Gun Violence in Black and White: Evidence from Policy Reform in Missouri

Morgan C. Williams, Jr.*

Barnard College, Columbia University

October 18, 2021

Abstract

The extent to which gun control policies contribute to the significant racial disparities in U.S. gun violence remains largely unexplored in the empirical gun control literature. On August 28, 2007 the Missouri General Assembly repealed an 86 year-old "permit-to-purchase" (PTP) law requiring that handgun purchasers possess a permit, and subsequently undergo a background check, for all sales. Using generalized synthetic control methodology, this paper examines the impact of the 2007 Missouri PTP repeal on city-level gun violence and enforcement activity across racial groups. Estimates suggest that the repeal led to exponential growth in statewide FBI handgun background checks among licensed dealers and a 24 percent increase in the fraction of suicides committed with a firearm (FSS) within the City of St. Louis and Jackson County. Within St. Louis and Kansas City, the repeal led to a 19 percent increase in Black firearm homicide and a 22 percent decrease in Black non-gun homicide primarily driven by weapon substitution among Black youth. The escalation in Black gun violence coincides with a 125 percent decrease in aggravated assault arrests and a 44 percent decrease in weapons arrests among Black suspects. While this study largely finds no evidence of significant changes in White homicide victimization and enforcement activity, law enforcement officers themselves experience an additional 2.33 gun assaults per 100 officers. The disproportionate shifts in gun violence, and declines in policing productivity, remain consistent with a preemption model in which strategic complementarities in violence contribute to disproportionate changes in homicide across racial groups as firearms become more readily available.

JEL Codes: K42, J15, J18 *Keywords*: Racial Disparities, Gun Control, Homicide, Arrests, Police, Crime

*Morgan C. Williams, Jr.; Address: Department of Economics, Barnard College, Columbia University, 1018 Milstein Center, 3009 Broadway, New York, NY, 10027; Email: mcwillia@barnard.edu. I would like to thank Michael Grossman, David Jaeger, Ted Joyce, Glenn Loury, Rajiv Sethi, Dan 'O'Flaherty, Josh Angrist, James Poterba, Sherry Glied, David Autor, Ashna Arora, John MacDonald, Greg Ridgeway, Harold Pollack, Ingrid Gould Ellen, Joseph Doyle, Jennifer Doleac, Aaron Chalfin, Ben Hansen, Rachael Meager, and Van Tran for their support throughout this project. I would also like to thank the participants in the Graduate Center Applied Economics Seminar, the MIT Labor Lunch Seminar, and the Columbia University Race, Ethnicity, and Migration (REM) Workshop for all of their feedback.

1 Introduction

"I think there's so much murder because of fear, a fear of the unknown, really. It's hard out here.... Better getting caught with [a gun] than without."

- Black St. Louis Resident (Speri, 2015)

In the presence of a larger public discourse on criminal justice reform and policing, considerable racial disparities exist in homicide victimization. Homicide alone contributes nearly a full year to the 4.7 year gap in life expectancy between Black and White U.S. males (Kochanek et al., 2013). While constituting less than 13 percent of the population, Black Americans account for roughly half of all homicide victimization and known offending–with more than 50 percent of these homicides involving guns (Cooper and Smith, 2011). The salient role of firearms in Black homicide victimization are in stark contrast to most household survey evidence with Black households reporting very low gun ownership rates when compared to all other groups (Parker et al., 2017). Differences in self-reported gun ownership and homicide outcomes suggests that understanding underground markets, and the gun control policies responsible for addressing them, remains critical to addressing these disparities.

The state of Missouri serves as an interesting setting to examine the relationship between race and gun control policies given the considerable disparities in homicide and recent policy reforms related to the regulation of private gun sales (Cook, 1991; Sherman and Rogan, 1995; Rosenfeld and Decker, 1996; Blumstein and Rosenfeld, 1998). On August 28, 2007 the Missouri General Assembly repealed an 86 year-old "permit-to-purchase" (PTP) law requiring that handgun purchasers possess a permit, and subsequently undergo a background check, for all sales.¹ Under

¹The 1993 Brady Handgun Violence Prevention Act set a federal mandate requiring background checks for all federal firearms license (FFL) sales (e.g., sales within gun stores) and left regulation of private firearm sales to states. According to the Bureau of Justice Statistics (BJS) 2005 Survey of State Procedures Related to Firearm Sales, only 16 states required some form of background check or licensing for private firearm sales with 34 states essentially leaving private firearm sales unregulated.

the former law, individuals wishing to purchase a handgun were required to apply for a permit for all firearm sales (i.e., licensed and unlicensed). The permit application process included an extensive background check conducted by each local sheriff's office–including information unavailable in federal background checks such as civil proceedings and arrest records. The repeal of the 86 year old PTP law effectively removed any formal screening of private firearm sales within the state.

The PTP repeal coincides with important shifts in the racial dynamics of firearm homicide within Missouri. Figure 1 compares the racial trends in Missouri gun violence relative to the rest of the country while also offering some insight into the role of gun proliferation across racial groups. Figure 1a shows that pre-repeal non-Hispanic Black firearm homicide victimization in Missouri considerably outpaces gun violence among Black victims in the rest of the country and is several orders of magnitude greater than similar rates for White Americans–peaking at roughly 60 deaths per 100,000 during the historic crime wave leading into the early 1990's (Grogger and Willis, 2000; Levitt and Venkatesh, 2000; Fryer et al., 2013).² Black gun violence in Missouri diverges from national trends after the PTP repeal and reaches unprecedented levels of violence by 2015. White gun violence in Missouri is generally comparable to national trends for the majority of the study period, but overtakes the rest of the country by 2014.

In contrast to the historic levels of gun violence in the early 1990's, Figure 1b shows that gun proliferation appears to play a more salient role in post-repeal homicide victimization within Missouri. This figure specifically compares trends in the ratio of firearm to non-gun homicide deaths for Black and White Missourians. Black firearm homicide exceeds non-gun homicide in every year of the study period, but this ratio never surpasses five during the pre-intervention period. Immediately following the repeal, Black firearm homicide exceeds non-gun homicide by a factor of seven and rises to 10 after 2014. The corresponding ratio for White Missourians remains at parity

²This study exclusively focuses on non-Hispanic Black and White groups as Hispanic Missourians make up roughly four percent of the population, but account for less than three percent of all firearm homicide deaths over the preintervention period. All references to 'Black' and 'White' specifically speak to these groups unless otherwise stated in the text.

for the majority of the study period, but increases to three after 2014. Overall, Figure 1 shows that race plays a decisive role in Missouri homicide rates with gun proliferation more prominently featured during the post-repeal period.

This study examines the impact of the 2007 PTP repeal on gun violence and enforcement activity across racial groups over the 1981-2018 period. The analysis primarily focuses on changes in post-repeal gun violence through the experiences of the City of St. Louis and Kansas City, the two largest cities in the state, for two important reasons.³ First, Kansas City and St. Louis account for nearly 80 percent of pre-repeal gun violence in the state. The concentration of crime within both cities also remains consistent with the experiences of other large cities in the country (Glaeser and Sacerdote, 1999; O'Flaherty and Sethi, 2010c). Both cities also account for 60 percent of crime gun recoveries in the state over the first seven years of the post-repeal period and reflects the strength of their underground gun markets relative to other parts of the state. A second reason involves an important distinction made by O'Flaherty and Sethi (2010a) where both cities remain comparable to "war zones" characterized by preemptive gun violence often driven by a "fear multiplier" effect. The extraordinary levels of concentrated gun violence are in stark contrast to the "peaceable kingdoms" elsewhere in the state for which murder remains largely autonomous and a rare event. Consistent with a growing literature highlighting the importance of social interactions in criminal behavior (Glaeser et al., 1996; Papachristos, 2009; O'Flaherty and Sethi, 2010a; Deming, 2011; Patacchini and Zenou, 2012, 2013; Billings et al., 2014, 2019), and directly relevant to this study, O'Flaherty and Sethi (2010b) argue that the preemptive motive to preserve one's life can lead to important strategic complementarities in violence which can account for the significant racial disparities in homicide-with factors such as higher segregation and the nature of offending costs contributing to these racial differences. To the extent that this behavior remains present in Kansas City and St. Louis, these models provide an explicit connection between race and gun control

³As an independent city, the City of St. Louis is administratively distinct from St. Louis County and all references to "St. Louis" focus on the former entity unless explicitly stated otherwise.

policies such as the PTP repeal.

Estimating the causal effects of the PTP repeal on gun violence requires the construction of suitable counterfactual trends for the treatment units. This study employs a data-driven approach to constructing these counterfactual trends using the generalized synthetic control methodology (GSC) introduced in Xu (2017). Building on the Abadie et al. (2010) synthetic control (SC) methodology and the interactive fixed effects model from Bai (2009), GSC estimation possesses several distinct empirical advantages in estimating the effects of the PTP repeal on gun violence across racial groups. First, GSC estimation allows for multiple treatment units which eases the computational burden of constructing individual synthetic trends for each treatment unit. Second, this approach also relaxes the non-negative weight assumption behind the synthetic control estimator and uses the full control group data in order to construct counterfactual trends-allowing for negative correlations between treatment and control units to factor into estimation. Third, Kansas City and St. Louis often rank among the top cities in the U.S. with respect to pre-intervention Black homicide victimization. When a treatment unit falls outside of the convex hull for the control units, the SC estimator will fail to construct suitable counterfactual trends. A fourth empirical advantage of GSC estimation involves the flexible inclusion of additive fixed effects accounting for important differences in factors such as criminal justice policies (e.g., local law enforcement characteristics) and common temporal shocks (e.g., the crack cocaine epidemic (Fryer et al., 2013) and changes in gun markets associated with the 2008 presidential election (Depetris-Chauvin, 2015)).

In the absence of administrative data on gun ownership, this study follows previous work in using two complementary proxy measures of gun ownership–namely the number of state-level *federal* background checks conducted by FFL dealers and county-level fraction of suicides committed with a firearm (FSS). While the former measure provides insight into changes in primary gun market activity after the repeal, county-level FSS describes shifts in local gun ownership and possesses a well-documented relationship to "illegal" gun proliferation in the literature (Cook, 1991; Duggan, 2001; Cook and Ludwig, 2004, 2006). The almost instantaneous surge in the demand for firearms in

primary markets, and increasing number of recently purchased guns recovered from crime scenes, suggests that these markets serve as a critical source of firearms to underground markets. Using these measures, this study finds that the PTP repeal led to an additional 1,387 handgun background checks per 100,000 residents statewide, on average, or a two-fold increase relative to the pre-repeal period. This exponential growth in potential gun sales among FFL dealers remains exclusive to handguns and is consistent with the provisions of the former law. The PTP repeal also increased local gun ownership by 24 percent within the City of St. Louis and Jackson County–with the latter accounting for the vast majority Kansas City's residential population. When combined with descriptive evidence highlighting the large increase in crime gun recoveries within both cities, these findings remain consistent with previous work suggesting an intimate connection between primary and illegal gun markets (Levitt and Venkatesh, 2000; Cook et al., 2007, 2015).

The analysis then turns to the question of whether the post-repeal firearm supply shock coincides with city-level changes in homicide across racial groups. Consistent with predictions from the preemption model, the PTP repeal led to an additional 13.20 Black firearm deaths per 100,000 and a *decrease* of 3.76 Black non-gun deaths per 100,000, on average. A deeper examination of the evidence suggests that this weapon substitution effect takes place primarily among Black homicide victims ages 15-24 and confirms previous work suggesting that Black teens tend to carry firearms more in areas with higher levels of gun ownership (Cook and Ludwig, 2004). Point estimates for White homicide victimization generally show smaller (non-significant) increases in firearm homicide although dynamic firearm homicide effects suggest a significant increase over the last three years of the post-repeal period.

The escalation in post-repeal gun violence also presents important challenges to local law enforcement both in terms of maintaining public safety and as a direct threat to officers in the line of duty. Consistent with the evidence on post-repeal homicide victimization, this study finds that PTP repeal decreased Black aggravated assault arrests by 125 percent and Black weapons arrests by 44 percent with no statistically significant evidence for corresponding White arrest rates.

These declines in policing productivity take place during a period in which weapons possession offenses became increasingly difficult to prosecute due to a 2005 change in state laws allowing for open carry in motor vehicles in addition to reductions police force size in Kansas City and St. Louis induced by the Great Recession. Given the strong consensus within the policing literature regarding the importance of police force size to crime reduction (Levitt, 1997; Evans and Owens, 2007; Chalfin and McCrary, 2018; Mello, 2019; Weisburst, 2019; Chalfin et al., 2020), with no evidence of changes in murder arrests or clearance rates, these changes most likely contributed to the post-repeal declines in the policing productivity in Black neighborhoods by lowering the costs of gun investment and offending. Moreover, this study also finds that the PTP repeal exposed law enforcement to greater levels of gun violence with gun assaults by suspects increasing 75 percent despite decreasing trends in officer assaults by all other means. Thus, these findings suggest that the PTP repeal led to significant deterioration in public safety for civilians and officers alike.

Finally, this paper also estimates the consequences of the PTP repeal on race-specific homicide victimization across the respective distributions for Black and White neighborhoods in both cities using the nonlinear "changes-in-changes" estimator pioneered in Athey and Imbens (2006). With previous research highlighting the important role of neighborhoods in social interactions (Kling et al., 2005; Patacchini and Zenou, 2013; Chetty et al., 2020), these estimates provide important insight regarding the distributional consequences of the PTP repeal as posited by models of social interactions in homicide (O'Flaherty and Sethi, 2010b). Neighborhood-level changes-in-changes estimates confirm statistically significant increases in Black homicide victimization beyond the most violent neighborhoods in both cities with no significant changes in White homicide for any decile in its respective distribution. Altogether, this evidence suggests that Black victims in Kansas City and St. Louis were considerably more likely to encounter an offender who made a post-repeal investment in firearms when compared to White victims.

This study contributes to a larger literature examining the effects of gun control policies on gun proliferation and homicide often characterized by mixed evidence concerning their protective effects (Loftin et al., 1991; Britt et al., 1996; Ludwig and Cook, 2000; Duggan, 2001; Koper and Roth, 2002; Cook and Ludwig, 2006; Duggan et al., 2011; Leigh and Neill, 2010; Cheng and Hoekstra, 2013; Dube et al., 2013; Knight, 2013; Cook et al., 2014; Webster et al., 2014; McClellan and Tekin, 2017; Donohue et al., 2019). However, the manner in which these policies impact U.S. racial disparities in homicide remain largely unexplored in the empirical gun control literature.⁴ This paper is the first to explicitly examine the nature in which gun control policies affect racial differences in homicide and enforcement activity. More importantly, the analysis suggests a direct connection between largely segregated gun violence and declines in policing productivity with respect to gun offending. This paper also provides stronger evidence showing that the PTP repeal led to increased exposure to gun violence by law enforcement compared to previous work (Crifasi et al., 2016). Focusing on the racial implications of gun control policy provides a new pathway for future research to evaluate similar interventions capable of producing meaningful effects within underground gun markets.

While the findings from this paper are consistent with the *state-level* results presented in Webster et al. (2014), this paper departs from their work in several critical ways. In contrast to their focus on the 1999-2013 period, the main analyses for this study include nearly 26 years of pre-repeal data and 12 years of post-repeal data–providing a more complete picture of pre-intervention trends and the sustainability of gun violence deeper into the post-repeal period. While Webster et al. (2014) primarily rely on vital statistics data, the usage of FBI Supplementary Homicide Reports (SHR) data in this analysis also allows for a more granular understanding of *city-level* homicide victimization (e.g., homicide by age, race/ethnicity, and weapon type). Second, GSC estimation provides a data-driven approach to constructing credible counterfactual trends and assessing the extent which parallel trends holds over the longer pre-intervention period. Third, this study also

⁴McClellan and Tekin (2017) exploit state-level variation in "stand your ground" laws in order to estimate their impact on homicide and injuries–with these effects generally concentrated among White men. While Missouri passed a similar law around the time of the repeal, stand your ground laws are not weapon-specific and their estimates run counter to the results presented in this paper. More importantly, their work does not necessarily explore why racial differences in homicide would result from this particular policy regime.

uses two complementary proxies of post-repeal gun proliferation in order to formally assess the impact of the repeal on gun supply to both primary and secondary gun markets. A fourth difference involves this study's focus on race which acknowledges a growing consensus on the role of social interactions in determining homicide and policing outcomes.⁵ Finally, this study also documents the increase in officer exposure to post-repeal gun violence with a more convincing research design and highlights the additional social costs of gun market deregulation .

The paper proceeds in the following manner. Section 2 examines the racial differences in homicide trends within the City of St. Louis and Kansas City while also motivating the preemption model within the context of the Missouri PTP repeal. Section 3 describes both the GSC estimation strategy and the changes-in-changes model. Section 4 then goes on to discuss the primary data sources for the study and sample construction. Section 5 presents the GSC estimates corresponding to the gun proliferation, homicide, and enforcement activity results. Additional analyses also confirm the robustness of these results to alternative specifications, study samples, and estimation strategies. The paper then provides neighborhood-level changes-in-changes estimates capturing the distributional consequences of the PTP repeal across racial groups. Finally, the paper concludes in Section 6.

2 Race and Homicide within the St. Louis and Kansas City

Gun violence in St. Louis and Kansas City is overwhelmingly concentrated in predominately Black, and deeply segregated, neighborhoods. Figure 2 shows neighborhood-level (i.e., census tract) changes in firearm homicide across racial groups three full years before and after the 2007 PTP repeal while associating each neighborhood with their percentage of non-Hispanic Black residents according to the 2010 American Community Survey data. These homicide data come directly from the St. Louis and Kansas City police departments which are then mapped into each city's 2010

⁵Moreover, the inclusion of variables such as law enforcement officers per capita in the preferred specification in Webster et al. (2014) could also bias their estimates given the important changes in policing activity specific to Black communities.

census tract boundaries. One immediately notices the extraordinary levels of residential segregation across both cities. The well-known "Delmar (Boulevard) Divide" partitions the predominately Black neighborhoods in the north from the predominately White and more affluent neighborhoods in the southernmost neighborhoods in the City of St. Louis with Troost avenue playing a similar role in Kansas City. Black neighborhoods in both cities experience historically higher levels of poverty, unemployment, and educational attainment when compared White neighborhoods. These neighborhoods also account for nearly 90 percent of homicides over this period. Local police reports from both cities also suggest that the majority of reported circumstances tend to involve an argument or dispute with gang violence and drugs playing a more limited role with respect to homicide in both cities. Post-repeal increases in White homicide victimization are somewhat larger in Black neighborhoods when compared to White neighborhoods.

The intense spatial concentration of post-repeal gun violence significantly alters the incentives for investment in illegal firearms. As suggested in Figure 2, incidents with reported suspect information are largely intraracial with 'Black-on-Black' homicide increasing sharply during the first three years of the post-repeal period. These spatial patterns align with a growing economics of crime literature emphasizing the role of social interactions in shaping spatial and temporal variation in crime (Glaeser et al., 1996; Glaeser and Glendon, 1998; O'Flaherty and Sethi, 2010a,b; Patacchini and Zenou, 2012, 2013). In contrast to the autonomous decision-making discussed in the canonical (Becker, 1968) model, explanations based on social interactions acknowledge the interdependent nature of criminal decision-making in addition to the importance of contextual factors such as segregation in contact and attributes of the individuals involved that could ultimately lead to significant multiplier effects.

Relevant to this study, O'Flaherty and Sethi (2010b) provide a theoretical account for racial differences in homicide where the preemptive motive to preserve one's life can lead to an escalation in violence as expectations surrounding it's usage become self-fulfilling. Suppose that two randomly matched individuals, from observable groups B or W, must settle a dispute. The probability a non-

violent individual is killed by a violent person is given by p while one person dies when both are violent with probability 2q such that q . The commonly known loss to the victim is $captured by <math>\delta > 0$ while (private) offending costs $\gamma \in \mathbb{R}$ have interaction specific distributions $F_{ij}(\gamma) \forall i, j \in \{B, W\}$. O'Flaherty and Sethi (2010b) show that each homicide interaction type represents a distinct Bayesian game with equilibrium probabilities of violence $\lambda_{ij} = F_{ij}(\tilde{\gamma}_{ij})$ and $\lambda_{ji} = F_{ji}(\tilde{\gamma}_{ji})$ with $(\tilde{\gamma}_{ij}, \tilde{\gamma}_{ji}) \in [0, \delta]^2$. Furthermore, the equilibrium per capita victimization rates $\forall i, j \in B, W$ are given by:

$$v_b = (\eta + (1 - \eta)\beta)v_{bb} + (1 - \eta)(1 - \beta)v_{bw}$$
(1)

$$v_w = (\eta + (1 - \eta)(1 - \beta))v_{ww} + (1 - \eta)\beta v_{wb}$$
⁽²⁾

where β denotes the proportion of the population belonging to group *B*, η the probability of drawing an own-group opponent (i.e., the nature of segregation), and $v_{ij} = \lambda_{ji}(\lambda_{ij}q + (1 - \lambda_{ij})p)$ describing the likelihood of an individual from group *i* being killed by someone from group *j*. In addition to placing some structure on the racial differences in homicide described in this study, the model yields sharp predictions based on whether offending costs γ are victim-contingent (e.g., lower rates of conviction for cases involving Black victims) or offender-contingent (e.g., lower opportunity costs for Black offenders with extensive criminal records). While one could make a case for γ being driven by both victim and offender attributes, offender-contingent costs remain consistent with the post-repeal experiences of both cities–including significant racial disparities in socioeconomic disadvantage, highly disproportionate number of known suspects with criminal histories (Hayden Jr, 2017), and well-documented concerns of witness cooperation (MODPS, 2019). In this case, an increase in segregation measure η results in higher Black homicide victimization rates and lower White rates while an increase in β raises homicide victimization for both racial groups. As shown in Figure 2, these predictions are very much consistent with the residential and homicide experiences in both cities where descriptive evidence also suggests $v_{wb} > v_{bw}$.

An extension of the preemption model allows for weapon acquisition, in which individuals can now make a costly ex-ante (binary) investment in technology that reduces offending costs, yields deeply insightful theoretical predictions for racial disparities in homicide. For example, the investment in new firearms may increase the lethality of a homicidal interaction if this weaponry possesses a greater capacity to fire more frequently and could even contribute to the anonymity of the incident when shooting from a distance (O'Flaherty and Sethi, 2010a). In the case of the PTP repeal, this characterization of the model most likely speaks to a decline in c for new weapons driven by lower straw purchasing costs and increased competition in generally "thin" underground gun markets (Levitt and Venkatesh, 2000; Cook et al., 2007, 2015). If $F_{ib}(\gamma) \ge F_{iw}(\gamma)$, and for lower investment costs c' < c, O'Flaherty and Sethi (2010b) show show that policy interventions such as the PTP repeal would lead to a critical amplification effect–where $v_{b}^{'} > v_{b}$ and $v_{w}^{'} \ge v_{w}$, $v'_b > v'_w$. This amplification effect comes from the fact that a reduction in firearm investments costs results in a significant expansion in the range of types with sufficiently low γ for Bs relative to Ws. In other words, Black residents in Kansas City and St. Louis are considerably more likely to encounter someone who has invested in a firearm than White Missourians in these cities. With previous research emphasizing the hyper-concentration of gun violence in many U.S. cities (Braga et al., 2010), one empirical implication of this finding is that post-repeal gun violence should extend beyond the most violent neighborhoods in both cities. This paper formally explores many of the predictions from the preemption model in the analyses to follow.

3 Empirical Strategy

3.1 Generalized Synthetic Control Estimation

This study estimates the effects of the PTP repeal on both gun proliferation and racial differences in gun violence using the generalized synthetic control (GSC) methodology introduced in (Xu, 2017). More specifically, the analysis primarily estimates linear factor models of the following form:

$$Y_{ct}^{j} = \beta_{ct}^{j} PTP_{ct} + \mathbf{X}'\gamma + \lambda_{c}'f_{t} + \alpha_{c} + \xi_{t} + \varepsilon_{ct}^{j}$$
(3)

where Y_{ct}^{j} denotes an outcome among individuals of race *j* for city *c* (county or state for the gun proliferation results) at time *t*, PTP_{ct} is a binary indicator of the permit-to-purchase law implementation, **X** a $k \times 1$ vector of stylized covariates, f_t a $r \times 1$ vector of unobserved common factors, λ_c a $r \times 1$ vector of unknown factor loadings, city (county or state) fixed effects α_c , year fixed effects ξ_t , and unobserved idiosyncratic shocks ε_{ct}^j with zero mean. Here, *r* denotes the number of (a priori) unknown factors. Each city-level model controls for percent of the population male, racial composition for group *j* (e.g., non-Hispanic Black models include percent of the population non-Hispanic Black and percent of the population Hispanic), percent of female-headed household, percent of the population living in (race-specific) poverty, (race-specific) unemployment rates, percent of the population never married, percent of the population ages 15-24, percent of the population ages 25-44, and a (race-specific) isolation index measure accounting for city-level segregation.⁶ Let $Y_{ct}^{j}(1)$ and $Y_{ct}^{j}(0)$ denote potential outcomes under a given gun control policy regime with pre-repeal periods T_0 such that $1 \le T_0 \le T$. The dynamic average treatment effect on the treated (ATT) units *c* at time $t > T_0$ is given by:

$$\beta_t^j = \frac{1}{N_{Treated}} \sum_c [Y_{ct}^j(1) - Y_{ct}^j(0)]$$
(4)

Obtaining a causal estimate for β_t^j requires finding a credible counterfactual for unobserved $Y_{ct}(0)$. GSC estimation tackles this issue by first estimating an interactive fixed effects model based on the full control group data in order to obtain estimates for $\hat{\gamma}$, \hat{F} , and $\hat{\lambda}_{CO}$. The next step involves finding factor loadings λ_c that minimizes any pretreatment differences in the mean squared prediction

⁶All base models for the total population include percent of the population Black and the isolation index measure for Black residents. County-level and state-level gun proliferation models are not race-specific and only differ from the city-level specifications due to the lack of isolation index measures for these geographical levels.

error (MSPE) for each treatment unit. These estimates subsequently allow for the computation of $\hat{Y}_{ct}^{j}(0) = \mathbf{X}'\hat{\gamma} + \hat{\lambda}'_{c}\hat{f}_{t}.$

In order to estimate the (a priori) unknown factors r, GSC estimation utilizes a "leave-one-out" cross-validation procedure by holding back a small amount of pre-intervention data and uses the remaining data to predict the withheld data. This procedure uses average prediction accuracy in order to choose the optimal number of factors for the model. In contrast to the permutation tests associated with the SC methology, GSC estimation also contains a parametric bootstrap procedure for the estimation of standard errors. This bootstrap procedure also leverages the full set of control group data with draws based on the empirical distribution of prediction errors. Standard errors for each model in this study are based on bootstrap samples of N = 2,000.

Identification based on the exogeneity of the PTP repeal mainly rests on the familiar parallel trends assumption in addition to ruling out important anticipatory effects and interference among control units. While a direct test of the parallel trends assumption remains implausible, synthetic control methodologies remain helpful in understanding significant departures in pre-intervention gun violence trends between the treatment and estimated counterfactual trends (Abadie et al., 2010; Xu, 2017; Abadie, 2019). Restricting the donor pool to units with comparable pre-intervention characteristics, and removing units with large idiosyncratic shocks to the outcomes of interest, also helps in avoiding potential interpolation biases (Abadie et al., 2010; Abadie, 2019). Direct testing for anticipatory effects also remain challenging, but anecdotal evidence suggests that that general support for stricter gun control policies in cities runs in stark contrast to the widespread support for less restrictive gun laws in rural areas of the state-implying a potential divide in anticipated policy awareness (Edsall, 1999). Lastly, the no-interference assumption requires the absence of spillover effects in interstate gun markets. For example, a large gun supply shock to Missouri's domestic secondary markets could lead to the state becoming a net exporter of firearms to markets in bordering states with more restrictive gun control policies (Knight, 2013). However, ATF gun trace data suggests that the post-repeal proliferation of crime guns overwhelmingly took place

within Missouri's state borders.7

3.2 Changes-in-Changes Estimation

An important prediction from the preemption model involves the greater exposure of Black victims to gun investment in homicidal interactions taking place within Kansas City and St. Louis. Such an amplification effect possesses important distributional consequences for race-specific homicide in post-repeal Black and White neighborhoods. In particular, an escalation in post-repeal Black homicide should extend beyond the most violent neighborhoods in both cities with only a modest increase among the most violent White neighborhoods. In order to formally assess these predictions, this study also provides neighborhood-level (nonlinear) "changes-in-changes" estimates as put forth in Athey and Imbens (2006) and focuses on race-specific homicide.⁸ Rather than focusing on the average effect of the treatment, the *distributional effect* serves as the estimand of interest as the impact of the treatment could vary across units (i.e., neighborhoods). Suppose for a collection of neighborhoods *i* we observe $Y_{PTP=0|1i}(0)$ and $Y_{PTP=1|1i}(0)$ in pre-repeal period t = 1 for both groups. We also observe $Y_{PTP=0|2i}(1)$ and are interested in unobserved $Y_{PTP=1|2i}(0)$ in post-repeal t = 2. Let $F_{PTP|t}(\cdot)$ denote the cumulative distribution function corresponding to each potential outcome. Athey and Imbens (2006) show that the changes-in-changes estimator at quantile τ is then given by:

$$\Delta_{\tau} = F_{PTP=1|2}^{-1}(\tau) - F_{PTP=1|1}(F_{PTP=0|1}^{-1}(F_{PTP=0|2}(\tau))) \equiv \Pr(Y_{PTP=1|2i}(0) \le \tau)$$
(5)

The first identifying assumption in estimating Δ_{τ} involves being able to express the potential outcome in the absence of the treatment as a monotone function of unobservable U_i and time such

⁷See the supplementary appendix for additional details. While Missouri accounts for less than one third of its total firearm traces in the year before the PTP repeal, this number increases to 50.34 percent by 2013. This large increase in the domestic recovery of Missouri firearms suggests that the PTP repeal had important consequences for illegal secondary markets within the state. Moreover, none of the states bordering Missouri experience any significant changes in Missouri firearm traces within their borders over the post-repeal period.

⁸In particular, the analysis estimates Black (White) homicide in predominately Black (White) neighborhoods based on their residential population in 2004.

that $Y_{PTP|ti}(0) = h(U_i, t)$ -where *h* is strictly increasing and the distribution of U_i remains stable over time for both groups (i.e., rank similarity). Second, identification also requires that the support of U_i for the treatment group be contained within the support of U_i for the control group. Athey and Imbens (2006) also offer a residualized approach in order to control for a vector of covariates. This two-step process involves first recovering the residuals from a linear regression of the outcome on all covariates plus group time dummies then carrying out changes-in-changes estimation based on these residuals. This analysis specifically controls for poverty, unemployment, per capita income, percent of female-headed households, percent of residents with educational attainment less than high school, percent non-Hispanic, percent Hispanic, percentage of residents ages 15-24, and the percentage of residents ages 25-44. The underlying homicide data come from the City of St. Louis, Kansas City, and Cleveland (Ohio) police departments with additional information on these data in sections to follow.

4 Data

4.1 City-Level Homicide and Enforcement Activity

The main generalized synthetic control estimates for race-specific homicide and enforcement activity are based on several data sources covering a total of 143 large U.S. cities over the 1981-2018 study period. With the PTP repeal implemented in August 2007, this yields approximately 26 years of pre-repeal data and 12 years of post-repeal data. The primary source of homicide data come from the incident-level Supplementary Homicide Reports (SHR) which consist of *preliminary* reports to the FBI by local law enforcement agencies–with all analyses excluding officer-involved homicides, institutional killings, and incidents involving legal intervention by a private citizen.⁹ The SHR data provide available information on both the victims and offenders involved in each homicide incident. Homicide incidents are aggregated up to the city-level separately by race/ethnicity, in

⁹The study sample also excludes homicide incidents related to the 1995 Oklahoma City bombing and the September 11, 2001 terrorist attacks.

addition to other characteristics of interest (e.g., age and weapon type), in order to construct all homicide rates per 100,000. Data on arrests and clearance rates come from the FBI Uniform Crime Reports (UCR).¹⁰ Race-specific arrests categories cover a wide range of offenses from aggravated assault to weapons possession and all rates are again reported per 100,000 city residents. Although unavailable by race, clearance rates cover a range of index crimes with rates also disaggregated by weapon type for aggravated assault and robbery (i.e., gun, knife, unarmed, and other weaponry). Similarly, data on officer assaults by suspects come from the Law Enforcement Officers Killed and Assaulted (LEOKA) Program series and breaks these assaults out by weapon type with rates reported per 100 full-time sworn officers (i.e., total, gun, knife, unarmed, and other weaponry).

This study also interpolates demographic data from the U.S. Census Bureau across intercensal years with accompanying 2010-2018 data coming from the American Community Survey (ACS). Stylized covariates based on these data include information on the racial composition of the population (i.e, percent of the population non-Hispanic Black, non-Hispanic White, and Hispanic), percent of the population ages 15-24, percentage ages 25-44, percent of the population male, percent of residents ages 25 and over with educational attainment less than high school, percent of female-headed households, percent of the population who never married, (race-specific) unemployment rates, (race-specific) poverty rates, and per capita income (measured in 2000 dollars). Given the importance of residential segregation in determining the racial composition of homicidal interactions, this study also uses city-level isolation index data produced by the Census Bureau and made available by the Brown University American Communities Project (Logan, 2020).

In order to avoid potential contamination of the donor pool, this analysis excludes Indiana and Tennessee as each state repealed some form of background check requirement during the pre-intervention period.¹¹ In order to avoid interpolation biases, sample construction involves

¹⁰While FBI UCR arrest data only account for race and not ethnicity, the relatively small Hispanic population in both cities results in very minor differences between these measures.

¹¹One exception remains the 2012 repeal of the "one-handgun-per-month" law repeal in Virginia. However, private handgun sales in Virginia do not require background checks.

the removal of potential control units within the donor pool experiencing large (non-systematic) idiosyncratic shocks during the pre-intervention period. In a similar vein, this study also restricts the sample to cities with a total population of at least 50,000 residents in 2000, 10,000 non-Hispanic Black residents in 2000, and complete data over the study period which ultimately yields a sample of 143 large U.S. cities.¹²

4.2 Gun Proliferation

GSC estimation of the PTP repeal's impact on gun market activity involve two distinct measures of gun proliferation. The county-level fraction of suicides committed with a firearm (FSS) serves as the first proxy measure and enjoys considerable support in the literature as a measure of local gun ownership (Cook, 1991; Duggan, 2001; Cook and Ludwig, 2004, 2006).¹³ County-level vital statistics data necessary for constructing FSS come from the U.S. Centers for Disease Control and Prevention (CDC) WONDER database and covers a total of 132 large U.S. counties over the 1981-2018 period.¹⁴¹⁵ Given that the CDC censors data for counties experiencing sufficiently low mortality, and for similar empirical reasons outlined in Section 4.1, analyses corresponding to these data focus on counties with at least 10 death in each year of the study period and at least 10,000 Black residents.¹⁶ Moreover, all counties within Indiana and Tennessee are again excluded from the donor pool. While the City of St. Louis remains a distinct treatment unit as an independent city, the county-level analysis instead focuses on Jackson County as the second treatment unit–accounting for the overwhelming majority of Kansas City's residential population.

¹²These requirements also result in (non-Hispanic) White estimation samples based on a total of 142 cities. Arrest and officer assault donor pool sizes possess slight differences due to these restrictions as well.

¹³Contrary to homicide trends, White Missourians make up approximately 85 percent of the state while accounting for nearly 93 percent of all suicides (UMSL, 2015).

¹⁴Consistent with previous literature, the ICD-9 codes for homicide are E960-E969 and ICD-10 codes X85-Y09. Firearm homicide mortality includes ICD-9 codes E965.0-E965.4 and ICD-10 codes X-93-X95. ICD-9 codes for suicide mortality includes E950-E959 and ICD-10 codes X60-X84. Lastly, firearm suicide mortality includes ICD-9 codes X72-X74.

¹⁵Corresponding county-level homicide and firearm homicide rates also come from these data in order to carry out homicide-related robustness checks.

¹⁶This study also combines the five boroughs of New York City into one control unit.

This analysis also constructs a second measure of gun proliferation based on state-level FBI National Instant Criminal Background Check (NICS) reports and includes a total of 49 states (excluding Indiana and Tennessee) over the 1999-2018 period. The FBI launched NICS in 1998 as mandated by the Brady Handgun Violence Prevention Act of 1993 and requires FFLs to conduct background checks for all potential firearm or explosives purchases.¹⁷ In comparison to the private firearm sales solely subject to the former PTP law, these federal background checks were required before and after the repeal of the Missouri permit-to-purchase law. NICS background checks generally take only a few minutes, but any check taking longer than three days in duration can proceed legally without further inquiry. Handgun and long background check rates, reported per 100,000, reflect potential gun sales as not all checks conducted by FFLs result in a purchase. Similar to aforementioned homicide and arrest analyses, county-level demographic data also come from the U.S. Census. Specifications for both gun proliferation analyses control for racial composition of the population (i.e, percent of the population non-Hispanic Black, non-Hispanic White, and Hispanic), percent of the population ages 15-24, percentage ages 25-44, percent of the population male, percent of residents ages 25 and over with educational attainment less than high school, percent of femaleheaded households, percent of the population who never married, (race-specific) unemployment rates, (race-specific) poverty rates, and per capita income (measured in 2000 dollars).

