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Motivation

• Usually we think of machines/capital that substitute labor
- ‘Labor will become less and less important...More and more workers will be replaced bymachines.’, Leontief (1952)- especially true when it comes to robots Acemoglu and Restrepo (2020), Humlum (2019),Acemoglu and Restrepo (2018)

• Increasingly, the machine actually acts as an extension of the user
- e.g. chatbot for professional writing tasks and coding, human-vehicle interaction inautomated driving- these technologies hold promise to improve the way workers perform tasks- but, requires the user to know and use the machine appropriately

• Joint production of human and machine
- How does the technology affect workers’ performance?- How do these workers’ characteristics affect the technology’s adoption andperformance?- How is the distribution of performance affected?
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This paper
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This paper

• Individual and robot working together
- no replacement effect- complex task and highly trained individuals- the focus is on surgical performance/ patient outcomes

• Who benefits from using the technology?
- treatment effects heterogeneity- the ‘robot’ treatment- surgeon’s skills as the key source of heterogeneity

• Instrumental Variable
- to account for essential heterogeneity, Heckman, Urzua, and Vytlacil (2006)- extended relative distance instrument McClellan, McNeil, Newhouse (1994)- taking advantage of scattered adoption of robots

• Marginal Treatment Effects
- recovers a distribution of treatment effects- building block of conventional causal parameters- policy simulations to explore alternative allocations of the technology
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Why healthcare?

• Technology’s performance and providers’ behavior consequential for people’s
lives

• Technology is financed with public income and under government scrutiny
- e.g. UK government has pledged £2.4bn to implement AI, robotics- Significant focus on cost vs. benefits to determine whether a technology is approvede.g. NICE’s technology appraisal (TA) in the UK, Certificate of Need laws that affect hospitalcapital in the US

• Unwarranted differences in outcomes for observationally similar patients
- uneven distribution of inputs across places and providers of services e.g., Finkelstein,Gentzkow, and Williams (2021), Chandra, Kakany, and Sacarny (2020)- difference in providers’ skills can exacerbate this phenomenon, e.g. Chan, Gentzkow, andYu (2021) Currie and MacLeod (2017) Chandra and Staiger (2007)- “Machines” may guarantee a consistent and effective delivery, Weber (1921)
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Preview of results

• The robot improves the performance of surgeons
- focus is prostate cancer surgery- lower post-operative morbidity, -10 percentage points- lower post-operative length of stay in hospital, more than half a day

• Large degree of heterogeneity in effects by surgeon’s skills
- lower skilled surgeons have the highest returns, difference in effects of 11 percentagepoints for morbidity- robots reduce the gap in performance between high and low-skilled- results robust to various measures of pre-robot performance

• But, negative selection on gains
- lower skilled have the highest returns but use the robot the least, high skilled surgeonsare 58 percentage points more likely to use the robot- evidence of barriers that limit the potential benefit- policy simulation to estimate the missed gains from selection, for morbidity additional 6percentage points reduction on average
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Empirical Setting

The Technology: Surgical Robot
- less invasive procedure, and higher precision- ‘But often, technology spreads long before investigators know whether it is worthwhile.’, TheNew York Times on robotic surgery- Robot is costly to purchase and to maintain (£1.7 million pounds fixed and£140,000/year for maintenance )

The Operation: Prostate Cancer Surgery
- most common cancer in men in the United Kingdom- standard but complex operation- documented variation in surgeon’s skills- most common robotic procedure (about 80%)

The Market: English National Health Service
- healthcare is free at point of use- after 2007 individuals are free to choose the hospital they want to visit- decision to buy the robot left to the individual provider, Lam and Clarke (2021)
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Data

• Hospital records from all public hospital in England
- Hospital Episodes Statistics (HES)- 2004 to 2017- ∼ 60000 radical prostatectomies (RP)

• Patient clinical and demographic data
- age, ethnicity, area of residence- diagnosis, treatment, and operations- hospital and surgeon identifiers

• Information on surgical approach (robotic vs traditional)
- allows tracking diffusion across hospitals and over time show it
- three years pre-robots to evaluate surgeons in the absence of the technology

• Two dimensions of performance over which to evaluate the robot
- directly linked to surgeons ability- post-operative length of stay in hospital- post-operative morbidity (e.g., complications from surgery)
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Measuring Skills Pre-Robots

