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Abstract. We study the implications of trade uncertainty for reshoring, automation, and

U.S. labor markets. Rising trade uncertainty creates incentives for firms to reduce exposure

to foreign suppliers by moving production and distribution processes to domestic producers.

However, we argue that reshoring does not necessarily bring jobs back to the home country or

boost domestic wages, especially when firms have access to labor-substituting technologies

such as automation. Automation improves labor productivity and facilitates reshoring,

but it can also displace jobs. Furthermore, automation poses a threat that weakens the

bargaining power of unskilled workers in wage negotiations, depressing their wages and

raising the skill premium and wage inequality. Our model predictions are in line with

industry-level empirical evidence.

I. Introduction

The COVID-19 pandemic has exposed important vulnerabilities in global supply chains.

Ongoing trade tensions as well as increasing risks from climate change and geopolitical con-

flicts are making global production strategies riskier than in the past. In this new economic

environment, moving some production and distribution processes from abroad back to do-

mestic suppliers (i.e., reshoring) is becoming an increasingly attractive option to mitigate

the risks of supply chain disruptions.1

How this process will unfold and what the impacts on labor markets will be remain highly

uncertain. One possibility is that reshoring could increase jobs in the home country and
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1According to a Thomas Industrial Survey, about two-thirds of North American manufacturers reported

they are likely to bring manufacturing production and sourcing back to North America because of concerns

about the global supply chain disruptions following the COVID-19 pandemic. In addition, about a quarter

of those manufacturers are considering expanding industrial automation.

1

https://www.iredelledc.com/thomas-survey-two-thirds-of-manufacturers-likely-to-reshore-as-a-result-of-pandemic/
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boost wages for domestic workers, reversing the effects of the China shock originally studied

by Autor et al. (2013). In this paper, we argue that reshoring may not necessarily increase

domestic employment and wages when labor-substituting technologies, such as automation,

are available for firms to lower labor costs.

Over the past three decades, advanced economies that offshored production processes

have also experienced a steady increase in the adoption of automation technologies, such

as artificial intelligence, machine learning, and robotics. Empirical evidence suggests that

automation raises labor productivity (Graetz and Michaels, 2018) and reduces unit labor

costs and worker wages (Acemoglu and Restrepo, 2020). The increased ability to automate

labor-intensive production processes could reduce firms’ need to offshore to contain labor

costs. In line with these changing incentives, import growth has slowed significantly relative

to GDP since the trade collapse during the Great Recession.

Coupled with a greater ability to automate, recent increases in trade uncertainty may have

accelerated the trend in reshoring. While reshoring tends to raise domestic labor demand and

real wages, firms’ options to automate help mitigate the increase in labor costs, since it acts

as a threat against workers—especially unskilled workers who can be easily substituted by

robots—in wage bargaining. This automation threat channel—originally studied by Leduc

and Liu (2023)—helps contain the rise in labor costs, reinforcing the incentive for reshoring.

Since robots substitute for unskilled workers and complement skilled workers, increased

automation spurred by reshoring may also raise the skill premium and income inequality.

In this paper, we formalize this perspective by developing a macro framework featur-

ing automation, heterogeneous worker skills, and international trade frictions. We use this

framework to examine the impacts of a rise in trade uncertainty on reshoring, automation,

and domestic labor markets. We generalize the automation threat channel in the Leduc

and Liu (2023) model to a small open economy with trade in intermediate inputs. Trade is

subject to time-varying iceberg costs with stochastic volatility meant to capture trade un-

certainty arising from geopolitical, climate, and trade policy risks. To produce a final good,

firms use a mixture of domestic and foreign intermediate goods. We capture the interaction

between reshoring and automation by assuming that domestic intermediate goods producers

can use two types of technologies: a labor-only technology that uses unskilled workers and

an automated process that uses both robots and skilled workers as inputs.2

2We focus on automation decisions at the business cycle frequency. However, automation can also be

the result of long-run technological improvements that can allow the automation of tasks previously done

by labor. We view this form of automation as occurring relatively infrequently and instead focus on an

environment with fixed production technologies.



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 3

We assume that unskilled workers search for jobs in a frictional labor market, subject to

search frictions as in the standard Diamond-Mortensen-Pisarides (DMP) framework. Un-

skilled wages are determined by Nash bargaining between a firm and a worker. Because firms

have the option to automate unfilled vacancies, the threat of automation acts as an outside

option for the firm and weighs on bargained wages.3 This effect is compounded when firms

do actually automate, since the associated productivity boost lowers domestic marginal costs

of production further.

In our framework, heightened trade uncertainty operates through three key channels.

First, trade uncertainty has an expenditure-switching effect that redirects the demand for

intermediate goods toward domestic producers (i.e., reshoring).4 This expenditure-switching

effect stimulates automation investment, raising the demand for skilled workers. While a

greater use of automated processes has a job-creating effect through raising the value of

unfilled vacancies, this channel is more than offset by the job-displacing effect of automation

on unskilled workers. Second, trade uncertainty also generates greater precautionary savings,

which reduces the real interest rate and further stimulates automation. Third, as an offset,

heightened trade uncertainty raises the option value of waiting, discouraging automation

investment.

We show that, with our calibration, the positive effects from expenditure switching and

precautionary savings dominate the negative option-value effect, such that trade uncertainty

boosts automation, raises unemployment for unskilled workers, and also raises the skill pre-

mium. These effects of trade uncertainty are amplified for an economy that is more open to

trade, has more automated production, or faces more persistent trade uncertainty.

Our model produces a rich set of empirically testable predictions. First, the model predicts

that an increase in trade uncertainty would increase reshoring and stimulate automation in-

vestment. Second, increased automation triggered by trade uncertainty would raise labor

productivity. Third, the increased threat of automation would depress wages and employ-

ment of unskilled workers while raising wages of skilled workers, resulting in an increase in

the skill premium. These effects should be stronger in an economy more open to international

trade.

3Unlike the standard DMP framework, we assume that vacancy creation incurs a random fixed cost

(Fujita and Ramey, 2007; Leduc and Liu, 2020), such that an unfilled vacancy retains value in equilibrium

and captures the firms’ outside option and ability to automate in the future.
4To keep the analysis tractable, we model reshoring or offshoring in a reduced-form way. We do not

model firms’ choices of production locations. We interpret importing of intermediate goods as production

that could have been done domestically but is instead offshored. Similarly, we interpret a decline in imports

of intermediate goods as reshoring.
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The model predictions are consistent with industry-level empirical evidence. We use data

on industrial robots, intermediate goods imports, employment, value-added, and wages in

two-digit North American Industry Classification System (NAICS) industries to construct

measures of automation, offshoring, labor productivity, and the skill premium. We measure

trade uncertainty using aggregate trade policy uncertainty (TPU) constructed by Caldara

et al. (2020), interacted with a measure of initial exposure to offshored production. We

show that, controlling for industry and time fixed effects, an increase in trade uncertainty is

associated with larger increases in automation and larger declines in offshoring in industries

that are more exposed to offshoring.5

We also find that an increase in trade uncertainty is associated with larger increases in labor

productivity and the skill premium in industries that are more exposed to offshoring and

that these effects work partly through an automation channel. We examine the channeling

effects using a two-stage least squares approach (Bertrand and Mullainathan, 2001). In

the first stage, we regress a measure of automation (robot density) on trade uncertainty,

controlling for industry and time fixed effects. In the second stage, we regress each variable

of interest (including labor productivity, employment, value-added, and the skill premium)

on robot density predicted from the first-stage regression. The estimated coefficient in the

second-stage regression indicates the sensitivity of each of the macroeconomic variables to

changes in robot density that comes from trade policy uncertainty. We find that an increase

in robot density driven by trade uncertainty is associated with an increase in both labor

productivity and the skill premium. The increase in labor productivity primarily reflects a

decline in employment (rather than an increase in value-added), suggesting that automation

raises labor productivity through substituting for workers.6

Our work contributes to a relatively new but growing literature on the effects of reshoring.

