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commercial spillovers from university-based research is attributable to place-specific factors.
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1 Introduction

University-based scientific research has long been argued to be a central source of commercial innovation and eco-

nomic growth. For example, Nelson (1986) and Mansfield (1991) conclude from surveys that a large share of com-

mercial firms’ discoveries could not have been developed (without substantial delay) in the absence of academic

research. Jaffe (1989) estimates that a 10% increase in university research expenditures is associated with a 6%

increase in nearby corporate patents.1

Yet at the same time, there have been long-held concerns that many university-based discoveries never realize

their potential social benefits. From a policy perspective, this concern surfaced during the debate leading up to the

passage of the Bayh-Dole Act of 1980 in the U.S.2 A common narrative at the time was that most federally funded

inventions discovered at universities “languished” in the ivory tower, never diffusing out into the economy, due to a

lack of clear title and property rights over those inventions. For example, a candidate drug discovered in a university

lab might never be picked up by a pharmaceutical firm for further development due to a lack of clarity over title

and patent rights. Bayh-Dole aimed to address that concern by granting universities the right to retain intellectual

property derived from federally funded research.3

Academic research in this area has also highlighted a separate concern. As argued in the survey work of Jensen

and Thursby (2001), most university inventions are “embryonic” when initially disclosed in academic publications

and patents and require significant additional development — often including cooperation of the original inventor

— before they can be commercially useful. Consistent with this idea, Zucker, Darby, and Brewer (1998) provide

evidence that the timing and location of U.S. biotechnology enterprises are closely linked with the geographic lo-

cation of the university-based scientists who undertook the relevant basic research; the survey work of Jensen and

Thursby (2001) is suggestive that similar patterns hold outside of biotechnology as well. It is relatively rare for senior

academics to directly take on executive roles in private firms, as most academics prefer to keep their labs in operation

and universities often express little enthusiasm for joint commitments. Senior academics will sometimes place one of

their students or post-doctoral students with a start-up, but there are nonetheless concerns that there may be too few

incentives for academics to engage in the diffusion process necessary to have their academic discoveries fully realize

their potential private and social returns. Recognition of this potential concern has motivated research investigating

the role of faculty incentives as a driver of university commercialization, as in Hvide and Jones (2018), Lach and

Schankerman (2008), and Ouellette and Tutt (2020).

In this paper, we focus on the question of whether where an academic discovery is made affects whether it diffuses

1 Of course, especially given that academic discoveries are routinely disclosed through publications, spillovers from academia to in-
dustry need not be geographically localized, but the existence of geographically localized spillovers as in Jaffe (1989) is nonetheless
indicative of their existence.

2 See, for example, the discussion in Chapter 5 of Mowery, Sampat, Ziedonis, and Nelson (2004).

3 The 1984 passage of Public Law 98-620 pushed further in the same direction, removing certain restrictions contained in Bayh-
Dole; see Henderson, Jaffe, and Trajtenberg (1998) for a detailed discussion. A recent analysis of Bayh-Dole by Hausman (2022)
documents that employment, payroll, and wages grew faster after Bayh-Dole in industries more closely related to the research focus
of nearby universities.
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into the economy. Why might place-based factors matter? Bayh-Dole focused on facilitating university patenting

and licensing, two natural university-specific efforts that may affect the likelihood that university-based discoveries

spill over to commercial innovation. Beyond university patenting and licensing, a broader set of university policies

and practices, such as responsiveness to demands from the local community for agricultural innovations and the

training of students, have been argued to influence whether and when university discoveries spill over into commercial

innovation. Peer effects may also matter: Marx and Hsu (2022) finds that having peers who are star commercializers

is a strong predictor of whether researchers commercialize their own work.

Looking beyond the universities themselves, a broad range of local area characteristics have also been argued

to influence academics’ contribution to commercial innovation. For example, Kenney (1986) qualitatively argues

that the local availability of venture capital played a significant role in the birth of U.S. biotechnology enterprises

— as in the case of venture capitalist Robert Swanson’s search for a scientist co-founder for a genetic engineering

company: San Francisco-based Swanson approached Herbert Boyer, then a professor at the University of California

San Francisco, which led to them co-founding the biotechnology firm Genentech. More broadly, works such as Saxe-

nian (1994) and Moretti (2021) have documented compelling evidence on the importance of place-based technology

clusters such as Silicon Valley as a determinant of inventor productivity.

Quantitatively estimating the role of place-based characteristics in the commercialization of university-based dis-

coveries is, however, empirically challenging. In a descriptive sense, we know that commercialization activity varies

tremendously across universities, in ways that do not simply reflect differences in research activity across univer-

sities.4 For example, in 2016 Duke and Stanford had similar expenditures on research ($910 million versus $990

million), but Duke generated 9 start-ups while Stanford generated 32.5 But such cross-university differences in com-

mercialization activity are difficult to interpret. Field and sub-field differences may be central: for example, medical

schools produce translational biomedical research knowledge that may have inherently higher commercial relevance

than scientific advances in more basic scientific fields like organic chemistry. Academics doing more applied or com-

mercializable research may sort to universities that are better able to support such work, or to universities based in

clusters such as Silicon Valley where their work may be more likely to be on the radar screen of local entrepreneurs

and venture capitalists.

We take a first step towards unpacking this heterogeneity in university commercialization by analyzing how

the propensity of academic research to spill over to commercial innovation changes when academics move across

universities. As an example, consider the case of Professor Carolyn Bertozzi, a renowned chemist who works at the

intersection of chemistry, biology, and medicine. She began her academic career in 1996 at UC Berkeley. However,

she has publicly discussed how the environment at Berkeley, while productive for basic science research, was not

4 See e.g. Fisch, Hassel, Sandner, and Block (2015), who tabulate counts of granted patents assigned to different universities, as
well as the tabulations produced from Association of University Technology Managers (AUTM) surveys. In addition, past work
such as Di Gregorio and Shane (2003) has correlated university-level commercialization activity with university- and area-level
characteristics; see also Siegel, Waldman, and Link (2003), Sine, Shane, and Gregorio (2003), Stuart and Ding (2006), and Ho and
Lee (2021).

5 Data on research expenditures and start-ups formed are drawn from the AUTM survey data.
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particularly conducive to translating basic scientific discoveries into commercializable technologies. In her words, “I

kind of felt [that] Berkeley... was great for basic science and really great for chemistry because the graduate students

are top-notch. But it was really hard for me to think about how to translate [ideas] to the clinic” (Jarvis, 2020).

In 2015, she moved her lab to Stanford. The change in her lab’s commercialization activity was stark: while two

companies spun out of her lab during her 18-year tenure at Berkeley, she started four new companies within five

years of moving to Stanford. She has attributed her “entrepreneurial fervor to the natural collaborations that bubble

up at Stanford in a way they didn’t at Berkeley” (Jarvis, 2020).

To construct a sample of academic movers like Professor Bertozzi, we start with the universe of academic dis-

coveries, measured in the form of published scientific papers cataloged in the Web of Science data. For each pub-

lished scientific paper in the Web of Science data, we extract — wherever available — the e-mail address listed

for each author. For each e-mail address, we then extract the domain: for example, extracting dartmouth from

heidi.lie.williams@dartmouth.edu. We stitch together linkages between e-mail domains and university tech-

nology transfer offices in order to use observed changes in the e-mail domains authors choose to list on their published

scientific papers to infer moves of researchers across universities.

With this panel data on authors’ university affiliations and published scientific papers in hand, we then construct

measures of these papers’ propensity to spill over to commercial innovation. To understand the logic behind these

measures, it is helpful to return to the example of Professor Bertozzi. In 2018, her lab published a paper documenting

how a novel small molecule known as DMN-Tre could detect tuberculosis in a rapid, cheap, and highly accurate

manner (Kamariza et al., 2018). Bertozzi’s then-PhD student, Mireille Kamariza, was the lead author on the paper.

Stanford also filed a patent application for the diagnostic, listing both Bertozzi and Kamariza as inventors. In 2019,

Kamariza and Bertozzi co-founded a startup called OliLux Biosciences, dedicated to rapid and low-cost tuberculosis

detection. Kamariza was the CEO, and Bertozzi the Chair of the Scientific Advisory Board (SAB).

With this example in mind, our key outcome variable is the propensity of published scientific papers to spill over

to commercial innovation, as measured via patent citations. Our reliance on patent citations to scientific papers as a

measure of commercial spillovers builds closely on the recent work of Bryan, Ozcan, and Sampat (2020) and Marx

and Fuegi (2020a). As has been well-documented in earlier work, observed patent citations to a given scientific paper

accrue slowly over time, complicating application of a standard event study framework. To circumvent that challenge,

our baseline analysis predicts the number of times a scientific paper will be cited in U.S. patents in the five years after

its publication based on the journal in which the paper was published. Intuitively, this measure captures the idea that

scientific papers published in Nature Biotechnology are around three times more likely to be cited in a patent in the

five years after publication than are scientific papers published in Proceedings of the National Academy of Sciences.

As a robustness check, we also examine the counts of patent citations actually received by a given scientific paper as

an outcome and obtain similar estimates. Taken at face value, our empirical estimates suggest that at least 15–25%

of geographic variation in commercial spillovers from university-based research as measured by patent citations is

attributable to place-specific factors.
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The Bertozzi Lab / OliLux Biosciences example also suggests two additional outcomes.6 The first is so-called

“patent-paper pairs,” where the same idea is disclosed with near simultaneity by an inventor or lab in an academic

paper and in a patent application. The second is the participation of scientists in startups formed to commercialize

their ideas. Recall that in the Bertozzi Lab example, Kamariza served as the company’s CEO and Bertozzi sat on the

Scientific Advisory Board (SAB). In order to measure SAB participation, we hand-match records from Capital IQ

to our Web of Science data in order to measure that dimension of academics’ participation in commercial activities.

Unfortunately, our ability to draw conclusions from these outcomes is hampered by a lack of statistical precision,

which arises because these outcomes are so sparse.

Methodologically, our empirical approach builds closely on related work using movers to estimate the relative

importance of person-specific factors and place-specific factors in other markets (Abowd, Kramarz, and Margolis,

1999; Bertrand and Schoar, 2003; Finkelstein, Gentzkow, and Williams, 2016). A key difference in our setting is

the long lags inherent in the process of academic research spilling over to commercial innovation, since most past

empirical analyses of movers analyze person-year outcomes that can change at the point of move — such as worker

wages in Abowd, Kramarz, and Margolis (1999) or person-level health expenditures as in Finkelstein, Gentzkow, and

Williams (2016).

Because we define moves as moves across universities – which of course have fixed physical locations — our

estimated place effects reflect both university-specific and geographic-specific factors. At a descriptive level, we

can correlate our estimated place effects with university-level variables such as the volume of research activity at

the school, and with local area-specific factors such as hubs of technical specialization in the commercial sector

(Bikard and Marx, 2020; Moretti, 2021). Although we are hindered by statistical power, the evidence suggests that

both university-specific and geographic-specific effects matter. Schools with more active licensing agreements have

larger fixed effects. But we also see suggestive evidence that more local venture capital activity correlates with more

commercialization, even though this venture capital activity occurs “outside” of the university.

While our focus here is on how scientific papers spill over to commercial innovation, our work of course relates to

spillovers from scientific research more generally. Such spillovers have been documented to operate in what Azoulay,

Zivin, and Wang (2010) refer to as “idea space”: i.e., between colleagues working in similar areas, regardless of their

location.7 In other cases, knowledge spillovers are very localized, as the strand of research beginning with Jaffe

(1989) suggests (e.g., Helmers and Overman (2017) and Andrews, Russell, and Yu (2023)), though this tendency

may have fallen over time (Kantor and Whalley, 2019).

The remainder of the paper proceeds as follows. Section 2 describes our data, including how we construct our

key outcomes and how we infer academics’ moves across universities. Section 3 describes our sample construction

and provides some descriptive statistics. Section 4 describes our empirical strategy alongside a presentation of our

6 We also explore restricting our baseline analysis to citations from “more important” patents, measured as those filed by venture-
financed firms, and find similar estimates.

7 Agrawal, Cockburn, and McHale (2006) suggests a consistent pattern, though Azoulay, Graff Zivin, and Sampat (2012) points to a
more nuanced story.
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results. Section 5 concludes.

2 Data and measurement

2.1 Measuring academic research: Web of Science data

Before we can measure commercial spillovers from academic research, we first must measure the academic research

itself. We measure academic research as publications catalogued in the Web of Science data from Clarivate Analytics,

which compiles records of peer-reviewed scholarly journals, conference proceedings, and editorially selected books.8

Our version of the Web of Science includes publications from 1900 through the beginning of 2021, and contains more

than 80 million publication records.

For each author in our sample, we measure their publications in each year based on the Web of Science-assigned

author ID. Clarivate Analytics generates Web of Science author IDs via a proprietary author name disambiguation

algorithm; the only disclosed descriptions of which we are aware9 clarify that the algorithm takes both ORCID and

Publons (two opt-in systems for author disambiguation) as inputs, and that the algorithm analyzes data including au-

thor names, institution names, and citing/cited author relationships. The only validation study of which we are aware

is Levin, Krawczyk, Bethard, and Jurafsky (2012), which argued based on a comparison with hand-collected data

from 200 authors that — at that time — the Web of Science author ID erred on the side of over-counting publications:

on average 8.8% of authors’ Web of Science-linked articles did not appear in the hand-collected publication lists.

The accuracy of the Web of Science author ID has presumably improved since 2012, as evidenced by the fact that the

quality of other author disambiguation algorithms are generally assessed against the (presumed-to-be-correct) Web of

Science data. For example, Lerchenmueller and Sorenson (2016) notes that the developers of the Author-ity database

assessed the quality of their author disambiguation through comparisons to Web of Science author IDs.

2.2 Measuring commercial linkages to academic research

Commercial spillovers from university-based research can take many forms, not all of which are possible to measure.

Consider as an example the work of MIT professor Robert Langer.10 Langer has authored over 1,500 scientific

8 Analyses such as Martı́n-Martı́n, Orduna-Malea, Thelwall, and López-Cózar (2018) and Visser, van Eck, and Waltman (2021)
have analyzed the degree of overlap between Web of Science and similar datasets such as Dimensions, Google Scholar, Microsoft
Academic, and Scopus. There are some differences across these datasets. For example, Microsoft Academic aims to include
documents such as blogs and news articles, whereas the Web of Science does not. Looking at Scopus and Web of Science, Scopus
covers book chapters while Web of Science does not; Web of Science covers meeting abstracts and book reviews while Scopus does
not. Visser, van Eck, and Waltman (2021) argue that, across data sources, documents included in one source but not another tend to
have few to no citations — suggesting that in practice these differences may not be very consequential from the perspective of any
given data set missing “important” publications. On the Web of Science data in particular, see also Birkle, Pendlebury, Schnell, and
Adams (2020).

