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Abstract

Building a successful collaboration is often a time-intensive and gradual

process. We model collaborative dynamics with self-enforcing incentives. Two

players are presented with infinitely many ex-ante identical projects, each yield-

ing asymmetric benefits. Every period, they collectively explore or exploit mul-

tiple projects and make voluntary transfers to each other. After exploring a

project, players learn its benefits and choose whether to exploit the project in

future periods. We show that lengthy exploration occurs, and that the way the

collaboration evolves exhibits significant path dependence. Players temporarily

exploit projects, return to previously abandoned projects, and initially explore

a limited number of projects.
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1 Introduction

Collaborations rely on the promise of sustained cooperation between the parties

involved. Managers rely on promises of bonuses to incentivize their subordinates,

with the expectation that the subordinates will reciprocate by intensifying their ef-

forts to further management’s goals. Firms enter strategic alliances to bolster R&D,

and the enduring success of these collaborations relies heavily on the continued will-

ingness of firms to share resources. In supply-chain relationships, buyers pledge to

increase future transactions with suppliers who, in turn, pledge to adopt practices

that primarily benefit the buyer, like enhanced quality control or cost reductions.

In each of these contexts, promises play a key role in providing incentives, steering

collaborations towards profitability. However, the efficacy of promises hinges on their

credibility. How can those engaged in collaboration build trust in their relationships,

and how exactly does it translate into collaborative success?

The credibility of promises in collaborations relates to the value of the relationship.

When the collaboration is highly valued, partners are less likely to break promises.

Consequently, a collaboration that offers significant present and future benefits not

only leads to high gains but also fosters credibility, allowing the parties to make

substantial promises and realize a more profitable collaboration overall. Thus, the

interplay between collaboration value and credibility establishes a reinforcing rela-

tionship, providing a strong impetus for the parties to enhance the value of their

collaboration as much and as early as possible. Yet, building a successful collabora-

tion is often a gradual process, especially when the benefits are distributed unequally,

requiring credible promises of compensation to ensure all parties cooperate. In these

instances, substantial time is invested to define the collaboration’s nature. Moreover,

rather than expanding all at once, collaborations tend to evolve incrementally. As

noted by McKinsey about buyer-supplier relationships: “Building trust takes time

and effort. Often this means starting small, with simple collaboration efforts that de-

liver results quickly, building momentum” (Gutierrez et al., 2020). Similarly, Dwyer

et al. (1987) note that “the critical distinction [between the exploration and expan-

sion phases in buyer-supplier relationships] is that the rudiments of trust and joint

satisfactions established in the exploration stage now lead to increased risk taking

within the dyad. Consequently, the range and depth of mutual dependence increase.”

In this paper, we present a model that rationalizes the notion that, despite the par-

2



ties’ strong motivation to grow their collaboration quickly, the path to a successful

partnership often proceeds at a slow and deliberate pace. This process often involves

unavoidable delays and exhibits considerable path dependence, due to the inherent

time required to establish credibility.

The key features of our model are as follows. We consider a discrete time frame-

work where two players interact repeatedly over an infinite time horizon, with all

actions being publicly observable. Each period provides players with an opportunity

to cooperate on multiple projects chosen from an infinite pool of ex ante identical

projects. Any project that has been selected before can be chosen again for collab-

oration, a scenario we call “project exploitation.” The benefits of each project are

time-invariant but initially uncertain, and they may vary asymmetrically across the

players. Cooperation on a new project, or “project exploration,” immediately reveals

its actual benefits. Moreover, all projects entail a constant fixed cost for the play-

ers, both during the exploration and exploitation phases. As a result, players might

be reluctant to cooperate in exploring projects if they expect that their individual

benefit will not exceed the cost, and they may similarly be reluctant to cooperate in

exploiting a project if their realized individual benefit falls below the cost. Finally,

players can transfer money to each other, but these transfers are voluntary in nature.

We focus on relational contracts (i.e., subgame-perfect Nash equilibria) that max-

imize the players’ joint surplus. In the main setting, we assume that all projects yield

asymmetric benefits across the players, implying that their incentives to collaborate

on any given project are not aligned. To highlight the importance of building credi-

bility within such asymmetric contexts, we contrast the dynamics that emerge under

the optimal relational contract against those from a benchmark scenario where every

project equally benefits both players, eliminating the issue of credibility.

In the first part of our analysis, we assume that project exploration does not need

to be motivated. Specifically, cooperating in exploring a project is advantageous for

the players because they both expect their per-period individual benefit to outweigh

their cost. The central question then becomes the identification of projects worth

exploiting. We initially suppose that the players can only explore or exploit at most

one project per period. We show that players transition to permanent project ex-

ploitation only when they identify a project that offers sufficient aggregate benefits

across the two players, with monetary transfers serving to redistribute these benefits.

With a high discount factor, players’ criteria regarding which projects to exploit coin-
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cide with that of the symmetric-benefits benchmark. Conversely, when the discount

factor is low, the players become more selective with asymmetric benefits. Their pri-

mary focus shifts towards identifying a project valuable enough to make the continued

relationship sufficiently beneficial to enable cooperation in project exploitation. In

these instances, the resulting exploration time is likely to substantially exceed that

observed under the symmetric-benefits benchmark.

Next, we allow the players to explore or exploit multiple projects per period while

maintaining the assumption that project exploration does not need motivation. When

the discount factor is high, the players’ actions again replicate those that arise in

the symmetric-benefits benchmark. They treat the search for these projects inde-

pendently and opt for a project’s exploitation when its aggregate benefits exceed a

common threshold set for all projects. When the discount factor is low, the players

are again likely to engage in lengthy exploration compared to the symmetric-benefits

benchmark. Furthermore, their search for exploitable projects becomes interdepen-

dent. Specifically, the thresholds used for assessing whether a project is worth exploit-

ing permanently are co-determined and differ across projects. This co-determination

arises because selecting a project for exploitation impacts the overall value of the

relationship and, consequently, the players’ ability to cooperate on exploiting other

projects. As a result, in their quest to identify projects for permanent exploitation,

the players may opt for the temporary exploitation of certain projects with the un-

derstanding that they might abandon them later, or they may bypass some projects,

only to return to them when the value of their relationship has grown sufficiently to

enable exploitation. In sum, inefficiencies arise not only in terms of the time spent

exploring projects, but also in the deviation from the decision rule consisting of either

permanently exploiting projects or permanently abandoning them.

In the third part of our analysis, we no longer assume that both players are

motivated to explore projects. As a result, the scope of the players’ relationship – de-

termined by the number of projects they are exploring or exploiting – may not reach

its maximum right from the beginning. Specifically, when the players’ discount factor

is high, players immediately explore as many projects per period as possible. In con-

trast, when the players’ discount factor is low, the players find themselves compelled

to adopt a gradual approach, expanding the scope of their relationship incremen-

tally over time. The gradual approach involves initially exploring a limited number

of projects and starting the exploration of additional projects only after identifying
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projects worthy of exploitation. This gradual process offers two advantages. Firstly,

the possibility of exploring and eventually exploiting additional projects in the future

serves as an incentive for players to explore the early projects. Secondly, the exploita-

tion of valuable early projects enhances the value of the players’ relationship, thereby

facilitating collaboration on additional projects.

Lastly, we analyze an extension of the model with projects that yield both symmet-

ric and asymmetric benefits. We find that players set lower thresholds for symmetric

projects compared to asymmetric ones and utilize symmetric projects as stepping

stones, enabling cooperation in identifying asymmetric, yet more lucrative projects.

The rest of the paper is organized as follows. Section 1.1 discusses the related

literature. Section 2 describes the model. Section 3 characterizes the set of optimal

relational contracts we focus on and analyzes a benchmark scenario with aligned in-

centives. Section 4 solves the model, first by focusing on the players’ project exploita-

tion choices and then by analyzing the dynamics of the scope of their relationship.

Section 5 analyzes extensions and Section 6 concludes.

1.1 Related Literature

This paper contributes to multiple strands of the literature. Firstly, our research

connects to the large literature on multi-armed bandit problems, dating back to Weitz-

man (1979). For a comprehensive review, see Bergemann and Valimaki (2006). Only

a small subset of this literature analyzes strategic interactions. For example, Bolton

and Harris (1999) consider a setting in which players separately pull arms and free-ride

on others’ experimentation. In Strulovici (2010), players collectively choose between

a safe arm and a risky one, with its asymmetric benefits revealed over time through

experimentation. We contribute to this body of literature by introducing a setting

characterized by analytically tractable dynamics and a wide array of applications.

Secondly, this work is related to the literature on relational contracts (see e.g.,

Bull, 1987; Macleod and Malcomson, 1989; Baker et al., 1994, 2002; Levin, 2003, for

early contributions).1 The positive feedback effect, which links the value of players’

relationships to incentive strength, is pervasive across relational contracting models.

1Also at the intersection of the bandit and the relational contracting literatures, Urgun (2021)
examines a scenario where a principal interacts with multiple agents whose publicly-observable types
depend on the contracting history. We employ a multi-armed bandit problem to study when a group
of players should transition from the exploration of projects to their (infinitely repeated) exploitation.
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However, it rarely produces dynamics, because current production is typically influ-

enced only by present actions, and not past choices as in our setting. An exception

is Halac (2014), who studies a setting in which the value of the players’ relationship

increases with the duration of the relationship. The players initially choose to co-

operate on low-risk, low-return projects, and they switch to high-risk, high-return

projects once their relationship has grown sufficiently valuable.2 In our setting, it is

the discovery of projects worthy of collaboration that increases the value of the rela-

tionship. We analyze the implications of this effect on the players’ choices between

project exploration and exploitation when they are engaged in multiple projects. In

contrast, Chassang (2010) analyzes a setting where increases in relationship value

diminish the players’ motivation to enhance their collaboration. In the model, the

agent knows which arms are productive and which are not, while the principal, at the

outset, cannot differentiate between the two. Without monetary incentives, incen-

tivizing the agent to choose productive arms is accomplished by the threat of firing

the agent following failures. This dynamic makes motivating exploration progressively

expensive as more productive arms are identified. Should the relationship endure, it

ultimately enters an “exploitation” phase and its value stops growing. In our model,

the players are symmetrically informed about their environment, and the presence of

transferable utility removes the need for inefficient on-path punishments. These two

features lead to the positive feedback effect mentioned above.3

Our work also connects to Bernheim and Whinston (1990), who analyze firms

operating in multiple markets, showing that maintaining collusion in easier mar-

kets can help support collusion in more challenging ones. Similarly, Levin (2002)

shows the advantages firms gain by pooling heterogeneous employees’ incentives into

a “multilateral” relational contract. In our setting, the players’ ability to pool rela-

tional incentives across multiple projects also enhances their relationship. However,

increasing the scope of their relationship gradually might still be optimal.

Finally, we add to the body of research that examines the concept of gradualism.

Watson (1999, 2002) examine a setting in which players are uncertain regarding their

counterparts’ intentions—to either collaborate genuinely or take advantage of the

other. The players begin with minimal cooperation to mitigate the losses from defec-

2In Halac (2015), a principal leverages this feedback effect by making an upfront and relationship-
specific investment prior to her repeated interaction with an agent.

3Moreover, introducing transferable utility within Chassang (2010), where information asymme-
try plays a central role, would make the value of the players’ relationship constant on path.
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tion. As the players become more optimistic, the collaboration grows. Collaborations

involving trustworthy players achieve optimal cooperation, while those with untrust-

worthy players eventually end. In our model, no player begins the collaboration with

the intent to take advantage of the other. Instead, each is inclined to cooperate as

long as it serves their best interest. The relationship develops incrementally, not due

to screening intentions, but because credibility is built by the players over time.4,5

2 The Setup

Two collaborators interact repeatedly. During each interaction, they select multi-

ple projects to cooperate on and exchange money. These projects entail costs for the

parties, and their benefits are initially uncertain and may not be evenly distributed.

Examples of such collaborations include a buyer and a supplier, a manager and an

employee, or two firms in an R&D alliance.