Empirically, drawing clear conclusions about the effects of reshoring has been challenging

given the novelty of the practice and thus the lack of data. Nonetheless, a few papers

have assessed the empirical links between reshoring and automation. For instance, Dachs

5Our model’s prediction that trade uncertainty raises automation investment does not contradict the

finding of Caldara et al. (2020) that trade uncertainty reduces business investment (such as nonresidential

structures and general capital equipment). It would be straightforward to generalize our model to incorpo-

rate business investment. For example, one could modify the traditional technology (i.e., the non-automation

technology) that uses unskilled labor as the only input in our baseline model by assuming that both capital

and labor are required as input factors. We conjecture that, in such a model, an increase in trade uncer-

tainty could boost automation investment, which in turn could displace unskilled jobs and reduce business

investment, in line with the findings of Caldara et al. (2020).
6While these results are broadly in line with our theoretical predictions, we note that we are using a

relatively small sample of industries over a relatively short time period and therefore one should interpret

our empirical results with caution.
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et al. (2019) find a positive relationship between reshoring and investment in Industry 4.0

technologies for 1,700 firms in Austria, Germany, and Switzerland. More broadly, our paper

is also related to the literature on the effects of trade policy on the structure of trade and

global supply chains (Fajgelbaum et al., 2021; Alfaro and Chor, 2023; Utar et al., 2023;

Grossman et al., 2024).7

By emphasizing the effects of uncertainty on reshoring and automation, our paper comple-

ments recent work that examines the effects of changes in automation on trade. In particular,

a growing body of literature has documented the interaction between automation and off-

shoring and showed that automation tends to reduce offshoring (De Backer et al., 2018;

Artuc et al., 2019; Stemmler, 2019; Faber, 2020; Carbonero et al., 2020; Krenz et al., 2021;

Bonfiglioli et al., 2022). Mandelman and Zlate (2022) argue that offshoring and automation

reduce employment and wages of middle-skill occupations but enhance those for high-skilled

ones. We examine the nexus between offshoring and automation from a different angle by

showing how trade uncertainty induces reshoring and boosts automation investment and

how the interactions between reshoring and automation affect the responses of domestic

labor market variables to trade uncertainty.

Our paper also adds to an extensive literature on the effects of trade policy uncertainty

(e.g., Handley and Limão, 2015, 2017, 2022; Feng et al., 2017; Crowley et al., 2018; Alessan-

dria et al., 2019; Rodrigue et al., 2024), and more broadly, on the macroeconomic effects of

uncertainty (e.g., Bloom, 2009; Fernández-Villaverde et al., 2011; Alessandria et al., 2015;

Leduc and Liu, 2016; Basu and Bundick, 2017). Related to our study, Novy and Taylor (2020)

argue that trade flows can be more sensitive to uncertainty shocks than domestic production

because of higher fixed costs of orders of foreign inputs. Caldara et al. (2020) show that

an increase in TPU reduces business investment, both in the data and in an open-economy

model. Complementary to these studies, our paper highlights how trade uncertainty can

drive three-way interactions between reshoring, automation, and labor markets.

II. The model

This section presents a small open economy model featuring labor search frictions, en-

dogenous decisions of automation, and offshoring.

II.1. Key features in the model. Final consumption goods are produced using interme-

diate goods that are imported or domestically produced. Domestic intermediate goods can

be produced using two types of technologies, a labor-only technology that uses unskilled

7The literature has also studied the importance of global supply chains in optimal trade policy; see, for

example, Blanchard et al. (2017); Grossman et al. (2023); Antràs et al. (2024).
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workers as the only input and an automation technology that uses both robots and skilled

workers as inputs.

Following Leduc and Liu (2023), we assume that a firm that chooses to use the automation

technology can adopt a robot at a random sunk cost and hire a skilled worker from a com-

petitive spot skilled labor market. If the firm chooses to operate the labor-only technology,

then it can hire an unskilled worker subject to labor market search frictions in the spirit of

the standard DMP framework.

In the beginning of a period t, firms carry over the stock of unfilled vacancies from the

previous period, a fraction of which is automated by adopting robots. The stock of vacancies

vt available for hiring workers consists of the remaining vacancies after automation, the jobs

separated in the beginning of the period, and newly created vacancies. The job seekers (the

mass of which is ut) randomly match with the vacancies (vt) in the labor market, with the

number of new matches (mt) determined by a matching technology. Production then takes

place, using either a labor-only or an automation technology. The unfilled vacancies and the

pool of employed workers at the end of the period are carried over to the next period, and

the same sequence of economic activities repeats in period t+ 1.

Compared to the standard DMP model, our model introduces four new features. First,

we replace the free-entry assumption in the DMP model with costly vacancy creation, as in

Fujita and Ramey (2007) and Leduc and Liu (2020). Since creating a new vacancy incurs

a fixed cost, a vacancy has a positive value even if it is not filled by an unskilled worker.

The number of vacancies becomes a slow-moving state variable (instead of a jump variable,

as in the standard DMP framework), enabling our model to match the persistent vacancy

dynamics in the data.

Second, we introduce endogenous automation decisions. In the beginning of period t, each

firm draws a sunk cost of automation, which determines whether the firm will automate

production or post the vacancy for hiring a worker. If the automation cost lies below a

threshold value, then the firm automates production by adopting a robot and hiring skilled

workers to operate the robot. In that case, the firm obtains the automation value and the

vacancy would be taken offline. If the automation cost exceeds the threshold, then the firm

posts the vacancy for hiring an unskilled worker.

Third, we allow for worker skill heterogeneity, with skilled and unskilled workers, who

are all members of the representative household. In our model, robots and skilled workers

are complementary inputs, whereas they are substitutes for unskilled workers. This feature

allows us to examine the joint effects of automation and offshoring on employment of workers

with different skills and also on income inequality stemming from the skill premium.
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Fourth, we introduce offshoring by allowing final goods producers to import intermediate

goods. Changes in trade costs caused by, for example, global supply chain disruptions or

trade wars can affect the effective costs of offshoring, which in turn affects the relative demand

for intermediate goods that are imported versus domestically produced. Such changes in

relative demand in turn drive changes in automation decisions, employment, and income

distribution.

II.2. The frictional labor market for unskilled workers. At the beginning of period t,

there are Nt−1 existing job matches for unskilled workers. The measure of unemployed job

seekers is given by

ut = 1− (1− δ)Nt−1, (1)

where δ ∈ (0, 1) denotes the job separation rate and we have assumed full labor force

participation with the size of unskilled labor normalized to one.

The stock of vacancies vt at the beginning of period t consists of unfilled vacancies carried

over from period t− 1 that are not automated plus the separated employment matches and

newly created vacancies. The law of motion for vacancies is given by

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (2)

where qvt−1 denotes the job filling rate in period t− 1, qat denotes the automation probability

in period t, and ηt denotes newly created vacancies (i.e., entry).

In the labor market, new job matches (denoted by mt) are formed between job seekers

and open vacancies based on the matching function

mt = µuαt v
1−α
t , (3)

where µ is a scale parameter that measures matching efficiency and α ∈ (0, 1) is the elasticity

of job matches with respect to the number of job seekers.

The flow of new job matches adds to the employment pool, whereas job separations sub-

tract from it. Aggregate employment evolves according to the law of motion

Nt = (1− δ)Nt−1 +mt. (4)

At the end of period t, the searching workers who failed to find a job remain unemployed.

Thus, unemployment is given by

Ut = ut −mt = 1−Nt. (5)

For convenience, we define the job finding probability qut as

qut =
mt

ut
. (6)
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Similarly, we define the vacancy filling probability qvt as

qvt =
mt

vt
. (7)

II.3. The representative household. The representative household has the utility func-

tion

E
∞∑
t=0

βt (lnCt − χNt) , (8)

where E [·] is an expectation operator, β ∈ (0, 1) is a subjective discount factor, Ct denotes

consumption, and Nt denotes the fraction of unskilled household members who are employed.

The representative household faces the sequence of budget constraints

Ct +Bt = rt−1Bt−1 + wntNt + wsts̄+ ϕ(1−Nt) + dt − Tt, ∀t ≥ 0, (9)

where Bt denotes the household’s holdings of a risk-free bond (in units of final goods) at the

real interest rate rt; wnt and wst denote the real wage rates of unskilled and skilled workers

(also in units of final consumption goods), respectively; dt denotes the household’s share of

firm profits; and Tt denotes lump-sum taxes. The parameter ϕ measures the flow benefits of

unemployment. For simplicity, we assume that the aggregate supply of skilled labor is fixed

at s̄.

Denote by Vt(Bt−1, Nt−1) the value function for the representative household. The house-

hold’s optimizing problem can be written in the recursive form

Vt(Bt−1, Nt−1) ≡ max
Ct,Nt,Bt

lnCt − χNt + EtDt,t+1Vt+1(Bt, Nt), (10)

subject to the budget constraint (9) and the employment law of motion (4) for unskilled

workers, which can be written as

Nt = (1− δ)Nt−1 + qut ut, (11)

where we have used the definition of the job finding probability qut with the measure of job

seekers ut. In the optimizing decisions, the household takes the economy-wide job finding

rate qut as given.

The stochastic discount factor (SDF) is given by

Dt,t+1 ≡ β
Λt+1

Λt

, (12)

where Λt denotes the Lagrange multiplier for the budget constraint (9).

We define the employment surplus (i.e., the value of employment relative to unemploy-

ment) as SH
t ≡ 1

Λt

∂Vt(Bt−1,Nt−1)
∂Nt

. The optimizing decision for employment implies that the

employment surplus satisfies the Bellman equation

SH
t = wnt − ϕ− χ

Λt

+ EtDt,t+1(1− qut+1)(1− δ)SH
t+1. (13)
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The employment surplus has a straightforward economic interpretation. If the household

adds a new unskilled worker in period t, then the current-period gain would be wage income

net of the opportunity costs of working, including unemployment benefits and the disutility of

working. The household also enjoys the continuation value of employment if the employment

relation continues. Having an extra unskilled worker today adds to the employment pool

tomorrow (provided that the employment relation survives job separation); however, adding

a worker today would also reduce the pool of searching workers tomorrow, a fraction qut+1

of whom would be able to find jobs. Thus, the marginal effect of adding a new worker in

period t on employment in period t+1 is given by (1− qut+1)(1− δ), resulting in the effective

continuation value of employment shown in the last term of Eq. (13).

