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Abstract

We develop an incomplete-contracts model of endogenous market struc-

ture for a homogeneous-good industry. A large number of identical incentive-

constrained producers each decide whether to stand alone as price-taking com-

petitors, or to horizontally integrate with others by selling their assets to profit-

motivated professional managers, who then Cournot compete in the product

market. Despite the absence of significant technological non-convexities, the

equilibrium market structure is typically an oligopoly, demonstrating that con-

tracting imperfections are a distinct source of market power. Unlike standard

endogenous entry models, concentration may increase with the size of the mar-

ket. We discuss implications for competition policy.
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1 Introduction

The theory of industrial structure, salient as ever amid mounting evidence and grow-

ing unease about market concentration, is a work in progress. Even for its most

basic concerns – the number, sizes, and market power of firms supplying a homo-

geneous good – there are open questions. While many drivers of those outcomes,

notably technology, demand, and entry barriers, are well understood, others have

so far eluded due scrutiny. In particular, it remains unclear whether anything of

consequence turns on what is meant by a “firm.”

For industrial organization (IO), firms are primitive and unitary entities. The

predominant account of market structure is the endogenous entry model (EEM), in

which these actors first decide to enter a market and then supply it in competition

with one another. A zero-profit balance of market demand, efficient scale, and entry

cost determines how many firms will occupy the market. The many variants of EEM

all point to significant non-convexities in technology as the source of market power.

In organizational economics (OE), firms are neither primitive nor unitary: they

comprise more fundamental, not to say willful, elements that inhabit a world rife with

contracting frictions. Moreover, entry is not the only engine of market structure. So is

the recombination of incumbents: mergers and acquisitions, spin-offs and divestitures

– in short, the reconstitution of firm boundaries, among the fields’s earliest and

most enduring preoccupations. Thus it is fair to ask what OE might add to our

understanding of industrial structure.

An alternative to the EEM that accommodates both the composite nature of the

firm and the malleability of its boundaries has been straddling the IO/OE nexus

for quite some time: the “coalitional approach.” The elements are a population of

producers already serving the market. The industrial structure question boils down

to asking how they organize themselves into a collection of disjoint “firms,” each a

subset of the population, that then compete in the product market.

Under certain assumptions about contracting possibilities, it doesn’t matter which

way one tackles the market structure problem. Indeed, the coalitional approach is of-

ten interpreted as foundational for standard models. But as this paper shows, in the

presence of contracting frictions and notions of the firm emanating from them, think-

ing along coalitional lines can make a substantial difference. First, those frictions

may be sufficient for market power to emerge, even without significant economies

of scale. Second, even a strongly consumer-oriented policy may encourage firms to

operate with market power and well above the efficient scale. And third, predictions

about the effects of fundamentals such as market size may differ markedly from those
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of standard models.

We consider an industry populated by a continuum of identical, capacity-constrained

production units that we refer to as “teams,” each consisting of a productive asset and

several partners.
1
The team is the minimum efficient scale of operation, infinitesimal

relative to market demand. Its output requires non-contractible choices such as man-

agerial effort that entail private costs for the team’s partners, and (constant) marginal

monetary costs, up to the capacity constraint. Because of the non-contractibility,

the team suffers internal incentive problems, to which there are a limited number of

second-best solutions. We focus on the most classical: authority, which is wielded by

a professional manager (HQ) who is motivated only by monetary profit and neglects

her subordinates’ private costs.
2

While every team must be owned and operated by an HQ, we allow for the

possibility of horizontal integration by supposing that an HQ can manage arbitrarily

many production units, using the authority gained from ownership to enforce desired

output levels produced by its team(s). As in the property-rights literature, we refer

to the union of assets owned by one HQ as a firm; team members remain attached

to the asset, but now operate as subordinates of the HQ (thus, a firm can range

in size from a single team – a “stand-alone firm” – up to the entire population).

To avoid stacking things in favor of industry concentration, we assume there is no

(technological) gain or loss from this kind of consolidation: output aggregates linearly

across teams regardless of whether they belong to the same firm.
3
Moreover, HQ’s

are abundant, with zero opportunity costs.
4

A fundamental classical argument (Stigler, 1950) predicts that without contract-

ing frictions, this environment delivers firms operating at their small efficient scale,

with vanishing market power. Since a stand-alone concern produces with the same

1
Examples might be a restaurant, with the building and kitchen equipment as the asset and the

chef and mâıtre d’hôtel as partners; a medical practice with the equipped office and its doctors; or
a machine tool manufacturer, with a plant and separate managers handling sales, operations, and
engineering. While team members have common goals in the form of profit, there are also conflicts
of interest and consequent incentive problems that arise from free-riding motives or disagreements
about the direction of the business.

2
We omit others imperfect remedies, such as profit sharing, for simplicity. Allowing for them

does not change the main conclusions.
3
There may of course be other gains to horizontal integration, but as in the property-rights

literature that inspires this paper (Grossman and Hart, 1986; Hart and Moore, 1990; Hart and
Holmström, 2010), these are driven by the changes in incentives and behavior that result from
changes in ownership structure.

4
Indeed, at the cost of some algebraic complexity, instead of introducing the HQs as a separate

class of players, we could let their managerial authority function be exercised by some of the team
members, with little change to our results.
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technology as would as part of a larger firm or syndicate, and can sell its output at

the same market price, it would do better to remain outside any oligopoly, selling all

the output it likes at that price, rather than subject itself to the oligopoly’s output

restrictions.
5
This generates a standard anticipatory free-riding (“hold-out”) prob-

lem: every team would prefer to remain outside the oligopoly (or insist on a buyout

price that compensates for the profit that would accrue outside the oligopoly), tak-

ing advantage of the high price without contributing to its maintenance. Individual

producers holding out in this manner would undermine any market structure other

than an already competitive one.

Compelling as this reasoning may be, it does turn on the assumption that a

production unit that stands alone can replicate whatever activity it would under-

take as part of a larger firm.
6

Contracting imperfections invalidate that premise.

They limit the commitment power of team members and HQs, restricting them to

incentive-compatible sets of output levels and payoffs. Those sets in turn depend on

their firm’s size and competitive environment. An action (e.g., expected quantity

generated by managerial effort) that is available to a large firm’s members may not

be available to a stand-alone, and vice versa.

More specifically, since HQs are interested only in monetary profit, they under-

value their subordinates’ private costs when making production decisions. In the

case of a stand-alone firm, its “small” HQ will use her authority to induce them to

over-provide effort and output. Meanwhile, a larger HQ that owns many assets has

no more commitment ability than her small counterpart, for she still fails to inter-

nalize her subordinates’ private costs. But her behavior differs, due to her market

power. By ordering her subordinates to provide lower effort and output levels than

those imposed by a small, price-taking HQ, she felicitously provides them a “quiet

life” (Hicks, 1935) as a byproduct of her pursuit of oligopoly profit.

Thus, even though stand-alone producers have exactly the same technology as the

oligopoly, and freely access the market price it sets, they may be unable to replicate

the actual choices and payoffs they would achieve as members of the oligopoly because

5
Because we assume a team is very small, its decision to remain outside the oligopoly does not

affect the market price. The case in which single teams are not negligible, wherein the decision to
remain outside the oligopoly may have some impact on the market price, although more subtle,
leads to similar conclusions that firms operate at close to minimum efficient scale, unless that scale
is already quite large, i.e., on the order of one-half the market demand at marginal cost.

6
Some analysts have considered situations where a “coalitional entrepreneur” commits to an

offer to one producer in which the payment depends on another producer’s response to its offer,
or where a pre-specified coalition-formation protocol essentially replicates this commitment. For
instance, unless everyone agrees to join a large firm, the deal is off. As we explain below, we avoid
such “multilateral” mechanisms in this paper and, indeed, do not need them for oligopoly to emerge.
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of the different incentives their HQ’s face. This removes the guarantee that they can

improve upon those payoffs.

Thus, we now have a tradeoff: Stigler’s holdout effect, which is so strong as to run

unopposed in a world where a contract for any input can be costlessly enforced, is

weakened enough when there are contracting frictions to be countervailed by Hicks’s

quiet-life effect. The first contribution of this paper is to provide a set of sufficient

conditions on demand and private and monetary cost functions for an oligopoly

to survive despite the lack of non-convexities. Contracting imperfections can be a

distinct source of market power.

Typically there will be a large set of oligopolistic market structures (each rep-

resented by a partition of the set of teams into a finite number of positive measure

subsets, which are the firms with market power, and a collection of singletons, the

price-taking competitive fringe) that provide weakly more surplus to a team than

standing alone (the “team rationality” condition), with concentration bounded both

above and below. Excessive concentration will generally result in prices so high

that producing large quantities as a stand-alone firm will be too enticing to join the

oligopoly, despite the high private cost (Stigler’s effect dominates). Insufficient con-

centration results in low prices and a not-so-quiet life inside the oligopoly, resulting

in payoffs that are dominated by shutting down production altogether.