9 See, e.g., https://clarivate.com/blog/author-data-made-better-together/.

10 Most figures in this paragraph are drawn from Professor Langer’s MIT website: https://langerlab.mit.edu/langer-bio/;
the exceptions are the company spin-out figure which is drawn from Langer’s citation for the 2019 Dreyfus Prize in the Chemical
Sciences (https://www.dreyfus.org/robert-langer-2019/) and the Moderna example which is drawn from the Moderna
website (https://www.modernatx.com/modernas-board-directors).
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papers, and holds over 1,400 granted or pending patents. Langer’s patents have been licensed or sublicensed to

over 400 pharmaceutical, chemical, biotechnology and medical device companies. Unfortunately, such licensing

agreements are (with rare exceptions) not publicly observed. Over 40 companies have been spun out of the Langer

lab — including the mRNA therapeutics firm Moderna, which Langer co-founded. For one faculty member to be

linked to so many start-ups is exceptional, and in practice looking at direct faculty involvement in start-ups as an

outcome is too rare to be informative. However, as discussed below, we construct a closely related measure —

faculty involvement on Scientific Advisory Boards — which arguably captures faculty involvement in start-ups at a

broader level. In Langer’s case, we observe him sitting on 45 Scientific Advisory Boards in our data. The rest of this

section details how we attempt to systematically construct these outcomes for all movers in our sample.

Patent citations to academic papers. Building on recent work by Bryan, Ozcan, and Sampat (2020) and

Marx and Fuegi (2020a), our main outcome variables measure, in various ways described in more detail below,

the propensity of authors’ published scientific research to be cited in patents. In other words, for every academic

publication, we count the number of times (if any) the publication is cited by a patent. Patents may cite scientific

research papers in two ways: on the front page of the application (“front-page citations”) and in the body of the

text (“in-text citations”). Bryan, Ozcan, and Sampat (2020) articulate why, from a legal perspective, front-page

and in-text citations play distinct roles in a patent. Front-page patent citations are disclosed as “prior art” relevant

to the patentability of inventions. Patent applicants submit front-page citations in applicant information disclosure

statements (USPTO form 1449), and front-page citations are frequently added by the patent examiner over the course

of the examiner’s review of the application. In contrast, in-text citations appear in the specification of the patent, which

is intended to teach someone “skilled in the art” how to make and use the invention. Consistent with the argument

that front-page and in-text citations play distinct roles in a patent, Bryan, Ozcan, and Sampat (2020) document that

these two types of citations have relatively little overlap: on average for a given patent, only 31% of in-text citations

appear as front-page citations, and only 24% of front-page citations appear as in-text citations.

Dating back at least to the work of Narin (1994), Trajtenberg (1990), and Jaffe, Trajtenberg, and Henderson

(1993), front-page patent citations have been the traditional focus of academic research analyzing patent citation

data. However, that focus largely reflects the fact that front-page patent citations are — from a practical perspective

— much easier to extract than are in-text citations.11 Our read of the nascent literature on this topic is that there is

no clear theoretical reason to prefer front-page to in-text citations or vice versa in our application, so our baseline

analysis analyzes the sum of front-page and in-text citations.

Until recently, there was no data systematically cataloguing in-text patent citations. This changed with the release

of the Reliance on Science data (Marx and Fuegi, 2020a,b). The current version of the Reliance on Science data

captures both front-page and in-text citations. Marx and Fuegi’s data includes Microsoft Academic Graph (MAG)

11 Indeed, Bryan, Ozcan, and Sampat (2020) note that one of the first papers to empirically examine front-page citations — Narin and
Noma (1985) — argued that in-text references “may be more related to the history, usefulness, and development of the invention”
but that they instead analyze front-page citations since they are “far easier to extract.”
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paper identifiers, but unfortunately to the best of our knowledge there does not exist a crosswalk between MAG paper

identifiers and Web of Science paper identifiers. In order to link the publications in our Web of Science data to the

Reliance on Science data, we construct a crosswalk as follows. Where available, we merge based on Distinct Object

Identifiers (DOIs) and PubMed identifiers; together, these merges capture 69.4% of the papers in the Marx and Fuegi

data.12 Among the remaining unmatched papers in the Marx and Fuegi data, we attempt a merge based on ISSN

number (a unique journal identifier), volume, issue, and first page number; this merge captures an additional 1.7% of

papers. Hand-checks suggest there was not a clear way to match the remaining 28.9% of Marx-Fuegi papers to our

Web of Science data, so we omit those papers from our analysis.13

Venture capital-backed patents. Patent citations originating from venture capital-backed firms are of particular

interest, because these firms are thought to be particularly innovative (Kortum and Lerner, 2000). Records on all

U.S. firms that raised venture capital funds from 1968-2021 are obtained via the Refinitiv Database. Following

the methodology outlined by Bernstein, Giroud, and Townsend (2016) and Akcigit, Ates, Lerner, Townsend, and

Zhestkova (2023), we link USPTO patents to firms using the firm name, patent assignee name, and geocoded city

information. Oftentimes there are exact one-to-one matches, but additional “fuzzy matches” are made by allowing

some flexibility in firm name spelling or geography (e.g., non-exact candidate matches with the same city or state

were ultimately considered a true match).

Given this linkage, we then want to restrict attention to which patents should reasonably be coded as venture-

backed. As examples of what we would want to exclude, many patents in our sample are awarded to firms like

Microsoft and Intel, which had received venture financing decades before the grant date of the patents in our sample.

One approach is to code patents as venture-backed if the application year falls between the first and last years of

venture financing. However, this approach has two potentially undesirable features. First, it would artificially deflate

the number of measured venture-backed patents in time periods when firms went public very quickly, and artificially

inflate the number of venture-backed patents during time periods where firms remained private for much longer

periods. Second, a number of firms in the sample received their last round of financing many years after their initial

round. In most cases, these instances are buyouts or other “take private” deals, private investments in public entities

(PIPEs), or venture financings of companies that had been taken private after an initial public offering – none of which

correspond to the traditional definition of venture activity. While it was feasible to purge a number of these financings,

it is not possible to do so in all cases. Reflecting these concerns, our chosen approach is to define venture-backed

patents as those that were applied for within five years of the firm’s first round of venture financing.

12 In practice, PubMed identifiers do much less of the work here than do DOIs: of these matches, 59% match on both DOI and PubMed
ID, 37% match on DOI with no PubMed ID, and only 4% match on PubMed ID alone.

13 As discussed above, the intended coverage of the Web of Science data and the MAG data are not the same: for example, Visser et
al. (2021) note that MAG covers documents not of a scientific nature (for example, news articles). In our data, the majority (52%)
of unmatched MAG observations lack a journal ID, suggesting they are likely not academic journal articles.
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Additional outcomes. We also collect information on Scientific Advisory Board memberships and patent-paper

pairs, as discussed in Appendix Section A.

2.3 Measuring university affiliations and cross-university moves

In order to identify movers — defined as authors of research papers whose university affiliations change over time —

we first need to determine each author’s organizational affiliation in each year. In the Web of Science data, affiliations

can be measured in a variety of ways: for example, each author of each publication in the Web of Science data is

linked to one or more organization names; separately, the “corresponding author” of each paper in the Web of Science

data has a listed address. However, in practice we found that measuring moves based on either of these variables has

significant drawbacks. For example, Web of Science routinely lists multiple organization names for a given author on

a given paper and does not offer any indication of which is the primary affiliation, leading to a “multiple affiliations

problem.” Given these challenges, our baseline approach — described below and illustrated by an example in Figure

1 — is to instead infer moves based on observed changes in the e-mail addresses that authors choose to list on their

publications. We view the email address — and in particular, the email address domain — as a revealed preference

measure of the author’s true home institution. Figure 1(a) illustrates an example where several authors have multiple

affiliations. In this case, the final author, Sangeeta Bhatia, is the designated corresponding author, and is the only

author whose email address is reported. She has multiple affiliations (MIT, Broad Institute, Brigham and Women’s

Hospital, and Howard Hughes Medical Institute), but a single email address with an @mit.edu domain. Figure 1(b)

shows how this publication is listed in the Web of Science data, and Figure 1(c) provides a screenshot of the associated

SQL tables we extract this data from.

Defining universities. Given the central role of technology transfer offices in facilitating spillovers of academic

research to industrial innovation, for the purpose of our analyses we define “universities” as technology transfer of-

fices (TTOs). In particular, we focus attention on the approximately 300 U.S.-based technology transfer offices that

participate in the Association of University Technology Managers (AUTM) surveys.14 In practice, this definition in-

cludes primarily university-based TTOs (89%, e.g., Stanford University; AUTM ID 95165), but also some university

system-wide TTOs (2%, e.g., University of California System; AUTM ID 95188), some affiliated research hospitals

reporting separately from universities (3%, e.g., Brigham and Women’s Hospital; AUTM ID 95017, which reports

separately from Harvard University; AUTM ID 95070), and some standalone research hospitals (6%, e.g., St. Jude

Children’s Research Hospital; AUTM ID 95164). For some of our descriptive analyses, we geocode TTO locations

to Bureau of Economic Analysis (BEA) economic area codes used in Moretti, 2021. Because there is no off-the-shelf

mapping, this required us to construct two additional linkages: i) from TTO locations to ZIP codes, using data from

Association of American Medical Colleges; and ii) from ZIP codes to county FIPS codes (Din and Wilson, 2018).

14 We separately draw some TTO-level variables from the AUTM surveys between 1991 and 2019, such as measures of research
expenditures, licenses, and licensing income. Across cross-sectional surveys, TTOs are identified by unique ID numbers, allowing
us to follow individual TTOs over time even if the listed organization name changes.
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Extracting data on e-mail domains. For each author of each publication in the Web of Science data, we

extract the listed e-mail address where available. Because no more than one e-mail address is listed for each author,

this provides a solution to the multiple affiliations problem described above. For each e-mail address, we extract the

domain — for example, extracting dartmouth from heidi.lie.williams@dartmouth.edu. Given our focus on

U.S. universities, we restrict attention to e-mail addresses which contain an @ symbol and end in .edu, and extract

as the domain all text between the final @ symbol and .edu.15 Note that e-mail addresses are reported much more

frequently for corresponding authors than non-corresponding authors (roughly 85% of the time versus 15% of the

time in the years at the end of our sample), and are reported more often for first and last (and solo) authors than for

middle authors.

Linking e-mail domains to organizations. We next need to link the domains extracted from e-mail addresses

to universities, defined as AUTM TTOs. While conceptually straightforward, what we need is a systematic way of

knowing that, for example, e-mail domains harvard.edu and hbs.edu both map to the same technology transfer

office at Harvard University. We do so by constructing a crosswalk from e-mail domains to so-called “preferred

organizations” in the Web of Science data to AUTM TTOs as follows.

As noted above, each author of each publication in the Web of Science data is linked to one or more organization

names. Clarivate Analytics makes an attempt to standardize these organization names by creating unique organization

identifiers referred to as “preferred organizations.” For example, the preferred organization for Harvard University

aggregates institutions such as the Harvard Stem Cell Institute, the Harvard School of Engineering and Applied

Sciences, and the Harvard Society of Fellows.16 We start by expanding the Web of Science data set to a table that

is unique at the paper-, author-, preferred organization-level (that is, a given author-paper pair is listed more than

once if more than one preferred organization is listed for that author-paper). In these data, we then restrict attention

to observations reporting both an e-mail address and a preferred organization name. We drop observations linked to

preferred organizations of the form “University of .* System” because — empirically — all Web of Science records

with an affiliation of that form have at least one other, more granular organization; e.g., we drop “University of

California System” in favor of keeping “University of California, Berkeley.”

For each unique e-mail domain, we then select the Web of Science preferred organization which is most frequently

associated with that domain. The only exceptions are that we manually correct some e-mail sub-domains for academic

medical centers which have independent TTOs but which our methodology would otherwise (incorrectly) pool with

their affiliated university. For example, Brigham and Women’s Hospital has the email domain bws.harvard.edu,

15 We standardize and lightly clean the e-mail addresses prior to extracting this text, by converting all extracted e-mail addresses to
lower case, filtering to only a-z, 0-9, ., and @ characters, and fixing commonly observed duplication errors (e.g. replacing .. with
., replacing .edu.edu with .edu).

16 In practice, Clarivate (understandably) appears to have only undertaken this standardization effort for relatively common organi-
zations, so relying on these preferred organizations loses some information for rarely reported organization names. Clarivate has
assigned just under 15,000 unique preferred organization identifiers, of which 2,040 are based in the United States. As one point
of comparison, in 2019-2020 there were around 2,700 four-year degree-granting post-secondary institutions in the United States
(National Center for Education Statistics, 2020).
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which our method would default to pool with Harvard University, but which should instead be kept separate because

the hospital has its own independent TTO in the AUTM survey data.17

Finally, we link Web of Science preferred organizations to AUTM TTOs by hand. Taken together, this method

allows us to link e-mail domains — our measure of author affiliation — to AUTM TTOs — our measure of “univer-

sities.”18

Constructing author-year panel data on university affiliations. For each author-article pair reporting an

e-mail address in the Web of Science data, we can thus assign a unique AUTM organization. If within a given

year, an author with multiple publications is linked to more than one AUTM organization, we assign them to the

AUTM organization with which they are most frequently affiliated. In cases of ties (which occur for about 0.7% of

author-years), we select an affiliation at random. This process generates a single affiliation for each author-year.

Measuring moves. With unique author-year affiliations in hand, we define movers as follows. We only identify

movers that we can see are at distinct universities in two consecutive years. That is, we do not use cases where

we need to impute the year of the move because there is a gap in publications, as imputing affiliation in years an

author does not publish risks mis-coding the timing of their move.19 As detailed in Figure 2, we use mailing address

data provided in the Web of Science data to attempt to fill in affiliation gaps where possible in order to add some

additional movers to our sample. On its own, our e-mail-based panel identifies a total of 12,211 movers, and we are

able to increase that sample by around 20% using geographic information and other methods described in Appendix

Section B.

Once we code an individual as a mover, we check if — in the year prior to the move-year — there are a non-

zero number of papers that list the destination as their affiliation. If yes, we code the move-year to be one year

earlier. Our motivation here is two-fold: publication lags distort our ability to code move-years, and a researcher’s

change in affiliation might not occur cleanly at year’s end. As shown in Appendix Figure 1, around 25% of movers

17 The list of institutions for which we do this type of manual correction is Beth Israel Deaconess Medical Center, Boston Children’s
Hospital, Brigham and Women’s Hospital, Children’s Hospital Los Angeles, Dana-Farber Cancer Institute, Massachusetts General
Hospital, Moffitt Cancer Center, Schepens Eye Research Institute, and the Whitehead Institute.