Finally, the household’s optimizing consumption-savings decision implies the intertemporal

Euler equation

1 = EtDt,t+1rt. (14)

II.4. Final goods production. A homogeneous final good is produced using two types

of intermediate inputs, one produced by domestic firms (denoted by Ydt) and the other

imported from the foreign country (Yft). Importing goods is subject to a delivery lag such

that imported intermediate goods today can be used for final goods production tomorrow.

The production function of final goods is given by

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (15)

where the parameter θ measures the elasticity of substitution between home-produced and

imported intermediate goods, and the parameter αd measures the importance of domestic

intermediate goods for final goods production. We assume that intermediate goods are

tradable while final goods are nontradable. To keep the analysis tractable, we interpret

importing of intermediate goods as part of the production that could have been undertaken

domestically but is instead offshored.8

We denote by pdt and pft the relative prices of intermediate goods (i.e., in units of final

consumption goods) produced domestically and imported, respectively. The relative price of

imported goods faced by domestic final goods producers is given by

pft =
τtP

∗
t

Pt

= τtQt, (16)

8In addition, we treat the rest of the world as a uniform area subject to the same degree of trade

uncertainty. Thus, we abstract from the possibility that higher trade uncertainty in a specific region could

lead firms to diversify the sourcing of their products to other regions. While that is an interesting and

relevant issue, it is beyond the scope of this paper.
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where τt denotes an iceberg trade cost, Pt is the price of final consumption goods, P ∗
t is the

foreign price level, and Qt ≡ P ∗
t

Pt
is the real exchange rate (RER). The small open economy

takes the foreign price level P ∗
t as exogenously given. Without loss of generality, we normalize

P ∗
t = 1 such that the real exchange rate is isomorphic to the domestic price level.

We assume that, for every unit of goods delivered to the destination, τt > 1 units of goods

need to be shipped. The trade cost τt is an exogenous process with a time-varying volatility,

which captures trade uncertainty related to factors such as trade wars, geopolitical tensions,

or climate change risks that might cause global supply chain disruptions. Sepecifically, we

assume that the trade cost follows the stationary stochastic process

ln(τt) = (1− ρτ ) ln(τ̄) + ρτ ln(τt−1) + στtετt, (17)

where τ̄ is the mean of τt, ρτ ∈ (−1, 1) is a persistence parameter, and ετt is a white noise

innovation. The term στt is a stochastic volatility of the trade cost shock, which we interpret

as trade uncertainty, and it follows the process

στt = (1− ρστ )στ + ρστστ,t−1 + ητuτt. (18)

Here, ρστ ∈ (−1, 1) is the persistence and ητ is the standard deviation of the trade uncertainty

shock, uτt is a white noise innovation, and στ is the average standard deviation of the trade

cost shock.

Final goods producers take all prices as given and choose Ydt and Yft to maximize the

expected present value of profit flows. The optimizing problem is described by the Bellman

equation

Vt(Yf,t−1) = max
Ydt,Yft

Yt − pdtYdt − pftYft + EtDt,t+1Vt+1(Yft), (19)

subject to the technology constraint (15), where Vt(Yf,t−1) denotes the value function, which

depends on the state variable Yf,t−1. The first-order conditions for this optimizing problem

are given by

pdt =
∂Yt
∂Ydt

, pft = EtDt,t+1V
′
t+1(Yft). (20)

The envelope condition implies that

V ′
t (Yf,t−1) =

∂Yt
∂Yf,t−1

. (21)

Combining (20) and (21), we obtain

pdt =

(
αdYt
Ydt

) 1
θ

, pft = EtDt,t+1

(
(1− αd)Yt+1

Yft

) 1
θ

. (22)

The domestic intermediate good is itself a Constant Elasticity of Substitution (CES) aggre-

gate of two types of intermediate goods produced using labor-only technology and automa-

tion technology. In particular, the quantity of domestically produced intermediate goods Qdt
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is given by

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (23)

where Ynt denotes the intermediate goods produced using the labor-only technology, Yat

denotes the intermediate goods produced using the automation technology, the parameter

σ is the elasticity of substitution between the two types of intermediate goods, and the

parameter αn governs the relative importance of Ynt in the aggregation technology.

Some domestically produced intermediate goods are exported to the foreign country. Thus,

we have

Qdt = Ydt + τtXt, (24)

where Xt denotes the quantity of exports.

The optimal choices of domestic intermediate goods producers imply that

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

,
pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

. (25)

The zero-profit condition for domestic intermediate goods producers implies that

pdt =

[
αn p

1−σ
nt + (1− αn) p

1−σ
at

] 1
1−σ

. (26)

II.5. Domestic production of intermediate goods. A firm makes automation decisions

at the beginning of the period t. Adopting a robot requires a sunk cost ν in units of

consumption goods. The sunk cost is drawn from the i.i.d. distribution G(ν). A firm chooses

to adopt a robot if and only if the cost of automation is less than the benefit. For any given

benefit of automation, there exists a threshold value ν∗t in the support of the distribution

G(ν), such that automation occurs if and only if ν ≤ ν∗t . If the firm adopts a robot to replace

the job position, then the vacancy will be taken offline and will not be available for hiring

a worker. Thus, the automation threshold ν∗t depends on the value of automation (denoted

by Ja
t ) relative to the value of a vacancy (denoted by Jv

t ). In particular, the threshold for

automation decision is given by

ν∗t = Ja
t − Jv

t . (27)

The probability of automation is then given by the cumulative density of the automation

costs evaluated at ν∗t . That is,

qat = G(ν∗t ). (28)

The flow of automated job positions adds to the stock of automated positions (denoted by

At), which becomes obsolete at the rate ρo ∈ [0, 1] in each period. Thus, At evolves according

to the law of motion

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (29)
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where qat (1− qvt−1)vt−1 is the number of newly automated job positions.9

If the firm adopts a robot, then it optimally chooses the input of skilled workers st, with

the production function

yat = Ztζ
γas1−γa

t , (30)

where γa ∈ (0, 1) denotes the elasticity of output with respect to the robot input, Zt denotes

a total factor productivity (TFP) shock, and ζ denotes an automation-specific productivity.

TFP follows a stationary AR(1) stochastic process

ln(Zt) = (1− ρz) ln(Z̄) + ρz ln(Zt−1) + σzεzt, (31)

where Z̄ is the mean of Zt, ρz ∈ (−1, 1) is a persistence parameter, εzt is a white noise

innovation, and σz is the standard deviation of the TFP shock.10

The firm takes the skilled real wage rate wst as given and chooses st to maximize the profit

before paying the robot operation cost κa. The value of automation is then given by

Ja
t = πa

t (1− κa) + (1− ρo)EtDt,t+1J
a
t+1, (32)

where πa
t ≡ maxst patZtζ

γas1−γa
t − wstst = γapatZtζ

γas1−γa
t .

If the automation sunk cost exceeds the threshold ν∗t , then the firm chooses not to adopt

a robot and instead chooses to post the vacancy in the labor market for hiring an unskilled

worker. In addition, newly separated jobs and newly created vacancies add to the stock

of vacancies for hiring unskilled workers. Following Leduc and Liu (2020), we assume that

creating a new vacancy incurs an entry cost e in units of consumption goods, which is drawn

from an i.i.d. distribution F (e). A new vacancy is created if and only if the net value of entry

is non-negative. The benefit of creating a new vacancy is the vacancy value Jv
t . Thus, the

number of new vacancies ηt is given by the cumulative density of the entry costs evaluated

at Jv
t . That is,

ηt = F (Jv
t ). (33)

Posting a vacancy incurs a per-period fixed cost κ (in units of final consumption goods).

If the vacancy is filled (with probability qvt ), the firm obtains the employment value Je
t .

Otherwise, the firm carries over the unfilled vacancy to the next period, which will be

automated with the probability qat+1. If the vacancy is automated, then the firm obtains the

automation value Ja
t+1 net of the expected robot adoption costs; otherwise, the vacancy will

9If a vacancy is “filled” by a robot, it will be taken offline once and for all. Even if the robot later

becomes obsolete, the vacated position does not return to the stock of vacancies.
10We focus on trade uncertainty in the main analysis, although we also examine the effects of TFP

uncertainty, which is measured by time-varying volatility of the TFP shock (see Appendix B).
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remain open, and the firm receives the vacancy value Jv
t+1. Thus, the vacancy value satisfies

the Bellman equation

Jv
t = −κ+ qvt J

e
t + (1− qvt )EtDt,t+1

{
qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν) + (1− qat+1)J
v
t+1

}
. (34)

If a firm successfully hires an unskilled worker, then it can produce Zt units of intermediate

goods. The value of employment satisfies the Bellman equation

Je
t = pntZt − wnt + EtDt,t+1

{
(1− δ)Je

t+1 + δJv
t+1

}
. (35)

Hiring a worker generates a flow profit pntZt−wnt in the current period (in final consumption

units). If the job is separated in the next period (with probability δ), then the firm receives

the vacancy value Jv
t+1. Otherwise, the firm receives the continuation value of employment.