4.3 Local Administrative Homicide Data

Race-specific changes-in-changes homicide estimates are based on geocoded incident-level homicide data from the City of St. Louis Metropolitan Police Department, Kansas City (Missouri) Police Department, and the Cleveland (Ohio) Police Department over the 2004-2017 period. In contrast to the preliminary homicide data reported by local law enforcement agencies to the FBI in the SHR, these data capture the most recently updated homicide incidents with similar information on victims and offenders involved in each incident. In order to construct race-specific neighborhood-

¹⁷The study period for these analyses begin in 1999 due to data incompletion in the first year of implementation.

level (i.e., census tract) homicide rates (per 1,000 residents), homicide incidents are first mapped into census tract shapefile boundaries for each respective city using their associated geocoded information and then separately aggregated up to the census tract level for each racial group. Shapefile data come from the CDC PLACES Project and are based on 2010 census tract boundaries (CDC, 2020).¹⁸ Each neighborhood is associated with their racial/ethnic group plurality in 2004–the earliest year for which complete homicide data are available for each jurisdiction. The study sample for these analyses ultimately include a total of 426 predominately Black and White neighborhoods. Given the largely intraracial nature of homicide in Kansas City and St. Louis, race-specific changes-in-changes homicide estimates are constructed separately by neighborhood race. Each specification also controls for (residualized) poverty, unemployment, per capita income, percent of female-headed households, percent of residents with educational attainment less than high school, population racial composition, percentage of residents ages 15-24, and the percentage of residents ages 25-44 based on census tract-level census data.

5 Results

5.1 Descriptive Statistics

Table 1 describes the pre-intervention demographic characteristics for both Missouri cities and their relevant control groups—in addition to the corresponding state-level and county-level gun proliferation measures. The residential population for the City of St. Louis is roughly split between Black and White racial groups while Whites constitute nearly 62 percent of the residential population in Kansas City. Using the isolation index, Table 1 also confirms the extraordinary levels of segregation seen in both cities according to the maps shown in Figure 2. For example, approximately 81 percent of Black St. Louis residents live in a neighborhood where the average Black resident resides while the corresponding measure for White residents is 78 percent. Residential segregation

¹⁸The sample of homicide incidents also excludes officer-involved homicide, justifiable homicides, and homicides not mapped into the census tracts for any city.

in both cities vastly exceeds the levels observed in other large U.S. cities within the control group. Black unemployment and poverty are three times higher relative Whites residents in Kansas City and St. Louis, but these racial differences are largely comparable to the experiences of other large cities.

While racial differences in socioeconomic disadvantage within St. Louis and Kansas City remain are comparable to disparities seen elsewhere in the country, pre-intervention gun violence within these cities considerably outpaces the average rates of the control group. Average Black firearm homicide rates in both cities are approximately nine times greater than the rates observed among White victims. Moreover, average Black firearm homicide rates among the treatment cities are more than twice as large as similar rates among control cities. However, White firearm homicide rates remain fairly comparable to the pre-intervention homicide rates observed in other large U.S. cities. Similar disparities also exist in non-gun homicide, aggravated assault arrests, and weapons arrests—with gun proliferation playing a salient role in the latter two enforcement activities. Gun assault rates are also considerably higher among law enforcement in St. Louis and Kansas City relative to other large cities. These pre-intervention statistics strongly suggest that average firearm homicide rates within the control group would serve as a poor counterfactual for both Missouri cities in the absence of the repeal. Interestingly, pre-intervention murder clearance rates are fairly similar in both Missouri cities when compared to the control group.

Table 1 also compares pre-intervention gun market characteristics using the state-level NICS background check rates by weapon type and the county-level FSS gun ownership measure corresponding to each market. For county-level FSS, the City of St. Louis again stands as an independent city while the column for Kansas City instead refers to Jackson County which accounts for the vast majority of the city's population. Beginning with the state-level gun market activity, one notices that Missouri handgun background check rates are slightly lower when compared to other states while long gun rates are somewhat larger. While not all FFL background checks result in sales, these descriptive statistics suggest that primary gun market activity in Missouri and the control

group are roughly comparable in the years leading up to the repeal. Finally, the county-level FSS measure implies that local gun ownership rates across St. Louis and Jackson County are very similar to the average rates among control counties at slightly more than 40 percent.

5.2 Missouri PTP Repeal and Gun Proliferation

In assessing the impact of the PTP repeal on Missouri gun violence, an important question remains the extent to which the repeal led to an important supply shock involving the movement of firearms from primary markets (i.e., the commercial sale of firearms by FFL gun dealers) to secondary markets (e.g., the sale and transfer of firearms through private sales). Table 2 provides the generalized synthetic control results based on the county-level FSS gun ownership measure and state-level NICS background checks by weapon type. Table 2 also suppresses the coefficients associated with covariates in each model in order to focus on the main causal effects of interest. The county-level FSS measure captures average gun market activity and provides suggestive evidence of transfers in gun ownership from "legal" to "illegal" gun owners primarily through expanded access to secondary markets (Duggan, 2001; Cook and Ludwig, 2006). Starting with column one, these results suggest that the PTP repeal led to a statistically significant 9.97 percentage point increase in county-level FSS or a 24 percent increase relative to the pre-intervention mean.¹⁹ These results imply a 24 percent increase in local gun ownership across these markets, relative to the pre-intervention mean, on average.

State-level NICS background check rates paint a complementary picture regarding post-repeal changes in *primary* gun market sales among Missouri FFL gun dealers. Given that all firearms originate from some primary market, increasingly domestic markets in the case of post-repeal Missouri, these sales play an essential role in supplying underground markets with firearms and potentially affecting gun violence within the state. Furthermore, the provisions of the former PTP

¹⁹The GSC cross-validation procedure also yields a model with one latent factor and a MSPE of 54.42. Information on any estimated latent factors, factor loadings, and implied weights corresponding to the main GSC estimates can be found in the supplemental appendix of the paper.

law meant that most changes in gun supply should overwhelmingly operate through an increase in handgun sales as opposed long gun sales. The second and third columns of Table 2 confirm that this is indeed the case. These results indicate that the PTP repeal led to a large, and statistically significant, 1,387 increase in potential handgun sales per 100,000 throughout the state of Missouri. Column three also shows a positive increase in long gun background checks, on average, but this increase is not statistically significant at conventional levels.

Figure 3a compares the actual trends in potential handgun sales for the state of Missouri with the estimated trends for (generalized) 'synthetic Missouri' while Figure 3b provides the corresponding dynamic average treatment effect and associated 95 percent confidence intervals. These figures provide strong visual evidence that Missouri experienced exponential growth in the market for handguns immediately following the PTP repeal–reaching 1,400 handgun checks per 100,000 in the first full year of the repeal and 2,000 handgun checks by 2014. Collectively, these results provide strong evidence that the gun supply shock within Missouri primarily operated through an increase in handgun proliferation. This increase in sales could reflect the lower post-repeal costs of firearm acquisition among both legal and illegal gun owners throughout the state. With more recent work confirming the substantial role of straw purchasing behavior in illegal gun proliferation (Cook et al., 2014, 2015), rather than large scale gun trafficking operations (Kleck and Wang, 2009), this gun supply shock is most likely driven by both the removal of the associated fee for each permit background check and the lower barriers to firearm ownership within the underground market for firearms.

5.3 Race and Post-Repeal Homicide

The preemption model discussed in Section 2 yields sharp predictions concerning the effect of PTP repeal on racial differences in homicide. To the extent that the PTP repeal lowered offending costs through a decrease in firearm investment costs, the large firearm supply shock could produce an amplification effect characterized by large and sustained increases in Black homicide and to

a lesser extent White homicide. Table 3 shows the main city-level GSC results for homicide victimization in St. Louis and Kansas City involving different forms of weaponry across racial groups. The results shown in the first three columns of Panel A make clear that the increase in overall homicide homicide largely remains attributable to an increase in homicide victimization among Black Missourians.²⁰ More specifically, the PTP repeal led to a statistically significant increase of 13.20 Black homicide deaths per 100,000 or a 19 percent increase relative to the pre-intervention mean, on average. White homicide victimization in both cities also appear to increase although this result is not statistically significant at conventional levels.

However, the remaining results imply that the average effect of the PTP repeal on Black homicide involves an important weapon substitution effect. Column five of Panel A shows that the PTP repeal led to a statistically significant increase of 16.70 deaths per 100,000 or a 35 percent increase relative to the pre-intervention period. The racial differences in the point estimates for firearm homicide are also significant at the five percent level. The weapon substitution effects becomes readily apparent when comparing these results to estimates shown in the first three columns of Panel B focusing on non-gun homicide rates. Focusing again on Black Missourians, these results indicate that the PTP repeal led to a statistically significant 3.76 (22 percent) *decrease* per 100,000 for Black homicide victimization not involving a gun of any kind. White non-gun homicide also falls, but these declines fail to achieve statistical significance. Similar to the state-level background check results shown in Table 2, the PTP repeal did not produce any meaningful changes in long gun homicides for any group and again confirms that the gun supply shock was overwhelming driven by an increase in firearm proliferation as one might expect under the previous permit-to-purchase law regime.

Figure 4 provides the dynamic average treatment effect results with respect to firearm homicide

²⁰Table 3 suppresses the coefficients associated with covariates in each model in order to focus on the main causal effects of interest, but estimates related to the race-specific segregation measures yield additional insight into the relationship between this variable and overall homicide. While statistically significant only for the Black isolation index measure, the associated coefficients on the Black and White segregation measures each have the expected sign according to the preemption model characterized by offender-contingent costs. More specifically, an increase in the Black (White) isolation index is associated with an increase (decrease) in overall homicide.

for both racial groups. Figure 4a largely confirms the necessary parallel trends between the average firearm homicide trends for both cities and their synthetic counterpart. However, the dynamic average treatment effects lends some additional insight into the temporal nature of post-repeal gun violence for Black and White Missourians in both cities. The average treatment effect estimates for Black firearm homicide shown in Figure 4b suggest that much of the escalation in gun violence occur during approximately the first three years and the last five years of the post-repeal period-peaking at 25 and 30 Black firearm homicides per 100,000 in each of these sub-periods, respectively. In contrast to the average post-repeal effects, the dynamic results for White firearm homicide show a statistically significant increase of nearly 10 White firearm homicide deaths per 100,000 over the 2016-2018 period. The heightened levels of city-level gun violence inspired several interventions by law enforcement agencies, prosecutors, and other parties interested in reducing firearm homicideproviding some potential explanations for the short-lived reductions in post-repeal gun violence. These mostly temporary interventions included the introduction of the Acoustic Gunshot Location System (AGLS) in St. Louis' most violent neighborhoods (Mares and Blackburn, 2012), undercover ATF storefront operations targeting the illegal acquisition of firearms (DOJ, 2016), a temporary gun monitoring pilot program within the St. Louis local courts to exclusively tackle gun-related offenses (Rosenfeld et al., 2014), and an one-year foot patrol experiment in Kansas City which began in January 2011 (Novak et al., 2015).

A prominent concern regarding the deregulation of secondary firearm markets involves expanded access to these weapons by adolescents (Cohen and Ludwig, 2003; Cook and Ludwig, 2004; Mocan and Tekin, 2006; Carr and Doleac, 2018). For example, Cook and Ludwig (2004) finds evidence that a 50 percent increase in county-level FSS is associated with a two-fold increase in teen gun carrying with this effect being more prevalent among Black youth. Given the large effect of the PTP repeal on county-level FSS in Kansas City and St. Louis, Figure 5 further assesses the extent to which increased gun proliferation in both cities coincide with important changes in youth homicide victimization across racial groups.²¹ In addition to confirming the familiar age gradient in criminal behavior, the GSC results in Figure 5a suggests that the PTP repeal produced statistically significant increases in Black firearm homicide for all age groups except among victims ages 0-14. In particular, Black victims ages 15-24 experienced an additional 8.32 firearm homicide deaths per 100,000 and this effect is statistically distinct from the corresponding estimate associated with similarly aged White victims. The effects of the PTP repeal on White firearm homicide is largest for victims ages 25-44, but none of the White firearm homicide estimates possess statistical significance.

In contrast to these results, Figure 5b shows the corresponding effects of the PTP repeal on non-gun homicide across each age and racial group. While this evidence suggests a decline in non-gun homicide victimization among all groups, only the -1.39 decrease per 100,000 among Black victims ages 15-24 remains statistically significant at conventional levels. These results collectively provide strong evidence that post-repeal gun violence in both cities is largely driven by weapon substitution among Black youth, and consistent with the findings from Cook and Ludwig (2004), suggests that the large gun supply shock attributable to the PTP repeal expanded access to secondary markets among illegal owners.²²

5.4 Post-Repeal Gun Violence and Enforcement Activity

The post-repeal escalation in gun violence presents considerable challenges to law enforcement activity seeking to maintain public safety. Illegal gun proliferation exposes officers to greater offender lethality, and similar to the preemption model among civilians, could also influence officers' approach to enforcement activity–including a potential increase in the use of lethal force in civilian interactions (Fryer Jr, 2019; O'Flaherty and Sethi, 2019). However, the City of St. Louis

²¹In the absence of city-level age by race population estimates, both homicide rates are instead constructed using each racial group's city-level total population estimate.

²²While not directly testable within this framework, another explanation for these findings involves peer effects in gun ownership (Glaeser and Glendon, 1998; Cook et al., 2007).

and Kansas City also experienced two notable criminal justice policy changes with the potential to influence enforcement activity related to gun violence. First, a 2005 Missouri statute allowing the open carrying of a firearm in a vehicle without a permit complicated law enforcement's ability to link weapons to suspects and coincided with an increase warrant refusals by local courts (Rosenfeld et al., 2014). In a 2017 survey involving leaders from the St. Louis and Kansas City police departments, both departments overwhelmingly cited the lack of prosecution of gun crimes under this law as a significant challenge to reducing violent crime (MODPS, 2019). Second, both local governments also faced budgetary pressures attributable to the Great Recession challenging their ability to maintain previous levels of policing manpower. While both cities received critical funding from the Department of Justice Community Oriented Policing Services (COPS) grant program, they were each forced to reduce the size of their respective forces (Isom, 2009; Corwin, 2009). Both factors would place downward pressure on gun-related enforcement activities and overall policing efficiency in the presence of post-repeal gun violence (Levitt, 1997; Evans and Owens, 2007; Chalfin and McCrary, 2018; Mello, 2019; Weisburst, 2019; Chalfin et al., 2020).

Figure 6 provides GSC estimates by race describing the effects of the 2007 PTP repeal on various arrest categories. The most striking findings from this figure largely pertain to arrest offenses with known associations to illegal gun proliferation among Black suspects–notably aggravated assault and weapons arrests.²³ These point estimates suggest statistically significant 125 percent and 44 percent decreases in both arrest categories, respectively. Notably, the decline in weapons arrests is statistically distinguishable from the corresponding (non-statistically significant) effect for White arrests. Here, the aggravated assault and weapons arrest effects could be self-reinforcing as the decline in punishment of contemporaneous gun offending could quickly encourage future levels of violence. The PTP repeal also leads to a statistically significant increase in stolen property arrests of

²³The FBI defines aggravated assault as "an unlawful attack by one person upon another for the purpose of inflicting severe or aggravated bodily injury. This type of assault usually is accompanied by the use of a weapon or by means likely to produce death or great bodily harm" (FBI, 2013). According to St. Louis police reports, aggravated assault arrests involving a gun accounted account for roughly half of these arrests in most years (Isom, 2009).

177.40 per 100,000 which possibly supports an explanation based on the increasing attractiveness of stolen firearms within these markets (Helsley and O'Sullivan, 2001; Cook and Ludwig, 2003).²⁴. These results also remain consistent with statewide gun trace evidence indicating that illegal guns were making their way to crime scenes more quickly and reflects an increased value that illegal markets place on new firearms as older weapons possess greater risk of malfunction and links to previous crimes (Levitt and Venkatesh, 2000; Webster et al., 2009). Additional evidence from Figure 6 shows statistically significant declines in other assault arrests among White suspects and other sex offense arrests among Black suspects. While these declines could reflect genuine changes in underlying criminal behavior or policing efficiency, they also remain more susceptible to changes in law enforcement reporting.

Figure 7 provides the dynamic average treatment effects associated with the estimates for aggravated assault and weapons arrests. Building on Figure 6, Figure 7A shows a steep decline in aggravated assault arrests among Black suspects immediately after the PTP repeal with small, yet statistically insignificant, declines among White suspects. One feature of the dynamic weapons arrests estimates provided in Figure 7B involves the strong tracking of these arrests with trends in firearm homicide rates. The PTP repeals produces an immediate decline of 200 Black weapons arrests per 100,000 and falls by 400 arrests per 100,000 towards the end of the post-repeal period. White weapons arrests also appear to decline by the end of the study period, but again these estimates are not statistically significant at conventional levels. The results in Figure 7 again confirm the extraordinary declines in policing productivity with respect to arrests involving gun-related offenses.

Interestingly, the PTP repeal does not appear to lead to significant changes in murder arrests

²⁴As shown in the appendix, dynamic evidence for Black stolen property arrests suggests that this increase begins almost two years before the PTP repeal. While stolen property arrests indeed remain elevated during the post-repeal period, two other explanations could also account for these results. First, the 2005 Missouri statute allowing for the open carry of guns in motor vehicles without a permit could incentivize suspects in search of illegal firearms to break into these vehicles (Rosenfeld et al., 2014). Second, the St. Louis Metropolitan Police Department also further integrated Compstat technology in an effort to achieve greater efficiency in policing activities (Mokwa, 2006; Slocum et al., 2018). Previous evidence suggests that policing efficiency gains from Compstat are particularly strong for property crime as opposed to violent crime (Roeder et al., 2015).

among suspects from either racial group and reflects a lack of change in policing productivity in the presence of heightened urban gun violence. The results remain consistent with supplementary analyses confirming that the PTP repeal did not generate any statistically meaningful changes in murder clearance rates or other clearance rates characterized by offenses involving a firearm.²⁵ Finally, increased gun proliferation also challenges the safety of law enforcement officers directly responsible for addressing the documented escalation in gun violence. Similar to trends at the national level, officer deaths are extraordinarily rare events in Kansas City and St. Louis. However, one way of assessing changes in direct harm to officers involves estimating the effect of the PTP repeal on officers assaulted in the line of duty by suspects. While the results of this exercise confirms that the PTP repeal led to (non-statistically significant) declines in the rates of total officer assault and assault by other means (i.e., knife, other weaponry, and unarmed), officer gun assault rates increase on average by 2.33 per 100 officers or a 70 percent increase relative to the pre-repeal period.²⁶ Figure 8 provides the dynamic average treatment effect for the officer gun assault rate. Figure 8b shows that the estimated increases in officer gun assaults appear almost immediately after the repeal of the PTP law and peak at more than five officer gun assaults per 100 officers by 2011. Thus, the escalation in post-repeal Black gun violence among civilians coincides both with important declines in policing productivity and increases in officer exposure to gun violence while in the line of the duty. Moreover, this deterioration in public safety within Kansas City and St. Louis further intensifies the fear multiplier effect at the heart of the preemption model.

5.5 Robustness Checks and Sensitivity Analyses

Table 4 shows that the main results are largely robust to alternative model specifications, estimation procedures, and sample restrictions.²⁷ The first row of this table reproduces the city-

²⁵See the supplementary appendix for additional details.

²⁶See the supplementary appendix for additional details.

²⁷Robustness check results pertaining to gun proliferation, synthetic control estimation, and officer assaults can be found in supplementary appendix and produce similar conclusions. Given that county-level White homicide is extremely low in some years (i.e., less than 10), the CDC Wonder Database suppresses these values and this results

level results among the preferred specification for comparison purposes. The inclusion of additional covariates and alternative specifications based on the inclusion of certain fixed effects (i.e., city and year fixed effects) each produce qualitatively similar, if not statistically identical, results. Changes in the magnitude of these point estimates should be of no surprise given the importance of historical events such as the crack cocaine epidemic and cross-sectional differences in criminal justice policies or policing. Using county-level vital statistics data also produces a statistically identical (and highly significant) Black firearm homicide point estimate of 14.65 per 100,000 when compared to the corresponding estimate based on the SHR data.

The corresponding difference-in-differences results provide qualitatively similar estimates when compared to the GSC results in the second row–although White non-gun homicides now possess statistical significance with differences in some cases for the magnitude of certain coefficients. As shown in Table 1, equal weighting of cities in the donor pool could serve as a poor counterfactual for the homicide and arrest outcomes under consideration. Similarly, synthetic control estimates also yield comparable treatment effect estimates to the GSC results. However, the synthetic control approach produces an inferior pre-intervention fit for outcomes such as Black firearm homicide and demonstrate the need for model flexibility through additive fixed effects.

The August 2014 events surrounding the death of Michael Brown in Ferguson, MO (St. Louis County) also raises important questions regarding crime and policing practices during the latter years of the post-repeal period. Often identified as the birthplace of the "Black Lives Matter" social movement, protests grew considerably within the greater St. Louis area with escalating tension between some protestors and local law enforcement (DOJ, 2014). Commonly referred to as the "Ferguson effect," several studies examine the extent to which these events influenced enforcement activity either through the redistribution of policing resources in order to address the rising protests or greater scrutiny of police department behavior with mixed results (Rosenfeld, 2015; MacDonald, 2019; Devi and Fryer Jr, 2020).²⁸ In order to examine extent which the aforementioned events

in incomplete data. Thus, these findings focus only on total homicide and non-Hispanic Black homicide.

²⁸Devi and Fryer Jr (2020) specifically finds that DOJ "patterns-or-practice" investigations, taking place on or after the

influence the main results from this paper, the analysis also restricts the study period to end in 2013 and leads to a qualitatively consistent story with results from the full study period—with the only notable difference involving the Black weapons arrests estimate no longer possessing statistical significance at conventional levels. As shown in Figure 7B, this finding could reflect a slight lag in the decline of Black weapons arrests with dynamic evidence of significant decreases in Black weapons arrests in the years leading up to 2013. These results clearly show that the weapon substitution effects documented in this study are largely attributable to the PTP repeal and not the 2014 events in neighboring Ferguson. Even in the presence of a potential Ferguson effect, these stories should generally be seen as complementary with increased gun proliferation altering the lethality of post-repeal violence relative to other cities.

The potential contamination of the donor pool could bias any estimate of the PTP repeal effects if guns flow from Missouri to surrounding gun markets corresponding to cities in border states (Knight, 2013). Accounting for this possibility, Table 4 re-estimates the effects of the PTP repeal on each of the main outcomes of interest with the results from this exercise demonstrating that the exclusion of these cities does not alter the point estimates in any meaningful way. Lastly, the effects of the PTP repeal could extend beyond the City of St. Louis or Kansas City. The last row of Table 4 focuses exclusively on the cities of Columbia, Independence, and Springfield as treatment cities in producing the GSC estimates for each outcome. While outcomes such as firearm homicide possess considerable noise among the cities, generally oscillating about zero throughout the pre-intervention period, these estimates suggest that Black firearm homicide also increased in these areas–although the results no longer support a Black weapon substitution effect in addition to showing an increase in Black aggravated assault arrests. While the results connected to these smaller cities could support the possibility of greater policing efficiency within their associated

summer of July 2013, on crime in the absence of viral incidents of lethal force videos lead to a reduction in crime while investigations preceded by such incidents produce significant increases in homicide and other felony crime. The DOJ investigation in question specifically involved the Ferguson Police Department within St. Louis County and not the City of St. Louis Metropolitan Police Department.

police departments, the findings provide limited evidence of gun violence in other parts of the state.

5.6 Neighborhood-Level Homicide and Social Interactions

One consequence of the fear multiplier effect from the preemption model involves the differential exposure of (eventual) victims to greater post-repeal firearm investment across racial groups. Escalation in Black homicide victimization becomes more pronounced due to significantly lower offending costs in Black neighborhoods and a greater preemptive motive to invest in firearms for the marginal Black offender for whom such an investment is too costly before the repeal. As shown in Figure 2, the intense spatial concentration in gun violence and considerable residential segregation implies that social interactions play a salient role in determining racial disparities in homicide victimization. With many studies associating neighborhoods with stronger social ties (Topa, 2001; Bayer et al., 2008; Patacchini and Zenou, 2013), a natural question for this study remains the extent to which the effects of the PTP repeal extended beyond Kansas City and St. Louis' most violent neighborhoods.

Figure 9 formally tests this prediction from the preemption model by estimating the impact of the PTP repeal throughout the homicide *distribution* separately for predominately Black and White neighborhoods. More specifically, this figure presents changes-in-changes estimates for neighborhood-level homicide rates per 1,0000 residents based on geocoded homicide data from the City of St. Louis, Kansas City, and Cleveland, Ohio Police departments before (2004-2006) and after (2007-2017) the Missouri PTP repeal–with the City of Cleveland possessing comparable levels of segregation, racial composition, and trends in homicide victimization.²⁹ For each subfigure, the vertical axis provides the race-specific quantile treatment effect while the horizontal axis describes the τ^{th} decile of the race-specific homicide distribution among predominately Black and White neighborhoods.

²⁹As shown in the appendix, Cleveland also remains one of the most segregated cities in the country with Black Americans accounting for more than half of the city's residential population.

Beginning with $\tau = 0.2$ in Figure 9a, the effects of the PTP repeal appear to increase monotonically throughout the distribution with this increase in homicide not solely restricted to the most violent neighborhoods of St. Louis and Kansas City. Moreover, statistically significant increases in the Black homicide rate extend into interquartile range with effect sizes ranging from 0.25 to over 0.50 per 1,000 residents. Given that increases in homicide operated almost overwhelmingly through an increase in gun proliferation, these results provide suggestive evidence that the PTP repeal increased Black homicide victimization through lower offending costs for the marginal Black offender. Figure 9b shows a similar u-shaped plot characterizing the effects of the PTP repeal on homicide across the distribution of predominately White neighborhoods with the largest quantile treatment effects above $\tau = 0.8$. However, the PTP repeal does not appear to produce any statistically significant impact on White homicide rates at any point in the distribution. Overall, these results remain consistent with predictions from the preemption model where strategic complementarities play an essential role in escalating Black homicide victimization within predominately Black neighborhoods after the repeal.

6 Concluding Remarks

Rigorous background check requirements remain essential to the regulation of secondary firearm markets and reducing the proliferation of illegal guns to underground markets. On August 28, 2007, the Missouri state legislature repealed a permit-to-purchase law dating back to the Prohibition era and subsequently lifted any required screening of private firearm transactions. Consistent with the provisions of the former law, this study provides strong evidence that the repeal led to a statewide surge in potential gun sales exclusive to handguns and a 24 percent increase in an established proxy measure of local gun ownership. The lack of a notable increase in the trafficking of firearms to states outside of Missouri remains consistent with previous research suggesting that social connections, perhaps through straw purchasing behavior, play a more salient role in supplying firearms to underground gun markets rather than large scale gun trafficking operations (Cook et al., 2007, 2014, 2015). While a growing body of work provides important evidence concerning gun market responsiveness to various gun-related interventions (Ludwig and Cook, 2000; Duggan, 2001; Koper and Roth, 2002; Webster et al., 2009; Levine and McKnight, 2017), the extent to which other interventions would produce meaningful gun supply shocks depends on differences in state-level legal regimes and enforcement. Even the reinstatement of the former PTP law would not necessarily lead to an immediate symmetric decline in Missouri gun market activity, but could eventually reduce some illegal gun proliferation through a standardized screening of private gun purchase by local law enforcement as older guns transition out of usage.

This study also confirms the general increases in post-repeal gun violence documented in Webster et al. (2014). However, their focus on state-level firearm homicide trends masks important heterogeneity in Missouri gun violence and narrows the policy implications under consideration. The fact that Black neighborhoods in Kansas City and St. Louis account for an overwhelmingly disproportionate amount of post-repeal Missouri gun violence, in response to a statewide policy reform, suggests that the effects of the repeal were greatest for neighborhoods with fertile social conditions for preemptive violence. In contrast, this paper examines the city-level effects of the PTP repeal on homicide across racial groups through the experiences of Kansas City and the City of St. Louis-the largest urban centers of the state which also account for the vast majority of Missouri gun violence. Using city-level data, this study provides new evidence of a post-repeal weapons substitution effect among Black Missourians in Kansas City and St. Louis. In particular, the PTP repeal led to a 35 percent increase in Black firearm homicide and 22 percent decrease in Black non-gun homicide. While post-repeal Black firearm homicide victimization increases to varying degrees for all but victims ages 0-14, additional evidence suggests that this weapon substitution effect is overwhelmingly driven by changes among victims ages 15-24. No conclusive evidence emerges with respect to White gun violence, but dynamic estimates point to a slight increase in White firearm homicide victimization during the latter years of the post-repeal period.

Consistent with the preemption model, post-repeal gun violence extended beyond the most

violent Black neighborhoods of Kansas City and St. Louis. The fear multiplier effect resulting from this form of preemptive gun violence is not exclusive to Missouri with evidence of similar effects in other U.S. cities and urban centers outside of the U.S. (O'Flaherty and Sethi, 2010a; Patacchini and Zenou, 2013; Bailey et al., 2020). Previous work suggests that this intense spatial concentration in homicide comes with significant social costs including declines in children's academic performance (Sharkey, 2010; Sharkey et al., 2012), increases in the likelihood of violent behavior later in life (Bingenheimer et al., 2005; Ander et al., 2009), and deterioration in local economic development (Hamermesh, 1999; Greenbaum and Tita, 2004).

This study also provides strong evidence of declining productivity in the policing of gun-related offenses among Black suspects after the repeal-with the PTP repeal leading to a 125 percent decline in aggravated assault arrests and a 44 percent decrease in weapons arrests within this group. Moreover, local law enforcement also saw an increase in exposure to gun violence as officer gun assaults by suspects increased by 70 percent after the PTP repeal. These changes in enforcement activity take place during a period in which the prosecution of gun offenses became more challenging and both police departments experienced some reductions in manpower. Robust evidence from the policing literature suggests that declines in both policing productivity and manpower could exacerbate crime in both cities although the associated benefits might not equally accrue to cities with racial demographics such as those in Kansas City and St. Louis (Levitt, 1997; Evans and Owens, 2007; Leovy, 2015; Chalfin and McCrary, 2018; Mello, 2019; Weisburst, 2019; Chalfin et al., 2020). Interestingly, Chalfin and McCrary (2018) also finds that the City of St. Louis ranks 233^{rd} among 242 large U.S. cities in terms of optimal investment in policing and remains one of the most "under-policed" cities in the country. An important direction for future research involves formally examining the relationship between gun control policy and racial differences in policing outcomes (e.g., the use of force). Overall, the deteriorating conditions in policing efficiency appear to contribute to post-repeal gun violence in Black communities within both cities as firearms became more readily accessible.

By examining the racial implications of the permit-to-purchase law repeal, this study opens up conversations involving other policy alternatives shown to reduce violent crime in the absence of stronger background check laws. Such policy alternatives include programs based on cognitive behavioral therapy (Blattman et al., 2017; Heller et al., 2017), youth summer jobs (Heller, 2014; Davis and Heller, 2020), and expanded access to mental health care (Deza et al., 2020). Consistent with the preemption model, nongovernmental organizations in Kansas City and St. Louis also set up anonymous hotlines and offered other dispute resolution measures in order to counter the escalation in largely Black youth gun violence within both cities (McKinstry, 2017). However, the extent to which many of these programs remain effective at larger scale remains an open question (Ludwig et al., 2011). With contemporary public discourse on gun control policies often focused on the most general consequences of these policies, evidence from this study speaks to a critical point made within Loury (2009) in which the alarming racial disparities in outcomes such as homicide warrants deeper social reflection regarding their causes.

References

- Abadie, A. (2019). Using synthetic controls: Feasibility, data requirements, and methodological aspects. *Journal of Economic Literature*.
- Abadie, A., A. Diamond, and J. Hainmueller (2010, June). Synthetic control methods for comparative case studies: Estimating the effect of california's tobacco control program. *Journal of the American Statistical Association 105*(490), 493–505.
- Abadie, A. and J. Gardeazable (2003, March). The economic costs of conflict: A case study of the basque country. *The American Economic Review* 93(1), 113–132.
- Acemoglu, D., J. A. Robinson, and R. J. Santos (2013, January). The monopoly of violence: Evidence from colombia. *Journal of European Economic Association 11*(1), 5–44.
- Ander, R., P. Cook, J. Ludwig, and H. Pollack (2009). Gun violence among school-age youth in chicago. *Chicago, IL: The University of Chicago Crime Lab.*
- ATF (2006-2013). Firearm trace reports. Technical report, Department of Justice: Bureau of Alcohol, Tobacco, Firearms, and Explosives.
- Athey, S. and G. W. Imbens (2006). Identification and inference in nonlinear difference-indifferences models. *Econometrica* 74(2), 431–497.
- Bai, J. (2009, July). Panel data models with interactive fixed effects. *Econometrica* 77(4), 1229–1279.
- Bailey, L., V. Harinam, and B. Ariel (2020). Victims, offenders and victim-offender overlaps of knife crime: A social network analysis approach using police records. *PLoS one 15*(12), e0242621.
- Bayer, P., S. L. Ross, and G. Topa (2008). Place of work and place of residence: Informal hiring networks and labor market outcomes. *Journal of political Economy 116*(6), 1150–1196.
- Becker, G. S. (1968, March-April). Crime and punishment: An economic approach. *Journal of Political Economy* 76(2), 169–217.
- Becker, G. S., K. M. Murphy, and M. Grossman (2006). The market for illegal goods: The case of drugs. *Journal of Political Economy* 114(1), 38–60.
- Billings, S. B., D. J. Deming, and J. Rockoff (2014). School segregation, educational attainment, and crime: Evidence from the end of busing in charlotte-mecklenburg. *The Quarterly Journal* of Economics 129(1), 435–476.
- Billings, S. B., D. J. Deming, and S. L. Ross (2019). Partners in crime. American Economic Journal: Applied Economics 11(1), 126–50.

- Bingenheimer, J. B., R. T. Brennan, and F. J. Earls (2005, May). Firearm violence exposure and serious violent behavior. *Science 308*(5726), 1323–1326.
- Blattman, C., J. C. Jamison, and M. Sheridan (2017). Reducing crime and violence: Experimental evidence from cognitive behavioral therapy in liberia. *American Economic Review 107*(4), 1165–1206.
- Blumstein, A., F. P. Rivara, and R. Rosenfeld (2000, May). The rise and decline of homicide–and why. *Annual Review of Public Health* 21(1), 505–541.
- Blumstein, A. and R. Rosenfeld (1998). Explaining recent trends in us homicide rates. *The Journal of Criminal Law and Criminology (1973-)* 88(4), 1175–1216.
- Brabner-Smith, J. (1934). Firearm regulation. Law and Contemporary Problems 1(4), 400-414.
- Braga, A. A., A. Papachristos, and D. M. Hureau (2010, December). The concentration and stability of gun violence at micro places in boston, 1980-2008. *Journal of Quantitative Criminology 26*(1), 33–53.
- Braga, A. A. and G. L. Pierce (2005). Disrupting illegal firearms markets in boston: the effects of operation ceasefire on the supply of new handguns to criminals. *Criminology & Public Policy* 4(4), 717–748.
- Britt, C. L., G. Kleck, and D. J. Bordua (1996). A reassessment of the d.c. gun law: Some cautionary notes on the use of interrupted time series designs for policy impact assessment. *Law and Society Review 30*(2), 361–380.
- Carr, J. B. and J. L. Doleac (2018). Keep the kids inside? juvenile curfews and urban gun violence. *Review of Economics and Statistics 100*(4), 609–618.
- CDC (2020). Places project. U.S. Centers for Disease Control and Prevention.
- Chalfin, A., B. Hansen, E. Weisburst, and M. Williams (2020). Police force size and civilian race. *NBER Working Paper* (w28202).
- Chalfin, A. and J. McCrary (2013). The effect of police on crime: New evidence from u.s. cities, 1960-2010. *NBER Working Paper Series, Working Paper 18815*.
- Chalfin, A. and J. McCrary (2018). Are u.s. cities underpoliced? theory and evidence. *Review of Economics and Statistics 100*(1), 167–186.
- Cheng, C. and M. Hoekstra (2013). Does strengthening self-defense law deter crime or escalate violence? evidence from expansions to castle doctrine. *Journal of Human Resources* 48(3), 821–854.
- Chetty, R., N. Hendren, M. R. Jones, and S. R. Porter (2020). Race and economic opportunity in the united states: An intergenerational perspective. *The Quarterly Journal of Economics* 135(2), 711–783.

