
The Macroeconomics of Supply Chain Disruptions*

Daron Acemoglu† Alireza Tahbaz-Salehi‡

October 2023

Abstract

This paper develops a model to study the macroeconomic implications of supply chains disrup-
tions with three key ingredients: (i) a firm-level network of customized supplier-customer links that
generate relationship-specific productivity gains; (ii) bargaining over these relationship-specific sur-
pluses; and (iii) an extensive margin of adjustment, whereby firms may decide to form or sever re-
lations with suppliers or customers. We establish equilibrium existence and uniqueness, provide
characterization results, and present a number of comparative statics that show how the supply chain
and aggregate productivity respond to shocks. We also show that the equilibrium is inefficient and
exhibits an inherent fragility: small shocks can lead to discontinuous changes in output, even though
the efficient allocation is always continuous in the same shocks. We finally draw out several macroe-
conomic implications of this new form of fragility.

JEL Classification: D57, E32, C78, F12.
Keywords: production networks, supply chains, relationship-specific surplus, bargaining.

*We are grateful to the editor and six anonymous referees for helpful comments and suggestions. We also thank David
Baqaee, Vasco Carvalho, Matt Elliott, Emmanuel Farhi, Alessandro Ferrari, Ben Golub, Jake Gosselin, Matt Jackson, Martin
Jensen, Roland Kpodar, Glenn Magerman, Pooya Molavi, Ezra Oberfield, Ali Shourideh, John Sturm, Claudio Tebaldi, Andrea
Vedolin, and numerous seminar and conference participants. This research has benefited from financial support from the
International Monetary Fund (IMF)-Department for International Development (DFID) project on Macroeconomic Research
in Low-Income Countries (Project id: 60925). An earlier draft of this paper was circulated under the title “Firms, failures, and
fluctuations: The macroeconomics of supply chain disruptions.”

†Department of Economics, Massachusetts Institute of Technology, NBER, and CEPR, daron@mit.edu.
‡Kellogg School of Management, Northwestern University and CEPR, alirezat@kellogg.northwestern.edu.

mailto:daron@mit.edu
mailto:alirezat@kellogg.northwestern.edu


1 Introduction

Production in modern industrialized economies relies on complex supply chains. Major manufacturers,

such as General Motors and Airbus, depend on production ecosystems consisting of thousands

of direct and indirect suppliers (McKinsey Global Institute, 2020). These complex supply chains

facilitate specialization and customization. For example, Fort (2016) documents that more than

half of firms in aerospace, power, computer, and motor vehicle manufacturing sectors engage in

customized outsourcing, whereby the firm “provides design and production criteria to a manufacturer

who performs the physical transformation activities, generally on materials or inputs specified by the

purchaser.” Modern supply chains are also a major source of productivity gains. Amiti and Konings

(2007), Topalova and Khandelwal (2011), and Halpern et al. (2015) find that access to higher quality

or more diverse intermediate inputs can significantly improve productivity, while Baqaee et al. (2023)

estimate that a sizable share of aggregate productivity growth can be accounted for by churn in supply

chains.

At the same time, complex supply chains can also be a major source of macroeconomic fragility, as

disruptions to a few firms can create shortages of essential inputs or destroy accumulated relationship-

specific investments and productivities. This was evident from the major supply chain problems in the

aftermaths of natural disasters (Barrot and Sauvagnat, 2016; Carvalho et al., 2021), the COVID pandemic

(Financial Times, 2023), and the Russian invasion of Ukraine (OECD, 2022).1 Not surprisingly, the risks

associated with major tensions in supply chains have received significant attention from policymakers.

For example, the 2012 U.S. National Strategy for Global Supply Chain Security was based on the premise

that “[i]ntegrated supply chains are fast and cost-efficient but also susceptible to shocks that can rapidly

escalate from localized events into broader disruptions” (The White House, 2012). More recently, the

Biden administration’s Supply Chain Disruptions Task Force concluded that supply chains that deliver

strategic and critical materials “are at serious risk of disruption—from natural disasters or force majeure

events” and that this “risk is more than a military vulnerability; it impacts the entire U.S. economy” (The

White House, 2021).

Despite the growing focus in academic and policy circles on supply chain disruptions, there is

currently no theoretical framework that enables a systematic investigation of their macroeconomic

consequences. This is in part because most commonly used frameworks in macroeconomics

and industrial organization lack the vital ingredients necessary for such an investigation. Three

ingredients are particularly central: (i) a firm-level network representing customized, relationship-

specific productive opportunities between firms and their suppliers; (ii) a noncompetitive model for the

division of surplus, as markets cannot be competitive in the presence of such customized relationships;

and (iii) a nontrivial extensive margin decision whereby firms can choose to form or dissolve their

relationships with suppliers and customers.

In this paper, we build a general equilibrium model that incorporates these three ingredients into a

single tractable framework. We consider an economy in which firms establish productivity-enhancing,

customized relationships with one or multiple suppliers. The surplus generated by these relationships

1Other works providing evidence for propagation of shocks over supply chains include Acemoglu et al. (2016) and Boehm
et al. (2019).
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is split between firms via pairwise bargaining, where both the size of the surplus and disagreement

points depend on the entire supply chain. Forming and maintaining customized supplier-customer

relationships are costly and require relationship-specific investments. Therefore, firms face nontrivial

decisions to build or dissolve relationships with their suppliers and customers. The endogenous

dissolution of these supply chain relationships in response to shocks is the central focus of our paper.

We now describe the model in more detail. We consider a production network economy consisting

of n input producers and a firm that produces the unique final good sold to consumers. Each firm

has access to a menu of constant returns production technologies, each with its own productivity and

a potentially different mix of inputs sourced from other firms.2 Forming relationships with suppliers

raises the firm’s productivity but requires upfront fixed costs, as supplier-customer relationships

have to be tailored to the needs of the firm (e.g., to customize products or integrate the production

processes). The presence of such productivity-enhancing customized relationships constitutes the first

key ingredient of our model.

The specificity of supplier-customer relationships means that markets cannot be competitive and

calls for a noncompetitive framework for division of surplus. We thus make the natural assumption

that the parties split the surplus generated by supplier-customer relationships via pairwise Nash

bargaining.3 This is the second key ingredient of our model. We assume that firms negotiate over two-

part tariff contracts that specify a unit price and a lump-sum transfer, both of which can be contingent

on the economy’s production network.4 This choice—which enables firms to share the relationship-

specific surplus without distorting input quantity decisions—is motivated by our desire to minimize

inefficiencies in quantity and pricing decisions relative to the competitive benchmark. An additional

attractive feature of relying on these contracts is that, despite the multilateral sharing of relationship-

specific surpluses, it leads to a closed-form characterization of equilibrium profits, as we describe below.

The third and final key ingredient of our framework is the endogenous adjustment in the production

network: firms decide whether to form or dissolve supplier-customer relationships, anticipating

bargaining outcomes in the realized production network.

We provide three sets of results. Our first set of results aims to build intuition about the functioning

of the model by focusing on an economy with an exogenous (fixed) production network. We show that,

with an exogenous production network, a decentralized equilibrium always exists and is generically

unique. Furthermore, firms’ equilibrium profits are given by a variant of the Myerson value (Jackson

and Wolinsky, 1996), which is a network-adjusted generalization of the Shapley value and reflects

firms’ marginal contributions to aggregate productivity in various subnetworks. We also establish

that the exogenous network equilibrium is always efficient. These results rely on our specification of

pairwise contracts, which ensure that all inputs are sold at marginal cost and that any relationship-

2For instance, firms can decide which set of inputs to produce in-house and which ones to source from customized outside
suppliers.

3The production side of our model is similar to Acemoglu and Azar (2020) but with the critical difference that they assume
a form of “contestability”—allowing many potential entrants to operate in any given industry. In contrast, we require upfront
investments to form customized relationships. As a result, while their model is essentially competitive, ours is one in which
there are relationship-specific surpluses that are divided via pairwise bargaining.

4The assumption that the terms of the contracts can depend on the production network is similar to (and can be micro-
founded by) allowing the firms to renegotiate the rest of their relationships in case negotiations with a counterparty break
down. As we demonstrate, this assumption ensures that the equilibrium with an exogenous production network is efficient.
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specific surplus generated by firm-to-firm linkages is distributed throughout the economy via lump-

sum transfers.

We also present a number of comparative static results for the exogenous network economy,

under two additional assumptions. These are (a) “supermodularity at the extensive margin”: an

additional supplier-customer relationship increases aggregate productivity by more when the existing

production network is larger; and (b) “supermodularity at the intensive margin”: an additional supplier-

customer relationship increases aggregate productivity by more when existing relationships are more

productive. These assumptions are natural, though they do rule out cases in which a new link is

highly substitutable to an existing link. Under these supermodularity assumptions, we show that

expanding the set of supplier-customer linkages or making an existing link more productive increases

both aggregate productivity and firm profits. This latter result follows from the fact that any gains from

greater productivity—whether because of a new supplier-customer relationship or an increase in the

productivity of an existing relationship—are shared with the entire supply chain via pairwise bargaining.

Moreover, we establish that when the bargaining power of a firm increases, its overall profits rise while

the profits of all other firms in the economy decline. We are not aware of any counterparts to these

results in the literature and find them both intuitive and useful for understanding how production

network structure, technological changes, and institutional features impact productivity and profits in

supply chains. But their main utility for us is to enable the study of the endogenous network economy,

which is our main focus.

Our second set of results turns to the endogenous network economy, in which firms decide

to form or dissolve relationships with suppliers and customers. We prove that, under the same

supermodularity assumptions, an equilibrium exists. Moreover, although the equilibrium may not be

unique, there always exists a greatest equilibrium—an equilibrium production network that contains

all other equilibrium networks as its subnetworks. This greatest equilibrium is Pareto superior to and

generates higher aggregate output than all other equilibria.

We then generalize our comparative statics to this environment where the production network also

responds to shocks. We prove that a lower productivity or a higher cost of forming supplier-customer

relationships shrinks the production network and reduces aggregate output. This is a consequence of

both direct and indirect effects. On the direct side, a decline in productivity (or an increase in fixed

costs) reduces profits and hence makes it more likely that some firms decide to drop their customers

and/or suppliers. On the indirect side, once the network becomes smaller, the same forces as in the

exogenous network economy amplify this effect and lead to further rounds of contractions in both firm

profits and the production network.

In contrast to the exogenous network case, the endogenous network equilibrium is inefficient. This

inefficiency is due to a classic hold-up problem: firms do not internalize the benefits their customized

relationships generate for other firms in the economy. This specifically implies that the equilibrium

production network is always a subnetwork of the efficient production network.

Finally, our third set of results establishes that equilibrium supply chains are inherently fragile—

in the sense that equilibrium aggregate output is discontinuous in response to productivities and link

formation costs. Crucially, this is in contrast to the efficient allocation, in which aggregate output is

always continuous in the same shocks. Equilibrium fragility in our model is a consequence of the hold-
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up externality in endogenous network formation. Indeed, the points of discontinuity correspond to

points where the equilibrium network structure changes. Taken together, these results indicate that

equilibrium aggregate output is not only below its socially optimal level but is also prone to sharp and

sudden contractions as the economic environment changes.

The fragility of equilibrium production networks has a number of macroeconomic implications,

which we then draw out. One of those, anticipated by our discussion above, is that there can

be a trade-off between efficiency and resilience: more fragmented production networks increase

productivity but make the economy more prone to sharp (and inefficient) declines in aggregate output.

Second, small shocks may trigger cascading supply chain breakdowns, as multiple supplier-customer

relationships are dissolved simultaneously. Such supply chain cascades can significantly magnify the

discontinuous response of aggregate output to shocks. Third, the response of the production network

generates a nonlinear amplification pattern over the business cycle. All else equal, low-productivity

relationships are more likely to dissolve first during economic downturns, and as a result, supply

chain adjustments do not amplify small business cycle fluctuations by much. However, larger shocks

result in the breakdown of progressively more productive supplier-customer relationships, leading to

sizable amplification. This result illustrates how supply chain disruptions can emerge as a powerful

propagation mechanism during severe downturns, such as those caused by the 2007–08 financial crisis

or the COVID pandemic, while playing a much more limited role during milder downturns.

Related Literature. Our paper contributes to the literature on the role of production networks

in economic fluctuations. The bulk of this literature focuses on models with (i) no relationship

specificities, (ii) competitive markets, and (iii) exogenous production networks (Long and Plosser, 1983;

Acemoglu et al., 2012).5 We depart from this literature by relaxing these assumptions and focusing on

how shifts in the distribution of surplus throughout the economy and the resulting changes in supply

chains alter the economy’s response to shocks. More importantly, our fragility result highlights how the

response of the production network can turn small shocks into discontinuous (and inefficient) changes

in aggregate output.

Our work is closely related to Carvalho and Voigtländer (2015), Acemoglu and Azar (2020), and

Kopytov et al. (2023), who allow for endogenous adjustments to the production network. However,

these models do not feature relationship specificities and are thus better suited for analyzing production

networks at the industry level. For example, as already noted, Acemoglu and Azar (2020) assume

contestable markets, where a large number of firms have access to the same sectoral production

technologies at no cost. The relationship-specific nature of supplier-customer interactions in our model

also distinguishes our work from Baqaee and Farhi (2021), who assume that individual firms at either

end of any relationship are infinitesimal and interchangeable with a large number of other firms.

Another related paper is the recent work by Baqaee et al. (2023). They provide a decomposition

to measure the importance of supply chain churn for aggregate growth, while taking the changes in

5Other examples include Carvalho (2010), Atalay (2017), Acemoglu et al. (2017), Baqaee and Farhi (2019), vom Lehn and
Winberry (2022), and Dew-Becker and Vedolin (2022). A subset of papers in this literature, such as Baqaee and Farhi (2020),
Bigio and La’O (2020), and Liu (2019), allow for nontrivial markups or wedges. However, these papers treat markups/wedges
as exogenously specified model primitives, thus maintaining key features of the competitive benchmark, namely, producers’
price-taking behavior. See Carvalho and Tahbaz-Salehi (2019) and Baqaee and Rubbo (2023) for recent surveys of this literature.
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the production network as given (and matching them to the data). In contrast, we provide a fully-

specified model that endogenizes the creation and destruction of supply chain linkages between firms,

thus enabling us to provide comparative static results and to study how changes in the economic

environment translate into supply chain disruptions.6

Even more closely related are a number of recent papers that study the extensive margin of firm-to-

firm linkages (Lim, 2018; Huneeus, 2020; Xu, 2020; Bernard et al., 2022; Taschereau-Dumouchel, 2023;

Dhyne et al., 2023). These papers impose particular assumptions along one or more dimensions on

the firms’ production technologies (e.g., nested CES), network architecture (e.g., acyclic production

networks), and the division of surplus (e.g., full bargaining power with one party).7 The tractability

of our framework enables us to relax all these assumptions and analyze economies with general

production network structures, bargaining powers, and production technologies. Moreover, to the best

of our knowledge, neither our general comparative statics nor our results on the excessive fragility of

equilibrium supply chains appear in any prior work.

Our fragility result is related to, but distinct from, the findings of Elliott et al. (2022), who study a

model in which discontinuous phase transitions arise because firms rely on multiple essential inputs

that have to be produced over infinitely many stages of production. Notably, such a production

structure generates output discontinuities not only in equilibrium but also in the efficient allocation.

In contrast, supply chain fragility in our model only arises in equilibrium and is a consequence of the

firms’ endogenous decisions to dissolve their relationships with particular suppliers and/or customers.

We also contribute to an emerging literature that studies the role of market power in production

networks. Grassi (2017) investigates how alternative market structures shape the propagation of shocks,

Carvalho et al. (2022) characterize how a firm’s position in the network can confer market power, while

Dhyne et al. (2022) and Alviarez et al. (2023) build models of firm-to-firm trade with one-sided and

two-sided market power, respectively. Unlike our work, these papers take the production network as

exogenous.

Lastly, our paper contributes to the large game-theoretic literature on strategic network formation.8

Within this literature, the most closely related papers are Slikker and van den Nouweland (2000), Pin

(2011), and Ambrus and Elliott (2020), who, as in our setup, consider network formation games with

costly links and a division of surplus based on the Myerson value. In contrast to this literature—which

mostly focuses on reduced-form games—we develop a microfounded, general equilibrium macro

model. This allows us to study how shocks to primitives (such as productivities and fixed costs)

propagate, alter the economy’s production network, and shape macroeconomic outcomes.