• I need to measure skills to evaluate whether the effects of robots depend on them
- in this context, using education level is not an option- challenging as different surgeons may operate on different populations

• Using data pre-robots from 2004 to 2007, I risk adjust surgeons outcomes
- idea is to relate surgeon j ’s predicted to expected post-morbidity experienced byprostate cancer patients- random coefficient regression with a surgeon intercept ωj ∼ N (0, τ 2)

Pr(Yij = 1) = F (αj + βXij )

αj = µ + ωj- standardized risk ratio as in Horwitz et al. (2014) will measure skills pre-robot
Ŝkillsj =

∑
i∈j f

(
α̂j + β̂Xij

)
∑

i∈j f
(
µ̂ + β̂Xij

)
• Xij includes patient characteristics and surgeon’s volume together with time-fixed effects

• Is this enough to account for unobserved heterogeneity?
- in this period, no choice of provider for the patient- further validated using outcomes from ER urology patients
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Heterogeneity in skills pre-robots

Figure 1: Distribution of skills Figure 2: Geographic distribution

Note: Heterogeneity in surgical skills proxied by standardized risk ratio. Ratio above 1 indicates the surgeons is under performing.
Ratio below 1 indicates the surgeon is over performing. Data for estimation is HES inpatient data for England from 2004 to 2007.

10



Identification: set up

• Treatment effect of using the robot
Yij = RobotY 1

ij + (1− Robot)Y 0
ij = Y 0

ij + (Y 1
ij − Y 0

ij )︸ ︷︷ ︸
∆

Robot

∆ = Xij (β1 − β0) + Skillsj (δ1 − δ0)︸ ︷︷ ︸Observed
+ ϵ1ij − ϵ0ij︸ ︷︷ ︸Unobserved

• Whether to use the robot can be modeled in a latent variable framework
Robot = 1[R∗

ij ≥ 0]

R∗
ij = ρXij + µSkillsj − Vij

• Identification problem:
correlation of ϵ∆ij with Vij or selection into treatment based on unobservables
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+ ϵ1ij − ϵ0ij︸ ︷︷ ︸Unobserved

• Whether to use the robot can be modeled in a latent variable framework
Robot = 1[R∗

ij ≥ 0]

R∗
ij = ρXij + µSkillsj + γZij − Vij

• Identification problem:
correlation of ϵ∆ij with Vij or selection into treatment based on unobservables

• Solution to this problem:
1. (ϵ0ij , ϵ

1
ij ,Vij ) are statistically independent of Zij conditional on covariates2. γ ̸= 0 (Rank condition)3. ϵ∆ij does not depend on covariates conditional on quantile of distribution of Vij
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Instrumental variable: definition

Patient’s residence relative distance to robotic hospital

Z = DR − DT

graph
DR := km to closest hospital for robotic surgery
DT := km to closest hospital for traditional surgery

• Validity: should affect outcomes only through probability of treatment
- control for km to closest hospital- postal area fixed effects
- falsification test using heart attack patients ✓ show it

• Relevance & Monotonicity ✓ show it

• Common Support ✓ show it
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Instrumental variable: source of exogenous variation

Figure 3: Distance to robot

Staggered adoption =⇒ variation in treatment probability across areas and over time
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The Marginal Treatment Effect

• Allows estimating the distribution of treatment effects in the population Heckman,
Urzua, and Vytlacil (2006) and Carneiro, Heckman, and Vytlacil (2011)

- goes beyond LATE as it does not depend on the instrument- imposes no restrictions on the relationship between ϵ0, ϵ1 and V- actually allows unobserved returns to be associated with the unobserved resistance V

• The MTE is the treatment effect for i with observed characteristics x at u-th
quantile of the distribution of V

MTE(s, x , u) = E(Y1ij − Y0ij |Xij = x , Skillsj = s,Uij = u)

= xβ∆ + sδ∆ + E(ϵ∆|Uij = u)︸ ︷︷ ︸K(p)

• The derivative of the outcome Y w.r.t. p identifies the MTE
∂E [Yij |Xij = x ,Skillsj = s,P(Zi ) = p]

∂p
= xβ∆ + sδ∆ +

∂K(p)

∂p

- estimated using Local IV Heckman (1999)
- with parametric or semi-parametric assumptions on ∂K(p)/∂p

15



Results
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Skills and technological gains

Table 1: MTE - Baseline specification (Coefficients) - Normal Model
Selection equation Morbidity Length of stay

