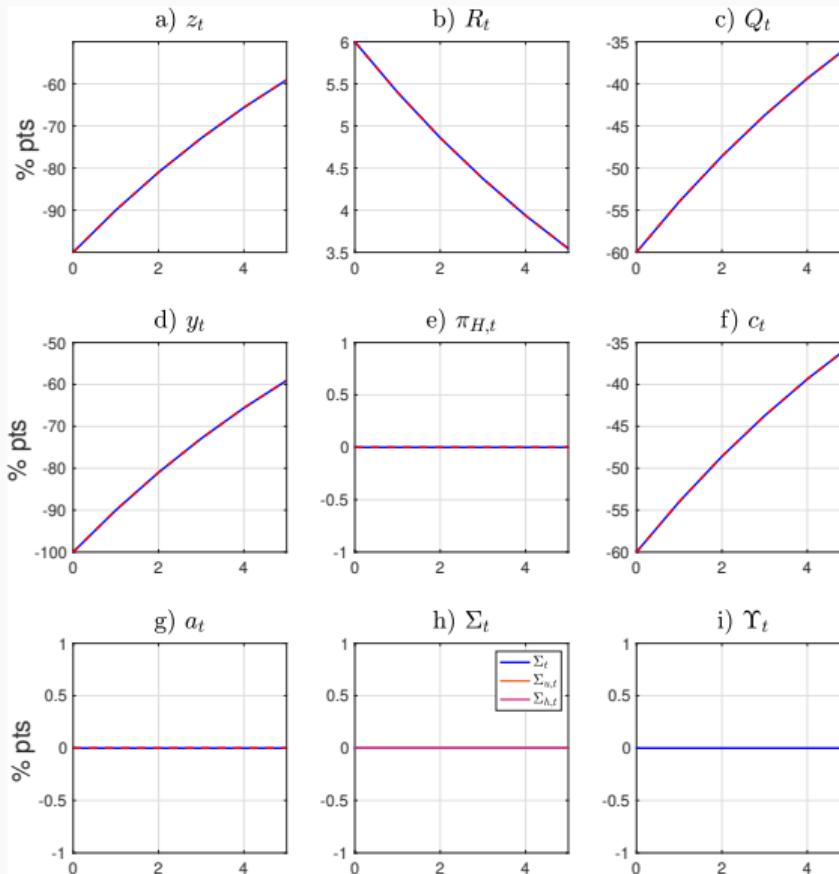
Proposition: Under “Cole-Obstfeld” elasticities ($\gamma = \eta = \nu = 1$) and acyclical income risk ($\varphi = 0$), optimal monetary policy implements strict producer price stability in SOE-HANK, regardless of the fraction of HtM households (θ) or the size of income risk ($\sigma_{y,t}$).

Intuition:

- Acyclical risk \Rightarrow within-group inequality cannot be manipulated by the central bank
- Cole-Obstfeld \Rightarrow unconstrained as a whole do not save \Rightarrow no between-group inequality

Sketch of proof: Show that dynamics under planner's FOCs replicates flex-price allocation

z_t -SHOCK (HANK, COLE-OBSTFELD, ACYCLICAL RISK)