However, not all team rational structures are viable if there is sufficient compe-

tition among HQs at the firm formation stage. Indeed, modeling that competition

via a farsighted stability concept (c.f. Ray-Vohra, 2015) pins down the predicted

outcome to one that is essentially unique in outcome (market structure, price, and

surpluses of teams). Farsighted stability captures a pseudo-dynamic process, where

starting from a putative market structure that is not a stable structure, a set of teams

may deviate and generate a new market structure while anticipating that other sets

of teams will deviate from the modified market structure, ending up at the a market

structure that is payoff dominant to every deviating coalition. It must be the case

that, along the sequence, all teams in any deviating set are better off in the stable

structure than in the market structure they deviated from. A second condition is

that there is no stable structure that is far-sightedly dominated by another stable

structure. The second condition will be trivially satisfied in our environment.

This competition among the HQ’s as captured by our stability concept will lead

to market structures that not only satisfy team rationality, but also lead to zero-

profits for HQ’s, equal payoffs for all teams, and symmetry (equal size and identical

behavior) among the large firms. Farsighted stability results in the highest per-team
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surplus structure among the market structures satisfying these conditions.

There are two value functions over the set of market structures representing the

payoffs of being in stand-alone firms and joining the oligopoly. A stable market

structure corresponds to the largest (most concentrated) intersection of these two

functions when it exists. For higher concentrations, the stand-alone value exceeds

the oligopoly value. (If there is no intersection, as will be the case for some demands,

then there are two extreme possibilities: perfect competition or monopoly).

Just as in the EEM the comparative statics of equilibrium are understood in terms

of the equation of a fixed entry cost with the oligopoly profit, the comparative static

properties of our model can be understood with the aid of these value functions. But

there are crucial differences. First, unlike the fixed cost in the EEM, the stand-alone

value is endogenous since it depends on the market price, which depends on the

degree of competition. Second, the stand-alone value cuts the oligopoly value from

below since the stand-alone value dominates at the highest concentrations. This

implies that parameter changes that increase the oligopoly payoff without altering

the stand-alone payoff (or raise it less than they raise the oligopoly payoff) will

increase concentration, opposite to how such parameters affect concentration in the

EEM.

While some comparative-static effects may be similar to those generated by the

EEM (for instance changes in a willingness-to-pay parameter in the product demand),

others may strikingly different. Specifically we find that changes in market size

(say, from an increase in the population of consumers) have essentially opposite

effects from those predicted by the EEM. In the latter, larger size leads to lower

concentration and lower markups. In our model, by contrast, increasing market size

can raise concentration and markups. To see this, recall that market size does not

affect Cournot equilibrium price whenever there are constant monetary costs and

no fringe: firms expand production to accommodate the increased demand. Thus

stand-alone value does not change with market size: its HQ is a price taker, so no

change in price implies no change in quantity produced and, therefore no change

in monetary profit or private cost. Meanwhile, there is an increase in the oligopoly

payoff near the equilibrium concentration: monetary profits increase, and because

of the strict convexity of the private cost function, there is only a slight increase in

private cost to offset that. The new equilibrium is therefore found by traveling up

the stand-alone value function, i.e., in the direction of higher concentration. Thus

increasing market size is a force for growing concentration in our model.

Policy implications of our model also differ from those of the EEM. Often the
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concern there is with excessive entry: when making their entry decisions, firms under-

value the business-stealing externality they inflict on competitors. Thus a regulator

who cannot control prices may prefer to cap the number of firms at less than the

laissez-faire outcome to economize on entry costs;
7
one who can regulate price might

prefer even less entry. By contrast, as we have already suggested, there is a range of

team-rational concentrations for which the payoff dominance of oligopoly over stand-

ing alone applies. This would give a regulator with only firm size/number as policy

instruments some space in which to operate. Rather than being content with the

laissez-faire outcome, or something more concentrated, a consumer-oriented regulator

would instead want to aim for the most competitive team-rational oligopoly. Even

one with objectives that include producer as well as consumer welfare would typi-

cally opt for something more competitive than the laissez-faire outcome. The reason,

of course, is that in both instances, equilibrium prices will be lower and quantities

higher than in the laissez-faire outcome, enhancing consumer welfare. What is per-

haps more surprising is that the outcome is more desirable than perfect competition,

even though that is viable under our assumptions. Again, the organizational nature

of firms drives this result: perfect competition entails that the industry operates

with a mix of stand-alone firms and idle units, with the price being high enough

to make these a matter of indifference to the teams. This implies that while the

teams in stand-alone firms are over-producing, a significant fraction of the teams are

operating at zero output, and consumers suffer as a consequence. Whereas the most

competitive oligopoly has all teams operating at moderately high outputs, resulting

in a lower equilibrium price. Finally, we show that this most competitive oligopolistic

outcome is likely to become more concentrated with market size, just as the laissez-

faire outcome will: with firms operating at high output, profit gains generated by

increased size will tend to be swamped by the increases in private costs, lowering the

payoff from oligopoly relative to standing alone as a self-managed team.

All of these outcomes occur, as we have said, without any fixed costs, where

the set of existing teams could, but for the contracting problems, serve the entire

market without any efficiency losses at all. The lesson for the empirical understand-

ing of trends in market structure (e.g., increasing concentration) is that changes in

technology need not be the only source. Increases in concentration could stem from

increasing market size, a result of globalization, or economic or population growth.

The model may also explain why concentration is being observed to rise in economies

7
Imposing perfect competition in such a world is not even a possibility unless entry costs are

vanishingly small, but then competition would be close to the laissez-faire outcome anyway.
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with fairly aggressive competition policies and those where such policy is laxer.

So much for what IO can learn from OE. What about the reverse? Traditionally,

the theory of the firm considers technologically complementary assets when consid-

ering the extent of firm boundaries/size of the firm, as in the study of vertical or

lateral integration (e.g., auto body factories and car assembly plants; operating sys-

tem development and device design). The limits to firm size stem from some form of

internal diseconomies. Examples include “Coasian” costs such as bureaucratic rigid-

ity or hierarchical control losses. Or in the Arrovian tradition, large organizations

may also be too diverse to be efficiently or cohesively governed. Either way, the costs

of firm formation are increasing in the firm’s size, at least after some point. Less

essentially, but just as commonly, internal diseconomies are typically independent of

the environment in which the firm is sitting.

Our model differs from these two distinct ways. First, the assets are substitutes

(or at least “independent”), yet there are still benefits to bringing them together

within firm boundaries. So there is some broadening of the scope of the theory of

ownership to include assets of this type.

Second, the limits to firm size here do not originate with internal diseconomies.

Indeed, because of the quiet-life effect, larger firms have a (private) cost advantage

over smaller ones, essentially opposite to the Arrow/Coase one. Instead, Stigler’s

holdout effect keeps firm size in check.
8

If the Hicks effect were not present, and

instead, private or other firm formation costs were globally increasing in firm size,

then just as with complete contracting, the only outcome would be perfect competi-

tion, since any producer could do strictly better by staying outside a firm, enjoying

the price set by a putative oligopoly while benefiting from lower costs.

Literature

The coalitional approach to market structure originates with the literature on coali-

tion production economies (e.g., Hildenbrand, 1968; Boehm, 1973; Ichiishi, 1977),

where the chief interest was in foundations for competitive analysis. Closer to the

issues discussed here is a literature on syndicates (Aumann, 1973; Guesnerie, 1977;

d’Aspremont et al., 1983; Legros, 1987) which analyzes when a coalition of teams

benefits from forming a monopoly, as well as the literature on coalition formation

8
In contrast to technologically driven costs of firm size, the behavioral benefits to private costs

depend on the firm’s environment. For instance, the number of firms in the market matters: for a
firm of a given size (measure of teams), having more competitors raises the private cost because of
the induced change in HQ behavior.
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with or without externalities (see for instance Bloch, 1995; Ray and Vohra, 1997;

Ray and Vohra, 2015b provide a survey of this literature). More recently, though

not aimed at the market structure question, virtually all of the formal literature on

firm boundaries (particularly those descending from Grossman and Hart, 1986 and

especially Hart and Moore, 1990) adopt some form of this approach.

Our approach to integration is in the “property rights” tradition launched by

those two papers. The model, however, is closer to property-rights models such

as that in Hart and Holmström (2010) where the party with authority makes key

production decisions, rather than bargaining over them after prior investments, as in

the classical “hold-up” versions Grossman and Hart (1986); Hart and Moore (1990).

Moreover, those decisions are assumed non-contractible rather than merely ex-ante

non-contractible. See Legros and Newman (2014) for more discussion.

Integration changes the nature of the incentive problem. Non-integrated teams

tend to under-value coordination and over-value private cost savings. If the team

relinquishes control to a third party-HQ that behaves competitively, she will favor

coordination and high effort from the team members (as in Hart and Holmström, 2010

and Legros and Newman, 2013). The modeling innovation in this paper is to allow an

HQ to integrate many teams and achieve market power, the benefits of which include

a high price for all teams and a quiet life (Hicks, 1935) for those that join. Since the

HQ has authority over the use of the assets it owns, horizontal integration provides

a mechanism by which the “cartel problem” – free riding ex-post on the high price

induced by output restrictions – is resolved. But as already discussed, this merely

transforms the cartel problem into the ex-ante holdout problem. Of course, the role

of third parties in resolving incentive problems enjoys its own literature, including

Alchian and Demsetz, 1972 and Holmstrom (1982).