18 E-mail domains that are not affiliated with an AUTM TTO are coded as missing and not included in our analysis. For each observa-
tion in the AUTM data that we fail to hand-match with a Web of Science preferred organization (N=30 of 309), we instead attempt
to hand-match to raw (non-preferred) organization names in the Web of Science data; this generated an additional seven matched
AUTM TTOs. Our remaining unmatched AUTM organizations are Albert Einstein Healthcare (AUTM ID 95003), Center for Inno-
vative Technology (AUTM ID 95031), Competitive Technologies (AUTM ID 95046), Florida Institution of Technology (AUTM ID
95061), Hahnemann University (AUTM ID 95069), Hospital for Special Surgery (AUTM ID 95073), Houston Advanced Research
Center (AUTM ID 95074), Mayo Foundation (AUTM ID 95098), Medical College of Pennsylvania (AUTM ID 95102), Medical
University of South Carolina (AUTM ID 95103), Ramsey Foundation (AUTM ID 95141), Research Corporation Technologies
(AUTM ID 95144), Children’s Hospital Cincinnati (AUTM ID 96008), Louisiana State University Agricultural Center (AUTM
ID 96016), University of Maryland Biotech (AUTM ID 96028), Florida Agricultural (AUTM ID 97003), Paper Science and Tech
(AUTM ID 97023), Legacy Health System (AUTM ID 20000014), Center for Blood Research (AUTM ID 20000252), Tennessee
Board of Regents (AUTM ID 20000254), NUtech Ventures (AUTM ID 20100289), WiSys Technology Foundation (AUTM ID
20120294), and Providence Health & Services (AUTM ID 20140302).

19 For example, suppose we observe Josh Lerner at school A in 2012 and at school B in 2016, with no publication record in between.
If we imputed moves based on the first publication where he was identified at a new school, we would code Josh to be at school A
from 2013-2015, even if he moved in 2013.
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list more than one affiliation in the year they move. Appendix Figure 2 illustrates how implementing this one-year

correction improves the accuracy of move timing for a randomly selected hand-coded sample of 100 movers. Prior

to the correction, we are more likely to code an author’s move one year too late than we are to code it correctly. After

implementing the correction, however, our accuracy improves.

3 Descriptive statistics

3.1 Sample construction

Table 1 walks through our sample construction. Ultimately, our data will be at the author-year level. However, we

start with the Web of Science data at the contributor-publication level (contributor includes authors, but may also

include book editors, etc.). We drop contributors who are not coded as authors (but rather as editors, etc.), and

then make a series of restrictions aimed at ensuring that the remaining author-publications have valid Web of Science

author IDs and valid email domains.20 We then aggregate these data to the author-year level, taking the most common

institution and randomly breaking ties where necessary.

Finally, we restrict attention to “biomedical authors,” which we defined as authors for whom 50% or more of their

publications are linked to a PubMed ID. Because biomedical research comprises such a large share of the commercial

activity in our data — indeed, some of our outcomes such as patent-paper pairs and Scientific Advisory Board

participation are largely relevant only to that sample — this sample restriction focuses our analysis on decomposing

meaningful variation in a well-defined activity (biomedical research) across universities.

3.2 Descriptive statistics: Movers and their moves

Appendix Figure 3 provides a proof of concept that our coding of researcher moves is meaningful, documenting the

the share of publications among movers where the researcher’s primary affiliation is the destination university, by

year relative to the move.21 Prior to the move, almost none of the publications come from the destination university,

whereas post-move over 95% of publications come from the destination university. This share remains constant

throughout the post period, suggesting we capture real, long-term moves by researchers.

Figure 3 provides an alternative proof of concept graph, documenting how the geography of patent citations to

scientific papers changes before and after move. To construct this graph, we assign geographic locations to patents

that cite papers in our sample by taking the address reported for the inventor on each patent and mapping that address

to an economic area defined by the BEA. We then count the number of patent citations to a mover’s papers originating

from the mover’s origin or destination economic area in each year surrounding their move in the five years after the

20 We lose the majority of author-publications here due to the email domain requirement; recall that Web of Science goes back as
far as 1900, and email addresses were not commonly reported until the 2000s. The increasing count and share of emails with an
associated email address by year is shown in Appendix Figure 4.

21 We here restrict attention to publications where the researcher’s primary affiliation is either the destination or the origin institution.
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article is published. Prior to a move, we observe more citations from patents in movers’ origin economic areas. In

the five years immediately before the move, when the five-year citation counts include citations made both before

and after the move, this remains true, but then this trend reverses in the year after the move, when we start to observe

more patent citations from the mover’s destination.

We also hand check 100 randomly sampled movers using faculty web pages, CVs, and LinkedIn profiles. Of

these 100 movers, we are able to locate information about 75, while the remaining 25 are untraceable. Of the 75 we

located, 68 appear to move from and to the universities that we had identified, while 7 appear not to actually move (a

91% success rate among the authors we could locate). Focusing on the 68 correctly-identified movers, we code the

move year exactly right nearly 40% of the time. We code the move as happening a year too late just over 50% of the

time (which is not surprising given that we use publications — a measure that is likely to lag — to identify movers.

The remaining 10% of authors have larger errors. We discuss how this measurement error affects the interpretation

of our results in Section 4.

Table 2 presents author-level descriptive statistics, separately, for non-movers (column 1) and movers (column

2). Our sample includes around 500,000 authors, roughly 3% of whom are coded as movers. Mechanically, movers

have longer careers in our sample (8.6 versus 2.4 years), as we are more likely to code someone as a mover if we

can observe them for more years. Movers similarly have more publications (61 versus 13) and more patent citations

to papers (43 versus 8). Notably, the higher number of patent citations appears to be driven by the higher number of

publications, rather than by a higher share of papers being cited (0.05 vs. 0.06) or more citations per paper (0.45 vs.

0.39).

Panel (a) of Appendix Figure 7 provides additional summary statistics about the moves themselves.22 The average

move distance is 878 miles, equivalent to roughly one-third the width of the continental United States. However, the

distribution of move distances is right-skewed, reflecting the density of universities on the coasts — the median move

is 641 miles, and the standard deviation of the average move is 801 miles. Over the sample period, the median

university received 20 movers.23

3.3 Descriptive statistics: Commercialization

Our key outcome of interest is the propensity of published scientific papers to spill over to commercial innovation,

as measured via patent citations. One immediate challenge that arises in constructing such a measure is that there

22 Per the recommendation of Miller (2023), Appendix Figure 5 tabulates additional information about the nature of the movers in our
sample. Panel (a) presents the number of researcher moves by the publication year in which they moved, highlighting the gradual
increase over time. This reflects both the increase in the number of researchers, as well as the greater number of disclosed email
addresses in articles, which allows us to discern moves. Panel (b) illustrates the number of movers who publish in each publication
year— distinct from the number of moves that occur in each year– data our model uses to identify publication year fixed effects.
Panel (c) shows the number of movers publishing articles in the years relative to the moves. The number of observations trails off
in years far from the move year due both to truncation (we cannot observe publications 10 years after a 2015 move) and the exit of
researchers from academe.

23 On average, universities received 54 movers, though this statistic is inflated by our definition of university systems (e.g. State
University of New York (SUNY) or the University of California System).
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are substantial time lags between when papers are published and when they accrue citations. Panel (a) of Appendix

Figure 9 documents the distribution of years from when a paper is published to when it receives its first citation,

conditional on receiving at least one citation: the average lag is 3.7 years, and the median lag is 3 years.24 For any X ,

counting the number of patent citations accrued over the first X years of a paper’s life is more informative for a larger

X — as longer time windows capture more across-paper variation — but because we must cut our sample off at year

2021−X (2021 is the last year for which we have patent citation data), choosing a larger X reduces our sample size.

We resolve this trade-off by focusing on X = 5.25

Once we have merged the Reliance on Science patent citation data to the Web of Science publication data, we can

compute the number of patent citations each publication receives.26 However, this observed citation measure poses a

challenge in our mover design. To see why, consider an author who moves in 2010 but writes a paper in 2008. The

paper was clearly written prior to the move. However, our five-year citation move will count citations that accrue

in the years 2008, 2009, 2010, 2011, and 2012 — in other words, two years of citations accumulated in post-move

years. Thus, for our five-year outcome, the distinction between pre and post becomes blurry.

To overcome this challenge, our baseline outcome predicts the number of times a scientific paper will be cited in

U.S. patents in the five years after its publication based on the journal in which the paper was published. Intuitively,

this measure captures the idea that scientific papers published in Nature Biotechnology are around three times more

likely to be cited in a patent in the five years after publication than are scientific papers published in Proceedings of

the National Academy of Sciences (see Appendix Figure 10 for more examples). Because both observed and predicted

citations are highly skewed (and because the majority of papers receive zero patent citations), we apply the inverse

hyperbolic sine transformation to each of these outcomes. Finally, we sum over all papers written in the same year,

so that authors who write more papers in a given year will have more predicted patent citations, all else equal. This

leaves us with a commercialization measure that is unique at the author-year level. The key benefit of this measure is

that it is “instantaneous” — the outcome is computed using data from the year of publication. However, it is worth

noting that this outcome also focuses our attention on a particular channel. Predicted patent cites will only increase if

the author changes the content of their research and/or targets different journals. Notably, predicted patent citations

will not increase if the author makes no changes to their research, even if the school increases efforts to publicize the

work in such a way that increases patent citations. We will keep this caveat in mind when interpreting our results.

Figure 4 illustrates our cross-sectional variation in our key outcome variable. We collapse this author-year mea-

sure down to the institution level to document how commercialization varies across universities. Our collapsing

24 There are few differences across institutions of various research intensities (averaged over the entire sample, with institutions in
the first quartile representing those with the lowest amount of research spending) in the timing of citations. Panel (b) ofAppendix
Figure 9 shows the cumulative number of citations a paper receives over time (again, restricting to papers with at least one citation).

25 We include the paper’s publication year as one of the years a paper can accrue citations. So, for example, a paper published in 2000
will be allowed to accrue citations from 2000 to 2004.

26 We focus on U.S. patents in order to avoid double-counting, as we prefer not to have patents covering the same technology in
different countries count as multiple citations to the same publication. The U.S. patent grants in the Marx-Fuegi sample date back
to 1947.

13



procedure averages across author-years within a given university, with each author-year receiving equal weight. High

values correspond to universities that receive more predicted patent citations per author-year, meaning that larger uni-

versities are not mechanically at an “advantage.” Panel (a) of Figure 4 documents this variation geographically across

economic areas as defined by the BEA as of 2012. While this chart displays the familiar concentration in California

and the Northeast, there are many other clusters, such as Texas and the St. Louis area. Panel (b) of Figure 4 plots

these institution-level measures as a histogram.27 Panel (c) of Figure 4 lists the top ten institutions by commercial-

ization propensity, overall and separately for universities. Perhaps unsurprisingly, medically-focused institutes (that

have their own technology transfer offices) tend to outperform their university counterparts in this measure. This is

likely because the vast majority of their authors are focused on commercially-relevant research, whereas universities

have faculty in a broad array of fields that may be closer to the scientific frontier and less readily applicable.

3.4 Descriptive statistics: On-move changes in commercialization

We can now present a descriptive version of our key results in graphical form, to convey the basic patterns. Figure

5 plots the change in mover i’s commercialization activity before and after the move against the destination-origin

difference in mean commercialization propensity of the universities. Again, we use our IHS predicted patent cite

measure to capture commercializaiton. We define the pre-move period as relative years -10 to -1. We define the

post-move period as relative years 1 to 10. The “change on move” is the difference between those averages for each

mover.

The positive correlation suggests that researchers who move to a higher-commercialization location commercial-

ize more themselves, while those who move to a lower-commercialization location commercialize less themselves.

If all the variation were due to individuals, we would expect this line to have a slope of zero. If all the variation were

due to place, we would expect it to have a slope of one. Instead, we find a slope of 0.15, suggesting that roughly

one-sixth of the heterogeneity in commercial activity by faculty is due to the place-specific factors.

27 We document in panel (a) of Appendix Figure 8 that if we divide universities into quintiles (in a base year) by commercialization
rates, the mean commercialization rate (predicted patent citations) is roughly constant in each quintile. When we look at a repre-
sentative school from each quintile in panel (b) of Appendix Figure 8, we see that the ranking of schools stays relatively stable over
time. This suggests that commercialization patterns across different universities have been roughly stable over time.
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4 Empirical strategy and results

4.1 Empirical framework

4.1.1 Additive decomposition

Our empirical approach closely follows that of Finkelstein, Gentzkow, and Williams (2016). Researcher i at university

u in year t produces commercialized research (y) according to the following equation:

yiut = αi + γu + τt + εiut (1)

where y is some measure of commercialized research, α is an individual fixed effect, γ is a university fixed effect,

and τ is a calendar year fixed effect.

In order to decompose variation in commercialization outcomes y into variation driven by the researcher versus

variation driven by the researcher’s environment (i.e., the university and/or geographic area), let ȳut be the average of

yiut ’s within university u in year t, and let ȳu be the average of ȳut across time. Similarly, let ᾱut be the average of the

αi’s within university u in year t, and let ᾱu be the average of ᾱut across time. If we consider two universities u and

u′, we have the following decomposition:

ȳu − ȳu′ = (γu − γu′)+(ᾱu − ᾱu′). (2)

Therefore, the share of the difference between u and u′ attributable to the university is:

Suniversity(u,u′) =
γu − γu′

ȳu − ȳu′
(3)

while the share attributable to differing researchers is:

Sresearcher(u,u′) =
ᾱu − ᾱu′

ȳu − ȳu′
. (4)

If we can construct sample analogs ŷu of ȳu and consistent estimates of γ̂u of γu, then we are able to estimate

Suniversity(u,u′). One minus this amount gives us the analogous Sresearcher(u,u′).

Note that, of course, estimation of Equation 1 is only identified if the data include movers. The intuition here

is identical to the classic AKM mover design (Abowd, Kramarz, and Margolis, 1999)): if all researchers were non-

movers, there would be no way to separate university differences in y due to differing researcher composition versus

from fixed characteristics of the university.

Three assumptions are critical in our design. First, we assume that movers do not experience shocks to their

commercialization y that are correlated with the timing and direction of the move. This will be the case if the indi-

vidual fixed effects are time-invariant. This is important, because if movers from low commercialization institutions
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to high commercialization institutions systematically experience an increase in αi at the same time as their move, we

will overestimate the institution effect. Analyzing pre-trends in our event study analysis can help rule this out. If

we believe that changes in an individual’s commercialization propensity occur gradually over time, the absence of

pre-trends can provide comfort that this assumption holds.

Second, we assume that αi and γu are additively separable. Since our preferred outcomes are transformed with

inverse hyperbolic sine transformation (which can be interpreted similarly to logs), this means we are assuming that

individual and university effects impact the level of commercialization multiplicatively. Note that this assumption also

rules out any type of match effects between researchers and universities. This implies that a chemist and biologist

experience the same university effect from school u (though recall that we have limited our sample to biomedical

researchers, which helps make this assumption more palatable).

Finally, we assume that the γu terms are the same for both movers and non-movers. In other words, both movers

and non-movers experience the same university effects. Without this assumption, our decompositions are only rele-

vant for the set of academics who move across institutions.

4.1.2 Event study

The researcher versus place decomposition gives us a static picture of how commercialization propensity is split

between person and place effects. However, an event study allows us to observe the dynamics (and assess pre-

trends). In this section, we outline our event study framework. For the sake of clarity, we start by ignoring calendar

year effects in this discussion. Moreover, we assume that we have a balanced panel for the time being. We will relax

both of these assumptions later in this section.