- Cohen, J. and J. Ludwig (2003). Policing crime guns. *Evaluating gun policy: Effects on crime and violence 217*, 217–18.
- Cook, P. J. (1983). The influence of gun availability on violent crime patterns. *Crime and Justice* 4(1), 49–89.
- Cook, P. J. (1991). The technology of personal violence. *Crime and justice 14*, 1–71.
- Cook, P. J. and J. Blose (1981, May). State programs for screening handgun buyers. *Annals of the American Academy of Political and Social Science* 455, 80–91.
- Cook, P. J., R. J. Harris, J. Ludwig, and H. A. Pollack (2014). Some sources of crime guns in chicago: Dirty dealers, straw purchasers, and traffickers. J. Crim. L. & Criminology 104, 717.
- Cook, P. J. and J. H. Laub (1998). The unprecedented epidemic of youth violence. *Crime and justice: An Annual Review 24*, 27–64.
- Cook, P. J. and J. Ludwig (2003). Guns and burglary. *Evaluating gun policy: Effects on crime and violence*, 74–106.
- Cook, P. J. and J. Ludwig (2004). Does gun prevalence affect teen gun carrying after all? *Criminology* 42(1), 27–54.
- Cook, P. J. and J. Ludwig (2006). The social costs of gun ownership. *Journal of Public Economics* 90(1), 379–391.
- Cook, P. J., J. Ludwig, S. Venkatesh, and A. A. Braga (2007, November). Underground gun markets. *The Economic Journal 117*, F588–F618.
- Cook, P. J., S. Molliconi, and T. B. Cole (1995, Autumn). Regulating gun markets. *The Journal of Criminal Law and Criminology* 86(1), 59–92.
- Cook, P. J., S. T. Parker, and H. A. Pollack (2015). Sources of guns to dangerous people: What we learn by asking them. *Preventive Medicine* 79, 28–36.
- Cooper, A. and E. L. Smith (2011, November). Homicide trends in the united states, 1980-2008. Technical Report NCJ 236018, Bureau of Justice Statistics.
- Corwin, J. D. (2009). 2009 annual report: Policing in tough economic times. Technical report, Kansas City Missouri Police Department.
- Crifasi, C. K., K. M. Pollack, and D. W. Webster (2016). Effects of state-level policy changes on homicide and nonfatal shootings of law enforcement officers. *Injury prevention* 22(4), 274–278.
- Davis, J. M. and S. B. Heller (2020). Rethinking the benefits of youth employment programs: The heterogeneous effects of summer jobs. *Review of Economics and Statistics* 102(4), 664–677.

- DeAngelo, G., R. K. Gittings, and A. A. Pena (2018). Interracial face-to-face crimes and the socioeconomics of neighborhoods: Evidence from policing records. *International review of law* and economics 56, 1–13.
- DellaVigna, S. and E. La Ferrara (2010). Detecting illegal arms trade. *American Economic Journal: Economic Policy* 2(4), 26–57.
- Deming, D. J. (2011). Better schools, less crime? *The Quarterly Journal of Economics 126*(4), 2063–2115.
- Depetris-Chauvin, E. (2015). Fear of obama: An empirical study of the demand for guns and the u.s. 2008 presidential election. *Journal of Public Economics* 130, 66–79.
- Devi, T. and R. G. Fryer Jr (2020). Policing the police: The impact of "pattern-or-practice" investigations on crime. Technical report, National Bureau of Economic Research.
- Deza, M., J. C. Maclean, and K. T. Solomon (2020). Local access to mental healthcare and crime. Technical report, National Bureau of Economic Research.
- Di Tella, R. and E. Schargrodsky (2004). Do police reduce crime? estimates using the allocation of police forces after a terrorist attack. *American Economic Review* 94(1), 115–133.
- DOJ (2014). Shooting death of michael brown-ferguson, mo.
- DOJ (2015, March). Investigation of the ferguson police department. Technical report, United States Department of Justice: Civil Rights Division.
- DOJ (2016, September). A review of atf's undercover storefront operations. Technical report, U.S. Department of Justice: Office of the Inspector General.
- Donohue, J. J., A. Aneja, and K. D. Weber (2019). Right-to-carry laws and violent crime: A comprehensive assessment using panel data and a state-level synthetic control analysis. *Journal of Empirical Legal Studies 16*(2), 198–247.
- Donohue, J. J., J. Ludwig, and P. J. Cook (2003). Evaluating gun policy: Effects on crime and violence.
- Dube, A., O. Dube, and O. García-Ponce (2013). Cross-border spillover: U.s. gun laws and violence in mexico. *American Political Science Review*, 397–417.
- Duggan, M. (2001). More guns, more crime. Journal of Political Economy 109(5), 1086–1114.
- Duggan, M., R. Hjalmarsson, and B. A. Jacob (2011). The short-term and localized effect of gun shows: Evidence from california and texas. *Review of Economics and Statistics* 93(3), 786–799.
- Edsall, T. B. (1999, April). Missouri voters defeat ballot measure to allow concealed handguns.

- Ehrlich, I. and T. Saito (2010). Taxing guns vs. taxing crime: An application of the "market for offenses model". *NBER Working Paper Series, Working Paper 16009*.
- Evans, W. N. and E. G. Owens (2007). Cops and crime. *Journal of Public Economics* 91(1-2), 181–201.
- FBI (2013). Uniform crime reporting program summary reporting system user manual. Technical report, U.S. Department of Justice: Criminal Justice Information Services Division.
- Fortner, M. J. (2015). Black Silent Majority: The Rockefeller Drug Laws and the Politics of Punishment. Cambridge, MA: Harvard University Press.
- Fryer, R. G., P. S. Heaton, S. D. Levitt, and K. M. Murphy (2013). Measuring crack cocaine and its impact. *Economic Inquiry* 51(3), 1651–1681.
- Fryer Jr, R. G. (2019). An empirical analysis of racial differences in police use of force. *Journal* of *Political Economy* 127(3), 1210–1261.
- Gaviria, A. (2000). Increasing returns and the evolution of violent crime: The case of colombia. *Journal of Development Economics* 61, 1–25.
- Glaeser, E. L. and S. Glendon (1998, May). Who owns guns? criminals, victims, and the culture of violence. *The American Economic Review* 88(2), 458–462.
- Glaeser, E. L. and B. Sacerdote (1999). Why is there more crime in cities? *Journal of Political Economy* 107(6), S225–S258.
- Glaeser, E. L. and B. Sacerdote (2003, June). Sentencing in homicide cases and the role of vengeance. *Journal of Legal Studies* 32(2), 363–382.
- Glaeser, E. L., B. Sacerdote, and J. A. Scheinkman (1996, May). Crime and social interactions. *The Quarterly Journal of Economics 111*(2), 507–548.
- Greenbaum, R. T. and G. E. Tita (2004). The impact of violence surges on neighbourhood business activity. *Urban Studies* 41(13), 2495–2514.
- Grogger, J. and M. Willis (2000). The emergence of crack cocaine and the rise in urban crime rates. *Review of Economics and Statistics* 82(4), 519–529.
- Hamermesh, D. S. (1999). Crime and the timing of work. *Journal of Urban Economics* 45(2), 311–330.
- Hayden Jr, J. W. (2017). 2017 annual report to the community. Technical report, City of St. Louis Metropolitan Police Department.
- Heller, S. B. (2014). Summer jobs reduce violence among disadvantaged youth. *Science 346*(6214), 1219–1223.

- Heller, S. B., A. K. Shah, J. Guryan, J. Ludwig, S. Mullainathan, and H. A. Pollack (2017). Thinking, fast and slow? some field experiments to reduce crime and dropout in chicago. *The Quarterly Journal of Economics* 132(1), 1–54.
- Helsley, R. W. and A. O'Sullivan (2001). Stolen gun control. *Journal of Urban Economics* 50(3), 436–447.
- Isom, D. (2009). Building safer neighborhoods through community partnerships: 2009 annual report to the community. Technical report, City of St. Louis Metropolitan Police Department.
- Kaplan, J. (2019a). Jacob kaplan's concatenated files: Uniform crime reporting program data: Law enforcement officers killed and assaulted (leoka) 1960-2018. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor].
- Kaplan, J. (2019b). Jacob kaplan's concatenated files: Uniform crime reporting (ucr) program data: Arrests by age, sex, and race, 1974-2018. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor].
- Kaplan, J. (2019c). Jacob kaplan's concatenated files: Uniform crime reporting (ucr) program data: Supplementary homicide reports, 1976-2018. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor].
- KCPD (2016). Violent crime in kansas city: A historical context. Technical report, Kansas City Police Department.
- Kleck, G. (2004, February). Measures of gun ownership levels for macro-level crime and violence research. *Journal of Research in Crime and Deliquency* 41(1), 3–36.
- Kleck, G. and E. B. Patterson (1993, September). The impact of gun control and gun ownership on violence rates. *Journal of Quantitative Criminology* 9(3), 249–287.
- Kleck, G. and S.-Y. K. Wang (2009). The myth of big-time gun trafficking and the overinterpretation of gun tracing data. *The UCLA Law Review* 56, 1233–1294.
- Kling, J. R., J. Ludwig, and L. F. Katz (2005). Neighborhood effects on crime for female and male youth: Evidence from a randomized housing voucher experiment. *The Quarterly Journal of Economics 120*(1), 87–130.
- Knight, B. (2013). State gun policy and cross-state externalities: Evidence from crime gun tracing. *American Economic Journal: Economic Policy* 5(4), 200–229.
- Kochanek, K. D., E. Arias, and R. N. Anderson (2013, July). How did cause of death contribute to racial differences in life expectancy in the united states in 2010? NCHS Data Brief 125, National Center for Health Statistics, Hyattsville, MD.
- Koper, C. S. and J. A. Roth (2002, September). The impact of the 1994 federal assault weapons ban on gun markets: An assessment of short-term primary and secondary market effects. *Journal of Quantitative Criminology* 18(3), 239–266.

- Leigh, A. and C. Neill (2010). Do gun buybacks save lives? evidence from panel data. *American Law and Economics Review*, 1–49.
- Leovy, J. (2015). Ghettoside: A True Story of Murder in America. New York: Spiegel and Grau.
- Lester, D. (1987). Southern subculture, personal violence (suicide and homicide), and firearms. *Omega* 17(2), 183–186.
- Levine, P. B. and R. McKnight (2017, December). Firearms and accidental deaths: Evidence from the aftermath of the sandy hook school shooting. *Science* 358(6368), 1324–1328.
- Levitt, S. D. (1997). Using electoral cycles in police hiring to estimate the effects of police on crime. *The American Economic Review* 87(3), 270–290.
- Levitt, S. D. (2004, Winter). Understanding why crime fell in the 1990s: Four factors that explain the decline and six that do not. *Journal of Economic Perspectives 18*(1), 163–190.
- Levitt, S. D. and S. Venkatesh (2000, August). An economic analysis of a drug-selling gang's finances. *The Quarterly Journal of Economics* 115(3), 755–789.
- Loftin, C., D. McDowall, B. Wiersema, and T. J. Cottey (1991, December). Effects of restrictive licensing of handguns on homicide and suicide in the district of columbia. *The New England Journal of Medicine* 325(23), 1615–1620.
- Logan, J. (2020). Places project. Brown University American Communities Project.
- Loury, G. C. (2009). The anatomy of racial inequality. Harvard University Press.
- Ludwig, J. and P. J. Cook (2000, August). Homicide and suicide rates associated with implementation of the brady handgun violence prevention act. *Journal of the American Medical Association* 284(5), 239–254.
- Ludwig, J., J. R. Kling, and S. Mullainathan (2011). Mechanism experiments and policy evaluations. *Journal of Economic Perspectives* 25(3), 17–38.
- MacDonald, J. M. (2019). De-policing as a consequence of the so-called 'ferguson effect'. Criminology & Public Policy 18(1), 47–49.
- Mares, D. and E. Blackburn (2012, January). Evaluating the effectiveness of acoustic gunshot location system in st. louis, mo. *Policing* 6(1), 26–42.
- McClellan, C. and E. Tekin (2017). Stand your ground laws, homicides, and injuries. *Journal of human resources* 52(3), 621–653.
- McKinstry, E. (2017). Most st. louis shootings take place in forgotten neighborhoods. meet the people working to change that.
- Mello, S. (2019). More cops, less crime. Journal of public economics 172, 174–200.

- Mocan, H. N. and E. Tekin (2006). Guns and juvenile crime. *The Journal of Law and Economics* 49(2), 507–531.
- MODPS (2019). Missouri's justice reinvestment initiative and violent crime reduction. Technical report, Missouri Department of Public Safety.
- Mokwa, J. J. (2006). 2006-2007 annual report to the community. Technical report, City of St. Louis Metropolitan Police Department.
- Nisbett, R. E. and D. Cohen (1996). *Culture of Honor: The Psychology of Violence in the South.* Boulder, CO: Westview Press.
- Novak, K. J., A. M. Fox, C. M. Carr, J. McHale, M. D. White, C. A. Solutions, and U. S. of America (2015). *Kansas City, Missouri Smart Policing Initiative: From Foot Patrol to Focused Deterrence*. CNA.
- O'Flaherty, B. and R. Sethi (2008, December). Racial stereotypes and robbery. *Journal of Economic Behavior and Organization* 68(3), 511–524.
- O'Flaherty, B. and R. Sethi (2010a). *The Economics of Crime: Lessons for and from Latin America*, Chapter Peaceable Kingdoms and War Zones: Preemption, Ballistics, and Murder in Newark. University of Chicago Press.
- O'Flaherty, B. and R. Sethi (2010b). Homicide in black and white. *Journal of Urban Economics* 68(3), 215–230.
- O'Flaherty, B. and R. Sethi (2010c, May). The racial geography of street vice. *Journal of Urban Economics* 67(3), 270–286.
- O'Flaherty, B. and R. Sethi (2019). *Shadows of Doubt: Stereotypes, Crime, and the Pursuit of Justice*. Harvard University Press.
- Papachristos, A. V. (2009, July). Murder by structure: Dominance relations and the social structure of gang homicide. *American Journal of Sociology 115*(1), 74–128.
- Parker, K., J. Horowitz, R. Igielnik, B. Oliphant, and A. Brown (2017, June). America's complex relationship with guns: An in-depth look at the attitudes and experiences of u.s. adults. Technical report, Pew Research Center.
- Patacchini, E. and Y. Zenou (2012). Juvenile delinquency and conformism. *The Journal of Law, Economics, and Organization* 28(1), 1–31.
- Patacchini, E. and Y. Zenou (2013). Urban crime and ethnicity. *Review of Network Economics* 11(3), 2012.
- Roeder, O. K., L.-B. Eisen, J. Bowling, J. E. Stiglitz, and I. M. Chettiar (2015). What caused the crime decline? *Columbia Business School Research Paper* (15-28).

- Rosenfeld, R. (2015). Was there a "ferguson effect" on crime in st. louis? Technical report, The Sentencing Project.
- Rosenfeld, R. and S. H. Decker (1996). Consent to search and seize: Evaluating an innovative youth firearm suppression program. *Law & Contemp. Probs.* 59, 197.
- Rosenfeld, R., J. Williams, G. Horton, and D. Mueller (2014, July). Peering into the black box: The criminal justice system's response to gun-related felonies in st. louis. Technical report, Regional Justice Information Services.
- Sampson, R. J. and W. J. Wilson (1995). *Towards a Theory of Race, Crime, and Urban Inequality*, Chapter 2, pp. 37–56. Stanford, CA: Stanford University Press.
- Sharkey, P. (2010). The acute effect of local homicides on children's cognitive performance. *Proceedings of the National Academy of Sciences 107*(26), 11733–11738.
- Sharkey, P. T., N. Tirado-Strayer, A. V. Papachristos, and C. C. Raver (2012). The effect of local violence on children's attention and impulse control. *American journal of public health 102*(12), 2287–2293.
- Shaw, C. R. and H. D. McKay (1942). Juvenile Deliquency and Urban Areas. Chicago, III.
- Sherman, L. W. and D. P. Rogan (1995). Effects of gun seizures on gun violence: ?hot spots? patrol in kansas city. *Justice Quarterly* 12(4), 673–693.
- Shihadeh, E. S. and N. Flynn (1996, June). Segregation and crime: The effect of black isolation on the rates of black urban violence. *Social Forces* 74(4), 1325–1352.
- Slocum, L. A., B. M. Huebner, R. Rosenfeld, and C. Greene (2018). Tracking enforcement rates in the city of st. louis, 2002–2017. Technical report, University of Missouri-St. Louis St. Louis, MO.
- Speri, A. (2015). 62 murders and counting: St. louis tallies its dead as gun violence keeps rising. *Vice News*.
- Topa, G. (2001). Social interactions, local spillovers and unemployment. *The Review of Economic Studies* 68(2), 261–295.
- UMSL (2015). Suicide in missouri: Where we stand. Technical report, University of Missouri–St. Louis: Brief No. 1 (Revised).
- Webster, D., C. K. Crifasi, and J. S. Vernick (2014). Effects of the repeal of missouri's handgun purchaser licensing law on homicides. *Journal of Urban Health* 91(2), 293–302.
- Webster, D. W., J. S. Vernick, and M. T. Bulzacchelli (2009). Effects of state-level firearm seller accountability policies on firearms trafficking. *Journal of Urban Health* 86(4), 525–537.

- Weisburst, E. K. (2019). Safety in police numbers: Evidence of police effectiveness from federal cops grant applications. *American Law and Economics Review* 21(1), 81–109.
- Wilson, W. J. (1987). *The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy*. University of Chicago Press.
- Xu, Y. (2017). Generalized synthetic control method: Causal inference with interactive fixed effects models. *Political Analysis* 25(1), 57–76.
- Zimring, F. (1968). Is gun control likely to reduce violent killings? *The University of Chicago Law Review 35*(4), 721–737.
- Zimring, F. E. (1975). Firearms and federal law: The gun control act of 1968. *Journal of Legal Studies* 4(1), 133–198.

7 Appendix

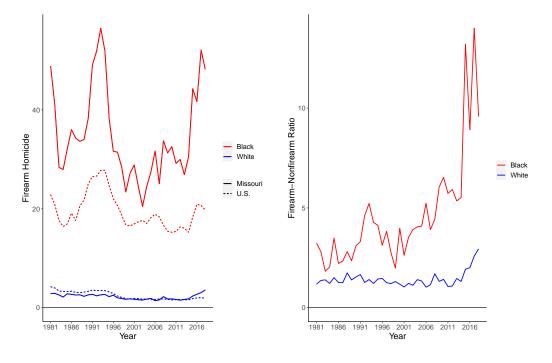


Figure 1: Missouri Firearm Homicide Trends by Race

(a.) Firearm Homicide Trends

(b.) Firearm to Non-Gun Death Ratio

Note: Data for this figure come from the incident-level FBI Supplementary Homicide Reports (SHR) over the 1981-2018 period. These figures exclude officer-involved homicides, institutional killings, and justifiable homicides at the hands of a private citizen. Figure (a.) describes state-level firearm homicide trends for Missouri and all other states in the U.S. by race– excluding Alaska, Hawaii, Idaho, Iowa, Maine, Montana, New Hampshire, New Mexico, North Dakota, Oregon, Rhode Island, South Dakota, Utah, Vermont, Washington, West Virginia, and Wyoming due to data limitations. Figure (b.) shows the ratio of firearm to non-gun homicide deaths among non-Hispanic Black and non-Hispanic White Missourians.

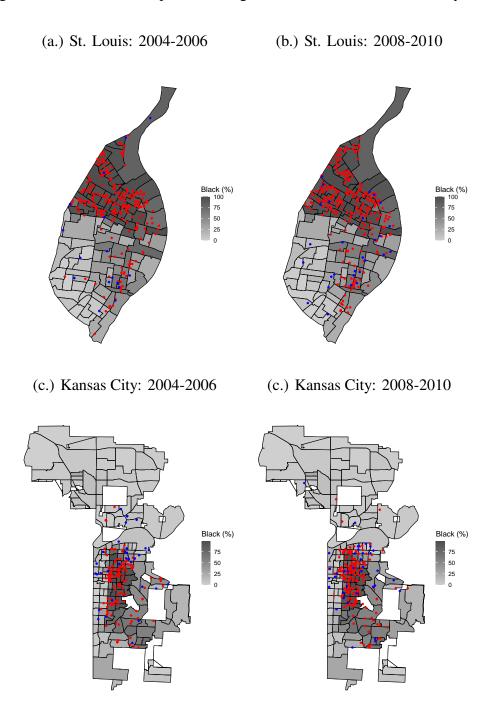
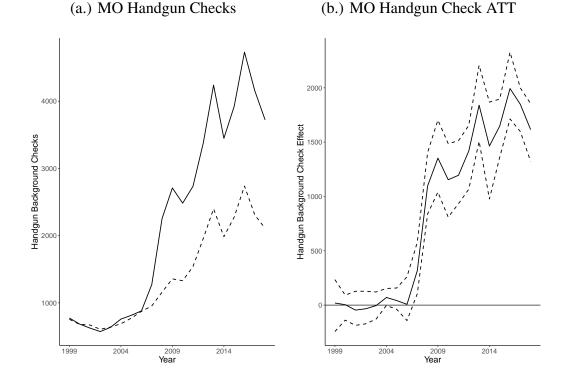



Figure 2: Missouri PTP Repeal and Neighborhood-Level Gun Violence by Race

Note: Data for this figure come directly from the City of St. Louis Metropolitan Police Department and the Kansas City Missouri Police Department. Figures include individual homicides by race mapped into census tracts shaded by the percent of non-Hispanic Black residents according to the 2010 American Community Survey data. Figures (a.) and (b.) show the neighborhood-level prevalence of firearm homicide by race three (full) years before and after the 2007 Missouri permit-to-purchase law repeal. Figures (c.) and (d.) show similar data for Kansas City, MO. Each individual red circle denotes a non-Hispanic Black homicide victim and blue circles non-Hispanic White homicide victims. The figure excludes officer-involved homicide, justifiable homicides, and homicides not mapped into the census tracts for either city.

Figure 3: Missouri PTP Repeal and Dynamic State-Level Handgun Background Check Results

Note: State-level generalized synthetic control estimates, using equation (3), are based on data from the FBI National Instant Criminal Background Check System (NICS). The 2007 Missouri permit-to-purchase law repeal is the treatment policy with a pre-intervention period extending from 1999-2006 and a post-intervention period from 2007-2018. The sample excludes Indiana and Tennessee. Figure (a) shows the estimated state-level NICS handgun background check trends per 100,000 residents and Figure (b) the corresponding dynamic average treatment effect with dashed lines displaying 95 percent confidence intervals. These specifications include percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, and percent of the population ages 25-44. Standard errors are obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

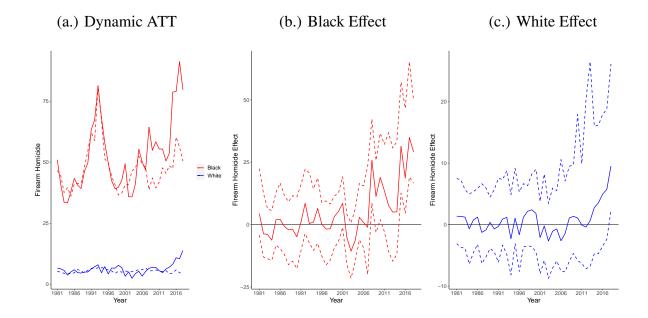
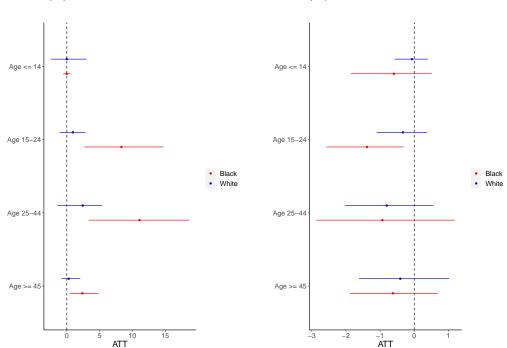



Figure 4: Missouri PTP Repeal City-Level Dynamic Firearm Homicide Results by Race

Note: City-level generalized synthetic control firearm homicide estimates, using equation (3), are based on incident-level data from the FBI Supplementary Homicide Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a.) shows the estimated firearm homicide trends per 100,000 residents, Figure (b.) the dynamic treatment effect for non-Hispanic Black firearm homicide victims, and Figure (c.) the dynamic treatment effect for non-Hispanic White firearm homicide victims, percent confidence intervals in the latter two figures. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

(a.) Firearm Homicide (b.) Non-Gun Homicide

Note: City-level generalized synthetic control homicide estimates, using equation (3), are based on incident-level data from the FBI Supplementary Homicide Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000-with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a.) shows the estimated firearm homicide trends per 100,000 residents across four age groups and Figure (b.) the estimated non-gun homicide trends per 100,000 residents across four age groups-with horizontal bars describing the 95% confidence interval for each estimate. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Each homicide rate is constructed using the total non-Hispanic Black and non-Hispanic White population estimates. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

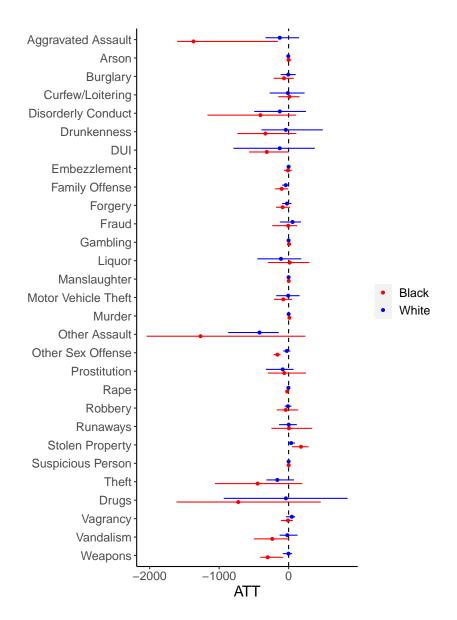


Figure 6: Missouri PTP Repeal Effects on Arrests by Race

Note: City-level generalized synthetic control estimates, using equation (3), are based on data from the FBI Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. Sample size differs across models according to data availability for each outcome. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Arrest rate estimates are reported per 100,000 residents. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations with horizontal bars describing the 95% confidence interval for each estimate.

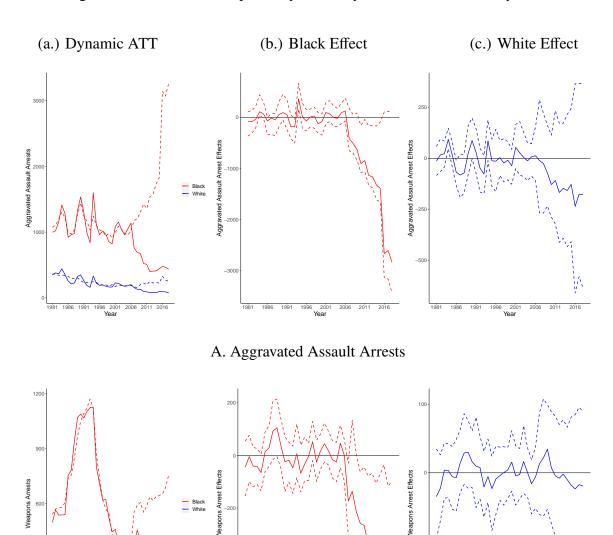
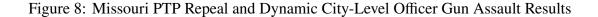
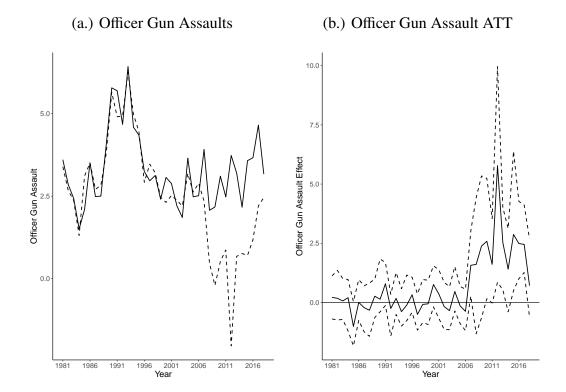




Figure 7: Missouri PTP Repeal City-Level Dynamic Arrest Results by Race

B. Weapons Arrests

Note: City-level generalized synthetic control arrest estimates, using equation (3), are based on data from the FBI Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Column (a.) shows the estimated arrests trends per 100,000 residents, (b.) the estimated dynamic average treatment effect for Black arrests, and (c.) the estimated dynamic average treatment effect for White arrests. Row A provides GSC estimates corresponding to aggravated assault arrests and Row B weapons arrests. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

Note: City-level generalized synthetic control officer gun assault estimates, using equation (3), are based on data from the FBI Law Enforcement Officers Killed and Assaulted Program. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a.) shows the estimated officer gun assault trends per 100 full-time sworn officers and Figure (b.) the estimated dynamic average treatment effect for officer gun assaults. All specifications include non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

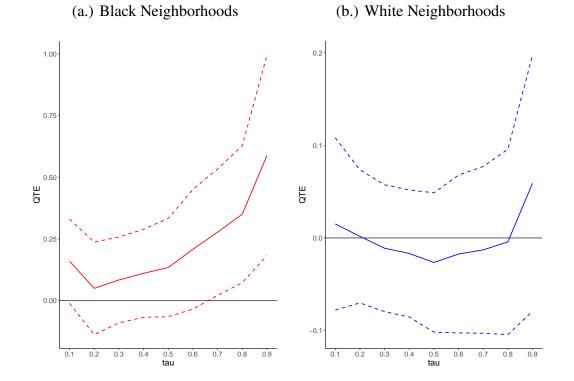


Figure 9: Missouri PTP Repeal and Distributional Neighborhood-Level Homicide Results

Note: Neighborhood-level changes-in-changes quantile treatment effect estimates using equation 5 are based on data from the City of St. Louis Metropolitan Police Department, Kansas City Missouri Police Department, and the Cleveland Police Department. The sample excludes officer-involved homicide, justifiable homicides, and homicides not mapped into the census tracts for any city. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with the analysis comparing race-specific, average homicide rates over a pre-repeal (2004-2006) and post-repeal (2007-2017) period. Figure (a.) shows the impact of the PTP repeal on Black homicide rates for predominately Black neighborhoods across the distribution and Figure (b.) the corresponding White homicide rate for predominately White neighborhoods across the distribution. The horizontal axis shows the decile corresponding to the race-specific homicide rate distribution and the vertical axis the quantile treatment effect. Estimates for each figure control for (residualized) poverty, unemployment, per capita income, percent of female-headed households, percent of residents with educational attainment less than high school, percent non-Hispanic, percent Hispanic, percentage of residents ages 15-24, and the percentage of residents ages 25-44. The dashed lines represent 95 percent confidence intervals with bootstrapped standard errors based on a sample of 100 iterations.

Demographic Variables	St. Louis	Kansas City	Both	Controls	Outcomes	St. Louis	Kansas City	Both	Controls
Total Population	382623	441305	411964	308122	Firearm Homicide				
Black (%)	48.48	29.64	39.06	28.89	Black	55.17	39.86	47.51	19.61
White (%)	47.31	62.07	54.69	51.01	White	5.45	5.50	5.48	4.29
Segregation					Non-Gun Homicide				
Black	81.38	69.29	75.34	48.13	Black	18.68	16.23	17.46	10.01
White	78.03	79.99	79.01	64.69	White	6.27	5.94	6.10	4.55
Poverty (%)					Aggravated Assault Arrests				
Black	35.47	26.82	31.14	27.84	Black	1462.00	727.90	1095.20	631.30
White	12.62	8.78	10.70	11.83	White	352.00	149.65	250.81	270.21
Unemployment (%)					Weapons Arrests				
Black	17.91	13.06	15.49	13.00	Black	650.50	709.80	680.20	282.90
White	6.27	4.53	5.40	6.01	White	106.00	125.54	115.77	126.10
Age Group (%)					Murder Clearance Rate (%)	73.17	65.10	69.13	71.39
0-14	21.17	21.21	21.19	22.30	Officer Gun Assault Rate	4.01	2.68	3.35	0.8694
15-24	15.29	14.56	14.92	16.80	State FBI Background Checks				
25-44	29.47	32.03	30.75	31.05	Handguns			717.40	911.60
45 Plus	34.06	32.20	33.13	29.85	Long Guns			2613.00	2087.00
Male (%)	46.17	47.84	47.00	48.10	County FSS (%)	40.54	41.05	40.79	43.67
Never Married (%)	38.60	31.14	34.87	32.79					
Education: Less than High School (%)	35.23	20.85	28.04	26.91					
Female-Headed Households (%)	20.38	15.12	17.75	16.95					
Per Capita Income	15204	19374	17289	17694					

Table 1: Descriptive Statistics (1981-2006)

Note: Data for this table come from the U.S. Census Bureau, FBI Supplementary Homicide Reports, FBI Uniform Crime Reports, and the CDC WONDER database over the 1981-2006 pre-intervention period while FBI National Instant Criminal Background Check data begin in 1999. The donor pool for Black homicide outcomes consists of 141 cities and 140 cities for White homicide outcomes—with all arrest data dropping New York City due to data limitations. The segregation measure is the race-specific isolation index based on the Census data. Per capita income is inflation adjusted for 2000 dollars. Homicide outcomes exclude institutional killings, officer-involved incidents, and justifiable homicides committed by a civilian. All homicide and arrests rates are per 100,000 residents while the officer gun assault rate by suspects is per 100 full-time sworn officers. With an exception for the arrest outcomes, all race-specific variables refer to non-Hispanic Black and non-Hispanic White groups. In the case of state background checks, "Both" in the third column refers background check rates per 100,000 for the state of Missouri with the corresponding state-level control group. For the county-level fraction of suicides committed with a firearm (FSS), "St. Louis" still refers to the City of St. Louis while the "Kansas City" column now refers to all of Jackson County (i.e., the county accounting for the majority of Kansas City) with the corresponding county-level control group.

		NICS Background Checks			
	FSS (1)	Handguns (2)	Long Guns (3)		
PTP Repeal	9.97***	1387.00***	279.10		
	(3.32)	(66.47)	(335.60)		
Level	County	State	State		
Treatment Units	2	1	1		
Control Units	130	48	48		
Pre-Intervention Mean	40.79	637.95	2323.95		
Unobserved Factors	1	3	2		
MSPE	54.42	3179.40	30386.75		

Table 2: Missouri PTP Repeal Gun Market Results

*p<0.1, **p<0.05, ***p<0.01.

Note: County-level generalized synthetic control estimates, using equation (3), are based on vital statistics data from the CDC WONDER Database while similar state-level estimates rely on data from the FBI National Instant Criminal Background Check System (NICS). The county-level sample draws on counties with at least 10 deaths in each year of the study period and at least 10,000 Black residents due to data restrictions for places with sufficiently low mortality. Treated units within Missouri includes Jackson County (containing Kansas City) and the City of St. Louis. Each sample excludes geographic units corresponding to Indiana and Tennessee. Each model uses the 2007 Missouri permit-to-purchase law repeal as the treatment policy with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Estimates based on the NICS data use pre-intervention periods beginning in 1999. NICS background checks are expressed in rates per 100,000 residents. All specifications include percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, and percent of the population ages 25-44. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

		Homicide		Fi	irearm Homici	de
	All	Black	White	All	Black	White
	(1)	(2)	(3)	(4)	(5)	(6)
PTP Repeal	5.08*	13.20**	3.13	4.50**	16.70***	2.40
-	(2.82)	(7.27)	(2.71)	(2.15)	(6.59)	(2.45)
Level	City	City	City	City	City	City
Treatment Units	2	2	2	2	2	2
Control Units	141	141	140	141	141	140
Pre-Intervention Mean	34.78	68.52	12.25	22.58	47.51	5.48
Unobserved Factors	4	5	1	5	3	0
MSPE	48.46	199.20	13.96	20.00	91.90	5.42

Panel A: Firearm-Related Homicide

Panel B: Nonfirearm-Related Homicide

	Non-	Non-Gun Homicide				cide
	All (1)	Black (2)	White (3)	All (4)	Black (5)	White (6)
PTP Repeal	-2.29*** (0.92)	-3.76** (1.54)	-1.13 (1.15)	0.1716 (0.4856)	0.2734 (0.9135)	-0.0908 (0.2653)
Level	City	City	City	City	City	City
Treatment Units	2	2	2	2	2	2
Control Units	141	141	140	141	141	140
Pre-Intervention Mean	10.37	17.46	6.10	1.85	3.59	0.6688
Unobserved Factors	0	1	1	0	0	0
MSPE	9.74	33.68	5.41	2.09	7.77	0.4480

*p<0.1, **p<0.05, ***p<0.01.