δ0
Zdist -0.013∗∗∗

(0.001)
High Skilled Dummy 0.487∗∗∗ -0.089∗∗∗ -0.145∗∗∗

(0.044) (0.011) (0.019)
δ1 − δ0High Skilled Dummy * P(Z) 0.119∗∗∗ 0.287∗∗∗

(0.016) (0.026)Patient Controls Yes Yes YesPatient Postal Area Yes Yes YesYear*Month Yes Yes Yes
N 19698 19698 19453ymean 0.538 0.12 0.7mean Zdist 20 20 20

Standard errors bootstrapped with 100 repetitions p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column(1)
dependent variable binary indicator of robotic surgery. Estimated using Probit regression model. Patient controls
include age, age squared, indicator for white ethnic profile, ten comorbidity variables, and distance to the closest
hospitals. Estimation of coefficients under the assumption of normality of unobserved components. Model estimated
using postal area and year month fixed effects, not interacted with the propensity score.
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Skills and technological gains

Figure 4: Selection on skills Figure 5: Age and skills

* p < 0.05, ** p < 0.01, *** p < 0.001. Bootstrapped standard errors with 100 repetitions. Controls for age, indicator for white
ethnic profile, ten comorbidity variables, distance to the closest hospital, postal area, and year-month fixed effects. Joint normality
assumption. Fixed effects are not interacted with propensity score. Mean length of stay 2.5, with 13 percent of patients
experiencing complications.
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Selection on unobservables

Figure 6: Morbidity Figure 7: Length of stay

* p < 0.05, ** p < 0.01, *** p < 0.001. Bootstrapped standard errors with 100 repetitions. Controls for age, indicator for white
ethnic profile, ten comorbidity variables, distance to the closest hospital, postal area, and year-month fixed effects. Joint normality
assumption. Fixed effects are not interacted with propensity score. Mean length of stay 2.5, with 13 percent of patients
experiencing complications.

polynomial back
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Treatment Effects

Table 2: Estimated Treatment Effects
(1) (2)Morbidity Length of stay

ATE -0.100∗∗∗ -0.374∗∗∗

(0.021) (0.028)
ATT -0.085∗∗∗ -0.310∗∗∗

(0.021) (0.030)
ATUT -0.118∗∗∗ -0.449∗∗∗

(0.025) (0.033)
LATE -0.124∗∗∗ -0.383∗∗∗

(0.021) (0.032)
N 19698 19453

Standard errors bootstrapped with 100 repetitions
p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Patient
controls include age, age squared, indicator for white
ethnic profile, ten comorbidity variables, and distance
to the closest hospitals. Model estimated using postal
area and year month fixed effects, not interacted with
the propensity score.
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Robotic surgery: policy simulation

• The structure of the model can be used to simulate policies
- Mean effect of changing to an alternative policy that provides different incentives toparticipate in treatment(Heckman and Vytlacil, 2001, 2005)- The policy relevant treatment effect (PRTE) measures the average effect of switchingfrom a status-quo policy to a counterfactual policy under consideration.

• How much are we losing from surgeons’ behavior?
- Negative selection suggests we could do better- We can test a policy that mandates low-skilled to use the robot as much as thehigh-skilled
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Robotic surgery: policy simulation

Figure 8: Morbidity Figure 9: Length of stay

* p < 0.05, ** p < 0.01, *** p < 0.001. Bootstrapped standard errors with 100 repetitions. Controls for age, indicator for white
ethnic profile, ten comorbidity variables, distance to the closest hospital, postal area, and year-month fixed effects. Joint normality
assumption. Fixed effects are not interacted with propensity score. Mean length of stay 2.5, with 13 percent of patients
experiencing complications.
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Conclusive Remarks

• Good News
- the technology improves outcomes of patients- the robot has an equalizing effect, mostly due to low-skilled surgeons having moresignificant treatment effects- potential to reduce variation in performance and unwarranted differences in outcomes

• Bad News
- negative selection on gains, low-skilled surgeons use the robot at a rate that impedessignificant part of the gains- points to the existence of some barrier (actual or perceived) to adoption- potential improvements from increasing access is economically relevant

• Future research
- welfare considerations- a model to explain negative selection- estimate allocative inefficiency

23



Thanks!