In this simplified setting, we can let yiut = γu +εiut .28 If all movers had the same origin and destination university

(u and u′), then we could construct an event study by simply plotting the mean of the outcome y by the year relative

to the move. If, however, the destinations and origins of the academics vary, this same plot would not be informative.

In this example, if half of our movers went from u to u′, while the other half went from u′ to u, then the same graph

described above would show no effect of the move, as the two moves would cancel each other out. This apparent

non-result would appear even if the absolute value of the changes in either direction were quite large.

To solve this problem, we would want to scale y by the size and direction of the move. For a mover i who

goes from origin university o(i) to destination university d(i), we can compute the size of the move (in terms of the

difference in destination-origin propensity to commercialize) as follows:

δi = ȳd(i)− ȳo(i) (5)

where ȳd(i) is computed by averaging over all author-years (including non-movers) at the destination university (and

analogously for ȳo(i) at the origin university). Figure 6 shows the distribution of these move sizes for all of the movers

28 Given the balanced panel assumption, we ignore the individual fixed effects for now.
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in our sample.

How should we scale the effect of the move across universities on the impact of propensity to commercialize?

Following Bronnenberg, Dubé, and Gentzkow (2012), we define scaled commercialization as:

yscaled
it =

yit − ȳo(i)

δi
. (6)

This expression implies that yscaled
it will equal zero if the mover’s commercialization exactly equals the average

commercialization at his origin university. Similarly, yscaled
it will equal one if the mover’s commercialization equals

the average commercialization at his destination university. A value between zero and one implies the researcher

adopts some (but not all) of the new university’s propensity to commercialize. Estimating the equation

yscaled
it = θr(i,t)+ εit (7)

where θr(i,t) are the relative year coefficients would give us an easy-to-interpret event study, where the size of the jump

at the time of the move corresponds to the average value of Suniversity across all movers. In other words, a larger jump

would correspond to a larger share of cross-university heterogeneity being attributable to place-based characteristics.

Moreover, if our model is correct, we would expect that the scaled outcome to be flat prior to the move — in other

words, we should observe no pre-trends.

When taking this empirical framework to the data, we need to deal with a few additional complexities. First, if

δi is close to zero (which Figure 6 suggests is a common occurrence), then yscaled
it will behave badly as an outcome

measure. Therefore, we want to avoid a regression specification that involves dividing by δi. Rearranging, we can

instead re-write our event study as:

yit = ȳo(i)+θr(i,t)δi + εit . (8)

We also want to allow for calendar time controls. Moreover, because our panel is unbalanced, it is important to

explicitly include individual level fixed effects. Adding these in (and combining ȳo(i) and αi into a single individual

fixed effect α̃i) and replacing δi with its sample analogue δ̂i yields our final estimating equation:

yit = α̃i +θr(i,t)δ̂i + τt + εit (9)

where the relative-year coefficients θr(i,t) are the coefficients of interest. They measure the change in commercializa-

tion around the year of the move, scaled by the size and direction of the move.

Figure 6 documents the distribution of the difference between the mean commercialization propensity of mover

i’s destination university and that of his or her origin university — essentially answering the question of how different

origin and destination universities are in terms of their commercialization propensities. This distribution is symmetric

around zero, with researchers making moves in both directions — from low to high commercialization universities
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and from high to low commercialization universities.29

4.2 Additive decomposition estimates

Table 3 is based on our additive decomposition framework. The γus are estimated from a regression following

Equation (1) using our sample of movers and non-movers, where yiut is the predicted count of five-year patent citations

to author i’s papers in year t affiliated with university u. The estimates γ̂u are consistent estimates of the true university

effects as long as our identifying assumptions hold.

Table 3 presents statistics which make comparisons across groups of universities, rather than comparisons across

individual universities. We define ŷR, γ̂R, and α̂R to be the simple average of all ŷu, γ̂u, and α̂u that fall within group

R.

The first row of Table 3 presents estimates of ŷR − ŷR′ : the difference in mean commercialization between the

two groups of universities. The second row presents the component of that difference which is due to researcher

characteristics (α̂R − α̂R′ ) and the third row presents the remaining difference, which is due to university effects

(γ̂R − γ̂R′ ). Rows four and five convert these researcher and university components into shares. Finally, the last row

presents the 95% confidence interval for these share estimates.

Columns in this table represent comparisons across different groups. The sizes of these comparison groups

increases across columns, from the top and bottom 5% up to the top/bottom 50%. Thus, column (1) uses data from,

and makes comparisons across, only institutions ranked in the top and bottom 5% of ȳu. The fourth and fifth rows of

column (1) suggest that 79% of the variation in commercialization between these two groups of universities is due to

differing researchers, while the remaining 21% is due to university effects. This division is fairly consistent across

different comparison groups, with the share university ranging from 15 to 23%. Our confidence intervals let us rule

out university shares smaller than 10% and larger than 33%.

Recall that the specific nature of our outcome — predicted citations based on journal of publication — implies

that we are only investigating specific channels. Because the predicted citations are based on journal placement,

we are observing an effect that operates through researchers changing the content of their research (or at least, the

journals they are targeting). To the extent that different universities have an additional effect on patent citations,

holding journal of publication fixed, we would not observe that in these results.

Table 4 presents an alternative decomposition, investigating what share of the cross-institution variance in com-

mercialization is due to researchers versus place effects. The share of the cross-institution variance that would be

eliminated if all institution effects were the same can be written as:

Svar
university = 1− Var(ᾱu)

Var(yu)
. (10)

29 It is worth keeping in mind that commercialization propensity is not collinear with university prestige. Appendix Figure 6 reports
estimates from a regression of predicted patent citation rank over the period under study and the U.S. News and World Report
school ranking in 2021, which estimates a coefficient of 0.47 and an R-2 of 0.2.
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Similarly, the share of the variance that would be eliminated if all researcher effects were the same can be written

as:

Svar
researcher = 1− Var(γu)

Var(yu)
. (11)

Plugging in the empirical analogs of ȳu, ᾱu, and γu allows us to construct the estimates in Table 4. We find that 19%

of the variance would be eliminated if university effects were equalized, and 88% would be eliminated if researcher

effects were eliminated.30 We also document a weak positive correlation between researcher and institution effects,

with researchers who commercialize more sorting to universities that we estimate to have positive commercialization

effects.31

4.3 Event study estimates

Figure 7 documents our main event study results. We plot the relative time coefficients (the θr(i,t) terms) from

Equation (9). The dependent variable in this analysis is the predicted number of patent citations within five years to

each of the author’s papers published in a given year. We take the inverse hyperbolic sine transform of these predicted

citations due to the skewness of this measure. Finally, we sum over all papers written in the same year (so that authors

who are more prolific in a given year will have more predicted citations, all else equal). Since these coefficients are

only identified up to a constant term, we normalize r(i, t) =−1 to be zero. The 95% confidence interval around these

estimates, derived from bootstrapped standard errors clustered at the author level, are indicated with the shaded area.

The figure shows a distinct pattern: after no clear trends in the decade prior to the move, there is a stark increase

in the move year and the two years afterward. Academics moving to universities with more of an orientation towards

commercializing science end up producing research that, based on the publication outlet, is predicted to have more

patent citations. After the initial climb, the coefficients remain fairly stable in the 0.25 to 0.35 range.

These magnitudes are similar, though not identical to the additive decomposition results reported above. This

is because the additive decomposition represents a slightly different thought experiment for several reasons. First,

it analyzes the differences in commercialization rates across groups of universities, rather than averaging Suniversity

across all individuals who move. Second, it combines all pre- and post-move years, rather than than separately

estimating each relative year. And finally, the additive decomposition is estimated on both movers and non-movers,

whereas the event study only uses movers.

In Figure 8, we plot the results separately for researchers who move to a school that commercializes more (panel

(a)) and researchers who move to a school that commercializes less (panel (b)). The degree of convergence in both

panels is similar; if anything we see slightly more convergence for downward moves. This suggests that movers

30 Note that these quantities do not sum to one because of the covariance term, which is positive.

31 Our institution effects are estimated with noise, which as described by Andrews, Gill, Schank, and Upward (2008), can bias the
correlation between person and institution effects downward, a phenomenon known as “limited mobility bias.” To avoid this, we
follow the advice of Andrews, Gill, Schank, and Upward (2012) and restrict to institutions estimated with at least 25 movers.
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pivot their research in both directions, depending on the type of move. Researchers who move to universities that

commercialize more start to publish in journals that are more frequently cited by patents; the reverse is true for

researchers who move to universities that commercialize less.

4.4 Additional outcomes

Actual five-year patent citations. We then repeat the analysis, looking at the actual patent citations received by

the papers in the five years after their publication. As we discussed to in Section 3, this five-year cumulative measure

poses some challenges in a traditional event study framework. To see why, we return to the example of a researcher

who moves universities in the year 2000. A paper published in 1998 (before the move) will be allowed to accrue

citations in the years 1998, 1999, 2000, 2001, 2002. At least two of those years (2001 and 2002) are post-move (2000

is ambiguous). Thus, while the paper was clearly written pre-move, the outcome of five-year citations contains some

citations that were received post-move. This makes it challenging to classify five-year citations to a paper written in

1998 as a purely pre-move or post-move outcome. This challenge will exist for all papers written between 1996 and

1999. We refer to this four year window as the “contaminated period.” More generally, for a move that occurs in year

t, pre-move years t −4 to t −1 are contaminated.

Despite this challenge, Figure 9 presents results for this outcome. Panel (a) again plots the change in mover i’s

commercialization activity (now measured by actual five-year patent citations) before and after the move against the

destination-origin difference in commercialization activity (now also measured by actual five-year patent citations).

We again define the pre-move period as relative years -10 to -1 and the post-move period as relative years 1 to 10. We

find a slope of 0.2, which suggests that about one-fifth of heterogeneity in commercialization is due to place-specific

factors.

Panel (b) presents the event study results. We see no evidence of a pre-trend, despite this “contamination” issue.

This suggests that convergence does not begin until the author starts writing new papers at their destination university.

The effect sizes are similar to those that we see in our predicted citation measure, with movers adopting around 25 to

50% of the commercialization propensity of their destination university. Again, this suggests that the key mechanism

is the underlying research itself changing post-move. If the university were better at attracting commercial attention

to the research, holding the research itself fixed, we would expect the effect to be larger for actual citations than for

predicted citations, since the predicted citations outcome shuts this channel down. In addition, we might expect to see

some effect starting in the “contaminated window” of the pre-period, because the destination university could attract

more attention to work written at the origin. However, the lack of pre-trends suggests this is not occurring.

Venture capital-backed patent citations. One subset of patent citations of particular interest are those granted

by venture capital-backed companies. Venture capital-backed firms have been long understood to be particularly

innovative (Kortum and Lerner, 2000). In many cases, the commercialization of early-stage academic research has

been due to the simultaneous provision of capital, mentorship, and governance by venture firms, as evidenced by
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successes such as Genentech, Netscape, and Moderna. We therefore recalculate our five-year patent citation measure,

only counting patent citations that we are able to match with firms that received venture capital financing between

1968 and 2017. We link patents to firms based on company and city names and assignee IDs and call this set of patents

“venture-backed.” While the results are noisier (due to the smaller sample size), they are similar to our baseline five-

year results. We observe a slope of 0.16 in panel (a) of Appendix Figure 11, suggesting that roughly one-fifth of

commercialization heterogeneity on a move is due to place-specific factors; the implied jump in the event study in

panel (b) ranges from 0.25 to 0.5, though with wider confidence intervals due to the sparser measure.

Patent-paper pairs. We also investigate the effect on patent-paper pairs. As discussed in Section 2, these repre-

sent papers that had an associated patent filed to protect the same discovery, by the same authors, at roughly the same

time. The slope of 0.17 in panel (a) of Appendix Figure 12 suggests that nearly one-fifth of the commercialization

heterogeneity as measured by patent-paper pairs is due to place specific factors. However, the event study results in

panel (b) do show some pre-trends in the earlier years, warranting some caution in interpreting these results.

Scientific Advisory Boards. Lastly, we look at scientific advisory board (SAB) participation. We look at the

propensity for researchers to join an SAB or an “SAB+” (which we define as an SAB or a regular firm board or a firm

founder). Thus, the outcome is a 0/1 indicator for joining in a given year. Appendix Figure 13 and Appendix Figure

14 show the results. Given the sparsity of the outcome (we match only ∼2,000 board join events to the 1,720,112

author-years in our sample), the results are unfortunately too noisy to draw many conclusions.

4.5 Robustness

In this section, we present several robustness checks which we believe bolster our main results.

Measurement error in coding moves. We begin by exploring how measurement error affects our estimates.

As first discussed in Section 2, we randomly drew 100 movers in our sample and attempted to use faculty web pages,

CVs, and LinkedIn profiles to track whether we had coded their move years correctly. Of the 75 movers we were able

to locate, 68 had indeed moved to and from the universities we identified (91%). Panel (a) of Appendix Figure 15

then shows whether we correctly coded the move year correctly for those 68 movers. On average, we code movers

as moving too late (we are most frequently off by one year). This is not surprising, given that we use publications

(which may lag) to track moves.

To understand how this measurement error might affect our results, we simulate a very simple event study where

movers experience a one-time convergence of 0.25 in relative year 1 (in other words, we set θ̂r = 0.25 for all r ≥ 1).

That event study is shown in blue in Panel (b) of Appendix Figure 15. Then, to understand how our timing errors

affect the results, we re-assign move years so that the error in move years matches the empirical distribution in panel

(a). The results from that event study are shown in red. Unsurprisingly, this leads to an increase that begins earlier,
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with a slight uptick in relative year -1 and a large uptick in relative year 0. This matches what we see in our event

study results, and suggests that the fact that the effect manifests so early is likely due to measurement error.

Finally, we add in an additional 9% of movers who do not move (and thus have θ̂r = 0 for all r) and re-run the

event study. These results are shown in green. The effect size is dampened by about 10%, suggesting that our true

effects could be about 10% bigger if we excluded false movers. To the extent that the 25% of authors that we could

not locate are disproportionately like to be non-movers, then this dampening effect could be even larger.

Focusing on last authors. Next, we explore different “types of moves.” Some moves are a professor moving

from one position to another (as in the Carolyn Bertozzi example in the Introduction). However, other moves may

represent different types of career steps; for example, a PhD student moving to a postdoc, or a post-doc moving to an

assistant professor role. The results may be in some sense cleaner if we only include moves of principal investigators,

whom are moving from one professorial role to another. One way to proxy for this would be to consider only those

who are last authors before the move. It is common practice in scientific publications to have the senior author appear

last, often regardless of his or her contribution. This step reduces the number of movers who are PhD students or

postdocs at their origin institutions, and leaves us with 7,520 movers. The results are shown in Appendix Figure 16,

and look very similar to our main results. In unreported analyses, we only include first and last authors, as well as

only those above a threshold number of publications. The result are similar.