As discussed, a key economic force constraining the formation of firms, limiting

their size, and driving the comparative statics results, is the “hold-out problem.”

Beside Stigler’s early contribution in IO, this idea has been expressed in several

other literatures, notably corporate finance (Grossman and Hart, 1980) where it un-

dermines takeover threats and with that, managerial discipline. As mentioned, it

is a form of free-riding, a dominant theme in the abstract theory of coalition for-

mation. As we have suggested, the “public good” (for teams) is the market price,

and contributing to it entails restricting output. The market structure context, with

large coalitions (firms) forming under the direction of HQ with imperfect commit-

ment power, naturally leads to a subsidy, in the form of a quiet life, for joining a

coalition and contributing to the public good. This is what prevents the total col-
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lapse of an oligopoly from free riding. Put another way, the oligopoly provides two

benefits: a public one (nonrival, nonexcludable), namely high market price, and an

excludable one, the quiet life, which cannot be enjoyed outside the oligopoly due to

the incomplete-contract commitment problem. As is well known from the theory of

public goods, excludability is often the key to overcoming underprovision.

In IO, the free-riding force has been noted before, not only in the cartel literature

but more saliently in the literature on the “merger paradox” (Salant et al., 1983;

Perry and Porter, 1985; Deneckere and Davidson, 1985). This literature has focused

on conditions under which a pair of unitary firms could capture enough post-merger

rents to make a single merger worthwhile and has not really been developed into a

theory of market structure.

There has been active research on the role of competition on the provision of

incentives in principal-agent models (starting with Hart, 1983, see also Martin, 1993;

Raith, 2003; Vives, 2008; Legros and Newman, 2014 provide a survey of this litera-

ture.) There, the boundaries of firms, as well as their market behavior (e.g., Cournot

or competition), are unchanged when the market structure (in particular, the num-

ber of firms or demand) conditions change. By contrast, firm boundaries and market

behavior are jointly determined with the market structure in the present paper.

In oligopoly theory, firms are assumed to have market power, and market struc-

tures are obtained by assuming a fixed cost of entry. The higher the fixed cost,

the higher the concentration in the industry. An exception is the theory of market

structure with endogenous sunk costs (Sutton, 1991), in which firms invest and cre-

ate an industry-wide externality: when the number of firms increases, incentives to

invest decrease, and this reduces the benefit of entry. For some demand functions,

there exist equilibria in which a finite number of firms enter, even if the fixed cost is

close to zero. Although achieved by a very different mechanism, this resembles the

upper bound on the number of powerful firms in our model. However, unlike our

model, it provides no lower bound to the degree of competition. Other exceptions

are competition among firms taking the form of an initial investment in R&D, or cost

reduction, followed by Bertrand or Cournot competition (see the survey in (Vives,

2008)). For some demand systems, the number of varieties may decrease with mar-

ket size because the investment incentives decrease and as a result firms face a more

competitive environment. In models with heterogeneous firms, changes in market

size ambiguously affect the number and scale of firms that select for export (Melitz

and Ottaviano, 2008).

In general, whether there is a fixed cost of entry or an industry-wide externality
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that limits the benefits of entry, higher demand – specifically in the form of greater

market size – will lead to more entry and lower concentration in the industry. The

contrast with our result is striking. In our model, when size increases, the hold-out

constraint is relaxed: the payoff from being in the fringe is largely independent of

size, while oligopoly payoffs rise quickly with size, giving it a comparative advantage

and allowing for increased concentration.

A growing empirical literature is documenting a decades-long trend of increased

market concentration across a wide variety of industries, countries, and regulatory

regimes (e.g., De Loecker et al., 2020; De Loecker and Eeckhout, 2018; Autor et al.,

2020). So far, when accounting for causes, researchers have emphasized supply-side

factors: technological changes that increase entry costs or efficient scales in all of

these contexts. Our model suggests there could also be a role for the demand side:

increases in market size that comes with growth or globalization.

2 Model

Our model proceeds in two stages. First, partitioning the teams into one or more

firms is accomplished in an asset market, where all HQ’s compete to purchase teams

by making offers to buy their assets, and each team decides which offer to accept. Sec-

ond, those HQ’s that own teams after the asset market closes compete à la Cournot

with the other HQ’s in the product market. In equilibrium, all asset market partic-

ipants correctly anticipate this second stage’s outcome when making their offer and

acceptance decisions.

Demand. The inverse demand is a decreasing, differentiable, log-concave function

of total output. We will index the market size by the demand shifter S. Hence if

industry output is Q, the inverse demand is P (Q;S) = P (Q

S
; 1).

Production units are identical teams, indexed by t on the interval [0, 1] equipped
with the Lebesgue measure. Each team has a unit production capacity and can

produce as a stand-alone firm or (horizontally) integrate with other teams. There is

no other cost of production.
9

For a team to be productive, it needs to give control to an HQ; there is a large

measure of potential, and identical, HQs. HQs have authority on teams and can

9
We can also allow for positive monetary input costs of the form cx(t) per team where x(t) ≤ 1

is team t’s output. We normalize c = 0 for now.



11

impose a decision x ∈ [0, 1] on the team: this will generate an (expected) output

of x but also a private cost for the team of ϕ(x), an increasing and strictly convex

function of x.

Teams care not only about their monetary revenue but also their private cost. By

contrast, HQs care only about their monetary revenue, internalizing the private cost

of their teams only lexicographically: if there are several distinct xi(t) that generate
the same monetary profit, the HQ will choose one that minimizes the aggregate

private costs of the teams she owns; (with identical teams and strictly convex ϕ(⋅)
this entails setting xi(t) equal to a constant).

Basic team building block. A simple example of team production that borrows

freely from Legros and Newman (2013) will be useful for the reader to keep in mind.

Production is overseen by a team of two symmetric “managers” who jointly own

an indivisible asset (possible interpretations already offered in the introduction –

the generalization to more than two, or even to one if output is non-contractible, is

straightforward). With probability min{a1 + a2, 1}, production succeeds, generating

a unit of output with value P ; otherwise it fails, yielding 0. Here (a1, a2) ∈ [0, 1]2

represent non-contractible “efforts” that incur strictly convex and increasing private

costs ψ(ai), with ψ(0) = 0. Manager j’s payoff is yj −ψ(aj), where yj ≥ 0 is income

satisfying a limited liability constraint.
10

Given the symmetry of the technology and costs, efficient production (maximizing

the joint payoff) requires setting a1 = a2, with aj = min{ψ′−1(P ), 1}. Since this

cannot be generally be achieved within our contracting environment, the team makes

use of a profit-oriented HQ with preference yH : they sell their asset to her, and she

subsequently exercises the authority thereby aquired to choose (a1, a2) for them.As

there is a continuum of (a1, a2) pairs that generate a given profit, we assume the HQ

opts for the one that minimizes her subordinates’ aggregate private cost. This too

entails a1 = a2 because of the convexity of ψ(⋅).11

Since we will only be interested in effort allocations that are symmetric between

the managers, define e = a1 + a2. Then expected output x = min{e, 1} and its

private cost is ϕ(e) = 2ψ( e

2
). For the remainder of the paper we take e, ϕ()̇ and

10
Putting b1 ≡ 1 − a1 transforms the teams’s joint payoff into P min{1 − ∣b1 − a2∣, 1} − ψ(1 −

b1)−ψ(a2), facilitating an interpretation of the inputs as choices of standards, working conditions,
or projects over which the managers disagree, but which only need “coordination” (small distance
between a2 and b1) for successful production. As our earlier examples may suggest, this is often
our preferred interpretation.

11
Profit sharing between the two managers who do without an HQ, which as a simplification we

have already ruled out, would also require equal sharing and consequently a1 = a2.



12

output/revenue to be the primitives of team production.

As we have said, HQ cannot commit to a choice of e (therefore x) via contract.

To ensure compliance by HQ’s subordinates, the ownership contract may specify all

or part of the asset payment be withheld until the end of the production period.
12

Finally, an HQ that owns many teams will make the same effort choice for each man-

ager, both within and across her teams, a consequence of her lexicographic preference

first for profit, then for private cost minimization.

A market structure is a partition of [0, 1]. If all partition elements have zero

measure, the market structure is competitive. If there are n elements with posi-

tive measures, the structure is oligopolistic with n oligopolistic firms. We will be

concerned by the emergence of oligopolistic market structures that are not outcome

equivalent to competition, in which firms with positive measures produce less per

active team than under competition. We call such firms “powerful.” Hence, rel-

evant market structure have n powerful firms Ei, i = 1,⋯, n, each with measure

mi ∶= µ(Ei), and a fringe E0. The maximum measure of E0 is 1 − ∑n

i=1mi. A

market structure is denoted ω = (E0, E1,⋯, En), with the understanding that E0 is

the competitive fringe.

