Liquidity Reallocation and Run Resolution

Haelim Anderson Kinda Hachem Simpson Zhang
Federal Deposit Insurance Corporation UVA Darden and NBER Office of the Comptroller of the Currency

June 2023

Abstract

Banking turmoil in an environment with high inflation presents challenges for central banks. We build a novel structural model and calibrate it to a major historical episode to study the effectiveness of policies that reallocate liquidity without monetary expansion. A pecuniary externality arises in the decentralized market for interbank loans and leads to inefficiently many bank failures. A forced reallocation of liquidity across banks improves social welfare and can be implemented via clearinghouse loan certificates, such as those issued in New York City during the Panic of 1873. Our results inform efforts to manage bank runs while preserving policy space.

Keywords: Bank Runs, Panic of 1873, Liquidity, Clearinghouse, Interbank Markets

JEL classifications: D53, D62, E42, E50, G01, N21

∗This paper previously circulated under the title “Reallocating Liquidity to Resolve a Crisis: Evidence from the Panic of 1873.” We thank Ellis Tallman for many helpful conversations. We also thank Jason Allen, Allen Berger, Mark Carlson, Thomas Eisenbach, David Martinez-Miera, Roberto Robatto, and participants at various seminars and conferences for comments. The views expressed in this paper are those of the authors and do not necessarily represent the views of the Office of the Comptroller of the Currency, the U.S. Department of the Treasury, the Federal Deposit Insurance Corporation, the United States, or any federal agency and do not establish supervisory policy, requirements, or expectations. The authors are responsible for any errors.
1 Introduction

The collapse of Silicon Valley Bank (SVB) in March 2023 triggered a banking crisis at a time of high inflation, putting the Federal Reserve in a precarious position. On one hand, the Federal Reserve was raising interest rates and reducing the monetary base to fight inflation. On the other, policies were needed to mitigate the banking panic that was putting large regional financial institutions at risk of collapse. To stabilize the banking system, the Federal Reserve provided liquidity through the discount window and the bank term funding program. These interventions increased the size of the Federal Reserve’s balance sheet and partially reversed its efforts to reduce the monetary base.

Other efforts surrounding the fall of SVB relied on liquidity reallocation within the banking system. First, deposit insurance was extended to the uninsured depositors of SVB, with special assessment fees to be levied on other banks to recoup losses to the deposit insurance fund. Second, a consortium of eleven large U.S. financial institutions deposited $30 billion into First Republic Bank in an effort to bolster its liquidity and stop the panic from spreading. Although the specific mechanisms of the efforts are different, they had the effect of transferring funds from banks with liquidity surpluses to banks with liquidity shortfalls. Absent such transfers, more aggressive liquidity injection by the Federal Reserve may have been required. In the end, however, First Republic Bank could not survive, raising a fundamental question: can liquidity reallocation reduce the need for central bank balance sheet expansion in the fight against bank runs?

This paper studies the ability of liquidity reallocation to alleviate bank runs by turning to a period when there was no central bank that could provide liquidity directly to the banking system: the National Banking Era (1864-1912). The New York Clearinghouse (NYCH), a consortium of large banks in New York City, instead played the most prominent role in resolving bank runs. Although it lacked the power to inject reserves, the NYCH could reallocate liquidity across banks through the use of clearinghouse loan certificates. These loan certificates were collateralized notes that members of the clearinghouse could use in place of cash to settle payment obligations with each other, which at the time were driven principally by check clearing. Banks that experienced liquidity shortages could apply for the loan certificates, use them to conserve their cash during a crisis, and then repay the loan certificates once the system had stabilized. Loan certificates essentially created an interbank market among members of the NYCH, with a trading mechanism to transfer liquidity.
from banks with liquidity surpluses to banks with liquidity shortages. Importantly, all member banks of the NYCH were required to accept any loan certificates received in lieu of cash and thus the certificates functioned as a form of forced loans, not a system of bilaterally negotiated trade.