II.6. The Nash bargaining wage. When a job match is formed, the wage rate is deter-

mined through Nash bargaining. The bargaining wage splits the joint surplus of a job match

between the unskilled worker and the firm. The worker’s employment surplus is given by

SH
t in equation (13). The firm’s surplus is given by Je

t − Jv
t . The possibility of automation

affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its

bargaining decisions.

The Nash bargaining problem is given by

max
wnt

(
SH
t

)b
(Je

t − Jv
t )

1−b , (36)

where b ∈ (0, 1) represents the bargaining weight for workers.

Define the total surplus as

St ≡ Je
t − Jv

t + SH
t . (37)

Then the bargaining solution is given by

Je
t − Jv

t = (1− b)St, SH
t = bSt. (38)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 − b of the

total surplus St and the household’s surplus is a fraction b of the total surplus.

The bargaining solution (38) and the expression for household surplus in equation (13)

together imply that the Nash bargaining wage wN
nt satisfies the Bellman equation

b

1− b
(Je

t − Jv
t ) = wN

nt − ϕ− χ

Λt

+EtDt,t+1(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1). (39)

In the baseline model, we assume that real wages are flexible and are given by the Nash

bargaining wage (i.e., wnt = wN
nt).
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II.7. Export demand. To close the model, we follow Chang et al. (2015) and specify the

export demand schedule

Xt =

(
τt
Pdt

P ∗
t

)−θ

X∗
t =

(
τtpdt
Qt

)−θ

X∗
t , (40)

where X∗
t denotes an exogenous foreign demand shifter. Demand for exported intermediate

goods is inversely related to the effective price of exports, consisting of both the relative

price pdt, converted to foreign goods units by the real exchange rate, and the iceberg trading

cost τt. We assume that the demand elasticity for home exports is identical to the demand

elasticity for imported intermediate goods (both elasticities are given by θ).

II.8. Government policy and search equilibrium. The government finances unemploy-

ment benefit payments ϕ for unemployed workers through lump-sum taxes. We assume that

the government balances the budget in each period such that

ϕ(1−Nt) = Tt. (41)

In a search equilibrium, the markets for final goods, intermediate goods, and skilled labor

all clear. We also assume that trade is balanced such that export revenue equals the import

costs.

Market clearing for domestic intermediate goods along with that for skilled labor implies

that

Ynt = ZtNt, Yat = Zt(ζAt)
γa s̄1−γa . (42)

Final goods market clearing requires that consumption spending, vacancy posting costs,

robot operation costs, robot adoption costs, and vacancy creation costs add up to aggregate

final goods output. The aggregate robot operation cost is given by γapatYat. Thus, the

aggregate resource constraint is

Ct + κvt + κaγapatYat + (1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν) +

∫ Jv
t

0

edF (e) = Yt. (43)

We focus on a balanced-trade equilibrium. In such an equilibrium, the revenue from

exporting intermediate goods equals the costs of importing foreign intermediate goods, such

that

τtpdtXt = pftYft. (44)

We assume that the initial foreign asset holdings are B−1 = 0. Then, with balanced trade,

the current account balance is also zero for all periods, and we have Bt = 0 for all t.

Appendix A summarizes the equilibrium conditions.
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Table 1. Calibrated parameters

Parameter Description value

β Subjective discount factor 0.99

α Elasticity of matching function 0.50

ϕ Unemployment benefit 0.25

b Nash bargaining weight 0.50

δ Job separation rate 0.10

ρo Automation obsolescence rate 0.03

κa Flow cost of automated production 0.98

µ Matching efficiency 0.6606

κ Vacancy posting per-period fixed cost 0.1128

αn Share of worker-produced intermediate goods 0.39

σ Elasticity of substitution between domestic intermediate goods 2.03

ē Scale of vacancy creation cost distribution 3.07

ν̄ Scale of automation cost distribution 8.57

αd Weight on domestic intermediate input (home bias) 0.85

θ Substitution elasticity between domestic and imported goods 0.8

τ̄ Average iceberg trade cost 1.74

Z̄ Average level of TFP 1

s̄ Supply of skilled workers 0.3

γa Share of automation equipment in production 0.32

ζ Automation-specific productivity 3.4422

χ Disutility of working 0.3741

ρz Persistence of TFP shock 0.95

σz Volatility of TFP shock 0.01

ρτ Persistence of first-moment trade cost shock 0.99

στ Volatility of first-moment trade shock 0.00215

ρστ Persistence of trade uncertainty shock 0.96

ητ Volatility of trade uncertainty shock 0.37

III. Parameter calibration

We use our model to study the macroeconomic impact of trade uncertainty shocks. We

solve the model based on third-order approximations to the equilibrium conditions. To

solve the model requires assigning values to the parameters. Table 1 shows the calibrated

parameter values.

We have a quarterly model. We set the subjective discount factor to β = 0.99, such

that the steady-state real interest rate is 4 percent per year. We set the matching function

elasticity to α = 0.5, in line with the literature (Blanchard and Gaĺı, 2010; Gertler and

Trigari, 2009a). Following Hall and Milgrom (2008), we set the worker bargaining weight

to b = 0.5 and the unemployment benefit parameter to ϕ = 0.25. Based on the data from

the Job Openings and Labor Turnover Survey (JOLTS), we calibrate the steady-state job

separation rate to δ = 0.10 at the quarterly frequency. We set ρo = 0.03, so that automation

equipment depreciates at an average annual rate of 12 percent, in line with the depreciation

rate of industrial robots used by the International Federation of Robotics (IFR) for estimating

the average life span of robots and for constructing their measure of the operation stocks of

robots. Following Leduc and Liu (2023), we set the flow cost of automation to κa = 0.98. We

calibrate the vacancy posting cost κ = 0.1128 such that the flow cost of vacancy posting is



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 16

about 1 percent of aggregate output. We set the matching efficiency parameter to µ = 0.6606

such that the quarterly job filling rate is qv = 0.71 in the steady state, as calibrated by den

Haan et al. (2000).

We follow Leduc and Liu (2023) and assume that the distribution functions F (e) for

vacancy creation costs and G(ν) for automation costs both follow a uniform distribution,

such that

F (e) =
e

ē
, G(ν) =

ν

ν̄
. (45)

We calibrate the scale parameter of the vacancy creation cost function to ē = 3.07 to match

the estimation of Leduc and Liu (2023). We calibrate the scale of the automation cost

function to ν̄ = 8.57 such that the model implies a steady-state automation probability of

qa = 0.096, or about 38 percent at the annual frequency, which lies within the range of

firm-level estimates. For example, in a recent study based on the 2019 Annual Business

Survey (ABS) of the U.S. Census Bureau, Acemoglu et al. (2022) report that, in total, 30.4

percent of U.S. workers are employed at firms using advanced technologies for automating

tasks. Exposure to automation is higher in manufacturing, with 52 percent of manufacturing

workers employed at firms using advanced technologies for automation. Outside of manufac-

turing, the exposure to automation is lower, at 28.3 percent. The model-implied automation

probability in the steady state (38 percent), which corresponds to the measured automation

exposure, lies within this empirical range.

Based on Firooz et al. (2023), we calibrate the weight of worker-produced intermediate

goods in final goods production to αn = 0.39 and the elasticity of substitution between

intermediate goods produced by automation equipment and by workers to σ = 2.03.11

Following Leduc and Liu (2023), we set the output elasticity with respect to automation

equipment to γa = 0.32. We normalize the average level of TFP to Z̄ = 1. We also normalize

the supply of skilled workers to s̄ = 0.3, matching the median ratio of employment of college-

educated workers to aggregate employment in the period from 2000 to 2019. We calibrate

the average level of the automation-specific productivity to ζ = 3.4422 such that the model

implies a steady-state skill premium of 55 percent, in line with the observed ratio of median

weekly earnings of workers with a bachelor’s degree or higher to those with some college or

associate degrees reported by the Bureau of Labor Statistics.