There are 2 players who have the opportunity to interact at different time periods

t = 0, 1, 2, . . . . Each player, denoted by i = 1, 2, has a discount factor δ and a

per-period outside option equal to zero. The players’ interaction spans across m

“dimensions,” where m is determined exogenously. In each period t, each player

chooses a finite set P t
i of no more than m projects from the set P = [0,m). For each

dimension j = 1, . . . ,m of the relationship, the players may select up to one project

from the set [j − 1, j). We assume that a project is selected if and only if both players

choose it, thus following a unanimity rule. We denote by Pt the corresponding set of

projects selected by the players, where Pt = P t
1 ∩ P t

2. We refer to |Pt| ≤ m as the

players’ “relationship scope.”

Each project in Pt imposes a cost of c > 0 on both players. Further, each

4Macchiavello and Morjaria (2015) show that in the context of the Kenyan Rose export market,
the duration of buyer-supplier relationships is predictive of the scale of the relationship. This finding
is rationalized in a learning model in which neither the buyer nor the supplier know the supplier’s
reliability. Our framework centers on the need for relationships to be built rather than learning about
reliability or productivity. Moreover, the trade literature has documented the strong persistence of
buyer-supplier relationships, ascribed to substantial switching or search costs (see e.g., Bernard
and Moxnes, 2018; Monarch, 2022). This literature has also noted the tendency for transaction
volumes to increase over long periods of time (see e.g., Monarch and Schmidt-Eisenlohr, 2023). Our
framework suggests that buyers may exhibit reluctance to switch suppliers when such a transition
entails the need to rebuild a relationship from scratch.

5Gradualism also arises in Ghosh and Ray (1996) and Kranton (1996), where players are randomly
matched and can exit relationships at any time, with new partners unaware of their history. Initial
cooperation levels are low and gradually increase to discourage defection from existing relationships.
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project p ∈ P is associated with a vector of time-invariant individual valuations

(vp,1, vp,2) ∈ R2
+. A project’s associated individual valuations are publicly observed

immediately after a project is selected for the first time. We say that a project p is

being “explored” in period t if it is selected for the first time, and that it is being

“exploited” during period t if it has been selected in some prior period.6 Note that

we place no intertemporal restrictions on the set of projects that are available; for

instance, nothing prevents the players from exploring a project, potentially exploiting

it for several periods, then temporarily abandoning it, and subsequently returning to

it at a later time. We refer to a project’s sum of individual valuations as the project’s

value, and denote it by sp. We assume that each project p’s vector of individual

valuations is drawn independently and identically across projects and dimensions ac-

cording to the cumulative distribution function F . This assumption implies that all

dimensions of the relationship are ex ante identical.

The players can exchange money twice during each period. At the beginning of

each period t, the players make discretionary transfers to each other, where wt
i,−i ∈ R+

denotes such a transfer from player i to player −i. At the end of each period t, players

again make discretionary transfers to each other, where bti,−i ∈ R+ denotes such a

discretionary transfer from player i to player −i.7

Player i’s period t payoff is equal to:

πt
i = wt

−i,i − wt
i,−i + bt−i,i − bti,−i +

∑
p∈Pt

(vp,i − c), where i,∈ {1, 2} . (1)

Equation (2) implies that one key friction between the players will be about the

selection of projects that benefit one player but not the other, and that money will

serve the purpose of aligning incentives. The source of this friction stems from the

incurred cost c for any selected project.8

We conclude the model’s description by stating the timing of the stage game. Both

6Our analysis remains qualitatively unchanged if we assume that benefits are realized solely
during the exploitation phase of a project, which would capture a scenario in which exploration is
purely experimental.

7We incorporate the option of monetary transfers both before and after the players’ project
choices, although removing either would not qualitatively affect our results. Without transfers at
the beginning of each period, surplus might no longer be fully redistributed across the players without
affecting incentives. Without transfers at the end of each period, incentives for the current period
would rely on transfers from the subsequent period, complicating the proofs.

8Assuming that the cost c is incurred by player i for every project in P t
i would lead to identical

results.
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players simultaneously choose their discretionary transfers wt
i,−i. Next, both players

simultaneously make their project choices P t
i . For each selected project p ∈ Pt, the

players observe the vector (vp,1, vp,2) and pocket their individual valuation. Finally,

both players simultaneously choose their discretionary transfers bti,−i.

Relational Contracts. A relational contract is a complete plan for the relation-

ship. Let ht = (w0,P0,v0,b0, . . . , . . . ,wt−1,Pt−1,vt−1,bt−1) denote the history up

to date t and Ht the set of possible date t histories, where boldface lowercase let-

ters indicate vectors. Then, for each date t and every history ht ∈ Ht, a relational

contract describes: (i) the wt transfers; (ii) the set of projects Pt (wt) to be selected

as a function of wt; and (iii) the bt (wt,Pt,vt) transfers as a function of wt, Pt,

and the realizations of vt. Such a relational contract is self-enforcing if it describes

a Subgame Perfect Equilibrium of the repeated game. Within the class of Subgame

Perfect Equilibria, we analyze pure-strategy equilibria which maximize the players’

joint surplus.9 In the event of a deviation in some period t, the players respond (i)

by choosing P t
i = ∅ and bti,−i = 0 if these choices have not been made yet and (ii) by

permanently breaking off their relationship (i.e., reverting to the worst equilibrium

of the stage game from the next period onward). This punishment is without loss of

generality as it occurs only out-of-equilibrium (c.f. Abreu, 1986).10

3 Preliminary Analysis

In this section, we characterize the set of surplus-maximizing relational contracts

our analysis focuses on. We also analyze the benchmark case where every project

equally benefits both players.

9Restricting attention to pure strategy equilibria is without loss because (i) mixing on transfers
cannot benefit the players as it increases the maximal transfers they promise each other and (ii)
mixing on projects either results in inefficiently low relationship scope due to miscoordination or
a limited relationship scope that can also be achieved by players not choosing projects on some
dimensions.

10Equivalently, in the period following a deviation, players could transition to an alternative
continuation equilibrium in which everything remains the same, except that the entire surplus is
allocated to the player who did not deviate. This punishment provides identical incentives. Because
it is Pareto optimal, it is also less prone to renegotiation.
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3.1 Characterization of Optimal Relational Contracts

In our setting, surplus-maximizing relational contracts will depend on the players’

beliefs about the projects. Denote by µt(ht) := {∆(vp,1, vp,2)|ht)}p∈[0,m) the beliefs

the players hold about the projects’ valuations given all the observed valuations up

through period t− 1. We provide a characterization of one set of surplus-maximizing

relational contracts that mirrors the characterization in Levin (2003). We show that

there exist surplus-maximizing relational contracts that condition on ht only through

the beliefs µt(ht). Formally, restricting attention to relational contracts that specify

the same continuation equilibrium following any two on-path histories ht
1 and ht′

2 that

lead to the same beliefs µ is without loss. Further, the continuation equilibrium the

relational contract prescribes is surplus-maximizing, in the sense that there does not

exist another continuation equilibrium that generates a higher total surplus across the

players. The following proposition formalizes this result and provides a necessary and

sufficient condition for a given project selection rule (i.e., a mapping from beliefs to

projects) to be implemented by a relational contract. The proof for this proposition,

along those for any other result not proven within the main text, can be found in the

Appendix.

Proposition 1. The following statements are true:

• For any surplus-maximizing relational contract, there exists an alternative surplus-

equivalent relational contract such that (i) for all t and for all on-path histories

ht ∈ Ht the continuation equilibrium is surplus maximizing and (ii) for any two

on-path histories ht
1 and ht′

2 , if µ
t (ht

1) = µt′
(
ht′
2

)
, then the relational contract

specifies the same continuation equilibrium following these histories. We call

such relational contracts optimal.

• There exists a relational contract that implements a project selection rule P(·) if
and only if the following inequality holds for all t and for all histories ht ∈ Ht:

∑
p∈P(µt)

2∑
i=1

max(0, c− E(vp,i|µt)) ≤ C(µt), (2)

where C(µt) (“the continuation value”) is the expected net present value of the

players’ relationship starting in t+ 1 given P(·) and µt.
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The intuition for the first statement of the proposition is based on the follow-

ing two observations. First, any surplus-maximizing relational contract is neces-

sarily surplus-maximizing following any on-path history, for otherwise non-surplus-

maximizing continuation equilibria could be replaced with surplus-maximizing ones,

with transfers appropriately designed to maintain all players’ incentives. Second, by

confining our attention to surplus-maximizing continuation equilibria, we show that

the only history-dependent outcome that can alter the set of optimal continuation

equilibria are the players’ beliefs µt about the projects.

Recall that the main tension for the players is that the project selection rule

which maximizes their joint surplus may involve the selection of projects that do not

individually benefit each player. Inequality (2) states that for a relational contract

to implement a given project selection rule everywhere on the equilibrium path, the

continuation value must exceed the total reneging temptation across players and

projects in all periods and for all possible histories. The total reneging temptation

is the sum across players and across projects of a project’s reneging temptation to a

player. The sum is across projects because each player can deviate from the relational

contract by selecting any subset of Pt. In turn, a project’s reneging temptation to a

player is either equal to zero, in case the project generates a positive net expected gain

to the player, or equal to the magnitude of the net expected loss. That the relational

contract creates more continuation value to the players than the sum of their gains

from defecting is necessary for the relational contract to constitute an equilibrium.

In the proof, we show that the presence of transferable utility also ensures that this

condition is sufficient.

Finally, we note that the second statement of the proposition means that charac-

terizing the optimal relational contract can be reduced to characterizing the players’

optimal project selection rule, which will thus be the focus of our analysis hereafter.

To understand this, observe that all transfers cancel each other in the expression for

the joint surplus of the players, as well as on the right-hand side of Equation (2).

3.2 Benchmark with Symmetric Benefits

We now analyze the benchmark case where every project benefits the players

equally, ensuring that they have perfectly aligned incentives. Specifically, we suppose
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that for each project p ∈ P , vp,1 = vp,2.
11 The predictions this benchmark analysis

produces are identical to those that would result if a single decision-maker, whose

payoff is given by the sum of the payoffs of both players, were to make all the decisions.

We show that the standard results from single-agent multi-armed bandit problems in

stationary settings hold in this setting (e.g., Weitzman, 1979).

Proposition 2. When projects generate symmetric benefits, all optimal relational

contracts specify a project selection rule that is identical and independent across all

m dimensions of the players’ relationship. Further,

1. If the players select any project in any period t for dimension j, then the players

select a project for dimension j in all periods.

2. There exists a monotone increasing function s0(δ) such that the players exploit

project p for dimension j if and only if sp ≥ s0(δ).

When projects yield equal benefits for both players, Inequality (2) from Proposi-

tion 1 simply states that the net present value of the net payoff resulting from the

selection of any project (accounting for the potential abandonment of a project) must

be non-negative. Because this feature will always hold under any optimal relational

contract, Inequality (2) can be ignored.

The intuition behind the players treating each dimension of their relationship sep-

arately and identically follows from our assumptions wherein (i) payoffs are additively

separable across projects, meaning there are no interdependencies like economies or

diseconomies of scope, and (ii) all projects benefit the players equally.

The intuition for statement (1) is that if the players find it rational to explore

project p ∈ [j − 1, j) in some period t, then exploration must exhibit a positive

net present value of the players’ net payoffs, accounting for the possibility of project

abandonment. Since the players have access to an infinity of ex ante identical projects,

they would thus always opt for exploration rather than the non-selection of a project

and, by extension, a project will be selected in every period.

To gain intuition for statement (2), note that when the players find it optimal

to select a project (as opposed to not selecting any project), the players either (i)

exploit a previously-explored project p or (ii) explore new projects with the hope of

11We assume that every project benefits the players equally for simplicity. The findings of this
subsection remain valid for asymmetric benefits as long as each project either positively or negatively
affects both players.
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ultimately settling on a superior project in the future. The players never return to an

abandoned project because we have assumed an infinite supply of ex ante identical

projects, which ensures that they always new potentially viable projects to explore.