24



Diffusion of Robotic Surgery

Figure 10: Intensity of use Figure 11: Adoption

back
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Instrumental variable exclusion restriction

• Relationship to outcomes of patients unaffected by the robot
• Heart attack patients in England 2005-2009
• High mortality patients
• Outcomes strongly correlated with social and economic indicators

Table 3: AMI death and relative distance
(1) (2) (3)

Zdist 0.000449∗∗ -0.000159 0.000314
(0.000163) (0.000185) (0.000199)

Distance closest hospital 0.00269∗ 0.00111
(0.00107) (0.00130)

Year-month No Yes Yes
Day of the week No Yes Yes
Patient characteristics No No Yes
Mortality rate (%) 19 19 19
Relative distance (km), Zdist 68.64 68.64 68.75
N 68467 68467 67882
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 Standard errors in parentheses.
Patient characteristics include age, age squared, ethnicity, rural-urban indicator, ten
comorbidity dummies (e.g., malignant neoplasm, diabetes). Sample of AMI patients
from 2005 to 2009. Source HES inpatient admissions data for NHS hospital in Eng-
land.
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Instrumental variable relevance

• Probit model dependent variable indicator of robotic approach
• Estimated average marginal effects

Figure 12: Relative distance relevance

back
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Instrumental variable monotonicity

• Assumption of no-defiers
• Run the first stage for different subgroups to provide suggestive evidence
• OLS regression dependent variable is an indicator of treatment

Figure 13: Relative distance monotonicity
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Common Support

• Support generated by join variation of instrument and covariates
• Overlap impacts precision and reliability
• Span impacts ability to estimate treatment effect parameters

Figure 14: Unconditional common support of propensity score

back
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Polynomial Model

Figure 15: Morbidity Figure 16: Length of stay

* p < 0.05, ** p < 0.01, *** p < 0.001. Bootstrapped standard errors with 100 repetitions. Controls for age, age squared,
indicator for white ethnic profile, ten comorbidity variables, distance to the closest hospital, indicator for closest hospital being
teaching hospital, urban city indicator, year-month, day of the week controls. Joint normality assumption. All variables interacted
with propensity score. Mean length of stay 2.5, with 13 percent of patient experiencing complications.

back
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Linear Measure of Skills

Table 4: MTE - Baseline specification (Coefficients) - Normal Model
(1) (2) (3)Selection equation Complications Length of stay

Zdist -0.013∗∗∗

(0.001)
Skills (SRR) -0.597∗∗∗ -0.114∗∗∗ -0.175∗∗∗

(0.058) (0.014) (0.020)
Skills (SRR) * P(Z) 0.149∗∗∗ 0.328∗∗∗

(0.021) (0.025)Patient Controls Yes Yes YesPatient Postal Area Yes Yes YesYear*Month Yes Yes Yes
N 19698 19698 19453ymean 0.538 0.12 0.7mean Zdist 20 20 20

Standard errors bootstrapped with 100 repetitions p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column(1)
dependent variable binary indicator of robotic surgery. Estimated using Probit regression model. Patient con-
trols include age, age squared, indicator for white ethnic profile, ten comorbidity variables, and distance to the
closest hospitals. Skills are measured using the inverse of the post-operative morbidity standardised risk ratio.
Estimation of coefficients under the assumption of normality of unobserved components. Model estimated
using postal area and year month fixed effects, not interacted with the propensity score.
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Controls for Surgeon’s Experience

Table 5: MTE - Baseline specification (Coefficients) - Normal Model
(1) (2) (3)Selection equation Complications Length of stay

Zdist -0.016∗∗∗

(0.001)
High Skilled Dummy 0.244∗∗∗ -0.107∗∗∗ -0.191∗∗∗

(0.053) (0.015) (0.020)
High Skilled Dummy * P(Z) 0.130∗∗∗ 0.329∗∗∗

(0.020) (0.028)
Patient Controls Yes Yes YesPatient Postal Area Yes Yes YesYear*Month Yes Yes Yes
N 19698 19698 19453

Standard errors bootstrapped with 100 repetitions p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Column(1) dependent
variable binary indicator of robotic surgery. Estimated using Probit regression model. Patient controls include age, age
squared, indicator for white ethnic profile, ten comorbidity variables, and distance to the closest hospitals. Estimation of
coefficients under the assumption of normality of unobserved components. Model estimated using postal area and year
month fixed effects, not interacted with the propensity score.
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