We set the average iceberg trade cost to τ̄ = 1.74, which lies within the range of empir-

ical estimates as surveyed by Anderson and van Wincoop (2004). We calibrate the weight

on domestically produced intermediate goods in the aggregation technology for final goods

11Firooz et al. (2023) calibrate these two parameters to target the 2016 level of robot density in the U.S.

manufacturing sector of 0.02 and the cumulative increase of robot density of about 300 percent from 2002

to 2016 while the relative price of robots declined by 40 percent during the same period.
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to αd = 0.85, reflecting home bias in goods consumption. We calibrate the elasticity of

substitution between domestic goods and imported goods to θ = 0.8, which is in line with

empirical literature. For example, Boehm et al. (2023) find that the elasticity of trade flows

to exogenous changes in tariffs is about -0.76 in the short run and about -2 in the long run

(see also di Giovanni et al., 2023; Corsetti et al., 2008). Since our model focuses on the

short-run fluctuations induced by trade uncertainty, our calibration of θ = 0.8 is consistent

with the short-run elasticity estimated by Boehm et al. (2023). We normalize the export

demand shifter to X∗
t = 1, which implies a steady-state export share of about 10.8 percent

of GDP.

We calibrate the disutility of working to χ = 0.3741 such that the model implies a steady-

state unemployment rate of 5.9 percent, matching the average unemployment rate from 2000

to 2019.

For the parameters in the TFP shock processes, we set ρz = 0.95 and σz = 0.01, in line

with the real business cycle literature. For the first-moment shock to trading costs, we set

ρτ = 0.99 and στ = 0.00215 based on the estimates of Caldara et al. (2020). The trade

uncertainty shock parameters are also calibrated based on the study of Caldara et al. (2020).

Specifically, we set ρστ = 0.96 and ητ = 0.37.

IV. Macroeconomic effects of trade uncertainty

To study the macroeconomic effects of trade uncertainty, we use our calibrated parameters

and solve the model based on third-order perturbations around the steady-state equilibrium.

We then compute impulse responses to a trade uncertainty shock following the approach of

Fernández-Villaverde et al. (2011) and Leduc and Liu (2016).12 To illustrate the model’s

mechanism, we perform several counterfactual exercises.

IV.1. Trade uncertainty in the baseline model. Figure 1 presents the impulse responses

of several key macroeconomic variables following a one-standard-deviation shock to trade

uncertainty. An increase in trade uncertainty reduces imports, redirecting production of

intermediate goods from foreign sources toward domestic producers (i.e., reshoring). This

expenditure-switching effect stimulates automation investment. Trade uncertainty further

boosts automation through a precautionary-savings channel, which lowers the real interest

rate and therefore raises the present value of automation. However, trade uncertainty could

discourage automation through an option-value channel. Under our calibration, the positive

effects from expenditure switching and precautionary savings dominate the option-value

12The impulse responses of a given variable to a trade uncertainty shock are measured by the differences

between the values of that variable in the presence of the shock and its value in the stochastic steady state

(i.e., its ergodic mean).
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Figure 1. Impulse responses to a trade uncertainty shock in the baseline

model

effect, such that trade uncertainty leads to an increase in automation measured by the robot

density.

Increased automation raises labor productivity, stimulating the incentive for creating new

vacancies. However, with our calibration, this job-creating effect is more than offset by the

job-displacing effect of automation, leading to an increase in unemployment of unskilled

workers. Nonetheless, aggregate output and consumption both rise persistently because the

productivity gains stemming from automation outweigh the drags from lowered imports and

domestic production by unskilled workers. The automation-driven productivity gains also

lowers the domestic price level, leading to a real exchange rate depreciation (i.e., an increase

in Qt).

The increased threat of automation also weakens the bargaining power of unskilled workers

in wage negotiations, lowering their wages. In contrast, skilled workers are a complementary

input with automation equipment. Thus, automation raises demand for skilled workers,

pushing up the skilled wage while depressing the unskilled wage, resulting in a higher skill

premium.

IV.2. Transmission channels. The model embeds two important transmission channels

for trade uncertainty shocks: an automation channel and a trade channel.
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Figure 2. Impulse responses to a trade uncertainty shock: Lower automation

share vs. the baseline model.

To examine the importance of the automation channel, we consider a counterfactual ver-

sion of the model with a lower share of the automation sector. In particular, we raise the

value of αn to 0.8 from the baseline calibration of 0.39.

Figure 2 shows the impulse responses to a trade uncertainty shock in the counterfactual

model with a lower share of automation (red dashed line), compared to those in the baseline

model (blue solid line). The impulse responses are qualitatively similar to those from the

baseline model, although the magnitudes of the responses are different. With a lower share

of automation, the declines in imports and the increases in robot density, labor produc-

tivity, the skill premium, and consumption are relatively muted compared to those in the

baseline model. Unemployment actually falls initially because the job-displacing effect from

automation is weaker when the share of automated prodution is lower. Thus, the automation

channel amplifies the effects of trade uncertainty.

Exposure to trade (or equivalently, offshoring) is also important for the transmission of

trade uncertainty shocks. To illustrate this, we consider a counterfactual with high openness

to international trade. Specifically, we lower the home-bias parameter αd to 0.6 from the

baseline value of 0.85.

Figure 3 shows the impulse responses in this counterfactual (red dashed line) versus those

in the baseline model (blue solid line). When the economy is more open to international
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Figure 3. Impulse responses to a trade uncertainty shock: Higher openness

vs. the baseline model.

trade, the effects of trade uncertainty are amplified. Trade uncertainty leads to larger declines

in imports and larger increases in robot density, unemployment, productivity, consumption,

and the skill premium.

IV.3. Persistence of trade uncertainty. Trade uncertainty may be more persistent than

past data suggest for the calibration of the baseline model. Trade tensions, geopolitical con-

flicts, and climate change risks may be part of a new normal with persistently elevated trade

uncertainty. We consider a counterfactual case with a higher persistence of the trade uncer-

tainty shock by raising the persistence parameter ρστ from 0.96 in the baseline calibration

to 0.99, proxying for a quasi-permanent regime with higher trade uncertainty.

Figure 4 shows the impulse responses in this counterfactual case (red dashed line) versus

those in the baseline model (blue solid line). Near-permanent trade uncertainty generates a

stronger expenditure-switching effect, resulting in greater reshoring (i.e., larger declines in

imports) and a larger increase in automation investment. The stronger expenditure-switching

effect in this case is such that it raises domestic employment of unskilled workers in the short

run, although the job displacing effects of automation dominates over time, leading to a rise

in unemployment. The larger boom in automation investment also results in greater gains in

productivity and larger increases in the skill premium and consumption than in the baseline

model.
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Figure 4. Impulse responses to a trade uncertainty shock: More persistent

trade uncertainty shock vs. the baseline model.

IV.4. The role of wage rigidity. In the baseline model, we assume that real wages are

flexible. We now examine the robustness of the results to wage stickiness. Following the

literature (Hall, 2005a; Shimer, 2005), we assume that the real wage of unskilled workers

is a geometrically weighted average of the Nash bargaining wage and the wage rate in the

previous period, such that

wnt = wγw
n,t−1(w

N
nt)

1−γw , (46)

where γw ∈ (0, 1) represents the degree of real wage rigidity. We follow Leduc and Liu (2016)

and set the real wage rigidity parameter to γw = 0.8, which is in line with Gertler and Trigari

(2009b), who calibrate the probability of nonrenegotiation of wage contracts at 0.89.

Figure 5 compares the impulse responses from the case with wage rigidities (red dashed

line) to those in the baseline case with flexible wages (blue solid line). As in the standard

DMP framework, wage rigidities amplify the increase in unemployment following the trade

uncertainty shock, reflecting the Shimer volatility puzzle (Shimer, 2005; Hall, 2005b). The

impulse responses of the other macroeconomic variables are similar to those in the baseline

model.
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Figure 5. Impulse responses to a trade uncertainty shock: Sticky wages vs.

the baseline model.

V. Empirical Evidence

Our theoretical model predicts that trade uncertainty can stimulate automation invest-

ment and reduce imported intermediate goods. The increased automation driven by trade

uncertainty in turn raises labor productivity, value added, and the skill premium and reduces

domestic employment. To lend credence to these predictions, we now present some empirical

evidence supporting the model predictions. We note that the empirical evidence throughout

this section serves as suggestive evidence, and we do not claim to identify causal effects.

V.1. Data. We measure trade uncertainty using the U.S. TPU index constructed by Caldara

et al. (2020), which is based on the frequency of articles in several major U.S. newspapers

that discuss economic policy uncertainty and contain one or more phrases related to trade

policy (such as “import tariffs,” “import barriers,” “WTO,” “trade policy,” and “trade

agreement”). The monthly TPU index is available starting from 1960.13

We measure automation using robot density in U.S. manufacturing industries. Specifically,

we define robot density in industry j and year t (Robotjt) as the operational stock of industrial

robots per thousand employees. We obtain the data of industrial robots for each two-digit

13Caldara et al. (2020) also develop a firm-level measure of TPU and another aggregate measure of TPU

based on a stochastic volatility model for U.S. import tariffs.
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Table 2. Summary Statistics

Mean Count SD Min Max IQR

log Robot density .615 161 2.731 -6.570 6.040 3.520

log TPU×
Initial share of intermediate imports .345 264 .246 .059 1.553 .152

log Share of intermediate imports -2.234 264 .684 -4.188 -.961 .708

log Labor Productivity 5.176 264 .488 4.136 6.522 .628

log Employment 6.476 264 .611 5.174 7.630 1.070

log Real Value-Added 11.652 264 .769 10.055 13.563 .920

log Skill premium .484 264 .101 .247 .768 .139

Observations 264

Note: The table shows the summary statistics of the variables used in the regressions. Ro-

bot density is defined as the operation stock of industrial robots per thousand employees

in each industry. The share of intermediate imports is the ratio of imported intermediate

goods to gross output in each industry. TPU is the trade policy uncertainty index, which

is an aggregate time series constructed by Caldara et al. (2020). Labor productivity is the

ratio of value-added to employment in each industry. Skill premium is the ratio of hourly

earnings of workers with a college degree or above to those with a high school education.