Finally, statement (2) also states that as the discount factor increases, the value of

exploring alternative projects rises, since any superior project identified can be used

across all future periods.

In sum, in our environment, when benefits are symmetric, the players maximize

the scope of their relationship at all times and they switch to permanently exploiting

projects based on an independent, identical, and time-invariant threshold. These

features will not always be true when benefits are asymmetric, a scenario we now

analyze.

4 Analysis

We divide the analysis of the asymmetric benefits case into two subsections. In

subsection 4.1, we assume that motivating the players to explore projects is not a

concern and instead focus on their decision-making process regarding project ex-

ploitation. Initially, we consider the case where they can collaborate on only one

project per period, followed by an examination of the case where they can collabo-

rate on multiple projects per period. In subsection 4.2, we shift our focus to settings

where the players may require motivation to explore projects. Within this context,

we analyze the scope of the players’ relationship.

4.1 The Dynamics of Collaborative Project Selection

We specialize the model described in Section 2 by assuming that each project ben-

efits only a single agent. Removing the possibility of projects that benefit both players

allows us to focus squarely on the forces of interest: getting players to build the credi-

bility necessary to cope with incentive problems.12 Moreover, for any given project p,

it is randomly determined (i.i.d. across projects) which player among the two receives

the entirety of the chosen project’s associated benefits. Specifically, we assume that

(vp,1 = sp, vp,2 = 0) occurs with a probability of 1
2
and that (vp,1 = 0, vp,2 = sp) occurs

12In Section 5, we consider the scenario where projects benefiting both players coexist with those
benefiting only a single player.
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with a probability of 1
2
. This approach assumes an extreme form of asymmetric ben-

efits. However, for our results to hold qualitatively, it suffices that each project yields

a net benefit to just one player. Finally, we suppose that the distribution of sp is

subject to the following restrictions: (i) ∞ > E(sp) > 2c, implying that exploring a

project selected at random is both Pareto optimal and an equilibrium of the stage

game, and (ii) supp(sp) is convex, implying that there exists a unique cutoff between

exploration and exploitation.13

4.1.1 Collaborating on a Single Project

Suppose the dimensionality of the players’ relationship, m, is equal to one. We

show that when the discount factor is high, the players’ behavior in terms of project

selection corresponds to their behavior in the symmetric-benefits benchmark. How-

ever, as the discount factor decreases, the players are likely to explore a greater

number of projects before settling on one for exploitation.

With asymmetric benefits, for any project, one player will not find exploitation in

their interest. However, if cooperation in a project’s exploitation is socially desirable,

then for any such project, there exists a relational contract enabling both players

to choose the project for exploitation in case the discount factor is sufficiently high.

If the discount factor is not sufficiently high, the players must continue exploring

projects. This observation gives the players an additional reason to explore projects.

Finding a better project not only increases the players’ continuation value because of

the project’s greater worth, but also because a more valuable project is easier for the

players to cooperate on.

Further, in any optimal relational contract, if the players exploit project p with

value s in period t, then µt = µt+1 since the players have not acquired any additional

information during period t. It follows that the players also exploit project p in period

t + 1 and in all subsequent periods and, hence, the continuation value in period t is

simply δ
1−δ

(s− 2c). We make the following assumption to ensure Equation (2) holds

for a positive measure of projects.

Assumption 1. There exists an sp ∈ supp(F ) such that c < δ
1−δ

(sp − 2c).

13These assumptions are not crucial, but simplify the proofs and statements of the results.
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We denote the minimum value of s that fulfills Assumption 1 by s̃(δ), where:

s̃(δ) = c
1 + δ

δ
. (3)

Similar to the symmetric-benefits benchmark, we show that the optimal relational

contract involves exploring projects until finding a project whose value sp exceeds

some threshold, denoted s∗. Further, the threshold is equal to the maximum between

s̃ and s0 (i.e., the threshold when benefits are symmetric).

Proposition 3. In any optimal relational contract, there exists a threshold s∗(δ) =

max{s̃(δ), s0(δ)} such that the players explore projects until they find a project p with

an associated value sp ≥ s∗. Once they find such a project, the players exploit it in

all subsequent periods.

The intuition is as follows. From Proposition 1, we know that the value of the best

project found thus far is the only factor in determining what optimal play is. Also,

and as previously mentioned, once players engage in the exploitation of a project,

they do so permanently. Consequently, the payoff derived from exploiting a project

is increasing in the value of the best project. Conversely, the payoff from exploring

a project is independent of the value of the best project. It follows that the players

follow a threshold rule when deciding whether to explore or exploit the best project

they have found thus far.

Because the joint surplus of the players in the symmetric benefits benchmark rep-

resents an upper bound on their joint surplus in scenarios with asymmetric benefits,

the players choose to exploit any project with a value exceeding s0(δ) if they are

able to. Moreover, the players are only able to cooperate in exploiting projects with

a value exceeding s̃(δ). Therefore, the criterion for project exploitation is that a

project’s value exceeds max{s̃(δ), s0(δ)}.
Given Proposition 2, s0(δ) is monotonically increasing in δ. However, from (3) it

follows that s̃(δ) is monotonically decreasing in δ. Thus, there exists a value δ∗ such

that, when δ < δ∗, s0 falls below s∗. Moreover, as δ decreases, the gap between s∗

and s0 widens. The intuition for this widening gap is as follows: When benefits are

symmetric, a decrease in δ means that players derive lower benefits from exploration,

causing s0 to decrease. Conversely, in the case of asymmetric benefits, players must

identify an even more valuable project to maintain cooperation, which leads to an

increase in s∗. This intuition is formalized below.
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Corollary 1. The threshold s∗ is monotonically increasing (respectively, monotoni-

cally decreasing) in δ when δ > δ∗ (respectively, when δ < δ∗).

Figure 1 provides an illustration by plotting the thresholds s̃, s∗, and s0 as func-

tions of δ, when c = 1 and sp ∼ Exp(1
3
), where Exp(λ) represents an exponentially

distributed random variable with parameter λ. This distribution satisfies our assump-

tions as a randomly selected project has an expected value equal to 3, which, in turn,

guarantees (i) that project exploration is an equilibrium of the stage game and (ii)

that, for any δ, there always exists a project with some value v that can be exploited.
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Figure 1: Comparison of Project Exploitation under Symmetric and Asymmetric Benefits

The figure plots the s̃, s∗, and s0 thresholds when sp ∼ Exp( 13 ) and c = 1. The threshold s̃ is
the minimum value of s such that cooperation in project exploitation is sustainable. The threshold
s0 is the minimum value of s such that the players switch from exploration to exploitation in the
benchmark with symmetric benefits. The threshold s∗ is the minimum value of s such that the players

switch from exploration to exploitation. The closed-form solutions are s0 = 3W
(

δ
e(1−δ)

)
+3, where

W (·) is the Lambert W function, and s̃ = 2 + 1−δ
δ . As shown in the figure, s∗ is the point-wise

maximum of s̃(δ) and s0(δ).

The threshold s0 is increasing in δ and approaches infinity as δ → 1. This positive

relationship arises because, in the presence of symmetric benefits, agents become more

selective as their patience increases. In contrast, the threshold s̃ approaches infinity

as δ → 0 and it decreases as δ increases. This relationship occurs because, in the

presence of asymmetric benefits, the players can cooperate in exploiting a wider range
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of projects as their patience grows. As a result, for low values of δ, the players must

be more selective with asymmetric compared to symmetric benefits, whereas when δ

is high, they are equally selective in both scenarios.

4.1.2 Collaborating on Multiple Projects

We now extend the analysis from the previous subsection to consider the scenario

in which the dimensionality of the players’ relationship is equal to m ≥ 1. When ben-

efits are symmetric, the decision to continue exploration or exploit a specific project

is made independently for each project. As a result, the threshold s0(δ) continues

to determine whether the players choose to permanently exploit a particular project.

In contrast, with asymmetric benefits the players continue to explore more than in

the case of symmetric benefits. In addition, we show that the independence property

across dimensions fails, leading the players to adopt behaviors such as the temporary

exploitation of projects and the recalling of previously abandoned projects.

We begin with the observation that equilibrium play under the optimal relational

contract in any period t relies solely on the values of the most valuable projects

discovered thus far for each of the m dimensions of the players’ relationship, denoted

as ŝ1, . . . , ŝm. To see this, note that exploiting any project increases the left-hand

side of Equation (12) by an amount equal to one. Thus, if the players can exploit a

project in the current period, they can exploit any project in the current period, and

hence by Proposition 1, if the players exploit a project, they will exploit the project

achieving the highest value of the surplus.

Further, recall the definition of s̃ as established in Equation (3). An implication

of Proposition 3 is that the players can (and thus do) follow the project selection rule

of the symmetric benefits benchmark from period 0 onwards if s0 ≥ s̃. If, instead,

s0 ≥ s̃, the players follow the selection rule of the symmetric benefits benchmark only

upon finding a project whose value s is such that s ≥ s̃. The next lemma provides

the condition under which the players are able to follow the project selection rule of

the symmetric benefits benchmark when cooperating on m projects per period.

Lemma 1. Upon finding projects with values ŝ1, . . . , ŝm, the players can follow the

selection rule of the symmetric benefits benchmark in all subsequent periods if and

17



only if:

f(ŝ1, . . . , ŝm) :=
1

m

m∑
j=1

max{ŝj, s0} ≥ s̃. (4)

When cooperating across multiple dimensions, the players can pool their relational

incentives across all these dimensions to facilitate their collaboration. Consequently,

the continuation value of the players’ relationship becomes high enough to allow them

to follow the project selection rule of the symmetric benefits benchmark (namely, to

exploit a project if its value is weakly greater than s0) whenever condition (4) holds.

This condition states that, when considering the average across all dimensions, the

maximum value between the best project found thus far in each dimension and the

threshold s0 must exceed the “feasibility” threshold s̃. We note that the function

f(ŝ1, . . . , ŝm) does not correspond to the arithmetic mean of the values ŝ1, . . . , ŝm

for two reasons: (i) the players will choose to explore rather than exploit a project

with value lower than s0 and (ii) exploration is valuable to the players and thus

contributes to their continuation value. When condition (4) holds, the players can

pool their relational incentives across all m dimensions in a way that enables them

to follow the project selection rule of the symmetric benefits benchmark.

Observing that no project is guaranteed to be permanently exploited until all

best projects within each dimension of cooperation are permanently exploited, the

condition provided in Lemma 1 implies a necessary condition for the players to per-

manently exploit the highest value project found thus far for each dimension of their

relationship. This scenario is referred to as “permanent exploitation”. Namely, if

sj ≥ s0 for all j and Equation (4) in Lemma 1 holds, then the project selection rule

from the symmetric benefits benchmark dictates permanent exploitation, and since

Equation (4) holds, the players can adopt this rule. In the proposition below we show

this is, in fact, a necessary and sufficient condition for permanent exploitation. We

also note that permanent exploitation occurs in finite time since, under Assumption

1, there exist project values exceeding s̃.

Proposition 4. In any optimal relational contract, the players permanently exploit

projects with values ŝ1, . . . , ŝm if and only if:

1. ŝj ≥ s0 for all j ∈ {1, . . . ,m}.

2. The average of ŝ1, . . . , ŝm exceeds s̃.
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We have provided closed-form conditions under which the players can (and thus

do) replicate the project selection rule of the symmetric benefits benchmark. Addi-

tionally, we have derived the conditions that dictate when projects are selected for

permanent exploitation. To delve into the equilibrium dynamics that arise before

the players identify a set of m projects suitable for permanent exploitation, we now

suppose m = 2 and focus on a specific parametric example.