6Also see Korovkin et al. (2023), who use a sufficient statistics approach to measure the welfare implications of the
reorganization of production networks without relying on specific microfoundations for endogenous network formation.

7See Table 1 in Dhyne et al. (2023) for a detailed comparison of the various assumptions in these papers. Relatedly, Grossman
et al. (2023) study a model of global supply chains with Leontief production technologies and a simple network consisting of
a single tier of suppliers and customers. Also see Oberfield (2018) and Panigrahi (2023), who develop models of endogenous
formation of firm-to-firm linkages with a continuum of firms. As a result, in these models, (i) each individual firm’s decision
has no impact on aggregate variables and (ii) production networks are acyclic with probability one. A more recent series of
papers, such Arkolakis et al. (2023) and Demir et al. (forthcoming), use a search and matching framework to study formation
of production networks across space.

8Examples include Jackson and Wolinsky (1996), Bala and Goyal (2000), Dutta and Jackson (2000), and Hojman and Szeidl
(2008). See Jackson (2005) for an early survey of this literature and Mauleon and Vannetelbosch (2016) for a more recent one.
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Outline. The rest of the paper is organized as follows. We present our model in Section 2. In Section

3, we analyze the model while taking the production network as given. In Section 4, we allow for

endogenous creation and destruction of supplier-customer relationships and establish that equilibrium

supply chains are excessively fragile. We explore the implications of this fragility in Section 5. The proofs

and some additional results are provided in the Appendix. An Online Appendix contains the proofs not

presented in the main paper.

2 Model

Consider an economy consisting of n + 1 firms, indexed by i ∈ N = {0, 1, 2, . . . , n}. Firms labeled

{1, 2, . . . , n} produce differentiated goods, while the firm i = 0 produces a final good that is sold to the

representative household.

Firm i ∈ N has access to a menu of distinct production technologies, each with a potentially different

mix of labor and (intermediate) inputs and with its own productivity. As in Acemoglu and Azar (2020),

we assume that the production function of firm i can be expressed as

yi = Fi(Ii, Ai(Ii), Li, Xi), (1)

where Ii ⊆ {1, . . . , n} \ {i} denotes the set of inputs used by the firm, Li is the labor input,Xi = {xij}j∈Ii
is the vector of input quantities purchased from firms j ∈ Ii, and Ai(Ii) is a vector of productivity

parameters that depend on the specific mix of inputs used by the firm.9 One interpretation of the

specification in (1) is that firm i requires a fixed set of inputs, which it can either acquire from specialized

suppliers or produce in-house. Under this interpretation, Ai(Ii) represents the potential productivity

gains from relying on specialized suppliers in Ii. However, the mathematical formulation in (1) is more

general than this particular interpretation and allows for the possibility that the firm can achieve greater

productivity by combining a different set of inputs.

Throughout, we assume thatFi(Ii, Ai(Ii), Li, Xi) is strictly quasi-concave in inputs, exhibits constant

returns to scale in (Li, Xi), and is increasing and continous in labor, inputs, andAi(Ii). Unless otherwise

noted, we also assume that labor is an essential factor of production for all technologies in the sense

that Fi(Ii, Ai(Ii), 0, Xi) = 0.10 Finally, and without much loss of generality, we assume that the final

good producer can always produce using labor as the only input, with a productivity that we normalize

to one, that is, F0(∅, A0(∅), L0) = L0. This assumption guarantees that the economy is always capable

of producing a nonzero amount of the final good.

The specification in (1) indicates how the production technology of firm i depends on the specific

mix of inputs used by the firm. However, to use a particular mix of inputs, Ii, firm i needs to establish

customer-supplier relationships with producers of each of those inputs. Specifically, we assume that

production technology Fi(Ii, Ai(Ii), Li, Xi) is available to firm i only if i and all suppliers j ∈ Ii

incur fixed costs cij ≥ 0 and sij ≥ 0, respectively. These relation-specific fixed costs, which are in

units of the final good, may represent costs associated with customization of products, integration

9If good i cannot be produced using a particular mix of inputs, Ii, then Fi(Ii, Ai(Ii), Li, Xi) = 0.
10This assumption is to rule out the possibility that labor can be made redundant by some combination of intermediate

inputs and ensures that the output of each firm is always finite. While this assumption can be relaxed, it significantly simplifies
our analysis and notation.
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of production processes with those of the other party, quality control by the customer, establishing

dedicated distribution channels by the supplier, or joint R&D efforts.

The economy is also populated by a representative household, who supplies L units of labor

inelastically to the firms and consumes the final good. The household’s budget constraint is

PY = wL+

n∑
i=0

φi,

where Y denotes the household’s consumption of the final good, P denotes the price of the final good,

and w is the wage. In the above expression, φi denotes the profit of firm i ∈ N net of fixed costs, which

accrues to the representative household. We assume that the household has a strictly increasing utility

function u(·). As a result, Y —which we refer to as the economy’s aggregate output—is both the real GDP

and a measure of welfare in this economy.

Finally, we assume that the final good can also be produced by a competitive fringe of firms that

can transform labor, one-to-one, into the final good. While firms in this competitive fringe are not

active in equilibrium, their presence imposes an upper bound on the price that firm 0 can charge. In

their absence, firm 0 has an incentive to raise its price unboundedly, as it faces a unitary price elasticity

of demand. A second convenient implication of this assumption is that the real wage is determined

independently of the details of the supplier-customer relationships: the wage always coincides with the

price of the final good, which we choose as the numeraire, i.e., w = P = 1.

The timing of the model is as follows. The economy lasts for three periods t ∈ {0, 1, 2}. At t = 0, each

firm i ∈ N decides whether to pay fixed costs {cij , sji}j 6=i to form relationships with potential suppliers

and customers. At t = 1, any customer-supplier pair i and j that have established a relationship

negotiate with one another to enter into a pairwise contract that governs their relationship at t = 2.

Assuming i and j reach an agreement at t = 1, they can trade at t = 2, which is also when production

and consumption take place. In what follows, we describe each of these stages in further detail.

Production Network. At t = 0, each firm decides whether to pay the requisite fixed costs to form

supplier-customer relationships with other firms in the economy. The supplier-customer relationships

that are formed at the end of t = 0 constitute the economy’s production network, G. Each vertex in

this network corresponds to a firm i ∈ N and a directed edge, ij, is present from vertex j to vertex i

if firms j and i have both paid the fixed costs sij and cij to serve, respectively, as the supplier and the

customer in that relationship. For notational convenience, we treat a production network G and its

edge set interchangeably. Production technology Fi(Ii, Ai(Ii), Li, Xi) is thus available to firm i only if

ij ∈ G for all j ∈ Ii.

Pairwise Contracts. After paying the fixed costs cij and sij at t = 0, firms i and j need to reach

an agreement with one another at t = 1 to determine the terms of the contract that governs their

relationship. We first specify the contract space and then discuss the bargaining procedure.

We assume that the contract between the supplier-customer pair ij takes the form of a network-

contingent two-part tariff: the contract specifies a pair (pij(G), tij(G)) for any production network G 3
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ij, where tij denotes a lump-sum transfer from the customer i to the supplier j, in exchange to which j

commits to delivering as many units of its product as demanded by i at the fixed unit price of pij .

The assumption that the contract between i and j is contingent on the production network means

that the unit price and the transfer can depend on the presence or absence of other supplier-customer

relationships in the economy—for example, on the identities of the two firms’ other suppliers and

customers. However, contract terms between i and j cannot depend on the prices and transfers

specified in other contracts. Finally, we impose the additional restriction that pij(G) = pij(G \{ks})
and tij(G) = tij(G \{ks}) whenever a supplier-customer pair ks ∈ G does not reach an agreement.

In other words, if k and s do not reach an agreement, then pij and tij would be as if k and s had not

established a relationship to begin with.

Given the pairwise contracts, the net profit of firm i ∈ {1, . . . , n} in production network G is

φi(G) = πi(G)−
∑
j:ij∈G

cij −
∑

k:ki∈G
ski, (2)

where the last two terms represent the fixed costs incurred by i to serve as, respectively, a customer to

and a supplier of other firms in the economy, and πi(G) denotes i’s gross profit, given by

πi(G) =
∑

k:ki∈G
pki(G)xki −

∑
j:ij∈G

pij(G)xij − wLi +
∑

k:ki∈G
tki(G)−

∑
j:ij∈G

tij(G). (3)

The first term on the right-hand side of (3) represents i’s revenue from selling its product to other firms at

unit prices pki(G), the next two terms capture i’s expenditure on inputs and labor, and the last two terms

capture the lump-sum transfers to i from its supply chain partners and vice versa. The net and gross

profits of the final good producer i = 0 can also be expressed similarly using (2) and (3) by replacing the

first term on the right-hand side of (3) with sales to the household.11

Bargaining. We assume that any two firms that have established a relationship engage in Nash

bargaining to determine their pairwise contract, taking all other contracts and the demand faced by the

customer firm as given. More specifically, we assume that the pairwise contract (pij(G), tij(G)) between

the customer-supplier pair ij ∈ G is given by

(pij(G), tij(G)) = arg max
(pij ,tij)∈Oij(G)

[
πi(G)− πi(G \{ij})

]θi[
πj(G)− πj(G \{ij})

]θj
, (4)

where θi, θj ≥ 0 parameterize the firms’ respective bargaining powers, πi(G) denotes the gross profit

of firm i when the production network is G (given in (3)), πi(G \{ij}) denotes i’s profit in the case

of “disagreement” or breakdown of negotiations with j, and Oij(G) is the set of individually rational

bargaining outcomes:

Oij(G) = {(pij , tij) : πi(G) ≥ πi(G \{ij}), πj(G) ≥ πj(G \{ij})}. (5)

A few remarks are in order. First, even though i and j take all other contracts as given, the fact

that those contracts are contingent on the production network means that the lump-sum transfers and

11The expression in (2) needs to incorporate fixed costs incurred by firm i even when those costs do not lead to the creation
of a link in G (for example, because the corresponding counterparty refused to pay its share to form the link). Since such
outcomes do not occur in equilibrium, we do not include the corresponding terms for notational simplicity.
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unit prices in all other pairwise relationships in G may adjust depending on whether i and j reach

an agreement or not. For example, the unit price that i charges a customer k changes from pki(G) to

pki(G \{ij}) in case of disagreement between i and j. This is in contrast to the Nash-in-Nash bargaining

solution, which assumes that each bilateral pair bargains as if all other negotiated contracts do not

adjust in response to a bargaining disagreement (Horn and Wolinsky, 1988; Collard-Wexler et al., 2019).

Instead, our specification of the disagreement points in (4) is similar to Jackson and Wolinsky (1996) and

Stole and Zwiebel (1996), who assume that contracts are renegotiated upon any disagreement.

Second, the bargaining solution in (4) is well-defined only if the set of possible bargaining outcomes

Oij(G) is nonempty. When this set is empty, there are no gains from trade and hence i and j cannot

trade with one another at t = 2, even though both firms paid the requisite fixed costs at t = 0.

Third, while the specification of the bargaining outcome in (4) allows for heterogenous bargaining

powers, it assumes that firm i’s bargaining power parameter, θi ≥ 0, remains the same irrespective of

the identity of the partner it is negotiating with.12

Fourth, we could have equivalently expressed (4) in terms of net profits φi and φj , rather than gross

profits πi and πj , since the fixed costs for establishing supplier-customer relationships are sunk by the

time the two firms bargain at t = 1.

Finally, we assume that the final good producer firm 0 makes a take-it-or-leave-it offer to the

household with a fixed price (and no lump-sum transfers). The presence of the competitive fringe of

final good producers implies that the price offered by firm 0 is always equal to the marginal cost of the

competitive fringe.

Discussion. We conclude this section with a brief discussion of the model and its various ingredients.

First, it is worth highlighting a key difference between our framework and that of Acemoglu and

Azar (2020), who also develop a model of endogenous production networks. Acemoglu and Azar (2020)

assume that markets are contestable, in the sense that any given production technology is accessible to

a large number of firms at no cost. This assumption makes their model more appropriate for the study

of endogenous networks at the sectoral level, as firms can enter a given sector without any entry barriers

and can use any input without incurring relationship-specific fixed costs. In contrast, our framework

explicitly incorporates relationship-specific investments at the firm-level with prices and transfers that

are shaped by outcomes of pairwise negotiations over the supply chain.

The relationship-specific nature of supplier-customer interactions also distinguishes our model

from that of Baqaee and Farhi (2021), who assume that individual firms are infinitesimal and that the

mass of entrants and the number of links adjust smoothly in response to changes in primitives. In

contrast, firms in our framework need to bargain over the division of the relationship-specific surplus

and take into account how their choices of suppliers and customers shape the production network

structure, prices, quantities, and ultimately their profits.

The assumption that firms bargain over network-contingent contracts is akin to allowing them to

renegotiate the rest of their relationships in case negotiations with a particular supplier or customer

12In a strategic foundation of this bargaining mechanism, (θ0, . . . , θn) map to the frequency with which each firm is
recognized to make offers to other firms (Navarro and Perea, 2013). In the special case that all firms have the same bargaining
powers, the specification of the bargaining problem in (4) reduces to that of Jackson and Wolinsky (1996).
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break down (unlike the Nash-in-Nash bargaining solution). For example, it allows a firm to renegotiate

a contract with a supplier if it cannot reach an agreement with a supplier of a complementary input or

with its customers. As we show in Theorem 2 below, this form of network-contingency—together with

the assumption that firms bargain over two-part tariffs—ensures that, with an exogenous production

network, the resulting prices and transfers induce an efficient allocation.

3 Exogenous Production Networks

In this section, we analyze the economy with a given production network. Namely, we focus on

time periods t ∈ {1, 2}, define a solution (equilibrium) concept, establish equilibrium existence and

uniqueness, and characterize the equilibrium. We then provide a series of comparative static results.

In the next section, we extend the analysis to t = 0, thus allowing for the endogenous formation of the

production network.

3.1 Solution Concept

We start by defining the solution concept when the production network G is exogenously given. Recall

that given the network of customer-supplier relationships, firms engage in bilateral bargaining at t =

1 to determine the contracts that govern their relationship at t = 2, which is when production and

consumption take place. This timing lends itself to the following natural definition of equilibrium.

Definition 1. Given G, an exogenous network equilibrium is a collection of prices and transfers

(pij(G̃), tij(G̃))ij∈G̃ and quantities ((xij(G̃))ij∈G̃, (yi(G̃), Li(G̃))i∈N , Y (G̃)) for all G̃ ⊆ G such that

(i) given any G̃ ⊆ G and (pij(G̃), tij(G̃))ij∈G̃, firms minimize production costs while meeting their

output obligations to customers, and the household chooses consumption to maximize utility

subject to its budget constraint;

(ii) given any G̃ ⊆ G and (pij(G̃), tij(G̃))ij∈G̃, all markets clear;

(iii) the contract (pij(G̃), tij(G̃)) is the solution to the bargaining problem in (4) for all ij ∈ G̃ and all

G̃ ⊆ G, given all other contracts.

The quantity restrictions imposed by equilibrium conditions (i) and (ii) are standard and ensure that

firms and the representative household optimize and markets clear at t = 2 given prices and lump-sum

transfers negotiated at t = 1. Specifically, market clearing for the intermediates, the final good, and

labor in condition (ii) take the following familiar forms

yj(G̃) =
∑
i:ij∈G̃

xij(G̃)

y0(G̃) = Y (G̃) +
∑
ij∈G̃

(cij + sij)

L(G̃) =
∑
i∈N

Li(G̃).
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Finally, condition (iii) in Definition 1 imposes that each pairwise price-transfer combination is the

outcome of Nash bargaining, given all other contracts.

Definition 1 requires that conditions (i)–(iii) to hold not only for G but also for all its potential

subnetworks G̃ ⊆ G. In other words, quantities, prices, and transfers have to be mutually consistent

not only when all supplier-customer pairs reach an agreement with one another but also when some of

them may not. This requirement is a reflection of the assumption that firms’ pairwise contracts can be

contingent on the set of pairwise agreements in the economy. As a consequence, the equilibrium prices

and transfers in G depend on the outcome of negotiations in subnetworks of G with one fewer edge.