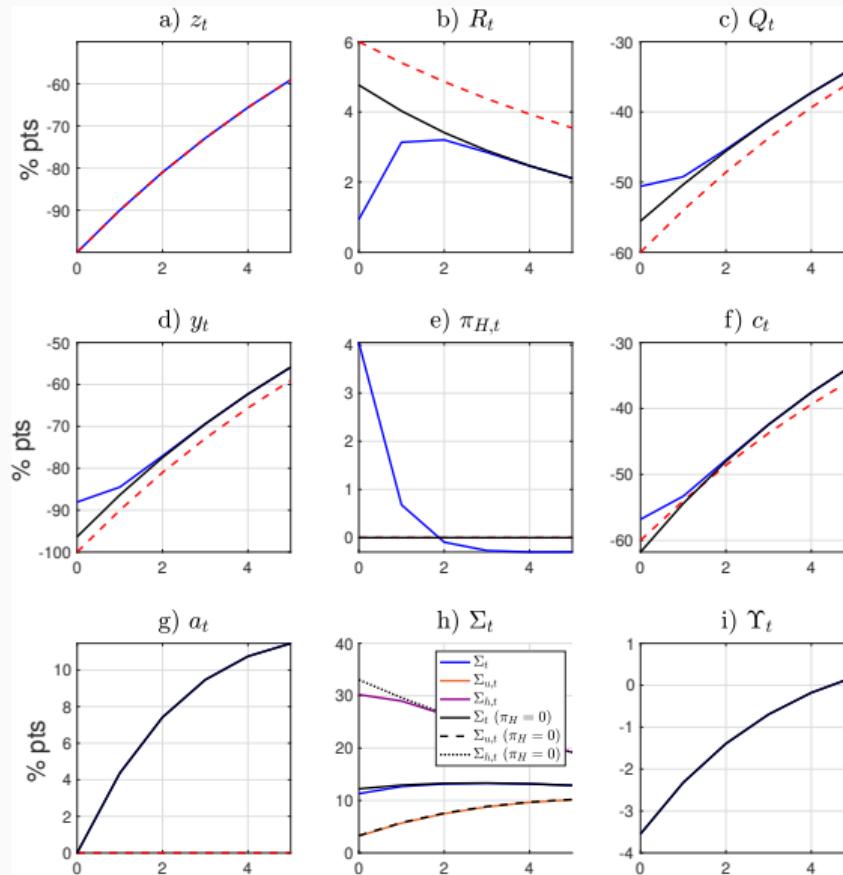
BREAKDOWN OF DIVINE COINCIDENCE

Former calibration is an (unrealistic) **benchmark**

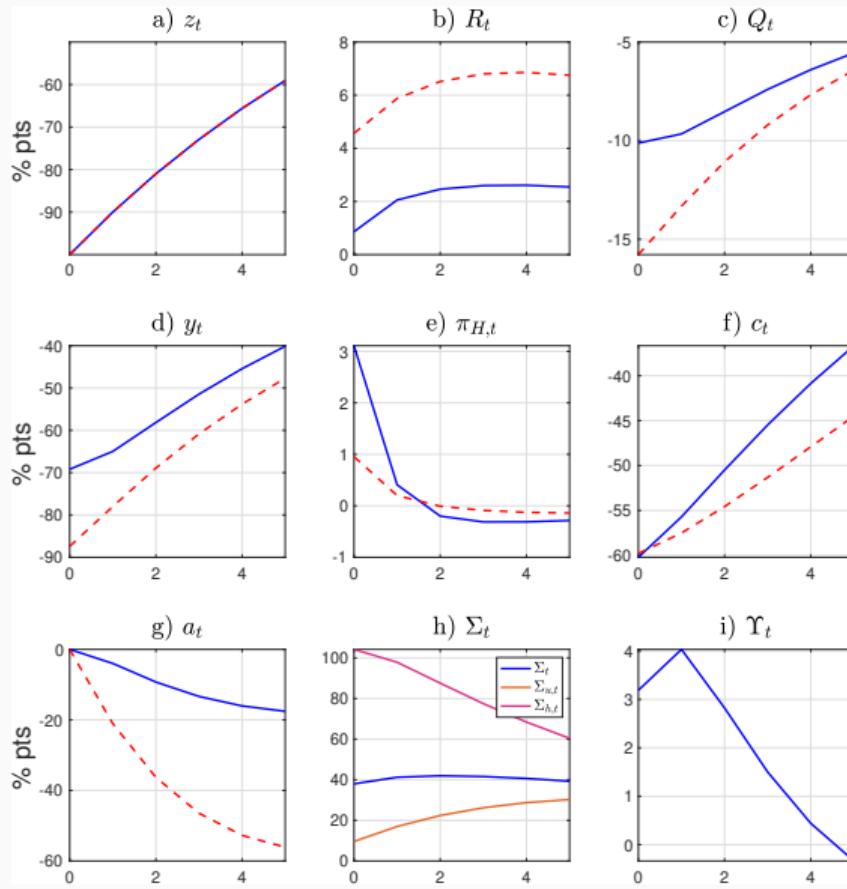
Switch to:

- countercyclical risk $\Rightarrow \varphi = 5$ as in Acharya et al. (2023)
- Higher trade elasticities, smaller EIS $\Rightarrow \eta = 1.5, \nu = 4, \gamma = 2$ as in Egorov-Mukhin (2023)

z_t -SHOCK (HANK, CO, COUNTERCYCLICAL RISK)