Exponential Distribution Example When m = 2. Suppose c = 1, δ = 1
3
,

and sp ∼ 3 − 1
λ
+ Exp(λ), such that E (sp) = 3. Further, denote by C(ŝ1, ŝ2) the

continuation value of the players’ relationship. We first note that 1 ≤ C(ŝ1, ŝ2) for

all combinations of ŝ1 and ŝ2. This inequality holds because the players can always

choose to explore two new projects in every period, generating a payoff of 3 − 2 per

project and thus a continuation value of δ
1−δ

2, which reduces to 1 when δ = 1
3
. Within

this example, (i) we utilize Proposition 4 to characterize the players’ project selection

rule when f(ŝ1, ŝ2) ≥ s̃ and (ii) we derive results for the optimal project selection rule

when f(ŝ1, ŝ2) < s̃.

Figure 2a displays the threshold s0 as dotted black lines and the set of ŝ1 and

ŝ2 values that satisfy f(ŝ1, ŝ2) = s̃ in red. This set is the solution to Equation (4)

in Lemma 1. Recall that when f(ŝ1, ŝ2) ≥ s̃, the players are able to follow the

project selection rule of the symmetric benefits benchmark (i.e., the first-best rule).

In Figure 2b, we indicate which projects are chosen for exploitation based on the

respective values of ŝ1 and ŝ2. Each region is denoted by the set of dimensions for

which the highest-valued project in that dimension is exploited. First, it follows

from Figure 2a that both projects are chosen for exploitation when s̃ ≤ f(ŝ1, ŝ2) and

ŝ1, ŝ2 ≥ s0. Outside of this region, we must address two questions: (i) will there

be a project selected for exploitation, and (ii) if so, which among the two will be

chosen? Evidently, the answer to the second question is the best project. Therefore,

in Figure 2b, the selection between ŝ1 and ŝ2 hinges on which side of the 45 degree

line the project values fall. Further, there exists a threshold, s′, on the value of the

best of the two projects such that, below this threshold, the players choose to explore

two new projects rather than exploiting the best of the two projects. Conversely,

above this threshold, the players choose to exploit the best of the two projects and

explore a new one. Moreover, the threshold s′ is independent of the value of the

worse of the two projects, because this project will never be exploited. Finally,
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Figure 2b also presents a sample path illustrating the evolution of realized project

values over time under the optimal relational contract, depicted in blue. In the phase

where the players are exploring two projects simultaneously, both ŝ1 and ŝ2 weakly

increase over time. In the phase where the players exploit a project on dimension j,

ŝj remains constant, while ŝ−j weakly increases over time. Finally, in the phase of

the relationship where the players exploit both projects, ŝ1, ŝ2 stay constant because

exploitation is permanent. Arrows are used to signify changes in project values when

a more valuable project is identified, while self-loops indicate situations where more

valuable projects are either not discovered or not pursued.
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(a) Feasible Region for First-Best Project Exploitation

3 4 5

3

4

5

s0s′

s0

s′

∅
{1}

{2}

{1, 2}

• •

•

• •

•

×3

×∞

ŝ1
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(b) Project Exploitation and Sample Path

Figure 2: Optimal Multi-Project Selection Dynamics

In the figure, we assume c = 1, m = 2, δ = 1
3 , and sp ∼ Exp( 13 ). The values ŝ1 and ŝ2 represent

the values of the best projects discovered by the players to date on cooperative dimensions 1 and 2,
respectively. The left figure plots (i) the threshold s0 such that the players switch from exploration
to exploitation in the benchmark case with symmetric benefits and (ii) the set of ŝ1 and ŝ2 values
such that f(ŝ1, ŝ2) = s̃ in red. The right figure plots in Black the project selection behavior of the
players under the optimal relational contract. Each region is denoted by the set of dimensions for
which the highest-valued project in that dimension is exploited. For example, in the region {1, 2},
the best project for each dimension is exploited. In region {∅}, no project is chosen for exploitation.
In Blue, we plot one realization of a sample path.

The sample path of realized project values depicted in Figure 2b implies novel

dynamics along the equilibrium path, characterized by instances of temporary project

exploitation, including of projects with values below s0. In the second period of their

relationship, the players opt to exploit a dimension 1 project (with a value lower than

s0) for two consecutive periods. Subsequently, they abandon it in favor of a dimension

2 project, which they choose to exploit for three consecutive periods before eventually
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replacing it with a new and superior dimension 1 project.14

Building on the previously discussed example, in what follows we assume that

sp ∼ 3− 1
λ
+Exp(λ) without restricting δ to the value 1

3
or c = 1. In this environment,

we provide an analytical proof that, beyond the deviations already highlighted in

Proposition 4, additional discrepancies from the symmetric benefits benchmark can

arise in equilibrium when players decide between project exploitation and exploration.

Proposition 5. Suppose sp ∼ 3 − 1
λ
+ Exp(λ) and m = 2. There exist parameter

values such that, in equilibrium, the following behaviors occur with positive probability:

1. The players exploit a project in period t but not in some period t′ > t.

2. The players exploit a project with value sp < s0.

3. The players choose not to exploit a project in period t, but choose to exploit it

in some later period t′ > t.

The behaviors described in the proposition do not occur with positive probabil-

ity across all parameter values, a conclusion that follows when considering that, as

δ converges to 1, players follow the project selection rule of the symmetric benefits

benchmark. Furthermore, even within the parameter range where these behaviors oc-

cur with a positive probability, their occurrence is not guaranteed: for instance, there

is always a non-zero probability that the players immediately identify two projects

worthy of permanent exploitation.

As argued above, the first statement follows from the second statement combined

with the result from Proposition 4, whereby the players only permanently exploit

projects whose values exceed s0. The intuition behind the second statement can be

seen by comparing the players’ exploration incentives in the presence of symmetric

versus asymmetric benefits, and by supposing that sp is distributed such that the

continuation value of the players’ relationship exceeds 2c with an arbitrarily small

14In this scenario, the players never return to previously abandoned projects. However, when
m > 2, players may opt to exploit a project for several periods, subsequently abandon it, and later
revert to its exploitation. Consider, for instance, when m = 3. Assume further that players can only
cooperate in exploiting a single project, and that they choose to exploit the most valuable one. After
several periods, players might identify a project with slightly higher value on another dimension,
prompting them to exploit it over the preceding one. Subsequent to additional periods, they may
discover a project of such substantial value that they are now able to cooperate in exploiting three
projects. At this point, resuming the initial project they exploited might emerge as the optimal
choice.
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probability. In this case, with a probability approaching 1, the players are able to

exploit at most one project, implying the exploration of at least one other project.

Consequently, the benefit of exploration stems from the chance to find a more valuable

project for exploitation in the next period. However, since the players are already

exploring one project, the gain from undertaking a second exploration might be lim-

ited: even if two superior projects are identified, they can only exploit one. On the

other hand, with projects generating symmetric benefits, the players, upon discov-

ering these two projects, can exploit both, providing them with greater exploration

incentives. This higher benefit of exploration, in turn, prompts the players to set a

higher exploitation threshold when benefits are symmetric.

Regarding the final statement, consider a value of δ sufficiently small such that

the players are unable to cooperate in exploiting projects achieving values slightly

exceeding s0. If in period 0 the players do find two projects with associated values

only slightly higher than s0, the players are compelled to explore two new projects

during the next period. However, if one of these new projects happens to achieve a

high value, the continuation value of the players’ relationship may exceed 2 and the

players may wish to return to one of the two period 0 projects.

4.2 The Dynamics of Relationship Scope

We now delve into the analysis of how the two players gradually broaden their

relationship scope over time. In Section 4.1, we made an assumption regarding pa-

rameter values that ensured that it was always optimal for the players’ relationship

scope to be maximal at all times.15 To analyze relationship scope, we relax this

assumption. Specifically, we specialize the model presented in Section 2 as follows.

First, we assume that sp ∈ {0, v}, where sp = v > 2c
q

with probability q, for all

projects (i.i.d. across projects). This assumption streamlines the analysis: players

opt for exploration upon finding projects with value 0, and always decide to perma-

nently exploit those worth v. Second, we assume v2,p = 0. In other words, for any

project selected by the players, all output is pocketed by player 1. This approach

can be illustrative of, say, an employment setting, where player 1 plays the role of

15Specifically, we assumed that E (vp,i) > c, which, in turn, implied that exploring a project
selected at random constituted an equilibrium of the stage game. As a result, any optimal relational
contract prescribed the exploration (and, eventually, the exploitation) of as many projects as feasible
from period 0 onward.
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the employer and player 2 assumes the role of the employee. Likewise, this approach

can also be applied to a buyer-supplier relationship in which the buyer receives the

revenues from the sale of the final product. Because v2,p = 0 always, player 2 must

now be incentivized not only for project exploitation but also for project exploration.

We show that gradualism – that is, delaying the exploration of a project within one

dimension of cooperation until previous projects with value v have been found in

other cooperation dimensions – can be sustained in equilibrium for a larger range

of discount factors, even though it generates less joint surplus compared to when

exploring projects along all dimensions at once from the start.16

We begin by showing that any (non-empty) optimal relational contract exhibits

(weak) growth in the number of projects selected by the players along the equilibrium

path. By Proposition 1, we know the optimal relational contract conditions only on

the number of projects suitable for exploitation thus far. Denote this number of

projects by n and denote by f(n) the number of projects the players cooperate on

currently. In equilibrium, the players exploit the n projects, and explore f(n) − n

additional projects. If, for example, one of the f(n) − n projects explored in a

given period is found to have value v, then in the next period, the players exploit

n + 1 projects and explore f (n+ 1) − (n+ 1) additional projects. The following

proposition (i) formalizes why the dynamics that arise under the optimal relational

contract depend solely on f(n) when on path and (ii) provides key properties of this

function.

Proposition 6. To any (non-empty) optimal relational contract corresponds a func-

tion f(n) specifying that, in any period in which n projects suitable for exploitation

have been found, the players exploit these n projects and explore f(n)− n additional

projects. Further, f(n) satisfies the following two conditions:

1. f(n) is monotonically increasing in n for all n.

2. f(n) ≥ n for all n, with equality if and only if n = m.

The underlying logic of the first statement is that when players discover high-value

projects, the continuation value of their relationship increases since it solely depends

on the number of projects with value v identified so far. This raised continuation value

16Unlike the analyses in Watson (1999) andWatson (2002) in which the prospect of future increases
in relationship scope makes it harder to separate good and bad partners, in our model it makes
cooperation easier to sustain.
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subsequently enables the players to engage in a weakly larger number of projects,

which they choose to do in any optimal relational contract.

The proof for the second statement follows a simple induction argument. Given the

assumption of a non-empty relational contract, f(0) > 0. Next, assume the statement

is true for n−1 (i.e., f(n−1) > n−1) but fails for n (i.e., f(n) ≤ n). Combining these

inequalities and the first statement of the proposition implies that f(n) = f(n− 1) =

n. Further, we know (i) that the players cannot motivate cooperation on n+1 projects

given n projects suitable for exploitation and (ii) that they can motivate cooperation

on n projects given n− 1 projects suitable for exploitation:

(n+ 1) · c > n · C(exploitation) + C(exploration), (5)

n · c ≤ (n− 1) · C(exploitation) + C(exploration). (6)

where C (exploration) (respectively, C(exploitation)) is the per-dimension continua-

tion value when players have not (respectively, have) found a project suitable for

exploitation for that dimension. However, since C (exploration) < C(exploitation),
Inequality (5) and Inequality (6) cannot hold jointly.17

With symmetric benefits, the scope of the players’ relationship is immediately

maximal (see Proposition 2). By contrast, Proposition 6 implies that, unless players

begin with the broadest scope, they will expand it over time until they reach its

maximum extent. In particular, for any m ≥ 2, we can show that there exists a value

of δ low enough such that f(0) < m, implying that the relationship “starts small.”

This is stated below.

Proposition 7. Define by δ∗ the lowest value of δ such that the optimal relational

contract is non-empty and by δ̄ the lowest value of δ such that the scope of the players’

relationship is maximal at date 0. For any m ≥ 2, δ∗ < δ̄. Thus, when δ ∈
[
δ∗, δ̄

)
,

the players’ scope strictly increases over time.