Alternative citation windows. In Appendix Figure 17, we replicate our event study for actual citations, looking

at citation windows from one to ten years. The one and two-year citation windows are noisy, reflecting the fact that

over one to two years, the vast majority of papers receive zero citations. The seven- and ten-year citation windows

are also noisy, because we start to lose a larger share of our sample (when computing ten-year citation windows, any

paper written after 2011 must be dropped, because our data runs through 2021). Still, the broad patterns look similar

across the different citation windows.

Front page versus in-text citations. Next, we disaggregate the front-page citations from the in-text citations.

Specifically, we replicate the event study in Figure 9b, using five-year front-page citations and five-year in-text ci-

tations. The results are shown in Appendix Figure 18 and Appendix Figure 19, and look very similar to our main

results.

4.6 Correlates of institution effects

Thus far, we have documented that universities matter for commercialization: institution effects explain 15-25% of

the total heterogeneity that we observe in research commercialization. A natural next question is: why? What makes

some universities “better” in this dimension than others?

We take a first step toward answering this question by correlating our estimated place effects γ̂u with different

university characteristics. We separate these characteristics into two broad groups. First, we have TTO features,
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sourced from the AUTM data, which describe characteristics of the university’s TTO. These variables include things

like the number of licenses issued, legal fee spending, etc. Second, we have local venture capital features. These

are less specific to the university, and more related to the university’s geography. We source these variables from

Refinitiv, and aggregate the variables up to the county level. These variables are mostly focused on measure the

amount of VC activity in the area, and include measures of transaction count and total funding.

For each feature, we begin by running a bivariate OLS regression, where the dependent variable is our estimated

university fixed effect, and the independent variable is a single university characteristic. Because our university effects

are estimated with noise, we employ an Empirical Bayes adjustment (Morris, 1983) to shrink the estimates toward

the mean (see Appendix D and Appendix Table 1 for more details). The results of these bivariate regressions can be

seen on the left-hand side of Figure 10. We then run a second regression, where we regress our fixed effects on all

of the university characteristics, and let LASSO select the characteristics. We then take these selected covariates and

estimate a post-LASSO OLS regression. These post-LASSO coefficients are shown in the right half of Figure 10.

Only four variables are selected by the LASSO procedure, and only one (count of active licenses) is marginally

significant in the post-LASSO OLS results. We suffer from a small sample size (221 observations, after we restrict

to TTOs for which we have all of the characteristics). Still, the results suggest that (a) universities with more active

licenses do better, and (b) local availability of venture capital funding helps. Taken together, we think this speaks to

the fact that institution-level factors and geography are both important for successful commercialization.

5 Conclusion

Given the potential importance of academic research for both regional development and overall economic growth,

encouraging the diffusion of university-based discoveries into the economy is an important policy question. Looking

across universities, research and commercialization activities such as start-up formation vary tremendously. We

take a first step towards unpacking this heterogeneity by analyzing how the propensity of academic research to spill

over to commercial innovation changes when academics move across universities. We see an abrupt discontinuity

in orientation towards commercialization when individuals move institutions. Our baseline estimates suggest that

at least 15-25% of geographic variation in commercial spillovers from university-based research is attributable to

place-specific factors. This pattern remains robust when we use multiple measures of commercial orientation and

measurement schemes.

The analysis raises many questions for future research. One relates to the drivers of shifts in the location of

academics. Earlier literature has highlighted the importance of funding availability (Azoulay, Ganguli, and Zivin,

2017; Bernstein, 2014), religious persecution (Moser, Voena, and Waldinger, 2014; Waldinger, 2012), scientific pro-

ductivity (Coupé, Smeets, and Warzynski, 2005; Ganguli, 2015; Lenzi, 2009; Zucker, Darby, and Torero, 2002), and

personal circumstances.32 Understanding the extent to which the benefits of moves to more commercially oriented

32 An early paper found that the presence of children in a household can constrain scientific mobility, particularly amongst women
(Shauman and Xie, 1996). Building on these insights, Azoulay, Ganguli, and Zivin (2017) provides a more comprehensive study of
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schools are anticipated by academics seems ripe for further exploration.

A second topic is motivated by the persistent differences in the propensity to commercialize across schools.

Understanding the institutional features that lead to these differences remains challenging. As suggested in the intro-

duction, much of the academic literature has focused on the formal rules governing ownership and royalty sharing.

Our descriptive results suggest that both the university and the geography matter. Moreover, conversations with prac-

titioners suggest the importance of other considerations, from the presence of faculty role models to the savvy of

the technology transfer offices. Given the importance of academic science as a driver of economic growth, these

questions deserve more attention.

personal and professional factors affecting mobility. Subsequent papers have continued to build on the literature (e.g. Liu and Hu
(2021) on collaborations incentivizing moves; Laudel and Bielick (2019) on differences in mobility decisions across fields).
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Bikard, Michaël and Matt Marx. 2020. “Bridging Academia and Industry: How Geographic Hubs Connect
University Science and Corporate Technology.” Management Science 66 (8): 3425–3443.

Birkle, Caroline, David A. Pendlebury, Joshua Schnell, and Jonathan Adams. 2020. “Web of Science as
a Data Source for Research on Scientific and Scholarly Activity.” Quantitative Science Studies 1 (1):
363–376.
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Figures and Tables

(a) Original journal article

(b) Web of Science XML file

(c) SQL tables

Figure 1: Measuring university affiliations of authors: An example

Notes: Example taken from Danino et al. (2015)
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Figure 2: Author-year panel construction

Notes: This diagram tracks the “flow” of authors through the various sample restrictions we impose to isolate biomedical movers (green nodes)
and non-movers (blue nodes). Summing across the values in the green nodes generates the total count of movers in our sample, 14,213. Summing
across the values in the blue nodes equates the number of non-movers, 499,705. The same statements are true for the count of author-years, which
are listed in the periphery of each colored node. The flowchart is partitioned into three gray regions, and is labeled as such. However, the first
step in our sample construction is to include only biomedical researchers. The leftmost region shows the authors we capture from the basic email
panel approach described in Section 2.3. This method begins with the author-year email skeleton shown in Table 1. The rightmost gray region
displays the authors we add to our sample by examining authors that never list corresponding email addresses, and so would never appear in our
email panel skeleton. The central gray region takes the “scraps,” or authors difficult to code from each preceding procedure, and uses changes in
ZIP codes to add additional movers to our sample. These approaches are described in Appendix Section B.
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Figure 3: Citations from origin and destination by relative year

Notes: This figure shows the average count of five-year patent citations that a mover’s papers accrue by relative year, plotted separately for
citations from their geocoded origin (blue circles) vs. destination (green diamonds). When counting five-year citations, there is a five-year period
where papers written at a mover’s origin can accrue citations at their destination. This window, from relative year -4 to relative year 0, is shaded
gray to emphasize the possibility for “contamination”. A dashed red line marks the beginning of this potentially contaminated window, and a sold
red line marks its end. This figure uses the publication record of our full sample of researcher movers (N = 14,213), which amounts to a total of
757,066 author-papers published ten years pre- or post-move.
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(a) Map of commercialization propensities
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(b) Commercialization propensities across institutions

rank Institution
1 Whitehead Institute
2 City of Hope
3 Dana-Farber
4 Lee Moffitt
5 Sloan Kettering
6 Sanford Burnham
7 Cold Spring Harbor
8 Scripps Research
9 Rockefeller University

10 Salk Institute

(c) Top institutions by commercializa-
tion propensity

rank University
9 Rockefeller University

13 Rensselaer Polytechnic
14 Massachusetts Institute of Technology
18 University of Texas Southwestern
19 Rice University
20 Case Western
21 Stanford University
22 Princeton University
23 Harvard University
24 Georgia State University

(d) Top universities by commercializa-
tion propensity

Figure 4: Variation in research commercialization

Notes: In all four panels, though aggregated at different levels, the outcome variable is the average of the inverse hyperbolic sine (IHS) of
predicted five year patent citations. Panel (a) shows geographic variation in average predicted patent citations across “economic areas,” as defined
by the U.S. Bureau of Economic Analysis. Areas with darker shading are those with higher rates of commercialization. Panel (b) is a histogram
of the same outcome, but aggregated to the institution level instead of economic area. There are a total of 265 institutions included in this figure.
Panel (c) lists the ten institutions with the highest average predicted citation rates and panel (d) lists the top ten universities, a subset of institutions,
with the highest average predicted citation rates. Importantly, the commercialization rank computed for panels (c) and (d) are equivalent, and
based on the institutional-level average– e.g., Rockefeller University is the ninth-ranked institution and the first-ranked university.
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Figure 5: Change in commercialization propensity by size of move: Predicted five-year patent citations

Notes: This figure is a binned scatterplot that compares an individual’s change upon moving in predicted five-year patent citations with the
difference in average institution-level patent citations between their destination and origin institutions. For each mover, we compute two values.
First, we separately calculate the average count of IHS predicted five-year citations for papers published pre- and post-move, and report the
difference. We call this the change in an individual’s commercialization level. Second, we generate δ̂i by taking the institution-level differences,
as shown in Figure 4. We call this the change in the institution’s commercialization level. The x-axis displays ventiles of this institution-level
change, while the y-axis plots, for each ventile, the average change in individual commercialization. The slope of the line of best fit is reported
above the graph. There are N = 130,348 author years in our sample, coming from the sample of 14,213 movers.
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Figure 6: Distribution of destination-origin differences in commercialization propensities

Notes: This histogram shows the distribution of destination-origin differences in commercialization propensity (δ̂i) across movers. For each
author-publication (N = 16,380,070), we predict the number of citations from eventually-granted patents filed within five years of publication
by examining the journal it is published in. For each mover in our sample (N = 14,213), we define the difference between their destination and
origin institution IHS five year citation measure as δ̂i, which is plotted in this histogram. The mean and standard deviation of this distribution is
displayed in the top right corner.
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Figure 7: Event study: Predicted five-year patent citations

Notes: This figure is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit is the
inverse hyperbolic sine (IHS) of the predicted count of citations received from patents filed within five years of publication for each of an author’s
papers in a given year. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination mean commercialization is plotted
on the y-axis. The relative year -1 is omitted and normalized to zero. Standard error estimates are denoted by the shaded region around the plotted
coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples authors, with replacement, to construct estimates
of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution of the event study coefficients. The standard deviation of
this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval plotted above. There are N = 130,348
author years in our sample, coming from the sample of 14,213 movers. The red line denotes the researchers’ move years.
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(a) Moves up
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(b) Moves down

Figure 8: Comparing moves up and moves down

Notes: Each panel is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit is the
inverse hyperbolic sine (IHS) of the predicted count of citations received from patents filed within five years of publication for each of an author’s
papers in a given year. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination mean commercialization is plotted
on the y-axis. The relative year -1 is omitted and normalized to zero. Panel (a) is estimated using authors who move up (N =6,707), or those for
which δ̂i > 0. Panel (b) is estimated using authors who move down (N = 7,478), or those for which δ̂i < 0. Standard error estimates are denoted
by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples authors,
with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution of the event study
coefficients. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval
plotted above. The red line denotes the researchers’ move years.
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(a) Change in commercialization propensity by size of move
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(b) Event study

Figure 9: Observed five-year patent citations

Notes: Panel (a) is a binned scatterplot that compares an individual’s change upon moving in five-year patent citations with the difference in
average institution-level patent citations between their destination and origin institutions. For each mover, we compute two values. First, we
separately calculate the average count of IHS five-year citations for papers published pre- and post-move, and report the difference. We call this
the change in an individual’s commercialization level. Second, we generate δ̂i by taking the institution-level differences, as shown in Figure 4.
We call this the change in the institution’s commercialization level. The x-axis displays ventiles of this institution-level change, while the y-axis
plots, for each ventile, the average change in individual commercialization. The slope of the line of best fit is reported above the graph. Panel
(b) is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit is the inverse hyperbolic
sine (IHS) of the observed count of citations received from patents filed within five years of publication for each of an author’s papers in a given
year. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination mean commercialization is plotted on the y-axis.
Because levels of event time are collinear when estimated together, we preemptively omit data from relative year = -5, forcing the value of its
event study coefficient to zero, which can be seen on the graph without a standard error estimate. We normalize this particular relative year
because it is the last year, pre move, that all five-year citations to papers written at a researcher’s origin also accrue while the researcher is at their
origin institution. The contaminated region is shaded in gray and a red line denotes the researchers’ move years. Standard error estimates are
denoted by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples
authors, with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution on each
coefficient. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval
plotted above. Each panel is estimated using 11,437 movers and 81,452 mover-years. Note, the number of movers in this analysis is less than
that of Figure 7, its analog; because our sample ends in 2020, the count of five-year citations can only be calculated up to 2015, and resultantly,
we cannot use researcher moves that occur from 2015 to 2020.
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Figure 10: Correlates of average institution effects

Notes: This figure shows results from regressing the estimated institution effects (per Equation 2) on various place-based factors. To minimize
noise in the institution effect estimates, we first employ the empirical Bayes method described in Appendix Section D. All factors are standardized
to have a mean of zero and standard deviation of one. The left panel shows the coefficient from a bivariate regression of IHS predicted five-year
journal citations against each factor, individually. The right panel shows the coefficients from a multivariate regression, following a LASSO
selection procedure. Specifically, a 10-fold cross-validation procedure that is designed to minimize mean squared error selects the optimal
penalty weight to apply to the sum of the coefficients. Online Appendix Figure 20 shows the explicit coefficient results from this cross-validation
procedure. The variables calculated to have non-zero coefficients are used in a separate OLS regression. Horizontal bars show the 95% confidence
interval. The sample used in both panels are the 221 TTOs for which all covariates are available. Features of TTOs are retrieved from the AUTM
data. For each TTO, AUTM variables are averaged across the years in our sample, from 2000 to 2021. Features of local venture capital funding
are retrieved from Refinitiv, which compiles information on county-year level deals from securities filings, news stories, and anecdotal accounts.
The venture capital covariates are summed at the county or county-year level.
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Restriction Observation Count
Contributor-publications 300,691,280
Contributor-publications where role==“author”a 280,429,056
Author-publications with DAIS IDs 280,323,438
Author-publications with Emails and DAIS IDs 47,739,862
Author-publications with Emails and Numeric DAIS IDs 47,739,777
Author-publications with numeric DAIS IDs and valid domainsb 7,417,802
Author-year-organization affiliationsc 4,204,781
Author-years after randomly breaking tiesd 4,138,812
Author-years after including only biomedicale authors 1,639,195

a Other possible roles are “book,” “book editor,” “book corp,” “anon,” and “corp”
b Note the vast majority (> 99%) of observations discarded here are non-.edu emails
c Each organization here is either an AUTM TTO assigned via email or “missing”
d 60,872 author-years have a conflict. 59,624 are two-way ties, 1,212 are three-way ties, and 36 are

four-way ties. This yields 30,225 author-years with at least two conflicting affiliations
e Defined as authors with 50% or more of their publications listing a PubMed ID

Table 1: Author-year sample construction

Notes: This table lists the sample restrictions we apply to the Web of Science data to code movers and non-movers. This process pertains to
authors identified via our e-mail panel based approach, described in Section 2.3. The remainder of our sample construction process is illustrated
in 2 and detailed in Appendix Section B.