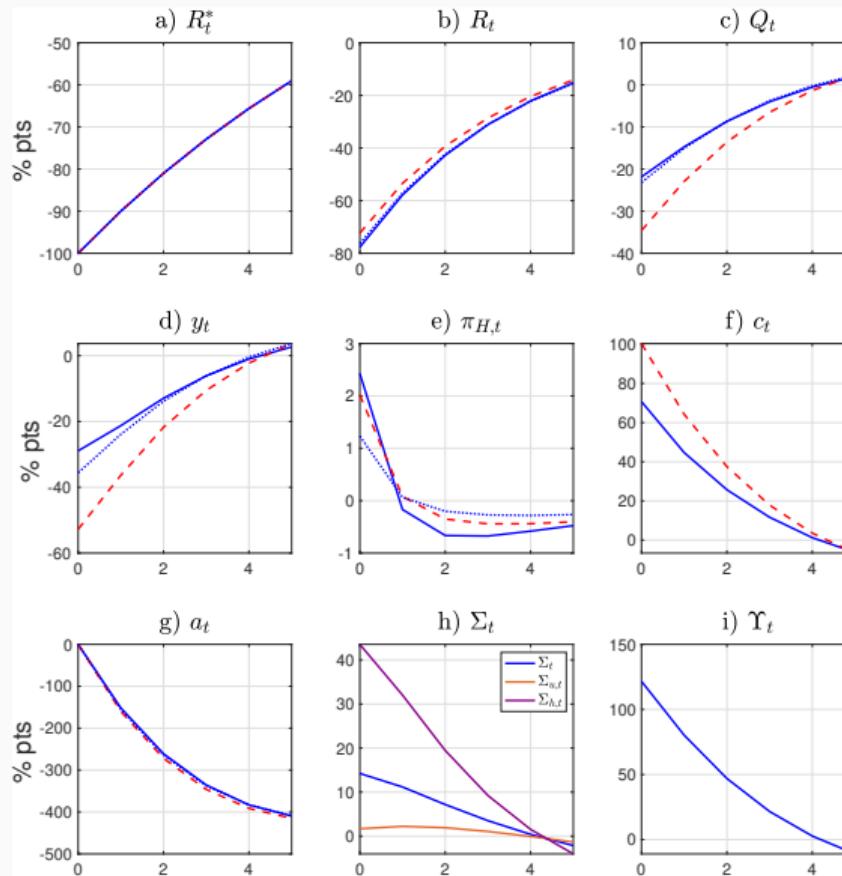


z_t -SHOCK (HANK, NON-CO, COUNTERCYCLICAL RISK)



Capital flow shocks

R^* -SHOCK (HANK, NON-CO, COUNTERCYCLICAL RISK)



CONCLUSION

- Acyclical risk + Cole-Obstfeld \Rightarrow **SOE-HANK divine coincidence**
(i.e., Cole-Obstfeld matters for ToT manipulation **and** for inequality)
- Breaks down under more plausible risk (counter)cyclicalities and (higher) trade elasticities
- Optimal policy implements **less volatile** exchange rate and output in HANK
 - **[unequal exposures]** \Rightarrow reduces differences in real incomes btw u and h HHs
 - **[countercyclical risk]** \Rightarrow reduces fluctuations of within-group inequality

UNCONSTRAINED HOUSEHOLDS

Newborn i at date s max

$$\mathbb{E}_s \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(\begin{array}{c} u(c_t^s(i, u)) - v(n_t) \end{array} \right)$$

s.t.

$$c_t^s(i, u) + (1 + \tau^*) \frac{\vartheta}{R_t} a_{t+1}^s(i) = \mathbf{y}_t^s(i, u) + (1 - \tau_t^a) a_t^s(i) \quad a_t^t(i) = a_t$$

UNCONSTRAINED HOUSEHOLDS

Newborn i at date s max

$$\mathbb{E}_s \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(\begin{array}{c} u(c_t^s(i, u)) - v(n_t) \end{array} \right)$$

s.t.

$$c_t^s(i, u) + (1 + \tau^*) \frac{\vartheta}{R_t} a_{t+1}^s(i) = \mathbf{y}_t^s(i, u) + (1 - \tau_t^a) a_t^s(i)$$

$$\mathbf{y}_t^s(i, u) = (1 - \tau^w) w_t n_t e_t^s(i, u) + \mathcal{D}_t + \mathcal{T}_t + \mathbb{T}_t$$

UNCONSTRAINED HOUSEHOLDS

Newborn i at date s max

$$\mathbb{E}_s \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(\begin{array}{c} u(c_t^s(i, u)) - v(n_t) \end{array} \right)$$

s.t.

$$c_t^s(i, u) + (1 + \tau^*) \frac{\vartheta}{R_t} a_{t+1}^s(i) = \mathbf{y}_t^s(i, u) + (1 - \tau_t^a) a_t^s(i)$$

$$\mathbf{y}_t^s(i, u) = (1 - \tau^w) w_t n_t \mathbf{e}_t^s(i, u) + \mathcal{D}_t + \mathcal{T}_t + \mathbb{T}_t$$

$$\mathbf{e}_t = 1 + \sigma_t \xi_t, \quad \xi_t = \xi_{t-1} + v_t$$

UNCONSTRAINED HOUSEHOLDS

Newborn i at date s max

$$\mathbb{E}_s \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(-\frac{1}{\gamma} e^{-\gamma c_t^s(i)} - v(n_t) \right)$$

s.t.