The timing of events is the following:

0. (Teams enter the market)

1. Firm formation in asset market: HQs make offers to buy assets; teams respond.

HQs obtain authority to choose quantities to be produced.

2a. HQs compete in the product market. HQs of stand-alone teams produce as

price-takers, while HQs of oligopolistic firms behave in a Cournot fashion.

2b. HQs impose production decisions to implement desired quantities.

2c. The private costs are borne, output is realized, profits accrue to HQ’s and asset

prices are paid off.

12
We assume the private costs are not incurred until after HQ makes her choices; any attempt by

the managers to limit HQ’s choices by exiting the relationship would only result in forfeiture of the
payment without avoiding the (sunk) costs. Alternatively, the capacity constraint could be viewed
as the maximum value of e that HQ could impose before inducing the subordinates to exit.
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Offers and production decisions. Firm formation in the first period is orches-

trated only by the same players who will eventually be operating the firms in the

second period, i.e., HQs and teams. We restrict HQ’s offers for the assets she wishes

to purchase to be bilateral, in the sense that the offer to one team cannot depend on

the responses by other teams to their own offers. This seems to us appropriate for

modeling a competitive market for assets; offers that are conditioned on other teams’

responses require more commitment than seems plausible in such an environment,

where renegotiation among teams that have accepted offers (possibly facilitated by

competition from other HQs) when a deal falls through would be difficult to forestall.

An offer by an HQ i is a pair αi = (ai, xi). The measurable map ai ∶ Ei → R+

is contractible, and ai(t) is the uncontingent payment to team t for belonging to

firm Ei.
13

xi(t) is the intensity with which team t will be asked to work and the

measurable map xi ∶ Ei → [0, 1] may be non-contractible. If xi is not contractible,

teams will believe the offer only if it is incentive compatible for the HQ (i.e., consistent

with the HQ’s Cournot behavior in the second period, given the market structure

implied by the complete profile of offers being accepted). A configuration c is a pair

(ω, α). Offers in a configuration are credible if three basic conditions hold: (i) the HQ

makes a non-negative profit, (ii) if the offers are optimal for the HQ, and (iii) if the

surpluses teams earn are weakly greater than the maximum surplus that a team can

achieve in a stand-alone firm. This last condition is dubbed “Team Rationality.” In

fact, since a team could opt for being inactive, thereby earning zero, we also impose

a fourth condition on credible offers namely they must generate (iv) non-negative

surplus. Configurations in which all offers are credible are admissible. The set of

admissible configurations is denoted by A.

2.1 The Concept of Stability

As in economies with widespread externalities (e.g., markets with adverse selection or

platform competition), deviators must form beliefs about the resulting configuration

that their deviation may generate, especially when the reorganization of the economy

requires coordination among individuals. Indeed, many market structures can be

realized when a deviation exists in our setting. For instance, if initially the market

structure is (E0 = [0, 1/3);E1 = [1/3, 2/3);E2 = [2/3, 1]) a deviation by a set

D = [1/2, 1] could lead to a monopoly structure (E
′
0 = [0, 1/2);D) or a duopoly

structure (E
′
0 = ∅, E ′

1 = [0, 1/2), D). However, each of these new configurations may

13
We can think of the payment as being made at the end of the production period so that the

team is not tempted to flee the scene because it doesn’t like the private costs its HQ imposes.
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be subject to further deviations.

We adopt a concept of farsighted stability in the spirit of that developed in

Ray and Vohra (2015a) for an environment without externalities across coalitions.
14

Starting from an admissible configuration c, if a set D deviates, the market structure

may change, either because D contains teams from different initial powerful firms

whose sizes decrease or because teams in D decide to join the fringe, in which case

the size of the oligopoly decreases. This change in market structure will typically

affect the credibility of the initial offers; further deviations can then be triggered.

Suppose this process of deviations converges to a configuration c
′
that is admissible.

In that case, we say that c is (farsightedly) dominated by c
′
if given the configuration

at which there is a deviation, all teams in the deviating sets are better off in c
′
than

in the configuration they deviated from.

Formally, consider a configuration c ∈ A. Another admissible configuration c
′
∈

A dominates c, denoted c
′
≻ c, if there exists a sequence of configurations in C (not

necessarily admissible) {c0, c1, . . . , cℓ . . . , cL} with c0 = c, cL = c
′
, such that cℓ is

obtained from cℓ−1 by the deviation of a set Dℓ, and for each ℓ = 1, . . . , L, and each

t ∈ Dℓ, u(t, c′) > u(t, cℓ−1). For a set, Σ ⊆ A, the set of admissible configurations that

are dominated by some element of Σ is denoted dom(Σ) = {c ∈ C ∶ ∃c′ ∈ Σ, c
′
≻ c}.

Then, a stable set is such that Σ = C − dom(Σ).15

Complete Contracting — The TR Constraint yields Competition. Sup-

pose that within each firm, the effort map xi(t) is contractible. If the profile of

accepted offers were to lead to a powerful oligopoly sustaining price p, a team t̂

that had been offered (ai(t̂), xi(t̂)) to participate in powerful firm i could instead

contract with a stand-alone HQ to produce xi(t̂). Together they would obtain the

oligopoly payoff πO = pxi(t̂)−ϕ(xi(t̂)). Any other contracted choice of xmade by the

stand-alone would leave p unaffected. So t̂ could contract on the choice x
∗(p) that

maximizes px − ϕ(x), generating a surplus that almost surely strictly exceeds πO.
16

This violates admissibility, unless the “oligopoly” already replicates the competitive

outcome x
∗(p).

We now turn to the case of incomplete contracting on efforts. There, the set A
14
See their discussion on the drawbacks of myopic stability concepts like Von Neumann and

Morgenstern (2007), Harsanyi (1974).
15
Note the final requirement both rules out the possibility of two elements of the stable set

dominating each other (which could lead to cycles), often called “internal stabiluty” in the literature,
and that elements of the stable set are not dominated by elements outside of it (external stability).

16
It is enough that P (⋅) is strictly decreasing and ϕ(⋅) strictly convex; then x

∗(p) ≠ xi(t̂), and
therefore px

∗(p) − ϕ(x∗(p)) > πO.
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is large, and contains many oligopolistic structures, but as we will show, the stable

set has a simple characterization and is essentially unique.

3 Incomplete contracting

When HQs cannot commit to their decisions xi(t), teams anticipate that their HQs

will maximize the monetary profit, ignoring the private costs of the teams in the firm.

Let the Cournot quantity per powerful firm be qi(c), and the industry price be p(c).
The HQs of teams in the fringe take this price as given and will therefore impose a

maximum effort on their teams: argmaxx p(c)x = 1. The HQ of a powerful firm will

choose an output level qi(c) that maximizes the residual profit of the firm and will

choose efforts to produce ∫
t∈Ei

xi(t)dt = qi(c). While this HQ is indifferent among

all intensities that satisfy the output constraint, teams are not. As noted above, we

assume the HQs will choose intensities to minimize the aggregate private costs of the

teams it owns (a “minimum blowback” assumption). By (strict) convexity of ϕ(x),
all teams will exert the same effort in a powerful firm. In addition, the HQ of each

powerful firm must make non-negative profits. It follows that offers (ω, α) in the set

A satisfy:

(i) Non-negative payoff to HQ: a0(t) ≤ p(c) and ∀i ≥ 1, ∫
t∈Ei

ai(t) ≤ p(c)qi(c)

(ii) Best response effort: ∀i, ∀t ∈ E0, xi(t) = xi, where x0 = 1, and ∀i ≥ 1,

mIxi = q(c).

(iii) Team-Rationality: ∀i,∀t ∈ Ei, ai(t) − ϕ(xi) ≥ p − ϕ(1).

(iv) Non-negative surplus: ∀t, u(t, c) ≥ 0

We denote the set of admissible configurations by A.

3.1 Characterization of Stable Configurations

In our environment, we can show that the stable set exists and is essentially unique.

To focus on the economic and regulatory implications of the model, we postpone the

complete proof of this result to the Appendix.

.

It is convenient to introduce the set Σ0 of configurations in A that satisfies the

following conditions.

- Zero profit for HQs: for each Ei, ∫t∈Ei
ai(t) = q(c)p(c).
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- Non-Negative Surpluses: for each i and each t ∈ Ei, ai(t) − ϕ(xi(t)) ≥ 0.

- Equal Treatment: for all t, u(t, c) = u(t′, c)

- Symmetry, i.e., equal Size of powerful firms: for each i = 1, . . . , n, mi =
1−m0

n
.

The credible offers in such configurations are fully determined by the number

n of powerful firms, the size m of the oligopoly, and the measure f of productive

teams in the fringe.
17

Indeed, by symmetry, qi(c) = q(c) for all i ≥ 1, and the

payment is equal to a = p(c)nq(c)
m

in powerful firms and to a0 = p(c) in the fringe.

The Cournot quantity for each powerful firm is q(c), and the equilibrium price is

p(c) = P (nq(c)+ f) are functions of (n,m, f). Note that all teams in the oligopoly

have the same surplus.