This can be seen from equation (4), where the outcome of bargaining between i and j in G depends also

on prices and transfers they agree on with their other supply chain partners in G \{ij}. This indicates

that the equilibrium notion in Definition 1 is defined recursively over production networks: to solve for

equilibrium prices and transfers, one needs to start with networks consisting of only a single supplier-

customer relationship and then increasing the number of negotiating pairs one at a time.13

3.2 Existence, Uniqueness, and Characterization

We now prove that an equilibrium exists and is (generically) unique and provide a characterization in

terms of model primitives. To do this most economically, we first introduce the following concept.

Definition 2. The aggregate (gross) productivity, A(G), of production network G is the maximum

amount of the final good the economy can produce per unit of labor.

That is, if a social planner were to take the production network as given and choose the allocation

((xij(G))ij∈G, (yi(G), Li(G))i∈N , Y (G)) to maximize the production of the final good, then firm 0’s

output would be equal to y0(G) = A(G)L, where L is aggregate labor supply. This implies thatA(·) is a

model primitive that is defined independently of the household’s and firms’ decisions and parametrizes

the economy’s production possibility frontier as a function of its production network structure.14 An

immediate consequence of Definition 2 is that A(G1) ≤ A(G2) whenever G1 ⊆ G2: the social planner

can never produce less output when the set of supplier-customer relationships expands. When there is

no risk of confusion, we refer toA(·) as the economy’s aggregate productivity.

Next, note that an exogenous network equilibrium in the sense of Definition 1 would not exist if

the fixed costs (cij , sij)ij∈G required for establishing all customer-supplier relationships in G exceeded

the total output the economy is capable of producing. We therefore restrict our attention to feasible

production networks, in which the total cost of establishing supplier-customer relationships falls inside

the economy’s production possibility frontier:∑
ij∈G

(cij + sij) ≤ A(G)L.

Finally, given a production network G, we let G|T = {ij ∈ G : i, j ∈ T} denote the subnetwork of G

obtained by only retaining supplier-customer relationships where both firms belong to T ⊆ N .

13Restriction (iii) in Definition 1 is thus a generalization of the “recursive Nash-in-Nash” bargaining solution of Yu and
Waehrer (2019) to networks with directed edges, unequal bargaining powers, and micro-founded surpluses generated from
firm production and household consumption.

14In Appendix A.1, we express the dependence ofA(·) on the production network and firms’ production technologies.
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Theorem 1. Suppose production network G is feasible. Then,

(a) there exists an exogenous network equilibrium in which all supplier-customer pairs ij ∈ G reach an

agreement. The resulting equilibrium prices and quantities are generically unique;

(b) all input producers price at marginal cost;

(c) the equilibrium gross profit of firm i is given by

πi(G) = θi
∑

T⊆N\{i}

ψi(T )
[
A(G|T∪{i})−A(G|T )

]
L, (6)

whereA(·) is the economy’s aggregate productivity and

ψi(T ) =
∑

R⊇T∪{i}

(−1)|R|−|T |+1∑
k∈R θk

≥ 0. (7)

In addition to establishing existence and (generic) uniqueness, Theorem 1 provides a

characterization of equilibrium prices and profits in terms of model primitives. Statement (b) of

the theorem shows that, in all pairwise supplier-customer relationships, the supplier always prices

at marginal cost, that is, pij(G) = mcj(G) for all ij ∈ G, where mcj(G) denotes j’s marginal cost

in production network G. This is a consequence of the pairwise efficiency of the Nash bargaining

solution: setting the price equal to the supplier’s marginal cost maximizes the total surplus generated

between the pair. The two firms then split the resulting surplus via a lump-sum transfer tij(G) from the

customer to the supplier. These pairwise transfers are what determine firms’ equilibrium profits, which

are characterized in statement (c) of the theorem.

The characterization in equations (6) and (7) expresses gross profits in terms of the production

network structure, the economy’s aggregate productivity, and bargaining powers. According to (6), the

equilibrium profit of firm i is a weighted sum of i’s marginal contributions to aggregate productivity in

various subnetworks of G, A(G|T∪{i}) − A(G|T ), with the corresponding weights determined by firms’

bargaining powers (θ0, . . . , θn) in (7). Thus, for example, firm i makes zero profits if it has no bargaining

power (θi = 0) or if it does not contribute to aggregate productivity (i.e., A(G|T∪{i}) = A(G|T ) for all

T ⊆ N ). More generally, firm i’s equilibrium profit depends on the network structure and the extent to

which this firm contributes to aggregate productivity in the various supply chains it belongs to.

It is worth highlighting that the characterization in Theorem 1(c) mirrors the expressions for

the (weighted) Myerson value from cooperative game theory (Slikker et al., 2005). In a cooperative

game with transferable utilities, the Myerson value—which is a network-adjusted generalization of

the Shapley value—assigns a share of the total surplus generated by coalitions of players to members

of that coalition based on how those players are connected to one another over a network (Jackson

and Wolinsky, 1996). The similarity between the expression in (6) and the Myerson value stems

from our assumption that firms bargain efficiently using two-part tariffs. This implies that, given an

exogenous production network G, the general equilibrium economy of Section 2 has a reduced-form

representation that parallels a cooperative game with transferable utilities.

Finally, even though Theorem 1 establishes that equilibrium prices and quantities are (generically)

unique, there may be more than one collection of pairwise lump-sum transfers that are consistent with

12



0

21

0

1

2

(a) (b)

Figure 1. Horizontal and vertical production networks

Notes: Each vertex corresponds to a firm, with a directed edge present from one vertex to another if the two firms have entered
into a supplier-customer relationship. The vertex indexed 0 represents the final good producer.

equilibrium. Nonetheless, by part (c) of the theorem, all such transfers result in the same profits, given

by the expression in (6).

Before exploring the implications of Theorem 1, we discuss two illustrative examples.

Example 1. Consider the horizontal production network, G = {01, 02}, in Figure 1(a), where firms 1 and

2 can serve as input suppliers of the final good producer firm 0. Applying Theorem 1 to this economy,

the gross profit of firm 1 is given by

π1(01, 02) =
θ1

θ0 + θ1
(A(01)−A(∅))L+

θ1

θ0 + θ1 + θ2
(A(01, 02)−A(01)−A(02) +A(∅))L, (8)

whereA(01, 02) represents aggregate productivity if firm 0 has access to inputs from both of its potential

suppliers;A(01) andA(02) denote aggregate productivity if firm 0 has access to only a single input; and

A(∅) is the corresponding productivity when firm 0 produces by only using labor.

Note thatA(01)−A(∅) is the marginal contribution of firm 1 to aggregate productivity when it is the

only supplier of firm 0. Therefore, the first term on the right-hand side of (8) represents the share of this

surplus that goes to firm 1 as a result of bargaining with firm 0. The second term on the right-hand side

of (8) captures how firm 1’s profit changes as a function of firm 2’s contribution to aggregate productivity,

which is then split based on 1’s relative bargaining power vis-à-vis the other two firms. Importantly, the

magnitude and sign of this term depends on the extent of substitutability or complementarity between

inputs 1 and 2 in the production function of firm 0. To see this, first suppose firm 2 does not contribute

to aggregate productivity, so that A(01, 02) = A(01) and A(02) = A(∅). It is then immediate that the

second term on the right-hand side of (8) is equal to zero. Next, suppose good 2 is a perfect substitute

for good 1 in the production technology of firm 0, in the sense that A(01, 02) = A(01) = A(02). In that

case, it follows that the second term on the right-hand side of (8) is negative: when goods 1 and 2 are

substitutes, firm 2’s presence can only lower 1’s profits. Finally, the last term is positive when goods 1

and 2 are complements.

Example 2. Consider the vertical production network, G = {01, 12}, depicted in Figure 1(b), where firm

2 serves as an input supplier to firm 1, which then sells its product to firm 0. Theorem 1(c) leads to the
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following expressions for gross profits:

π0(01, 12) =
θ0

θ0 + θ1 + θ2
(A(01, 12)−A(01))L+

θ0

θ0 + θ1
(A(01)−A(∅))L

π1(01, 12) =
θ1

θ0 + θ1 + θ2
(A(01, 12)−A(01))L+

θ1

θ0 + θ1
(A(01)−A(∅))L

π2(01, 12) =
θ2

θ0 + θ1 + θ2
(A(01, 12)−A(01))L.

These expressions have intuitive interpretations. The second terms in π0 and π1 give the division

of surplus generated by firms 0 and 1 in the absence of firm 2, whereas the first terms in all three

expressions captures the division of the extra surplus generated by adding firm 2 to the supply chain.

Note that firm 1 earns a positive gross profit even if it does not contribute to aggregate productivity

by itself (that is, even if A(01) = A(∅)): it earns a strictly positive profit as long as firm 2’s presence

raises aggregate productivity. This reflects the fact that firms in our model earn “intermediation rents”:

equilibrium profits reflect not only firms’ own direct contribution to aggregate productivity but also the

extent to which they make other firms’ contributions possible.

We conclude this discussion by establishing that the exogenous network equilibrium is efficient—in

the sense that it coincides with the solution of the problem of maximizing household welfare.

Theorem 2. For any feasible production network G, the exogenous network equilibrium is efficient.

This result is a consequence of parts (a) and (b) of Theorem 1 and the first welfare theorem: given

Nash bargaining and the two-part tariffs, all customer-supplier pairs in G reach an agreement and all

inputs are priced at marginal cost, ensuring that the equilibrium allocation coincides with the efficient

allocation. It is also useful to note that even though firms earn positive profits in this equilibrium, these

profits are earned via lump-sum transfers, not because of markups.15

3.3 Comparative Statics

We next present a series of comparative static results on how changes in model primitives shape profits.

These comparative static results will serve as stepping stones for the analysis of the economy when the

production network is formed endogenously.

We start with two assumptions on the economy’s aggregate productivity.

Assumption 1(a) (extensive margin supermodularity). Let G2 ⊇ G1 be two production networks. Then,

A(G2 ∪ {ij})−A(G2) ≥ A(G1 ∪ {ij})−A(G1) for all ij 6∈ G2. (9)

Assumption 1(b) (intensive margin supermodularity). Let G2 ⊇ G1 and Āi(Ii) ≥ Ai(Ii) element-wise.

Then,

A(G2; Āi(Ii))−A(G2;Ai(Ii)) ≥ A(G1; Āi(Ii))−A(G1;Ai(Ii)), (10)

whereA(G;Ai(Ii)) is aggregate productivity of G if i’s productivity when using inputs in Ii is Ai(Ii).
15 Under the alternative assumption that a supplier and a customer negotiate over fixed-price contracts (as opposed to two-

part tariffs), the equilibrium price would be above the supplier’s marginal cost, as this would be the only way for the supplier to
extract some of the realized surplus from the customer. However, this would lead to lower than efficient levels of input use and
a series of double marginalizations throughout the network. See an earlier draft of the paper for a variant of the model with
such contracts (Acemoglu and Tahbaz-Salehi, 2020).
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Assumption 1(a) imposes supermodularity on the extensive margin of bilateral linkages: adding

a customer-supplier relationship ij results in a greater increase in productivity when the production

network has more pairwise supplier-customer relationships to begin with (that is, when G2 ⊇ G1).

Assumption 1(b) is the intensive margin counterpart to Assumption 1(a): it states that increasing any

of the productivities in (1) results in a larger increase in aggregate productivity in the presence of more

supplier-customer relationships.

We can now state our first comparative static result:

Theorem 3. Suppose aggregate productivity is supermodular at the extensive margin (Assumption 1(a)).

If G2 ⊇ G1, then πi(G2) ≥ πi(G1) for all firms i.

Therefore, as long as aggregate productivity is supermodular at the extensive margin, expanding the

set of supplier-customer linkages not only raises aggregate output but also (weakly) increases all firms’

gross profits. It is easy to see that such a result may not hold without Assumption 1(a): in Example 1, the

second term on the right-hand side of equation (8) is negative whenever good 2 is a perfect substitute

for good 1 in the production technology of firm 0. Thus, firm 1’s profit would go down if firms 0 and 2

form a customer-supplier relationship. Nonetheless, as we show in Proposition A.1, Assumption 1(a) is

satisfied whenever various inputs in firms’ production technologies are either (gross) complements or

weak substitutes.

Our next theorem establishes a similar monotonicity result in response to changes in productivities

Ai(Ii) in (1).

Theorem 4. If aggregate output is supermodular at the intensive margin (Assumption 1(b)), then all firms’

gross profits are weakly increasing in productivity Ai(Ii).

Thus, once again, an expansion of the production possibility frontier—this time due to an increase

in productivity—translates into higher gross profits for all firms as they split the added surplus with one

another via bargaining.

Our final result is a comparative static result with respect to firms’ bargaining powers:

Theorem 5. Suppose aggregate productivity is supermodular at the extensive margin (Assumption 1(a)).

Then, an increase in θi increases the gross profit of firm i and decreases the gross profits of all other firms.

This is an intuitive result, establishing that an increase in a firm’s bargaining power allows it to extract

a larger share of the total surplus at the expense of all other firms. However, for the above result to hold,

the supermodularity Assumption 1(a) cannot be dispensed with. This can be seen clearly in Example

1. If goods 1 and 2 were perfect substitutes in the sense that the aggregate surplus is the same in the

presence or absence of either firm (that is, A(01, 02) = A(01) = A(02)), then firm 1’s profit in (8) would

be increasing in θ2.

4 Endogenous Production Networks

We now turn to presenting our main results by extending the analysis to time period t = 0, which is

when firms decide whether to incur fixed costs to form relationships with suppliers and customers.
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4.1 Equilibrium

Definition 3. An endogenous network equilibrium consists of a production network, G, and a collection

of network-contingent prices, transfers, and quantities such that

(i) prices, transfers, and quantities form an exogenous network equilibrium;

(ii) no firm has an incentive to deviate by changing the set of its suppliers and customers.

The equilibrium notion in Definition 3 is the natural solution concept under backward induction.

At t = 0, firms decide whether to incur the fixed costs of establishing supplier-customer relations with

other firms in the economy while taking all other firms’ corresponding decisions as given and taking into

account how the resulting production network will affect prices and transfers at t = 1 and quantities at

t = 2. Definition 3 allows for deviations along multiple supplier-customer relationships: each firm can

deviate by simultaneously adding and/or dropping any mix of suppliers and customers.

Our next result shows that, as long as aggregate productivity satisfies supermodularity at the

extensive margin, the set of endogenous network equilibria is nonempty and has a well-behaved

structure.

Theorem 6. If aggregate productivity is supermodular at the extensive margin (Assumption 1(a)), then

(a) an endogenous network equilibrium exists;

(b) equilibrium production networks form a lattice with respect to the set inclusion order and thus there

exists a greatest equilibrium network that contains all other equilibrium networks as subnetworks;

(c) aggregate output and all firms’ net profits in the greatest equilibrium are higher than the

corresponding values in all other equilibria.

The key step in establishing Theorem 6 is to show that, under supermodularity at the extensive

margin, firms’ decisions to establish customized relationships with potential suppliers and customers

are strategic complements, and hence, the corresponding network formation game is supermodular.

Statements (a) and (b) of the theorem then follow from applying standard monotone comparative static

results (Milgrom and Roberts, 1990). While an equilibrium is guaranteed to exist, it is not necessarily

unique, as there is room for significant miscoordination between firms. For example, whether a firm

is willing to incur the fixed cost of establishing a relationship or not depends on what it anticipates its

potential partner, its other suppliers, and even firms further upstream and downstream its supply chain

to do. Nonetheless, the fact that the set of equilibria forms a lattice (Theorem 6(b)) implies that there

exists a greatest equilibrium that does not exhibit any coordination failures. In particular, there exists

an equilibrium network G∗ such that such that G∗ ⊇ G for all other equilibrium networks G. This

equilibrium will be the focus of the rest of our analysis.16

16Another consequence of the supermodularity of the network formation game and the lattice structure of equilibria is that
one can compute the economy’s greatest equilibrium using a simple iterative algorithm. Starting with the production network
that contains all possible pairwise supplier-customer relationships, best response dynamics is guaranteed to converge to the
greatest equilibrium in finitely many steps (Milgrom and Roberts, 1990, Theorem 8).
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Finally, statement (c) of Theorem 6 follows from the fact that the game of establishing supplier-

customer relationships is not only supermodular but also exhibits positive spillovers: from Theorem 3,

each firm’s profit can only increase if the set of supplier-customer relationships formed between other

firms expands. This implies that the greatest equilibrium is (i) Pareto preferred to all other equilibria

and (ii) generates the highest possible equilibrium output.