The proof for this proposition is as follows. If there was no increase in the scope

of the players’ relationship over time, the players would begin with m projects imme-

diately. This project selection rule constitutes an equilibrium if and only if:

m · c ≤ m · C(exploration). (7)

17One can see this by dividing Inequality (6) by n and Inequality (5) by n + 1 and noting that
the right-hand sides of both resulting inequalities are affine combinations of these two terms.
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As δ diminishes, C(exploration) decreases to a point where Inequality (7) fails to hold.

Further, such an inequality is independent of m.18 Instead, if, say, the players begin

with a single project and, upon finding a project suitable for exploitation, begin m−1

additional projects, the feasibility of such a project selection rule is determined by:

m · c ≤(m− 1)C(exploration) + C(exploitation) (8)

c ≤C(exploration) + (m− 1) · C(delayed exploration) (9)

The first constraint ensures that cooperation on m projects after identifying one

project suitable for exploitation is feasible. The second constraint ensures that co-

operating in exploring one project anticipating the exploration of m − 1 projects

immediately after identifying a first project suitable for exploitation is feasible. Ei-

ther expression is strictly easier to satisfy than Inequality (7). Hence, when δ is

high enough such that a gradual contract (although not necessarily the one described

above) is feasible, (i.e., exceeds δ∗), but low enough such that maximal scope is not

(i.e., less than δ̄), the players’ scope will gradually increase over time.

Finally, we note that the specific project selection rule used for the intuition in the

proof of Proposition 7 is one of many potential “gradual” options. For instance, there

exists a “very gradual” project selection rule where f(n) = min(m,n + 1) in which

the players explore at most one new project per-period. Such a project selection

rule is not always optimal. Proposition 1 implies that the players maximize their

continuation value at each point on the equilibrium path. Hence, if upon finding n

projects suitable for exploitation, the players are able to explore two or more new

projects, then they will do so. While fully characterizing f(n) is beyond the scope of

the paper, we can provide a result in support of this intuition.19 Namely, if q is low,

the increase in the continuation value of the players’ relationship that occurs upon

finding a project suitable for exploitation can be large enough to enable the players

to start cooperating on several additional projects simultaneously.

18Throughout, we only consider the most binding constraints, because these are the only relevant
ones.

19Fully characterizing f(n) involves solving a Bellman Equation as a function of n projects suitable

for exploitation. For a given f(n), B(n) = n(v − 2) + (f(n) − n)(q · v − 2) + δ
∑f(n)−n

j=0 B(n +
bin(f(n) − n, q) [j]). Next, one must check that the Bellman Equation’s associated continuation

value, C(n) = δ
∑f(n)−n

j=0 B(bin(f(n)− n), q) [j] + n), satisfies c · f(n) ≤ C(n). Finally, one analyzes
all possible f(n) functions satisfying such a constraint and chooses the one that maximizes the
payoffs of the players.
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Proposition 8. For any α ∈ N, there exists a q∗ such that, for all q < q∗, any

(non-empty) optimal relational contract satisfies f(n) ≥ min(f(n− 1) + α,m) for all

n ∈ {1, . . . ,m}.

In words, when projects suitable for exploitation are extremely valuable—particularly

when q is low and v has to be large to maintain q · v > 2 · c, upon finding a project

worth exploiting, the players can increase their relationship scope by at least α di-

mensions in the subsequent period. The intuition for this proposition is simply that,

when q is small, finding a project suitable for exploitation generates a large increase

in the continuation value of the players’ relationship. The players, in turn, leverage

this increase in continuation value by widening the scope of their relationship. When

α ≥ 2, early successes compound as each additional project suitable for exploitation

allows the players to explore two or more additional projects.

5 Extensions and Applications

In this section, we begin by providing additional results regarding the role played

by the dimensionality m of the players’ relationship. Next, we explore two extensions

of the main model, incorporating projects with both symmetric and asymmetric ben-

efits. We show that players might prefer symmetric projects due to their straight-

forward implementation, and that symmetric projects can help players in the initial

phases of their relationship while exploring asymmetric projects.20 Finally, we dis-

cuss how our results shed light on various concrete settings characterized by informal

collaborative dynamics.

5.1 On the Benefits of Scope

In this subsection, we provide results regarding the role played by the dimension-

ality m of the players’ relationship. To this end, denote by π(m)
m

the average joint sur-

plus of the relationship per dimension of the relationship. Similarly, denote by δ∗(m)

the minimum discount factor for which the optimal relational contract is non-empty.

Throughout the analysis, the following two weak inequalities hold: π(m·k)
m·k ≥ π(m)

m
and

20These results bear resemblance to Acharya and Ortner (2022), where two players involved in
collective search prioritize projects that benefit both players.
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δ∗(m · k) ≤ δ∗(m). In words, raising the dimensionality of the relationship by a fac-

tor of k can only increase the average surplus of the relationship per dimension and

the range of discount factors over which the players’ optimal relational contract is

non-empty (namely, there exists a history ht such that Pt ̸= ∅). The intuition behind

these weak inequalities is simple: the players can always engage in k independent re-

lationships, each characterized by a dimensionality of m and replicating the optimal

relational contract for m dimensions.

In the environment considered in Section 4.1.2, where exploration can always be

sustained in equilibrium, δ∗(m) = 0. However, one can show that π(m·k)
m·k ≥ π(m)

m
holds

as a strict inequality in the range of parameter values such that the players are unable

to replicate the project selection rule of the symmetric benefits benchmark. In these

instances, pooling relational incentives across dimensions and projects is valuable to

the players. This is most easily seen when we consider that for m projects to be

selected for permanent exploitation, only their average value needs to exceed the

threshold s̃, instead of each individual project having a value exceeding s̃.

In the environment considered in Section 4.2, where exploration is not an equilib-

rium of the stage game, δ∗(m · k) < δ∗(m). To see why this inequality holds strictly,

recall that, when δ = δ∗(m), the players’ optimal relational contract is necessarily

gradual. The players could adopt k separate gradual relational contracts. However,

doing so would be inefficient because it would condition further project exploration

exclusively on the number of projects suitable for exploitation found within an (artifi-

cially segmented) separate relational contract. If instead players pool their relational

incentives across all dimensions, they are able to sustain a gradual relational contract

for a larger range of parameter values. By the exact same argument, π(m·k)
m·k > π(m)

m

whenever the optimal relational contract is gradual (i.e., δ is intermediate).21

Note that the benefits of greater scope are not due to asymmetries across dimen-

sions as in Bernheim and Whinston (1990) or from an improved ability to design

relational contracts in the face of moral hazard as in Levin (2002), but rather from

the players’ ability (i) to utilize gradualism more effectively and (ii) to pool incentives

across ex ante identical but ex-post asymmetric dimensions of cooperation.

21While π(m) is monotonically increasing in m, π(m)
m may not. For example, if sp comes from

a three-point support (low, medium, and high), and if a high-valued project and a single medium-
valued project can be jointly exploited by the players, but a high-valued project and two medium-
valued projects cannot, then π(m) would depend on the parity of m and monotonicity would break.
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5.2 Favoring Symmetric over Asymmetric Projects

We now modify the setting to allow for projects with both symmetric and asym-

metric benefits across the players. We show that players exhibit less selectivity for

projects with symmetric benefits compared to asymmetric ones. Additionally, the

existence of asymmetric projects diminishes selectivity for symmetric projects com-

pared to when only symmetric projects are available. As before, we assume that

sp ∼ F . However, we also suppose that: with probability 1 − q, both players have

valuations vp,1 = vp,2 =
sp
2
; with probability q

2
, player 1 values the project at vp,1 = sp

and player 2 at vp,2 = 0; and with the same probability q
2
, player 2 values the project

at vp,2 = sp and player 1 at vp,1 = 0. We assume that the distribution of benefits is

i.i.d. across projects. Our assumptions regarding the distribution of project values

imply that project exploration is an equilibrium of the stage game, as in Section 4.1.

For simplicity, we also suppose that m = 1. Setting q = 1 thus corresponds to the

version of model considered in Section 4.1.1. By contrast, setting q = 0 corresponds

to a special case of the benchmark model with symmetric benefits analyzed in Section

3.2. In the case where q ∈ (0, 1), two distinct exploration/exploitation thresholds ex-

ist, s∗s and s∗a, where the first threshold applies to projects with symmetric benefits,

while the second one applies those with asymmetric benefits. The key finding that

emerges from this analysis is that s∗a ≥ s∗s, indicating that the players are less selective

when it comes to projects with symmetric benefits, as compared to those without.

Additionally, we show that: s∗a ≥ s0 ≥ s∗s. The intuition behind s∗a ≥ s0 is the same

intuition as before: a project that benefits just a player must be valuable enough to

enable cooperation in exploitation. The intuition behind s0 ≥ s∗s is as follows. If the

players identify a project with value sp ∈ (s0, s∗a), they can exploit it only if it yields

symmetric benefits. As a result, the overall value of exploration is lower for the play-

ers, leading to lower exploration/exploitation thresholds for projects with symmetric

benefits.

5.3 Symmetric Projects as Stepping Stones in Relationship

Building

We now explore the dynamics of the scope of the players’ relationship when

projects with both symmetric and asymmetric benefits are available. Suppose that

the distribution of project benefits remains as in Section 4.2, namely vp,2 = 0∀p ∈ P .
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However, the players now also have access to m projects (each associated with a dis-

tinct dimension) with guaranteed benefits of vc for both players. We assume that

2c < 2vc < E(sp) to ensure that these projects are profitable, but less so (in expec-

tation) compared to those chosen from the set P . With a proof almost identical to

that for Proposition 4, one can show that the players’ relationship is characterized

by a function f(n) where n denotes the number of asymmetric projects identified as

suitable for exploitation. In each period, the players explore f(n) − n asymmetric

projects, they exploit n asymmetric projects, and they exploit m − f(n) symmetric

projects, which implies scope is always maximal. Exactly as before, the function f(n)

is increasing, meaning that the players choose fewer projects with symmetric benefits

as time passes. Finally, the presence of projects with symmetric benefits increases the

value of the players’ relationship for two related reasons: (i) the players’ relationship

is maximal from the very beginning and (ii) the presence of valuable projects with

symmetric benefits allows the players to begin exploring and subsequently exploiting

the more profitable asymmetric projects earlier. In this sense, the symmetric projects

act as stepping stones in the building of the players’ relationship.

5.4 Applications

We have shown that when asymmetric benefits are present among collaborating

parties and mutual trust is initially low, collaborative parties may find themselves

unable to cooperate across all potential collaborative domains at the outset. As a

result, they may find it necessary to gradually expand the scope of their collaboration,

leveraging early successes as stepping stones to broaden their relationship. Moreover,

our analysis indicates that, on average across various collaborative domains, these

parties will engage in a prolonged period of experimentation to define the exact nature

of their collaboration. This protracted exploration phase is essential for the parties

to identify collaborations with substantial value, so that no party will find it in their

interest to withdraw their cooperation in the long run.