See the text for data sources.

manufacturing industry based on the International Standard Industrial Classification (ISIC,

Rev. 4) from the International Federation of Robotics (IFR). We obtain employment data

for each manufacturing industry at the two-digit NAICS 2017 level from the NEBR-CES

database. We match the industries by cross-walking two-digit ISIC codes to NAICS codes.

The matched sample contains 12 industries (at the NAICS two-digit level) for the years from

2004 to 2018. We restrict our sample to the years before the pandemic era.

To help explore the differential effects of trade uncertainty across industries with different

exposure to offshoring, we construct a measure of industry-level offshoring exposure using

the initial share of imported intermediate goods in gross output (i.e., in the beginning year of

our sample) for each two-digit NAICS manufacturing industries. We obtain data on the gross

imports of intermediate products from OECD Trade in Value-Added, and on gross output

from the Bureau of Economic Analysis. The annual sample covers 15 two-digit NAICS

industries for the years from 1997 to 2018.

We measure labor productivity for a two-digit NAICS industry by the ratio of real value

added to total employment in that industry, using data from the NBER-CES. We construct

a measure of the skill premium using data from the Current Population Survey (CPS). In

particular, the skill premium is measured by the earnings per hour of skilled workers (i.e.,

with a college degree or above) divided by those of unskilled workers (with a high school

degree).

Since we have annual data on industrial robots and imports of intermediate goods, we

aggregate the TPU index from the monthly frequency to the annual frequency by taking the

within-year average.
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Table 2 reports the summary statistics of our data. Robot density (in log units) in the data

displays substantial variations across industries and time, with a standard deviation of 2.73,

which is over four times its sample mean. The interaction between TPU (in log units) and

the initial share of intermediate imports also displays significant variations, with a standard

deviation (0.246) of about 70 percent of its mean. The share of imported intermediate

goods (in log units)—our measure of offshoring activity—has more modest variations across

industries and time, with a standard deviation of about 30 percent of the mean (in absolute

value). The real outcome variables, including labor productivity, employment, value-added,

and the skill premium, are relatively stable, with standard deviations between 6 and 20

percent of their respective means.

V.2. TPU, automation, and offshoring. To examine the empirical correlations of au-

tomation and offshoring with trade uncertainty, we consider the empirical specification

lnRobotjt = α0 + α1ImpSharej × lnTPUt + ηj + θt + εjt, (47)

where ImpSharej is the share of imported intermediate goods in gross output for industry

j at the beginning of our sample (2004), as a proxy for the initial exposure of the industry

to offshoring. The terms ηj and θt denote industry and time fixed effects, respectively, and

εjt denotes the regression residuals.

The key parameter of interest is α1, which measures the sensitivity of an industry’s robot

density to changes in trade policy uncertainty, depending on the industry’s initial exposure

to offshoring. Our theory suggests that an increase in trade policy uncertainty should be

associated with an increase in robot density, and this response is stronger for industries that

are more exposed to offshoring. Specifically, the impulse responses in Figure 3 show that,

in an economy with higher openness, trade uncertainty should lead to a larger increase in

robot density. Thus, the theory predicts that α1 > 0.

This prediction is supported by the data, as shown in Table 3 (Column (1)). The table

shows that, after controlling for the industry and time fixed effects, an increase in TPU

is associated with a larger increase in robot density in industries that are more exposed to

offshoring, i.e., industries with a larger initial share of intermediate imports. This correlation

is statistically significant at the 99 percent confidence level and economically important. A

one-standard-deviation increase in the logarithm of the TPU index (interacted with the

initial exposure to offshoring) is associated with an increase in robot density of about 1.3 log

points (5.298× 0.246 ≈ 1.30), which is about half of the standard deviation of the logarithm

of the robot density (2.73).
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Table 3. Trade policy uncertainty, automation, and offshoring

(1) (2)

log (Robot density) log (Import share)

Initial import share × log(TPU) 5.298∗∗∗ -0.878∗

(1.353) (0.452)

Industry fixed effects ✓ ✓
Time fixed effects ✓ ✓
Observations 161 330

R2 0.917 0.989

Years 2004:2018 1997:2018

No. of industries 12 15

Note: Column (1) reports the estimates of the regression of robot density on

trade uncertainty proxied by the interaction between TPU and initial exposure to

offshoring. Column (2) reports the estimates of the regression of the share of im-

ported intermediate goods in gross output on trade uncertainty. All regressions

control for industry and time fixed effects. Standard errors clustered at the indus-

try level are shown in parentheses. The levels of statistical significance are denoted

by asterisks: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.

Our model also predicts that heightened trade uncertainty reduces offshoring, especially

in industries that are initially more exposed to offshoring (see the impulse response of im-

ports to TPU in Figure 3). This model prediction aligns well with empirical evidence, as

shown in Table 3 (Column (2)). This column shows the regression of offshoring (measured

by the share of imported intermediate goods in gross output) on the interaction between

TPU and the initial exposure to offshoring, controlling for industry and time fixed effects.

The estimation suggests that an increase in TPU is associated with a significantly larger de-

cline in offshoring for industries that are initially more exposed to offshoring. The estimated

correlation is also economically important. A one-standard-deviation increase in trade un-

certainty—proxied by the interaction between the log of TPU and the initial exposure to

offshoring—is associated with a reduction in the share of imported intermediate goods of

about 0.216 log points (−0.878× 0.246 ≈ −0.216), which is about one-third of the standard

deviation of the logarithm of the share of imported intermediate goods (0.216/0.683 ≈ 0.32).

While our model does not feature multiple countries, TPU might have heterogeneous

effects on imports from different origin countries. Table C.1 explores how U.S. imports from

different origins are affected by TPU. We see that the most significant effect of TPU is on

imports from China, which is broadly consistent with the observation that the escalation of

trade tensions between the United States and China has significantly reduced U.S. firms’

offshoring to China.

V.3. TPU and other macroeconomic variables. Our model further predicts that height-

ened trade policy uncertainty should increase labor productivity, the skill premium, and

value-added, while reducing employment (see Figure 1). These model predictions are broadly

consistent with the data, as shown in Table 4.
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Table 4. Trade policy uncertainty, offshoring, and macroeconomic variables

(1) (2) (3) (4)

log(Labor productivity) log(Employment) log(Value-added) log(Skill premium)

Initial import share × log(TPU) 0.324∗∗ -0.151 0.173 0.187∗∗

(0.128) (0.219) (0.208) (0.084)

Industry fixed effects ✓ ✓ ✓ ✓
Time fixed effects ✓ ✓ ✓ ✓
Observations 264 264 264 264

R2 0.970 0.942 0.960 0.811

Years 1997:2018 1997:2018 1997:2018 1997:2018

No. of industries 12 12 12 12

Note: Columns (1), (2), (3), and (4) report the results of regressing labor productivity, employment, value-added, and skill

premium, respectively, on the interaction between TPU and initial exposure to offshoring. All regressions control for indus-

try and time fixed effects. Standard errors clustered at the industry level are shown in parentheses. The levels of statistical

significance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.

The table shows the same regressions as in equation (47), where we replace the dependent

variable with each of the macroeconomic variables of interest. As shown in the table, an

increase in TPU leads to a greater increase in labor productivity and the skill premium in

industries more exposed to offshoring in the initial period. These effects are statistically

significant and economically important. In particular, a one-standard-deviation increase in

the logarithm of TPU (interacted with the initial exposure to offshoring) is associated with

an increase in labor productivity of about 0.08 log points (0.324 × 0.246 ≈ 0.08), which is

about 16 percent of the standard deviation of the logarithm of labor productivity (0.49).

Moreover, the same increase in TPU is associated with an increase in the skill premium of

about 0.046 log points (0.187 × 0.246 ≈ 0.046), which is about 45 percent of the standard

deviation of the logarithm of the skill premium (0.1).

The correlations between TPU with employment and value-added are imprecisely esti-

mated, reflecting the noise in the relatively small sample. However, the sign of the estimated

coefficients are in line with our theoretical predictions.

V.4. The automation channel. In our model, the effects of trade uncertainty on em-

ployment, labor productivity, and the skill premium work through the automation channel.

Specifically, as shown in Figure 2, in an economy with a larger share of automated produc-

tion, trade uncertainty leads to larger increases in labor productivity and the skill premium.

With more automation, trade uncertainty also reduces employment of unskilled workers,

although the effects are small under our calibration.