(1) (2)
Non-movers Movers

mean mean
Total publications 12.92 60.88
Total USPTO patent citations 8.13 43.34
Total publications cited by 1+ USPTO patents 0.65 2.76
Share of authors cited by 1+ USPTO patents 0.22 0.52
Share of publications cited by 1+ USPTO patents 0.06 0.05
USPTO citations per publication 0.39 0.45
Career length (years) 2.41 8.55

Outcome measures
Average annual count of patent cites 0.64 1.44
Average annual count of predicted patent cites 0.41 0.88
Average annual count of papers paired with patents 2.44 6.15
Number of citations from VC-backed patents 0.05 0.12
Average annual SAB memberships 0.00 0.00
Observations 499,705 14,213

Table 2: Author-level summary statistics

Notes: This table tabulates the means for movers vs. non-movers (columns) for several measures of research commercialization (rows). For total
publications, total USPTO patent citations, and total number of publications cited by patents, we take the sum across all years for each author.
The share of publications cited by 1+ USPTO patents is the author’s total number of cited papers divided by their total number of publications
over all years. USPTO citations per publication is the number of citations received by all papers divided by the total number of papers over all
years. Career length is calculated as the difference between the last and the first calendar years in which an author appears in the Web of Science
publication data.
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Top & Top & Top & Above/Below
Bottom 5% Bottom 10% Bottom 25% Median

Difference in IHS commercialization
Overall 1.02 .78 .56 .50
Researchers .81 .60 .45 .42
Institutions .21 .18 .11 .08

Share of difference due to
Researchers .79 .77 .80 .85
Institutions .21 .23 .20 .15

(±.11) (±.10) (±.09) (±.08)

Table 3: Additive decomposition of IHS commercialization

Notes: This table is based on estimation of Equation (1), where the dependent variable yiut is the predicted count of five-year patent citations
to author i’s papers in year t whose main academic affiliation is at institution u. Each column defines a set of universities R and R′ based on
commercialization rank ŷu. We rank institutions by averaging first across researchers within publication years to get ŷut and then averaging across
publication years to obtain ŷu. The first row reports the difference in average commercialization (ŷR − ŷR′ ). The second row reports the difference
in commercialization due to researchers (α̂R − α̂R′ ), and the third row reports the difference in commercialization due to universities (γ̂R − γ̂R′ ).
The fourth row reports the share of the difference in commercialization due to researchers (Ŝresearcher(R,R′)) and the fifth row reports the share
of the difference in commercialization due to universities (Ŝuniversity(R,R′)). The fifth row reports the 95% confidence interval constructed from
bootstrapped standard errors on the share of geographic variation due to institutions. Standard errors are calculated using 50 repetitions of a
resampled author-year panel; this resampling generates variation in both institution rank and levels. The sample is movers and nonmovers (N =
1,720,112 author-years).

Cross-institution variance of mean:
IHS commercialization .043
Institution effects .005
Researcher effects .035

Correlation of average institution and researcher effects .126
(± .116)

Share variance would be reduced if:
Institution effects were made equal .193

(± .081)
Researcher effects were made equal .882

(± .028)

Table 4: Variance decomposition of IHS commercialization

This table is based on estimation of Equation (1), where the dependent variable yiut is the predicted count of five-year patent citations to author
i’s papers in year t whose main academic affiliation is at institution u. The results from a variance decomposition of yiut are shown. This method
is discussed in Appendix Section B. The first row reports the variance in ŷu, the second row reports the variance in γ̂u (institution effect), and the
third row reports the variance in α̂u (researcher effect). The correlation coefficient on γ̂u and α̂i(u) is given by row four, accompanied by a 95%
confidence interval constructed from the standard error obtained by an author-level re-sampling procedure with 50 bootstrap replications. The
second half of this table displays the results from a counterfactual exercise that estimates the share of the variance in ŷu that would be removed if
the casual researcher or institution effects were equalized across institutions. The fifth row reports the share of the variance that would be reduced
if institution effects were equalized, again accompanied by a 95% confidence interval constructed by an empirical bootstrap. The sixth and final
row reports the researcher effect analog. The sample is movers and nonmovers (N = 1,720,112 author-years). Because γ̂u can only be identified
via movers, its precision relies on the number of movers per u. To address this, we restrict the sample to include only schools with at least 25
movers (N = 161 institutions). This choice is discussed further in Appendix Section D.
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Online Appendix for The Wandering Scholars:
Understanding the Heterogeneity of University Commercialization

By Josh Lerner, Henry Manley, Carolyn Stein, and Heidi Williams

A Collection of supplemental data

Patent-paper pairs. Building on work by Ducor (2000), Murray (2002), and Murray and Stern (2007), we exam-
ine the propensity of authors’ published research to be part of a “patent-paper” pair. This has become an increasingly
popular metric for capturing the commercialization of academic science (see, for instance, Ahmadpoor and Jones
(2017) and Fleming, Greene, Li, Marx, and Yao (2019)). The idea behind these patent-paper pairs is that a given
discovery can sometimes be disclosed by the same research team in both a scientific paper and a patent, but doing so
requires careful orchestration of the relative timing of the two disclosures. Patenting is generally concomitant with
publication, as there is only a one-year grace period during which patentability is not invalidated by prior publication
(35 U.S.C. §102(b)(1)). One advantage of this outcome is a clean prediction of when they will occur: patent-paper
pairs occur closely clustered in time, if they occur at all. We identify patent paper pairs through 2021, using the July
2022 release of the Reliance on Science data. We use the confidence score measure assigned by Marx and Fuegi,
which estimates the quality of the match, to weight the observations in the analyses.

Scientific Advisory Board memberships. As a third measure of commercial spillovers, we collect data on
memberships on Scientific Advisory Boards (SABs) from Capital IQ. Capital IQ, a unit of S&P Global, covers both
public and private firms; our version of the data includes 3,807 companies, many of which are backed by venture
capitalists.1 The database lists current and former SAB members and their biographies. We use these biographies
to extract board members’ current and past affiliations, based on a combination of text parsing and hand-coding.
We then use the combination of names and affiliation(s) to match SAB members back to the Web of Science data.
UpWorkers helped to eliminate cases where practitioners held adjunct positions at universities, served on university
boards, or held other academic connections that do not constitute traditional faculty roles.

Through this process, we identify 20,969 board member-company pairs and 15,824 unique board members.
Around 1,300 individuals serve on SABs for more than one company; 15 individuals serve for more than 10 compa-
nies. Faculty members often serve on the SABs of companies that seek to commercialize their knowledge, even in
cases where they also are founders and even serve on traditional boards. Linking back to our example of Professor
Bertozzi, she serves on five SABs in our data. The involvement of faculty on SABs has been much less scrutinized
than patent-based metrics: one exception is Stuart and Ding (2006), who analyze data on 727 scientific advisors.

B Details on sample construction

To increase the count of movers in our sample, we follow a multistep procedure illustrated in Figure 2. First, we code
12,211 movers using an author-year panel of corresponding e-mail address stems. Described in Section 2.3, it is a
requirement that we observe one’s move in the data to code them as a mover. That is, there cannot be any “hole” in
their e-mail-based affiliation between the move. But in cases where there are only one-to-three years to fill between
the move, we think these authors are movers that we would like to add to our sample.2 We incorporate additional
information from the Web of Science (the preferred organization field, described in Section 2.3) to attempt to fill the
affiliation gaps for these candidate movers. In some cases, this helps to tell us the exact year in which they leave their

1 The Capital IQ data are sourced from Capital IQ’s own researchers, S&P’s Compustat, and a variety of additional data providers,
including Preqin, Crunchbase, CreditSafe, and Dun & Bradstreet.

2 We might worry that an author moves more than once if there are many affiliation-years to impute.
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origin. If using organization data is not enough to close3 the gap, we set the candidate mover aside for an additional
imputation step described later.

Until this point, an author could only make it into our sample if they were ever listed as the corresponding author
on a publication, and that publication shared their e-mail address. This approach to coding movers is helpful in
bypassing the noise in the Web of Science organization field and the “multiple affiliations problem” described in
Section 2.3. However, it is also quite restrictive and potentially misses out on movers that were never corresponding
authors. More generally, one might also worry that using e-mail addresses to code movers is too narrow since
Appendix Figure 4 shows that even in 2020 less than a third of all publications link a corresponding email. To
address this, and in hopes of adding to our sample, we examine 5,324,663 authors who never appear in our e-mail-
based panel. We start by seeing if any of these authors could be added to our sample as-is; meaning, their existent
organization record is enough to determine where they sat in each year. There are 1,347 movers and 165,812 non-
movers that are added to our sample with this approach. The top right panel of Figure 2 shows this step. Like before
with the e-mail panel, there are some authors that we know are movers but cannot add to our sample because there
is a gap in their organization record. As a final attempt to include these movers in our sample, we pool them with
the candidate movers identified via the e-mail approach who also need additional imputation. Figure 2 shows this as
two arrows (one from the top left e-mail based panel and one from the top right “email-less” panel) pointing into the
same node in the bottom center panel. There are 20,729 candidate movers that we could add, at maximum.

The final step in our procedure is to use organization ZIP codes to fill affiliation gaps for the remaining 20,729
candidate movers. The idea is that if we know a mover’s origin and destination ZIP codes, we can use a change in
ZIP codes to code the move-year and solve the same imputation problem. In general, the Web of Science ZIP code
data is noisy, often identifying multiple codes for an author within the same year. This is especially true around the
time of the move, which makes it challenging to confidently discern which ZIP code change is the one that encodes a
move. To get around this, we let the first year with non-missing ZIP code data correspond to the mover’s origin and
the last year of non-missing data correspond to their destination. Then, for each year we need to fill an affiliation for,
we count the number of times there is a match between the origin ZIP codes and the ones listed between the move.
We repeat this process for the destination ZIP codes. We then compare these counts. For example, if there are two
ZIP code matches to one’s origin and zero to one’s destination, we code them to still be at their origin. In case of ties,
and in accordance with move-timing work described in Section 2.3, we code them to be at their destination. Only
3,349 of the 20,729 candidate movers ever have a ZIP code, of which 655 are coded as movers.

Taken together, this procedure codes 12,211+1,347+655 = 14,213 movers and 337,178+165,812 = 499,705
non-movers, corresponding to a total of 1,720,112 author-years.

C Variance decomposition

Like in Finkelstein, Gentzkow, and Williams (2016), we provide results from a variance decomposition of our main
outcome: predicted five-year patent citations. To begin with, we use the estimates generated by Equation (1)— ŷit ,
γ̂u, and α̂i— and average each to the institution-year level, and then again to the institution level. This produces
a dataset with ŷu, γ̂u, and α̂u for each institution with a non-zero count of movers (N = 248). Then, the share of
cross-institution variance that would be reduced by equalizing researchers across universities is written as

Svar
researcher = 1− Var(γ̂u)

Var(ŷu)
(12)

where the reduction in variance is modeled to depend on only differences in institution effects, scaled by the overall

3 Here, “close” does not necessarily mean every missing affiliation year between the move is filled. Instead, it means the move year
is observed in the data. Suppose we observe Josh Lerner at school A in 2012 and at school B in 2016, and so we need to back out
where he was 2013-2015. Learning that Josh was at school A in 2015 or that he was at school B in 2013 is enough to know the year
he moved in.
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variance across institutions. This means that any variance that remains is attributed to differences in the stock of
researchers across universities. The analog for variance reduction as a function of equalizing place-specific factors is
written as

Svar
university = 1− Var(α̂u)

Var(ŷu)
. (13)

Note, unlike Sresearcher and Suniversity, Svar
researcher and Svar

university are not additive, meaning they will not sum to one
so long as Cov(α̂u, γ̂u) > 0. One additional caveat is that because Equation (1) is identified via movers, our ability
to precisely estimate γu depends, somewhat, on the number of movers observed at u. We want to minimize the
extent to which cross-institution variance in ŷu is driven by noise resulting from few movers, or “limited mobility
bias.” In particular, we know from Equation (12) that as Var(γ̂u) increases, Svar

researcher decreases. The same is true for
Cov(α̂u, γ̂u), where for a fixed Var(ŷu), noise generated by few movers will make γ̂u either an over- or under-estimate
of γu. And because we take institution and researcher effects as additive, if γ̂u > γu we know α̂u < αu.

Empirically, Appendix Figure 21 shows that the number of movers varies greatly across schools. To minimize
noise-driven mistakes in γ̂u, and in accordance with Andrews, Gill, Schank, and Upward (2012), we restrict the
variance decomposition to include only institutions with 25 movers. Analysis in Appendix Section D explores the
sensitivity of this choice.

The results from this exercise are shown in Table 4 and are generally consistent with estimates presented by the
event study (Figure 7) and additive (Table 3) analogs. Specifically, it is estimated that ∼ 20% of the cross-institution
variance in predicted citations is attributable to variance in institution effects.

D Empirical Bayes adjustment

One additional step we take to minimize noise in our estimate of γ̂u is to employ the empirical Bayes method (Morris,
1983). This is especially important to take seriously not just the distribution of institution effects, but also to make
comparisons across institutions based on their levels. Broadly, this approach trades off sampling variance in the
distribution of the estimated place effects with potential bias induced by their posterior mean. To begin, we assume
that γ̂u is an unbiased estimate of γu with known variance s2

u. Next, we assume that the latent parameters γu are
randomly drawn from the distribution Gγ which is defined in the population of institutions, is normally distributed,
and is invariant to s2

u across institutions. Together, these assumptions yield the hierarchical model:

γ̂u|γ ju,s2
u ∼ N(γu,s2

u)

γu|s2
u ∼ N(µγ ,σ

2
γ ).

(14)

This model has two hyperparameters, µγ and σ2
γ , which we estimate by method of moments as:

µ̂γ =
1
U

U

∑
u=1

γ̂u

σ̂
2 =

1
U

U

∑
u=1

(
(γ̂u − µ̂γ)

2 − ŝ2
u

)
.

(15)

The subtraction of ŝ2
u in Equation 15 is a bias correction for the sampling variance of γu. Once these two hyper-

parameters are estimated, the empirical Bayes method produces posteriors as:
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γ̂
EB
u = µ̂γ

(
s2

u

s2
u +σ2

γ

)
+ γ̂u

(
σ2

γ

s2
u +σ2

γ

)
. (16)

Appendix Figure 22 shows the result of this adjustment on the distribution of institution effects. Appendix Table
1 explicitly reports the value of select institution effects, pre- and post-adjustment.