In buyer-supplier dynamics, suppliers often undertake non-contractible invest-

ments that tend to benefit the buyers. Toyota’s relationship with its suppliers is

a well-documented example of a gradual and experimental approach, where Toyota

encouraged its suppliers to incrementally adopt the Toyota Production System—a

strategy that initially yielded benefits primarily for Toyota through improvements
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in quality and efficiency (Dyer and Nobeoka, 2000). Beyond the Toyota example,

and as discussed in Section 1, buyer-supplier relationships often exhibit gradualism

and lengthy experimentation. For example, analyzing a buyer-supplier relationship

involving soy bean products, Vanpoucke et al. (2014) observe, “the buyer decided

to purchase from this supplier. This was the start of the exploration stage. ... it

took about 10 years before the two parties started up a first integration initiative

and entered the expansion stage. It then took a long time for both partners to get

to know each other, build enough trust and see the benefits of learning from each

other’s expertise and further building up the relationship.”22

Gradualism and extended experimentation manifest in contexts beyond buyer-

supplier relationships. Consider, for instance, the dynamics of employee task alloca-

tions. Although an employee may be hired with the intention of working on multiple

tasks, a manager may initially need to allocate only a limited number of tasks to the

new employee. This allows the employee to dedicate non-contractible effort to explor-

ing various methods for each initial task, experimenting until a satisfactory routine is

identified, before being assigned additional responsibilities. As Carucci (2018) under-

lines, onboarding employees is challenging, because of the need to establish trust and

convey organizational knowledge. Carucci advises managers to “Start with targets

you are confident your new hires can meet. If all goes well, gradually increase the level

of responsibility associated with each task.”23 Similarly, the gradual nature of collab-

oration is often exemplified in the formation of political unions, in which countries

decide to cooperate across multiple domains by sharing resources, with the freedom

to withdraw at any given moment. For example, the establishment of the European

Union was characterized by significant step-by-step policy implementation and a grad-

ual deepening of integration among its member states (see, e.g., Spolaore, 2015, and

references therein). Initially, the European Union prioritized projects that conferred

mutual advantages to all member states, subsequently transitioning to adopt more

ambitious policies where costs and benefits were more unevenly distributed. Another

noteworthy example of prolonged experimentation pertains to climate change miti-

gation policies. In such policies, the net benefits are not uniformly distributed across

countries. To address this imbalance, funds and mechanisms are often established to

22See Vanpoucke et al. (2014) for additional examples of slow and gradual relationship building
in buyer-supplier collaborations.

23For further illustrations of the advantages of adopting a gradual approach in manager-employee
relationships, refer to Ye et al. (2020) and the cited references therein.
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compensate countries that benefit the least from these policies (Pickering et al., 2015).

Moreover, climate agreements are continuously modified and involve significant trial-

and-error, serving the dual purpose of enhancing policy-making and ensuring ongoing

cooperation among nations (Falkner, 2016).24

We have also shown that collaborative parties are motivated to pool their rela-

tional incentives across all dimensions of their collaboration. These “multilateral”

relational incentives, in turn, lead (i) to inter-dependencies across dimensions of co-

operation and (ii) the players to revisit previously abandoned projects and to engage

in temporary project exploitation. To illustrate these dynamics, consider two firms

that form an R&D alliance to share their resources for different research areas. Their

partnership involves making repeated investments throughout the life cycle of their

joint projects, which are too complex or unverifiable to be fully written out in a

contract. The two firms, having experienced significant success in a few key collab-

orations, build up enough trust to facilitate cooperation on projects in other areas

that may be less profitable and with an unequal distribution of benefits, but also

demand less development time. These opportunities may be actively sought out, or

they may have been identified previously and can now be effectively capitalized upon.

Similarly, when there is limited mutual trust, making it challenging to collaborate on

multiple projects that mostly benefit one firm, the firms might settle on a specific

collaboration within one area for an extended period. However, they may later opt to

discontinue it in favor of pursuing a more lucrative collaboration in a different domain.

Concurrently, they may resume searching for superior collaboration opportunities in

the first domain and eventually reach a point where they can cooperate across both

areas.

6 Concluding Remarks

This paper has introduced a framework for analyzing collaborative dynamics,

shedding light on the process through which parties build the trust needed for col-

laborative success and on how this trust, in turn, contributes to the achievement of

successful collaborations. The model generates three key insights. First, as trust is

24Gradualism has also been documented in tacit price collusion, with firms slowly softening price
competition through experimentation and incremental price increases (Byrne and De Roos, 2019).
Relatedly, Chilet (2018) shows that pharmacy chains in Chile gradually expanded the scope of their
collusion across multiple product spaces.
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intricately tied to the value of the players’ relationship, collaborating parties invest

a substantial amount of time in seeking collaborations that are sufficiently valuable

to foster trust-based cooperation. Secondly, when collaborations involve multiple

parallel projects, parties combine their relational incentives across projects, result-

ing in interdependencies and significant path dependence. In this context, while the

average project must provide enough value to support trust-based cooperation, par-

ticularly valuable projects can be leveraged to reduce inefficiencies in the selection of

other projects. Moreover, “relational inter-dependencies” between projects can lead

to seemingly erratic behaviors, such as prolonged cooperation on projects that are

ultimately discontinued, or the revival of previously abandoned projects, all driven

by the time required for the parties to establish trust in their relationship. Third,

in situations where initial credibility is low, the parties cannot immediately realize

the full potential scope of their relationship. To build the trust needed for sustaining

cooperation across multiple projects, the parties may begin by collaborating on a

limited number of projects. They can then leverage early successes in these projects

to embark on additional ones.

Our model serves as a valuable lens for examining dynamics occurring within

firms. In particular, our work contributes to the ongoing debate on persistent perfor-

mance differences among seemingly similar enterprises. Numerous empirical studies

have documented these enduring disparities in performance across a range of indus-

tries and countries, and these gaps have proven surprisingly robust against plausible

explanations such as market competition, local geographical and demand conditions,

or access to human capital (see Syverson, 2011; Gibbons and Henderson, 2013, and

references therein).

According to Gibbons and Henderson (2013), and the body of evidence they re-

view, variations in managerial practices are key in creating productivity disparities

across firms. We adapt for our purposes their categorization of explanations: (i) man-

agers might either be unaware of their shortcomings, or, even if conscious of them,

believe that the best practices from other firms are not suitable for their context; (ii)

managers are aware of their lag and are able to seek superior managerial practices

suitable to their context, but opt not to; and (iii) managers are “striving mightily” to

adopt superior practices but face hurdles during the implementation phase. The first

explanation underscores information barriers, prompting questions about why such

information does not diffuse more readily (c.f. Bloom et al., 2013; Atkin et al., 2017).
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The second explanation aligns with the framework developed by Chassang (2010) and

discussed in Section 1.1, in which players are aware of the existence of more efficient

practices but choose not to pursue them.

Our model offers insight into the third explanation presented by Gibbons and Hen-

derson (2013). Within our framework, players not only are aware of the potential for

improvements in their collaborative endeavors but are also actively in pursuit of them.

However, they must identify practices of sufficient value such that all stakeholders find

it in their best interest to participate in their implementation. As a result, adopting

superior practices is a time-intensive endeavor and may prompt players to focus on

refining specific facets before exploring additional areas of improvement. Thus, ele-

ments of luck and path dependence can lead to large performance differences, even

across collaborations that started under similar circumstances. We illustrate this phe-

nomenon with an example from the environment described in Section 4.2. Imagine

a scenario where players have the capacity to undertake up to 20 projects (in the

language of the model, their relationship has 20 dimensions). Each project carries a

50% chance of having a value of $4, and a 50% chance of holding no value and entails

a cost of 1 to both parties. With a discount factor equal to .357, the players optimally

begin their collaboration by working on two projects. As the players identify valuable

projects, the value of their relationship increases and they are able to collaborate on

additional projects. Early successes have a compounding effect: identifying valuable

projects may allow players to expand their collaborative efforts by more than just a

single project. Small differences early on can thus yield large persistent differences

in the medium-term, before differences reduce as collaborations approach their max-

imum dimensionality of 20 projects. Figure 1 reports the expected joint surplus of a

collaboration as time passes. It contrasts a collaboration that identified one valuable

project in period 0 (in blue) with another that identified none (in red). Emphasizing

the persistent and strong impact small initial differences can wield, the figure shows

that the blue collaboration is expected to outperform the red collaboration, with the

gap widening for an extended duration. Moreover, it is anticipated to take the red

collaboration upwards of 14 periods to recover and match the performance of the blue

one.
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Figure 3: Persistent Performance Differences

The figure plots the expected joint collaborative surplus in period t under the optimal equilibrium
described in Proposition 6 when m = 20, v = 4, q = 1

2 , c = 1 and δ = .357. The blue curve assumes
that the players have identified 1 valuable project in period 0. The red curve assumes that the
players have identified 0 valuable project in period 0.

Further, Gibbons and Henderson (2013) highlight that synergies between man-

agerial practices, such as those underlying Lean Manufacturing and Total Quality

Management (Powell, 1995; Shah and Ward, 2003), can complicate a firm’s effort to

integrate new methods (c.f. Milgrom and Roberts, 1990; Rivkin, 2000). This com-

plexity arises from the potential need—and consequent prohibitive cost—of adopting

an entire bundle of practices concurrently, leading to significant productivity dispari-

ties among firms. Our findings indicate that managerial practices can display strong

complementarities, even in the absence of clear interdependencies, when based on

relational contracts involving the same employees. We show that practices with such

relational interdependencies are more easily implemented in a gradual manner, and,

for this reason, can also lead to lasting performance gaps among firms.
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7 Appendix A

Proof of Proposition 1. Recall that after a deviation in period t, players set P t
i = ∅

and bti,−i = 0 if not already chosen. In subsequent periods, they revert to the static

equilibrium with zero transfers and no selected projects.

The proof proceeds in four steps: (i) we show that it is without loss of optimality

to restrict attention to relational contracts that are surplus-maximizing following

every on-path history ht; (ii) we provide a necessary and sufficient condition for the

existence of a relational contract that implements a given project selection rule p (·);
(iii) we show that this condition is independent of the division of surplus between the

players; and (iv) we show that, for any two histories that generate the same beliefs,

selecting the same continuation equilibrium is without loss of optimality.

Step 1 We show that it is without loss of optimality to restrict attention to rela-

tional contracts that are surplus-maximizing following every on-path history ht. To
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see this, suppose that there exists an on-path history ht such that the continuation

equilibrium starting in period t, denoted by e1, has lower total surplus than an al-

ternative continuation equilibrium e2. Thus, if we define Ck
i to be the continuation

value to player i in equilibrium ek, then
∑

i C1
i <

∑
i C2

i . For the rest of Step 1, we

omit the superscript t − 1 in our notation, as we are solely concentrating on period

t− 1 objects.

Let us modify the players’ relational contract such that play in and after period

t is dictated by e2 and the period t − 1 bi,j(·) transfers associated with history ht

(and, thus, corresponding to a specific realization of vt−1) are adjusted so that: (i)

player 2’s expected payoff following the realization of vt−1 is the same as under the

original equilibrium and (ii) player 1’s expected payoff following the realization of vt−1

increases by
∑

i C2
i −

∑
i C1

i . Specifically, take the vector of transfers b1 = (b11,2, b
1
2,1)

associated with the original equilibrium and create a new vector of transfers b2 =

(b21,2, b
2
2,1) such that:

C2
1 + b22,1 − b21,2 > C1

1 + b12,1 − b11,2, (10)

C2
2 + b21,2 − b22,1 = C1

2 + b11,2 − b12,1. (11)

Because
∑

i C2
i −

∑
i C1

i > 0, finding payments that satisfy b21,2 ≤ C2
1 and b22,1 ≤ C2

2

is always feasible.

Note that these changes have no impact on player 1’s choices of actions made in

any period t′ ≤ t−1 because all actions are observable, and hence choosing a different

action from the proposed equilibrium would be labeled a defection. If defections were

deterred in the original equilibrium, which had a strictly smaller continuation value for

player 1, then they are also deterred in the new equilibrium. The same logic applies

to player 2 since they obtain the same expected payoff in period t − 1 (compared

to the original equilibrium), and thus also have the same continuation values in all

periods t′ < t − 1. Finally, note that surplus from a date 0 perspective is strictly

higher under the new equilibrium.

Step 2 We show that there exists a relational contract that implements a project

selection rule P (·) if and only if the following inequality holds for all t and for all
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histories ht ∈ Ht: ∑
p∈Pt

∑
i=1,2

max
(
0, c− E(vi,p|ht)

)
≤ C(ht), (12)

where C(ht) is the continuation value.

To show that (12) is a necessary and sufficient condition, consider a set of transfers

bi,−i(v
t) ≥ 0 to be paid on path given a vector of realized values vt.