We now present some empirical evidence that is consistent with our model’s automation

channel. Trade uncertainty can influence macroeconomic variables through multiple chan-

nels. To highlight the automation channel, we follow the two-stage estimation procedure of
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Table 5. Two-stage least squares: Empirical importance of automation

(1) (2) (3) (4)

log(Labor productivity) log(Employment) log(Value-added) log(Skill premium)

Predicted log(Robot density) 0.0521∗∗∗ -0.0461∗∗ 0.00602 0.0396∗∗

(0.0183) (0.0211) (0.0223) (0.0160)

Industry fixed effects ✓ ✓ ✓ ✓
Time fixed effects ✓ ✓ ✓ ✓
Observations 161 161 161 161

Years 2004:2018 2004:2018 2004:2018 2004:2018

No. of industries 12 12 12 12

Note: This table shows the second-stage regressions using the robot density predicted from the first-stage regression

shown in Column (1) of Table 3 as the regressor. All regressions control for industry and time fixed effects. Standard

errors clustered at the industry level are shown in parentheses. The levels of statistical significance are denoted by as-

terisks: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.

Bertrand and Mullainathan (2001). In the first stage, we regress robot density on the inter-

actions of TPU with initial exposure to offshoring, which is the same regression specification

in equation (47). In the second stage, we regress the variables of interest (labor productivity,

skill premium, etc.) on the predicted robot density from the first-stage regression. We inter-

pret the estimated coefficient on the predicted robot density in the second-stage regression

(shown in Table 5) as reflecting the sensitivity of those macroeconomic variables to trade

policy uncertainty through the automation channel.

Table 5 shows that an increase in robot density driven by an increase in TPU is associated

with a statistically significant increase in both labor productivity and the skill premium. An

increase in robot density driven by TPU also reduces employment significantly, although it

does not have significant effects on value-added. Thus, the increase in labor productivity

primarily reflects the job-displacing effects of automation.

The sensitivities of labor productivity, employment, and the skill premium to trade policy

uncertainty through the automation channel are economically important. A one-standard-

deviation increase in trade uncertainty (i.e., log TPU interacted with the initial exposure

to offshoring) is associated with an increase in robot density of 1.3 log points (as shown

in the first-stage regression). Through this increase in robot density driven by TPU, labor

productivity rises by about 6.8 percent, which is about 14 percent of the standard deviation

of log labor productivity (1.3× 0.0521/0.488 ≈ 13.9). The same shock to trade uncertainty

is associated with an increase in the skill premium of about 5 percent, or half of the standard

deviation of the log skill premium (1.3× 0.0396/0.103 ≈ 0.5). Following the same shock to

TPU, employment rises by about 6 percent, which is 10 percent of the standard deviation of

log employment (1.3× (−0.0461)/0.611 ≈ −0.1). These results suggest that the automation

channel is empirically important for the transmission of trade policy uncertainty.
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VI. Conclusion

Trade uncertainty has risen in recent years, stemming from risks associated with tariffs,

geopolitical tensions, and climate change. This uncertainty has led to a reconsideration of

the costs and benefits of offshoring to lower production costs.

In this paper, we examined the role of automation in facilitating the reshoring of previ-

ously offshored production processes back to the domestic market. In our model, domestic

firms can produce intermediate goods using either a labor-only technology or an automa-

tion technology. Through an expenditure-switching effect, heightened trade uncertainty

raises domestic production but not necessarily domestic employment because automation is

a labor-substituting technology. Although automation raises productivity and thus labor de-

mand, the job-displacing effect dominates under our calibration. As such, trade uncertainty

boosts automation investment while raising unemployment of unskilled workers. Increased

automation also leads to a higher skill premium.

Our model’s predictions are in line with industry-level empirical evidence. Our evidence

suggests that, in industries more exposed to offshoring, heightened trade uncertainty reduces

offshoring while stimulating automation relative to other industries. Consistent with our

model’s predictions, this translates into higher productivity and pushes up the skill premium

while lowering employment.

We focus on the positive aspects of the interactions between reshoring, automation, em-

ployment, and wages, taking government policy as given. Our model implies that, in line

with Leduc and Liu (2023), the threat of automation (e.g., stemming from trade uncer-

tainty) could weaken the bargaining power of unskilled workers. Such endogenous variations

in workers’ bargaining power can create a potential source of inefficiency that may call for

policy interventions. Studying policy implications in a theoretical framework like ours is a

promising avenue for future research, and it would complement the recent work of Grossman

et al. (2023), who examine optimal policy in a model with critical production input in the

face of global supply chain disruptions.
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Appendix A. Summary of equilibrium conditions

A search equilibrium is a system of 30 equations for 30 variables summarized in the vector

[rt, Ct, Yt, Yft, Ydt, Qdt, Yat, Ynt, Xt, At, pdt, pft,Qt, pat, pnt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt,

Je
t , J

v
t , J

a
t , ν

∗
t , wnt, wst] .

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 = Etβ
Ct

Ct+1

rt, (A.1)

(2) Matching function

mt = µuαt v
1−α
t , (A.2)

(3) Job finding rate

qut =
mt

ut
, (A.3)

(4) Vacancy filling rate

qvt =
mt

vt
, (A.4)

(5) Employment dynamics

Nt = (1− δ)Nt−1 +mt, (A.5)

(6) Number of searching workers

ut = 1− (1− δ)Nt−1, (A.6)

(7) Unemployment

Ut = 1−Nt, (A.7)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (A.8)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (A.9)

(10) Employment value

Je
t = pntZt − wnt + Etβ

Ct

Ct+1

[
δJv

t+1 + (1− δ)Je
t+1

]
, (A.10)

(11) Vacancy value

Jv
t = −κ+ qvt J

e
t + (1− qvt )Etβ

Ct

Ct+1

{
(1− qat+1)J

v
t+1 + qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν)

}
. (A.11)
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(12) Automation value

Ja
t = patγaZtζ

γa

(
s̄

At

)1−γa

(1− κa) + (1− ρo)Etβ
Ct

Ct+1

Ja
t+1, (A.12)

(13) Automation threshold

ν∗t = Ja
t − Jv

t , (A.13)

(14) Robot adoption

qat =

(
ν∗t
ν̄

)ηa

, (A.14)

(15) Vacancy creation

ηt =

(
Jv
t

ē

)ηe

, (A.15)

(16) Final goods output

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (A.16)

(17) Domestic intermediate goods production

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (A.17)

(18) Domestic intermediate goods feasibility constraint.

Qdt = Ydt + τtXt, (A.18)

(19) Intermediate goods produced by workers

Ynt = ZtNt, (A.19)

(20) Intermediate goods produced by robots

Yat = Zt(ζAt)
γa s̄1−γa , (A.20)

(21) Demand for domestically produced intermediate goods

pdt =

(
αdYt
Ydt

) 1
θ

, (A.21)

(22) Demand for imported intermediate goods

pft = Etβ
Ct

Ct+1

(
(1− αd)Yt+1

Yft

) 1
θ

(A.22)

(23) Relative price of worker-produced domestic intermediate goods

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

, (A.23)
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(24) Relative price of robot-produced domestic intermediate goods

pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

, (A.24)

(25) Foreign demand for exported intermediate goods

Xt =

(
τtpdt
Qt

)−θ

X∗
t , (A.25)

(26) Balanced trade condition:

τtpdtXt = pftYft, (A.26)

(27) Import price:

pft = τtQt, (A.27)

(28) Resource constraint

Ct + κvt + κaγapatYat + (1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν) +

∫ Jv
t

0

edF (e) = Yt. (A.28)

(29) Nash bargaining wage

b

1− b
(Je

t − Jv
t ) = wnt − ϕ− χCt + Etβ

Ct

Ct+1

(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1), (A.29)

(30) Skilled wage

wst = (1− γa)patZt

(
ζ

s̄

)γa

. (A.30)

Appendix B. Additional model results: Other shocks

The effects of trade uncertainty are different from those of a first-moment shock to trade

costs. Figure B.1 shows the impulse responses to a first-moment trade cost shock. When the

trade cost rises, imports fall persistently. The increase in trade costs worsens the terms of

trade, raising the cost of final goods production and resulting in lower automation and higher

unemployment. The decline in automation reduces labor productivity, further exacerbating

the recessionary effects of the shock, leading to persistent drops in consumption. The decline

in automation also reduces the demand for skilled workers, resulting in a fall in the skill

premium.

Figure B.2 shows that, unlike trade uncertainty, TFP uncertainty encourages offshoring,

resulting in an increase in imports. TFP uncertainty has a recessionary effect, raising un-

employment and reducing consumption. Unlike trade uncertainty that boosts automation,

TFP uncertainty lowers to persistent declines in robot density after the initial increases.

Accordingly, labor productivity declines persistently following initial increases.
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Figure B.1. Impulse responses to a first-moment trade cost shock.

Figure B.2. Impulse responses to a TFP uncertainty shock.