U(c) ∶= p(c)nq(c)m − ϕ (nq(c)m ) .

Proposition 1. The stable set exists and is Σ
∗ ∶= argmaxc∈Σ0

U(c). At stable

configurations with powerful firms, all teams, including any in the fringe, produce,

and the team rationality condition binds whenever the measure of teams in the fringe

is positive.

The proof of this result is postponed to the Appendix. Starting from the com-

petitive structure, it is easy to improve the surplus of each team by having powerful

firms form sequentially until we obtain a market structure and corresponding offers

in Σ
∗
. All teams that deviate are better off in the final configuration than in the

configuration they deviate from. Starting from another configuration c that is not

in Σ
∗
, it is necessary to exhibit a process in which a sequence of deviations attains

Σ
∗
. A first step in this direction is to show that every configuration that does not

satisfy one of the conditions for Σ0 is dominated by a configuration satisfying that

condition. For the zero profit condition, this is immediate: if it is violated in a firm,

another HQ can offer a greater surplus to the teams. The arguments for symmetry

and equal treatment use the convexity of the private costs.

This characterization allows us to perform comparative statics on the stable set

configurations. The stylized example below assumes that the number of firms is a

continuous variable, which allows a simple way to highlight the positive covariation

of market size and the degree of industry concentration.

17
It is a priori possible that some units in the fringe do not produce.
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Example 1. We assume that n is a continuous variable and that there is no fringe.

It is an admittedly strong assumption but useful to develop our intuition. There is a

unit measure of the teams that can be part of an oligopoly with n symmetric firms.

The inverse demand is linear: P (Q;S) = A −Q/S, where is S is market size. The

private cost quadratic: ϕ(x) = ϕx
2
. The HQ of a powerful enterprise Ei chooses a

total production qi to maximize P (∑n

j=1 qj;S)qi, resulting in a Cournot equilibrium

q(n, S) = AS

n+1
and a market price P (nq(n, S));S) = A

n+1
.

For the oligopoly to be effective, output per team ASn

n+1
must be less than the capacity

1, else it just replicates the competitive outcome. Under zero payoffs for HQ, the

expected payoffs of a team in a firm are for each i = 1, . . . , n,

ui(n, S) ∶=
A

2
nS

(n + 1)2
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

monetary profit

−ϕ ⋅ ( AnS
n + 1

)
2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
private cost

,

which is non-negative when

n ≤ n(S) ∶= 1

Sϕ
. (1)

Thus, if

(A − ϕ)S < 1, (2)

the oligopoly is effective whenever it delivers positive surplus. A stand-alone team

would obtain an expected payoff of

u0(n) = max (0, A

n + 1
− ϕ) .

Note that oligopoly surplus is a decreasing function of n, and the team rationality con-

dition can be written A

1+n
≤ ϕ(1+ ASn

n+1
). Hence, if the team rationality condition does

not bind, n can be decreased, raising the oligopoly payoff. The surplus maximizing

configuration binds the team rationality constraint, and ∀i ≥ 1, ui(n, S) = u0(n, S).
Therefore the size of the stable oligopoly is

n(S) = A − ϕ

ϕ(1 + AS) . (3)

It is immediate that n(S) < n(S). Moreover, it is enough that

(A − 2ϕ)S < 1 (4)

for the oligopoly to be effective at n(S), which of course is weaker than (2).
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For values of S larger than that satisfying (4), equilibrium market structures

replicate the competitive outcome. We shall have more to say about this below.

The comparative statics of this surplus maximizing market structure and the

equilibrium price with respect to market size are illustrated in Figure 1b. Observe
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Figure 1: Stable market structures and equilibrium price

that n(S) is a decreasing function of S in the effective oligopoly region: as market

size increases, concentration increases. This result is opposite to the usual effect

of the market size in competition or oligopoly settings and reflects the Quiet Life

induced by firms exerting market power.
18

In this example, we treat n as a continuous variable with no fringe firms. For this

reason, when there is an oligopoly of a given size, the equilibrium price, and therefore

the surplus of a stand-alone team, is not sensitive to market size. By contrast, the

surplus of a team in a powerful firm is responsive to a change in market size because

the effort intensity varies with S. One can show that with local increases in S, the

surplus function uo(n, S) increases for n < n0(S) and decreases for n > n0(S), where
n(S) < n0(S) ≡ 1

2ϕS
< n(S), whenever (4) holds, implying that n(S) must decrease,

as is evident from (3).
19

Notice that this “rotation” of the oligopoly value about n0

implies that n(S) is also decreasing. Thus, the set of team-rational, non-negative

surplus oligopoly structures represented by the interval [n(S), n(S)] decreases.

For the continuous n case, the negative relationship between market size and n

can be generalized to log-concave demand functions and strictly convex private costs.

18
On the other hand, some comparative statics of this model – notably, changes in the demand

parameter A – closely resemble their EEM counterparts. We do not emphasize them here.
19
Monetary profits for oligopoly teams increase with S; because ϕ(⋅) is convex, this comes at little

additional private cost when production is low, i.e., where n is small, so team surplus increases.
But where n is large, so is output per team, and expanding output further raises the private cost
more than it increases profit, reducing the surplus.
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Indeed, a configuration in Σ
∗
has a number n

∗(S) of oligopolistic firms (correspond-

ing to n(S) in the example above), a Cournot outcome in which each team produces

x
∗(n∗(S), S), equal to the total industry output:

P
′ (x∗(n∗(S), S);S)x∗(n∗(S), S) + n

∗(S)P (x∗(n∗(S), S);S) = 0 (5)

The stable market structure n
∗(S) solves the program

max
n
P (x(n, S);S)x(n, S) − ϕ(x(n, S))

P (x(n, S);S) ≤ Gϕ(x(n, S)) ∶=
ϕ(1) − ϕ(x(n, S))

1 − x(n, S) . (6)

where (6) is the team rationality condition, taking account of zero profits for HQ’s.

For log-concave demand functions, x(n, S) is increasing in n and S; the objective is

decreasing in n, as in the example ((P ′(x(n, S))x(n, S)+P (x(n, s)−ϕ′(x(n, S))xn(n, s)) <
(P ′(x(n, s))x(n, s) + nP (x(n, s)))xn(n, S) = 0 for the (unique) solution x(n, S) to

the Cournot equilbrium condition.) By convexity of ϕ(⋅), the function Gϕ(x) is an

increasing function of x. Hence, the optimum is obtained at the value n
∗(S) that

binds the constraint (6). We also need the effective oligopoly condition

x(n, S) < 1

to be satisfied (indeed, Gϕ(1) is not well-defined), which is dependent only on proper-

ties of the demand (and if relevant, monetary cost) functions, and not on the private

cost function ϕ(⋅).
Now, as S increases slightly to S

′
, x(n, S ′) > x(n, S), and therefore P (x(n(S), S ′);S ′) <

Gϕ(x(n(S), S ′)), and to bind the TR constraint it is necessary to decrease n.

Remark 1. Strict convexity of ϕ(⋅) is needed for the existence of an effective oligopoly.

Indeed, TR and non-negative surplus together require
ϕ(x)
x

≤ P ≤ G(x). Then if ϕ(⋅)
is linear (= ϕx), then we must have

ϕ(x)
x = Gϕ(x) = ϕ,

and therefore P = ϕ, the competitive outcome.

Remark 2. Suppose then that ϕ(⋅) is strictly convex. Then if there is an effective

oligopoly for ϕ(⋅), that is, there is n̂ such that
ϕ(x(n̂,S))
x(n̂,S) ≤ P (n̂, S) ≤ G(x(n̂, S)),

with x(n̂, S) < 1, then n̂ is also an effective oligopoly for any strict convexification
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ψ(⋅) of ϕ(⋅).20 Moreover if the private cost function increases from ϕ to λϕ for some

λ > 1, if there is an effective oligopoly n̂ for ϕ, there is an effective oligopoly n̂
′
≤ n̂

for λϕ.
21

In short, higher and more convex private costs lead to more concentration.

4 Extensions

We use the continuous-n model to analyze various extensions.

4.1 Regulation

Absent regulation, the stable configuration is n
∗(S) when the TR constraint binds.

But because the market price is a decreasing function of n, a regulator who puts

weight only on consumer surplus may want to prevent the formation of oligopolies

with less than n firms. Would this regulator prefer to prevent any oligopoly? The

answer is no whenever demand at the competitive price is less than the aggregate

industry capacity i.e., P (1/S) < ϕ(1)
Consider the (unconstrained) oligopoly output Q(n, S). This output is an in-

creasing function of n, and there exists n0(S) such that the capacity constraint

Q(n, S) ≤ 1 is binding if, and only if, n exceeds n0(S).
Suppose that a positive measure of teams does not produce under competition.

Hence, the competitive price is equal to ϕ(1), and there is a proportion α of teams

producing under competition, where α solves,

P (α;S) = ϕ(1).

The team surplus

u(n, S) ∶= P (Q(n, S);S)Q(n, S) − ϕ(Q(n, S)),

is decreasing in n, and there exists a unique n(S) such that u(n, S) = 0.