Given an equilibrium project selection Pt, note that it is without loss of generality

to assume that P t
1 = P t

2 = Pt. Thus, for each player and for each p ∈ Pt, the player

must weakly prefer to include p in P t
i , rather than excluding it. Let αi(v

t) denote

player i’s share of C(ht ⊔ vt) as a function of vt. Hence, the condition for selecting

Pt is:∑
p∈Pt

max
(
c− E(vi,p|ht), 0

)
≤ E

(
b−i,i(v

t)− bi,−i(v
t) + αi(v

t)C(ht ⊔ vt)
)
, ∀i, (13)

bi,−i(v
t) ≤ αi(v

t)C(ht ⊔ vt), ∀vt,∀i. (14)

Expectations are taken over the project valuations realizations vt and ht⊔vt denotes

the players’ updated beliefs after observing vt.25 The first expression states that the

promised transfers and the expected share of the total continuation value must be

enough to prevent a player from shirking on any subset of the projects. The second

expression states that the each player is willing to pay the other player the necessary

transfer.

To show necessity: Note that since Equation (13) must hold for a fixed i, the

inequality also holds summing over all i. Further, all transfers cancel out when

summing over i. Finally, by definition, E(C(ht⊔vt)) = C(ht). Hence, we are left with

Equation (12).

To show sufficiency: We will show this result in two substeps.

SubStep 1: We show it is necessary and sufficient to replace Equation (14) by

25The history also includes the project selections, and both the upfront and end of period transfers.
However, for notational convenience we only include the realized values as every other object can
be inferred on path from the realized values.
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its expectation. This new expression is as follows:

E(bi,−i(v
t)) ≤ E

(
αi(v

t)C(ht ⊔ vt)
)

∀i. (15)

We first show that if there is a solution to equations (15) and (13) then there exists

a solution to equations (14) and(13).

Take a set of transfers bi,−i(v
t) that satisfy equations (15) and (13). Define:

b′i,−i(v
t) = αi(v

t)C(ht ⊔ vt)−

(
E
(
αi(v

t)C(ht ⊔ vt)− bi,−i(v
t)
))

. (16)

Since Equation (15) holds, the term in the expectation of equation (16) is positive and

thus Equation (14) holds for all realizations of vt under the set of transfers b′i,−i(v
t).

Finally, E(b′i,−i(v
t)) = E(bi,−i(v

t)) so Equation (15) continues to hold.

SubStep 2: Using substep 1, it suffices to show that Equation (12) implies a

solution to Equations (13) and (15). To simplify all the notation with expectations,

Equation (13) can be re-expressed as:

βi − γi ≤ (b̃−i,i − b̃i,−i), (17)

where b̃i,−i is the expected transfer from i to −i, βi =
∑

p∈Pt max
(
0, c − E(vi,p|ht)

)
,

and γi = E(αi(v
t)C(ht ⊔ vt)). Equation (15) can thus be re-written as:

b̃i,−i ≤ γi. (18)

Rearranging Equation (12) implies
∑

i(βi−γi) ≤ 0. One can now show that b̃i,−i =

max(0, β−i − γ−i) satisfies Equations (18). Further, Equation (17) holds because:

βi − γi ≤ max(0, βi − γi)−max(0, β−i − γ−i) (19)

⇐⇒ max(0, β−i − γ−i)−min(0, γi − βi) ≤ 0 (20)

⇐=
∑
i

(βi − γi) ≤ 0, (21)

where the final step follows from noting that both β1 − γ1 and β2 − γ2 cannot be

positive and analyzing the remaining three cases based on the signs of βi − γi.
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Finally, Equation (18) reduces to

max(0, β−i − γ−i) ≤ γi ⇐= β−i − γ−i ≤ γi (22)

⇐=
∑
i

(βi − γi) ≤ 0, (23)

where the final implication is due to βi being weakly positive.

Step 3: We show that any relational contract that implements a given project

selection rule can be replaced by an alternative relational contract that implements

the same project selection rule and yields no surplus to player 2.26 First, note that the

way the players share their continuation value does not affect Equation (2). Hence, for

any period t where player 2’s expected payoff is positive, w2,1 can be increased until

player 2’s expected payoff is zero. Player 2 is willing to make this transfer because

not doing so would be seen as a deviation, resulting in a payoff of 0 for player 2.

Step 4: We now show that, for any two histories ht
1 and ht′

2 that generate the same

beliefs µ, selecting the same continuation equilibrium is without loss of optimality.

Take a relational contract r that is surplus-maximizing at all on-path histories and

has two histories ht
1 and ht′

2 prescribing different (surplus-maximizing) continuation

equilibria under the same beliefs µ. Recall from Step 3 that one can consider relational

contracts in which player 2 obtains an expected payoff equal to 0 in every period. In

this case, since the two continuation equilibria are both optimal and both give all

the surplus to player 1, switching from one continuation equilibrium to the other

does not change the players’ incentives as both prescribe the exact same payoffs

to the players. Hence, when focusing on relational contracts that specify the same

continuation equilibrium following histories that induce the same beliefs, one can

replace C(ht) with C(µt).

Proof of Proposition 2.

Recall from the text that one can ignore Equation (2) when analyzing the equi-

librium that maximizes the joint surplus of the players. As such, since there are no

interdepenencies across the dimensions and the players maximize joint surplus, the

players will treat each dimension identically and symmetrically.

Statement 1: Note that all projects within the interval [j, j + 1) are ex ante

26Of course, one could take the relational contract derived from Step 3 and 4 and choose to
redistribute the surplus by an up-front payment every period from player one combined with reducing
the expected payment from player one at the end of each period.
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identical. Hence, if the players ever find it optimal to explore a project, then in every

period the players will select a project from dimension j. This implies that for each

dimension the players either choose no projects in all periods or a project in every

period.

Statement 2: Given that there exists a continuum of ex-ante identical projects,

the optimal relational contract conditions only on the project with the highest value

amongst all previously explored projects, whose value we denote ŝ. In particular, one

can write the Bellman Equation:

B0(ŝ) = max
explore, exploit ŝ

{E(s′)− 2c+ δE(B0(max(ŝ, s′))), ŝ− 2c+ δB0(ŝ)}. (24)

The first term in the maximum operator corresponds to the players’ expected surplus

when exploring one more project (chosen at random, since all unexplored projects

are ex ante identical) and the second term is their surplus when exploiting the best

project found thus far. Next, one can show there exists a threshold s0, wherein the

players explore if ŝ < s0 and exploit if ŝ ≥ s0. Finally, for any δ < 1, one can use

Blackwell’s Sufficient Conditions to show that there exists a unique solution to the

Bellman Equation, and hence the threshold rule dictated by s0 is a solution.

Proof of Figure 1. When sp ∼ Exp(λ) and benefits are symmetric, we can compute

the threshold s0 such that the players are indifferent between exploitation and explo-

ration:

s0

1− δ
= E(sp) +

δ

1− δ
E
(
max{sp, s0}

)
(25)

⇐⇒ s0

1− δ
=

1

λ
+

δ

1− δ

(
e−λs0

(
s0 +

1

λ

)
+
(
1− e−λs0

)
s0
)
. (26)

The left-hand side corresponds to the exploitation surplus. The right-hand side cor-

responds to the expected surplus when exploring one more time and subsequently

exploiting the best project found until then. The second step utilizes the expected

value of the exponential and computes the expected value of the maximum operator

conditional on whether s0 < sp or sp < s0, respectively.

Solving this expression for s0 when λ = 1
3
yields the equation for s0 provided in

the text. Finally, solving for s̃ was done in the text.

Proof of Lemma 1. Recall that, under any optimal relational contract, continuation
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play depends only on the values of the best project found for each dimension to date.

When the players have identified projects with values ŝ1, . . . , ŝm at history h,

the condition for the players being able to replicate the project selection rule of the

symmetric benefits benchmark in all subsequent periods is that, for all histories h′

occurring after h and with associated project values ŝ′1, . . . , ŝ
′
m, the players exploit ŝ

′
j

if and only if ŝ′j ≥ s0. This condition is as follows:

c

m∑
j=1

1ŝ′j≥s0 ≤ δ

(
m∑
j=1

1ŝ′j≥s0
1

1− δ
(ŝ′j − 2) + 1ŝ′j<s0

(
1

1− δ
(ŝ0 − 2) +

s0 − E(s)
δ

))
,

∀(ŝ′1, . . . , ŝ′m) ≥ (ŝ1, . . . , ŝm),

(27)

which corresponds to Equation (2) when the players follow the symmetric benefits

benchmark. The right-hand side is the sum of the continuation values due to exploita-

tion and exploration. The value of exploration is derived from noting that the players

are indifferent between exploring and exploiting a project with value s0. Further, as

the value of the best project cannot decrease, the condition must hold for all values

of (ŝ′1, . . . , ŝ
′
m) where ŝ

′
i ≥ ŝi. Finally, one can note that setting ŝ′i = max{ŝi, s0} both

minimizes the right-hand side and maximizes the left-hand side of Equation (27).

Thus, an equivalent condition is:

m · c ≤ δ
( m∑

j=1

1

1− δ
(max{ŝj, s0} − 2)

)
, (28)

which corresponds to the expression stated in the Lemma.

Proof of Propositions 3 and 4. We start by proving Proposition 4 since we will use it

as a basis for proving Proposition 3.

Step 1: Proof of Proposition 4. Necessity. First note that, if the players

permanently exploit projects with values ŝ1, . . . , ŝm, then Equation (2) implies:

m · c ≤
m∑
j=1

δ

1− δ
(ŝj − 2). (29)

However, Equation (29) implies Equation (4) in Lemma 1. Thus, the players replicate

the project selection rule of the symmetric benefits benchmark, which implies ŝj ≥
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s0 ∀ j.
Further, given that ŝj ≥ s0 ∀ j, we can re-write Equation (4) as

∑m
j=1 ŝj

m
≥ s̃.

Step 2: Proof of Proposition 4. Sufficiency: Condition 2 in Proposition 4

implies that Equation (4) holds, and thus that the project selection rule is that of the

symmetric benefits benchmark. Further, Condition 1 in Proposition 4 implies that

the project selection rule in the symmetric benefits benchmark specifies permanent

exploitation.

Step 3: Proof of Proposition 3. Proposition 4 gives a necessary and sufficient

condition for permanent exploitation when m ≥ 1. Further, upon exploiting project

p in period t, µt = µt+1, and thus the players also exploit project p in period t + 1.

Therefore, exploitation is always permanent. Hence, the players exploit a project p if

and only if sp ≥ max{s0, s̃}.

Proof of Proposition 5. Suppose sp ∼ 3 − 1
λ
+ Exp( 1

λ
), which implies that E(sp) =

3 > 2. Moreover, the support of this distribution is convex for any λ. Hence, this

distribution satisfies the assumptions made in the text.

Recall that the optimal relational contract conditions only on the best project

found thus far for each dimension.

Statement 3 Note that there exists a sufficiently small value of δ such that the

players are unable to exploit a project worth s0+ ϵ. Consider such a δ. With positive

probability, in period 0 the players identify two projects with values belonging to

an arbitrarily small range around s0 + ϵ and s0 − ϵ. The players are unable to

exploit either project in period 1 and, thus, must explore two new projects. Because

the distribution of sp is unbounded, for any δ, there exists a realization of sp large

enough such that f(s0 + ϵ, sp) > s̃. Finally, in this region (i.e., f(s0 + ϵ, sp) > s̃), the

players follow the project selection rule of the symmetric benefits benchmark and thus

permanently exploit both projects. Therefore, with positive probability, the players

exploit a project they have previously chosen not to exploit.

Statement 1 Statement 2 implies Statement 1.

Statement 2 Suppose δ ≥ 1
3
and c = 1, which ensures that C(ŝ1, ŝ2) ≥ 1 =

c∀ŝ1, ŝ2. When C(ŝ1, ŝ2) ≥ 1 but f(ŝ1, ŝ2) < s̃, the value of the second best project is

irrelevant because within this range, the second best project will never be exploited

since at most one project can be exploited. As argued in the text, one can write the

Bellman equation for the players B(ŝ1, ŝ2) = B(max{ŝ1, ŝ2}) when f(ŝ1, ŝ2) < s̃.
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The indifference condition defining s0 in the symmetric benefits benchmark is:

s0 − 2 + δB0(s0) = 3− 2 + δE(B0(max{s, s0})). (30)

The left-hand side corresponds to the players’ surplus when exploiting a project with

value s0. The right-hand side corresponds to the players’ surplus when exploring one

more project.