4.2 Comparative Statics

With equilibrium definition and existence result at hand, we next characterize the micro and

macroeconomic impacts of shocks to fixed costs and productivities when the production network can

adjust endogenously.

Theorem 7. Suppose aggregate productivity is supermodular at the extensive margin (Assumption 1(a)).

Then, in the economy’s greatest equilibrium, any increase in fixed costs

(a) shrinks the set of equilibrium supplier-customer linkages;

(b) decreases the net profits of all firms;

(c) decreases aggregate output.

A higher fixed cost of establishing and/or maintaining a supplier-customer relationship between a

pair of firms, say firms i and j, makes it more likely for at least one of the firms to forgo that particular

relationship. The resulting change in the production network makes all other relationships in the

economy more likely to dissolve (or not form). This is because the breakdown of the relationship

between i and j shrinks the economy’s production possibility frontier, which in turn reduces the value of

all other supplier-customer relationships to the rest of the firms. The breakdown of these relationships

manifests itself as lower aggregate output and lower profits for all firms.

The next result is the counterpart to Theorem 7 for productivity shocks.

Theorem 8. Suppose aggregate productivity is supermodular at both the extensive and intensive margins

(Assumptions 1(a) and 1(b)). Then, in the economy’s greatest equilibrium, a decrease in productivityAi(Ii)

(a) shrinks the set of equilibrium supplier-customer linkages;

(b) decreases the net profits of all firms;

(c) decreases aggregate output.

The intuition underlying this result parallels that of Theorem 7. A reduction in productivities

shrinks the production possibility frontier directly and also reduces the marginal values of all supplier-

customer relationships to other firms. This makes it less likely for firms to be willing to incur the fixed

costs of maintaining the relationships with their suppliers and customers, induces a contraction in the

equilibrium production network, and results in a further decline in productivity.

An implication of Theorem 8 is that the distribution of supplier-customer relationships in our

model is procyclical. Firms tend to form and maintain relations with more suppliers and customers
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during periods of high productivity. These relationships then dissolve endogenously in response

to productivity slowdowns, acting as an amplification mechanism and potentially translating small

declines in productivity into larger aggregate effects.17 We explore this mechanism and its implications

in more detail in Section 5.

4.3 Efficiency and Fragility

Theorems 7(a) and 8(a) show that greater costs of forming supplier-customer relationships or lower

productivity of these relationships lead to breakdown of supplier-customer relationships. However,

these results are silent about whether such contractions in the economy’s supply chain are an efficient

response to changing circumstances or are “excessive” from a social welfare perspective. We now answer

this question by comparing the behavior of equilibrium and efficient production networks. Our notion

of efficiency is a direct extension of the one we used for the exogenous network economy—a social

planner maximizes household welfare by deciding which supplier-customer relationships to activate

as well as setting the optimal quantity of inputs along the chosen production network. In general,

there may be multiple production networks that support the same (maximum) level of aggregate

output. Nonetheless, the following lemma shows that, when aggregate productivity is supermodular,

there always exists a greatest efficient production network that contains all other efficient networks as

subnetworks.

Lemma 1. If aggregate productivity is supermodular at the extensive margin (Assumption 1(a)), then

there exists a greatest efficient production network.

Theorem 9. Suppose aggregate productivity is supermodular at the extensive margin (Assumption 1(a)),

and let G∗ and Geff denote the greatest equilibrium and the greatest efficient production networks,

respectively. Then, G∗ ⊆ Geff .

Theorem 9 establishes that the equilibrium production network is always a subnetwork of the

greatest efficient production network. When coupled with the fact that exogenous network equilibria

are always efficient (Theorem 2), this result implies that any equilibrium inefficiency is a consequence

of firms’ underinvestment in establishing supplier-customer relationships with other firms in the

economy. The reason for this underinvestment is a familiar hold-up problem: even though supplier-

customer pairs efficiently bargain over any surplus they generate after forming relationships, the

investments necessary for forming those relationships are sunk by the time they bargain. As a result,

firms do not fully internalize the contribution of their relationship-specific investments to other firms’

profits. The following example illustrates this inefficiency, its origin, and its consequences.

Example 3. Consider an economy in which (i) all but one customer-supplier relationship, ij, can either

be formed at no cost or not at all, meaning that ckr = skr ∈ {0,∞} for all kr 6= ij; and (ii) the relationship

ij only requires a fixed cost from the supplier, so that sij > 0 and cij = 0. Given these assumptions, it

is immediate that the efficient production network includes the link between i and j if and only if the

17This is in line with the findings of Xu et al. (2023), who document that the aggregate number of suppliers in the United
States is procyclical.
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A(G ∪ {ij})L
Y eff

Y ∗

Figure 2. Fragility of equilibrium supply chains

Notes: This figure plots the dependence of efficient and equilibrium aggregate output in Example 3 as a function of the
relationship-specific cost sij . The expressions for efficient and equilibrium aggregate output are given by (11) and (12),
respectively.

link’s contribution to aggregate output exceeds the corresponding fixed cost. Thus, efficient aggregate

output is

Y eff =

{
A(G ∪ {ij})L− sij if sij ≤ seff

ij

A(G)L if sij > seff
ij ,

(11)

where seff
ij = (A(G ∪ {ij}) − A(G))L and G = {kr 6= ij : ckr = skr = 0} is the network consisting of all

links that can be formed at no cost.

Turning to the equilibrium, firm j incurs the cost of establishing a relationship with firm i only if

the resulting change in j’s gross profit exceeds the cost, that is, πj(G∪{ij}) − πj(G) ≥ sij . Therefore,

equation (6) in Theorem 1 implies that equilibrium aggregate output is

Y ∗ =

{
A(G ∪ {ij})L− sij if sij ≤ s∗ij
A(G)L if sij > s∗ij ,

(12)

where

s∗ij = θj
∑

T⊆N\{j}

ψj(T )
[
A(G∪{ij}|T∪{j})−A(G |T∪{j})

]
L.

Figure 2 plots the expressions in (11) and (12) as a function of sij .

We make three observations. First, as long as the supermodularity Assumption 1(a) holds strictly,

then s∗ij < seff
ij . Therefore, as established in Theorem 9, the equilibrium production network is a (strict)

subnetwork of the efficient one. This is because j’s investment is (i) relationship-specific and (ii) sunk

by the time firms bargain over prices and transfers. As a result, unless firm j holds all the bargaining

power, it does not fully capture all the increase in aggregate productivity its relationship with i creates,

leading to underinvestment.

Second, comparing equations (11) and (12) illustrates that whereas the efficient level of aggregate

output decreases continuously in sij , equilibrium aggregate output experiences a discontinuous drop
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as sij crosses s∗ij . Thus, the equilibrium production network is not only inefficient but also excessively

fragile, in the sense that small shocks can have sizable effects on aggregate output. Notably, the

discontinuity in equilibrium aggregate output arises exactly when firm j severs its relationship with

firm i.

Finally, note that the drop in equilibrium aggregate output at the point of discontinuity is equal to

seff
ij − s∗ij . Thus, the extent of equilibrium fragility is closely tied to the wedge between the equilibrium

and the efficient outcomes.

Our next result demonstrates that the link between (in)efficiency and fragility goes beyond the

simple economy in Example 3.

Theorem 10. Let Y eff and Y ∗ be the efficient and equilibrium levels of aggregate output, respectively.

(a) Y eff is continuous in productivities and fixed costs.

(b) Generically, Y ∗ changes discontinuously in response to changes in productivities and fixed costs,

whenever these alter the equilibrium production network.

Taken together, the two parts of Theorem 10 illustrate that, in our model, inefficiency and fragility are

closely tied, as in Example 3. Since firms do not fully internalize the surplus they generate by entering

into customer-supplier relationships, they may inefficiently drop one or more of their productive

partners in response to small changes in the economic environment. This creates a discontinuous

(sharp) contraction in aggregate output.

The source of the fragility outlined above is distinct from that of Elliott et al. (2022), who show that

a supply chain with (i) strong input complementarities and (ii) infinitely many stages of production

can experience discontinuous phase transitions in response to shocks. Supply chain fragility in their

model arises from the fact that an infinitely long supply chain with multiple essential inputs can operate

only if, for each input, at least one chain of undisrupted producers continues upstream indefinitely.

Because the discontinuities in Elliott et al. (2022) are driven by the nature of the production technology,

they exist both in equilibrium and the planner’s solution. In contrast, the discontinuities in our model

rely neither on essentiality of any particular intermediate input nor on infinitely deep supply chains.

Furthermore, in our model, the efficient level of aggregate output is always continuous in the shocks,

irrespective of the complexity or the depth of the production processes in the economy (Theorem 10(a)).

Fragility is thus purely an equilibrium phenomenon, driven by firms’ endogenous decisions to sever

their relationships with suppliers and customers (Theorem 10(b)).

5 Supply Chain Fragility

In this section, we explore several implications of the fragility of equilibrium supply chains established

in Theorem 10.
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Figure 3. Supply chain fragmentation

Notes: This figure plots the supplier-customer relationship between firms j and i (left panel) and its fragmentation (right panel).
For simplicity, the figure does not depict the rest of the production network.

5.1 Fragmentation and Fragility of Supply Chains

We start by showing that while more fragmented supply chains can increase productivity, they can

simultaneously make the economy more vulnerable to sharp declines in output. Put differently,

productivity gains of fragmenting supply chains may come at the cost of supply chain resilience.

To illustrate these ideas concisely, we compare two distinct economies with different degrees of

fragmentation in their supply chains. Consider a pair of firms j and i, where the latter purchases the

former’s output, processes it in-house (for example, by combining it with labor and other inputs), and

transforms it into another product. Next, consider a fragmentation of this relationship, where firm i

outsources part of the processing of j’s output to firm k, which then sells this partially-processed good

as an input to i. Figure 3 illustrates the two alternative architectures (where for simplicity we are not

depicting the rest of the production network).

To ensure that the only difference between the two supply chain architectures is in the fragmentation

of i’s relationship with j, we assume that the rest of the production network—which we denote by G—

remains unchanged, that in either case firm j can serve as a supplier only if it incurs a fixed cost of

sij = skj = s, and that the relationship between firms i and k can be formed at no cost. Our key

assumption is the following:

A(G∪{ik, kj}) > A(G∪{ij}) > A(G) = A(G∪{ik}). (13)

The first inequality captures the idea that fragmenting i’s relationship with j increases productivity,

whereas the equality on the right-hand side implies that firm k’s only contribution to productivity is

to process j’s product. Let us denote the equilibrium output in the vertically integrated and fragmented

economies by Yint and Yfrg, respectively. We have the following result.

Proposition 1. If (13) is satisfied, then, for large enough values of θk, there exists s∗frg such that Yfrg > Yint

for s ≤ s∗frg and Yfrg < Yint for s > s∗frg.

This proposition implies that fragmentation can contribute to productivity while simultaneously

increasing fragility: a small shock to s in the more fragmented economy can result in a sharp decline
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s∗frg s∗int

Yfrg

Yint

Figure 4. Fragmentation and fragility

Notes: This figure plots equilibrium aggregate output for the fragmented (red line) and vertically integrated (black line) supply
chain relationship between firms i and j, as depicted in Figure 3. The horizontal axis is the fixed cost s that firm j needs to pay
to establish a relationship with either i or k.

in aggregate output, pushing it below its corresponding value in the less fragmented economy. Figure 4

illustrates the content and the intuition behind this result. The assumption that fragmentation increases

productivity implies that, for small values of s, aggregate output in the fragmented economy is higher

than that of the vertically integrated economy. However, as in Theorem 10(b), aggregate output is prone

to discontinuous drops, as firms may respond to negative shocks by severing their relationships with

suppliers and customers. The key observation here is that, when firm k can extract a large enough share

of the surplus, the threshold of discontinuity in the fragmented architecture can be to the left of the

threshold in the integrated architecture, and the two curves cross one another (see Figure 4). Hence, the

fragmented economy is more fragile: it experiences a sharper and an earlier drop in aggregate output as

j’s fixed cost of setting up customer-supplier relationships increases.

5.2 Supply Chain Cascades

Another consequence of the fragility of the equilibrium production network is that small shocks may

trigger the dissolution of multiple supplier-customer relationships, generating systemic supply-chain

disruptions. Such cascading breakdowns can function as an amplification mechanism, translating small

shocks into potentially larger aggregate effects.

To illustrate this possibility in a transparent manner, we focus on a vertical supply chain consisting

of firms N = {0, . . . , n}, where each firm i 6= n has the option to either (i) use an in-house production

technology to transform labor, one-for-one, into its product or (ii) outsource part of its production to its

designated supplier, i+ 1, raising its productivity by factor A ≥ 1. In the language of equation (1):

yi = Fi(Ii, Ai(Ii), Li, Xi) =

{
Li Ii = ∅

Axi,i+1 Ii = {i+ 1}.

Consequently, the depth of the equilibrium supply chain is determined by the decision of firms to

whether outsource part of their production process to their suppliers. Figure 1(b) depicts such an
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economy when the depth of the supply chain is 3. We additionally assume that all firms have identical

bargaining powers and that maintaining each supplier-customer relationship requires a fixed cost of

si,i+1 = s paid by the supplier, with no additional cost to the customer.

Proposition 2. If logA > 1/2, then there exists s∗n such that

k∗ =

{
n+ 1 if s ≤ s∗n
1 if s > s∗n

and Y ∗ =

{
AnL− ns if s ≤ s∗n
L if s > s∗n,

where Y ∗ and k∗ denote, respectively, aggregate output and the depth of the equilibrium supply chain.

Though intentionally stark, this result illustrates the possibility that small shocks can result in

widespread supply chain disruptions. As long as fixed costs are small, all firms find it profitable to serve

as suppliers to their respective customers, leading to a supply chain of depth k∗ = n+ 1. However, once

s crosses a critical threshold, no firm finds it profitable to enter into a relationship with its customer,

resulting in a supply chain of depth k∗ = 1 (consisting of only the final good producer). Naturally, such

a significant change in the equilibrium supply chain translates into a sizable drop in aggregate output.

The expression for Y ∗ shows that the resulting discontinuity in aggregate output can be arbitrarily large

as n increases.

It is worth reiterating that the planner’s solution exhibits no discontinuity, as both the discontinuity

and the supply chain breakdowns captured in Proposition 2 are consequences of equilibrium

production network formation. Moreover, the sharp decline in the depth of the supply chain is due to a

cascade of breakdowns—the dissolution of the relationship between firm i + 1 and i reduces aggregate

productivity, which then triggers the breakdown of i’s relationship with i− 1, and so on.18

5.3 Supply Chains and Nonlinear Amplification of Shocks

So far, we have focused on how the fragility inherent to equilibrium production networks can function

as an amplification mechanism. Next, we show that the strength of this mechanism is closely tied to the

shocks’ size and takes a highly nonlinear form: small shocks are only marginally amplified, as they only

disrupt low-productivity relationships, whereas larger shocks are significantly magnified, because they

trigger the breakdown of highly productive relationships.

To illustrate this mechanism, we consider an economy with a two-tiered supply chain, consisting of

2n input producers and a final good producer. The top tier consists of n firms, each of which transforms

labor, one-for-one, into an input that is then sold to a single firm in the bottom tier. Firm i in the bottom

tier can produce by either using the input provided by its corresponding top-tier supplier or by using an

in-house production technology that only uses labor as an input. Thus, in the notation of equation (1),

the production function of firm i in the bottom tier is given by

yi = Fi(Ii, Ai(Ii), Li, Xi) =

{
ĀLi Ii = ∅

ĀAixi,n+i Ii = {n+ i},
18To see that Proposition 2 is indeed driven by a cascade of breakdowns, suppose that s = s∗n + ε for some small ε > 0, where

s∗n is the threshold at which firm n makes zero profits. Thus, firm n makes negative net profits if it maintains its relationship
with n− 1. However, this does not mean that firm n− 1 is also making negative profits. In fact, for small enough values ε, firm
n − 1 continues to make positive profits if n does not dissolve its relationship with n − 1. It is only because of n’s decision to
drop its relationship with n − 1 that the latter will also make negative profits. This logic then manifests itself as a cascade of
supply chain disruptions.