Additionally, Appendix Figure 23 runs a horse race between this empirical Bayes method and the recommendation
of Andrews, Gill, Schank, and Upward (2012) to restrict the sample to include institutions with more than 25 movers.
First, Panel (a) plots the estimated Cov(α̂u, γ̂u) and Suniversity generated from increasingly strict restrictions on the
number of movers per institution. The leftmost point on each series is the estimate from the unrestricted sample, and
shows the adverse effects of limited mobility bias. From around 25−75 movers per school, each estimate stabilizes.
A green line shows the number of institutions that remain in each sample, according to the restriction imposed by
the x-axis. Panel (b) takes the blue series from Panel (a) and plots it with an analog computed with institution effects
that have been adjusted by the empirical Bayes method. That is, for every level of the x-axis, each series uses the
same sample of institutions and only differ by whether shrinkage occurs. This exercise teaches us that implementing
shrinkage on the full sample does not arrive the practitioner at the same result as restricting to institutions with > 25
movers. It is not until each institution in the sample has at least ∼ 70 movers that the results from each of these
approaches converge.
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Appendix Figure 1: Multiple affiliations in the WoS by relative year

Notes: This figure plots the share of authors whose publications, within a single publication year, list more than one affiliations. This share is
aggregated across all authors by year relative to one’s move. A red vertical line denotes the move year. The sample of all mover-years, which
includes the move year and ten years before and after the move, is used to calculate this share (N =130,348).
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Appendix Figure 2: Move timing correction

Notes: Shown is the the distribution of move-timing errors encoded by a hand-coded, randomly selected sample of 100 movers from our full
sample of 14,213. By collecting information from curriculum vitae, researcher LinkedIn profiles, and university lab webpages, we can observe
the “ground truth” for the year in which a researcher moved. We use this ground truth and compare it against what we are able to code from the
Web of Science publication records. The x-axis is the difference between the year in which a researcher actually moves and the year in which we
have coded them to move. Per the green bars, the modal move timing error is one year, which informs an ex-post move-year correction procedure
that takes into account the share of publications that list a mover’s destination, one year before we originally coded them to move. The red bars
show the result of implementing our correction procedure. The y-axis in each plot is the count of the hand-coded movers whose difference in
actual and observed move appears in each bin.
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Appendix Figure 3: Share of publications associated with destination institution by relative year

Notes: The full sample of biomedical researcher movers (N = 14,213) is used to plot the average share of a mover’s publications per relative year
that list their destination institution as their academic affiliation. Author-year affiliations are drawn from corresponding email addresses disclosed
on publications; this graph considers all the affiliations that an author might state within a given year, and calculates the share of these that match
their identified destination institution. This value is then averaged over all movers, by relative year. A red line is drawn for relative year zero,
the move year, to indicate the year when there is expected to be a discontinuous increase in the share of publications associated with a mover’s
destination.
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Appendix Figure 4: Email prevalence over time

Notes: This figure illustrates the change in the propensity for publications recorded in the Web of Science to report a corresponding author e-mail
address. Panel (a) plots the count (in millions) of publications with a corresponding email address by publication year (1984-2020). Panel (b)
plots the share of publications with a corresponding email address over the same period. A red vertical line in each panel denotes the first year
in which our panel starts. The sample used to construct these tabulations is the universe of publications in the Web of Science database from
1984-2020.
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Appendix Figure 5: Tabulating move time, calendar time, and event time

Notes: This figure tabulates the three “types” of time used in this paper to identify the effect of place on research commercialization propensity–
move years, publication years, and relative years. The three are collinear by the following relationship: relative year = calendar year - move year.
Using our full sample of (N = 14,213) movers, panel (a) shows the number of researcher moves by publication year (move time), panel (b) shows
the number of movers who publish in each publication year (calendar time), and panel (c) shows the number of movers who publish in each
relative year (event time). Not every mover appears in each calendar year in our sample, and therefore our panel is imbalanced. From Equation
(9), data from panel (b) helps identify publication year fixed effects τt , while data from panel (c) identifies event study coefficients θr(i,t).
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Appendix Figure 6: U.S. World News ranking vs. commercialization rank

Notes: This figure plots institution-level commercialization rank against U.S. World News’ 2021 institution rank. Commercialization rank is
calculated as the average count of predicted citations that researchers affiliated with a given school receive, across all publication years in our
sample (from 2000 to 2020). A solid red line displays the slope coefficient from a regression of commercialization rank on U.S. World News
rank; the value of the slope and R2 are recorded in the top right of the figure. A dashed red line shows the 45o line along these two axes. There
are five schools labeled by name of the graph, each with various ranks. While our full sample spans researchers from 265 institutions, we are
limited in scope by the institutions that have U.S. World News rankings. Because only colleges and universities are ranked by U.S. World News,
we do not include any research institutions or hospitals (e.g., The Broad Institute), leaving a total of 161 institutions (blue dots).
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Appendix Figure 7: Descriptives on researcher moves

Notes: Panel (a) shows the distribution of miles traveled for the researcher moves in our sample. There are a total of 14,213 movers in our
sample, of which 13,266 have origin and destination institutions that each can be geocoded using the python software package geopy. The
geodesic distance between origin and destination institution for these movers is plotted on the x-axis, and the count of movers that move that
distance is plotted on the y-axis. There are four black vertical lines that exemplify the “distance traveled” for four moves. Panel (b) plots the
distribution of move-induced rank change. We link U.S. World News 2021 rankings of institutions to the origin and destination of each mover
and calculate the difference in rank, post-move; this difference is plotted on the x-axis. The count of movers in each rank-change bin is plotted
on the y-axis. Researchers that increase their rank post-move appear to the right of zero. Note, only colleges and universities are ranked by U.S.
World News, and so we do not include any researchers who move to or from research institutions or hospitals (e.g., The Broad Institute), which
leaves a sample of 6,387 movers.
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Appendix Figure 8: Stability in commercialization quintiles over time

Notes: Panel (a) plots quintiles of institution-level predicted patent citations over publication years from 2000 to 2020. These quintiles are
calculated by estimating the distribution of the 2001 institution-level average count of predicted patent citations per publication written by authors
at a given TTO. Then, mean counts of predicted patent citations are calculated over the author-years assigned to each quintile, by publication year.
These quintile means are calculated using both movers and non-movers, totaling 513,918 authors. Panel (b) shows the average count of predicted
citations for a single, randomly sampled TTO within each quintile over time. Only TTOs that appear in every year are eligible to be sampled.
The quintile for which a TTO is sampled from is denoted by the pattern and color of its time series– for example, East Carolina University is in
the lowest quintile and Georgetown University is in the highest. In each panel, a red vertical line denotes 2001 as the publication year used to
construct these quintiles.
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Appendix Figure 9: Lags and citation counts

Notes: Panel (a) shows the CDF of the time between a paper’s publication and its first citation by a patent conditional on the paper being cited
by at least one patent. Patent citations are dated to the year that the patent application was filed. The figure contains the CDF for publications
from all institutions, as well as separate CDFs for papers from each quartile of institutions ranked by total research expenditure (averaged over
years in our data). Panel (b) shows the average cumulative number of patent citations to papers in each year after paper publication, conditional
on the paper being cited by at least one patent. Like panel (a), this figure presents the cumulative citation count for all publications, as well as
the cumulative citations counts for publications from each quartile of institutions ranked by total research expenditure (averaged over years in our
data). The sample for each panel is all cited publications for which we have lag data and affiliation information from publication years between
2000 and 2020 (N = 16,380,070).
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(a) Distribution of commercialization across journals

rank journal publication count average 5-year patent citations
1 2008 SID International Symposium, Technical Digest 545 10.03
2 2007 SID International Symposium, Technical Digest 478 4.78
3 International Electron Devices Meeting 2000, Technical Digest 201 4.71
4 Annual Review Of Immunology 705 4.68
5 Nature Biotechnology 10257 3.65
6 mAbs 1220 3.60
7 Annual Review Of Biomedical Engineering 201 3.60
8 IEEE International Electron Devices Meeting 2004, Technical Digest 251 3.53
9 2007 IEEE International Electron Devices Meeting, Technical Digest 240 3.31

10 International Electron Devices Meeting - 1997, Technical Digest 216 2.90

(b) Ranked fields by commercialization propensity

Appendix Figure 10: Commercialization among the most frequently cited journals

Notes: Panel (a) plots the distribution of average citations within five years of a paper’s publication, across scientific journals. The sample used
to construct this distribution is the universe of papers in the Web of Science database with journal information provided. The mean and standard
deviation of journal-level count of five-year patent citations are denoted in the top right corner of the panel. Panel (b) lists the ten journals whose
publications have the highest average annual count of five-year patent citations (Column 4), by name (Column 2). Annual average count of
publications is included in Column 3.
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Appendix Figure 11: Venture capital-backed patents

Notes: Panel (a) is a binned scatterplot that compares an individual’s change upon moving in five-year venture-backed patent citations with the
difference in average institution-level five-year venture-backed patent citations between their destination and origin institutions. For each mover,
we compute two values. First, we separately calculate the average count of IHS five-year venture-backed citations for papers published pre-
and post-move, and report the difference. We call this the change in an individual’s commercialization level. Second, we generate δ̂i by taking
the institution-level differences, as shown in Figure 4. We call this the change in the institution’s commercialization level. The x-axis displays
ventiles of this institution-level change, while the y-axis plots, for each ventile, the average change in individual commercialization. The slope
of the line of best fit is reported above the graph. Panel (b) is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation
(9), where the dependent variable yit is the inverse hyperbolic sine (IHS) of the observed count of citations received from patents filed within
five years of publication for each of an author’s papers in a given year. Event time is plotted on the x-axis and the rate of convergence to a
mover’s destination mean commercialization is plotted on the y-axis. Because levels of event time are collinear when estimated together, we
preemptively omit data from relative year = -5, forcing the value of its event study coefficient to zero, which can be seen on the graph without
a standard error estimate. We normalize this particular relative year because it is the last year, pre move, that all five-year citations to papers
written at a researcher’s origin also accrue while the researcher is at their origin institution. The contaminated region is shaded in gray and a red
line denotes the researchers’ move years. Standard error estimates are denoted by the shaded region around the plotted coefficients. Standard
errors are computed by a bootstrapping procedure that randomly samples authors, with replacement, to construct estimates of δ̂i and θ̃r(i,t). We
perform 50 bootstrap iterations to form an empirical distribution on each coefficient. The standard deviation of this distribution, for each relative
year, is the standard error used to calculate the 95% confidence interval plotted above. Each panel is estimated using 11,437 movers and 81,452
mover-years. Note, the number of movers in this analysis is less than that of Figure 7, its analog; because our sample ends in 2020, the count of
five-year citations can only be calculated up to 2015, and resultantly, we cannot use researcher moves that occur from 2015 to 2020.
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Appendix Figure 12: Patent paper pairs

Notes: Panel (a) is a binned scatterplot that compares an individual’s average change upon moving in the count of patent-paper pairs with the
difference in average institution-level patent-paper pairs between their destination and origin institutions. This measure is constructed by Marx and
Fuegi (2020a). For each mover, we compute two values. First, we separately calculate the average count of patent-paper pairs for papers published
pre- and post-move, and compute the difference. We call this the change in an individual’s commercialization level. Second, we generate δ̂i by
taking the institution-level differences, as shown in Figure 4. We call this the change in the institution’s commercialization level. The x-axis
displays ventiles of this institution-level change, while the y-axis plots, for each ventile, the average change in individual commercialization. The
slope of the line of best fit is reported above the graph, and the regression that yields this slope use the full sample of movers (N = 14,213). Panel
(b) is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit is the inverse hyperbolic
sine (IHS) of the count of patent-paper pairs. This measure is constructed by Marx and Fuegi (2020a). Event time is plotted on the x-axis and
the rate of convergence to a mover’s destination mean commercialization is plotted on the y-axis. The relative year -1 is omitted. Standard
error estimates are denoted by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that
randomly samples authors, with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical
distribution of the event study coefficients. The standard deviation of this distribution, for each relative year, is the standard error used to calculate
the 95% confidence interval plotted above. There are N = 130,348 author years in our sample, coming from the sample of 14,213 movers. A red
line denotes a researcher’s move year.
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Appendix Figure 13: Scientific advisory board membership

Notes: Panel (a) is a binned scatterplot that compares an individual’s change upon moving in the annual count of new scientific advisory board
(SAB) memberships. For each mover, we compute two values. First, we separately calculate the average count of annual SAB memberships pre-
and post-move, and compute the difference. We call this the change in an individual’s commercialization level. Second, we generate δ̂i by taking
the institution-level differences, as shown in Figure 4. We call this the change in the institution’s commercialization level. The x-axis displays
ventiles of this institution-level change, while the y-axis plots, for each ventile, the average change in individual commercialization. The slope
of the line of best fit is reported above the graph, and the regression that yields this slope uses sample of movers (N = 14,213). Panel (b) is an
event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit is the count of scientific advisory
boards that a researcher joins in a single publication year. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination
mean commercialization is plotted on the y-axis. The relative year -1 is omitted. Standard error estimates are denoted by the shaded region
around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples authors, with replacement,
to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution of the event study coefficients. The
standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval plotted above. We
restrict the binscatter and event study to ± 8 years around the move, instead of ± 10, since the sparsity of the outcome leads to noisy estimates in
relative years with few authors joining SABs. As a result, there are N = 111,521 author years in our sample, coming from the sample of 14,213
movers. A red line denotes a researcher’s move year.
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Appendix Figure 14: Scientific advisory board membership+

Notes: Panel (a) is a binned scatterplot that compares an individual’s change upon moving in the annual count of scientific advisory board,
firm advisory board, or firm-founding team memberships (a measure we denote as SAB+). For each mover, we compute two values. First, we
separately calculate the average count of annual SAB+ memberships pre- and post-move, and compute the difference. We call this the change
in an individual’s commercialization level. Second, we generate δ̂i by taking the institution-level differences, as shown in Figure 4. We call
this the change in the institution’s commercialization level. The x-axis displays ventiles of this institution-level change, while the y-axis plots,
for each ventile, the average change in individual commercialization. The slope of the line of best fit is reported above the graph, and the
regression that yields this slope use the full sample of movers (N = 14,213). Panel (b) is an event study plot that shows the coefficients θ̃r(i,t)
estimated from Equation (9), where the dependent variable yit is the count of scientific advisory boards, firm boards, or firm-founding teams that
a researcher joins in a single publication year (a measure we denote as SAB+). Event time is plotted on the x-axis and the rate of convergence
to a mover’s destination mean commercialization is plotted on the y-axis. The relative year -1 is omitted. Standard error estimates are denoted
by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples authors,
with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution of the event study
coefficients. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval
plotted above. We restrict the binscatter and event study to ± 8 years around the move, instead of ± 10, since the sparsity of the outcome leads
to noisy estimates in relative years with few authors joining SABs. As a result, there are N = 111,521 author years in our sample, coming from
the sample of 14,213 movers. A red line denotes a researcher’s move year
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Appendix Figure 15: Simulated event study

Notes: For a sample of 100 randomly selected movers, Panel (a) shows the distribution of move years coded too late. Using faculty webpages, CV,
and LinkedIn profiles, we are able to determine the actual move year for 68 movers in our sample. The remaining 32 are either untraceable using
name and email information (N = 25), or we determine them to have not actually moved (N = 7). Panel (b) shows the results from a simulated
event study. The event study uses a panel parametrized to have 14,213 movers observed in the same calendar years ten years pre- and post-move,
a constant treatment effect of θ̂r = 0.25 for all r ≥ 1, and a distribution of δ that matches that shown by Figure 6. Because the treatment effect
is constant across units and we do not add in a noise term, there are no standard errors. The “truth” coefficient path (blue) plots the estimates
from an event study estimation using this panel as-is. The “move timing errors” path (red) shows the results from an estimation where the panel
is simulated to have a distribution of move timing errors that matches Panel (a). The “move timing errors + non-movers” path (green) shows the
results from a final estimation that incorporates the distribution of timing errors and also recodes 7% of the movers as non-movers. These recoded
non-movers are not exposed to treatment, but remain coded as movers to match the mistake we make in our sample construction. A vertical red
line denotes the move year.
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Appendix Figure 16: Last authors