Suppose by contradiction that the players never exploit a project with value less

than s0. In other words, suppose that the players weakly prefer to explore two new

projects when the best project found so far is worth s0:

s0 − 2 + (3− 2) + δE(B(max{s, s0}) + δϵ1(λ) (31)

≤2(3− 2) + δE(B(max{s, s′, s0}) + δϵ2(λ).

The first line corresponds to the value of exploiting a project worth s0 and doing a

singular exploration. Under such a project selection rule, the first two terms corre-

spond to the players’ expected surplus in the current period and the latter two terms

correspond to the continuation value. The term ϵ1 corresponds to the change in con-

tinuation value upon finding a project valuable enough that f(ŝ1, ŝ2) ≥ s̃. Specifically,

ϵ1(λ) corresponds to the probability that the new project’s value, s′, is sufficiently

large such that f(ŝ1, ŝ2) ≥ s̃, multiplied by the difference in continuation value in this

region, as opposed to the continuation value when the continuation value is less than

2. The second line corresponds to the players’ surplus following two explorations,

where ϵ2(λ) is defined analogously. Both ϵ1, ϵ2 approach 0 uniformly as λ → ∞.

These convergences happen because, to reach f(ŝ1, ŝ2) ≥ s̃, the players must draw a

project with value equal to at least 4. Because (i) drawing such a project occurs with

probability approaching 0 as λ → ∞ and (ii) surpluses decrease and remain bounded

as λ → ∞, the ϵ1 and ϵ2 terms uniformly decrease. One can then subtract Equation

(30) from Inequality (31) and simplify using the closed-form solution of B0 to derive:

1

λ(1− δ)
≤ E(B(max{s, s′, s0} −B(max{s, s0})) + ϵ2(λ)− ϵ1(λ) (32)

Next, we show that B(x)−B(y) ≤ x−y
1−δ

+ ϵ3(λ) when x > y, where ϵ3 is exponentially

decreasing in λ. Except for the exponentially decreasing probability that the players’
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continuation value exceeds two (which is accounted for by ϵ3(λ)), the players will be

able to exploit at most one project per period. As such, the largest possible benefit

from exploiting a better project occurs from exploiting the better project in every

period. Utilizing such a bound, we can derive the following inequality:

1

λ(1− δ)
≤ E

(
max{s, s′, s0} −max{s, s0}

1− δ

)
+ ϵ2(λ)− ϵ1(λ) + ϵ3(λ) (33)

⇐⇒ 1

λ(1− δ)
≤ 1

1− δ

(
2

λ
− 1

2λ
− 1

λ

)
+ ϵ2(λ)− ϵ1(λ) + ϵ3(λ). (34)

Finally, because ϵ1(λ), ϵ2(λ), ϵ3(λ) are all exponentially decreasing in λ, we can ignore

these terms in the limit. Thus, one can further simplify to derive:

1 ≤
(
2− 1

2
− 1

)
, (35)

which is a contradiction.

Proof of Proposition 8. Under the optimal relational contract, equilibrium plays de-

pends solely on some function f(·) satisfying the properties listed in Proposition 6.

Moreover, the following conditions are sufficient conditions for a relational contract

with associated function f(·) to constitute an optimal relational contract:

c · f(n) ≤ nC(exploitation) + (f(n)− n)C(exploration) (36)

+
m∑

j=f(n)+1

E
(
δτj |n, f(·)

)
C(exploration), ∀n.

c ·
(
f(n) + 1

)
> nC(exploitation) + (f(n)− n+ 1)C(exploration) (37)

+
m∑

j=f(n)+2

E
(
δτj |n, f ′(·)

)
C(exploration). ∀n.

Inequality (36) states that the total reneging temptation in the current period is

lower than or equal to the continuation value. In turn, the continuation value stems

from three components which we enumerate in order: (i) the continuation value from

the n projects that will be exploited in all future periods; (ii) the continuation value

from the f(n) − n projects that will be explored in the current period; and (iii) the

continuation value from the projects that will be explored in future periods multiplied

47



by the expected discount factor E
(
δτj |n, f ′(·)

)
. Next, Inequality (37) states that the

players cannot cooperate on an additional project in the current period, since, if

they could, doing so would increase surplus and imply that f(n) is not optimal. In

Inequality (37), f ′(m) = f(m)∀m ̸= n and f ′(n) = f(n) + 1. Given (36)-(37), we

can bound f(n)− f(n− 1):

c ·
(
f(n)− f(n− 1)

)
≥ C(exploitation)− 1 + C(exploration)

(
f(n) + 1− f(n− 1)

−
f(n)+1∑

j=f(n−1)

E
(
δτj |n− 1, f(·)

)
(38)

+

f(n)+2∑
j=m

E
(
δτj |n, f ′(·)

)
− E

(
δτj |n− 1, f(·)

))
.

Without solving for τj, we know τj ≥ 0, which implies that each term in the second

line of the inequality is bounded by one.27 Also, the number of projects suitable for

exploitation is FOSD increasing in f(n), because (i) there are more projects being

explored and (ii) the number of projects suitable for exploitation is FOSD increasing

in n, since f(n) is itself increasing in n by Proposition 6. These observations imply

that each term in the third line of the inequality are weakly positive. Utilizing these

bounds implies:

f(n)− f(n− 1) ≥ 1

c
(C(exploitation)− 1− C(exploration)) . (39)

Next, note that (i) C(exploitation) − C(exploration) ≥ (1 − q)v and (ii) qv ≥ 2 by

assumption, implying that:

f(n)− f(n− 1) ≥ 1

c

(
2(1− q)

q
− 1

)
, (40)

which concludes the proof.

27To numerically solve for τj , one would need to solve a Markov Chain where each transition
probability is dictated by a binomial random variable representing the number of projects suitable
for exploitation discovered to date.
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8 Appendix B

In this section, we provide proofs for the results discussed in Section 5.2.

Proposition 9. In any optimal relational contract, two thresholds, denoted as s∗s and

s∗a, exist. These thresholds determine the players’ project selection rule: they explore

a project if both (i) the highest-valued symmetric benefits project found so far has a

value less than s∗s, and (ii) the highest-valued asymmetric benefits project found so far

has a value less than s∗a. Furthermore, they permanently exploit the first symmetric

or asymmetric benefits project with a valuation greater than s∗s or s∗a, respectively.

Proof of Proposition 9. Note first that the optimal relational contract conditions only

on the highest-valued symmetric and asymmetric benefits projects found to date. By

Proposition 1, these are the only projects that may ever be exploited. Denote the

values associated with the highest-valued symmetric and asymmetric benefits projects

by ŝs and ŝa, respectively. In any optimal relational contract, the project selection

rule of the players can then be summarized as a function mapping ŝs, ŝa into one

of three choices: (1) exploiting the symmetric benefits project, (ii) exploiting the

asymmetric benefits project, and (iii) exploration.

Next, note that after exploiting a project, the players’ beliefs about the projects

do not change, and, hence, if the players exploit a project once, they will permanently

exploit that project. Therefore, the continuation value of the players’ relationship as-

sociated with the permanent exploitation of a project with value s (if the exploitation

of a project with value s is feasible) is equal to δ
1−δ

(s − 2c). More specifically, for

symmetric benefits project, exploitation is an equilibrium of the stage game, and thus

the continuation value from exploiting a symmetric benefits project with value s is

always equal to δ
1−δ

(s − 2c). In contrast, the continuation value from exploiting an

asymmetric benefits project with value s is δ
1−δ

(s− 2c)1c≤ δ
1−δ

(s−2c), where the condi-

tion in the indicator function corresponds to the condition under which the players

are able to cooperate in exploiting the project.

Finally, the players never choose to exploit a project p they previously chose not

to exploit. To see this, note that the players cannot exploit p in the future even if p is

the highest-valued project (since, by assumption, they have chosen not to exploit it

in the past). However, by Proposition 1, the players cannot exploit p when it is not

the highest-valued project either. Hence, the continuation value from exploration is

some constant, which we denote B.
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Finally, suppose the highest-valued project found to date has value ŝ. If this

project is a symmetric benefits project, the players exploit it if and only if 1
1−δ

(ŝ−2c) ≥
B. If this project is an asymmetric benefits project, the players exploit it if and only

if 1
1−δ

(ŝ− 2c) ≥ B and δ
1−δ

(ŝ − 2c) ≥ c. It follows from these expressions that the

thresholds s∗s and s∗a stated in the proposition exist.

Recall that s̃ = c(1+δ)
δ

. We now characterize the thresholds s∗a and s∗s.

Proposition 10. The thresholds s∗s, s
∗
a exhibit the following properties:

1. s∗a = max
(
s0, s̃

)
≥ s0 ≥ s∗s.

2. s∗s is monotone increasing in δ and monotone decreasing in q.

3. s∗a is independent of q and U-shaped in δ.

To prove Proposition 10, proving the following Lemma first is helpful.

Lemma 2. Define by C(δ, q) the continuation value of the players’ relationship fol-

lowing exploration. Then, C(δ, q) is decreasing in q and C(δ, q)(1− δ) is increasing in

δ.

Proof of Lemma 2. First, recall from the proof of Proposition 9 that the continuation

value following exploration in the current period is independent of the values of the

projects explored by the players up until and including the previous period. To prove

that C(δ, q) is decreasing in q, note that, as q decreases, the players are strictly more

likely to encounter a symmetric benefits project. Because the players are always able

to exploit symmetric benefits projects, the continuation value of their relationship

weakly increases as q decreases.

Next, consider any two values δ1 < δ2. Note that any project selection rule

implementable by an optimal relational contract when the players have discount factor

δ1 must also be implementable in equilibrium when the players have discount factor

δ2, because Equation (2) is relaxed as δ increases. Thus, given an optimal project

selection rule for discount factor δ1, P, the players’ expected continuation value is

simply:

C(δ1, q) = δ1π(t+ 1,P) + δ21π(t+ 2,P) + . . . , (41)
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where π(·) denotes the expected joint surplus in a given period under the project

selection rule. Further, because this project selection rule is also feasible with δ2,

C(δ2, q) ≥ δ2π(t+ 1,P) + δ22π(t+ 2,P) + . . . (42)

Combining these observations implies C(δ, q)(1− δ) is increasing in δ.

Proof of Proposition 10. Statement 1: We first show that s∗a = max
(
s0, s̃

)
. This

result was shown in Proposition 3 for the case when q = 1. By Lemma 2, for any q < 1,

the continuation value following exploration weakly increases compared to the case

when q = 1. Because s∗a is defined by the players’ indifference between exploration

and exploitation, the increased continuation value following exploration implies that

s∗a ≥ max
(
s0, s̃

)
. Finally, s∗a is not necessarily strictly greater than max

(
s0, s̃

)
,

because (i) s∗a ≥ s0 implies that, when benefits are symmetric, the players would

exploit such a project and (ii) s∗a ≥ s̃ implies that the players are able to replicate

the project selection rule of the symmetric benefits case.

What is left to show is s0 ≥ s∗s. Note that the continuation value following

exploitation is the same in this case and the case of symmetric benefits. However,

the surplus following exploration is weakly higher under symmetric benefits. Thus,

for any value s where exploitation is preferred in the symmetric benefits benchmark,

exploitation is also preferred with asymmetric benefits. Thus, the threshold must be

weakly higher compared to the symmetric benefits benchmark.

Statement 2: Note that the joint surplus associated with the exploitation of a

symmetric benefits project with value s is equal to s−2c
1−δ

. Further, s∗s represents the

value a project must achieve for the players to be indifferent between exploiting the

project and exploring. Thus:

s∗s − 2c

1− δ
= C(δ, q) ⇐⇒ s∗s − 2c = (1− δ)C (δ, q) . (43)

The statement now immediately follows given the results stated in Lemma 2.

Statement 3: This is precisely Corollary 1.
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