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 33

Figure B.3. Impulse responses to a first-moment TFP shock.

Figure B.3 shows the impulse responses to a first-moment shock to TFP. An increase

in TFP lowers unemployment and stimulates automation investment, leading to persistent

increases in productivity and aggregate consumption. The rise in automation also leads to a

higher skill premium. The increase in productivity leads to real exchange rate depreciation

(not shown in the figure), resulting in lower imports.

Appendix C. Additional Empirical Results

Table C.1 shows that TPU has a greater negative effects on the import shares of industries

that are more exposed to offshoring in the three largest trading partners of the United States:

Mexico, Canada, and China. The effects for China are statistically significant at the 99

percent level, possibly reflecting the sharp increases in bilateral trade tensions between the

United States and China since 2016.
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Table C.1. Trade policy uncertainty and import shares from different origins

(1) (2) (3)

log(Mexico import share) log(Canada import share) log(China import share)

Initial import share × log(TPU) -1.443 -0.244 -1.594∗∗∗

(1.072) (0.211) (0.318)

Industry fixed effects ✓ ✓ ✓
Time fixed effects ✓ ✓ ✓
Observations 323 330 308

R2 0.986 0.984 0.887

Years 1997:2018 1997:2018 1997:2018

No. of industries 15 15 14

Note: Each column reports the results of regressing the import share from a particular origin on the interaction be-

tween TPU and initial exposure to offshoring. China import share, for example, measures U.S. intermediate imports

from China in a particular industry divided by gross output in that industry. All regressions control for industry and

time fixed effects. Standard errors clustered at the industry level are shown in parentheses. The levels of statistical

significance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.

Appendix D. Capital flows

The baseline economy has a closed capital account, such that the interest rate is en-

dogenous. Now we consider an alternative framework where international capital flows are

allowed.

The small open economy can borrow from or lend to the rest of the world at the exogenous

world interest rate r∗t (in units of foreign consumption goods). Denote by B∗
t the net capital

outflows (i.e., lending to the rest of the world). To capture the frictions in capital markets, we

assume that changes in capital flows are subject to an adjustment cost. In this environment,

the budget constraint for the representative household is given by

Ct+QtB
∗
t +

ψ

2
Qt(B

∗
t −B̄∗)2 = r∗t−1QtB

∗
t−1+wntNt+wsts̄+ϕ(1−Nt)+dt−Tt, ∀t ≥ 0, (D.1)

where Qt denotes the real exchange rate (units of domestic consumption goods per unit of

foreign consumption goods), ψ ≥ 0 is a parameter measuring the size of the bond adjustment

costs, and B̄∗ denotes the steady-state level of foreign lending.

The intertemporal Euler equation is given by

1 + ψ(B∗
t − B̄∗) = EtDt,t+1

Qt+1

Qt

r∗t . (D.2)

The Euler equation is a generalization of the standard uncovered interest parity (UIP) con-

dition. The presence of bond adjustment costs implies an upward-sloping supply curve of

foreign lending: the amount of foreign lending (relative to the steady-state level) increases

with the world interest rate r∗t adjusted for expected real exchange rate depreciation.

In equilibrium, the balance-of-payment condition implies that the current account balance

(i.e., net capital outflows) should be equal to the trade balance (i.e., net exports) plus net



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 35

Figure D.1. Impulse responses to a trade uncertainty shock.

interest payments received from abroad. This balance-of-payments condition is given by

Qt(B
∗
t −B∗

t−1) = τtpdtXt − pftYft + (r∗t − 1)QtB
∗
t−1. (D.3)

The aggregate resource constraint is given by

Ct + τtpdtXt − pftYft = Yt − κvt − κaγapatYat−

(1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν)−
∫ Jv

t

0

edF (e)− ψ

2
Qt(B

∗
t − B̄∗)2, (D.4)

where the left side gives the real GDP, which equals consumption plus net exports.

D.1. Impulse responses in the model with capital flows. Figure D.1 shows the impulse

responses to a trade uncertainty shock in the model with capital flows.14 Increased trade

uncertainty reduces imports and capital outflows, triggering an expenditure switching effect

that boosts automation. The resulting increase in robot density raises unemployment of

unskilled workers. Increased automation also boosts labor productivity, aggregate output,

and the skill premium. This in turn leads to a rise in consumption and a real exchange

rate depreciation. Overall, these impulse responses are in line with those obtained from our

baseline model with financial autarky.

14We calibrate the bond adjustment cost parameter to ψ = 2 for solving the model.
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D.2. Summary of equilibrium conditions. A search equilibrium is a system of 30 equa-

tions for 30 variables summarized in the vector

[Bt, Ct, Yt, Yft, Ydt, Qdt, Yat, Ynt, Xt, At, pdt, pft,Qt, pat, pnt,mt, ut, vt, q
u
t , q

v
t , q

a
t , Nt, Ut, ηt,

Je
t , J

v
t , J

a
t , ν

∗
t , wnt, wst] .

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

1 + ψ(B∗
t − B̄∗) = EtDt,t+1

Qt+1

Qt

r∗t (D.5)

(2) Matching function

mt = µuαt v
1−α
t , (D.6)

(3) Job finding rate

qut =
mt

ut
, (D.7)

(4) Vacancy filling rate

qvt =
mt

vt
, (D.8)

(5) Employment dynamics

Nt = (1− δ)Nt−1 +mt, (D.9)

(6) Number of searching workers

ut = 1− (1− δ)Nt−1, (D.10)

(7) Unemployment

Ut = 1−Nt, (D.11)

(8) Vacancy dynamics

vt = (1− qvt−1)(1− qat )vt−1 + δNt−1 + ηt, (D.12)

(9) Automation dynamics

At = (1− ρo)At−1 + qat (1− qvt−1)vt−1, (D.13)

(10) Employment value

Je
t = pntZt − wnt + Etβ

Ct

Ct+1

[
δJv

t+1 + (1− δ)Je
t+1

]
, (D.14)

(11) Vacancy value

Jv
t = −κ+ qvt J

e
t + (1− qvt )Etβ

Ct

Ct+1

{
(1− qat+1)J

v
t+1 + qat+1J

a
t+1 −

∫ ν∗t+1

0

νdG(ν)

}
. (D.15)
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(12) Automation value

Ja
t = patγaZtζ

γa

(
s̄

At

)1−γa

(1− κa) + (1− ρo)Etβ
Ct

Ct+1

Ja
t+1, (D.16)

(13) Automation threshold

ν∗t = Ja
t − Jv

t , (D.17)

(14) Robot adoption

qat =

(
ν∗t
ν̄

)ηa

, (D.18)

(15) Vacancy creation

ηt =

(
Jv
t

ē

)ηe

, (D.19)

(16) Final goods output

Yt =
[
α

1
θ
d Y

θ−1
θ

dt + (1− αd)
1
θY

θ−1
θ

f,t−1

] θ
θ−1

, (D.20)

(17) Domestic intermediate goods production

Qdt =
[
α

1
σ
n Y

σ−1
σ

nt + (1− αn)
1
σY

σ−1
σ

at

] σ
σ−1

, (D.21)

(18) Domestic intermediate goods feasibility constraint.

Qdt = Ydt + τtXt, (D.22)

(19) Intermediate goods produced by workers

Ynt = ZtNt, (D.23)

(20) Intermediate goods produced by robots

Yat = Zt(ζAt)
γa s̄1−γa , (D.24)

(21) Demand for domestically produced intermediate goods

pdt =

(
αdYt
Ydt

) 1
θ

, (D.25)

(22) Demand for imported intermediate goods

pft = Etβ
Ct

Ct+1

(
(1− αd)Yt+1

Yft

) 1
θ

(D.26)

(23) Relative price of worker-produced domestic intermediate goods

pnt
pdt

=

(
αnYdt
Ynt

) 1
σ

, (D.27)
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(24) Relative price of robot-produced domestic intermediate goods

pat
pdt

=

(
(1− αn)Ydt

Yat

) 1
σ

, (D.28)

(25) Foreign demand for exported intermediate goods

Xt =

(
τtpdt
Qt

)−θ

X∗
t , (D.29)

(26) Balance of payments condition:

Qt(B
∗
t −B∗

t−1) = τtpdtXt − pftYft + (r∗t − 1)QtBt−1 (D.30)

(27) Import price:

pft = τtQt, (D.31)

(28) Resource constraint

Ct + τtpdtXt − pftYft = Yt − κvt − κaγapatYat−

(1− qvt−1)vt−1

∫ ν∗t

0

νdG(ν)−
∫ Jv

t

0

edF (e)− ψ

2
Qt(B

∗
t − B̄∗)2 (D.32)

(29) Nash bargaining wage

b

1− b
(Je

t − Jv
t ) = wnt − ϕ− χCt + Etβ

Ct

Ct+1

(1− qut+1)(1− δ)
b

1− b
(Je

t+1 − Jv
t+1), (D.33)

(30) Skilled wage

wst = (1− γa)patZt

(
ζ

s̄

)γa

. (D.34)
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