Note: City-level generalized synthetic control estimates, using equation (3), are based on incident-level data the FBI Supplementary Homicide Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Panel A includes estimates for either overall homicide rates or firearm homicide rates (per 100,000 residents). Panel B includes either long gun homicide rates or homicide rates that do not involve a gun of any kind (per 100,000 residents). All specifications include percent non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

	Fir	earm Homici	de	Nor	n-Gun Homic	ide	Aggrav	ated Assault Ar	rests	W	eapons Arrests	i
	All (1)	Black (2)	White (3)	All (4)	Black (5)	White (6)	All (7)	Black (8)	White (9)	All (10)	Black (11)	White (12)
Baseline Estimate (Table 3)	4.50**	16.70***	2.40	-2.29***	-3.76**	-1.13	-736.70**	-1369.00**	-127.90	-116.10***	-301.20**	-2.13
	(2.15)	(6.59)	(2.45)	(0.92)	(1.54)	(1.15)	(161.10)	(397.40)	(114.50)	(25.02)	(78.52)	(32.52)
Additional Covariates	5.00**	17.95***	2.96	-2.33 ***	-3.30*	-0.6888	-749.50***	-1403.00**	-155.40	-109.10***	-279.60**	-14.78
	(2.24)	(6.92)	(2.33)	(0.8568)	(1.64)	(1.17)	(153.00)	(366.30)	(119.80)	(26.88)	(74.35)	(32.45)
City Fixed Effects Only	4.62**	14.66**	3.30	-0.9598	-2.13 **	-1.33	-738.00**	-1343.00**	-168.40	-103.90*	50.47	-9.83
	(2.46)	(6.98)	(2.94)	(0.9457)	(1.48)	(1.16)	(167.80)	(384.20)	(150.30)	(50.25)	(86.36)	(33.83)
Year Fixed Effects Only	3.57**	13.17*	4.30*	-0.2557	-0.9878	-0.6418	-215.50*	828.30	-185.20	-17.50	122.00	-2.57
	(2.83)	(7.57)	(3.12)	(0.6693)	(1.41)	(1.02)	(134.80)	(301.40)	(169.00)	(44.54)	(120.30)	(28.87)
No Fixed Effects	4.94**	12.65**	2.05	-1.32 *	-2.79*	-1.09	-867.10**	-618.30	-128.20	-31.78	171.90	-1.25
	(2.85)	(8.31)	(3.12)	(0.7734)	(1.71)	(1.03)	(208.00)	(304.70)	(128.90)	(48.42)	(141.00)	(33.15)
Difference-in-Differences Estimates	6.42***	12.14***	4.26**	-2.28***	-3.69***	-1.15**	-213.08***	-392.43***	-146.54	-117.77***	-305.66**	-161.55
	(2.02)	(3.00)	(1.64)	(0.2431)	(0.4175)	(0.5334)	(77.67)	(91.61)	(127.96)	(40.60)	(121.75)	(128.56)
Restricted Study Period (1981-2013)	1.21	12.06**	0.4204	-2.08**	-3.53**	-0.5704	-242.00**	-543.40**	-94.22	-109.50**	-290.70	-5.20
	(2.49)	(6.08)	(3.05)	(0.91)	(1.69)	(1.36)	(70.58)	(172.30)	(94.02)	(37.55)	(123.40)	(31.27)
No Border State Cities	4.29**	16.18***	2.52	-2.25***	-3.75**	-1.14	-717.70***	-1324.00**	-128.10	-111.00***	-294.50**	-1.52
	(2.26)	(6.46)	(2.50)	(0.9266)	(1.64)	(1.16)	(158.80)	(383.60)	(113.20)	(24.41)	(72.75)	(32.61)
Other Missouri Cities	3.59	17.56***	2.61	-0.6659	-0.5723	1.66	82.05	353.80***	157.30	5.72	87.08	-32.96
	(2.05)	(6.36)	(2.29)	(0.7717)	(2.84)	(3.48)	(97.35)	(152.20)	(162.50)	(24.57)	(196.50)	(86.90)

Table 4: Robustness Checks and Alternative Specifications

*p<0.1, **p<0.05, ***p<0.01.

Note: City-level generalized synthetic control estimates, using equation (3), are based on incident-level data from the FBI Supplementary Homicide Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Outcomes are expressed in rates per 100,000 residents. All specifications include percent non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. The additional covariates include the percent of the population ages 0-14, percent married, percent separated, percent divorced, percent high school graduates, and percent some college. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

Gun Violence in Black and White: Evidence from Policy Reform in Missouri

Online Appendix

Morgan C. Williams, Jr.

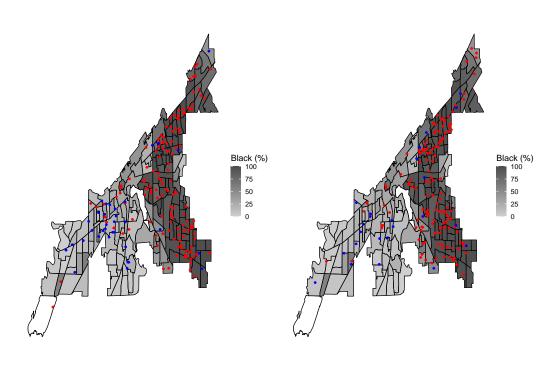
New York University Robert F. Wagner Graduate School of Public Service

December 29, 2020

Table of Contents

A1 Supplementary Descriptive Figures and Tables	3
A1.1 Missouri Firearm Trace Recovery in Border States: 2006-2013	3
A1.2 Cleveland Neighborhood-Level Gun Violence by Race	4
A2 Supplemental GSC Results	5
A2.1 City-Level Stolen Property Arrests Results by Race	5
A2.2 City-Level Other Arrest Category Results by Race	6
A2.3 City-Level Officer Assault Rate Results	7
A2.4 City-Level Clearance Rate Results	8
A3 Additional Robustness Checks	9
A3.1 Robustness Checks and Alternative Specifications: Gun Proliferation Results	9
A3.2 Robustness Checks and Alternative Specifications: Officer Gun Assault Results .	10
A3.3 County-Level Dynamic Homicide Results by Race	11
A3.4 County-Level Dynamic Firearm Homicide Results by Race	12
A3.5 Robustness Check: Synthetic Control Handgun Background Check Results	13
A3.6 Robustness Check: Synthetic Control Homicide and Policing Results	14
A4 GSC Estimated Latent Factors, Factor Loadings, and Implied Weights	16
A4.1 Gun Market Estimated Latent Factors	16
A4.2 City-Level Gun Violence Estimated Latent Factors	17
A4.3 City-Level Black Gun Violence Estimated Latent Factors	18
A4.4 County-Level FSS Factor Loadings	19

A4.5 State-Level Handgun Check Factor Loadings	25
A4.6 City-Level Homicide Factor Loadings	28
A4.7 City-Level Black Homicide Factor Loadings	35
A4.8 City-Level Firearm Homicide Factor Loadings	42
A4.9 City-Level Black Firearm Homicide Factor Loadings	49
A4.10City-Level Black Non-Gun Homicide Factor Loadings	56
A4.11City-Level Black Aggravated Assault Arrest Factor Loadings	63
A4.12City-Level Black Weapons Arrest Factor Loadings	70
A4.13City-Level Officer Gun Assault Factor Loadings	77
A4.14County-Level FSS Implied Weights	83
A4.15State-Level NICS Handgun Check Implied Weights	89
A4.16City-Level Homicide Implied Weights	90
A4.17City-Level Firearm Homicide Implied Weights	97
A4.18City-Level Black Non-Gun Homicide Implied Weights	104
A4.19City-Level Black Arrest Implied Weights	111
A4.20City-Level Officer Gun Assault Implied Weights	118

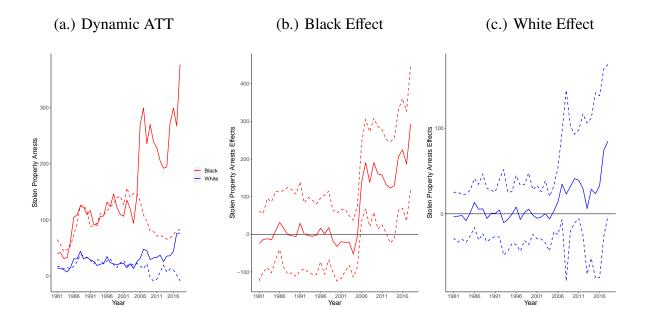

A1 Supplementary Descriptive Figures and Tables

Year	Missouri	Arkansas	Illinois	Iowa	Kansas	Kentucky	Nebraska	Oklahoma	Tennessee
2006	30.65	1.75	0.63	1.26	7.18	0.00	0.94	0.64	0.00
2007	33.33	0.96	0.84	0.60	7.99	0.00	0.78	0.37	0.00
2008	35.64	0.94	0.86	1.39	6.92	0.00	1.18	1.18	0.00
2009	40.43	0.93	1.08	1.45	6.33	0.00	0.00	0.66	0.00
2010	41.19	1.65	1.00	1.08	8.31	0.00	1.06	0.73	0.00
2011	48.24	0.90	1.43	1.30	6.71	0.00	1.12	1.09	0.00
2012	47.96	0.76	1.37	1.49	6.98	0.36	1.45	0.53	0.00
2013	50.34	1.05	1.69	1.49	6.50	0.00	1.87	1.06	0.00

A1.1 Missouri Firearm Trace Recovery in Border States: 2006-2013

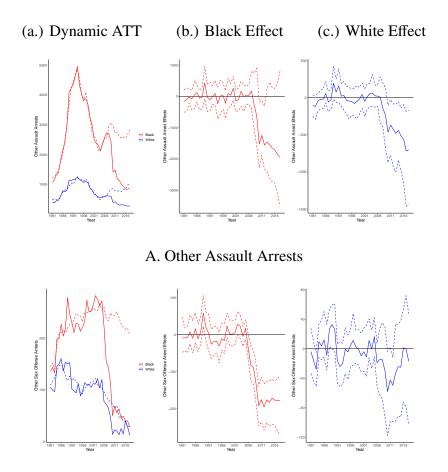
Source: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF) reports

A1.2 Cleveland Neighborhood-Level Gun Violence by Race


(a.) Cleveland: 2004-2006

(b.) Cleveland: 2008-2010

Note: Data for this figure come directly from the Cleveland, OH Police Department. Figures include individual homicides by race mapped into census tracts shaded by the percent of non-Hispanic Black residents in the 2010 American Community Survey data. Figures (a.) and (b.) show the neighborhood-level prevalence of firearm homicide by race three (full) years before and after the 2007 Missouri permit-to-purchase law repeal. Each individual red circle denotes a non-Hispanic Black homicide victim and blue circles non-Hispanic White homicide victims. The figure excludes officer-involved homicide, justifiable homicides, and homicides not mapped into the census tracts.


A2 Supplemental GSC Results

A2.1 City-Level Stolen Property Arrests Results by Race

Note: City-level generalized synthetic control stolen property arrest estimates, using equation (3), are based on data from the FBI Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee in addition to New York City due to data limitations. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Column (a.) shows the estimated stolen property arrests trends per 100,000 residents, (b.) the estimated dynamic average treatment effect for Black stolen property arrests, and (c.) the estimated dynamic average treatment effect for White stolen property arrests. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A2.2 City-Level Other Arrest Category Results by Race

B. Other Sex Offense Arrests

Note: City-level generalized synthetic control other assault and sex offense arrest estimates, using equation (3), are based on data from the FBI Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee in addition to New York City due to data limitations. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Column (a.) shows the estimated arrests trends per 100,000 residents, (b.) the estimated dynamic average treatment effect for Black arrests, and (c.) the estimated dynamic average treatment effect for White arrests. Row A provides GSC estimates corresponding to other assault arrests and Row B other sex offense arrests. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A2.3 City-Level Officer Assault Rate Results

	Total (1)	Gun (2)	Knife (3)	Unarmed (4)	Other (5)
PTP Repeal	-2.99	2.33***	-0.1574	-4.03	-1.21
	(6.44)	(0.7765)	(0.1626)	(5.64)	(1.05)
Treatment Units	2	2	2	2	2
Control Units	132	132	132	132	132
Pre-Intervention Mean	37.39	3.35	0.6921	28.57	4.78
Unobserved Factors	5	5	1	5	4
MSPE	26.91	1.67	0.1152	19.16	1.15

*p<0.1, **p<0.05, ***p<0.01.

Note: City-level generalized synthetic control officer assault estimates, using equation (3), are based on data from the FBI Law Enforcement Officers Killed and Assaulted (LEOKA) Program. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. All specifications include non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A2.4 City-Level Clearance Rate Results

	Index (1)	Murder (2)	Burglary (3)	Rape (4)	MV Thef (5)
PTP Repeal	0.2253	-3.26	1.35	15.80	1.17
	(5.96)	(10.81)	(3.24)	(18.48)	(6.63)
Treatment Units	2	2	2	2	2
Control Units	136	135	137	130	136
Pre-Intervention Mean	16.96	69.13	9.75	52.50	9.76
Unobserved Factors	1	0	0	2	5
MSPE	3.33	271.36	3.09	94.17	5.21
			Assault		
	Total	Gun	Knife	Unarmed	Other
PTP Repeal	-2.12	2.34	2.06	3.83	-0.8556
	(7.27)	(8.77)	(5.20)	(10.77)	(9.67)
Treatment Units	2	2	2	2	2
Control Units	137	123	119	116	121
Pre-Intervention Mean	59.40	37.71	61.46	56.19	50.59
Unobserved Factors	5	5	5	0	1
MSPE	32.81	33.16	46.42	72.82	32.10
			Robbery	7	
	Total	Gun	Knife	Unarmed	Other
PTP Repeal	1.55	0.3777	3.17	0.0031	-2.61
-	(5.85)	(6.48)	(6.33)	(13.56)	(8.62)
Treatment Units	2	2	2	2	2
Control Units	137	114	101	113	103
Pre-Intervention Mean	21.54	17.59	22.49	25.45	22.17
Unobserved Factors	0	1	0	2	0
MSPE	11.00	11.70	24.87	13.27	22.10

*p<0.1, **p<0.05, ***p<0.01.

Note: City-level generalized synthetic control clearance rate estimates, using equation (3), are based on incident-level data from the FBI Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. Sample size differs across outcomes due to data availability. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

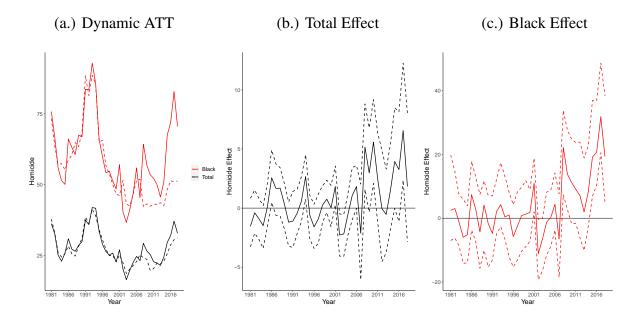
A3 Additional Robustness Checks

		NICS Backgr	ound Checks
	FSS	Handguns	Long Guns
	(1)	(2)	(3)
Baseline Estimate (Table 2)	9.97***	1387.00***	279.10
	(3.32)	(66.47)	(335.60)
Additional Covariates	8.56**	1466.00***	303.50
	(3.28)	(56.64)	(226.50)
County/State Fixed Effects Only	9.85**	1537.00***	254.50***
	(3.34)	(326.20)	(48.60)
Year Fixed Effects Only	12.14***	1344.00**	461.70***
	(3.90)	(24.84)	(32.76)
No Fixed Effects	9.65***	1709.00***	400.30***
	(3.55)	(266.70)	(46.96)
Difference-in-Differences Estimates	10.24***	1408.34***	350.99***
	(2.46)	(121.28)	(98.15)
Restricted Study Period (1981-2013)	7.81**	1255.00***	-244.80
	(3.46)	(127.10)	(323.90)
No Border State Units	9.46***	1495.00***	252.10
	(3.38)	(293.10)	(65.78)

A3.1 Robustness Checks and Alternative Specifications: Gun Proliferation Results

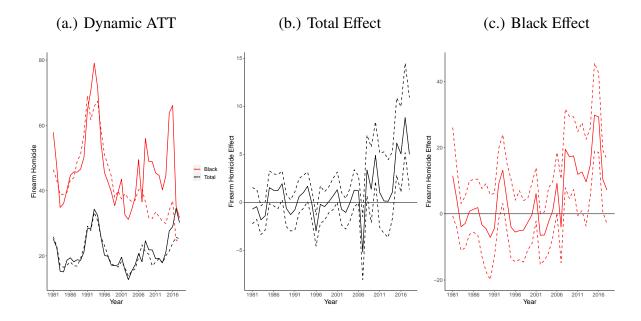
*p<0.1, **p<0.05, ***p<0.01.

Note: County-level generalized synthetic control estimates, using equation (3), are based on vital statistics data from the CDC WONDER Database while similar state-level estimates rely on data from the FBI National Instant Criminal Background Check System (NICS). The county-level sample draws on counties with at least 10 deaths in each year of the study period and at least 10,000 Black residents due to data restrictions for places with sufficiently low mortality. Treated units within Missouri includes Jackson County (containing Kansas City) and the City of St. Louis. Each sample excludes geographic units corresponding to Indiana and Tennessee. Each model uses the 2007 Missouri permit-to-purchase law repeal as the treatment policy with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Estimates based on the NICS data use pre-intervention periods beginning in 1999. NICS background checks are expressed in rates per 100,000 residents. All specifications include percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 25-44. The additional covariates include the percent of the population ages 0-14, percent married, percent high school graduates, and percent some college. Standard errors obtained using a parametric bootstrap procedure based on N = 2, 000 simulations.

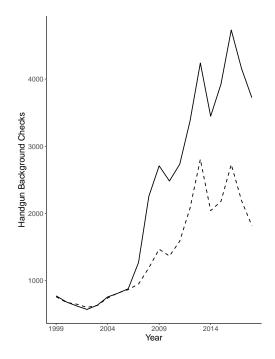

	Total (1)	Gun (2)	Knife (3)	Unarmed (4)	Other (5)
Baseline Estimate (Table A2.3)	-2.99	2.33***	-0.1574	-4.03	-1.21
	(6.44)	(0.7765)	(0.1626)	(5.64)	(1.05)
Additional Covariates	-3.03	2.36***	-0.1031	-1.21	-3.56
	(5.69)	(0.7745)	(0.1659)	(1.07)	(4.96)
City Fixed Effects Only	-3.21	2.39***	-0.1213	-1.46	-4.08
	(6.23)	(0.7931)	(0.1983)	(1.28)	(5.67)
Year Fixed Effects Only	-1.05	2.43	0.02754	-0.8933	0.4517
	(6.03)	(1.25)	(0.1280)	(0.9684)	(4.37)
No Fixed Effects	-1.81	2.33	-0.0475	-0.9543	-1.70
	(5.69)	(1.17)	(0.1334)	(0.8998)	(4.99)
Difference-in-Differences Estimates	-0.7903	0.1153	-0.0967**	-0.8187	0.0098
	(6.39)	(0.4037)	(0.0409)	(1.05)	(4.99)
Restricted Study Period (1981-2013)	-3.48	2.64*	-0.2270	-0.8933	-2.94
	(8.30)	(1.28)	(0.1681)	(1.09)	(5.01)
No Border State Cities	-2.42	2.19 **	-0.1569	-1.36	-3.42
	(6.14)	(0.8064)	(0.1601)	(1.16)	(5.41)
Other Missouri Cities	-9.02	0.1549	0.0040	-1.52	-5.85
	(5.83)	(0.6496)	(0.1920)	(1.41)	(4.47)

A3.2 Robustness Checks and Alternative Specifications: Officer Gun Assault Results

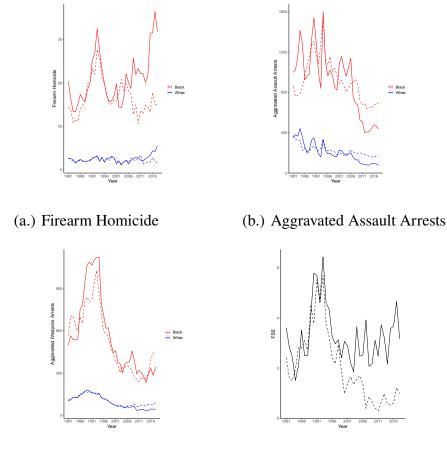
*p<0.1, **p<0.05, ***p<0.01.


Note: City-level generalized synthetic control estimates, using equation (3), are based on data from the FBI Law Enforcement Officers Killed and Assaulted Program. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Outcomes are expressed in rates per 100,000 residents. All specifications include percent non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black (White) isolation index. The additional covariates include the percent of the population ages 0-14, percent married, percent separated, percent divorced, percent high school graduates, and percent some college. Standard errors obtained using a parametric bootstrap procedure based on N = 2, 000 simulations.

A3.3 County-Level Dynamic Homicide Results by Race


Note: County-level generalized synthetic control homicide estimates, using equation (3), are based on data from the CDC WONDER Database. The county-level sample draws on counties with at least 10 deaths in each year of the study period and at least 10,000 Black residents due to data restrictions for places with sufficiently low mortality. Treated units within Missouri includes Jackson County (containing Kansas City) and the City of St. Louis. The sample excludes counties within Indiana and Tennessee. The model uses the 2007 Missouri permit-to-purchase law repeal as the treatment policy with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. All specifications include percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, and percent of the population ages 25-44. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A3.4 County-Level Dynamic Firearm Homicide Results by Race


Note: County-level generalized synthetic control firearm homicide estimates, using equation (3), are based on data from the CDC WONDER Database. The county-level sample draws on counties with at least 10 deaths in each year of the study period and at least 10,000 Black residents due to data restrictions for places with sufficiently low mortality. Treated units within Missouri includes Jackson County (containing Kansas City) and the City of St. Louis. The sample excludes counties within Indiana and Tennessee. The model uses the 2007 Missouri permit-to-purchase law repeal as the treatment policy with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. All specifications include percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, and percent of the population ages 25-44. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A3.5 Robustness Check: Synthetic Control Handgun Background Check Results

Note: State-level synthetic control estimates are based on data from the FBI National Instant Criminal Background Check System (NICS). The 2007 Missouri permit-to-purchase law repeal as the treatment policy with a pre-intervention period extending from 1999-2006 and a post-intervention period from 2007-2018. The sample excludes Indiana and Tennessee. The figure shows estimated state-level NICS handgun background check trends per 100,000 residents. The underlying specification includes percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and lagged handgun background trends for each year in the pre-intervention period.

A3.6 Robustness Check: Synthetic Control Homicide and Policing Results

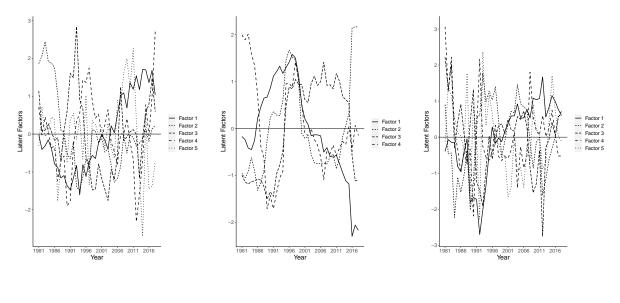

(c.) Weapons Arrests

(d.) Officer Gun Assault

Note: City-level synthetic control firearm homicide, aggravated assault arrest, and weapons arrest estimates are based on incident-level data from the FBI Supplementary Homicide Reports and Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a.) shows the estimated city-level firearm homicide trends per 100,000 residents, Figure (b.) the aggravated assault arrest trends per 100,000, Figure (c.) the weapons arrest trends per 100,000, and Figure (d.) officer gun assaults per 100 officers. All specifications include non-Hispanic Black (or non-Hispanic White), percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, non-Hispanic Black (White) isolation index, and lagged dependent variable values for each year in the pre-intervention period.

A4 GSC Estimated Latent Factors, Factor Loadings, and Implied Weights

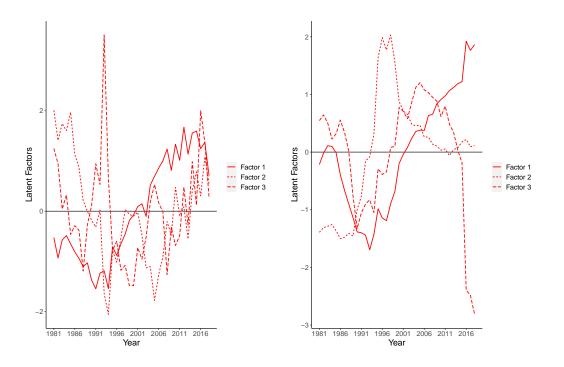
A4.1 Gun Market Estimated Latent Factors



(a.) County FSS

(b.) MO Handgun Checks

Note: County-level generalized synthetic control estimates, using equation (3), are based on vital statistics data from the CDC WONDER Database while similar state-level estimates use data from the FBI National Instant Criminal Background Check System (NICS). The county-level sample draws on counties with at least 10 deaths in each year of the study period and at least 10,000 Black residents due to data restrictions for places with sufficiently low mortality. Treated units within Missouri includes Jackson County (containing Kansas City) and the City of St. Louis. Each sample excludes geographic units corresponding to Indiana and Tennessee. The 2007 Missouri permit-to-purchase law repeal is the treatment policy with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a) shows estimated latent factors for the county-level GSC FSS estimates and Figure (b) the state-level estimated latent factor corresponding to GSC estimates for NICS handgun background checks obtained via a cross-validation procedure. Estimates based on the NICS data use pre-intervention periods beginning in 1999. All specifications include percent of the population non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 25-44. Standard errors obtained using a parametric bootstrap procedure based on N = 2, 000 simulations.



(a.) Firearm Homicide (b.) Agg. Assault Arrests (c.) Officer Gun Assaults

Note: City-level generalized synthetic control estimates, using equation (3), are based on incident-level data from the FBI Supplementary Homicide Reports and Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a) shows estimated latent factors for city-level firearm homicide rates per 100,000, Figure (b) the estimated latent factors corresponding to city-level aggravated assault arrests rates per 100,000, and Figure (c) the estimated latent factors corresponding to city-level officer gun assault rates per 100 full-time sworn officers obtained via a cross-validation procedure. All specifications include percent non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A4.3 City-Level Black Gun Violence Estimated Latent Factors

(a.) Black Firearm Homicide

(b.) Black Aggravated Assault Arrests

Note: City-level generalized synthetic control estimates, using equation (3), are based on (incident-level) data from the FBI Supplementary Homicide Reports and Uniform Crime Reports. The estimation sample draws on cities with at least 50,000 residents and 10,000 non-Hispanic Black residents in 2000–with the City of St. Louis, MO and Kansas, MO as treatment units. The sample excludes cities within Indiana and Tennessee. The treatment policy is the 2007 Missouri permit-to-purchase law repeal with a pre-intervention period extending from 1981-2006 and a post-intervention period from 2007-2018. Figure (a.) shows estimated latent factors for city-level non-Hispanic Black firearm homicide and Figure (b.) the estimated latent factors corresponding to Black aggravated assault arrests obtained via a cross-validation procedure. All specifications include percent non-Hispanic Black, percent Hispanic, percent male, percent female-headed households, poverty rate, unemployment rate, percent never married, percent of the population with educational attainment less than high school, percent of the population ages 15-24, percent of the population ages 25-44, and a non-Hispanic Black isolation index. Standard errors obtained using a parametric bootstrap procedure based on N = 2,000 simulations.

A4.4 County-Level FSS Factor Loadings

County	Factor 1
Newport News city, VA	-25.9843
Durham County, NC	-11.3558
St. Clair County, IL	-7.3893
Union County, NJ	-5.2727
Escambia County, FL	-4.8111
Richmond County, GA	-4.4567
Polk County, FL	-4.0811
Nueces County, TX	-3.9575
Forsyth County, NC	-3.2906
Tulsa County, OK	-3.2772
Sacramento County, CA	-3.2357
Wyandotte County, KS	-3.1819
Brevard County, FL	-2.8350
Douglas County, NE	-2.4488
Hillsborough County, FL	-2.4388
Honolulu County, HI	-2.3629
Mahoning County, OH	-1.9962
Ramsey County, MN	-1.9952
Duval County, FL	-1.9459
Fairfield County, CT	-1.8951
Greenville County, SC	-1.8708
Jefferson County, TX	-1.6909

County	Factor 1
Orange County, FL	-1.5593
Pulaski County, AR	-1.5591
Adams County, CO	-1.5241
Suffolk County, MA	-1.4771
Macomb County, MI	-1.3012
New Haven County, CT	-1.2460
Charleston County, SC	-1.1510
Norfolk city, VA	-1.1224
Hudson County, NJ	-1.1163
El Paso County, TX	-1.0716
Jefferson County, KY	-0.9481
Orleans Parish, LA	-0.9224
Denver County, CO	-0.9151
Franklin County, OH	-0.9128
Ventura County, CA	-0.8896
Harris County, TX	-0.8821
Oklahoma County, OK	-0.8608
Tarrant County, TX	-0.8218
Volusia County, FL	-0.8002
Travis County, TX	-0.7906
El Paso County, CO	-0.6507
Bernalillo County, NM	-0.6349
Clark County, NV	-0.5893

Table A1 – Continued from previous page

County	Factor 1
Caddo Parish, LA	-0.3353
Lee County, FL	-0.3172
Cobb County, GA	-0.2737
Camden County, NJ	-0.1741
Oakland County, MI	-0.1692
Monterey County, CA	-0.1611
Pima County, AZ	-0.1360
DeKalb County, GA	0.0228
Hamilton County, OH	0.0504
Hartford County, CT	0.0959
San Francisco County, CA	0.1597
Montgomery County, MD	0.1649
Bexar County, TX	0.1956
Chatham County, GA	0.3013
New Castle County, DE	0.3029
Dallas County, TX	0.3646
Providence County, RI	0.3697
Anne Arundel County, MD	0.4381
Montgomery County, OH	0.5203
St. Louis city, MO	0.5304
NYC	0.6332
Fairfax County, VA	0.6486
Palm Beach County, FL	0.6506

Table A1 – Continued from previous page

County	Factor 1
Pinellas County, FL	0.6741
Salt Lake County, UT	0.6756
Mecklenburg County, NC	0.6826
Miami-Dade County, FL	0.6909
Richmond city, VA	0.7492
Baltimore County, MD	0.8423
Winnebago County, IL	0.8838
Kern County, CA	1.0694
Santa Clara County, CA	1.1260
Prince George's County, MD	1.1410
Hinds County, MS	1.1675
Broward County, FL	1.1965
Sedgwick County, KS	1.2397
Orange County, CA	1.2552
Passaic County, NJ	1.3289
Maricopa County, AZ	1.3513
Montgomery County, PA	1.3766
Solano County, CA	1.3947
Monroe County, NY	1.4148
Los Angeles County, CA	1.4160
Baltimore city, MD	1.4715
Jefferson Parish, LA	1.4806
District of Columbia, DC	1.5930

Table A1 – Continued from previous page

County	Factor 1
San Diego County, CA	1.5979
Mobile County, AL	1.6046
Contra Costa County, CA	1.6330
San Bernardino County, CA	1.6456
Richland County, SC	1.6974
Erie County, NY	1.7022
Riverside County, CA	1.7879
Wayne County, MI	1.7980
San Joaquin County, CA	1.7999
Bibb County, GA	1.8719
Cumberland County, NC	1.8749
Guilford County, NC	1.9400
Montgomery County, AL	2.0026
Alameda County, CA	2.0417
Hampden County, MA	2.1212
Stanislaus County, CA	2.1215
Cuyahoga County, OH	2.1243
King County, WA	2.1889
Wake County, NC	2.2321
Multnomah County, OR	2.2546
Lucas County, OH	2.2970
Fulton County, GA	2.3186
Fresno County, CA	2.3500

Table A1 – Continued from previous page

County	Factor 1
Nassau County, NY	2.3619
Kent County, MI	2.3680
Jackson County, MO	2.3734
Cook County, IL	2.3963
Washoe County, NV	2.4940
Westchester County, NY	2.5988
Genesee County, MI	2.6115
Milwaukee County, WI	2.6195
East Baton Rouge Parish, LA	2.6344
San Mateo County, CA	2.7023
Allegheny County, PA	2.7847
Jefferson County, AL	2.9451
Suffolk County, NY	2.9620
Delaware County, PA	3.0513
Essex County, NJ	3.2056
Pierce County, WA	3.2543
Hennepin County, MN	3.4351
Philadelphia County, PA	3.6123

 Table A1 – Continued from previous page

A4.5	State-Level Handgu	n Check Factor Loadings
	8	

State	Factor 1	Factor 2	Factor 3	Factor 4
Iowa	-627.2668	-232.0078	23.3048	17.6464
Nebraska	-621.7008	-189.7626	-11.2814	22.2497
New York	-448.5870	-132.7421	-62.2758	-3.0756
North Carolina	-441.2939	-151.7821	-42.1234	-26.6060
New Jersey	-343.4451	-127.1018	-55.0383	-25.4617
Maryland	-319.3066	192.1388	-76.2961	-67.8736
Massachusetts	-313.0145	-85.8170	-74.2129	15.0483
California	-271.4025	-146.3080	68.0417	43.2913
Minnesota	-234.7604	83.2687	-46.0386	134.1555
Rhode Island	-218.6878	-53.8297	-73.6623	-87.7333
Arizona	-194.1402	-14.9635	12.2980	-29.4000
Kentucky	-180.5030	-137.5989	232.4196	11.4725
Hawaii	-170.2504	-71.8413	-146.6461	-5.8560
Utah	-159.2589	10.7289	-169.7298	-66.5886
Montana	-157.9407	79.2344	150.2527	-16.8185
Georgia	-144.9380	-24.8661	-73.5652	-2.4795
Kansas	-104.1863	129.8377	-1.8804	-20.4769
Texas	-83.0478	23.8170	26.8460	23.6109
Louisiana	-82.5940	-75.9248	92.3581	87.7107
New Mexico	-55.8881	-121.0172	166.6726	-114.4099
Michigan	-44.2869	-133.0810	-107.0615	40.2291
District of Columbia	-39.9094	-151.8201	-88.8811	-26.9508

State	Factor 1	Factor 2	Factor 3	Factor 4
Nevada	-27.0839	176.5553	-159.8685	-37.4504
North Dakota	-12.7402	281.9277	-1.8346	-6.0028
Missouri	-6.0998	-5.7038	-41.8149	2.4117
Idaho	4.6001	-2.3485	-7.2327	-113.6064
Arkansas	4.8625	-22.3973	129.6759	10.5897
Vermont	12.1636	-128.5200	94.2149	-117.2728
Ohio	15.9978	144.1161	12.9536	91.9530
Wyoming	54.9571	171.9347	198.6705	-8.2365
Delaware	55.1718	-64.2073	-6.6680	22.4293
South Carolina	61.1017	-4.2202	59.4616	-19.8293
Maine	66.4412	-5.9581	89.5195	28.7165
Alabama	70.3486	266.2399	55.0297	481.6706
Alaska	88.4458	215.7023	-3.8074	-54.7818
Washington	149.0675	197.6864	-195.0155	-64.8590
Illinois	168.7285	-63.2507	-25.9867	11.2577
Mississippi	169.8055	-227.6180	255.3865	-46.6442
Wisconsin	188.0983	118.5966	58.5803	-55.5824
Connecticut	219.1769	-41.5477	-225.4289	253.2733
South Dakota	263.0773	101.4312	-23.6280	46.4948
Virginia	289.0819	83.7123	-58.9746	-87.2869
Colorado	292.2589	104.0512	212.2811	-59.2297
West Virginia	297.3708	144.8954	214.3918	24.0013
Oklahoma	356.0568	280.5641	3.4317	59.5462

Table A2 – *Continued from previous page*

		3 1	1 0	
State	Factor 1	Factor 2	Factor 3	Factor 4
Florida	358.9205	124.4501	-285.3072	-121.7873
New Hampshire	450.9163	177.5086	37.4373	-116.3708
Oregon	558.8304	148.7561	-45.6305	-107.0204
Pennsylvania	1106.8534	-840.9179	-83.3374	81.9327

Table A2 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4
Chester City, Pennsylvania	-12.5113	5.9700	8.7024	-2.2506
Wilmington City, Delaware	-11.3803	0.9288	0.0780	-2.8108
Petersburg City, Virginia	-5.3543	0.5269	2.8686	3.3371
Harrisburg City, Pennsylvania	-5.3219	1.8433	1.4156	2.2033
Trenton City, New Jersey	-5.1207	1.4705	-2.6294	-1.9741
Plainfield City, New Jersey	-4.5517	1.9221	-1.7514	-1.9404
Charleston City, South Carolina	-4.1842	1.8512	-1.4654	0.1199
Wilmington City, North Carolina	-3.7390	-0.8147	-0.6828	1.1934
Paterson City, New Jersey	-3.4767	-2.5166	0.1499	0.0468
Tulsa City, Oklahoma	-3.3599	0.1656	-0.7036	-0.4547
Springfield City, Massachusetts	-3.2151	0.9739	-1.2684	0.5225
Fairfield City, California	-3.1028	0.9803	-0.7634	-0.1091
Jersey City City, New Jersey	-3.0067	-0.6514	-0.9248	0.4474
Colorado Springs City, Colorado	-2.7594	-0.2486	-0.6015	-0.2211
Erie City, Pennsylvania	-2.7395	0.0832	-0.6872	0.4902
Baton Rouge City, Louisiana	-2.6707	1.5545	0.2553	2.1194
Buffalo City, New York	-2.6179	3.0438	-0.8755	1.8100
Syracuse City, New York	-2.6159	0.6831	-1.3291	0.7497
Rialto City, California	-2.4022	1.3121	-1.3382	1.2131
Vallejo City, California	-2.3794	1.4748	0.2204	-1.6754
Lawton City, Oklahoma	-2.3719	-1.1049	0.3382	-0.6238
San Jose City, California	-2.2531	-1.0571	-0.7381	-0.2053