We claim that the surplus is zero at an oligopoly size smaller than the size at

which the capacity constraint binds, that is n(S) < n0(S). The capacity constraint

20
ψ ∶ [0, 1] → [0, c] ⊂ R is a strict convexification of ϕ if ψ(0) = ϕ(0) = 0, ψ(1) = ϕ(1) = c,

and there exists a strictly convex function v ∶ [0, c] → [0, c] such that ψ ≡ v ◦ ϕ, where all three
functions are increasing. The result follows from the fact that v(y) < y on (0, α) and therefore
ψ(x)/x < ϕ(x)/x and Gψ(x) > Gϕ(x) on (0, 1).

21
Both

λϕ(x)
x

and Gλϕ(x) are increasing in λ, but the latter increases faster, so the effective
oligopoly price that binds TR and generates positive surplus for ϕ can be increased (and n lowered)
to satisfy TR and non-negative surplus for λϕ.
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is satisfied at n(S). (Otherwise, the oligopoly output at n(S) equals 1, but the

surplus is negative.)

Now, because the capacity constraint is not binding at n(S), we have

P (Q(n(S), S);S) = ϕ(Q(n(S), S))
Q(n(S), S)

< ϕ(1)
= P (α;S) .

and therefore, the oligopoly price at n(S) is strictly less than the price under com-

petition.

If, under competition, all teams produce and have a positive surplus, then any

oligopoly in which the capacity constraint is satisfied will lead to an industry price

not smaller than the price P (1;S) under competition. Hence, the surplus of teams

is positive. In this case, the maximum size of an oligopoly in Σ0 is achieved at n0(S)
when the capacity constraint binds. In this case, the regulator is indifferent between

oligopoly with sizes greater than n0(S) and competition.

Because the competitive price when all firms produce is an increasing function

of S, there exists a unique S0 such that all teams produce under competition if, and

only if, the market size is smaller than S0. In this case, a regulator will strictly prefer

an oligopoly to competition.

Finally, a regulator whose objective is to maximize consumer+producer welfare

can also find an optimal oligopolistic market structure. To see this, note that the mar-

ket structure n that achieves zero surplus for teams has P (n) =
ϕ(x(n))
x(n) < ϕ

′(x(n)),
while the team surplus maximizer n

∗
has P (n∗) = G(x(n∗)) > ϕ

′(x(n∗)). Thus by
continuity, there is an (unique, by monotonicity of P (⋅)) oligopoly nFB ∈ [n∗

, n]
satisfying the first-best condition P = ϕ

′(x(nFB)).22

4.2 Entry

Unregulated oligopolies generate prices exceeding the competitive one. Moreover,

indefinite increases in market size, given a fixed set of teams, eventually result in

competitive-equivalent outcomes, though those will also prices that exceed the (pri-

22
In fact, nFB is the “rotation” point n0 for team oligopoly surplus V = P ( x

S
)x − ϕ(x) referred

to above: VS = P
′ x
S
[xS − x

S
] + (P − ϕ

′)xS = 0 ⟺ P = ϕ
′
. The equivalence follows from the

well-known unit size elasticity property (xS =
x
S
) of Cournot output under constant marginal costs,

obtained by differentiating the Cournot equilibrium condition (5) with respect to S and exploiting
log-concavity of P (⋅).
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vate) cost of production. In either case, teams earn rents, inviting entry. Here we

consider the effects of entry by new teams into the industry.

Consider an extension of the continuous-n, linear demand Example 1. Denote by

T the measure of teams in the industry, which will enter at stage 0, before the asset

market opens. Each team incurs entry cost E(T ) ≥ 0, where the notation allows for

the possibility that the cost may depend on how many teams enter the market (e.g.,

the cost of medical education is likely to be increasing in the number of aspiring

doctors).

At the product market Stage 2, potential supply is now T rather than 1, but the

analysis proceeds straightforwardly as before. Though the quantity produced each

of n firms in an oligopoly is independent of T , not so the team level intensity x which

is now

xo =
AnS/T
n + 1

(this is obtained by noting it is now T/n teams producing the oligopoly quantity

q = AnS/(n + 1)).
In the asset market Stage 1, the (binding) TR constraint P = G(x) now implies

n(S/T ) = A − ϕ

ϕ(1 + AS/T ,

with corresponding price

P =
ϕ(1 + AR)
1 + ϕR

At this value of n, the effective oligopoly condition xo < 1 is satisfied as long as

(A − 2ϕ)S/T < 1. (7)

Since TR binds, the equilibrium equilibrium oligopoly surplus will equal the fringe

payoff P −ϕ =
ϕ(A−ϕ)S/T
1+ϕS/T , and in equilibrium of the overall game with entry we must

have

P − ϕ = E(T ).

It is straightforward to check that this equilibrium fringe payoff is increasing in

S/T, so when S increases

• If E(T ) ≡ E, T will increase proportionally, leaving market structure n(S/T )
and price unchanged;

• If E(T ) is increasing, concentration n(S/T ), P, and entry cost all increase.
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The first case is already a departure from EEM, which would predict falling concen-

tration and prices with rising size. The second implies that population growth, or

other sources of increasing market size such as trade agreements, could be a driver

not only of increasing concentration and prices or markups, but also of entry costs.

Note that the interpretation of entry costs here may be somewhat different from

the ones usually invoked in applications of the EEM: here it is “small,” incurred

at the team level, like an education, medical office, or small plant, while in tradi-

tional oligopoly theory it is typically “large” compared to the size of the market, like

building a giant assembly plant, or developing new technologies or markets.

Finally, if E(T ) < ϕ for all finite T , then the free entry condition PO − ϕ =

ϕ(A−ϕ)S/T
1+ϕS/T = E(T ) implies (A−2ϕ)S/T < 1. In other words, if the entry cost is not too

large over its entire domain, the equilibrium outcome is always an effective oligopoly,

never competition, and the increasing concentration effect of growing markets, rather

than being confined to a bounded range of market sizes as illustrated in Figure 1,

pertains to arbitrary S.
23

4.3 Contractibility and Concentration

TBA

5 Discreteness and the Endogenous Competitive

Fringe

While the model with continuous n and no fringe provides the basic intuitions for

our results, there are some subtle differences from the “real” model in which n is

discrete. In particular, the coexistence of the oligopoly and a competitive fringe is a

generic outcome, and the comparative statics of market size are marked alternately

by stasis, jumps and slow adjustments.

Let (N,m) be a market structure, with N ∈ N+ representing the number of

oligopoly firms and m ∈ [0, 1] the measure of teams they comprise. There is no loss

in restricting attention to configurations in which all teams in the fringe produce (see

the Appendix.) It is convenient to generalize our basic environment to this case.

23
If teams anticipated competitive behavior post-entry, then equilibrium would entail that the

competitive price Pc = A− T/S = ϕ+E(T ) < 2ϕ, so that (A− 2ϕ)S/T < 1. But then by (7), after
entry, the teams would form an effective oligopoly with Po > ϕ + E(T ), a contradiction.
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5.1 The Example with a Fringe

Straightforward computations imply that (ignoring the capacity condition for the

moment) the per-firm output is

q(N,m) = AS − (1 −m)
N + 1

, (8)

and the per-team effort in an oligopoly firm is

x(N,m) = N

N + 1

AS − (1 −m)
m

Total industry output and industry price are

Q(N,m) = NAS + (1 −m)
N + 1

; p(N,m) = AS − (1 −m)
S(N + 1) .

The capacity condition x < 1 requires that

m

N
> AS − 1. (9)

The surplus of teams in the oligopoly equals px − ϕx
2
which must not be smaller

than the surplus of fringe teams p−ϕ.As before, stability requires the TR constraint

to be satisfied:

p(N,m) ≤ ϕ(1 + x(N,m)), (10)

with equality whenever m is less than one. There are two basic qualitative results of

our model that this example will illustrate.

(a) A market structure with powerful firms exists if the market size S is not too

large relative to the measure of teams.

(b) If (N,m) is a stable market structure with powerful firms, then as the market

size increases slightly, the ratio N/m decreases at the new stable structure.

Stable Structures For each value of S consistent with an oligopoly with pow-

erful enterprises, there exists a unique value of N maximizing U(N,S). Figure 2

summarizes the evolution of the stable market structures, the associated price, sur-

plus, and efforts as the market size S varies. The stability condition generates a

discontinuity in the price when there is an oligopoly, mirroring the discontinuity

in the size of the fringe, but the price is monotonically non-decreasing in market
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size. However, it is more illuminating to compare directly with the competitive price

pc(S) ∶= max (ϕ(1), A − 1

S
), since that too is non-decreasing in size. In the spirit

of the Lerner index that contrasts the oligopoly price and the competitive price, a

proxy for market power is the ratio
pO(S)−pc(S)

pc(S)
. It is clear from Figure 2b that this

index is increasing with S as long as the surplus of teams under competition is equal

to zero (that is when pcomp(S) = ϕ(1)) and is then decreasing as the industry hits

capacity.