23



where firm n + i is the designated supplier of firm i, Ai ≥ 1 parameterizes the productivity advantage

of supplier-customer relationship between i and n + i over in-house production (which is normalized

to one), and Ā denotes a common TFP shock to all bottom-tier firms. The final good producer then

combines the varieties produced by bottom-tiered firms using a symmetric production technology,

though it can also produce each variety in-house by using labor.

To isolate the role of relationship-specific productivities Ai, we impose symmetry on the rest of the

parameters. Specifically, we assume that firms in the bottom tier have identical bargaining powers, all

top-tier firms have no bargaining power, all pairwise relationships have identical fixed costs cij = c > 0

and sij = 0, and the input varieties used by the final good producer have no productivity advantage over

the latter’s in-house production technology.

Proposition 3. There is a decreasing sequence of thresholds a1 ≥ · · · ≥ an such that if Ā ∈ (ak+1, ak),

(a) the supplier-customer relationships with the k-th lowest productivities Ai break down;

(b) furthermore, aggregate productivity of the equilibrium production network is given by

A = Ā · α(1, . . . , 1, A[k+1], . . . , A[n]),

where A[r] is r-th smallest of pairwise productivities Ai and α is a symmetric and increasing function.

A number of implications of this result are worth emphasizing. First, Proposition 3 encapsulates

the intuitive notion that low-productivity relationships are more likely to be dissolved first in

economic downturns, but more major negative shocks can lead to the breakdown of more productive

relationships. Second, and as a result, the amplification of business cycle shocks via changes in the

economy’s production network can be highly nonlinear: whereas small shocks are only marginally

amplified, larger shocks can be significantly magnified by supply chain responses. Third, and also as

a consequence, evidence that there is some cleansing of lower-productivity firms and suppliers during

recessions does not contradict the possibility that major supply chain disruptions, such as during the

2007–08 financial crisis or COVID pandemic, can have debilitating effects on the macroeconomy.

6 Conclusion

Complex supply chains are one of the pillars of any modern economy. They raise productivity

by enabling relationship-specific investments by suppliers and customers and allowing firms to

source critical, customized inputs from specialized producers. Not surprisingly, disruptions to the

normal functioning of supply chains can have severe macroeconomic consequences, as they destroy

accumulated relationship-specific investments and productivities. Despite the growing recognition of

the importance of resilient supply chains, a systematic investigation of macroeconomic consequences

of supply chain disruptions has remained largely elusive. This is in part because existing frameworks

lack some of the key necessary ingredients for such an investigation. These ingredients are: (i) a firm-

level network of customized supplier-customer links that generate relationship-specific productivity

gains; (ii) a noncompetitive approach for splitting these relationship-specific surpluses; and (iii) an
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extensive margin of adjustment, whereby firms may decide to establish or sever relations with particular

suppliers and/or customers.

In this paper, we develop a model that incorporates these three ingredients into a single tractable

framework. We establish equilibrium existence and uniqueness and provide a number of comparative

static results that show how the economy’s production network and aggregate output respond to

changes in link-specific productivities and fixed costs. We also prove that the equilibrium is inefficient.

Importantly, this inefficiency—which is rooted in the firms’ endogenous decisions to form or dissolve

relationships with suppliers and customers—is the source of an inherent fragility in supply chains,

whereby small shocks can lead to discontinuous changes in aggregate out. This is despite the fact that

the efficient allocation is always continuous in the same shocks.

This fragility has a number of important macroeconomic implications. First, more fragmentation

can increase productivity while simultaneously making the economy more vulnerable to supply chain

disruptions. This suggests that complex supply chains can be a double-edge sword: they contribute

to productivity growth but can also pave the way to disruptive supply chain breakdowns. Second,

small shocks can trigger cascading supply chain breakdowns, magnifying the discontinuous effects of

this fragility. Finally, the amplification of business cycle shocks implied by endogenous production

networks can be highly nonlinear: whereas small shocks are only marginally amplified, larger shocks

can be magnified significantly. This is because, all else equal, larger shocks result in the dissolution of

progressively more productive supplier-customer relationships.

The tractability of our model is obviously due to a number of simplifying assumptions. Relaxing

these assumptions and incorporating additional important economic forces are natural directions for

future theoretical research. We list a few of these directions here.

First, we abstracted from risk and uncertainty by assuming that supplier-customer relationships are

formed after the shocks are realized. In reality, supply chains are exposed to a wide range of logistical

and geopolitical risks. Allowing firms to form relationships before shocks are realized—for example, as

in Bimpikis et al. (2018) and Grossman et al. (forthcoming)—opens the door to answering a wider set of

questions, such as the role of multisourcing in diversifying supply chain risks, the externalities induced

by firms’ private sourcing decisions, and evaluating policies that alter the organization of supply chains.

Second, our particular choice of pairwise contracts and Nash bargaining was purposefully made to

mimic the efficient allocation. In reality, inefficiencies in bargaining can magnify the effects of supply

chain disruptions and amplify macroeconomic market failures and fragilities, as already hinted at in an

earlier version of this paper (Acemoglu and Tahbaz-Salehi, 2020). Investigating how different realistic

contracts and bargaining protocols affect macroeconomic outcomes is another area for future study. In

this context, it would also be interesting to explore how the production network could confer greater

bargaining power on firms that act as production bottlenecks (for example, as in Manea (2021) or

Carvalho et al. (2022)).

Third, our supermodularity assumptions ruled out the possibility that a firm can acquire highly

substitutable inputs from different suppliers, effectively limiting the intensity of competition among

suppliers. Allowing for such a possibility is another major direction for theoretical research.

Last but certainly not least, much more empirical work on the behavior of supply chains over

the business cycle and in response to medium-term economic changes is needed. We hope that our
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theoretical framework and sharp results will become useful for such empirical inquiries.

A Appendix

A.1 Expressing Aggregate Productivity in Terms of Primitives

In Definition 2, we defined the aggregate (gross) productivity, A(G), of production network G as the

maximum amount of the final good the economy can produce per unit of labor. As such, A(·) is a

model primitive that is defined independently of the household’s and firms’ decisions; it parametrizes

the economy’s production possibility frontier as a function of its production network structure. We can

thus express this object as the solution to the following optimization problem:

A(G)L = max
I0,...,In

y0(I0, . . . , In)

s.t. Ii ⊆ {j : ij ∈ G} for i = 0, 1, . . . , n,
(A.1)

where
y0(I0, . . . , In) = max

yi,xij ,Li

y0

s.t. yi = Fi(Ii, Ai(Ii), Li, Xi) for i = 0, 1, . . . , n∑
i:j∈Ii

xij = yj for j = 1, 2, . . . , n

n∑
i=0

Li = L.

(A.2)

The optimization problem in (A.2) expresses the maximum level of final good the economy can produce

for a given choice of firms’ production technologies (I0, . . . , In). The problem in (A.1) then optimizes

over firms’ production technologies that are feasible given production network G. An immediate

consequence of (A.1) and (A.2) is that, for a given G, A(G) is continuous in productivity parameters,

Ai(Ii).

A.2 Sufficient Condition for Extensive Margin Supermodularity of Aggregate Productivity

We established the existence of endogenous network equilibria (Theorem 6) while assuming that

aggregate productivity is supermodular at the extensive margin (Assumption 1(a)). In this part of the

Appendix, we show that this assumption is satisfied as long as various inputs in firms’ production

technologies are not strong (gross) substitutes.

To express the relationship between substitution elasticities and aggregate productivity in the

most transparent manner, we focus our attention on the class of economies with CES production

technologies and common elasticities across all firms. Additionally, we assume that all firms have

the option to replace any of their required inputs with a variant that can be produced in-house using

labor, though at a lower productivity. In the notation of equation (1), the production technology of firm

i ∈ {0, 1, . . . , n}when using inputs Ii ⊆ {1, 2, . . . , n} \ {i} is given by

yi =

α1/σ
i L

(σ−1)/σ
i +

∑
j∈Ii

γ
1/σ
ij (Aijxij + `ij)

(σ−1)/σ +
∑
j 6∈Ii

γ
1/σ
ij `

(σ−1)/σ
ij

σ/(σ−1)

. (A.3)
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In the above, σ denotes the elasticity of substitution between various inputs, Aij ≥ 1 captures the

(relationship-specific) productivity gain of using the input produced by firm j instead of using labor

for in-house production, and αi +
∑n

j=1 γij = 1 for all i ∈ N . Thus, if firm i and and a supplier j ∈ Ii
do not establish a supplier-customer relationship at t = 0, firm i can still produce at t = 2 using the

production technology indexed by Ii but has to replace j’s good with labor.

Before stating our result, we note that, in the above specification, when σ > 1, labor is no longer an

essential factor of production (as we had assumed in Section 2). Therefore, depending on the values of

Aij , labor may become redundant and aggregate output in exogenous network equilibrium may blow

up. To rule out these uninteresting cases, we assume that the values of Aij ≥ 1 are small enough to

guarantee that output in the exogenous network equilibria is finite. A sufficient condition for this is for

matrix H = [γijA
σ−1
ij ] to have a subunit spectral radius, which we impose for the following result.

Proposition A.1. If all production technologies are CES with common elasticities of substitution σ ≤ 2,

then aggregate productivity is supermodular at the extensive margin (Assumption 1(a)).

This result establishes that as long as various inputs are complements or weak substitutes, then

aggregate productivity satisfies the inequality in (9). This indicates that the key role of Assumption 1(a)

is to limit the degree of substitutability between different firms’ products. It is however worth noting

that the condition in Proposition A.1 allows for some degree of input substitutability as σ can also take

values above one.

Proposition A.1 provides only a sufficient condition for Assumption 1(a): this assumption may

continue to hold even if some goods are strong substitutes. In fact, even Assumption 1(a) is itself

only sufficient—and not necessary—for the existence of endogenous network equilibria. However, in

its absence, we can no longer rely on lattice theoretic results, such as Milgrom and Roberts (1990), to

prove existence and perform monotone comparative statics.

Finally, we note that a sufficient condition that would guarantee Assumption 1(b) for any network

structure takes a more complicated form. Nonetheless, for simple production networks, such as a

horizontal network or networks with sufficient symmetry, an elasticity of substitution less than 2 is again

sufficient.

A.3 Proofs

Proof of Theorem 1(b)

If there exists an (exogenous network ) equilibrium in which all supplier-customer pairs reach an

agreement, the pair (pij(G), tij(G)) is the solution to the optimization problem in (4), where firms’ gross

profits are given by (3). The first-order optimality condition with respect to tij thus implies that

θi
πi(G)− πi(G \{ij})

=
θj

πj(G)− πj(G \{ij})
, (A.4)

where we are using the fact that the objective function is differentiable in tij and that ∂πj(G)/∂tij =

−∂πi(G)/∂tij = 1. Replacing for firms’ profits πi(G) and πj(G) from (3) into the above equation,

solving for tij(G), and plugging the result back into the objective function of (4), we obtain the following
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simplified optimization problem:

pij(G) ∈ arg max
pij≥mcj

πi(G) + πj(G) = arg max
pij≥mcj

wLi +
∑
k 6=j

pikxik.

The first part of the above equation indicates that pij is the bilateral efficient price that maximizes the

total surplus generated by the pair, taking all other prices, transfers, and the output of firm i as given.

The second part of the equation then follows from rewriting the firms’ gross profits using the expression

in (3). Note that inputs Li and {xik}k 6=j are chosen by firm i to minimize its production cost while

meeting its demand yi, which it takes as given. The above equation therefore implies that pij is the price

that minimizes i’s total expenditure on all (intermediate and labor) inputs other than j. Finally, note

that an increase in pij can only increase i’s aggregate expenditure on all other inputs. Therefore, the

unique solution to the above problem is pij(G) = mcj(G).

Proof of Theorem 1(c)

We prove this result via a series of lemmas. In Lemma A.1 we derive a series of conditions that firm’s

equilibrium profits need to satisfy. In Lemma A.2 we then verify that the expression in (6) is the only

solution that satisfies all these conditions. Taken together, the two lemmas imply that, if an equilibrium

exists, then firm i’s profits are given by (6).

Lemma A.1. Let G be a feasible production network and suppose there exists an equilibrium in which all

supplier-customer pairs reach an agreement. Then,

πi(G̃) ≥ πi(G̃ \ {ij}) , πj(G̃) ≥ πj(G̃ \ {ij}) (A.5)

θj(πi(G̃)− πi(G̃ \ {ij})) = θi(πj(G̃)− πj(G̃ \ {ij})) (A.6)

for all ij ∈ G̃ and all G̃ ⊆ G, where πi(·) is gross profit of firm i. Furthermore,

n∑
i=0

πi(G̃) = (A(G̃)−A(∅))L, (A.7)

for all G̃ ⊆ G, whereA(·) denotes the economy’s aggregate productivity on the efficient frontier.

Proof. Condition (A.5) is an immediate consequence of the assumption that all firms reach an

agreement, while (A.6) is a simple restatement of (A.4). It is therefore sufficient to establish (A.7). To

this end, recall from part (b) that, in any equilibrium in which all firm-pairs reach an agreement, all

firms i 6= 0 price at marginal cost. Hence, the expression for i’s gross profit in (3) simplifies as follows:

πi(G̃) =
∑

k:ki∈G̃

tki(G̃)−
∑
j:ij∈G̃

tij(G̃)

and as a result,

n∑
i=1

πi(G̃) =
∑
i:0i∈G̃

t0i(G̃), (A.8)
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where we are using the fact that the only net inflow of lump-sum transfers to input producing firms

can be from firm 0. The final good producer, on the other hand, makes a take-it-or-leave it offer to the

representative household. As a result, it sets its price equal to the price of the competitive fringe of firms

that can turn labor, one-for-one, into the final good. As a result, the profit of the final good producer is

given by π0(G̃) = (w −mc0(G̃))y0(G̃)−
∑

i:0i∈G̃ t0i(G̃), where y0(G̃) is the final good producer’s output,

w is the wage, and mc0(G̃) is the marginal cost of firm 0. Importantly, the fact that all input producers

price at marginal cost implies that y0(G̃) = A(G̃)L, whereL is aggregate labor supply andA is aggregate

productivity. Marginal cost pricing also implies that mc0(G̃) = w/A(G̃). Therefore,

π0(G̃) = w(A(G̃)− 1)L−
∑
i:0i∈G̃

t0i(G̃). (A.9)

Combining the above with (A.8) and using the fact that w = 1 = A(∅) then establishes (A.7).

Lemma A.2. Let G be a feasible production network and suppose firms’ gross profits satisfy (A.5)–(A.7) for

all ij ∈ G̃ and all G̃ ⊆ G. Then, the gross profit of firm i is given by (6).

Proof. We first show that the expressions in (6) satisfy conditions (A.5)–(A.7). We start with (A.7). Rewrite

the expression in (6) as follows:

πi(G) =
∑
R⊇{i}

θi∑
k∈R θk

 ∑
T⊆R\{i}

(−1)|R|−|T |+1A(G|T∪{i}) +
∑

T⊆R\{i}

(−1)|R|−|T |A(G|T )

L
=
∑
R⊇{i}

θi∑
k∈R θk

 ∑
T⊆R:i∈T

(−1)|R|−|T |A(G|T ) +
∑

T⊆R:i 6∈T
(−1)|R|−|T |A(G|T )

L.
We therefore get the following equivalent representation of (6):

πi(G) =
∑
R⊆N

θi∑
k∈R θk

I{i∈R}
∑
T⊆R

(−1)|R|−|T |A(G|T )L, (A.10)

where I denotes the indicator function. Summing both sides of the above equation over all firms i ∈ N
implies that

n∑
i=0

πi(G) =
∑
R⊆N

∑
T⊆R

(−1)|R|−|T |A(G|T )L−A(∅)L = (A(G)−A(∅))L,

where the second equality is a consequence of the inclusion-exclusion principle (Gessel and Stanley,

1995, Theorem 12.1). This establish that the expressions in (6) satisfy (A.7).