A4.6 City-Level Homicide Factor Loadings

Table A3 – Com	v 1	10		
City	Factor 1	Factor 2	Factor 3	Factor 4
Elizabeth City, New Jersey	-2.0998	1.5025	-1.4277	-0.5471
Savannah City, Georgia	-2.0511	-1.0398	0.1466	0.2000
El Paso City, Texas	-2.0161	0.5816	-0.9067	0.1646
Tucson City, Arizona	-1.9991	0.7686	-2.6273	0.9840
Port Arthur City, Texas	-1.9891	-0.9670	-0.4857	1.3453
Danville City, Virginia	-1.9693	-0.6207	0.5384	1.9793
Newark City, New Jersey	-1.9141	-0.1842	-0.4843	-1.3384
Corpus Christi City, Texas	-1.8812	-2.7073	0.3666	0.5198
Lafayette City, Louisiana	-1.8238	-1.3101	0.8968	0.8424
Berkeley City, California	-1.7571	-0.0693	-1.0950	-0.5604
Longview City, Texas	-1.6958	-1.7582	-0.0151	-0.4613
Atlantic City City, New Jersey	-1.6860	0.7741	1.4956	-4.1787
North Charleston City, South Carolina	-1.6818	0.8720	1.1227	-0.1260
Hayward City, California	-1.5916	-0.5299	-0.6903	0.5899
Oklahoma City City, Oklahoma	-1.5629	-1.2938	-0.1993	-0.4089
Virginia Beach City, Virginia	-1.4095	-0.4581	-0.5200	-0.7729
Hampton City, Virginia	-1.3993	-0.8179	0.0941	-0.6063
Hartford City, Connecticut	-1.3757	1.5441	-2.1471	1.8079
Newport News City, Virginia	-1.3584	-0.5021	-0.1441	0.5385
Aurora City, Colorado	-1.3576	-1.3679	-1.0693	-0.1669
San Francisco City, California	-1.3181	0.0117	-0.3886	-0.4254
Albuquerque City, New Mexico	-1.2649	0.6205	-1.8855	0.1273
Austin City, Texas	-1.2168	-2.6087	-0.7947	-0.3299

Table A3 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4
Flint City, Michigan	-1.2143	1.1393	-0.4927	-4.9286
Carson City, California	-1.2056	0.7414	-1.2850	1.1128
Yonkers City, New York	-1.1861	-0.2100	-1.3384	-0.1564
Boston City, Massachusetts	-1.1783	-0.2895	0.2033	-0.9409
Pittsburg City, California	-1.1185	-2.2239	-0.6572	1.0003
Lubbock City, Texas	-0.8845	-2.7821	-0.6576	0.4637
Texas City City, Texas	-0.8740	0.0349	-1.8891	2.0951
Bakersfield City, California	-0.8636	-0.3637	-0.8659	0.0312
Providence City, Rhode Island	-0.8557	0.6444	-2.2349	0.1323
Lansing City, Michigan	-0.8340	0.0136	-0.7208	0.2870
Asheville City, North Carolina	-0.7759	0.9443	0.7325	0.0522
Oakland City, California	-0.7740	2.6859	0.4882	-2.0858
Garland City, Texas	-0.7689	-1.3471	-0.2002	-0.1447
Baltimore City, Maryland	-0.7216	4.1784	-0.5901	2.4525
Palmdale City, California	-0.7097	0.8667	-0.9743	-0.0368
Durham City, North Carolina	-0.6384	0.7579	-1.1566	0.6123
Amarillo City, Texas	-0.6290	-1.5583	-0.6802	0.3259
Stockton City, California	-0.6219	-0.1048	0.3966	-1.0440
Seattle City, Washington	-0.6035	-1.0710	-0.2653	0.1088
Irving City, Texas	-0.4864	-2.6664	0.0358	-0.4236
Pasadena City, California	-0.3876	-1.3277	0.7412	-0.0091
San Diego City, California	-0.3464	-0.0070	-0.3849	-0.7418
Waterbury City, Connecticut	-0.2412	-0.0181	-0.0711	0.3903

Table A3 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4
St. Paul City, Minnesota	-0.2289	-0.2394	-0.9650	0.6380
Riverside City, California	-0.2066	0.8298	-0.7361	0.3629
Killeen City, Texas	-0.1845	-1.7487	2.2062	-2.8616
Gulfport City, Mississippi	-0.0630	-1.3575	-1.7378	1.3980
Arlington City, Texas	-0.0254	-2.2202	-0.8264	-0.9418
Toledo City, Ohio	-0.0236	-0.0092	-0.1013	0.1514
Goldsboro City, North Carolina	-0.0080	-1.0464	2.0661	-3.5488
Greensboro City, North Carolina	0.0137	0.9417	-0.3786	0.1998
Mount Vernon City, New York	0.0960	-1.6098	-1.0172	-0.9737
Beaumont City, Texas	0.1641	-0.9573	1.5903	0.0656
Albany City, New York	0.1873	-0.7325	-1.4610	0.5406
Columbus City, Ohio	0.1918	-0.4365	-0.1436	-0.0666
Sumter City, South Carolina	0.1947	-1.5457	-1.0781	0.5269
Phoenix City, Arizona	0.2067	1.2461	-2.4794	1.2268
Roanoke City, Virginia	0.2284	-2.0551	-0.9711	-1.1557
Mesquite City, Texas	0.3824	-2.4464	-0.4453	-0.5267
Denver City, Colorado	0.3893	-1.6377	-0.0032	0.6273
Tyler City, Texas	0.4343	-2.4386	-0.5893	0.3688
Meridian City, Mississippi	0.4530	-4.0241	1.1518	0.1279
Sacramento City, California	0.5069	-0.8476	-0.3981	-0.2831
Grand Rapids City, Michigan	0.5361	-0.7846	-0.3697	0.2250
Portland City, Oregon	0.5542	-0.9950	-0.2233	-0.2043
Ontario City, California	0.5849	-0.4292	0.4816	-0.0486

Table A3 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4
Dayton City, Ohio	0.6111	-0.0008	0.6469	0.5876
Lima City, Ohio	0.6319	-0.2162	-1.2577	-0.4999
Fontana City, California	0.6935	0.0946	-0.1501	1.1543
Little Rock City, Arkansas	0.6965	1.1816	2.0394	0.3722
Pomona City, California	0.7662	1.9515	-0.5786	-0.5955
Tacoma City, Washington	0.8194	0.9519	-0.3223	-0.1188
Columbia City, South Carolina	0.8796	-0.6088	-0.1049	0.6507
Grand Prairie City, Texas	0.8842	-2.1863	-0.5700	0.3422
Fresno City, California	0.9389	0.8027	0.2758	0.5765
Philadelphia City, Pennsylvania	1.0106	2.3428	-0.8381	0.3485
Alexandria City, Louisiana	1.0527	-3.6547	3.2891	2.3448
Pine Bluff City, Arkansas	1.0579	2.0029	0.6413	4.4326
Rochester City, New York	1.1408	2.2074	-1.0280	0.7262
St. Louis City, Missouri	1.1663	2.3358	8.1607	1.7983
Norfolk City, Virginia	1.2187	2.1937	0.3219	-0.1954
Saginaw City, Michigan	1.2376	1.6231	-1.8867	-4.5702
Fayetteville City, North Carolina	1.2629	0.9695	1.0132	-2.1628
High Point City, North Carolina	1.3561	-0.2144	0.5138	2.2363
Wichita Falls City, Texas	1.4181	-2.6751	-0.8563	-1.3876
Winston-Salem City, North Carolina	1.4265	0.9102	0.4089	0.6214
Suffolk City, Virginia	1.5234	1.3949	-0.4866	-2.6615
Las Vegas City, Nevada	1.5248	-3.4174	1.0197	2.6543
San Antonio City, Texas	1.5522	-2.4407	1.3287	-0.9197

Table A3 – Continued from previous page

City	Factor 1	Factor 4		
East Orange City, New Jersey	1.5920	-1.1642	-3.9716	1.8669
Portsmouth City, Virginia	1.6986	1.1680	1.3830	0.9910
Waco City, Texas	1.7221	0.6965	-0.2515	0.1041
Greenville City, South Carolina	1.7233	-2.3642	-0.1920	0.0048
Vicksburg City, Mississippi	1.8426	0.3808	0.7083	2.7660
Rocky Mount City, North Carolina	1.9671	1.5066	1.6327	0.2806
Richmond City, California	2.1423	8.0385	0.1314	-1.0181
Kansas City City, Missouri	2.1464	0.1922	-0.0050	-0.0409
Spartanburg City, South Carolina	2.2839	1.7531	-0.9224	-1.2562
Long Beach City, California	2.3224	0.1734	0.5934	0.0380
Jackson City, Mississippi	2.4149	1.7110	2.7233	1.8376
Charlotte City, North Carolina	2.7564	-0.0343	1.1224	-0.6010
North Little Rock City, Arkansas	2.7617	1.6667	-0.3644	-1.0161
San Bernardino City, California	2.8548	3.1617	2.7175	0.4117
Cleveland City, Ohio	2.9654	-3.0665	3.1460	-0.3220
New York City, New York	3.3617	-1.7048	1.5739	-1.0755
Gastonia City, North Carolina	3.4016	0.1388	0.3201	2.0168
Shreveport City, Louisiana	3.5979	0.3098	2.0088	1.9318
Los Angeles City, California	3.7090	-0.9961	0.5380	-0.1139
Valdosta City, Georgia	4.1432	-1.2733	0.3898	-1.4290
Albany City, Georgia	4.6203	-2.2343	2.5055	0.3376
Fort Worth City, Texas	4.7399	-3.7606	2.7121	-1.3680
Inglewood City, California	4.8686	2.5268	-0.8951	-0.7020

Table A3 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4
Dallas City, Texas	5.4436	-2.5997	1.3148	-2.1315
Detroit City, Michigan	5.4645	-1.9963	0.4824	-2.5454
Atlanta City, Georgia	6.9432	0.1764	0.0253	0.0505
Bridgeport City, Connecticut	7.3015	-0.5479	2.6776	-0.6432
Richmond City, Virginia	11.0510	4.7328	-0.7156	3.2660
Compton City, California	16.3787	5.5363	-2.7231	-2.9400

Table A3 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Richmond City, Virginia	-15.4222	-6.9937	3.7730	2.3787	-1.2794
Fort Worth City, Texas	-13.9780	2.3486	-5.6197	-1.9669	4.8728
Los Angeles City, California	-13.5589	1.9793	-1.4404	-1.8883	2.7430
Bridgeport City, Connecticut	-13.1803	-0.8981	-0.9117	-1.5042	0.6987
Amarillo City, Texas	-12.4029	5.5631	2.3133	14.1977	-4.8289
Dallas City, Texas	-10.4162	3.1602	-3.0646	-4.8324	2.4935
Compton City, California	-9.8161	-12.2554	7.6840	-6.0277	-1.2831
Portland City, Oregon	-9.5354	-0.9491	1.0715	3.3614	-0.1136
Tacoma City, Washington	-8.7375	-2.3196	-0.2998	1.2572	2.6255
Atlanta City, Georgia	-8.4588	-1.0124	2.8134	-2.1194	-0.5208
New York City, New York	-8.1130	2.2960	-1.5407	-1.7816	2.5210
Charlotte City, North Carolina	-7.4659	-0.9217	-2.6978	-1.3346	-0.3418
North Little Rock City, Arkansas	-7.4496	-7.4518	3.6764	-0.3989	1.8561
Fontana City, California	-7.4492	-0.5071	0.0146	1.4766	-6.5575
Detroit City, Michigan	-7.0820	4.3931	0.7433	-2.6120	4.2689
St. Louis City, Missouri	-6.8982	-0.4530	-10.4999	6.1272	-3.3030
Waco City, Texas	-6.7362	-2.8058	-0.4133	1.5542	0.7038
Shreveport City, Louisiana	-6.7230	0.6088	-0.8357	0.5971	-5.2185
Greenville City, South Carolina	-6.6538	5.9979	2.1908	-0.5955	4.3487
Phoenix City, Arizona	-6.5420	-6.6941	4.9685	4.4844	-3.9433
Ontario City, California	-6.3793	-6.1572	-7.1456	2.4929	1.1590
Long Beach City, California	-6.0946	-0.4500	-1.5446	-1.5650	-1.9785

A4.7 City-Level Black Homicide Factor Loadings

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Cleveland City, Ohio	-6.0936	6.8872	-4.2327	-0.9413	-2.0438
Gastonia City, North Carolina	-5.9974	-0.2836	2.1820	2.0919	4.1758
Winston-Salem City, North Carolina	-5.4876	0.4357	0.4001	-0.0414	0.7742
San Antonio City, Texas	-5.4561	1.1466	-4.6232	2.0727	0.2199
Albany City, Georgia	-5.4039	4.2085	1.1006	1.1613	3.7165
Wichita Falls City, Texas	-5.3570	5.0654	4.0700	-8.8744	3.7855
Pasadena City, California	-5.1352	5.3706	-3.2796	1.5070	0.8191
Grand Rapids City, Michigan	-5.0834	3.8143	-0.1023	2.1209	-3.2333
Inglewood City, California	-4.8116	-4.6262	3.0963	-4.6861	-2.0198
Grand Prairie City, Texas	-4.7835	-2.2929	1.7777	-2.1825	2.3955
Spartanburg City, South Carolina	-4.5899	-4.6707	2.3492	-3.3190	-2.0340
Lubbock City, Texas	-4.5867	8.5429	-1.5293	4.2822	0.7003
Valdosta City, Georgia	-4.2258	2.3995	-0.2990	-2.8160	6.0052
Suffolk City, Virginia	-3.8280	-1.2808	-1.7433	-3.2674	0.7695
Waterbury City, Connecticut	-3.6952	-1.4816	-0.8781	3.9927	0.0275
Kansas City City, Missouri	-3.5502	-2.8601	-0.9401	0.3541	1.5762
Rochester City, New York	-3.4412	-6.0515	-0.5141	1.3731	-0.7967
High Point City, North Carolina	-3.3912	-1.8737	2.8363	2.7945	-0.9491
Portsmouth City, Virginia	-3.3675	-1.2642	-1.0029	2.6854	3.1570
Lima City, Ohio	-3.2800	-0.0954	-1.4868	-5.3043	-9.3721
Tyler City, Texas	-3.2062	5.6695	0.3491	0.2529	-3.3397
Vicksburg City, Mississippi	-2.8742	2.1791	3.8028	1.3677	1.0991
St. Paul City, Minnesota	-2.4379	0.3640	2.5107	0.1084	-0.3194

Table A4 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Seattle City, Washington	-2.3904	0.8309	0.0426	3.5468	2.8264
Riverside City, California	-2.3794	-4.2487	-1.2788	1.0173	2.1597
Jackson City, Mississippi	-2.1621	-1.5132	-0.0974	4.3194	-1.6303
Alexandria City, Louisiana	-2.1391	6.9970	-5.0098	0.6572	-1.4290
Little Rock City, Arkansas	-2.1210	-2.7400	-4.4433	1.4173	1.0987
Columbus City, Ohio	-2.1006	-0.3487	-1.2829	-0.1323	-0.8735
San Bernardino City, California	-2.0234	-10.3038	-17.8795	-0.1933	-7.5695
Roanoke City, Virginia	-1.9187	0.5468	3.5361	-7.8338	-2.3335
Norfolk City, Virginia	-1.7061	-4.4145	-1.7080	-1.7128	1.6189
Las Vegas City, Nevada	-1.6175	-4.0134	3.6485	0.8758	-12.8867
Albuquerque City, New Mexico	-1.4576	-2.1693	0.8580	1.3987	4.9033
Saginaw City, Michigan	-1.4519	-1.7955	-7.1090	-8.4485	-0.5214
Philadelphia City, Pennsylvania	-1.2654	-2.7821	1.1788	-1.7619	-2.9577
Denver City, Colorado	-1.1871	2.0150	0.9417	2.1742	0.9083
Columbia City, South Carolina	-1.1476	1.6140	1.1734	0.6259	-2.1766
Pomona City, California	-1.0803	-7.5380	-1.0662	10.5716	10.7124
Corpus Christi City, Texas	-1.0173	9.7411	-2.5038	-5.0183	-7.6428
Rocky Mount City, North Carolina	-0.9511	-1.2759	0.6328	0.5667	-1.5747
Garland City, Texas	-0.7842	1.9819	-1.8919	1.0741	2.7274
Durham City, North Carolina	-0.7567	-1.1259	2.3229	0.5895	-0.5176
Austin City, Texas	-0.7219	6.1814	0.1083	-1.2334	1.1877
Toledo City, Ohio	-0.7044	2.4141	-3.3779	-1.0425	-2.3057
Irving City, Texas	-0.4146	6.4755	-0.3514	-1.5935	-0.3290

Table A4 – *Continued from previous page*

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Sacramento City, California	-0.3004	1.2189	-1.2887	0.1816	2.2767
San Diego City, California	-0.2411	-0.2890	0.3108	-0.5590	3.4061
Texas City City, Texas	-0.1388	0.8049	4.4355	2.8691	-0.9761
Flint City, Michigan	-0.1081	2.6479	-2.8383	-6.1617	3.9881
East Orange City, New Jersey	0.1153	0.6165	4.9102	-2.0944	-0.4084
Dayton City, Ohio	0.1378	1.5106	-1.4765	0.1282	-1.1454
Lansing City, Michigan	0.4785	1.6923	2.5299	-1.8984	-2.1793
Killeen City, Texas	0.5894	3.7087	-1.0464	-0.0184	-2.0143
Fayetteville City, North Carolina	0.5989	-2.2810	0.0192	-2.4909	1.0129
Greensboro City, North Carolina	0.7290	-1.9373	1.3180	0.3427	0.1034
Richmond City, California	0.8533	-18.7366	-2.4356	0.9963	0.9831
Albany City, New York	0.9957	-0.1616	6.3933	1.4737	-0.0140
Fresno City, California	1.2055	-7.1397	-2.6101	-2.2011	5.8415
Pittsburg City, California	1.2690	14.2829	-0.3706	-0.8494	5.3770
Beaumont City, Texas	1.3632	2.8277	-1.5082	1.7835	-0.3009
Lafayette City, Louisiana	1.3957	3.3133	-2.0123	3.4558	1.1537
Hayward City, California	1.4091	-2.9643	3.7116	1.4854	-3.8004
Meridian City, Mississippi	1.4385	8.3569	-1.2576	1.9449	-1.6266
Baltimore City, Maryland	1.5222	-4.1658	1.0164	1.1810	-1.7571
Berkeley City, California	1.5737	-2.3105	2.0709	-1.4639	5.6741
Arlington City, Texas	1.5894	4.2822	0.2828	0.8525	-2.9721
Palmdale City, California	1.7192	-2.2165	-0.8523	-1.0577	3.9271
Boston City, Massachusetts	1.8568	-1.9883	-1.4670	-2.4149	-0.8193

Table A4 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Yonkers City, New York	1.9551	1.8856	2.1253	-1.0782	-1.1156
Gulfport City, Mississippi	2.1591	0.5402	5.7360	0.0628	0.1105
Providence City, Rhode Island	2.3784	-2.2641	7.7544	-9.1564	-2.9283
Sumter City, South Carolina	2.4451	3.4269	2.5303	-2.6803	2.3208
Asheville City, North Carolina	2.4894	1.8419	3.1961	1.7247	-5.3301
Pine Bluff City, Arkansas	2.6571	-2.6601	4.0398	3.9272	-4.1212
Aurora City, Colorado	2.7883	3.7017	1.8319	0.3298	1.5770
Oklahoma City City, Oklahoma	3.0621	1.7353	-1.0530	-0.9111	-0.4349
Port Arthur City, Texas	3.0655	3.7887	-0.2314	0.0269	1.3813
Mount Vernon City, New York	3.0790	1.8685	3.7601	-2.4357	-0.4947
Goldsboro City, North Carolina	3.4685	1.1782	-3.4189	-4.2213	-2.7734
Stockton City, California	3.5154	5.3487	-7.1234	-4.3911	-2.8682
Savannah City, Georgia	3.5335	4.6575	1.2648	-0.5251	-1.7118
El Paso City, Texas	3.6736	-1.0321	-0.6833	-1.0957	0.2994
Mesquite City, Texas	3.7379	6.2735	3.5983	-0.7277	4.0833
Virginia Beach City, Virginia	3.8894	-0.6845	0.5564	0.4227	1.0314
Newport News City, Virginia	4.0205	1.7785	0.7202	0.8891	-0.6455
Longview City, Texas	4.2254	1.9715	-4.1851	1.0878	2.3454
Paterson City, New Jersey	4.6075	4.9493	-0.1707	-0.8797	-1.5038
Carson City, California	4.6150	-0.0044	4.0171	1.7991	0.2850
Danville City, Virginia	4.6355	1.0211	2.6731	3.2994	-0.5380
Lawton City, Oklahoma	4.8467	7.2997	0.5641	1.3462	2.3073
Plainfield City, New Jersey	4.9515	-0.2836	1.5927	-2.8568	-0.2438

Table A4 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Hampton City, Virginia	4.9700	1.0059	0.5817	-0.8758	-0.1638
Vallejo City, California	5.0326	-0.7615	0.9800	1.1374	1.3378
San Jose City, California	5.0365	3.2600	2.2855	0.5509	-1.2189
Bakersfield City, California	5.0507	-6.4581	0.3873	0.0134	1.3146
Newark City, New Jersey	5.1244	-0.4729	-0.5254	-2.4936	0.8929
Elizabeth City, New Jersey	5.3468	-6.1695	-1.5874	-2.7947	3.0641
Rialto City, California	5.3817	-6.2877	3.5028	1.4137	-2.1747
Colorado Springs City, Colorado	5.5690	0.5048	2.9201	1.6061	4.3010
Baton Rouge City, Louisiana	5.9081	-1.6374	0.5510	2.6772	-2.9471
North Charleston City, South Carolina	6.1607	3.3355	-1.9283	-1.8503	0.2945
Oakland City, California	6.1941	-6.2267	-3.4801	-1.4887	4.1905
Buffalo City, New York	6.2435	-5.6600	0.0382	3.7101	-0.6526
Hartford City, Connecticut	6.2488	-1.9913	6.3021	2.4922	-1.7929
Springfield City, Massachusetts	6.2810	-2.7701	0.8540	1.0031	0.0337
Jersey City City, New Jersey	6.3822	2.9494	2.0062	1.0657	-1.0571
Charleston City, South Carolina	6.4132	-2.2554	0.6988	0.6854	-1.2742
Petersburg City, Virginia	6.9051	-0.0009	-1.0922	4.2793	-0.7002
Tucson City, Arizona	7.3122	-2.1424	7.7081	0.9551	1.1716
Atlantic City City, New Jersey	9.1906	0.5391	-3.7281	-5.7203	-4.9410
Wilmington City, North Carolina	9.3118	4.9035	-0.2262	3.3954	1.7051
Fairfield City, California	9.7772	-2.3468	-3.1945	0.6818	2.5881
Tulsa City, Oklahoma	9.9045	-0.2963	-0.5411	-1.4166	-2.6656
Erie City, Pennsylvania	10.1927	4.4706	2.6944	6.0647	-1.1618

Table A4 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Harrisburg City, Pennsylvania	10.2230	0.2258	-0.0350	3.0505	-0.0744
Trenton City, New Jersey	10.4431	-1.0151	0.6382	-3.4517	3.8352
Syracuse City, New York	10.8995	-0.8884	0.2628	0.2455	-0.1075
San Francisco City, California	13.5288	-12.5313	-3.1767	-4.5043	2.6186
Chester City, Pennsylvania	16.5989	-0.6090	-10.9514	5.5661	-0.0282
Wilmington City, Delaware	17.1927	1.6073	-2.3957	-1.3368	-0.5805

Table A4 – Continued from previous page

A4.8 City-Level Firearm Homicide Factor Loadings	A4.8	City-Level	Firearm	Homicide	Factor	Loadings
--	------	------------	---------	----------	--------	----------

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Compton City, California	-12.9112	-7.4657	-2.6349	-1.9406	-3.5067
Richmond City, Virginia	-10.0010	-4.9203	-0.0202	1.5867	-2.0897
Bridgeport City, Connecticut	-6.0940	0.6742	2.5547	-0.8550	0.8524
Inglewood City, California	-5.0152	-3.5792	0.4713	-1.0734	0.1072
Dallas City, Texas	-4.8114	1.2631	1.4069	-2.0478	-0.0122
Atlanta City, Georgia	-4.4749	-0.3296	-0.1747	0.0358	-0.2577
Shreveport City, Louisiana	-3.6882	-0.2598	1.7341	1.7610	-0.6374
Albany City, Georgia	-3.6204	2.4773	2.3158	0.7359	-1.4866
Cleveland City, Ohio	-3.5369	3.4680	3.0290	0.0482	-0.9941
Fort Worth City, Texas	-3.4685	3.4072	2.0113	-1.1371	0.0864
Los Angeles City, California	-3.3928	-0.3528	0.1182	-0.4024	0.2267
New York City, New York	-3.2519	1.3157	1.5401	-1.3145	0.0921
Gastonia City, North Carolina	-2.5690	0.4236	-0.0201	0.9602	0.2544
Detroit City, Michigan	-2.5665	-0.0014	0.1887	-1.6874	0.5554
Spartanburg City, South Carolina	-2.4800	-1.3098	0.0415	-0.3358	1.0379
Greenville City, South Carolina	-2.2155	2.0065	-0.1719	-0.1509	-0.0034
Charlotte City, North Carolina	-2.1719	0.4950	0.6818	-0.4322	0.3940
Portsmouth City, Virginia	-2.1624	-0.0239	2.2572	0.8839	0.4262
Valdosta City, Georgia	-1.9959	1.9363	0.6131	-1.5104	-0.5221
North Little Rock City, Arkansas	-1.9265	-1.3788	0.1296	-1.2171	1.0306
Long Beach City, California	-1.8650	-0.7328	0.6439	-0.0191	0.3798
Richmond City, California	-1.8300	-7.8436	1.7142	-0.4218	3.6233

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
East Orange City, New Jersey	-1.7976	-0.4108	-3.4964	0.6653	0.3836
Lima City, Ohio	-1.7482	0.3369	-0.6816	-0.6250	-0.6361
Wichita Falls City, Texas	-1.6598	1.7861	-0.8677	-0.7296	0.0670
San Bernardino City, California	-1.6479	-2.9265	2.0624	0.1273	-1.1672
High Point City, North Carolina	-1.4896	1.6382	0.4746	1.6074	-0.3325
San Antonio City, Texas	-1.3616	1.8834	1.1632	-0.6972	-0.0663
Las Vegas City, Nevada	-1.3055	1.3114	-0.2610	1.9521	0.1688
Waco City, Texas	-1.2861	-0.2894	-0.0152	-0.3036	0.1536
Jackson City, Mississippi	-1.2526	-1.2298	1.8884	2.4593	-1.2681
Grand Prairie City, Texas	-1.2182	2.3520	-0.7356	-0.1076	0.2333
Ontario City, California	-1.2073	0.6188	-0.1047	-0.0630	-0.0484
Phoenix City, Arizona	-1.1477	-1.0321	-1.8888	0.8093	0.3194
Philadelphia City, Pennsylvania	-1.1334	-2.4028	-0.4283	0.4622	1.1167
Rochester City, New York	-1.1104	-1.4048	-1.4520	0.1997	0.3988
Columbia City, South Carolina	-1.0246	0.3990	-0.5848	0.4877	0.3366
Pomona City, California	-1.0134	-1.8838	-0.5619	-0.5434	-0.3055
Vicksburg City, Mississippi	-0.9650	0.9794	1.7142	1.2083	0.9777
Fontana City, California	-0.9617	-0.0540	-0.3382	0.7042	0.7431
Fresno City, California	-0.9579	-0.7794	0.2041	0.2165	0.2741
Killeen City, Texas	-0.9049	1.6927	2.0936	-2.5320	1.2266
Portland City, Oregon	-0.9039	1.0007	-0.5700	0.1820	-0.2463
Roanoke City, Virginia	-0.7771	1.7892	-0.5323	-0.3125	-0.1161
Winston-Salem City, North Carolina	-0.7722	-0.5413	-0.2872	0.6935	0.1537

Table A5 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Little Rock City, Arkansas	-0.7503	-0.9410	1.7693	-0.1277	-0.3582
Pasadena City, California	-0.7235	0.6305	0.8915	-0.0197	-0.1269
Tacoma City, Washington	-0.6885	-0.3665	-0.0935	-0.2198	-0.2324
Norfolk City, Virginia	-0.6416	-1.8389	1.3999	-0.4592	-0.0758
Toledo City, Ohio	-0.5957	0.8511	0.2069	-0.0049	-0.1630
Kansas City City, Missouri	-0.5866	-0.1752	-0.3528	0.1018	-0.9100
Beaumont City, Texas	-0.5782	1.7030	0.6952	-0.5439	-0.4147
Texas City City, Texas	-0.5597	0.4901	-0.7013	0.7809	1.8777
Sumter City, South Carolina	-0.5091	0.0495	0.3954	-0.0400	-0.0047
Grand Rapids City, Michigan	-0.4976	0.8716	-0.6462	-0.1241	0.6359
Fayetteville City, North Carolina	-0.4660	-0.7990	0.5524	-1.3235	0.5667
Waterbury City, Connecticut	-0.4500	0.4746	-0.2003	0.2013	-0.3552
Mesquite City, Texas	-0.4302	2.1326	-0.6979	-0.3435	-0.1701
Carson City, California	-0.4150	-1.1959	-1.3723	0.8741	0.6751
Columbus City, Ohio	-0.4119	0.4168	0.0540	-0.2624	0.0180
Tyler City, Texas	-0.3890	1.5125	-0.5558	0.1108	-0.2726
Denver City, Colorado	-0.3642	1.2052	-0.3597	0.4551	-0.1611
Rocky Mount City, North Carolina	-0.3039	-0.2247	1.2328	1.8052	1.1891
Sacramento City, California	-0.2948	0.2934	-0.3373	-0.3861	0.0538
Irving City, Texas	-0.1774	2.6026	-0.1520	-0.3643	-0.0068
Alexandria City, Louisiana	-0.1479	3.5620	2.2240	0.5634	-2.5720
Suffolk City, Virginia	-0.1421	-0.4402	-0.6891	-1.0801	-0.0129
Asheville City, North Carolina	-0.1010	1.1065	0.3034	0.4505	-0.5340

Table A5 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Greensboro City, North Carolina	-0.0354	-0.3845	0.2867	0.6391	-0.4109
Arlington City, Texas	0.0242	1.4830	-0.8771	-0.4946	0.1488
Lubbock City, Texas	0.0450	2.7828	-0.6072	0.3531	-0.2626
Riverside City, California	0.0521	-0.1534	-0.8926	0.4534	0.4374
Palmdale City, California	0.0524	-0.3161	-0.5126	-0.3480	0.5724
Pine Bluff City, Arkansas	0.0643	-0.6062	0.2680	2.8191	-0.5915
Durham City, North Carolina	0.1001	-0.7162	-1.2253	0.8720	-0.0718
Amarillo City, Texas	0.1006	1.5539	-0.4851	0.2485	0.0165
San Diego City, California	0.1306	0.0588	-0.4055	-0.5095	-0.0301
Dayton City, Ohio	0.1384	-0.0109	2.3916	-0.3250	0.2013
Lansing City, Michigan	0.1647	0.6342	-0.5949	0.0680	-0.2022
Austin City, Texas	0.1811	2.1980	-0.7887	-0.2405	0.0977
Gulfport City, Mississippi	0.1836	0.6894	-1.7182	0.9131	0.9480
Mount Vernon City, New York	0.2100	1.5055	0.0295	-0.6153	0.7773
Providence City, Rhode Island	0.2494	-0.9640	-2.0987	0.2511	0.0918
Albany City, New York	0.2778	0.4597	-1.4851	0.9496	-0.0462
Garland City, Texas	0.2803	1.6311	-0.3869	0.0994	-0.0589
St. Paul City, Minnesota	0.2887	0.8718	-0.5195	0.4255	0.0126
Saginaw City, Michigan	0.3217	-1.1321	-2.1175	-3.4202	-1.4732
Seattle City, Washington	0.3435	0.9126	-0.2012	-0.1810	-0.3407
Pittsburg City, California	0.3793	0.1249	-0.2147	0.1460	-0.1930
Hayward City, California	0.4485	0.2446	-1.4428	0.6954	0.0579
Bakersfield City, California	0.4673	-0.5415	-0.7365	-0.0546	-0.1542

Table A5 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Tucson City, Arizona	0.5204	-0.4863	-1.7862	0.6172	0.8152
Meridian City, Mississippi	0.5828	2.9621	0.2539	-0.7162	-2.0369
Albuquerque City, New Mexico	0.7430	0.1802	-0.9868	0.4667	-0.1813
Yonkers City, New York	0.8215	0.2983	-1.0523	-0.2115	0.3183
Rialto City, California	0.8327	-1.3867	-0.6893	0.2366	0.4541
St. Louis City, Missouri	0.8815	-1.7902	5.9843	0.7448	2.3470
Baltimore City, Maryland	0.8885	-3.9506	0.1644	2.9276	-0.1374
Stockton City, California	0.8944	-1.3729	0.0781	-0.5429	-0.1731
Corpus Christi City, Texas	0.9064	2.5678	-0.0925	0.2246	-0.9789
Erie City, Pennsylvania	0.9348	1.3173	-0.6420	0.3838	-0.4890
Lawton City, Oklahoma	0.9531	1.1525	0.1517	-0.7745	-0.1965
Oklahoma City City, Oklahoma	0.9557	1.0108	-0.2678	-0.3411	0.2023
Virginia Beach City, Virginia	1.0370	0.2177	-0.6161	-0.4556	-0.0514
Aurora City, Colorado	1.0422	0.8516	-1.1074	0.2245	0.0255
Longview City, Texas	1.1055	1.0326	0.1005	-0.2788	0.8055
Newport News City, Virginia	1.1277	0.3989	-0.2575	0.5081	0.2404
San Francisco City, California	1.1349	-0.5333	-0.3226	-0.2988	0.1422
Savannah City, Georgia	1.2309	0.7035	-0.4936	0.5114	-0.7129
El Paso City, Texas	1.2551	-0.3171	-0.8185	-0.1315	0.0162
Danville City, Virginia	1.3091	0.2628	0.6107	2.4611	0.7253
Hampton City, Virginia	1.3194	0.7762	-0.1257	0.1085	-0.6623
Elizabeth City, New Jersey	1.3561	-0.7474	-1.1451	-0.3275	0.7665
Oakland City, California	1.3591	-2.0655	1.1312	-1.8368	1.2078

Table A5 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Boston City, Massachusetts	1.3600	-0.2348	-0.0250	-0.5419	0.4964
Hartford City, Connecticut	1.3760	-1.8646	-0.8281	0.7004	1.7488
San Jose City, California	1.3969	0.7160	-0.9197	0.0144	0.1138
Vallejo City, California	1.5728	-0.5949	0.1416	-1.2768	0.6073
Colorado Springs City, Colorado	1.6536	0.3239	-0.6314	-0.0810	-0.3301
Lafayette City, Louisiana	1.7060	1.4887	0.0127	0.5899	0.2085
Berkeley City, California	1.7869	-0.3082	-1.1566	-0.3508	-0.2075
Wilmington City, North Carolina	2.0132	-0.0952	-1.3394	0.8978	-0.8359
Fairfield City, California	2.0328	-0.4731	-0.6310	-0.2602	0.3735
Port Arthur City, Texas	2.0465	1.0927	-0.2104	1.5368	-0.7221
Paterson City, New Jersey	2.1731	1.0710	-0.5440	-0.0551	-0.3094
Springfield City, Massachusetts	2.2524	-0.3165	-0.7377	0.2602	-0.1819
Tulsa City, Oklahoma	2.2541	0.7111	-0.3869	0.0100	0.0686
North Charleston City, South Carolina	2.2749	-1.0214	0.1396	-0.2027	-1.6888
Syracuse City, New York	2.2822	0.0878	-0.8445	0.5068	-0.8484
Jersey City City, New Jersey	2.5029	0.3228	-0.5001	0.3229	-0.0824
Goldsboro City, North Carolina	2.5831	0.4485	2.4456	-3.1574	-0.0420
Buffalo City, New York	2.6392	-2.0241	-0.5514	0.5385	0.0826
Baton Rouge City, Louisiana	2.9495	-1.1803	1.3033	2.6089	2.2587
Plainfield City, New Jersey	3.1633	-0.2704	-0.5205	-1.2576	-0.1973
Charleston City, South Carolina	3.2346	-0.5701	-1.1586	0.2007	1.0335
Flint City, Michigan	3.5742	-0.5849	0.7085	-3.8278	1.7547
Newark City, New Jersey	3.5769	-2.1558	-1.0063	-0.6674	0.3541

Table A5 – Continued from previous page

	- -	-			
City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Petersburg City, Virginia	3.9873	0.1511	0.8720	2.8383	-1.9181
Atlantic City City, New Jersey	4.8849	-0.2415	0.7084	-0.2818	2.3029
Harrisburg City, Pennsylvania	5.1147	-1.7955	1.0518	2.2328	-0.5892
Trenton City, New Jersey	5.9462	-0.9199	-1.8274	-2.7299	-1.9011
Wilmington City, Delaware	10.2614	-1.2756	-0.2979	-1.3034	1.0038
Chester City, Pennsylvania	13.6608	-5.9172	4.2054	-0.8805	-5.0951