Comparison with the continuous-n model. Because of the binding TR condi-

tion, there is little reason to expect that a model with a continuous n approximates

the discrete model perfectly. If there is no fringe in the discrete model and if n
∗(S) is

an integer, it should be clear that n
∗(S) = N(S). However, as a fringe is possible, a

better proxy for the degree of competition in the oligopoly is the ratio N

m
. As the scale

of the monopoly decreases, there is more “external” competition to the oligopoly;

because fringe firms produce at capacity, the effect is different than in the contin-

uous model. Indeed, as n varies in the oligopoly, there is no external competition,

implying that even if n =
N

m
, there is a lower output in the continuous specification

than in the discrete model. This implies that the price in the continuous model is

above the price in the discrete model for any value of S. Intuitively, by ignoring the

possibility of a fringe, the continuum model puts emphasis on the first order effect

on surplus due to the change in the number of oligopolistic enterprises in response to

a change in market size. By contrast, in the discrete model, a change in the size of

the fringe, keeping the number of powerful firms the same, creates only second-order

effects.



26

n*(S)

N(S)/M(S)

1.0514
S

12

power

(a) Indexes of market structure

continuum Discrete

0.5 0.6 0.7 0.8 0.9 1.0 1.1
S

12

14

16

18

price

(b) Prices

Figure 3: Continuous (dashed curve) versus Discrete models

5.2 Comparative Statics

In the continuum model, there is an unambiguous relationship between the market

size and the power of the stable oligopoly (as S increases, n decreases). This is not

the case in the model with a fringe, but the result continues to hold under additional

conditions.

Proposition 2. Consider an infinitesimal change in market size from S to S
′
> S.

(i) If there is an oligopoly (N, 1) in the stable set when the market size is S, then

as the market size increases, either there is no change in market structure, or

the number of firms and the scale of oligopoly decrease.

(ii) If there is an oligopoly with a fringe (N,m) (m < 1) in the stable set when

the market size is S
′
, the scale of the oligopoly increases when the difference

u(N,m, S) − u0(N,m, S) is locally increasing in S.

(iii) The equilibrium price is non-decreasing in S. The margin of the oligopoly price

above the competitive price increases in S whenever the surplus of teams under

competition is equal to zero.

The argument for (ii) follows the fact that when there is a fringe, the surplus

of teams increases in the scale of the oligopoly. Hence, if there is a fringe, and the

teams are not at capacity, it must be the case that the TR constraint binds. But

then, if for the same market structure, the TR constraint strictly holds for S
′
> S, it

is possible to decrease the fringe, hence increasing the size of the oligopoly, without

violating the TR constraint.

In the example, condition (ii) is satisfied. The next result provides a sufficient

condition for this to happen. If x is the per-team effort in the oligopoly, the condition
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can be restated as the difference

G (x) − P (mx + (1 −m)k;S)

being locally increasing in S (see the Appendix). For a quadratic private cost ϕ(x) =
ϕ ⋅ x2, we have G

′(x) = ϕ; and for linear demand P (Q) = A − Q

S
, equilibrium

P =
A− 1−m

S

N+1
and x =

N(AS−1+m)
(N+1)m , so the condition can be restated as

ϕ
NA

(N + 1)m −
1 −m

(N + 1)S2
> 0,

which is satisfied whenever

ϕANS
2
> m(1 −m).

As the right side is bounded above by 1/4, we have

Corollary 1. In the quadratic private cost, linear demand example, the scale of the

oligopoly increases with market size whenever 4ϕAS
2
> 1.

Thus, if the private cost parameter ϕ is large enough relative to the standard IO

fundamentals A and S, not only are oligopolies stable, but they respond to growth

in market size by moving toward greater concentration.
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A Appendix

Here we provide proofs of the main propositions. We denote the capacity by k; in

the text we have k = 1.

A.1 Proof of Proposition 1

Consider the set Σ0 ⊆ A of configurations satisfying Zero Profit (ZP), Equal Treat-

ment (ET), and Symmetry (Sym). Such configurations can be summarized by the

triple (N,m, f) where N is the number of powerful enterprises, m is the size of the

oligopoly, and f is the measure of productive teams in the fringe. The Cournot

equilibrium quantity per enterprise is q(N,m, f) and the price is p(N,m, f) =

P (nq(n,m, f) + fk). For each c ∈ Σ0, all teams in the oligopoly have the same

surplus equal to U(c).
If in all configurations in Σ0, the resource constraint

nq(n,m,f)
m

≤ k binds, the sta-

ble set contains all configurations in Σ0 that are outcome equivalent to competition.

Therefore, suppose that the set of configurations in Σ0 for which enterprises produce

at less than capacity (nq(n,m, f) < mk) is non-empty. The surplus of teams corre-

sponding to such configurations is bounded above by the surplus under monopoly.

Therefore, there exist configurations maximizing the per-team surplus in Σ0. We

need to show that this subset Σ
∗ ∶= argmaxc∈Σ0

U(c) is the stable set, that is that

(i) for each c ∉ Σ
∗
, there exists c

′
∈ Σ

∗
such that c

′
≻ c, and (ii) that for each c ∈ Σ

∗
,

there does not exist c
′
∈ Σ

∗
such that c

′
≻ c. It should be clear that (ii) is satisfied

by the construction of the set Σ
∗
.

If the market structure is ω = (E0, E1, . . . , EN), the measure of teams in enterprise

i is denoted mi while the total scale of the oligopoly is m = ∑N

i=1mi. Note that the

equilibrium price and output depend only on m and not on its distribution among

the N enterprises. However, the capacity constraint requires thatmi is not too small;

otherwise, the per-team effort
q(c)
mi

will be greater than k.

Consider a configuration c that does not satisfy (ZP). There is a sequence of

deviations where the market structure is the same and where the initial positive

profit of HQs of enterprises is reallocated among the teams of its enterprise. Doing

so will preserve Team Rationality and the capacity constraint. Hence, for any such

configuration, another configuration c
′
satisfying (ZP) dominates it. If we show that

c
′
is itself dominated by an element c

′′
of Σ

∗
, it follows that c

′′
dominates c.

There are three cases for the initial configuration c.
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Case 1: m < 1 and f < 1−m. Teams in the fringe that do not produce (there is

a measure m− f of them) have a zero surplus. It must be the case that the surplus

of teams that produce is also equal to zero. Otherwise, an HQ could make a credible

offer to a non-producing team, improving that team’s payoff without modifying the

market structure. Hence, teams that produce in the fringe must make zero surpluses.

But then, the equilibrium price p(c) equals the average private cost ϕ(k)/k. Such

an outcome can be replicated under competition. Indeed, if there are powerful firms,

p(c) is greater than the competitive price; hence, if p(c) = ϕ(k)/k, we must have

P (k) < ϕ(k). Under competition, the equilibrium will require that only a few teams

produce up to the point where teams are indifferent between producing and not.

Hence, the equilibrium price will equal p(c). There is, therefore, no loss of generality

in restricting attention to configurations in which, if there is a fringe of positive

measure, all teams in the fringe produce.

Case 2: c ∈ Σ0 − Σ
∗
. By definition, for any c

′
∈ Σ

∗
, U(c) < U(c′). Let the

market structures be (E0, E1, . . . , EN) and (E ′
0, E

′
1, . . . , E

′
N) for c and c

′
respectively.

Consider the sequence:

• D1 = ⋃i≥1Ei, and all teams in D1 join the fringe. HQs of teams in D1 make

offers equal to the competitive profit for each team in D1. The resulting con-

figuration is c1.

• Teams in D2 = E
′
1 form an enterprise, and the resulting market structure is a

fringe [0, 1]−E ′
1 together with an enterprise E

′
1. Suppose their HQ makes offers

leading to a surplus of U(c′). The other offers stay the same. The resulting

configuration is c2.

• D3 = E
′
2; the resulting market structure is a fringe [0, 1] − (E ′

1 ∪ E
′
2) and

enterprises E
′
1, E

′
2. The HQ of E

′
2 offers its teams a surplus U(c′).

• Replicating this construction, after N + 1 deviations, DN+1 = E
′
N ′ , and the

market structure is c
′
. The offers made during the sequence are now credible

for the market structure (E ′
0, E

′
1, . . . , E

′
n), and c

′
≻ c . Each team in Di is

better off in c
′
than in ci, hence c

′
≻ c.