Next, we show the expressions in (6) satisfy the bargaining condition in (A.6). Using the expression

in (A.10), it is immediate that

πi(G)− πi(G \ {ij}) = θi
∑
R⊆N

1∑
k∈R θk

I{i∈R}
∑
T⊆R

(−1)|R|−|T | [A(G|T )−A(G \{ij}|T )]L

for all ij ∈ G. Note that if j 6∈ R, then j 6∈ T , in which caseA(G|T ) = A(G \ {ij}|T ). Therefore,

1

θi
(πi(G)− πi(G \ {ij})) =

∑
R⊇{i,j}

1∑
k∈R θk

∑
T⊆R

(−1)|R|−|T | [A(G|T )−A(G \ {ij}|T )]L. (A.11)
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Observing that the right-hand side of the above equation is symmetric in i and j then establishes (A.6).

Next, we verify that the expressions in (6) also satisfy (A.5). Observe that

πi(G)− πi(G \ ij) = θi
∑

T⊆N\{i}

ψi(T )
[
A(G|T∪{i})−A(G|T )−A(G \ {ij}|T∪{i}) +A(G \ {ij}|T )

]
L.

Furthermore, note thatA(G|T ) = A(G \ {ij}|T ) for all i 6∈ T . As a result,

πi(G)− πi(G \ ij) = θi
∑

T⊆N\{i}

ψi(T )
[
A(G|T∪{i})−A(G \ {ij}|T∪{i})

]
L.

Note that G \ {ij}|T∪{i} ⊆ G|T∪{i}. SinceA is the aggregate productivity on the efficient frontier, it must

be the case that the expression in square brackets is always nonnegative, thus establishing (A.5).

Having established that the expressions in (6) satisfy conditions (A.5)–(A.7), we next show that the

system of equations in (A.5)–(A.7) cannot have any other solution. To this end, note that, without

loss of generality, we can restrict our attention to production networks G that are strongly connected

and contain the final-good producer firm 0. This is because any firm that is not directly or indirectly

connected to the final-good producer makes zero gross profits, which is clearly unique.

We prove uniqueness for any strongly connected production network G by using an inductive

argument on the number of edges in the production network. As the base of the induction, consider

the case that the network only has a single edge, that is G = {0j}. It is then immediate to verify that

the only solution to system of equations (A.5)–(A.7) is given by π0(G) = θ0/(θ0 + θj)(A(G) − A(∅))L,

πj(G) = θj/(θ0 + θj)(A(G) −A(∅))L, and πk(G) = 0 for all k 6= 0, j. This establishes that the system of

equations (A.5)–(A.7) has a unique solution when the production network has a single edge.

Next, as the induction hypothesis, suppose there is a unique solution in any network that has m

edges. Consider a production network G that has m + 1 edges and let G′ denote the rooted spanning

tree of G rooted at the final-good producer.19 Given this spanning tree, we can use equation (A.6) to

express each firm’s gross profit recursively in terms of the profits of its unique customer in G′ and profits

in the production networks with m edges. This, together with the adding up constraint that
∑

i πi(G) =

(A(G)−A(∅))L then establishes uniqueness.

The juxtaposition of Lemmas A.1 and A.2 establishes that if there exists an equilibrium in which all

supplier-customer pairs reach an agreement, then the equilibrium (gross) profit of firm i is given by (6)

with weights given by (7). The proof is therefore complete once we show that the weights ψi(T ) in (7)

are nonnegative. Define the mapping q : 2N → R as follows:

q(S) =
∑
R⊇S

(−1)|R|−|S|∑
k∈R θk

.

By Theorem 11 of Weber (1988), this mapping satisfies the following recursive relationship:

q(S) =
1∑

k∈S θk

∑
j 6∈S

θjq(S ∪ {j}), (A.12)

19This is the spanning tree in which all firms except for the final good producer have a single customer.
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with the boundary condition q(N) = 1/(
∑

k∈N θk). This recursive representation immediately implies

that q(S) > 0 for all S ⊆ N . This coupled with the observation that

ψi(T ) = q(T ∪ {i}) for all i ∈ N and all T ⊆ N \ {i} (A.13)

then establishes that ψi(T ) > 0 for all i ∈ N and all T ⊆ N \ {i}.

Proof of Theorem 1(a)

Prices: We start by establishing that there always exists a unique vector of prices that is consistent

with equilibrium. In part (b), we established that, if there exists an equilibrium in which all supplier-

customer pairs reach an agreement, then allinput producers price at marginal cost. Therefore, it is

sufficient to show that the system of equations

pi(G) = mci(G) = arg min
Ii:ij∈G ∀j∈Ii

mci(Ii, Ai(Ii), p(G)) for all i ∈ {1, . . . , n} (A.14)

has exactly one solution p(G) = (p1(G), . . . , pn(G)) for any given G, where mci(Ii, Ai(Ii), p) denotes the

marginal cost of firm i when it uses the production technology with inputs in set Ii when the vector

of prices is p. Note that firm i chooses the production technology that yields the lowest marginal cost

among all possible technologies that are feasible (in the sense that i has an established relationship with

all input suppliers corresponding to that technology). For any given production network, it is easy verify

that the system of equations (A.14) is identical to the system of equations (4) and (6) of Acemoglu and

Azar (2020, p. 40). Therefore, Theorems 1 and 2 of Acemoglu and Azar (2020) guarantee that there exists

a unique price vector p(G) that satisfies (A.14).

Quantities: Recall that equilibrium prices satisfy the system of equations (A.14). An argument

identical to the proof of Lemma 1 of Acemoglu and Azar (2020) then establishes that, there exists a

generically unique vector of quantities that is consistent with equilibrium.

Transfers: Next, we show that there exists a collection of pairwise lump-sum transfers that is

consistent with equilibrium. In parts (b) and (c) of the theorem we established that, if there exists an

equilibrium in which all supplier-customer pairs reach an agreement, then (i) all firms price at marginal

cost and (ii) firm profits are determined uniquely and are given by equation (6). These two observations,

together with the expression for firms’ gross profits in (3), imply that transfers satisfy the following

system of equations:

πi(G) =
∑

k:ki∈G
tki(G)−

∑
j:ij∈G

tij(G) for all i ∈ {1, . . . , n}. (A.15)

We therefore need to show that the system of equations (A.15) always has a solution.20 Note that, without

any loss of generality, we can focus our attention on pairwise transfers between firms in the largest

connected subnetwork of G that contains the final good producer firm 0—which we denote by Ĝ—as

20Note that equation (A.9) implies that pairwise lump-sum transfers also need to satisfy π0(G) = (A(G) − A(∅))L −∑
i:0i∈G t0i(G). However, this equation is redundant, as it follows from (A.7) and summing both sides of (A.15) over all i.
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we can simply set all other pairwise transfers equal to zero. Letmdenotes the number ofinput producers

in Ĝ and let B(Ĝ) = [bid(Ĝ)] ∈ Rm+1×|Ĝ| be the incidence matrix of Ĝ, where d = ij represents a generic

directed edge from supplier j to customer i and |Ĝ| denotes the number of pairwise relationships in Ĝ.

More concretely, if d = ij ∈ Ĝ, then bid(Ĝ) = 1, bjd(Ĝ) = −1, and bkd(Ĝ) = 0 for all k 6= i, j. We can thus

write the system of equations (A.15) in terms of Ĝ’s incidence matrix as follows:

Bt = −π, (A.16)

where t = (tij)ij∈Ĝ and π = (πi)i∈N denote vectors of pairwise lump-sum transfers and profits,

respectively, B ∈ Rm×|Ĝ| is the submatrix of B obtained by eliminating the row corresponding to

the final good producer, and we are suppressing the depnendence of B, t, and π on Ĝ for notational

simplicity. Since Ĝ is a connected graph, Theorem 8.3.1 of Godsil and Royle (2001) implies that

rank(B) = rank(B) = m.

Therefore, the vector on the right-hand side of (A.16) is always in the span of columns of B.

Consequently, equation (A.16), and hence, the system of equations (A.15) always have a solution.

As a final remark, note that the above argument only establishes that there exists a vector of lump-

sum transfers that is consistent with equilibrium, and in general, they may be multiple equilibrium

lump-sum transfers. Nonetheless, as we already established in part (c) of the theorem, all such transfers

result in the same profits, given by the expression in (6).

Agreements: Thus far, we established that if there exists an equilibrium in which all supplier-customer

pairs reach an agreement, then (i) prices and quantities are uniquely determined and (ii) there exists a

vector of pairwise lump-sum transfers that is consistent with equilibrium. To complete the proof, we

therefore need to verify that given such prices, lump-sum transfers, and quantities, all pairs in G indeed

reach an agreement. Specifically, it is sufficient to show that set Oij(G) in (5) is nonempty for all ij ∈ G.

To establish this, recall that, under the proposed price system in (A.14), all firms price at marginal

cost, which in view of (3), implies that firm i’s gross profits are given by πi(G) =
∑

k:ki∈G tki(G) −∑
j:ij∈G tij(G). Next, recall that we constructed the pairwise lump-sum transfers in (A.15) in such a way

that firms’ gross profits satisfy equation (6). Finally, in Lemma A.1, we established that the expressions

in (6) always satisfy (A.5). Thus, the set of individually rational bargaining outcomes Oij(G) in (5) is

always nonempty for all ij ∈ G.

Proof of Theorem 2

In Theorem 1(b), we established that all firms price at marginal cost. Therefore, the equilibrium

allocation coincides with the allocation when all markets are contestable in the sense of Acemoglu and

Azar (2020). Theorem 3 of Acemoglu and Azar (2020) then guarantees the equilibrium is efficient.

32



Proof of Theorem 3

Recall from Theorem 1 that firm i’s equilibrium (gross) profit is given by the expression in equation (6)

with coefficients ψi(T ) in (7). As a result,

πi(G ∪ {jk})− πi(G) = θi
∑

T⊆N\{i}

ψi(T )
[
A(G ∪ {jk}|T∪{i})−A(G ∪ {jk}|T )−A(G|T∪{i}) +A(G|T )

]
L.

Note that G ∪ {jk}|T = G|T unless both j and k belong to T . This implies that, if either j or k do not

belong to T , then

A(G ∪ {jk}|T∪{i})−A(G ∪ {jk}|T )−A(G|T∪{i}) +A(G|T ) = A(G ∪ {jk}|T∪{i})−A(G|T∪{i}) ≥ 0,

where the inequality follows from the fact that the economy’s aggregate productivity can only increase if

the set of supplier-customer linkages expands. The above inequality, together with the fact that ψi(T ) ≥
0, implies that

πi(G ∪ {jk})− πi(G) ≥ θi
∑

T⊆N\{i}
j,k∈T

ψi(T )
[
A(G ∪ {jk}|T∪{i})−A(G ∪ {jk}|T )−A(G|T∪{i}) +A(G|T )

]
L.

Next, note that A(G ∪ {jk}|T ) = A(G|T ∪ {jk}) and A(G ∪ {jk}|T∪{i}) = A(G|T∪{i} ∪ {jk}) whenever

j, k ∈ T . Therefore,

πi(G ∪ {jk})− πi(G) ≥ θi
∑

T⊆N\{i}
j,k∈T

ψi(T )
[
A(G|T∪{i} ∪ {jk})−A(G|T ∪ {jk})−A(G|T∪{i}) +A(G|T )

]
L.

Since G|T ⊆ G|T∪{i}, Assumption 1(a) guarantees that the expression in the squared braces is always

nonnegative. Using ψi(T ) ≥ 0 one more time then establishes that πi(G ∪ {jk}) ≥ πi(G).

Proof of Theorem 4

Let πi(G;Aj(Ij)) denote the gross profit of firm iwhen the production network is G and the productivity

of firm j when usinginputs Ij is given Aj(Ij). Using characterization in equation (6), we have

πi(G; Āj)− πi(G;Aj) = θi
∑

T⊆N\{i}

ψi(T )
[
A(G|T∪{i}; Āj)−A(G|T∪{i};Aj)−A(G|T ; Āj) +A(G|T ;Aj)

]
L,

where for notational simplicity we have dropped the dependence of Aj on Ij . Note that G|T ⊆ G|T∪{i}.
Thus, Assumption 1(b) guarantees that the expression in the square brackets is nonnegative for all T .

This coupled with the fact that the weights ψi(T ) are also nonnegative then establishes the result.

Proof of Theorem 5

As a first observation, recall that we can rewrite the household’s budget constraint as follows:

n∑
i=0

πi(G) = A(G)L− wL+
∑
ij∈G

(cij + sij).
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The right-hand side of the above equation is independent of firms’ bargaining powers. Therefore, if we

establish that the gross profits of all firms i 6= j are decreasing in θj , it immediately implies that the gross

profit of firm j is increasing in θj .

To establish that πi(G) is decreasing in θj when j 6= i, recall from Theorem 1 that the equilibrium

profit of firm i ca be expressed in terms of model primitives using the expression in (6). Therefore,

πi(G) = θi
∑

T⊆N\{i,j}

ψi(T )[A(G|T∪{i})−A(G|T )]L+ θi
∑

T⊆N\{i,j}

ψi(T ∪ {j})[A(G|T∪{i,j})−A(G|T∪{j})]L,

with weights ψi(T ) given by (7). Observe that the aggregate productivityA(·) and aggregate labor supply

L do not depend on firms’ bargaining powers, and thus πi(G) is differentiable with respect to θj . Hence,

d

dθj
πi(G) = θi

∑
T⊆N\{i,j}

(
d

dθj
ψi(T ∪ {j})

)[
A(G|T∪{i,j})−A(G|T∪{j})−A(G|T∪{i}) +A(G|T )

]
L,

where we are using the fact that

d

dθj
ψi(T ) =

∑
R⊇T∪{i}

(−1)|R|−|T |

(
∑

k∈R θk)
2
I{j∈R} =

∑
R⊇T∪{i,j}

(−1)|R|−|T |

(
∑

k∈R θk)
2

= − d

dθj
ψi(T ∪ {j}).

Recall from (A.13) in the proof of Theorem 1 that ψi(T ∪ {j}) = q(T ∪ {i, j}) for all T ⊆ N \ {i, j}, where

q : 2N → R+ is a mapping that satisfies the recursive equation (A.12). Therefore,

d

dθj
πi(G) = θi

∑
T⊆N\{i,j}

(
d

dθj
q(T ∪ {i, j})

)[
A(G|T∪{i,j})−A(G|T∪{j})−A(G|T∪{i}) +A(G|T )

]
L.

Assumption 1(a) guarantees that the expression in square brackets on the right-hand side is always

nonnegative. Therefore, to establish that πi(G) is decreasing in θj it is sufficient to show that

d

dθj
q(S) ≤ 0 for all j ∈ S and all S ⊆ N, (A.17)

as this would guarantee that dq(T ∪ {i, j})/dθj ≤ 0 for all T ⊆ N \ {i, j}.
We establish (A.17) using an inductive argument. As the induction’s base, set S = N . Since q(N) =

1/(
∑

k∈N θk), it is immediate that dq(N)/dθj ≤ 0. Next, as the induction’s hypothesis, fix a set S ( N

and suppose that dq(S ∪ {k})/dθj ≤ 0 for all k 6∈ S and all j ∈ S ∪ {k}. Differentiating both sides of the

recursion in (A.12) with respect to θj implies that, if j ∈ S, then

d

dθj
q(S) = − 1

(
∑

k∈S θk)
2

∑
k 6∈S

θkq(S ∪ {k}) +
1∑

k∈S θk

∑
k 6∈S

θk
d

dθj
q(S ∪ {k}).

By the induction hypothesis, the second term on the right-hand side is negative. Furthermore, the fact

that q(S ∪ {k}) ≥ 0 guarantees that the first term is also negative. The two together then imply that

dq(S)/dθj ≤ 0, thus completing the inductive argument, and establishing (A.17).