Table A5 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Richmond City, Virginia	-14.9929	-8.0611	-1.1235
Bridgeport City, Connecticut	-12.5890	0.5970	-1.5481
Fort Worth City, Texas	-10.6199	3.6784	2.6504
Los Angeles City, California	-9.7517	-2.7212	0.0979
Amarillo City, Texas	-9.2231	-0.0913	4.9078
Dallas City, Texas	-8.8854	2.0641	1.5942
Compton City, California	-8.0139	-12.5568	-4.9745
New York City, New York	-7.9856	1.4899	0.2657
Shreveport City, Louisiana	-7.9361	-1.1537	1.9846
Cleveland City, Ohio	-7.7303	7.0827	4.1770
Waco City, Texas	-7.4225	-1.2562	1.5271
Atlanta City, Georgia	-7.4146	-0.3221	-2.8794
Greenville City, South Carolina	-7.0803	4.5371	-1.7237
Portland City, Oregon	-6.3139	-2.6281	-2.0967
Wichita Falls City, Texas	-6.0841	2.1965	-2.3144
St. Louis City, Missouri	-6.0820	-0.6095	9.5316
Charlotte City, North Carolina	-5.9753	0.1139	0.0485
Tacoma City, Washington	-5.7132	-1.7681	-1.6322
Phoenix City, Arizona	-5.6737	-5.2845	-2.9133
Pasadena City, California	-5.6570	1.6911	4.9380
Inglewood City, California	-5.5400	-5.6095	-1.1895
San Antonio City, Texas	-5.4846	1.8216	4.2764

A4.9 City-Level Black Firearm Homicide Factor Loadings

City	Factor 1	Factor 2	Factor 3
Ontario City, California	-5.3932	-2.9723	3.0880
Albany City, Georgia	-5.3061	3.5935	0.5103
North Little Rock City, Arkansas	-4.9390	-6.9160	-4.0256
Gastonia City, North Carolina	-4.8445	-0.2900	-1.2933
Detroit City, Michigan	-4.7324	1.9767	-1.8515
Spartanburg City, South Carolina	-4.6116	-4.6328	0.1288
Portsmouth City, Virginia	-4.4180	0.3687	1.1367
Fontana City, California	-4.3385	-0.0443	1.2056
Winston-Salem City, North Carolina	-4.0199	0.4154	-1.0015
Lubbock City, Texas	-3.9645	6.9756	0.0554
Lima City, Ohio	-3.9529	-1.1230	4.0916
Long Beach City, California	-3.8060	-1.7306	0.5208
Grand Prairie City, Texas	-3.5911	-0.2129	-1.1666
High Point City, North Carolina	-3.4429	3.2059	-1.1167
Texas City City, Texas	-3.0128	0.3192	-1.1305
Corpus Christi City, Texas	-2.8476	10.3475	2.4889
Grand Rapids City, Michigan	-2.7662	1.3804	-1.9772
Alexandria City, Louisiana	-2.4647	6.6900	4.5562
Vicksburg City, Mississippi	-2.4218	3.7313	-2.2501
Columbus City, Ohio	-2.3839	-0.3070	1.0478
Little Rock City, Arkansas	-2.3768	-2.4973	3.4493
Irving City, Texas	-2.3425	6.1519	-0.0780
Columbia City, South Carolina	-2.1457	1.0230	-1.8397

Table A6 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Rochester City, New York	-2.0732	-5.2927	-1.2993
Valdosta City, Georgia	-2.0166	4.3055	0.3361
Las Vegas City, Nevada	-1.9380	-4.0770	1.9452
Jackson City, Mississippi	-1.8789	-0.8738	0.4017
Austin City, Texas	-1.8215	5.2554	0.1019
Roanoke City, Virginia	-1.8119	1.7591	-1.8873
Tyler City, Texas	-1.7093	1.7466	-0.1474
Norfolk City, Virginia	-1.6969	-2.7080	1.7947
East Orange City, New Jersey	-1.6904	0.2107	-4.5508
Albuquerque City, New Mexico	-1.5770	3.1763	-4.4024
Philadelphia City, Pennsylvania	-1.4032	-3.5983	-1.7204
Seattle City, Washington	-1.3266	1.5650	0.9079
Durham City, North Carolina	-1.2019	-0.7418	-1.1196
Kansas City City, Missouri	-1.1642	-1.2430	0.0561
Suffolk City, Virginia	-1.1010	-0.1002	-0.3002
Denver City, Colorado	-1.0951	1.1558	0.2702
Waterbury City, Connecticut	-0.9278	1.0615	-0.4732
Lansing City, Michigan	-0.8666	1.3586	-1.1278
Beaumont City, Texas	-0.8154	3.1253	0.6365
Fayetteville City, North Carolina	-0.7487	-1.1078	-0.5059
Toledo City, Ohio	-0.7033	3.2690	2.3590
Garland City, Texas	-0.5767	2.3509	-0.7210
Hayward City, California	-0.5117	-2.6367	-2.6080

Table A6 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Riverside City, California	-0.4654	-3.3184	-0.1267
•			
San Diego City, California	-0.4640	-0.1428	-1.2224
San Bernardino City, California	-0.4447	-11.1815	15.9019
St. Paul City, Minnesota	-0.2709	1.0778	-1.2192
Killeen City, Texas	-0.1736	2.8534	1.0715
Pomona City, California	-0.0348	-8.4222	-4.5198
Greensboro City, North Carolina	0.3260	0.0755	-0.2261
Sacramento City, California	0.4784	-0.1426	0.7859
Arlington City, Texas	0.5898	4.3594	1.2755
Dayton City, Ohio	0.6818	1.8649	5.0810
Baltimore City, Maryland	0.6881	-3.4832	-0.1369
Providence City, Rhode Island	0.7922	-3.9923	-9.1404
Sumter City, South Carolina	0.9784	1.5568	-0.4222
Meridian City, Mississippi	0.9970	5.1915	1.2094
Yonkers City, New York	1.0318	0.0898	-2.3871
Asheville City, North Carolina	1.0749	2.4266	1.7500
Rocky Mount City, North Carolina	1.0779	0.4022	-1.1022
Pittsburg City, California	1.1948	0.5291	-0.0883
Pine Bluff City, Arkansas	1.2438	-0.5077	-1.4958
El Paso City, Texas	1.3607	0.5809	-0.5807
Savannah City, Georgia	1.4087	3.1749	-0.5287
Palmdale City, California	1.4925	-2.5771	0.3131
Mount Vernon City, New York	1.6073	2.4397	-2.2490

Table A6 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Carson City, California	1.6810	-0.6887	-4.1270
Richmond City, California	1.9775	-18.6027	3.5828
Berkeley City, California	2.1649	-1.2449	-5.0060
Albany City, New York	2.1835	-0.3065	-5.4742
Plainfield City, New Jersey	2.3839	1.7413	0.4961
Port Arthur City, Texas	2.3929	2.9049	-0.2415
Saginaw City, Michigan	2.5010	-2.0704	3.4449
Lawton City, Oklahoma	2.5577	4.2269	-0.5638
Gulfport City, Mississippi	2.6166	1.4022	-3.3911
Oklahoma City City, Oklahoma	2.6552	1.2127	0.1283
Rialto City, California	2.6658	-3.8245	-2.5161
Lafayette City, Louisiana	2.7895	4.7602	1.3259
Aurora City, Colorado	2.7969	2.9760	-2.2346
Paterson City, New Jersey	2.8800	3.6169	-0.0695
Virginia Beach City, Virginia	2.9133	-0.5566	-0.4134
Longview City, Texas	2.9274	2.0089	6.9996
Boston City, Massachusetts	2.9594	-2.5725	0.0551
San Jose City, California	3.2522	2.7645	-1.9986
Mesquite City, Texas	3.3723	4.1499	-1.7059
Newport News City, Virginia	3.4282	1.5334	-0.7929
Fresno City, California	3.5890	-4.8799	1.9726
Colorado Springs City, Colorado	3.5909	0.6244	-3.8627
Danville City, Virginia	3.5936	0.6401	-0.7029

Table A6 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Petersburg City, Virginia	3.9477	1.7212	1.2226
Tucson City, Arizona	3.9492	-1.5582	-7.0196
Flint City, Michigan	4.0902	2.4045	1.3169
Hampton City, Virginia	4.0920	1.5770	-0.0250
Erie City, Pennsylvania	4.1881	7.3026	-0.3784
Jersey City City, New Jersey	4.8471	1.3690	-0.0020
Bakersfield City, California	4.8840	-9.7035	4.4924
Baton Rouge City, Louisiana	5.0435	-0.7338	0.3663
Stockton City, California	5.0914	0.0792	0.7664
Vallejo City, California	5.1877	0.1797	-1.1849
Springfield City, Massachusetts	5.3274	-2.0922	1.0852
Wilmington City, North Carolina	5.5210	3.7202	-0.3985
Hartford City, Connecticut	5.6447	-2.4057	-3.9720
Charleston City, South Carolina	5.6539	0.8011	-1.5729
Goldsboro City, North Carolina	5.8777	3.0465	2.3369
Elizabeth City, New Jersey	6.0489	-3.3994	-2.3630
North Charleston City, South Carolina	6.4064	0.6465	0.4797
Oakland City, California	6.4699	-2.7425	0.8333
Buffalo City, New York	6.9107	-4.4322	0.9611
Newark City, New Jersey	7.0957	-1.7947	-0.2174
Harrisburg City, Pennsylvania	7.5735	0.7524	0.1025
Syracuse City, New York	8.0804	1.4962	0.5526
Fairfield City, California	8.2686	0.8451	-0.1041

Table A6 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Tulsa City, Oklahoma	8.4618	0.7651	1.6776
Trenton City, New Jersey	10.8384	0.0329	0.3688
Atlantic City City, New Jersey	11.2853	2.9357	-0.7683
San Francisco City, California	14.8322	-12.4557	0.5468
Wilmington City, Delaware	15.8445	2.1542	0.3272
Chester City, Pennsylvania	16.4419	0.1948	7.6236

Table A6 – Continued from previous page

City	Factor 1
Pittsburg City, California	-14.5063
Stockton City, California	-5.5358
Wichita Falls City, Texas	-3.9149
Amarillo City, Texas	-3.4451
Lawton City, Oklahoma	-3.2328
Yonkers City, New York	-2.5747
Jersey City City, New Jersey	-2.5031
Providence City, Rhode Island	-2.3060
Irving City, Texas	-2.1559
Las Vegas City, Nevada	-2.0161
North Charleston City, South Carolina	-1.9973
Corpus Christi City, Texas	-1.9337
Killeen City, Texas	-1.8894
Fontana City, California	-1.8667
Lubbock City, Texas	-1.8525
Lima City, Ohio	-1.8115
Phoenix City, Arizona	-1.7013
Meridian City, Mississippi	-1.6812
Gulfport City, Mississippi	-1.6371
Los Angeles City, California	-1.5238
Aurora City, Colorado	-1.4663
San Antonio City, Texas	-1.2464

A4.10 City-Level Black Non-Gun Homicide Factor Loadings

City	Factor 1
Garland City, Texas	-1.1798
Austin City, Texas	-1.1314
Grand Prairie City, Texas	-1.0831
Lansing City, Michigan	-1.0147
Paterson City, New Jersey	-0.9563
Columbia City, South Carolina	-0.9526
Toledo City, Ohio	-0.9490
Inglewood City, California	-0.9170
Tyler City, Texas	-0.8575
Springfield City, Massachusetts	-0.8215
St. Paul City, Minnesota	-0.7925
Baton Rouge City, Louisiana	-0.7900
Little Rock City, Arkansas	-0.7880
Newport News City, Virginia	-0.7590
Danville City, Virginia	-0.6965
Vicksburg City, Mississippi	-0.6419
Buffalo City, New York	-0.5953
Detroit City, Michigan	-0.5642
Portland City, Oregon	-0.5463
Riverside City, California	-0.5409
Spartanburg City, South Carolina	-0.4558
Philadelphia City, Pennsylvania	-0.4464
Beaumont City, Texas	-0.4281

Table A7 – Continued from previous page

City	Factor 1
El Paso City, Texas	-0.3924
New York City, New York	-0.3816
Mount Vernon City, New York	-0.3753
Wilmington City, North Carolina	-0.3733
Colorado Springs City, Colorado	-0.3526
Tucson City, Arizona	-0.3253
Carson City, California	-0.2555
Greenville City, South Carolina	-0.2437
Richmond City, Virginia	-0.2079
Savannah City, Georgia	-0.2026
Texas City City, Texas	-0.1998
Petersburg City, Virginia	-0.1819
Port Arthur City, Texas	-0.0647
Mesquite City, Texas	-0.0516
Chester City, Pennsylvania	-0.0453
Oakland City, California	-0.0452
Harrisburg City, Pennsylvania	-0.0281
Dallas City, Texas	-0.0080
Grand Rapids City, Michigan	0.0152
Rochester City, New York	0.0314
Bakersfield City, California	0.0442
Hartford City, Connecticut	0.0539
East Orange City, New Jersey	0.1317

Table A7 – Continued from previous page

City	Factor 1
Suffolk City, Virginia	0.1604
Hampton City, Virginia	0.1617
Shreveport City, Louisiana	0.1674
Cleveland City, Ohio	0.1830
Boston City, Massachusetts	0.1836
Pasadena City, California	0.2024
Columbus City, Ohio	0.2271
Tulsa City, Oklahoma	0.2340
Fort Worth City, Texas	0.2928
Richmond City, California	0.3394
Rocky Mount City, North Carolina	0.3543
Vallejo City, California	0.3653
Durham City, North Carolina	0.3666
Denver City, Colorado	0.3867
Albany City, Georgia	0.3981
Sumter City, South Carolina	0.4367
Wilmington City, Delaware	0.4543
Tacoma City, Washington	0.4795
Greensboro City, North Carolina	0.5197
Baltimore City, Maryland	0.5507
San Francisco City, California	0.5791
Newark City, New Jersey	0.5869
Berkeley City, California	0.5966

Table A7 – Continued from previous page

City	Factor 1
Kansas City City, Missouri	0.6069
San Diego City, California	0.6335
Erie City, Pennsylvania	0.6401
Valdosta City, Georgia	0.6963
Asheville City, North Carolina	0.7087
Syracuse City, New York	0.7133
Pine Bluff City, Arkansas	0.7558
Virginia Beach City, Virginia	0.7596
Dayton City, Ohio	0.8281
Fairfield City, California	0.8345
Plainfield City, New Jersey	0.8833
Bridgeport City, Connecticut	0.8847
Long Beach City, California	0.8994
Charlotte City, North Carolina	0.9023
Jackson City, Mississippi	0.9258
Goldsboro City, North Carolina	0.9266
Albany City, New York	0.9424
Compton City, California	0.9889
Seattle City, Washington	1.0026
San Jose City, California	1.0283
High Point City, North Carolina	1.0484
Rialto City, California	1.0560
Pomona City, California	1.0804

Table A7 – Continued from previous page

City	Factor 1
Oklahoma City City, Oklahoma	1.0861
Sacramento City, California	1.1014
Arlington City, Texas	1.2059
Atlanta City, Georgia	1.2311
Winston-Salem City, North Carolina	1.2325
Waco City, Texas	1.4787
Saginaw City, Michigan	1.4851
Gastonia City, North Carolina	1.4871
Portsmouth City, Virginia	1.5072
Hayward City, California	1.5436
Alexandria City, Louisiana	1.5536
Trenton City, New Jersey	1.5857
St. Louis City, Missouri	1.7625
Flint City, Michigan	1.8134
Waterbury City, Connecticut	1.8356
Roanoke City, Virginia	1.8721
Norfolk City, Virginia	1.8765
Atlantic City City, New Jersey	1.9569
Longview City, Texas	2.0144
Charleston City, South Carolina	2.0840
Ontario City, California	2.0893
Fayetteville City, North Carolina	2.1595
San Bernardino City, California	2.2998

Table A7 – Continued from previous page

City	Factor 1
North Little Rock City, Arkansas	2.3205
Fresno City, California	2.4922
Palmdale City, California	2.7179
Lafayette City, Louisiana	3.0314
Albuquerque City, New Mexico	3.3103
Elizabeth City, New Jersey	4.0577

Table A7 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Gastonia City, North Carolina	-906.6460	644.9869	-381.0496
Aurora City, Colorado	-622.3714	-764.2190	-290.6266
Springfield City, Massachusetts	-515.8498	-258.3309	-83.5382
Vallejo City, California	-341.0842	54.2504	-98.5795
Hayward City, California	-308.5035	205.6049	26.9615
Atlanta City, Georgia	-295.7872	-18.6936	60.4522
Berkeley City, California	-291.6488	-74.0007	-83.9140
Charlotte City, North Carolina	-278.2493	148.5076	-68.3631
Columbus City, Ohio	-272.9933	318.0000	-11.9202
Fontana City, California	-260.7061	-37.4471	-56.7970
Pasadena City, California	-260.5449	-88.5561	-3.3939
Pomona City, California	-260.4230	-219.6271	-44.5678
Asheville City, North Carolina	-247.8203	435.4784	-55.2929
Chester City, Pennsylvania	-226.5131	98.5780	51.9620
Ontario City, California	-219.9251	-92.1052	-155.5628
San Francisco City, California	-211.4023	217.4344	130.0843
Little Rock City, Arkansas	-191.1865	75.0767	13.6537
St. Paul City, Minnesota	-168.9042	-101.3204	-66.6489
Palmdale City, California	-168.6408	-77.0802	-13.4413
Long Beach City, California	-163.4823	214.0575	8.8374
Rialto City, California	-130.6927	-47.7757	50.8723
San Diego City, California	-130.0403	105.3073	13.9852

A4.11 City-Level Black Aggravated Assault Arrest Factor Loadings

City Factor 1 Factor 2 Factor 3					
Garland City, Texas	-120.0535	-40.9073	3.4789		
Pittsburg City, California	-117.1654	-173.2614	-40.8991		
Tucson City, Arizona	-107.3507	-146.9729	6.0327		
Grand Rapids City, Michigan	-98.2710	29.3416	-63.3302		
Jersey City City, New Jersey	-97.7733	51.5542	21.8022		
Newport News City, Virginia	-97.0128	-0.2617	-56.8162		
Grand Prairie City, Texas	-92.8475	-183.3286	-0.3083		
Fresno City, California	-92.6375	123.2726	35.9856		
Boston City, Massachusetts	-89.1895	50.6149	13.1408		
Bakersfield City, California	-88.2879	-113.8000	95.9241		
Baton Rouge City, Louisiana	-85.5344	-254.8761	-24.7803		
San Jose City, California	-84.0332	45.2062	26.2644		
Riverside City, California	-78.1675	-29.0929	-42.7172		
Atlantic City City, New Jersey	-77.6094	-158.8527	109.3717		
Phoenix City, Arizona	-76.9889	-206.0649	-90.0732		
Los Angeles City, California	-74.0487	-30.0059	5.8078		
Harrisburg City, Pennsylvania	-68.9322	-117.1022	5.2110		
Goldsboro City, North Carolina	-64.4230	-6.6157	28.7436		
Newark City, New Jersey	-58.1173	-15.6265	-34.6181		
Compton City, California	-57.9465	-178.8756	30.9809		
Wilmington City, North Carolina	-55.6089	55.0351	77.6895		
Providence City, Rhode Island	-50.5210	-210.7024	6.5262		
Winston-Salem City, North Carolina	-46.4513	-40.9080	17.9659		

Table A8 – Continued from previous page

City Factor 1 Factor 2 Factor 3						
Albany City, New York	-45.9704	28.4198	79.3641			
Mesquite City, Texas	-45.8993	-68.4352	68.9945			
Oakland City, California	-43.9227	-166.5175	-11.3512			
Lawton City, Oklahoma	-42.5390	39.5099	5.1431			
San Bernardino City, California	-42.0238	166.3587	-67.5961			
Rocky Mount City, North Carolina	-40.0531	-173.4805	147.6051			
Syracuse City, New York	-30.5510	195.7464	65.8878			
Norfolk City, Virginia	-29.4339	93.0719	-75.3279			
Lansing City, Michigan	-27.5783	73.3913	-55.7799			
El Paso City, Texas	-23.5561	-7.5506	31.0484			
Petersburg City, Virginia	-23.5108	-29.3790	-36.5999			
Hartford City, Connecticut	-22.0656	-57.9980	12.7100			
Dallas City, Texas	-22.0318	-97.8038	0.9423			
Tulsa City, Oklahoma	-15.3237	4.8162	30.7205			
Wichita Falls City, Texas	-13.9153	89.8019	48.8334			
Spartanburg City, South Carolina	-10.2629	229.8130	-5.6109			
Fort Worth City, Texas	-6.4399	-66.8891	-19.3819			
Irving City, Texas	-4.1080	-48.0643	32.2487			
Sacramento City, California	0.6552	14.4661	22.8100			
Portland City, Oregon	1.9049	-151.4291	55.7301			
Paterson City, New Jersey	3.7429	-65.1402	21.0889			
Tacoma City, Washington	4.8670	-32.0352	-34.3028			
Greensboro City, North Carolina	6.3255	-45.9461	39.4403			

Table A8 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Virginia Beach City, Virginia	7.9275	-48.2633	31.7254
Inglewood City, California	11.9146	-131.5214	55.5947
Greenville City, South Carolina	18.5865	139.1058	1.5340
Amarillo City, Texas	19.1511	-25.8553	5.3816
Longview City, Texas	21.9738	-13.3981	56.0209
Waco City, Texas	22.1904	67.8964	5.0085
Corpus Christi City, Texas	25.9208	-27.1843	-16.9601
Tyler City, Texas	29.0207	-3.9137	20.1665
Plainfield City, New Jersey	31.1286	-72.1904	60.7632
Arlington City, Texas	31.1819	12.4625	160.7149
Richmond City, California	32.3720	-224.2858	-26.0933
Richmond City, Virginia	38.1511	-19.5516	9.5625
Hampton City, Virginia	43.1346	20.8415	26.9217
Columbia City, South Carolina	44.6779	56.7868	37.8115
Colorado Springs City, Colorado	44.9519	-103.8781	-8.7287
Carson City, California	47.0446	-26.3252	28.1935
Killeen City, Texas	49.2977	-29.8048	26.1339
Erie City, Pennsylvania	50.3677	19.5688	1.7035
Port Arthur City, Texas	51.2086	-22.2218	20.3712
Flint City, Michigan	53.8194	7.9840	-10.9526
Stockton City, California	56.3889	155.1904	59.8702
Jackson City, Mississippi	57.2920	-105.6621	26.1200
Fairfield City, California	58.5026	110.0930	-47.2141

Table A8 – Continued from previous page

Table A8 – Continued from previous page						
City	Factor 1	Factor 2	Factor 3			
Albany City, Georgia	59.2355	303.6044	-218.1768			
Detroit City, Michigan	61.0096	49.6640	20.3940			
East Orange City, New Jersey	61.1843	-50.7665	4.3225			
Waterbury City, Connecticut	63.2641	-61.9105	86.5763			
Gulfport City, Mississippi	66.4334	-34.2928	74.4743			
Durham City, North Carolina	67.1295	112.1774	34.6632			
Sumter City, South Carolina	73.1405	77.8379	47.3829			
Toledo City, Ohio	75.0070	54.6256	-41.9396			
Lafayette City, Louisiana	77.0869	119.8998	127.9246			
Cleveland City, Ohio	78.5858	29.3655	22.7813			
North Charleston City, South Carolina	79.0581	96.3375	68.2904			
Bridgeport City, Connecticut	82.0867	39.9228	72.9742			
Shreveport City, Louisiana	82.8574	-21.0922	64.5406			
Beaumont City, Texas	90.9659	-31.7616	7.6661			
Charleston City, South Carolina	91.1747	101.5308	13.8046			
Yonkers City, New York	91.3516	-1.8697	67.6579			
High Point City, North Carolina	92.8682	93.0735	146.9049			
Denver City, Colorado	93.2917	-41.3167	-65.8106			
Fayetteville City, North Carolina	96.1092	-142.9153	54.5014			
Portsmouth City, Virginia	104.6336	56.6824	7.2725			
Albuquerque City, New Mexico	105.8561	-32.7360	-34.1055			
Austin City, Texas	106.0151	-69.8323	-8.0640			
Pine Bluff City, Arkansas	106.4356	133.6586	-12.9200			

Table A8 – Continued from previous page

		1 0	
City	Factor 1	Factor 2	Factor 3
Elizabeth City, New Jersey	108.7947	-64.0727	35.7312
Baltimore City, Maryland	110.0987	-35.2482	4.1100
Dayton City, Ohio	113.7261	8.5080	2.1543
North Little Rock City, Arkansas	113.7775	39.6791	52.1463
Oklahoma City City, Oklahoma	122.4085	-114.6439	52.2870
Suffolk City, Virginia	122.4876	40.6719	12.1128
Alexandria City, Louisiana	122.5389	159.6537	-38.1625
Mount Vernon City, New York	122.9457	-53.9687	58.2813
Trenton City, New Jersey	123.9229	8.9086	6.1769
San Antonio City, Texas	127.9953	-12.1364	29.5760
Savannah City, Georgia	132.9750	-7.7534	15.5426
Buffalo City, New York	142.8453	49.8510	42.8027
Meridian City, Mississippi	143.6601	-41.3814	-21.2080
Saginaw City, Michigan	144.9010	121.4681	61.2577
Lubbock City, Texas	145.5767	29.0045	70.8194
Philadelphia City, Pennsylvania	150.6557	35.9214	71.1440
Rochester City, New York	154.1844	-48.0757	32.9585
Roanoke City, Virginia	175.7624	39.7241	69.8662
Kansas City City, Missouri	185.7181	-3.8404	-228.0450
Danville City, Virginia	197.1199	5.0572	14.3857
Valdosta City, Georgia	248.2575	35.6648	260.0700
Wilmington City, Delaware	252.6734	56.2608	83.4818
Seattle City, Washington	289.5443	-59.6231	-15.4934

Table A8 – Continued from previous page

City	Factor 1	Factor 2	Factor 3
Vicksburg City, Mississippi	333.4619	132.6182	72.8626
Texas City City, Texas	362.7908	114.6844	153.9396
Las Vegas City, Nevada	456.3078	-64.3209	-12.2795
Lima City, Ohio	480.8338	25.9903	-797.2372
St. Louis City, Missouri	887.1278	-24.9838	-585.1573

Table A8 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Denver City, Colorado	-236.83	59.03	4.75	36.51	-19.37
Kansas City City, Missouri	-169.52	-44.48	-176.14	-26.90	-23.32
Colorado Springs City, Colorado	-165.33	29.42	-20.78	-48.34	45.83
Portland City, Oregon	-164.27	-27.68	-2.86	36.34	24.62
Texas City City, Texas	-154.72	-5.12	-19.49	-56.57	53.48
North Little Rock City, Arkansas	-143.22	-149.64	-47.22	-87.60	2.66
Norfolk City, Virginia	-117.14	-1.76	-4.59	28.39	-0.83
Fayetteville City, North Carolina	-111.70	40.84	8.42	10.26	21.78
Waterbury City, Connecticut	-102.44	-4.03	-71.47	29.57	-8.04
Tacoma City, Washington	-101.61	-78.68	-47.08	7.37	-8.66
Toledo City, Ohio	-93.05	1.61	22.96	23.76	-32.35
Grand Prairie City, Texas	-90.38	31.19	-18.84	-15.99	3.75
Amarillo City, Texas	-85.25	-9.52	35.68	22.53	6.88
Atlanta City, Georgia	-72.39	-215.61	120.63	-61.19	89.59
Columbia City, South Carolina	-69.70	-5.50	95.02	98.81	-27.35
Fort Worth City, Texas	-68.14	1.92	-12.66	-4.92	3.67
Mesquite City, Texas	-63.36	58.21	-3.95	8.85	6.87
Richmond City, Virginia	-62.10	26.71	-30.73	27.38	-22.98
Lubbock City, Texas	-59.81	1.74	7.02	-20.10	20.48
St. Louis City, Missouri	-59.59	-18.84	-67.28	26.97	-39.54
Flint City, Michigan	-56.18	39.84	62.55	31.44	-8.08
Aurora City, Colorado	-55.37	-8.95	-49.74	-79.82	74.01

A4.12 City-Level Black Weapons Arrest Factor Loadings

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Lansing City, Michigan	-55.36	-18.75	-3.50	5.61	-33.04
Winston-Salem City, North Carolina	-55.02	-52.99	10.11	20.72	-38.73
Spartanburg City, South Carolina	-54.13	3.42	36.34	56.17	1.36
Phoenix City, Arizona	-53.27	-61.05	-1.97	4.50	8.51
Oakland City, California	-51.70	40.30	-33.77	-2.48	29.30
Petersburg City, Virginia	-51.04	7.79	-19.20	2.35	2.56
Albuquerque City, New Mexico	-50.19	12.58	15.58	16.44	-0.03
Meridian City, Mississippi	-49.52	138.79	14.33	35.61	9.28
Riverside City, California	-48.13	-17.64	-10.34	-17.48	22.75
Rochester City, New York	-48.02	-41.57	21.41	1.18	-12.52
Waco City, Texas	-47.80	-18.34	-8.55	-13.26	2.85
Dallas City, Texas	-46.81	25.12	-3.94	-23.40	19.80
Port Arthur City, Texas	-46.21	25.91	-24.68	-11.67	14.01
Roanoke City, Virginia	-45.91	4.80	10.09	73.40	6.78
Bridgeport City, Connecticut	-44.24	63.00	20.85	10.10	7.48
Detroit City, Michigan	-43.30	22.84	35.61	20.97	4.34
Austin City, Texas	-38.44	63.36	-14.41	-17.39	35.50
Corpus Christi City, Texas	-36.79	66.91	3.38	7.66	13.63
Greensboro City, North Carolina	-34.74	-122.61	4.82	-12.62	-27.39
El Paso City, Texas	-32.52	20.66	-5.29	-20.06	-2.52
Las Vegas City, Nevada	-30.55	27.88	-21.82	45.11	5.50
Jackson City, Mississippi	-29.17	72.31	-15.41	3.63	-5.35
Wichita Falls City, Texas	-28.51	-27.65	8.94	9.89	-15.52

Table A9 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Jersey City City, New Jersey	-25.07	-23.40	71.69	-10.66	-21.53
Springfield City, Massachusetts	-24.92	-16.66	-17.89	-17.57	-28.62
Suffolk City, Virginia	-22.83	-22.31	2.27	-10.88	-19.81
Portsmouth City, Virginia	-20.94	24.67	11.17	9.98	-12.61
Ontario City, California	-20.84	-3.11	-3.86	-13.35	10.07
Oklahoma City City, Oklahoma	-18.90	26.57	28.24	-17.81	34.90
Pomona City, California	-17.99	27.05	19.35	2.13	9.98
Carson City, California	-17.15	46.23	15.23	10.11	-4.64
Tyler City, Texas	-15.66	2.50	28.63	16.74	-13.16
Danville City, Virginia	-14.27	4.15	-27.03	5.13	-20.72
Longview City, Texas	-11.34	-14.64	7.23	-11.49	12.85
Tucson City, Arizona	-11.15	-54.95	20.46	-1.57	-3.58
Columbus City, Ohio	-11.09	-11.56	-21.43	-8.56	-37.80
San Antonio City, Texas	-10.65	14.91	-13.12	-11.62	11.03
Cleveland City, Ohio	-9.37	12.23	-5.88	8.03	18.70
Rialto City, California	-7.61	13.95	-18.37	-7.72	-0.15
Grand Rapids City, Michigan	-7.59	-28.77	-5.78	35.61	-16.04
Little Rock City, Arkansas	-7.17	-69.45	13.98	-26.55	7.63
Vallejo City, California	-6.90	-18.68	-56.73	4.00	-13.88
San Diego City, California	-6.78	41.37	9.03	2.34	6.89
Beaumont City, Texas	-5.67	22.65	-21.62	2.38	-26.01
Garland City, Texas	-5.32	-62.89	-6.41	39.24	-24.34
Pasadena City, California	-3.81	-5.23	11.03	4.78	6.48

Table A9 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Charlotte City, North Carolina	-3.74	-4.08	0.57	-6.92	0.80
Newport News City, Virginia	-2.09	-25.21	25.27	-9.12	17.64
East Orange City, New Jersey	-1.46	50.51	38.67	-3.14	11.08
Fontana City, California	-0.01	18.76	33.60	21.13	-16.08
Richmond City, California	0.85	16.21	-90.11	-40.02	1.78
High Point City, North Carolina	1.16	-72.87	9.25	-13.75	-18.16
Killeen City, Texas	3.48	35.78	-14.97	-12.67	15.89
San Jose City, California	5.30	29.07	9.11	-3.73	6.53
Albany City, Georgia	5.59	20.92	-0.24	-11.76	-1.50
Baltimore City, Maryland	6.83	22.35	25.59	12.86	-3.22
Shreveport City, Louisiana	7.87	24.43	-15.93	-2.98	-11.63
Sumter City, South Carolina	8.28	17.67	38.44	20.14	-22.38
Los Angeles City, California	10.45	30.06	0.66	3.93	6.66
Virginia Beach City, Virginia	10.64	-43.87	22.86	18.12	-15.77
Inglewood City, California	10.97	21.29	16.86	-3.72	-0.22
Irving City, Texas	11.89	-34.14	-6.72	-13.62	-22.66
Providence City, Rhode Island	13.00	63.49	11.59	9.42	-19.95
Arlington City, Texas	14.17	-8.37	-3.48	-13.73	-0.22
Hampton City, Virginia	15.81	-30.88	6.23	13.02	-18.43
Hayward City, California	17.49	-12.17	4.28	-1.16	-11.15
Pine Bluff City, Arkansas	19.64	8.47	16.13	18.21	-9.17
San Francisco City, California	20.04	12.49	14.02	-5.39	18.76
Savannah City, Georgia	21.86	14.38	5.32	-18.51	12.63

Table A9 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Berkeley City, California	24.15	27.68	-43.81	11.58	-6.43
Greenville City, South Carolina	24.26	-22.65	-4.03	15.24	-32.99
Philadelphia City, Pennsylvania	28.49	6.63	30.13	-3.83	0.72
Gastonia City, North Carolina	29.54	-77.15	55.79	14.40	-27.49
Pittsburg City, California	29.99	37.30	-15.10	-3.51	20.17
Newark City, New Jersey	30.45	21.50	85.01	-10.39	9.49
Albany City, New York	30.65	-31.11	80.85	-36.68	23.91
Dayton City, Ohio	30.79	18.30	21.15	-19.26	-0.06
Atlantic City City, New Jersey	31.08	24.00	22.84	-10.94	51.54
Long Beach City, California	32.93	-21.14	18.62	-28.32	14.26
Elizabeth City, New Jersey	33.59	31.27	38.28	-10.35	23.13
Plainfield City, New Jersey	34.52	58.07	71.22	-14.04	15.16
Saginaw City, Michigan	34.57	46.03	23.50	18.59	24.68
Mount Vernon City, New York	36.04	29.50	19.62	-8.46	-9.55
Boston City, Massachusetts	36.18	-4.32	-16.91	-8.06	-14.85
Paterson City, New Jersey	37.49	29.68	6.17	-13.04	-12.36
Charleston City, South Carolina	38.30	49.91	8.29	43.74	-15.80
Buffalo City, New York	41.78	-13.69	-2.71	5.66	-11.46
Durham City, North Carolina	41.97	-10.27	43.85	-30.26	4.93
Wilmington City, Delaware	42.71	70.38	38.73	-12.32	-28.12
Tulsa City, Oklahoma	44.95	6.57	-25.63	-14.10	11.23
Syracuse City, New York	46.32	-106.10	29.82	30.30	-42.75
San Bernardino City, California	47.89	-23.52	-19.39	2.05	-6.87

Table A9 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Stockton City, California	52.23	35.67	-75.08	-3.09	8.49
Palmdale City, California	58.52	-0.77	-13.87	-14.77	20.79
Hartford City, Connecticut	58.84	-5.82	30.46	-7.25	-10.61
Wilmington City, North Carolina	59.03	-6.87	47.25	-14.72	-21.48
Gulfport City, Mississippi	61.99	3.49	-20.67	25.46	-24.86
Trenton City, New Jersey	62.35	-2.67	76.82	3.56	-24.63
Fairfield City, California	65.10	4.61	-24.86	-11.44	-15.89
Vicksburg City, Mississippi	66.96	-4.11	-5.60	17.47	-3.66
Baton Rouge City, Louisiana	67.30	14.47	-22.52	7.50	0.45
Asheville City, North Carolina	67.49	-38.37	27.54	1.01	-30.75
Erie City, Pennsylvania	69.53	45.34	-4.28	-6.12	-32.80
Lima City, Ohio	70.61	-10.55	-99.82	-22.04	-74.75
Valdosta City, Georgia	72.21	5.81	5.37	-16.51	67.12
Goldsboro City, North Carolina	74.76	-59.73	56.17	-26.38	-24.68
Sacramento City, California	77.20	16.23	-76.64	-16.31	-11.69
North Charleston City, South Carolina	95.16	-12.31	16.80	14.32	-13.24
Fresno City, California	99.33	13.17	-82.89	-29.60	0.11
Lafayette City, Louisiana	101.90	-16.27	-41.59	-15.99	-27.68
Chester City, Pennsylvania	103.76	-5.38	-25.02	-26.15	-21.35
Alexandria City, Louisiana	107.89	0.49	35.56	-11.90	-18.11
Harrisburg City, Pennsylvania	117.84	-8.26	8.30	-2.64	-15.94
Lawton City, Oklahoma	119.76	-0.20	-40.15	-26.70	20.66
Yonkers City, New York	140.64	-0.45	2.86	-45.52	28.27

Table A9 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Bakersfield City, California	144.93	9.03	-23.32	-8.79	50.71
Compton City, California	145.03	12.16	-33.61	-51.67	30.47
Rocky Mount City, North Carolina	146.68	-59.25	-63.94	-32.87	11.60
Seattle City, Washington	154.48	25.63	-10.01	-29.51	17.72
St. Paul City, Minnesota	158.27	-116.70	-99.51	291.58	116.66