Notes: Panel (a) is a binned scatterplot that compares an individual’s change upon moving in predicted five-year patent citations with the difference
in average institution-level patent citations between their destination and origin institutions. This is analogous to Figure 7, but is computed using
only movers that have at least one last-authored publication pre-move, a proxy for authors who are most likely to be principal investigators. For
each mover, we compute two values. First, we separately calculate the average count of IHS predicted five-year citations for papers published
pre- and post-move, and report the difference. We call this the change in an individual’s commercialization level. Second, we generate δ̂i by
taking the institution-level differences, as shown in Figure 4. We call this the change in the institution’s commercialization level. The x-axis
displays ventiles of this institution-level change, while the y-axis plots, for each ventile, the average change in individual commercialization.
The slope of the line of best fit is reported above the graph. Panel (b) is an event study plot that shows the coefficients θ̃r(i,t) estimated from
Equation (9), where the dependent variable yit is the inverse hyperbolic sine (IHS) of the predicted count of citations received from patents filed
within five years of publication for each of an author’s papers in a given year. Event time is plotted on the x-axis and the rate of convergence
to a mover’s destination mean commercialization is plotted on the y-axis. The relative year -1 is omitted. Standard error estimates are denoted
by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples authors,
with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution of the event study
coefficients. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval
plotted above. There are 7,520 last author movers in our sample, which corresponds to a total of 78,107 author-years. There are 193,706 last
author non-movers, which we define as ever being the last author on a publication. A red line denotes a researcher’s move year.
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(c) 4-year cites
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(d) 7-year cites

-.
5

-.
25

0
.2

5
.5

.7
5

10
-y

ea
r 

cu
m

. p
at

en
t c

ite
s 

(I
H

S
 c

oe
ffi

ci
en

ts
, p

ub
lic

at
io

n 
ye

ar
)

-1
0 -8 -6 -4 -2 0 2 4 6 8 10

year relative to move

(e) 10-year cites

Appendix Figure 17: Citation windows

Notes: These event study plots show the coefficients θ̃r(i,t) estimated from Equation 9, where the dependent variable yit is the inverse hyperbolic
sine (IHS) of the observed count of citations received from patents filed within X years of publication for each of an author’s papers in a given
year. The value of X changes across the panel. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination mean
commercialization is plotted on the y-axis. Because levels of event time are collinear when estimated together, we preemptively omit data from
relative year = −X , forcing the value of its event study coefficient to zero, which can be seen on the graph without a standard error estimate.
We normalize this particular relative year because it is the last year, pre move, that all lagged citations to papers written at a researcher’s origin
also accrue while the researcher is at their origin institution. Note, the number of movers, and thus observations, per event study decreases
as X increases. This is because only publication years 2020−X will have consistent measurements of yit , due to truncation. For the ten-year
lagged citation outcome, the sample gets so small that it cannot sufficiently identify the θ̃10 coefficient. Resultantly, we do not report it. For
each, the contaminated region is shaded in gray and a red line denotes the researchers’ move years. Standard error estimates are denoted by
the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples authors,
with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution of the event study
coefficients. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval
plotted above.
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Appendix Figure 18: Five-year front page patent citations

Panel (a) is a binned scatterplot that compares an individual’s change upon moving in five-year front page patent citations with the difference in
average institution-level front page patent citations between their destination and origin institutions. For each mover, we compute two values.
First, we separately calculate the average count of IHS five-year front page citations for papers published pre- and post-move, and report the
difference. We call this the change in an individual’s commercialization level. Second, we generate δ̂i by taking the institution-level differences,
as shown in Figure 4. We call this the change in the institution’s commercialization level. The x-axis displays ventiles of this institution-level
change, while the y-axis plots, for each ventile, the average change in individual commercialization. The slope of the line of best fit is reported
above the graph. Panel (b) is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit
is the inverse hyperbolic sine (IHS) of the observed count of citations received from patents filed within five years of publication for each of an
author’s papers in a given year. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination mean commercialization
is plotted on the y-axis. Because levels of event time are collinear when estimated together, we preemptively omit data from relative year = -5,
forcing the value of its event study coefficient to zero, which can be seen on the graph without a standard error estimate. We normalize this
particular relative year because it is the last year, pre move, that all five-year citations to papers written at a researcher’s origin also accrue while
the researcher is at their origin institution. The contaminated region is shaded in gray and a red line denotes the researchers’ move years. Standard
error estimates are denoted by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that
randomly samples authors, with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical
distribution on each coefficient. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95%
confidence interval plotted above. Each panel is estimated using 11,437 movers and 81,452 mover-years. Note, the number of movers in this
analysis is less than that of Figure 7, its analog; because our sample ends in 2020, the count of five-year citations can only be calculated up to
2015, and resultantly, we cannot use researcher moves that occur from 2015 to 2020.
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Appendix Figure 19: Five-year in-text patent citations

Panel (a) is a binned scatterplot that compares an individual’s change upon moving in five-year in-text patent citations with the difference in
average institution-level in-text patent citations between their destination and origin institutions. For each mover, we compute two values. First,
we separately calculate the average count of IHS five-year in-text citations for papers published pre- and post-move, and report the difference.
We call this the change in an individual’s commercialization level. Second, we generate δ̂i by taking the institution-level differences, as shown in
Figure 4. We call this the change in the institution’s commercialization level. The x-axis displays ventiles of this institution-level change, while
the y-axis plots, for each ventile, the average change in individual commercialization. The slope of the line of best fit is reported above the graph.
Panel (b) is an event study plot that shows the coefficients θ̃r(i,t) estimated from Equation (9), where the dependent variable yit is the inverse
hyperbolic sine (IHS) of the observed count of citations received from patents filed within five years of publication for each of an author’s papers
in a given year. Event time is plotted on the x-axis and the rate of convergence to a mover’s destination mean commercialization is plotted on the
y-axis. Because levels of event time are collinear when estimated together, we preemptively omit data from relative year = -5, forcing the value
of its event study coefficient to zero, which can be seen on the graph without a standard error estimate. We normalize this particular relative year
because it is the last year, pre move, that all five-year citations to papers written at a researcher’s origin also accrue while the researcher is at their
origin institution. The contaminated region is shaded in gray and a red line denotes the researchers’ move years. Standard error estimates are
denoted by the shaded region around the plotted coefficients. Standard errors are computed by a bootstrapping procedure that randomly samples
authors, with replacement, to construct estimates of δ̂i and θ̃r(i,t). We perform 50 bootstrap iterations to form an empirical distribution on each
coefficient. The standard deviation of this distribution, for each relative year, is the standard error used to calculate the 95% confidence interval
plotted above. Each panel is estimated using 11,437 movers and 81,452 mover-years. Note, the number of movers in this analysis is less than
that of Figure 7, its analog; because our sample ends in 2020, the count of five-year citations can only be calculated up to 2015, and resultantly,
we cannot use researcher moves that occur from 2015 to 2020.
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Appendix Figure 20: LASSO coefficient paths from place effect correlates

Notes: As it relates to Figure 10, this figure shows the paths of the LASSO coefficients. Each line illustrates a coefficient on a single covariate
that changes as a function of the L1 norm applied to the set of coefficients. That is, the LASSO penalizes the sum of all coefficients at increasing
intensities. For each value of the x-axis (the L1 norm), the covariates with non-zero coefficients are those that would have been selected. The
empirically optimal penalty value is denoted by a vertical dashed line. At this threshold, many of the coefficients are zeroed. Each covariate
(k = 17) is standardized to have a mean of zero and standard deviation of one.

Mean: 113.65
SD: 182.30

Median: 45.50

0
50

10
0

15
0

20
0

fr
eq

ue
nc

y

0 500 1000 1500 2000
count of movers

Appendix Figure 21: Movers by institution

Notes: This figure shows the distribution of the number of movers per institution, conditional on observing at least one move. Here, a mover
is counted once for their origin and once for their destination. This definition is helpful to isolate the author-years that generate the variation
necessary to identify the casual institution effects, as delineated in Equation 1. The count of movers is plotted on the x-axis. The number of
schools with each mover count is plotted on the y-axis. The mean, median, and standard deviation are shown in the top right corner. Our sample
of 14,213 movers is used; they span 248 institutions.
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Appendix Figure 22: Empirical Bayes: Distribution of institution effects

Notes: This figure is based on estimation of Equation (1), where the dependent variable yiut is the predicted count of five-year patent citations to
author i’s papers in year t whose main academic affiliation is at institution u. In particular, this figure displays the results of an Empirical Bayesian
shrinkage of the casual institution effects (γ̂u). The x-axis is the estimated value of the institution effect for a given school, and the y-axis is the
frequency of schools within an institution effect bin. The blue bars show the distribution of the institution effects estimated from Equation 1. The
red bars show the distribution of the adjusted institution effects, following the Bayesian shrinkage (γ̂EB

u ). To center the mean of this distribution
at zero, we pre-omit Syracuse University when estimating Equation (1). While our full sample includes 265 institutions, only 248 have movers.
This exercise uses our full sample of movers (N = 14,213).
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(b) Comparing Empirical Bayes and sample restriction

Appendix Figure 23: Sensitivity of estimates to choice of variance reduction

Notes: This figure is based on estimation of Equation (1), where the dependent variable yiut is the predicted count of five-year patent citations to
author i’s papers in year t whose main academic affiliation is at institution u. Particularly, it shows the sensitivity of select variance decomposition
estimates with respect to the choice of variance reduction method. Panel (a) shows how the estimate of Cov(α̂u, γ̂u) (blue line) and Suniversity (red
line) vary when the sample is restricted to include only those with at least a certain number of movers (x-axis). The number of schools that satisfy
this restriction is plotted by the green line, and is indexed by the secondary y-axis. Panel (b) borrows the blue line from Panel (a) and plots the
estimate of Cov(α̂u, γ̂u) for each sample restriction, additionally implementing empirical Bayes (red line). This exercise uses our full sample of
movers (N = 14,213).
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rank Institution Average Commercialization (γ̂u) Adjustment Factor Adjusted Average Commercialization (γ̂EB
u )

Top 20

1 Scripps Research 0.187 0.691 0.129
2 Northeastern University 0.191 0.638 0.122
3 Cedars Sinai 0.276 0.391 0.108
4 Rockefeller University 0.169 0.637 0.107
5 Rensselaer 0.187 0.551 0.103
6 University of Texas Medical 0.144 0.678 0.097
7 Dana-Farber 0.148 0.651 0.096
8 University of Memphis 0.166 0.575 0.095
9 Salk Institute 0.156 0.599 0.093
10 Blood Center of Wisconsin 0.563 0.163 0.092
11 Baylor College of Medicine 0.123 0.721 0.089
12 Lee Moffitt 0.257 0.333 0.085
13 Children’s Hospital Los Angeles 0.137 0.609 0.084
14 New Jersey Inst 0.242 0.332 0.080
15 University of North Texas Denton 0.134 0.563 0.076
16 Stanford University 0.101 0.746 0.076
17 University of Pennsylvania 0.099 0.749 0.074
18 Massachusetts General Hospital 0.102 0.724 0.074
19 Yale University 0.095 0.749 0.071
20 Cold Spring Harbor 0.149 0.467 0.070

Middle 20

114 Oklahoma State University 0.014 0.932 0.013
115 University of Utah 0.013 0.971 0.013
116 New York Blood Center 0.031 0.410 0.013
117 Harvard University 0.013 0.985 0.012
118 Massachusetts Institute of Technology 0.013 0.982 0.012
119 University of Kansas 0.012 0.988 0.012
120 Pennsylvania State University 0.005 2.197 0.012
121 University of Virginia 0.012 1.009 0.012
122 Northern Illinois University 0.010 1.112 0.011
123 Brigham & Women’s 0.004 2.438 0.010
124 Rosalind Franklin University 0.006 1.795 0.010
125 North Dakota State University 0.007 1.443 0.010
126 San Diego State University -0.075 -0.124 0.009
127 University System of Maryland 0.008 1.137 0.009
128 Boise State University 0.001 6.034 0.009
129 New York University 0.007 1.217 0.009
130 University of Dayton -0.016 -0.537 0.008
131 Rochester Inst -0.011 -0.659 0.007
132 North Carolina A&T -0.018 -0.401 0.007
133 Tufts Medical Center -0.011 -0.646 0.007

Bottom 20

228 Washington State University -0.063 0.577 -0.036
229 University of Wyoming -0.090 0.415 -0.037
230 University of Arkansas Fayetteville -0.092 0.471 -0.043
231 University of Toledo -0.085 0.549 -0.047
232 Western Michigan University -0.115 0.411 -0.047
233 SUNY -0.074 0.663 -0.049
234 Saint Louis University -0.092 0.570 -0.052
235 Schepens Eye -0.335 0.191 -0.064
236 Ohio University -0.134 0.479 -0.064
237 Miami University -0.154 0.420 -0.065
238 Utah State University -0.221 0.296 -0.065
239 Cleveland State University -0.279 0.243 -0.068
240 University of Oklahoma Health Sciences -0.121 0.564 -0.068
241 Iowa State University -0.118 0.593 -0.070
242 Portland State University -0.161 0.473 -0.076
243 Wichita State University -0.398 0.244 -0.097
244 Eastern Virginia Med -0.313 0.317 -0.099
245 University of New Orleans -0.294 0.358 -0.105
246 California Institute of Tech -0.190 0.590 -0.112
247 Whitehead Inst -0.278 0.435 -0.121

Appendix Table 1: Causal institution effects

Notes: This table is based on estimation of Equation (1), where the dependent variable yiut is the predicted count of five-year patent citations
to author i’s papers in year t whose main academic affiliation is at institution u. As described in Section 4.1.1, predictions and fixed effects are
collapsed to the institution-year level, and then once more to the institution level. Institutions are sorted and ranked (column one) on the basis of
their γ̂u, the causal institution effect. This value is reported in column three, for the top, middle, and bottom twenty institutions. To minimize noise
in the estimation of γ̂u driven by few movers in a given u, we employ an Empirical Bayesian shrinkage procedure. This procedure is discussed in
Onine Appendix Section D. The adjusted effect, γ̂EB

u is displayed in column five. Column four is the scalar by which the raw institution effect is

multiplied by to produce the adjusted effect, or γ̂EB
u
γ̂u

. While there are 265 institutions in our sample, only 248 have movers— institution effects
are only estimable for those with movers. We choose Syracuse University as the omitted institution in this regression, leaving 247 institutions for
which institution effects are produced. This exercise uses our full sample of movers (N = 14,213).
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