Proof of Theorem 6(a) and 6(b)

Denote the strategy of firm j 6= 0 in the network formation game at t = 0 by bj = (b
(c)
j , b

(s)
j ), where

b
(c)
j , b

(s)
j ∈ {0, 1}n, b(c)ji = 1 if firm j pays the fixed cost cji to serve as a customer of firm i, and b(s)ji = 1 if j
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pays the fixed cost sij to serve as i’s supplier. Similarly, denote the strategy of firm 0 by b0 = b
(c)
0 ∈ {0, 1}n,

where b(c)0i = 1 if firm 0 pays the fixed c0i to serve as a customer of firm i. The net profit of firm j in the

network formation game under the strategy profile b = (b0, . . . , bn) is thus given by

φj(b) = πj(G(b))−
n∑
i=1

b
(c)
ji cji −

n∑
i=1

b
(s)
ji sij , (A.18)

where G(b) = {ji : b
(s)
ji = b

(c)
ij = 1} and πj(G) is the gross profit of firm j in production network G. We

have the following lemma:

Lemma A.3. Suppose Assumption 1(a) is satisfied. Then,

(a) φj(bj , b−j) has increasing differences in (bj , b−j);

(b) φj(bj , b−j) is supermodular in bj given an arbitrary b−j .

Proof. To establish part (a), consider two strategy profiles b and b̂ such that b̂j ≥ bj and b̂−j ≥ b−j .

Equation (A.18) implies that

φj(b̂j , b̂−j)− φj(bj , b̂−j)− φj(b̂j , b−j) + φj(bj , b−j) = πj(G(b̂j , b̂−j))− πj(G(bj , b̂−j))

− πj(G(b̂j , b−j)) + πj(G(bj , b−j)).
(A.19)

Furthermore, the expression for firms’ gross profits in (6) implies that

πj(G(b̂j , b̂−j))− πj(G(bj , b̂−j)) = θj
∑

T⊆N\{j}

ψj(T )
[
A(G(b̂j , b̂−j)|T∪{j})−A(G(bj , b̂−j)|T∪{j})

]
L (A.20)

πj(G(b̂j , b−j))− πj(G(bj , b−j)) = θj
∑

T⊆N\{j}

ψj(T )
[
A(G(b̂j , b−j)|T∪{j})−A(G(bj , b−j)|T∪{j})

]
L, (A.21)

where we are using the fact that the value of A(G(bj , b−j)|T ) is independent of bj whenever j 6∈ T .

Assumption 1(a) together the fact that ψj(T ) ≥ 0 guarantees that the right-hand side of (A.20) is greater

than equal to the right-hand right of (A.21). Therefore, the right-hand side of (A.19) is nonnegative.

Consequently, φj(bj , b−j) has increasing differences in (bj , b−j) for all j.

We next prove statement (b). Equation (A.18) implies that, for any pair of strategy profiles b and b̂,

φj(bj ∨ b̂j , b−j) + φj(bj ∧ b̂j , b−j)− φj(b̂j , b−j)− φj(bj , b−j)

= πj(G(bj ∨ b̂j , b−j)) + πj(G(bj ∧ b̂j , b−j))− πj(G(b̂j , b−j))− πj(G(bj , b−j)).
(A.22)

Furthermore, using the expression for firm j’s gross profit in (6), we have

πj(G(bj ∨ b̂j , b−j))− πj(G(bj , b−j)) = θj
∑

T⊆N\{j}

ψj(T )
[
A(G(bj ∨ b̂j , b−j)|T∪{j})−A(G(bj , b−j)|T∪{j})

]
L

πj(G(b̂j , b−j))− πj(G(bj ∧ b̂j , b−j)) = θj
∑

T⊆N\{j}

ψj(T )
[
A(G(b̂j , b−j)|T∪{j})−A(G(bj ∧ b̂j , b−j)|T∪{j})

]
L,

where once again we are using the fact that the value of A(G(bj , b−j)|T ) is independent of bj whenever

j 6∈ T . Assumption 1(a) together the fact that ψj(T ) ≥ 0 guarantees that the right-hand side of the first

equation is greater than or equal to that of the second equation. Consequently, the right-hand side of

(A.22) is nonnegative, which means φj(bj , b−j) is supermodular in bj given an arbitrary b−j .
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With the above lemma at hand, we now turn to the proofs of Theorems 6(a) and 6(b). By Lemma

A.3(a), the net profit of firm j has increasing differences in (bj , b−j). Furthermore, statement (b) of the

same lemma guarantees that the net profit of firm j s supermodular in bj for an arbitrary b−j . These

imply that the link formation game is a supermodular game. Thus, by Theorem 5 of Milgrom and

Roberts (1990), the game has an equilibrium and that the set of equilibrium strategy profiles, B, form

a lattice. This in turn implies that the corresponding equilibrium production networks {G(b) : b ∈ B}
form a lattice with respect to the set inclusion order.

Proof of Theorem 6(c)

Let b∗ denote the greatest equilibrium strategy profile, that is, b∗ ≥ b element-wise for any equilibrium

strategy profile b ∈ B, where B denotes the set of all equilibrium strategy profiles. The fact that b∗ is an

equilibrium means that no firm has a profitable deviation. In particular, φj(b∗) ≥ φj(bj , b∗−j) for all j ∈ N
and all b ∈ B. As a result, equation (A.18) implies that

φj(b
∗) ≥ φj(bj , b∗−j) = πj(G(bj , b

∗
−j))−

n∑
i=1

b
(c)
ji cji −

n∑
i=1

b
(s)
ji sij

≥ πj(G(bj , b−j))−
n∑
i=1

b
(c)
ji cji −

n∑
i=1

b
(s)
ji sij = φj(b),

where the second inequality follows from Theorem 3 and the fact that G(bj , b−j) ⊆ G(bj , b
∗
−j). Hence,

all firms make weakly more profits in the economy’s greatest equilibrium than all other equilibria.

The fact that all firms make more profits in the economy’s greatest equilibrium implies that∑n
j=0 φj(b

∗) ≥
∑n

j=0 φj(b) for any equilibrium strategy profile b. Adding wL to both sides of the above

equation and using the household’s budget constraint implies that Y (b∗) ≥ Y (b) for all b ∈ B. Therefore,

aggregate output n the greatest equilibrium is higher than in all other equilibria.

Proof of Theorem 7

As in the proof of Theorem 6, let bj = (b
(c)
j , b

(s)
j ) ∈ {0, 1}2n and b0 = b

(c)
0 ∈ {0, 1}n denote, respectively,

the strategies of firms j 6= 0 and j = 0 in the network formation game at t = 0. Additionally, let φj(b, z)

denote the net profit of firm j given strategy profile b = (b0, . . . , bn) and when the vector of fixed costs of

establishing supplier-customer relationships is z = (cik, sik).

Proof of part (a). By equation (A.18),

φj(b̂j , b−j , z)− φj(bj , b−j , z) = πj(G(b̂j , b−j))− πj(G(bj , b−j))−
n∑
i=1

(b̂
(c)
ji − b

(c)
ji )cji −

n∑
i=1

(b̂
(s)
ji − b

(s)
ji )sij .

If b̂j ≥ bj , the right-hand side of the above expression is weakly decreasing in the vector of fixed costs,

z, irrespective of the value of b−j . This means that the net profit of firm j has increasing differences in

(bj ,−z) for all b−j . Hence, the corollary to Theorem 6 of Milgrom and Roberts (1990) guarantees that

the greatest equilibrium b∗ is weakly decreasing in z. As a result, the set of customer-supplier linkages

in G∗ = G(b∗) is also weakly decreasing in z.
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Proof of part (b). Let z̄ = (c̄ij , s̄ij) and z = (cij , sij) denote two vectors of fixed costs such that z̄ ≥ z

element-wise. Also, let b̄∗ and b∗ be the economy’s greatest equilibria under z̄ and z, respectively. Then,

φj(b
∗, z) ≥ φj(b

∗
j , b
∗
−j , z) ≥ φj(b

∗
j , b
∗
−j , z) = πj(G(b

∗
j , b
∗
−j))−

n∑
i=1

b
(c)
ji cji −

n∑
i=1

b
(s)
ji sij .

The first inequality is a consequence of the fact that b∗ is an equilibrium, whereas the second inequality

follows from the observation that holding firms’ strategies constant, an increase in fixed costs can only

reduce firm j’s profit. In part (a), we established that b∗ ≥ b̄∗ and in particular, b∗−j ≥ b̄∗−j , which in turn

implies that G(b
∗
j , b
∗
−j) ⊇ G(b

∗
). Therefore, using Theorem 3 and Assumption 1(a), we can bound the

right-hand side of the above inequality from below as follows:

φj(b
∗, z) ≥ πj(G(b

∗
))−

n∑
i=1

b
(c)
ji cji −

n∑
i=1

b
(s)
ji sij = φj(b

∗
, z).

This establishes the result.

Proof of part (c). In part (b), we established that φj(b̄∗, z̄) ≤ φj(b∗, z) for all firms j. As a result,

Y (b̄∗, z̄) = wL+

n∑
j=0

φj(b̄
∗, z̄) ≤ wL+

n∑
j=0

φj(b
∗, z) = Y (b∗, z),

where the two equalities follow from the household’s budget constraint. Therefore, an increase in fixed

costs reduces aggregate output in the greatest equilibrium.

Proof of Theorem 8

Let bj = (b
(c)
j , b

(s)
j ) ∈ {0, 1}2n and b0 = b

(c)
0 ∈ {0, 1}n denote, respectively, the strategies of firms j 6= 0 and

j = 0 in the network formation game at t = 0. Additionally, let φj(b, A) denote the net profit of firm j

given strategy profile b = (b0, . . . , bn) and when the vector of productivity parameters of an arbitrary

industry i is given by Ai(Ii) = A. Similarly, let πj(G, A) denote the gross profit of firm j when the

production network is G and Ai(Ii) = A. Finally, we use A(G;A) to denote the economy’s aggregate

productivity in the production network G and when Ai(Ii) = A.

Proof of part (a). By equation (A.18),

φj(b̂j , b−j , A)− φj(bj , b−j , A) = πj(G(b̂j , b−j), A)− πj(G(bj , b−j), A)−
n∑
i=1

[(b̂
(c)
ji − b

(c)
ji )cji + (b̂

(s)
ji − b

(s)
ji )sji].

Observe that G(b̂j , b−j)|T = G(bj , b−j)|T for any T ⊆ N \ {j}. Therefore, using the expression in (6) to

replace for firms’ gross profits in the above equation, we have

φj(b̂j , b−j , A)− φj(bj , b−j , A) = θj
∑

T⊆N\{j}

ψj(T )
[
A
(
G(b̂j , b−j)|T∪{j};A

)
−A

(
G(bj , b−j)|T∪{j};A

)]
L

−
n∑
i=1

(b̂
(c)
ji − b

(c)
ji )cji −

n∑
i=1

(b̂
(s)
ji − b

(s)
ji )sij .
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Note that if b̂j ≥ bj , then G(b̂j , b−j)|T∪{j} ⊇ G(bj , b−j)|T∪{j}. Therefore, if b̂j ≥ bj , Assumption 1(b)

and Theorem 4 imply that the right-hand side of the above equation is weakly increasing in A. This

establishes that net profit of firm j has increasing differences in (bj , A) for all b−j . Hence, the corollary to

Theorem 6 of Milgrom and Roberts (1990) guarantees that the greatest equilibrium b∗ is nondecreasing

in A. As a result, the set of customer-supplier linkages in G∗ = G(b∗) is also nondecreasing in A.

Proof of part (b). Let Ā andAbe two vectors specifying productivity parametersAi(Ii) such that Ā ≥ A
element-wise. Also, let b̄∗ and b∗ denote the economy’s greatest equilibria under Ā and A, respectively.

Observe that

φj(b
∗
, Ā) ≥ φj(b∗j , b

∗
−j , Ā) ≥ φj(b∗j , b

∗
−j , A) ≥ φj(b∗, A).

The first inequality is a consequence of the fact that b
∗

is an equilibrium. The second inequality follows

from Theorem 4, which guarantees that, holding firms’ strategies and hence the production network

constant, a decrease in productivity reduces all firms’ net and gross profits. Finally, the last inequality

is a due to the facts that b̄∗ ≥ b∗ (established in part (a) of the theorem) and that all firms’ gross profits

increase if the set of supplier-customer linkages expands (established in Theorem 3). Taken together,

these inequalities establish that a decrease in productivity from Ā to A cannot increase the net profit of

firm j in the economy’s greatest equilibrium.

Proof of part (c). In part (b), we established that φj(b̄∗, Ā) ≥ φj(b∗, A) for all firms j. As a result,

Y (b̄∗, Ā) = wL+

n∑
j=0

φj(b̄
∗, Ā) ≥ wL+

n∑
j=0

φj(b
∗, A) = Y (b∗, z),

where the two equalities follow from the household’s budget constraint. This establishes that a decrease

in productivity Ai(Ii) decreases aggregate output in the economy’s greatest equilibrium.

Proof of Lemma 1

Let G1 and G2 denote two efficient production networks and G1 ∪G2 denote the production network

that contains all supplier-customer relationships that are present in at least either G1 or G2. The

market-clearing condition for the final good implies that

Y (G1 ∪G2)− Y (G1) = (A(G1 ∪G2)−A(G1))L−
∑

ij∈G2\G1

(cij + sij)

≥ (A(G2)−A(G1 ∩G2))L−
∑

ij∈G2\G1

(cij + sij)

= Y (G2)− Y (G1 ∩G2),

where the inequality follows from Assumption 1(a). The assumption that both G1 and G2 are efficient

means that the left-hand side of the above inequality is nonpositive, whereas the right-hand side is

nonnegative. Therefore, both expressions have to be equal to zero, and in particular, Y (G1 ∪ G2) =
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Y (G1). This means that G1 ∪G2 is also an efficient production network. As a result,

Geff =
⋃

G∈arg maxG′ Y (G′)

G

is efficient and contains all other efficient production networks as subnetworks.

Proof of Theorem 9

As in the proof of Theorem 6, let b = (b0, . . . , bn) denote a strategy profile in the network formation

game at t = 0, and let b∗ and beff denote the strategy profiles corresponding to, respectively, the greatest

equilibrium and the greatest efficient solution. Similarly, let G∗ = G(b∗) and Geff = G(beff) denote the

production networks formed under the two strategy profiles, where G(b) = {ji : b
(s)
ji = b

(c)
ij = 1}. The

market-clearing condition for the final good implies that

Y (b∗ ∨ beff)− Y (beff) = (A(G∗ ∪Geff)−A(Geff))L−
∑

ij∈G∗\Geff

(cij + sij)

≥ (A(G∗)−A(G∗ ∩Geff))L−
∑

ij∈G∗\Geff

(cij + sij)

= Y (b∗)− Y (b∗ ∧ beff),

where the inequality follows from Assumption 1(a). Next, from the household’s budget constraint,

Y (b∗)− Y (b∗ ∧ beff) =

n∑
i=0

(
φi(b

∗)− φi(b∗ ∧ beff)
)

≥
n∑
i=0

(
φi(b

∗
i , b
∗
−i)− φi(b∗i ∧ beff

i , b
∗
−i)
)

≥ 0.

The first inequality is a consequence of the fact that firm i’s gross and net profits are increasing in the

set of links established by other firms (as established in Theorem 3). The second inequality follows from

the assumption that b∗i is the equilibrium strategy of agent i. Putting the above together implies that

Y (b∗ ∨ beff) − Y (beff) ≥ 0. But the fact that beff is the strategy profile corresponding to greatest efficient

outcome requires that Y (b∗ ∨ beff)− Y (beff) ≤ 0. Therefore, it must be the case that Y (beff) = Y (b∗ ∨ beff).

Consequently, Geff = G∗ ∪Geff , and hence, G∗ ⊆ Geff .

Proof of Theorem 10

Proof of part (a). The planner’s problem is to choose the production network and the allocation that

maximizes aggregate output. Therefore, Y eff = maxG Y (G), where Y (G) is the efficient—and in view of

Theorem 2 also the equilibrium—aggregate output given a fixed production network G. For any given

G, the aggregate output Y (G) is continuous in all productivities, Ai(Ii), and fixed costs, cij and sij .

Since the maximum of continuous functions is continuous, it follows that Y eff is also continuous in all

productivities and fixed costs.
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Proof of part (b). Let Y (G) denote equilibrium aggregate output when the economy’s production

network is G. Market clearing for the the final good implies that

Y (G) = A(G)L−
∑
rk∈G

(crk + srk).