Table A9 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Inglewood City, California	-2.5770	-2.2281	-0.0669	-0.7158	-0.4761
St. Louis City, Missouri	-1.8419	1.2419	0.6761	-0.7857	0.2442
Richmond City, California	-1.5077	1.0146	-1.1826	-0.1199	0.3134
Pasadena City, California	-1.4728	0.3724	-0.3633	1.9743	-0.6921
Little Rock City, Arkansas	-1.3719	0.4702	-0.2164	-0.4067	0.1027
Riverside City, California	-1.2787	0.0460	-0.2078	0.5857	0.2869
Ontario City, California	-0.7119	0.0973	0.0836	0.3393	0.0885
Long Beach City, California	-0.7023	-0.3249	0.3933	0.5251	0.2471
New York City, New York	-0.6755	-0.1284	-0.0152	0.0204	0.1567
Fontana City, California	-0.6525	0.5461	-0.7623	-0.0043	-0.3726
Baltimore City, Maryland	-0.5327	-0.1831	0.1049	0.1103	0.1712
Cleveland City, Ohio	-0.4570	-0.0060	0.2260	0.1393	0.3048
Kansas City City, Missouri	-0.4496	0.1446	0.0311	-0.1887	-0.0294
Grand Prairie City, Texas	-0.4128	-0.1880	-0.2973	-0.0672	0.2978
Seattle City, Washington	-0.3971	-0.2626	0.0233	-0.0644	0.2081
Los Angeles City, California	-0.3756	0.1234	-0.2825	0.1684	0.0852
East Orange City, New Jersey	-0.3652	0.1433	-0.1264	-0.2541	-0.0273
Meridian City, Mississippi	-0.3413	0.1456	0.0195	0.1777	-0.0796
Fresno City, California	-0.3225	0.8234	-0.8910	-0.4739	0.6097
Charlotte City, North Carolina	-0.3077	-0.2451	-0.0323	0.0860	0.0532
Dayton City, Ohio	-0.2939	-0.0521	0.0770	0.1334	0.0062
Dallas City, Texas	-0.2853	-0.0992	0.2509	0.1044	0.2304

A4.13 City-Level Officer Gun Assault Factor Loadings

	- Commuea		1 0		
City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Sumter City, South Carolina	-0.2741	-0.4126	0.4131	-0.7653	-0.0263
Atlanta City, Georgia	-0.2385	-0.0210	-0.0241	-0.0546	0.1489
Richmond City, Virginia	-0.2297	-0.0996	0.1281	-0.0196	-0.0004
Wilmington City, North Carolina	-0.2147	-0.1842	0.2250	0.0163	-0.1767
Tucson City, Arizona	-0.2047	0.2296	0.1913	0.0551	-0.1089
Greensboro City, North Carolina	-0.1880	-0.2401	0.0601	-0.2446	-0.1070
Mesquite City, Texas	-0.1677	0.0415	0.1752	0.0124	0.0963
Aurora City, Colorado	-0.1466	-0.0795	0.0448	0.1365	-0.1944
Fort Worth City, Texas	-0.1343	0.0159	0.1440	0.2292	0.1066
Columbus City, Ohio	-0.1086	0.0677	0.0915	-0.0898	0.1116
High Point City, North Carolina	-0.1040	0.2490	0.0063	0.2411	-0.0611
Lubbock City, Texas	-0.0955	-0.1483	0.1480	0.2920	-0.1026
Lafayette City, Louisiana	-0.0800	0.1850	1.0121	1.1464	0.1646
Hayward City, California	-0.0794	-0.2586	0.4394	0.2972	0.1391
Winston-Salem City, North Carolina	-0.0720	-0.0734	-0.1513	0.0136	-0.0042
Albany City, New York	-0.0711	-0.1202	-0.0658	-0.0831	-0.1130
Savannah City, Georgia	-0.0604	-0.1713	0.1604	0.1948	0.1642
North Little Rock City, Arkansas	-0.0567	-0.2145	0.2083	-0.1800	0.1443
Arlington City, Texas	-0.0506	-0.1139	0.1518	-0.0833	0.0434
El Paso City, Texas	-0.0428	-0.2249	-0.0233	-0.1804	0.1097
Longview City, Texas	-0.0315	0.1209	-0.0675	-0.2016	0.2722
St. Paul City, Minnesota	-0.0305	-0.0981	-0.0854	0.0441	-0.1070
San Antonio City, Texas	-0.0294	-0.1206	0.0163	0.0073	0.0757

Table A10 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Mount Vernon City, New York	-0.0247	-0.0549	-0.0670	-0.1301	0.1182
Providence City, Rhode Island	-0.0240	-0.0893	0.1645	-0.0494	0.0285
Newark City, New Jersey	-0.0170	-0.1483	-0.0770	-0.4089	-0.0362
Goldsboro City, North Carolina	-0.0123	0.0379	-0.3163	0.1638	-1.3995
Asheville City, North Carolina	-0.0087	-0.2383	0.3780	-0.2826	-0.0112
Pine Bluff City, Arkansas	-0.0083	-0.0483	0.3657	-0.1013	0.2580
Fairfield City, California	-0.0026	-0.1186	-0.1042	-0.2878	-0.0900
Oakland City, California	0.0121	0.1034	-0.0986	0.0245	-0.0594
Yonkers City, New York	0.0185	0.0007	-0.0221	-0.1205	-0.0616
Irving City, Texas	0.0257	-0.0746	0.1851	0.0352	-0.0711
Valdosta City, Georgia	0.0312	0.1871	-0.1172	0.0894	-0.3394
Rochester City, New York	0.0396	-0.1019	0.2473	0.0334	0.0384
Columbia City, South Carolina	0.0426	-0.4433	0.3095	-0.2677	0.1255
Buffalo City, New York	0.0458	-0.1310	0.0690	0.0053	-0.0286
Hartford City, Connecticut	0.0491	0.0403	-0.0322	-0.1136	0.0296
Portsmouth City, Virginia	0.0520	0.1056	-0.1601	-0.0432	-0.1066
Elizabeth City, New Jersey	0.0625	0.1875	-0.0222	-0.1062	-0.1385
Gastonia City, North Carolina	0.0672	-0.1507	0.1678	-0.1539	0.1427
Garland City, Texas	0.0703	0.0853	-0.0209	-0.1897	-0.1219
Syracuse City, New York	0.0716	0.0497	-0.0349	0.0131	-0.0887
Atlantic City City, New Jersey	0.0717	0.1119	-0.1097	-0.1312	0.0955
Vicksburg City, Mississippi	0.0723	0.1346	0.3727	0.1904	-0.0551
Albany City, Georgia	0.0866	0.0120	0.0225	-0.0813	0.0188

Table A10 – Continued from previous page

	0 – Commueu	jiom previou	is page		
City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Tacoma City, Washington	0.0871	0.1638	0.0961	-0.0983	0.2146
Sacramento City, California	0.0903	0.0017	0.1468	0.0271	0.0678
Erie City, Pennsylvania	0.1136	0.0585	-0.2161	0.0432	-0.0286
San Francisco City, California	0.1207	-0.0284	0.0652	0.0443	0.0082
Fayetteville City, North Carolina	0.1221	0.1249	-0.4933	-0.2328	0.0046
Lawton City, Oklahoma	0.1286	-0.1325	0.1224	0.0841	-0.0550
Durham City, North Carolina	0.1297	0.3274	-0.0191	-0.0113	-0.0775
Portland City, Oregon	0.1336	0.0847	-0.0086	-0.1460	0.0720
Austin City, Texas	0.1384	-0.0314	0.0217	-0.0636	-0.0583
Wilmington City, Delaware	0.1408	0.0271	-0.1298	0.0266	-0.0026
Waco City, Texas	0.1416	0.0828	0.0515	0.0326	0.1275
Detroit City, Michigan	0.1469	-0.0370	0.0422	0.0595	-0.0076
Shreveport City, Louisiana	0.1523	-0.1203	0.2135	0.1174	0.1848
Norfolk City, Virginia	0.1540	0.0003	-0.0113	-0.1008	0.0347
Texas City City, Texas	0.1607	0.2137	0.1043	-0.0756	-0.0599
Waterbury City, Connecticut	0.1639	0.0471	0.0177	-0.0271	-0.0148
San Diego City, California	0.1740	0.2335	-0.1138	-0.0578	0.0116
Corpus Christi City, Texas	0.1803	-0.1579	0.0810	0.1552	0.1185
Lansing City, Michigan	0.1821	-0.0111	0.1342	-0.1653	-0.0269
Greenville City, South Carolina	0.1875	-0.2898	0.3067	-0.0551	-0.5026
Trenton City, New Jersey	0.1921	-0.1139	0.1187	-0.0594	-0.0806
Killeen City, Texas	0.1988	0.0178	-0.0052	0.1474	-0.0292
Petersburg City, Virginia	0.2056	-0.2336	-0.0752	0.0354	-0.1823

Table A10 – Continued from previous page

	commuca	jrom previou	is puge		
City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Flint City, Michigan	0.2101	0.1871	0.0259	-0.1247	0.1456
Alexandria City, Louisiana	0.2126	0.0698	0.0911	-0.0190	-0.0300
Berkeley City, California	0.2191	-0.0549	0.2665	0.1173	0.0757
Denver City, Colorado	0.2220	0.0056	0.1075	0.0525	-0.0692
Wichita Falls City, Texas	0.2271	0.1206	0.0637	-0.0591	-0.1744
Jersey City City, New Jersey	0.2352	0.0337	-0.0877	-0.1493	-0.0185
Bridgeport City, Connecticut	0.2355	0.1380	-0.0606	-0.1053	-0.0321
Tulsa City, Oklahoma	0.2383	0.0899	-0.0495	-0.1144	-0.3396
Saginaw City, Michigan	0.2441	0.2746	-0.3540	0.0579	0.1750
Paterson City, New Jersey	0.2453	0.0344	-0.0336	-0.0881	-0.0263
Suffolk City, Virginia	0.2467	0.2548	0.2287	0.4048	-0.0706
Grand Rapids City, Michigan	0.2517	0.0845	0.0543	-0.0588	-0.0718
Danville City, Virginia	0.2551	0.1382	0.0328	-0.1348	-0.0208
Boston City, Massachusetts	0.2660	0.0280	-0.0023	-0.0672	-0.0451
Virginia Beach City, Virginia	0.2736	-0.0438	0.0609	0.0085	0.0747
Phoenix City, Arizona	0.2775	0.1320	-0.1981	-0.2003	-0.2055
Port Arthur City, Texas	0.2883	-0.0839	-0.0796	0.0831	0.0992
Rocky Mount City, North Carolina	0.2911	0.1652	-0.2990	0.3552	-0.4545
Springfield City, Massachusetts	0.2975	0.0369	-0.0081	-0.0877	0.0859
Hampton City, Virginia	0.2998	-0.1393	-0.1025	-0.0448	0.0065
Harrisburg City, Pennsylvania	0.3018	-0.0111	-0.0355	-0.0180	-0.0360
Plainfield City, New Jersey	0.3157	0.1177	0.1337	-0.1804	0.2881
Toledo City, Ohio	0.3200	0.0314	-0.1979	-0.0150	0.0092

Table A10 – Continued from previous page

City	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Stockton City, California	0.3218	0.1101	-0.2655	-0.0841	-0.1832
Roanoke City, Virginia	0.3329	0.0748	-0.0168	-0.1190	-0.0510
Charleston City, South Carolina	0.3485	0.0218	0.2785	0.2418	-0.0079
San Jose City, California	0.3658	-0.0291	0.0535	0.0147	-0.0033
Colorado Springs City, Colorado	0.3682	-0.2620	0.1931	-0.0446	0.3620
Baton Rouge City, Louisiana	0.3836	0.0794	0.0483	-0.0178	-0.1568
Las Vegas City, Nevada	0.3842	-0.0068	-0.0033	0.1229	-0.1441
Bakersfield City, California	0.3961	0.0799	0.0978	0.2677	0.1715
Gulfport City, Mississippi	0.4263	0.4360	0.5057	-0.4942	-0.5405
Newport News City, Virginia	0.4307	0.0242	0.1163	-0.0934	-0.1162
North Charleston City, South Carolina	0.4702	-0.1509	0.0131	-0.1528	-0.0588
Chester City, Pennsylvania	0.5220	-0.0589	-0.3735	0.5264	0.1187
Pomona City, California	0.5307	0.1524	0.0545	-0.1453	-0.1556
Oklahoma City City, Oklahoma	0.5346	-0.0368	0.2670	0.1083	0.1545
San Bernardino City, California	0.5529	-0.5601	0.3232	0.6602	0.8645
Pittsburg City, California	0.6084	0.1601	-0.0816	-0.0301	-0.0499
Philadelphia City, Pennsylvania	0.6157	0.3558	-0.1540	-0.1839	-0.4079
Rialto City, California	0.6274	-0.4217	-1.1894	0.2355	1.0359
Spartanburg City, South Carolina	0.7537	0.3607	-0.0532	-0.4850	-0.3218
Vallejo City, California	0.9295	-1.4026	-1.5606	0.2256	-0.1459

Table A10 – Continued from previous page

A4.14 County-Level FSS Implied Weights

County	Jackson County	City of St. Louis
Jefferson County, AL	1.1819	0.2641
Mobile County, AL	0.6439	0.1439
Montgomery County, AL	0.8036	0.1796
Maricopa County, AZ	0.5423	0.1212
Pima County, AZ	-0.0546	-0.0122
Pulaski County, AR	-0.6257	-0.1398
Alameda County, CA	0.8193	0.1831
Contra Costa County, CA	0.6553	0.1465
Fresno County, CA	0.9430	0.2108
Kern County, CA	0.4292	0.0959
Los Angeles County, CA	0.5682	0.1270
Monterey County, CA	-0.0646	-0.0144
Orange County, CA	0.5037	0.1126
Riverside County, CA	0.7175	0.1604
Sacramento County, CA	-1.2985	-0.2902
San Bernardino County, CA	0.6604	0.1476
San Diego County, CA	0.6412	0.1433
San Francisco County, CA	0.0641	0.0143
San Joaquin County, CA	0.7223	0.1614
San Mateo County, CA	1.0844	0.2424
Santa Clara County, CA	0.4519	0.1010
Solano County, CA	0.5597	0.1251

County	Jackson County	City of St. Louis
Stanislaus County, CA	0.8514	0.1903
Ventura County, CA	-0.3570	-0.0798
Adams County, CO	-0.6116	-0.1367
Denver County, CO	-0.3672	-0.0821
El Paso County, CO	-0.2611	-0.0584
Fairfield County, CT	-0.7605	-0.1700
Hartford County, CT	0.0385	0.0086
New Haven County, CT	-0.5000	-0.1117
New Castle County, DE	0.1215	0.0272
District of Columbia, DC	0.6393	0.1429
Brevard County, FL	-1.1377	-0.2543
Broward County, FL	0.4802	0.1073
Duval County, FL	-0.7809	-0.1745
Escambia County, FL	-1.9307	-0.4315
Hillsborough County, FL	-0.9787	-0.2187
Lee County, FL	-0.1273	-0.0284
Miami-Dade County, FL	0.2772	0.0620
Orange County, FL	-0.6258	-0.1398
Palm Beach County, FL	0.2611	0.0583
Pinellas County, FL	0.2705	0.0605
Polk County, FL	-1.6377	-0.3660
Volusia County, FL	-0.3211	-0.0718
Bibb County, GA	0.7512	0.1679

Table A11 – Continued from previous page

County	Jackson County	City of St. Louis
Chatham County, GA	0.1209	0.0270
Cobb County, GA	-0.1098	-0.0245
DeKalb County, GA	0.0091	0.0020
Fulton County, GA	0.9304	0.2079
Richmond County, GA	-1.7885	-0.3997
Honolulu County, HI	-0.9482	-0.2119
Cook County, IL	0.9616	0.2149
St. Clair County, IL	-2.9653	-0.6627
Winnebago County, IL	0.3547	0.0793
Sedgwick County, KS	0.4975	0.1112
Wyandotte County, KS	-1.2769	-0.2854
Jefferson County, KY	-0.3805	-0.0850
Caddo Parish, LA	-0.1346	-0.0301
East Baton Rouge Parish, LA	1.0572	0.2363
Jefferson Parish, LA	0.5942	0.1328
Orleans Parish, LA	-0.3702	-0.0827
Anne Arundel County, MD	0.1758	0.0393
Baltimore County, MD	0.3380	0.0755
Montgomery County, MD	0.0662	0.0148
Prince George's County, MD	0.4579	0.1023
Baltimore city, MD	0.5905	0.1320
Hampden County, MA	0.8512	0.1902
Suffolk County, MA	-0.5927	-0.1325

Table A11 – Continued from previous page

County	Jackson County	City of St. Louis
Genesee County, MI	1.0480	0.2342
Kent County, MI	0.9503	0.2124
Macomb County, MI	-0.5222	-0.1167
Oakland County, MI	-0.0679	-0.0152
Wayne County, MI	0.7215	0.1613
Hennepin County, MN	1.3785	0.3081
Ramsey County, MN	-0.8007	-0.1789
Hinds County, MS	0.4685	0.1047
Douglas County, NE	-0.9827	-0.2196
Clark County, NV	-0.2365	-0.0529
Washoe County, NV	1.0009	0.2237
Camden County, NJ	-0.0699	-0.0156
Essex County, NJ	1.2864	0.2875
Hudson County, NJ	-0.4480	-0.1001
Passaic County, NJ	0.5333	0.1192
Union County, NJ	-2.1159	-0.4729
Bernalillo County, NM	-0.2548	-0.0569
New York, NY	0.2541	0.0568
Erie County, NY	0.6831	0.1527
Monroe County, NY	0.5677	0.1269
Nassau County, NY	0.9478	0.2118
Suffolk County, NY	1.1887	0.2657
Westchester County, NY	1.0429	0.2331

Table A11 – Continued from previous page

County	Jackson County	City of St. Louis
Cumberland County, NC	0.7524	0.1682
Durham County, NC	-4.5571	-1.0185
Forsyth County, NC	-1.3205	-0.2951
Guilford County, NC	0.7785	0.1740
Mecklenburg County, NC	0.2739	0.0612
Wake County, NC	0.8957	0.2002
Cuyahoga County, OH	0.8525	0.1905
Franklin County, OH	-0.3663	-0.0819
Hamilton County, OH	0.0202	0.0045
Lucas County, OH	0.9218	0.2060
Mahoning County, OH	-0.8011	-0.1790
Montgomery County, OH	0.2088	0.0467
Oklahoma County, OK	-0.3455	-0.0772
Tulsa County, OK	-1.3151	-0.2939
Multnomah County, OR	0.9048	0.2022
Allegheny County, PA	1.1175	0.2498
Delaware County, PA	1.2245	0.2737
Montgomery County, PA	0.5524	0.1235
Philadelphia County, PA	1.4496	0.3240
Providence County, RI	0.1484	0.0332
Charleston County, SC	-0.4619	-0.1032
Greenville County, SC	-0.7508	-0.1678
Richland County, SC	0.6812	0.1522

Table A11 – Continued from previous page

County	Jackson County	City of St. Louis
Bexar County, TX	0.0785	0.0175
Dallas County, TX	0.1463	0.0327
El Paso County, TX	-0.4300	-0.0961
Harris County, TX	-0.3540	-0.0791
Jefferson County, TX	-0.6786	-0.1517
Nueces County, TX	-1.5882	-0.3549
Tarrant County, TX	-0.3298	-0.0737
Travis County, TX	-0.3173	-0.0709
Salt Lake County, UT	0.2711	0.0606
Fairfax County, VA	0.2603	0.0582
Newport News city, VA	-10.4275	-2.3304
Norfolk city, VA	-0.4504	-0.1007
Richmond city, VA	0.3006	0.0672
King County, WA	0.8784	0.1963
Pierce County, WA	1.3060	0.2919
Milwaukee County, WI	1.0512	0.2349

Table A11 – Continued from previous page

State	Weight	State	Weight	State	Weight
Alabama	-1.6925	Louisiana	-1.4877	Oklahoma	-2.0680
Alaska	-0.9554	Maine	-2.2178	Oregon	-1.4294
Arizona	0.3752	Maryland	2.1263	Pennsylvania	0.9469
Arkansas	-2.9050	Massachusetts	3.0363	Rhode Island	2.4723
California	-0.1375	Michigan	3.0717	South Carolina	-1.5805
Colorado	-6.2474	Minnesota	1.7575	South Dakota	-0.5938
Connecticut	4.8996	Mississippi	-5.7723	Texas	-0.3810
Delaware	0.1988	Montana	-3.1863	Utah	4.3019
District of Columbia	2.6101	Nebraska	2.9604	Vermont	-1.9537
Florida	4.7900	Nevada	3.1538	Virginia	0.0081
Georgia	2.2456	New Hampshire	-3.0751	Washington	3.2682
Hawaii	4.1480	New Jersey	2.7740	West Virginia	-6.3306
Idaho	0.0076	New Mexico	-3.4068	Wisconsin	-2.4163
Illinois	0.2442	New York	3.3388	Wyoming	-5.2867
Iowa	2.3122	North Carolina	2.8808		
Kansas	-0.0416	North Dakota	-0.8049		
Kentucky	-4.2790	Ohio	-0.6795		

A4.15 State-Level NICS Handgun Check Implied Weights

	Over	Overall		ck
City	Kansas City	St. Louis	Kansas City	St. Louis
Pine Bluff City, Arkansas	0.3883	0.2350	-0.3803	-0.0458
Little Rock City, Arkansas	0.2034	0.2649	0.5805	0.2356
North Little Rock City, Arkansas	1.3667	-0.0204	2.3995	-0.3423
Phoenix City, Arizona	0.2634	-0.2038	1.4279	-0.0488
Tucson City, Arizona	-0.7536	-0.2357	-0.2409	-0.5839
Berkeley City, California	-0.7282	-0.1316	0.8817	-0.4263
Hayward City, California	-0.7168	-0.0735	-0.0742	-0.1127
Oakland City, California	-0.2796	0.0835	0.4877	-0.2046
Pittsburg City, California	-0.5491	-0.1110	-1.6427	0.0934
Richmond City, California	1.1947	0.2234	2.6066	-0.2615
Fresno City, California	0.4213	0.0660	1.4993	-0.2875
Bakersfield City, California	-0.3507	-0.1027	0.4502	-0.2660
Compton City, California	7.9693	-0.2360	3.3913	-0.7300
Inglewood City, California	2.3911	-0.0492	1.3388	-0.3048
Long Beach City, California	1.0387	0.0662	0.6249	0.1696
Los Angeles City, California	1.6611	0.0192	1.7632	0.1434
Palmdale City, California	-0.2418	-0.0800	0.5347	-0.1879
Pasadena City, California	-0.2603	0.0420	-0.2042	0.3904
Pomona City, California	0.4536	-0.0212	2.0339	-0.0721
Carson City, California	-0.4806	-0.0887	-0.4686	-0.2356
Riverside City, California	-0.0352	-0.0464	1.0818	-0.0214

A4.16 City-Level Homicide Implied Weights

	Over	all	Blac	сk
City	Kansas City	St. Louis	Kansas City	St. Louis
Sacramento City, California	0.2487	-0.0764	0.0564	0.0330
Fontana City, California	0.3063	0.0132	0.2661	0.3559
Ontario City, California	0.2295	0.0375	1.4972	0.4089
Rialto City, California	-1.0203	-0.0728	0.0721	-0.2788
San Bernardino City, California	1.2024	0.3943	0.2667	1.0726
San Diego City, California	-0.1170	-0.0595	0.4764	-0.1534
San Francisco City, California	-0.5739	-0.0498	0.3991	-0.5015
Stockton City, California	-0.2926	0.0159	-1.6735	0.4130
San Jose City, California	-1.0135	-0.1124	-1.1888	-0.0680
Fairfield City, California	-1.3602	-0.0508	-0.7737	-0.0580
Vallejo City, California	-1.0430	0.0315	-0.3894	-0.1424
Aurora City, Colorado	-0.5844	-0.1585	-0.6672	-0.1045
Colorado Springs City, Colorado	-1.2380	-0.0730	-0.2601	-0.3157
Denver City, Colorado	0.1276	-0.0343	-0.0758	0.0493
Bridgeport City, Connecticut	3.2034	0.2458	1.9173	0.1300
Hartford City, Connecticut	-0.4988	-0.1416	-0.5534	-0.3348
Waterbury City, Connecticut	-0.1165	0.0017	0.5333	0.2051
Wilmington City, Delaware	-5.1885	-0.0104	-2.5571	-0.0825
Savannah City, Georgia	-0.9889	-0.0060	-1.2571	0.0178
Albany City, Georgia	1.9106	0.2062	0.4934	0.0124
Valdosta City, Georgia	1.8970	-0.0380	0.9317	-0.1757
Atlanta City, Georgia	3.2173	-0.0042	1.3525	-0.1265

Table A12 – Continued from previous page

	Over	all	Blac	:k
City	Kansas City	St. Louis	Kansas City	St. Louis
Shreveport City, Louisiana	1.4921	0.2681	0.1531	0.3428
Baton Rouge City, Louisiana	-1.2683	0.1306	-0.9099	0.0485
Lafayette City, Louisiana	-0.9559	0.0830	-0.7227	0.2467
Alexandria City, Louisiana	0.1245	0.3052	-1.1111	0.5287
Springfield City, Massachusetts	-1.3931	-0.0905	-0.4006	-0.1547
Boston City, Massachusetts	-0.5440	-0.0070	-0.0165	-0.0390
Baltimore City, Maryland	-0.2551	0.1205	0.2191	-0.0649
Flint City, Michigan	-0.3859	-0.1376	0.1564	-0.1292
Lansing City, Michigan	-0.3440	-0.0695	-0.3914	-0.1080
Grand Rapids City, Michigan	0.2497	-0.0591	-0.3288	0.3332
Saginaw City, Michigan	0.8468	-0.2712	0.3955	0.1091
Detroit City, Michigan	2.5123	-0.0791	0.8506	-0.0910
St. Paul City, Minnesota	-0.0614	-0.0963	0.3164	-0.0887
Gulfport City, Mississippi	0.0237	-0.1954	-0.1309	-0.3442
Jackson City, Mississippi	0.9307	0.3875	0.1777	0.2067
Meridian City, Mississippi	0.0352	0.0086	-1.6917	0.3485
Vicksburg City, Mississippi	0.7490	0.1522	0.2716	-0.1220
Asheville City, North Carolina	-0.3882	0.1106	-1.1088	0.0619
Fayetteville City, North Carolina	0.5902	0.0840	0.4473	-0.1768
Durham City, North Carolina	-0.2143	-0.0875	0.2731	-0.1077
Rocky Mount City, North Carolina	0.8292	0.2256	0.1412	0.0221
Winston-Salem City, North Carolina	0.6396	0.0839	0.7438	0.0309

Table A12 – Continued from previous page

	Over	all	Blac	ck
City	Kansas City	St. Louis	Kansas City	St. Louis
Gastonia City, North Carolina	1.5094	0.0815	1.2859	-0.1178
Greensboro City, North Carolina	0.0491	-0.0085	0.2386	-0.1163
High Point City, North Carolina	0.5355	0.1014	0.6223	-0.0270
Charlotte City, North Carolina	1.2142	0.1013	0.9989	0.1967
Wilmington City, North Carolina	-1.7329	-0.0623	-1.8434	0.0544
Goldsboro City, North Carolina	-0.0838	0.1078	-0.9153	0.1191
Atlantic City City, New Jersey	-0.7652	0.0875	-1.7595	0.0686
East Orange City, New Jersey	0.9348	-0.4249	0.1022	-0.3266
Jersey City City, New Jersey	-1.3559	-0.1034	-1.3259	-0.0637
Trenton City, New Jersey	-2.1131	-0.2811	-0.6400	-0.4418
Paterson City, New Jersey	-1.6802	-0.0503	-1.4576	0.0721
Elizabeth City, New Jersey	-0.8281	-0.1204	0.5779	-0.3076
Plainfield City, New Jersey	-1.8992	-0.1724	-0.4709	-0.2523
Newark City, New Jersey	-0.8265	-0.0871	-0.4321	-0.1635
Albuquerque City, New Mexico	-0.4469	-0.1816	1.0291	-0.1897
Las Vegas City, Nevada	0.4949	0.0716	-0.5114	0.1902
Albany City, New York	0.1557	-0.1681	0.0868	-0.3278
Buffalo City, New York	-1.1254	0.0438	-0.1672	-0.0512
Rochester City, New York	0.6321	-0.0312	1.1743	0.0224
New York City, New York	1.4365	0.0883	0.9849	0.0956
Syracuse City, New York	-1.1236	-0.1013	-1.2825	-0.1639
Mount Vernon City, New York	0.0988	-0.1824	-0.5034	-0.2830

Table A12 – Continued from previous page

	Over	all	Blac	k
City	Kansas City	St. Louis	Kansas City	St. Louis
Yonkers City, New York	-0.4600	-0.1536	-0.5344	-0.1073
Lima City, Ohio	0.3846	-0.1568	-0.4779	0.2534
Toledo City, Ohio	-0.0079	-0.0076	-0.6078	0.2920
Dayton City, Ohio	0.2254	0.0836	-0.4232	0.1561
Cleveland City, Ohio	1.0970	0.2385	-0.5733	0.4990
Columbus City, Ohio	0.0900	-0.0306	0.1813	0.1176
Lawton City, Oklahoma	-1.1325	-0.0065	-1.4568	0.0266
Oklahoma City City, Oklahoma	-0.7309	-0.0670	-0.7050	0.0387
Tulsa City, Oklahoma	-1.4941	-0.0763	-1.4983	-0.0654
Portland City, Oregon	0.2535	-0.0598	1.2851	0.1647
Harrisburg City, Pennsylvania	-2.5701	0.2728	-1.4556	-0.0186
Chester City, Pennsylvania	-6.1916	1.0946	-2.6400	0.5863
Erie City, Pennsylvania	-1.2321	-0.0552	-2.1841	0.0562
Philadelphia City, Pennsylvania	0.5711	-0.0154	0.3448	-0.0710
Providence City, Rhode Island	-0.2333	-0.2196	0.2881	-0.7392
Charleston City, South Carolina	-1.7987	-0.0939	-0.6318	-0.1043
North Charleston City, South Carolina	-0.8317	0.1484	-1.2597	0.0243
Greenville City, South Carolina	0.7560	-0.0942	0.5600	-0.0780
Columbia City, South Carolina	0.3850	-0.0153	-0.3025	0.0763
Spartanburg City, South Carolina	1.1909	-0.0836	1.2432	-0.2182
Sumter City, South Carolina	0.1146	-0.1508	-0.3785	-0.2747
Killeen City, Texas	-0.2076	0.1193	-0.8763	0.1955

Table A12 – Continued from previous page

	Over	all	Blac	:k
City	Kansas City	St. Louis	Kansas City	St. Louis
Garland City, Texas	-0.3706	-0.0637	0.0055	0.1054
Grand Prairie City, Texas	0.3891	-0.1202	1.3494	-0.2418
Irving City, Texas	-0.2798	-0.0844	-0.8890	0.1159
Mesquite City, Texas	0.1628	-0.1345	-0.7891	-0.2839
El Paso City, Texas	-0.8629	-0.0737	-0.2798	-0.0788
Texas City City, Texas	-0.3258	-0.1521	-0.1320	-0.1011
Longview City, Texas	-0.8145	-0.0617	-0.7660	0.1831
Beaumont City, Texas	-0.0554	0.1462	-0.7346	0.1987
Port Arthur City, Texas	-0.9428	-0.0450	-0.8049	0.0069
Lubbock City, Texas	-0.4409	-0.1411	-0.7736	0.4503
Waco City, Texas	0.8285	-0.0076	1.2876	0.0837
Corpus Christi City, Texas	-0.9715	-0.0239	-2.0609	0.4388
Amarillo City, Texas	-0.2893	-0.1111	-0.1140	0.8010
Tyler City, Texas	0.1755	-0.1283	-0.7755	0.2604
Arlington City, Texas	0.0147	-0.1787	-1.1716	0.1811
Fort Worth City, Texas	1.9569	0.1417	1.8424	0.3202
Austin City, Texas	-0.5628	-0.1695	-0.6345	0.0497
Wichita Falls City, Texas	0.6854	-0.2090	0.8037	-0.4899
Dallas City, Texas	2.4225	0.0039	1.1928	0.1252
San Antonio City, Texas	0.5941	0.0471	0.3187	0.4225
Danville City, Virginia	-1.0099	0.0923	-0.8097	-0.0586
Hampton City, Virginia	-0.6592	-0.0260	-0.7541	-0.1021

Table A12 – Continued from previous page

	Overall		Black	
City	Kansas City	St. Louis	Kansas City	St. Louis
Newport News City, Virginia	-0.6439	-0.0148	-0.8489	-0.0040
Norfolk City, Virginia	0.5984	0.0929	1.0316	-0.0861
Petersburg City, Virginia	-2.7409	0.4198	-1.1434	0.1437
Portsmouth City, Virginia	0.6970	0.2061	0.8400	0.0628
Richmond City, Virginia	5.2001	0.1203	2.9289	-0.0329
Roanoke City, Virginia	0.1510	-0.1953	0.2954	-0.3587
Suffolk City, Virginia	0.8340	-0.0794	0.8030	-0.0168
Virginia Beach City, Virginia	-0.6101	-0.0863	-0.2801	-0.1164
Tacoma City, Washington	0.4263	-0.0114	1.6988	0.0392
Seattle City, Washington	-0.2891	-0.0568	0.3842	0.0752

Table A12 – Continued from previous page

	Over	Overall		:k
City	Kansas City	St. Louis	Kansas City	St. Louis
Pine Bluff City, Arkansas	1.2267	0.1924	0.2138	-0.1818
Little Rock City, Arkansas	1.4255	0.3688	1.2196	0.3014
North Little Rock City, Arkansas	0.6040	0.1243	6.1058	-0.4309
Phoenix City, Arizona	0.4810	-0.1529	5.2446	-0.2648
Tucson City, Arizona	-1.0162	-0.2493	1.1972	-0.7800
Berkeley City, California	-1.0450	-0.2206	1.1340	-0.5430
Hayward City, California	-0.5912	-0.2313	2.1394	-0.2968
Oakland City, California	-0.9428	0.1964	-0.9057	-0.1728
Pittsburg City, California	-0.1336	-0.0459	-0.6378	-0.0241
Richmond City, California	1.5738	0.8235	7.9931	-0.2610
Fresno City, California	0.7007	0.1230	0.8493	-0.0559
Bakersfield City, California	-0.1214	-0.0863	2.2850	-0.0008
Compton City, California	11.4806	0.5836	10.2144	-0.5970
Inglewood City, California	3.9137	0.4662	4.9528	-0.1224
Long Beach City, California	1.1596	0.2065	1.9971	0.0971
Los Angeles City, California	1.7685	0.1377	4.5395	0.1863
Palmdale City, California	-0.5232	-0.0798	0.7548	-0.0846
Pasadena City, California	0.4601	0.1149	-0.2090	0.6411
Pomona City, California	1.2540	0.0759	5.3975	-0.6468
Carson City, California	0.0120	-0.0905	0.7963	-0.4353
Riverside City, California	-0.4231	-0.1201	1.8762	-0.0941

A4.17 City-Level Firearm Homicide Implied Weights

	Overall		Blac	:k
City	Kansas City	St. Louis	Kansas City	St. Louis
Sacramento City, California	-0.1419	-0.0782	-0.2717	0.0542
Fontana City, California	0.0436	-0.0069	1.1448	0.2209
Ontario City, California	0.4260	-0.0239	2.5306	0.3343
Rialto City, California	-0.3907	-0.0300	1.6897	-0.4057
San Bernardino City, California	3.3824	0.6167	2.0320	1.1237
San Diego City, California	-0.2627	-0.0876	0.5177	-0.1020
San Francisco City, California	-0.6577	-0.0598	1.4008	-0.6952
Stockton City, California	0.0733	0.0703	-1.8816	-0.0620
San Jose City, California	-1.3319	-0.2421	-1.9895	-0.1861
Fairfield City, California	-1.4087	-0.1443	-3.0974	-0.2017
Vallejo City, California	-1.2940	-0.0412	-1.4953	-0.2374
Aurora City, Colorado	-1.1283	-0.2604	-1.8926	-0.1893
Colorado Springs City, Colorado	-0.9433	-0.1714	-0.5592	-0.4240
Denver City, Colorado	-0.1339	-0.1146	-0.2987	0.0860
Bridgeport City, Connecticut	2.8831	0.4947	4.1643	0.2073
Hartford City, Connecticut	-1.4185	-0.0433	0.3457	-0.5742
Waterbury City, Connecticut	0.3224	-0.0375	-0.1263	0.0120
Wilmington City, Delaware	-6.1865	-0.3518	-6.3350	-0.3238
Savannah City, Georgia	-0.4260	-0.1370	-1.9524	0.0063
Albany City, Georgia	2.8403	0.3427	-0.2305	0.2876
Valdosta City, Georgia	0.6126	-0.0268	-1.6226	0.2062
Atlanta City, Georgia	2.7245	0.1513	3.2695	-0.0743