Case 3: c ∉ Σ0. As argued above, there is no loss of generality in assuming that

the offers in c satisfy ZP. Therefore, c must violate ET, Symm, or both conditions.
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Case 3a: Suppose that Symm is violated. Hence, there exist i, j such that

mi <
m

n
< mj. By ZP

N

∑
i=1

∫
t∈Ei

(oi(t) − ϕ (q(c)mi
)) dt = p(c)nq(c) −

N

∑
i=1

miϕ (
q(c)
mi

)

By convexity of ϕ(y), and the fact that mi ≠ mj for at least two enterprises,

N

∑
i=1

miϕ (
q(c)
mi

) = m
N

∑
i=1

mi

m ϕ (q(c)mi
)

> mϕ (nq(c)m )

Therefore,

1
m

N

∑
i=1

∫
t∈Ei

(oi(t) − ϕ (q(c)mi
)) dt < p(c)nq(c)m − ϕ (nq(c)m )

But the right-hand side is the per-team payoff in a configuration c
′
∈ Σ0 with the

same market structure as c. Because the resource constraint is satisfied in c, it is

satisfied in c
′
. Now, as we have seen in Case 2, and c ∈ Σ0−Σ

∗
is (weakly) dominated

by a configuration c
′′
in Σ

∗
, and U(c′) ≤ U(c′′) and the set D1 = {t ∶ u(t, c) < U(c′′)}

is non-empty. Consider the sequence:

• D1 = {t ∶ u(t, c) < U(c′′)}, and all teams in D1 join the fringe. Letting ω1 be

the new market structure, HQs of D1 make monetary offers equal to the surplus

of a team under competition; the offers of the other HQs stay the same. The

resulting market structure is ω1 = (E0 ∪D1, E1 −D1, E2 −D1, . . . , EN −D1),
and c1 is the structure with the new offers for teams in D1 and the old offers

for the surviving enterprises.
24

• By the same argument as above, the average surplus among teams in the new

oligopoly is inferior to U(c′′). Hence the set D2 = {t ∶ u(t, c1) < U(c′′)} has

positive measure.

• All teams inD2 join the fringe, and their HQs make offers leading to the surplus

under competition; the new market structure has a fringe E0 ∪ (D1 ∪D2) and

24
If the offer to teams in D1 gives a surplus inferior to U(c′′), teams in D1 will be strictly better

off at the end of the process. However, we need to ensure that the HQs of these teams are not
worse off. Hence they should have a non-negative profit, and using the surplus of a team under
competition ensures this.
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enterprises Ei − (D1 ∪D2).

• Continuing in this fashion, all teams join the fringe.

• Then, teams in E
′′
1 can form an enterprise with offers giving a surplus of U(c′′),

etc.

• This process leads to configuration c
′′
and, by construction, each set of teams

that deviates is better off in c
′′
than in the configuration it deviates from.

Case 3b: ET is violated but not Sym. We can replicate the construction in

case 3a. There exists a configuration c
′
∈ Σ0 with the same (symmetric) market

structure as c. The average surpluses are the same in c and c
′
, but since ET is

violated in c, there exists a set of positive measure D1 for which u(t, c) < U(c′), etc.

Binding TR constraint if m < 1. If a stable configuration c in Σ0 is such that

m < 1 and the TR constraint is not binding, there exists a new configuration c
′
in

which a positive measure of teams in the fringe replace teams in the oligopoly and

are strictly better of than in the initial configuration. Hence c
′
is not dominated by

c, contradicting stability.

A.2 Variations with respect to market and oligopoly sizes

For convenience, we start by collecting in the following lemma some properties of the

variables of interest in our Cournot model.

Lemma A.1. Consider a log-concave demand function and a convex private cost

function. Suppose that x(n,m;S) < k and m < 1. Then, locally,

(i)
q(N,m;S)

S
is an increasing function of S.

(ii) If m < 1, as m increases, the oligopoly output increases, and the total industry

output decreases.

Proof. Log-concavity of the inverse demand function implies that the ratio

Ψ(y;S) ∶= −
P (y;S)
P ′(y;S)

is a decreasing function of y and an increasing function of S. Let q(N,m;S) be the

Cournot quantity of a powerful firm.
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The Cournot quantity solves

q(N,m;S)
S

= Ψ (Nq(N,m;S) + (1 −m)k;S) .

(i) At S
′
> S,

q(N,m;S)
S

< Ψ (Nq(N,m;S) + (1 −m)k;S ′) ,

and therefore, to recover the first order condition, we must have
q(N,m;S

′)
S ′ >

q(N,m;S)
S

.

Note that while the oligopoly output increases, the industry output decreases, hence

the price increases.

(ii) Differentiating the first order condition
q(N,m;S)

S
= Ψ (Nq(N,m;S) + (1 −m)k;S)

with respect to m yields qm = (Nqm − k)Ψ′
, where qm denotes the partial derivative

of q(N,m;S) with respect to m. Because Ψ
′
< 0, if qm < 0 the right-hand side is

negative only if Nqm > k, a contradiction. Hence, qm is positive and Nqm < k, and

the total output decreases with m to satisfy the first order condition.

Note that while the output of oligopolistic firms increases with m, the per-team

effort may increase or decrease with m.

A.3 Proof of Proposition 2

The surplus of teams in the oligopoly is

u(N,m;S) ∶= P (mx(N,m;S) + (1 −m)k;S)x(N,m;S) − ϕ(x(N,m;S))

while the surplus of teams in the fringe is

u0(N,m;S) ∶= P (mx(N,m;S) + (1 −m)k;S) k − ϕ(k)

A stable configuration (N,m) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxN,m; m∈[0,1] P (mx(N,m;S) + (1 −m)k;S)x(N,m;S) − ϕ (x(N,m;S))
x(N,m;S) ≤ k

u(N,m;S) = u0(N,m;S) if m < 1

u(N, 1;S) ≥ u0(N, 1;S)

and firms are powerful if the capacity constraint is not binding.
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It is convenient to split this problem into two parts. First, keeping N constant,

we can solve for the best (constrained) oligopoly size.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxm; m∈[0,1] P (mx(N,m;S) + (1 −m)k;S)x(N,m;S) − ϕ (x(N,m;S))
x(N,m;S) ≤ k

u(N,m;S) = u0(N,m;S) if m < 1

u(N, 1;S) ≥ u0(N, 1;S)

(11)

This will give us the optimal size of the oligopoly M(N ;S) and the indirect surplus

of teams.

U(N ;S) ∶= u(N,M(N,S);S).

Suppose (N, 1) is the stable configuration for a market size S. By the

Cournot condition,
x(N,1;S)

S
= NΨ (x(N,1;S)

S
) and therefore the ratio

x(N,1;S)
S

is constant

when S varies. It follows that if S
′
> S, x(N, 1;S ′) = S

′

S
x(N, 1;S) > x(N, 1;S).

The TR constraint (6) when m = 1 is

P (x(N, 1;S);S) ≤ G(x(N, 1;S)). (12)

By convexity of ϕ, G(x) is an increasing function of x ∈ [0, k]. But then, at S ′
,

P (x(N, 1;S ′);S ′) = P (x(N, 1;S);S) ≤ G(x(N, 1;S)) < G(x(N, 1;S ′)),

And the TR constraint holds with a strict inequality at S
′
if it is satisfied at S. Hence,

as long as x(N, 1;S ′) satisfies the capacity constraint, (N, 1) is also a candidate for

the stable configuration for a market size S
′
> S. Now, for each S

′
, there exists a

unique m(S ′) such that m(S ′)x(N − 1,m(S ′);S ′) + (1 − m(S ′))k = x(N, 1;S ′).25

Because x(N − 1,m(S ′);S ′) satisfies the capacity constraint, it must be inferior to

x(N, 1;S ′).26 For the market size S
′
, the total output is the same – by construction

– at (N − 1,m(S ′)) than at (N, 1). Because the effort per team is smaller, there

is a larger surplus at (N − 1,m(S ′)) than at (N, 1). If (N − 1,m(S ′)) satisfies the

TR condition, (N, 1) is no longer the stable configuration at S
′
. Note that if the TR

constraint binds at (N, 1;S), it will not be satisfied at (N − 1,m(S ′);S ′).
25
At m = 1, the left-hand side is equal to the maximum capacity. Hence greater than x(N, 1;S ′);

at m = 0 the left-hand side is the (full-) oligopoly intensity when there are N − 1 firms, which is
smaller than the (full-) oligopoly output with N powerful firms.

26
Indeed, assuming that x(N, 1;S) < x(N−1,m(S ′);S ′) would imply that x(N−1,m(S ′);S ′) > k.
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Therefore, if there exists Ŝ such that the TR constraint binds at (N−1,m(Ŝ); Ŝ),
then the market structure is (N, 1) for S

′
≤ Ŝ and is equal to (N − 1,m(Ŝ); Ŝ) at

Ŝ. If there is no such value Ŝ, the capacity constraint x(N, 1;S ′) ≤ k will bind at a

high enough value of S
′
, and there will be competition.

Suppose (N,m), m < 1 is stable N for a market size S. Because the TR

constraint binds at (N,m;S), the per-team surplus is equal to u0(N,m;S). Because
the team payoff is an increasing function ofm, if the TR constraint binds at (N,m, S)
but is slack at (N,m, S ′), for S

′
> S, it is possible to increase m, and a stable

structure must have m
′
> m). Letting x =

Nq(N,m;S

m
,

u(N,m;S) − u0(N,m;S) = (k − x) (G(x) − P (mx + (1 −m)k;S)))

Keeping the market structure, Lemma A.1 implies that as S increases, x increases.

The variation in the right-hand side is (G′
xS − PS)(k − x)− (G− P )xS. But as TR

binds, G−P = 0 . Hence, the difference u− u0 increases if and only if the difference

G − P increases.
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