It is immediate that as long as G is unchanged, Y (G) changes continuously in all productivities and

fixed costs. Therefore, any discontinuity in aggregate output can occur only in response to changes

to the production network. Next, we prove that, generically, whenever changes in fixed costs induce

changes in the production network, they lead to discontinuities in aggregate output. The argument for

changes in productivities is identical.

We prove this claim by contraction. To set the notation, let z = (cij , sij) denote a vector of fixed

costs and Y (z) and G(z) denote, respectively, the equilibrium aggregate output and production network

corresponding to this vector of fixed costs. We consider a perturbation of z, which we denote by z + ε

for some vector ε ≥ 0 that induces a change in the equilibrium production network. In particular, we

assume z is such that

lim
ε↓0

G(z + ε) = G̃ ( G = G(z),

where we are relying on Theorem 7(a), according to which the equilibrium production network can only

shrink in response to a change in fixed costs. Now, despite the above, suppose the change in fixed costs

and the corresponding change in the production network do not induce a discontinuity in aggregate

output, i.e.,

lim
ε↓0

Y (z + ε) = Y (z). (A.23)

Using the household’s budget constraint, we can rewrite (A.23) as limε↓0
∑n

i=0 (φi(z + ε)− φi(z)) = 0.

Next, note that Theorem 7(b) implies that φi(z + ε) ≤ φi(z) for all j. Therefore, it must be the case that

limε↓0 (φi(z + ε)− φi(z)) = 0 for all i. Replacing for firm i’s net profits in terms of its gross profits and its

fixed costs from equation (2) implies that

πi(G̃)− πi(G) +
∑

j:ij∈G \G̃

cij +
∑

k:ki∈G \G̃

ski = 0 for all i ∈ N.

Rewriting firms’ net profits in terms of the expression in (6) leads to

θi
∑

T⊆N\{i}

ψi(T )
[
A(G|T∪{i})−A(G|T )−A(G̃|T∪{i}) +A(G̃|T )

]
L =

∑
j:ij∈G \G̃

cij +
∑

k:ki∈G \G̃

ski.

Note that the above equation has to hold simultaneously for all firms i. The left-hand side is only in

terms of productivities and bargaining powers, whereas the right-hand side is only in terms of fixed

costs. As such, the above equation can hold for all firms i simultaneously only for a nongeneric vector

of fixed costs. Therefore, generically, equation (A.23) is violated.
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B Online Appendix

This online appendix contains the proofs of Propositions 1–3 and A.1 that were omitted from the main

body of the paper.

Proof of Proposition 1

Let s∗frg = πj(G∪{ik, kj})−πj(G∪{ik}) be the threshold beyond which firm j drops its relationship with

firm k in the fragmented economy. Aggregate output in the fragmented architecture is therefore given

by

Yfrg =


A(G∪{ik, kj})− s−

∑
rl∈G

srl if s ≤ s∗frg

A(G)−
∑
rl∈G

srl if s > s∗frg,

where we are using the assumption that A(G∪{ik}) = A(G). Similarly, let s∗int = πj(G∪{ij}) − πj(G)

denote the threshold beyond which firm j drops its relationship with firm i in the integrated economy.

A similar argument implies that aggregate output in the integrated architecture is given by

Yint =


A(G∪{ij})− s−

∑
rl∈G

srl if s ≤ s∗int

A(G)−
∑
rl∈G

srl if s > s∗int.

Given the above, it is immediate that if (13) is satisfied, and as long s∗frg < s∗int, then Yfrg > Yint for s ≤ s∗frg
and Yfrg < Yint for s > s∗frg. The proof is therefore complete once we show that s∗frg < s∗int.

Recall that s∗frg = πj(G∪{ik, kj}) − πj(G∪{ik}) and s∗int = πj(G∪{ij}) − πj(G). The expression for

firms’ profits in (6) therefore implies that

s∗frg = θj
∑

T⊆N\{j}

ψj(T ∪ {k})
[
A(G∪{ik, kj}|T∪{j,k})−A(G |T∪{j,k})

]
L

s∗int = θj
∑

T⊆N\{j}

ψj(T )
[
A(G ∪ {ij}|T∪{j})−A(G|T∪{j})

]
L,

whereN denotes the set of firms in the integrated architecture and thus excludes firm k. Observe that, by

construction, s∗int does not depend on θk. Therefore, to show that s∗frg < s∗int for large enough values of θk,

it is sufficient to show that limθk→∞ ψj(T ∪{k}) = 0 for all T ⊆ N \{j}, which implies that limθk→∞ s
∗
frg =

0. To this end, recall from the proof of Theorem 1(c) that the weights ψj satisfy equations (A.12) and

(A.13). The recursion in (A.12) and a simple inductive argument on the set T then immediately implies

that limθk→∞ ψj(T ∪ {k}) = limθk→∞ q(T ∪ {j, k}) = 0 for all T ⊆ N \ {j}.

Proof of Proposition 2

Let k∗ denote the depth of the supply chain in the economy’s greatest equilibrium. Given that each

supplier-customer relationship generates a productivity gain of A ≥ 1 but requires a fixed cost of s, it is
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immediate that equilibrium aggregate output is given by Y ∗ = Ak
∗−1L− (k∗− 1)s. To prove the result, it

is therefore sufficient to derive the expression for k∗.

For any k ≤ n, let Gk denote the production network of depth k + 1, consisting of firms 0 through k.

We make two observations. First, in Gk, firm k’s profits are below that of all other firms, i.e.,

πk(Gk) ≤ πi(Gk) for all i ≤ k. (B.1)

To see this, note that (6) implies that πi(Gk) = θi
∑

T⊇{0,...,i−1} ψi(T )
[
A(Gk|T∪{i})−A(Gk|T )

]
L, where

we are using the fact thatA(Gk|T∪{i}) = A(Gk|T ) unless T ⊇ {0, . . . , i−1}. Increasing i shrinks the set of

T ’s in the sum on the right-hand side of the expression for πi(Gk). Therefore, πi(Gk) > πi+1(Gk), where

we are using the fact that ψi(T ) ≥ 0 andA(Gk|T∪{i}) ≥ A(Gk|T ). This establishes (B.1).

Second, we note that

πn(Gn) ≥ πk(Gk) for all k ≤ n. (B.2)

To show this, note that, according to (6), πk(Gk) = θk
∑

T⊆N\{k} ψk(T )
[
A(Gk|T∪{k})−A(Gk|T )

]
L =

θkψk({0, 1, . . . , k − 1}) [A(Gk)−A(Gk−1)]L, where we are using the fact that A(Gk|T∪{k}) = A(Gk|T )

for any T 6= {0, . . . , k − 1}. Since all firms are assumed to have identical bargaining powers, the above

expression simplifies to πk(Gk) = 1
k+1A

k−1(A − 1)L, which is increasing in k as long as logA > 1/2.

Hence, the inequalities in (B.2) are satisfied.

With inequalities (B.1) and (B.2) at hand, we now prove the result. Let s∗n = πn(Gn). As long as s ≤ s∗n,

inequality (B.1) implies that φi(Gn) = πi(Gn)−s ≥ 0, thus guaranteeing that all firms make nonnegative

profits. Hence, in the economy’s greatest equilibrium all firms pay the fixed cost of establishing a link

with their customer and hence, k∗ = n+ 1. If on the other hand, s > s∗n, then (B.2) implies that φk(Gk) =

πk(Gk)−s < 0, which means no firm k 6= 0 is willing to pay the fixed cost s to serve as the most upstream

firm in the supply chain. Thus, it must be the case that the equilibrium supply chain only consists of

firm 0, i.e., k∗ = 1.

Proof of Proposition 3

Let G denote a production network that contains customer-supplier relations between firms i and k and

their designated suppliers j = n + i and l = n + k, respectively. According to (6), the marginal (gross)

benefit to firm i of maintaining a relationship with its supplier is given by

πi(G)− πi(G \{ij}) = θi
∑

T⊆N\{i}

ψi(T )
[
A(G|T∪{i})−A(G \{ij}|T∪{i})

]
L.

Recall from the proof of Theorem 1 that the weights ψi in the above expression satisfy (A.13). Therefore,

πi(G)− πi(G \{ij}) = θi
∑
T⊇{i}

q(T ) [A(G|T )−A(G \{ij}|T )]L = θi
∑
T⊆N

q(T ) [A(G|T )−A(G \{ij}|T )]L,

where q(·) satisfies the recursion in (A.12) and the second equality follows from the fact that A(G|T ) =

A(G \{ij}|T ) for any set T that does not contain i. The assumption that each firm i in the bottom layer

has only a single potential supplier in the top layer implies thatA(G \{ij}|T ) = A(G |T\{i}). As a result,

πi(G)− πi(G \{ij}) = θi
∑
T⊆N

q(T )
[
A(G|T )−A(G |T\{i})

]
L.
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A similar argument implies that

πk(G)− πk(G \{kl}) = θk
∑
T⊆N

q(T )
[
A(G|T )−A(G |T\{k})

]
L.

Subtracting this equation from the previous one and using the assumption that all firms in the bottom

layer have identical bargaining powers, θ, leads to

∆ik = [πi(G)− πi(G \{ij})]− [πk(G)− πk(G \{kl})] = θ
∑
T⊆N

q(T )
[
A(G |T\{k})−A(G |T\{i})

]
L.

As a result,

∆ik = θ
∑
T3i,k

q(T )
[
A(G |T\{k})−A(G |T\{i})

]
L+ θ

∑
T3i,T 63k

q(T )
[
A(G |T )−A(G |T\{i})

]
L

+ θ
∑

T 63i,T3k
q(T )

[
A(G |T\{k})−A(G |T )

]
L,

(B.3)

where we are using the fact that A(G |T\{k}) = A(G |T\{i}) whenever i, k 6∈ T . Rewriting the last

summation on the right-hand side of (B.3) using the change of variables T̃ = T ∪ {i} \ {k} leads to

∆ik = θ
∑
T3i,k

q(T )
[
A(G |T\{k})−A(G |T\{i})

]
L+ θ

∑
T3i,T 63k

q(T )
[
A(G |T )−A(G |T\{i})

]
L

+ θ
∑

T̃3i,T̃ 63k

q(T̃ ∪ {k} \ {i})
[
A(G |T̃\{i})−A(G |T̃∪{k}\{i})

]
L.

Equation (A.12) together with the assumption that all bottom-tier firms have identical bargaining

powers implies that q(T̃ ∪ {k} \ {i}) = q(T̃ ) for any set T̃ such that T̃ 3 i and T̃ 63 k. Hence,

∆ik = θ
∑
T3i,k

q(T )
[
A(G |T\{k})−A(G |T\{i})

]
L+ θ

∑
T3i,k

q(T \ {k})
[
A(G |T\{k})−A(G |T\{i})

]
L.

Note that whenever i, k ∈ T , then A(G |T\{k}) > A(G |T\{i}) if and only if Ai > Ak. Therefore, ∆ik > 0

wheneverAi > Ak. This means that ifAi > Ak, then for any given level of aggregate TFP, Ā, the marginal

benefit to firm k of keeping its supplier is smaller than that to firm i. Hence, as Ā declines, firm k drops

its supplier before firm i whenever Ai > Ak.

Proof of Proposition A.1

To establish supermodularity at the extensive margin (Assumption 1(a)) we start by deriving an

expression for A(G) in terms of the production network G. Recall that A(G) denotes the economy’s

aggregate productivity when a social planner chooses firms’ technologies Ii and the corresponding

quantities to maximize aggregate output. Theorem 3(a) of Acemoglu and Azar (2020) establishes that

to solve for the efficient allocation, one can simply focus on the competitive equilibrium, in which

all firms price at marginal cost. We thus derive the expression for A(G) by first solving for prices in

the competitive equilibrium of the economy with production network G and then using the fact that

A(G) = w/mc0(G), where mc0(G) is the marginal cost of the final good producer.
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Under marginal cost pricing, firm i sets the same price irrespective of the identity of the customer

it is selling to. Let pi denote the price set by firm i. The production function in (A.3), together with

marginal cost pricing, implies that

pi = min
Ii:
ik∈G
k∈Ii


αiw1−σ +

∑
j∈Ii

γij(min{pj/Aij , w})1−σ +
∑
j 6∈Ii

γijw
1−σ

1/(1−σ)


=

αiw1−σ +
∑
j:ij∈G

γij(min{pj/Aij , w})1−σ +
∑
j:ij 6∈G

γijw
1−σ

1/(1−σ)

.

Since αi +
∑n

j=1 γij = 1, we can bound the right-hand side of the above equation from above by w, thus

establishing that pi ≤ w for all firms i. When paired with the assumption that Aij ≥ 1, this implies that

pi =

αiw1−σ +
∑
j:ij∈G

γij(pj/Aij)
1−σ +

∑
j:ij 6∈G

γijw
1−σ

1/(1−σ)

for all i = {1, . . . , n}. When σ 6= 1, we can rewrite this system of equations in vector form as follows:

p◦(1−σ) = αw1−σ + (G ◦Γ ◦A◦(σ−1))p◦(1−σ) + ((11′ −G) ◦ Γ)1w1−σ.

In the above expression, p = (p1, . . . , pn)′ denotes the vector of input prices, ◦ denotes the Hadamard

(i.e., element-wise) product and power, A = [Aij ] ∈ Rn×n is a square matrix of pairwise productivities,

Γ = [γij ] ∈ Rn×n, and with some abuse of notation, we use G to denote a square binary matrix that

captures pairwise supplier-customer relationships in network G. Solving the above system of equations,

we have

p◦(1−σ) = Q(α+ ((11′ −G) ◦ Γ)1)w1−σ = Q(I−G ◦ Γ)1w1−σ,

where Q = (I−G ◦Γ◦A◦(σ−1))−1 and we are using the fact that α = 1−(11′ ◦Γ)1 to establish the second

equality. Hence, the marginal cost of firm 0 satisfies mc1−σ
0 = γ

′◦(1−σ)
0 = γ′0Q(I −G ◦ Γ)1w1−σ, where

γ0 = (γ01, . . . , γ0n). This, together with A(G) = w/mc0 leads to the following expression for aggregate

productivity:

A(G) =
[
γ′0Q(I−G ◦ Γ)1

]1/(σ−1)
. (B.4)

Note that, the assumption that matrix Γ ◦A◦(σ−1) has a subunit spectral radius guarantees that Q is an

inverse M-matrix and hence is element-wise nonnegative.

With the expression for aggregate productivity at hand, we next show that (B.4) satisfies the

inequality in (9). Note that A(G) is a function defined over the set of binary matrices G with elements

gij ∈ {0, 1}. We consider the extension of the expression in (B.4), which we denote by Ā(G), by assuming

that gij can take any value in the unit interval [0, 1] and establish that

∂2Ā
∂gij∂gkr

≥ 0 (B.5)
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for any all ij 6= kr. If (B.5) is satisfied, then Ā(max{G1,G2}) + Ā(min{G1,G2}) ≥ Ā(G1) + Ā(G2) for

any pair of matrices G1 and G2 with elements in the unit interval. The fact that Ā(G) = A(G) for any

binary matrix G then establishes that A(G) is a supermodular function of the production network G,

thus establishing (9) and Assumption 1(a).

To establish (B.5), observe that

∂Ā
∂gij

=
1

σ − 1
γij(γ

′
0Qei)

(
Aσ−1
ij (pj/w)1−σ − 1

)
Ā2−σ, (B.6)

where ei denotes the i-th unit vector. Since Q is element-wise nonnegative, it is immediate that γ′0Qei ≥
0. Furthermore, sinceAij ≥ 1 and pj ≤ w, the expressionAσ−1

ij (pj/w)1−σ − 1 always has the same sign as

σ − 1. Consequently, ∂Ā/∂gij ≥ 0. Next, observe that differentiating (B.6) implies that

∂2Ā
∂gij∂gkr

= (2− σ)
1

Ā
∂Ā
∂gij

∂Ā
∂gkr

+ γijA
σ−1
ij

∂Ā
∂gkr

γ′0Qei
γ′0Qek

e′jQek + γkrA
σ−1
kr

∂Ā
∂gij

γ′0Qek
γ′0Qei

e′rQei.

As we already established, ∂Ā/∂gij ≥ 0. This, together with the fact that Q is element-wise

nonnegative, guarantees that the second and third terms on the right-hand side of the above equation

are nonnegative. Hence, (B.4) is trivially satisfied for all σ ≤ 2.
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