Table A13 – Continued from previous page

	Over	Overall		ck
City	Kansas City	St. Louis	Kansas City	St. Louis
Shreveport City, Louisiana	3.3280	0.4790	2.6949	0.3535
Baton Rouge City, Louisiana	-2.0515	0.2351	-1.3548	-0.1200
Lafayette City, Louisiana	-1.5326	-0.1496	-3.6568	0.1824
Alexandria City, Louisiana	1.2916	0.1491	-3.7084	0.6660
Springfield City, Massachusetts	-1.1011	-0.1507	-0.9264	-0.1016
Boston City, Massachusetts	-1.1320	-0.0593	0.3370	-0.1461
Baltimore City, Maryland	1.6912	0.3946	1.5873	-0.1299
Flint City, Michigan	-3.5905	-0.1309	-2.8752	0.0802
Lansing City, Michigan	-0.3058	-0.1376	-0.1406	-0.0400
Grand Rapids City, Michigan	-0.7063	-0.1648	0.6706	-0.0661
Saginaw City, Michigan	0.2039	-0.3375	-0.5848	0.1855
Detroit City, Michigan	0.7155	0.0446	0.9759	0.0137
St. Paul City, Minnesota	-0.5378	-0.1400	-0.1691	-0.0719
Gulfport City, Mississippi	-1.3016	-0.3084	-0.7526	-0.3337
Jackson City, Mississippi	3.0007	0.5317	0.9611	0.0604
Meridian City, Mississippi	0.0122	-0.1860	-3.2656	0.2312
Vicksburg City, Mississippi	0.0630	0.2426	-0.5761	-0.0325
Asheville City, North Carolina	0.1937	-0.0071	-2.0093	0.1988
Fayetteville City, North Carolina	0.0147	0.1032	0.9308	-0.0576
Durham City, North Carolina	0.1415	-0.1060	1.0389	-0.0905
Rocky Mount City, North Carolina	-0.0048	0.2535	-0.2913	-0.1160
Winston-Salem City, North Carolina	0.5727	0.0426	1.3368	0.0270

Table A13 – Continued from previous page

	Overall		Black	
City	Kansas City	St. Louis	Kansas City	St. Louis
Gastonia City, North Carolina	1.2294	0.0773	2.0355	0.0021
Greensboro City, North Carolina	0.6581	0.1039	-0.0903	-0.0267
High Point City, North Carolina	0.8596	0.0604	-0.2479	0.0813
Charlotte City, North Carolina	0.7864	0.1161	1.8748	0.1641
Wilmington City, North Carolina	-0.5891	-0.2168	-3.6004	-0.0741
Goldsboro City, North Carolina	-1.5612	0.1489	-4.0298	0.1436
Atlantic City City, New Jersey	-4.1779	-0.0895	-4.9870	-0.2807
East Orange City, New Jersey	0.1465	-0.4304	1.5362	-0.3594
Jersey City City, New Jersey	-1.4842	-0.1703	-2.2760	-0.0879
Trenton City, New Jersey	-2.4293	-0.4616	-3.6327	-0.2496
Paterson City, New Jersey	-1.4976	-0.2306	-2.7672	0.0217
Elizabeth City, New Jersey	-1.3636	-0.1904	0.3348	-0.4683
Plainfield City, New Jersey	-1.8379	-0.2024	-1.7841	0.0320
Newark City, New Jersey	-1.7702	-0.1400	-1.3407	-0.2567
Albuquerque City, New Mexico	-0.4843	-0.1694	-0.0505	-0.2643
Las Vegas City, Nevada	0.3988	-0.0320	2.2448	0.1093
Albany City, New York	-0.4635	-0.2376	0.7614	-0.5588
Buffalo City, New York	-0.7712	-0.0028	-0.2172	-0.2211
Rochester City, New York	0.5306	-0.0817	3.6892	-0.2140
New York City, New York	1.3302	0.1974	1.7744	0.2756
Syracuse City, New York	-0.7515	-0.1766	-3.5265	-0.1190
Mount Vernon City, New York	-1.3685	-0.1516	-1.2282	-0.1748

Table A13 – Continued from previous page

	Overall		Blac	k
City	Kansas City	St. Louis	Kansas City	St. Louis
Yonkers City, New York	-1.0870	-0.2240	0.1920	-0.2394
Lima City, Ohio	1.0231	-0.0808	0.8766	0.4398
Toledo City, Ohio	0.1749	-0.0094	-2.0070	0.3243
Dayton City, Ohio	0.2841	0.3473	-2.3951	0.4929
Cleveland City, Ohio	2.0951	0.3417	-2.1040	0.7810
Columbus City, Ohio	0.0183	-0.0187	0.6808	0.1480
Lawton City, Oklahoma	-0.9167	-0.1170	-2.8550	0.0031
Oklahoma City City, Oklahoma	-1.1800	-0.1638	-1.5141	-0.0233
Tulsa City, Oklahoma	-1.6389	-0.1876	-3.5476	-0.0486
Portland City, Oregon	0.2001	-0.1214	3.9005	-0.0986
Harrisburg City, Pennsylvania	-1.0098	0.2155	-2.8735	-0.1676
Chester City, Pennsylvania	-0.6054	0.7096	-7.2825	0.2615
Erie City, Pennsylvania	-0.7211	-0.2048	-5.0005	0.0651
Philadelphia City, Pennsylvania	0.6749	0.1452	2.7072	-0.2210
Providence City, Rhode Island	-0.2922	-0.2506	3.9770	-0.9578
Charleston City, South Carolina	-2.5589	-0.2547	-1.8711	-0.2667
North Charleston City, South Carolina	0.3957	0.0498	-2.5303	-0.1061
Greenville City, South Carolina	0.3888	-0.1089	0.4021	0.1599
Columbia City, South Carolina	0.1116	-0.0758	0.6181	-0.0802
Spartanburg City, South Carolina	1.0195	0.1538	3.8352	-0.0001
Sumter City, South Carolina	0.3490	0.0723	-1.0118	-0.0191
Killeen City, Texas	-1.0361	0.1126	-1.6578	0.1826

Table A13 – Continued from previous page

	Over	Overall		ck
City	Kansas City	St. Louis	Kansas City	St. Louis
Garland City, Texas	-0.7952	-0.1860	-0.8393	0.0174
Grand Prairie City, Texas	-0.5874	-0.2571	1.5578	-0.0171
Irving City, Texas	-0.9808	-0.2247	-2.3597	0.2302
Mesquite City, Texas	-0.6698	-0.2608	-2.8063	-0.1232
El Paso City, Texas	-0.7968	-0.1476	-0.5999	-0.0713
Texas City City, Texas	-1.2977	-0.1364	1.0892	-0.0138
Longview City, Texas	-1.6207	-0.1239	-3.6604	0.6110
Beaumont City, Texas	0.0472	-0.0124	-1.4832	0.1680
Port Arthur City, Texas	-0.7510	-0.1144	-2.2038	-0.0014
Lubbock City, Texas	-0.9525	-0.2856	-2.2845	0.3082
Waco City, Texas	0.6359	0.0482	2.6900	0.2959
Corpus Christi City, Texas	-0.7102	-0.2091	-4.9543	0.5945
Amarillo City, Texas	-0.7196	-0.1858	1.8688	0.6808
Tyler City, Texas	-0.2639	-0.1764	-0.3000	0.0814
Arlington City, Texas	-0.9823	-0.2660	-2.7242	0.2240
Fort Worth City, Texas	0.8115	0.1261	0.9413	0.6218
Austin City, Texas	-1.2300	-0.3015	-2.1149	0.2071
Wichita Falls City, Texas	-0.1578	-0.2383	1.4148	0.0137
Dallas City, Texas	2.1099	0.2092	1.4548	0.4352
San Antonio City, Texas	0.2295	0.0593	-0.1727	0.5807
Danville City, Virginia	-0.7472	0.1004	-1.3274	-0.1391
Hampton City, Virginia	-0.5279	-0.1038	-2.1309	-0.0643

Table A13 – Continued	from	nrevious	naae
	JIOM	previous p	Juge

	Overall		Black	
City	Kansas City	St. Louis	Kansas City	St. Louis
Newport News City, Virginia	-0.9104	-0.0938	-1.7080	-0.1173
Norfolk City, Virginia	1.3435	0.3590	1.5035	0.1286
Petersburg City, Virginia	-0.0643	0.1263	-2.4573	0.0559
Portsmouth City, Virginia	1.5727	0.4401	0.9764	0.2286
Richmond City, Virginia	9.1607	0.7899	9.2650	0.0609
Roanoke City, Virginia	-0.3466	-0.1983	0.1451	-0.0722
Suffolk City, Virginia	-0.1134	-0.1045	0.4816	-0.0011
Virginia Beach City, Virginia	-0.8412	-0.1592	-0.5646	-0.1294
Tacoma City, Washington	0.6235	0.0329	3.1543	-0.0479
Seattle City, Washington	-0.3583	-0.1098	-0.5854	0.1612

Table A13 – Continued from previous page

City	Kansas City	St. Louis
Pine Bluff City, Arkansas	0.132024167	0.383381119
Little Rock City, Arkansas	-0.137639425	-0.399687104
North Little Rock City, Arkansas	0.405321995	1.177002693
Phoenix City, Arizona	-0.297172112	-0.862949408
Tucson City, Arizona	-0.056829542	-0.165025646
Berkeley City, California	0.1042103	0.302613243
Hayward City, California	0.269631399	0.782974736
Oakland City, California	-0.007888582	-0.022907422
Pittsburg City, California	-2.533843591	-7.357954327
Richmond City, California	0.059289495	0.172169031
Fresno City, California	0.435312458	1.264091121
Bakersfield City, California	0.00771888	0.022414629
Compton City, California	0.172725795	0.501573385
Inglewood City, California	-0.160176478	-0.465131791
Long Beach City, California	0.157108395	0.456222477
Los Angeles City, California	-0.266172497	-0.772930532
Palmdale City, California	0.474736088	1.378572246
Pasadena City, California	0.035348109	0.102646341
Pomona City, California	0.188710096	0.54798973
Carson City, California	-0.044622379	-0.12957762
Riverside City, California	-0.094483507	-0.274367893
Sacramento City, California	0.192388581	0.558671575

A4.18 City-Level Black Non-Gun Homicide Implied Weights

City	Kansas City	St. Louis
Fontana City, California	-0.326067985	-0.946859288
Ontario City, California	0.364935399	1.059725235
Rialto City, California	0.184458765	0.535644415
San Bernardino City, California	0.401708069	1.166508318
San Diego City, California	0.110647207	0.321305188
San Francisco City, California	0.101156093	0.293744222
Stockton City, California	-0.966950261	-2.807898593
San Jose City, California	0.179608864	0.521560928
Fairfield City, California	0.145763718	0.423278998
Vallejo City, California	0.063812068	0.185301998
Aurora City, Colorado	-0.256115687	-0.743726857
Colorado Springs City, Colorado	-0.061593178	-0.178858628
Denver City, Colorado	0.067542676	0.196135202
Bridgeport City, Connecticut	0.154528414	0.448730544
Hartford City, Connecticut	0.009418943	0.027351392
Waterbury City, Connecticut	0.320624145	0.931051082
Wilmington City, Delaware	0.079359658	0.23045019
Savannah City, Georgia	-0.03539639	-0.102786543
Albany City, Georgia	0.069541689	0.201940079
Valdosta City, Georgia	0.121629101	0.35319519
Atlanta City, Georgia	0.215046274	0.624466587
Shreveport City, Louisiana	0.029238258	0.084904121
Baton Rouge City, Louisiana	-0.13799369	-0.400715842

Table A14 – Continued from previous page

City	Kansas City	St. Louis
Lafayette City, Louisiana	0.529496151	1.537588392
Alexandria City, Louisiana	0.271364666	0.788007919
Springfield City, Massachusetts	-0.143501686	-0.416710351
Boston City, Massachusetts	0.032076763	0.093146775
Baltimore City, Maryland	0.096195446	0.279339143
Flint City, Michigan	0.316757061	0.919821569
Lansing City, Michigan	-0.17724198	-0.514687805
Grand Rapids City, Michigan	0.002663437	0.007734276
Saginaw City, Michigan	0.259403606	0.753274549
Detroit City, Michigan	-0.098555879	-0.286193536
St. Paul City, Minnesota	-0.138426438	-0.401972486
Gulfport City, Mississippi	-0.285960832	-0.830393299
Jackson City, Mississippi	0.161712159	0.469591212
Meridian City, Mississippi	-0.293658639	-0.852746737
Vicksburg City, Mississippi	-0.112119536	-0.325580643
Asheville City, North Carolina	0.123795443	0.359485969
Fayetteville City, North Carolina	0.377203601	1.095350509
Durham City, North Carolina	0.064028407	0.185930218
Rocky Mount City, North Carolina	0.061885233	0.179706718
Winston-Salem City, North Carolina	0.215284092	0.62515718
Gastonia City, North Carolina	0.259755557	0.754296569
Greensboro City, North Carolina	0.09078435	0.263626019
High Point City, North Carolina	0.183124206	0.531769027

Table A14 – Continued from previous page

	yrom previous page	
City	Kansas City	St. Louis
Charlotte City, North Carolina	0.157607966	0.457673165
Wilmington City, North Carolina	-0.065203638	-0.189342938
Goldsboro City, North Carolina	0.161851947	0.469997137
Atlantic City City, New Jersey	0.341808897	0.992568864
East Orange City, New Jersey	0.023011943	0.066823708
Jersey City City, New Jersey	-0.437221718	-1.269635364
Trenton City, New Jersey	0.276972221	0.804291535
Paterson City, New Jersey	-0.167044032	-0.485074282
Elizabeth City, New Jersey	0.708764348	2.058160068
Plainfield City, New Jersey	0.15429096	0.448041009
Newark City, New Jersey	0.102509949	0.297675644
Albuquerque City, New Mexico	0.578213721	1.67905792
Las Vegas City, Nevada	-0.352163887	-1.022638416
Albany City, New York	0.164616797	0.478025905
Buffalo City, New York	-0.10398553	-0.301960541
Rochester City, New York	0.005488897	0.015939047
New York City, New York	-0.066655313	-0.193558414
Syracuse City, New York	0.124601322	0.361826137
Mount Vernon City, New York	-0.065550818	-0.190351105
Yonkers City, New York	-0.449721672	-1.305933615
Lima City, Ohio	-0.316427087	-0.918863366
Toledo City, Ohio	-0.165759347	-0.481343722
Dayton City, Ohio	0.14464107	0.420018975

Table A14 –	Continued	from	previous	page

City	Kansas City	St. Louis
Cleveland City, Ohio	0.03196765	0.092829923
Columbus City, Ohio	0.039660859	0.115170009
Lawton City, Oklahoma	-0.564675709	-1.639745282
Oklahoma City City, Oklahoma	0.189709873	0.550892953
Tulsa City, Oklahoma	0.040866622	0.118671388
Portland City, Oregon	-0.095424535	-0.277100519
Harrisburg City, Pennsylvania	-0.004902635	-0.014236619
Chester City, Pennsylvania	-0.007906509	-0.022959479
Erie City, Pennsylvania	0.111812443	0.324688884
Philadelphia City, Pennsylvania	-0.077977591	-0.226436848
Providence City, Rhode Island	-0.402791657	-1.169654916
Charleston City, South Carolina	0.364022565	1.057074485
North Charleston City, South Carolina	-0.34886918	-1.013071012
Greenville City, South Carolina	-0.042563995	-0.123600342
Columbia City, South Carolina	-0.166398616	-0.483200078
Spartanburg City, South Carolina	-0.079614547	-0.231190355
Sumter City, South Carolina	0.076282359	0.221514113
Killeen City, Texas	-0.330030628	-0.958366292
Garland City, Texas	-0.206082345	-0.598436496
Grand Prairie City, Texas	-0.189192673	-0.549391072
Irving City, Texas	-0.376577429	-1.093532188
Mesquite City, Texas	-0.009019853	-0.026192488
El Paso City, Texas	-0.068541377	-0.1990353

Table A14 – Continued from previous page

City	Kansas City	St. Louis
Texas City City, Texas	-0.034905877	-0.101362154
Longview City, Texas	0.351860518	1.021757473
Beaumont City, Texas	-0.074772456	-0.217129549
Port Arthur City, Texas	-0.01130658	-0.032832848
Lubbock City, Texas	-0.323572035	-0.939611371
Waco City, Texas	0.258293293	0.750050342
Corpus Christi City, Texas	-0.337764167	-0.98082349
Amarillo City, Texas	-0.601757174	-1.747425066
Tyler City, Texas	-0.149787031	-0.434962181
Arlington City, Texas	0.210645817	0.611688229
Fort Worth City, Texas	0.051135414	0.148490633
Austin City, Texas	-0.197625729	-0.573879576
Wichita Falls City, Texas	-0.683823892	-1.985736209
Dallas City, Texas	-0.001398722	-0.004061708
San Antonio City, Texas	-0.217705089	-0.632187444
Danville City, Virginia	-0.121658507	-0.35328058
Hampton City, Virginia	0.028244273	0.082017719
Newport News City, Virginia	-0.13257924	-0.384992979
Norfolk City, Virginia	0.327771329	0.95180558
Petersburg City, Virginia	-0.031778162	-0.092279675
Portsmouth City, Virginia	0.263260017	0.764473068
Richmond City, Virginia	-0.036317118	-0.105460218
Roanoke City, Virginia	0.327011283	0.949598505

Table A14 – Continued from previous page

City	Kansas City	St. Louis
Suffolk City, Virginia	0.028025851	0.08138345
Virginia Beach City, Virginia	0.132675536	0.38527261
Tacoma City, Washington	0.083763377	0.243238023
Seattle City, Washington	0.175124033	0.50853756

Table A14 – Continued from previous page

	Aggravated	l Assault	Weapons	
City	Kansas City	St. Louis	Kansas City	St. Louis
Pine Bluff City, Arkansas	-0.4941	0.2177	-0.2531	0.3969
Little Rock City, Arkansas	1.0897	-0.4465	0.2079	-0.4664
North Little Rock City, Arkansas	-1.1893	0.3754	1.1424	-1.3240
Phoenix City, Arizona	1.2601	-0.3419	0.1951	-0.0226
Tucson City, Arizona	0.5603	-0.2320	-0.0036	0.0470
Berkeley City, California	2.5873	-0.8668	-0.0801	0.3166
Hayward City, California	1.7416	-0.7204	-0.1023	0.1547
Oakland City, California	0.3224	-0.1100	0.3702	-0.4795
Pittsburg City, California	1.0566	-0.3459	0.0446	-0.3164
Richmond City, California	-0.0343	0.0529	0.4569	-0.5545
Fresno City, California	0.2807	-0.1682	0.0697	-0.2794
Bakersfield City, California	-0.3981	-0.0114	-0.1082	-0.6520
Compton City, California	0.0046	-0.0588	0.0884	-1.0483
Inglewood City, California	-0.6474	0.1544	-0.0569	-0.0907
Long Beach City, California	1.0118	-0.4047	0.1014	-0.6037
Los Angeles City, California	0.3962	-0.1651	-0.0367	-0.0510
Palmdale City, California	1.1517	-0.4277	0.0386	-0.4334
Pasadena City, California	1.6256	-0.6299	-0.0130	-0.0229
Pomona City, California	1.9683	-0.6961	0.0332	-0.1716
Carson City, California	-0.5697	0.1733	-0.0801	0.1327
Riverside City, California	0.8817	-0.2713	0.3853	-0.5905

A4.19 City-Level Black Arrest Implied Weights

	Aggravate	d Asault	Weap	ons
City	Kansas City	St. Louis	Kansas City	St. Louis
Sacramento City, California	-0.2150	0.0451	-0.0132	0.0537
Fontana City, California	2.1505	-0.7421	-0.2859	0.4817
Ontario City, California	2.8121	-0.8324	0.2007	-0.3555
Rialto City, California	0.3164	-0.2114	0.1086	-0.1186
San Bernardino City, California	0.9612	-0.2554	-0.1370	0.2210
San Diego City, California	0.7159	-0.3006	0.0037	-0.1192
San Francisco City, California	0.1636	-0.2813	0.0199	-0.3467
Stockton City, California	-0.8636	0.2378	0.0621	-0.0540
San Jose City, California	0.2914	-0.1575	0.0063	-0.1847
Fairfield City, California	0.1213	0.0359	-0.1421	0.1206
Vallejo City, California	3.0800	-1.0309	0.0717	0.3347
Aurora City, Colorado	6.3628	-2.0008	1.1103	-2.2183
Colorado Springs City, Colorado	-0.2345	0.1040	1.0457	-1.5349
Denver City, Colorado	0.0268	0.1012	0.3800	0.5314
Bridgeport City, Connecticut	-1.1889	0.3396	0.0385	-0.0803
Hartford City, Connecticut	-0.0033	-0.0217	-0.2509	0.0508
Waterbury City, Connecticut	-1.2364	0.3326	0.2606	0.5703
Wilmington City, Delaware	-2.3464	0.7733	-0.2907	0.0918
Savannah City, Georgia	-0.9792	0.3550	0.0875	-0.4609
Albany City, Georgia	1.8044	-0.3235	0.0432	-0.1829
Valdosta City, Georgia	-3.9985	1.1149	0.1683	-1.0950
Atlanta City, Georgia	1.2656	-0.5972	0.7823	-2.1370

Table A15 – Continued from previous page

	Aggravated Asault		Weap	ons
City	Kansas City	St. Louis	Kansas City	St. Louis
Shreveport City, Louisiana	-1.1354	0.3318	-0.0279	0.1084
Baton Rouge City, Louisiana	0.6778	-0.2276	-0.2010	0.1899
Lafayette City, Louisiana	-1.6497	0.4271	-0.2337	0.2860
Alexandria City, Louisiana	-0.3462	0.2038	-0.4187	0.1108
Springfield City, Massachusetts	3.9167	-1.3899	0.1027	0.1212
Boston City, Massachusetts	0.4497	-0.1967	-0.0862	0.1318
Baltimore City, Maryland	-0.7381	0.2799	-0.1807	0.1938
Flint City, Michigan	-0.2291	0.1082	-0.2165	0.4226
Lansing City, Michigan	0.7263	-0.1861	-0.0003	0.4991
Grand Rapids City, Michigan	1.2230	-0.3678	-0.2464	0.8059
Saginaw City, Michigan	-1.4407	0.4597	-0.1778	-0.0836
Detroit City, Michigan	-0.5560	0.1830	-0.0678	0.1592
St. Paul City, Minnesota	1.6486	-0.5310	-1.4925	3.4525
Gulfport City, Mississippi	-1.1318	0.3131	-0.4099	0.8135
Jackson City, Mississippi	-0.6421	0.2033	0.0567	0.0390
Meridian City, Mississippi	-0.7098	0.3120	-0.1022	0.2158
Vicksburg City, Mississippi	-2.7227	0.9398	-0.3136	0.4000
Asheville City, North Carolina	2.2236	-0.7625	-0.4017	0.4965
Fayetteville City, North Carolina	-1.1662	0.3582	0.3422	-0.2920
Durham City, North Carolina	-0.7072	0.2189	-0.0178	-0.5465
Rocky Mount City, North Carolina	-1.2095	0.2152	-0.0253	-0.3811
Winston-Salem City, North Carolina	0.1051	-0.0726	-0.1414	0.8336

Table A15 – *Continued from previous page*

	Aggravate	Aggravated Asault		ons
City	Kansas City	St. Louis	Kansas City	St. Louis
Gastonia City, North Carolina	9.4916	-3.0342	-0.4084	0.6344
Greensboro City, North Carolina	-0.4292	0.0989	0.0863	0.2625
High Point City, North Carolina	-1.9374	0.5062	0.0003	0.0953
Charlotte City, North Carolina	2.4354	-0.8292	0.0575	-0.1193
Wilmington City, North Carolina	-0.3694	0.0124	-0.2927	0.0572
Goldsboro City, North Carolina	0.1272	-0.0989	-0.2879	-0.0211
Atlantic City City, New Jersey	-0.6081	0.0465	0.1433	-0.8829
East Orange City, New Jersey	-0.4405	0.1632	-0.0315	-0.3044
Jersey City City, New Jersey	0.4216	-0.2005	-0.1140	0.0276
Trenton City, New Jersey	-0.8282	0.3125	-0.4996	0.3471
Paterson City, New Jersey	-0.2461	0.0584	-0.1121	-0.0462
Elizabeth City, New Jersey	-1.0396	0.3427	-0.0332	-0.5221
Plainfield City, New Jersey	-0.7952	0.2045	-0.1334	-0.5460
Newark City, New Jersey	0.6847	-0.2081	-0.1900	-0.3941
Albuquerque City, New Mexico	-0.3488	0.1936	0.0111	0.1767
Las Vegas City, Nevada	-2.7523	1.0925	-0.1183	0.6045
Albany City, New York	-0.4548	0.0422	0.0614	-0.9349
Buffalo City, New York	-1.2785	0.4264	-0.2029	0.3003
Rochester City, New York	-1.2907	0.4458	0.0454	0.1573
Syracuse City, New York	-0.3640	0.0337	-0.5568	1.1694
Mount Vernon City, New York	-1.3378	0.4207	-0.1545	-0.0300
Yonkers City, New York	-1.2111	0.3564	-0.0271	-0.9594

Table A15 – Continued from previous page

	Aggravated Asault		Weap	ons
City	Kansas City	St. Louis	Kansas City	St. Louis
Lima City, Ohio	4.5604	-0.4141	-0.1781	0.8543
Toledo City, Ohio	-0.0512	0.0929	-0.0621	0.6823
Dayton City, Ohio	-0.7266	0.2798	-0.0297	-0.3205
Cleveland City, Ohio	-0.6954	0.2328	0.0727	-0.1370
Columbus City, Ohio	1.9282	-0.7241	-0.0293	0.3972
Lawton City, Oklahoma	0.2306	-0.0978	-0.0138	-0.5270
Oklahoma City City, Oklahoma	-1.2992	0.4145	0.2500	-0.8282
Tulsa City, Oklahoma	-0.1937	0.0231	0.0581	-0.3020
Portland City, Oregon	-0.5933	0.1326	0.4006	0.1214
Harrisburg City, Pennsylvania	0.3390	-0.1437	-0.4304	0.2822
Chester City, Pennsylvania	0.9555	-0.4591	-0.1901	0.0103
Erie City, Pennsylvania	-0.3233	0.1236	-0.3241	0.3610
Philadelphia City, Pennsylvania	-1.6006	0.5031	-0.1318	-0.0887
Providence City, Rhode Island	0.1786	-0.0855	-0.2328	0.3397
Charleston City, South Carolina	-0.6634	0.2373	-0.4912	0.8686
North Charleston City, South Carolina	-1.1056	0.3164	-0.4725	0.4851
Greenville City, South Carolina	-0.0811	0.0321	-0.2993	0.7319
Columbia City, South Carolina	-0.6166	0.1770	-0.7391	1.7347
Spartanburg City, South Carolina	0.1986	-0.0627	-0.2613	0.7631
Sumter City, South Carolina	-0.8773	0.2627	-0.3442	0.5528
Killeen City, Texas	-0.5655	0.1751	0.1628	-0.4278
Garland City, Texas	0.7013	-0.2803	-0.3012	1.0144

Table A15 – Continued	from previous page
iuoio mininucu	prom previous puge

	Aggravated Asault		Weap	ons
City	Kansas City	St. Louis	Kansas City	St. Louis
Grand Prairie City, Texas	0.5170	-0.2051	0.4249	-0.3993
Irving City, Texas	-0.2968	0.0595	-0.0277	0.1448
Mesquite City, Texas	-0.3914	0.0331	0.1608	-0.0731
El Paso City, Texas	-0.1498	0.0051	0.2175	-0.3299
Texas City City, Texas	-3.6797	1.1739	1.1058	-1.7189
Longview City, Texas	-0.6723	0.1660	0.1504	-0.3554
Beaumont City, Texas	-0.6512	0.2400	-0.0703	0.3799
Port Arthur City, Texas	-0.5202	0.1675	0.3250	-0.4115
Lubbock City, Texas	-1.5683	0.4910	0.3808	-0.6570
Waco City, Texas	-0.1618	0.0560	0.2653	-0.2611
Corpus Christi City, Texas	-0.0107	0.0326	0.0979	-0.1751
Amarillo City, Texas	-0.1796	0.0602	0.0710	0.1457
Tyler City, Texas	-0.3734	0.1110	-0.1818	0.3833
Arlington City, Texas	-1.7120	0.3929	0.0512	-0.1856
Fort Worth City, Texas	0.2000	-0.0463	0.2829	-0.1777
Austin City, Texas	-0.6096	0.2499	0.3977	-0.8345
Wichita Falls City, Texas	-0.3438	0.0526	-0.0563	0.3536
Dallas City, Texas	0.0938	-0.0404	0.3771	-0.6995
San Antonio City, Texas	-1.0826	0.3712	0.1795	-0.3393
Danville City, Virginia	-1.3638	0.5072	-0.0194	0.3724
Hampton City, Virginia	-0.5166	0.1558	-0.2162	0.4915
Newport News City, Virginia	1.1430	-0.3484	0.0903	-0.3843

Table A15 – Continued from previous page

	Aggravate	d Asault	Weap	ons
City	Kansas City	St. Louis	Kansas City	St. Louis
Norfolk City, Virginia	0.9299	-0.2316	0.1887	0.3529
Petersburg City, Virginia	0.4828	-0.1263	0.1945	-0.0301
Portsmouth City, Virginia	-0.7013	0.2623	-0.0876	0.2624
Richmond City, Virginia	-0.3354	0.1140	-0.0194	0.6861
Roanoke City, Virginia	-1.7437	0.5612	-0.3077	1.0026
Suffolk City, Virginia	-0.8642	0.3171	0.0493	0.0918
Virginia Beach City, Virginia	-0.3670	0.0877	-0.2548	0.5245
Tacoma City, Washington	0.2831	-0.0524	0.3578	0.2818
Seattle City, Washington	-1.6802	0.6802	-0.1930	-0.5666

Table A15 – Continued from previous page

City	Kansas City	St. Louis
Pine Bluff City, Arkansas	-1.3387	0.3149
Little Rock City, Arkansas	3.2546	-0.0821
North Little Rock City, Arkansas	0.0202	0.0217
Phoenix City, Arizona	0.1168	-0.0841
Tucson City, Arizona	-0.4318	0.2021
Berkeley City, California	-1.4890	0.2268
Hayward City, California	-0.9512	0.1706
Oakland City, California	0.0702	-0.0126
Pittsburg City, California	-1.7044	0.1695
Richmond City, California	4.1197	-0.2325
Fresno City, California	0.3391	0.1876
Bakersfield City, California	-2.2233	0.3078
Inglewood City, California	14.9868	-2.4965
Long Beach City, California	0.5630	0.0239
Los Angeles City, California	1.1157	-0.1257
Pasadena City, California	3.4085	-0.4577
Pomona City, California	-1.5059	0.1790
Riverside City, California	2.6676	-0.2041
Sacramento City, California	-0.8414	0.1507
Fontana City, California	3.2629	-0.4185
Ontario City, California	0.8678	0.0376
Rialto City, California	0.3038	-0.4565

A4.20 City-Level Officer Gun Assault Implied Weights

City	Kansas City	St. Louis
San Bernardino City, California	-3.4850	0.3746
San Diego City, California	-0.7435	0.1336
San Francisco City, California	-0.4990	0.0556
Stockton City, California	0.0748	-0.1156
San Jose City, California	-1.0694	0.0931
Fairfield City, California	1.1269	-0.2187
Vallejo City, California	5.7884	-1.8938
Aurora City, Colorado	0.7633	-0.1394
Colorado Springs City, Colorado	-1.5757	0.1802
Denver City, Colorado	-0.8244	0.0951
Bridgeport City, Connecticut	-0.6557	0.0888
Hartford City, Connecticut	-0.0944	0.0239
Waterbury City, Connecticut	-0.5592	0.0726
Wilmington City, Delaware	-0.1083	-0.0343
Savannah City, Georgia	-0.3939	0.0585
Albany City, Georgia	-0.2847	0.0448
Valdosta City, Georgia	0.3876	-0.0842
Atlanta City, Georgia	0.5025	-0.0184
Shreveport City, Louisiana	-1.2195	0.1802
Baton Rouge City, Louisiana	-1.0266	0.0991
Lafayette City, Louisiana	-4.7340	0.9456
Alexandria City, Louisiana	-0.9357	0.1415
Springfield City, Massachusetts	-0.9746	0.1190

Table A16 – Continued from previous page

City	Kansas City	St. Louis
Boston City, Massachusetts	-0.6180	0.0508
Baltimore City, Maryland	1.1459	-0.0924
Flint City, Michigan	-1.3329	0.2563
Lansing City, Michigan	-0.6076	0.0948
Grand Rapids City, Michigan	-0.8430	0.1141
Saginaw City, Michigan	-0.8435	0.1048
Detroit City, Michigan	-0.4631	0.0338
St. Paul City, Minnesota	0.7770	-0.1801
Gulfport City, Mississippi	-2.0580	0.4551
Meridian City, Mississippi	0.4567	0.0213
Vicksburg City, Mississippi	-1.6983	0.3476
Asheville City, North Carolina	-0.0769	0.0470
Fayetteville City, North Carolina	0.9678	-0.2227
Durham City, North Carolina	-1.0016	0.2169
Rocky Mount City, North Carolina	0.2284	-0.1961
Winston-Salem City, North Carolina	0.8168	-0.1694
Gastonia City, North Carolina	-0.3970	0.0696
Greensboro City, North Carolina	1.4818	-0.2437
High Point City, North Carolina	-0.5344	0.1526
Charlotte City, North Carolina	1.3783	-0.2350
Wilmington City, North Carolina	0.8098	-0.1128
Goldsboro City, North Carolina	3.7099	-0.8164
Atlantic City City, New Jersey	-0.2547	0.0588

Table A16 – Continued from previous page

City	Kansas City	St. Louis
East Orange City, New Jersey	1.2869	-0.0902
Jersey City City, New Jersey	-0.2785	-0.0020
Trenton City, New Jersey	-0.3075	-0.0046
Paterson City, New Jersey	-0.5092	0.0373
Elizabeth City, New Jersey	-0.1978	0.0632
Plainfield City, New Jersey	-1.9880	0.3613
Newark City, New Jersey	1.1806	-0.2098
Las Vegas City, Nevada	-0.8261	0.0192
Albany City, New York	1.0393	-0.2045
Buffalo City, New York	0.0923	-0.0527
Rochester City, New York	-0.6518	0.1175
New York City, New York	1.8513	-0.1762
Syracuse City, New York	-0.0491	-0.0113
Mount Vernon City, New York	0.2856	-0.0446
Yonkers City, New York	0.2735	-0.0475
Toledo City, Ohio	-0.3928	-0.0347
Dayton City, Ohio	0.5610	-0.0380
Cleveland City, Ohio	-0.2042	0.1962
Columbus City, Ohio	-0.2975	0.1305
Lawton City, Oklahoma	-0.3048	-0.0069
Oklahoma City City, Oklahoma	-2.5541	0.3445
Tulsa City, Oklahoma	0.1168	-0.0808
Portland City, Oregon	-0.5679	0.1071

Table A16 – Continued from previous page

City	Kansas City	St. Louis
Harrisburg City, Pennsylvania	-0.5865	0.0161
Chester City, Pennsylvania	-1.0124	-0.0803
Erie City, Pennsylvania	0.1634	-0.0848
Philadelphia City, Pennsylvania	-1.1033	0.0889
Providence City, Rhode Island	-0.1692	0.0475
Charleston City, South Carolina	-2.0300	0.2894
North Charleston City, South Carolina	-0.6075	-0.0376
Greenville City, South Carolina	0.5659	-0.2042
Columbia City, South Carolina	0.2190	-0.0716
Spartanburg City, South Carolina	-1.6423	0.2055
Sumter City, South Carolina	1.5599	-0.1579
Killeen City, Texas	-0.6637	0.0504
Garland City, Texas	0.1065	-0.0071
Grand Prairie City, Texas	1.8876	-0.2895
Irving City, Texas	-0.2740	0.0429
Mesquite City, Texas	-0.3795	0.1543
El Paso City, Texas	0.7431	-0.1511
Texas City City, Texas	-1.0967	0.2253
Longview City, Texas	-0.4310	0.1469
Port Arthur City, Texas	-0.6315	0.0014
Lubbock City, Texas	0.1535	-0.0564
Waco City, Texas	-1.0663	0.1862
Corpus Christi City, Texas	-0.7134	0.0442

Table A16 – Continued from previous page

City	Kansas City	St. Louis
Arlington City, Texas	0.0087	0.0198
Fort Worth City, Texas	-0.5654	0.1436
Austin City, Texas	-0.1554	-0.0102
Wichita Falls City, Texas	-0.6768	0.0939
Dallas City, Texas	-0.2862	0.1452
San Antonio City, Texas	0.1865	-0.0478
Danville City, Virginia	-0.9673	0.1576
Hampton City, Virginia	-0.1088	-0.1039
Newport News City, Virginia	-1.2051	0.1269
Norfolk City, Virginia	-0.3531	0.0346
Petersburg City, Virginia	0.6506	-0.2559
Portsmouth City, Virginia	0.3063	-0.0697
Richmond City, Virginia	0.5490	-0.0397
Roanoke City, Virginia	-0.8160	0.0830
Suffolk City, Virginia	-2.2817	0.3873
Virginia Beach City, Virginia	-0.9654	0.1028
Tacoma City, Washington	-1.3153	0.2927
Seattle City, Washington	1.3316	-0.1706

Table A16 – Continued from previous page