$$c_t^s(i, u) + (1 + \tau^*) \frac{\vartheta}{R_t} a_{t+1}^s(i) = \mathbf{y}_t^s(i, u) + (1 - \tau_t^a) a_t^s(i)$$

$$\mathbf{y}_t^s(i, u) = (1 - \tau^w) w_t n_t e_t^s(i, u) + \mathcal{D}_t + \mathcal{T}_t + \mathbb{T}_t$$

$$e_t = 1 + \sigma_t \xi_t, \quad \xi_t = \xi_{t-1} + v_t, \quad v \sim \mathcal{N}(0, 1)$$

UNCONSTRAINED HOUSEHOLDS

Newborn i at date s max

$$\mathbb{E}_s \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(-\frac{1}{\gamma} e^{-\gamma c_t^s(i)} - v(n_t) \right)$$

s.t.

$$c_t^s(i, u) + (1 + \tau^*) \frac{\vartheta}{R_t} a_{t+1}^s(i) = \mathbf{y}_t^s(i, u) + (1 - \tau_t^a) a_t^s(i)$$

$$\mathbf{y}_t^s(i, u) = \underbrace{\frac{P_{H,t}}{P_t} y_t}_{\text{national income}} + \mathbb{T}_t + \sigma_{y,t} \xi_t^s(i) \quad \sigma_{y,t} = \sigma_y e^{-\varphi \hat{y}_t}$$

UNCONSTRAINED HOUSEHOLDS

Newborn i at date s max

$$\mathbb{E}_s \sum_{t=s}^{\infty} (\beta \vartheta)^{t-s} \left(-\frac{1}{\gamma} e^{-\gamma c_t^s(i)} - v(n_t) \right)$$

s.t.

$$c_t^s(i, u) + (1 + \tau^*) \frac{\vartheta}{R_t} a_{t+1}^s(i) = \mathbf{y}_t^s(i, u) + (1 - \tau_t^a) a_t^s(i)$$

$$\mathbf{y}_t^s(i, u) = \underbrace{\frac{P_{H,t}}{P_t} y_t}_{\text{national income}} + \mathbb{T}_t + \sigma_{y,t} \xi_t^s(i) \quad \sigma_{y,t} = \sigma_y e^{-\varphi \hat{y}_t}$$

Euler equation:

$$e^{-\gamma c_t^s(i, u)} = \left(\frac{\beta R_t}{1 + \tau^*} \right) \mathbb{E}_t \left[e^{-\gamma c_{t+1}^s(i, u)} \right]$$

back

DEMAND SYSTEM

- Final cons. goods produced by competitive retailers aggregating varieties from all countries
- Their production functions are

$$c = \left[\alpha^{\frac{1}{\eta}} c_F^{\frac{\eta-1}{\eta}} + (1-\alpha)^{\frac{1}{\eta}} c_H^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \quad c_H = \left[\int_0^1 c_H(j)^{\frac{\varepsilon-1}{\varepsilon}} dj \right]^{\frac{\varepsilon}{\varepsilon-1}} \quad c_F = \left[\int_0^1 c_F^{\frac{\nu-1}{\nu}} dk \right]^{\frac{\nu}{\nu-1}}$$

- Let $p_{H,t}, p_{F,t}$ be the prices of the home and foreign baskets in terms of home consumption
- Profit minimisation + zero-profit condition gives the demands

$$c_{H,t} = (1-\alpha)p_{H,t}^{-\eta} c_t \quad c_{F,t} = (1-\alpha)p_{F,t}^{-\eta} c_t$$

where

$$(1-\alpha)p_{H,t}^{1-\eta} + \alpha p_{F,t}^{1-\eta} = 1 \quad \text{and} \quad p_{F,t} = Q_t$$

- Conversely, the demand for home goods by the RoW is

$$c_{Ht}^* = \alpha \left(\frac{p_{H,t}}{Q_t} \right)^{-\nu} c^*$$

LABOUR SUPPLY

- Setup similar to Auclet et al. (2023): Each HH supplies a continuum of labour types to a continuum of unions, each of which demands the same number of hours from all members
- Each union is benevolent and utilitarian, and sets wages accordingly
- With flexible wages, the optimality condition boils down to

$$\underbrace{(1 - \tau^w) w_t}_{\text{post-tax wage}} = \underbrace{\mathcal{M}_w}_{\text{markup}} \times \underbrace{\frac{v'(n_t)}{u'(c_t) \Sigma_t}}_{\text{"avg. MRS"}}$$

where

$$\Sigma_t = (1 - \vartheta) \sum_{s=-\infty}^t \vartheta^{t-s} \int e^{-\gamma[c_t^s(i) - c_t]} di$$

captures the dispersion in marginal utility between the members of every union

back