Although a major historical policy tool, the benefits provided by loan certificates have never been quantitatively assessed in the academic literature. Previous studies on loan certificates have been largely qualitative and descriptive, mainly discussing their provision of emergency liquidity to weak banks and the role of the NYCH as a lender of last resort (Sprague (1910), Tallman and Moen (2012), Moen and Tallman (2013), and Gorton and Tallman (2018)). By contrast, we take a structural approach that incorporates into the classic Diamond and Dybvig (1983) framework a role for cross-subsidization between banks to quell runs and study loan certificates as a mechanism to achieve it. We then calibrate our model using data from the time period. For the first time in the literature, our paper provides results that directly quantify the effectiveness of loan certificates compared to alternatives, including alternative mechanisms for interbank trade.

We focus our study on the effectiveness of clearinghouse loan certificates during the Panic of 1873, which was the first major banking crisis during the National Banking Era. Importantly, unlike other major banking panics that occurred later, loan certificates were circulated only within the banking system; banks were not able to provide them to depositors as a substitute for cash. Hence, focusing on the Panic of 1873 allows us to study liquidity reallocation within the banking system and its effect on resolving bank runs.

We start by collecting various records that inform us about the severity of the Panic of 1873 and the responses of the NYCH. These records include the daily clearing and settlement payments of all member banks through the NYCH, the amount of loan certificates applied for and received by banks, and the interest payments among banks. Using this information, we characterize the magnitude of liquidity shortages and amount of liquidity transfers across banks. We also collect balance sheet data that allows us to assess the health of the banks during this time period.

Our data shows that banks experiencing the most pressure on cash reserves (specie and legal tender) due to check settlement received the most loan certificates from the NYCH and used the certificates for payments. These banks also experienced much larger deposit outflows than non-

1This was the first use of loan certificates during the U.S. National Banking Era outside of the Civil War (Swanson (1908a,b)). Prior to the National Banking Acts of 1863 and 1864, loan certificates were introduced in the middle of the Panic of 1857, in contrast to the Panic of 1873 where they were introduced at its onset.
recipient banks during the crisis, so, in the absence of loan certificates, they would not have had enough cash to honor both check-clearing obligations and deposit withdrawals without liquidating large amounts of interest-earning assets. We also document that both recipient and non-recipient banks emerged from the Panic of 1873 with cash-to-deposit ratios that were similar to the ratios they had before the crisis began, despite experiencing differential deposit outflows during the panic. Liquidity thus appears to have been successfully reallocated across the members of the NYCH.

We then build a structural model that can be used to quantify the benefits of loan certificates relative to other liquidity reallocation mechanisms and/or run resolution policies. Banks in the model borrow short and lend long, subjecting themselves to runs by patient depositors (i.e., those who do not need to withdraw early but may choose to do so) as in Diamond and Dybvig (1983). As is common in bank-run models, the actions of patient depositors depend on their beliefs. The depositors in our model act based on conservative beliefs. Specifically, whether an otherwise patient depositor runs on his bank depends on whether the bank can withstand a run by all of its depositors, either by liquidating enough assets or by borrowing from other banks. We begin with a benchmark where banks can borrow cash from each other in a Walrasian interbank market at an endogenous market-clearing interest rate. We then introduce clearinghouse loan certificates to study the scope for welfare-improving reallocations of liquidity.

When the total amount of cash in the system exceeds the withdrawal needs of impatient depositors (i.e., those who experience liquidity shocks and have no choice but to withdraw early), the Walrasian market efficiently redistributes liquidity across banks and achieves an equilibrium with no bank runs. There is no corrective role for clearinghouse loan certificates here.

The results are very different when the total amount of cash in the system is less than the withdrawal needs of the impatient depositors. In this case, an equilibrium with no runs cannot be achieved and we show that the measure of banks that fails in an equilibrium with runs is increasing in the interbank rate. This implies a pecuniary externality as individual banks do not internalize the effect of their net borrowing on the interest rate in the interbank market. The higher the interbank rate, the more expensive it is to obtain additional cash. The marginal bank that was preventing a run by borrowing on the interbank market can no longer do so profitably; the amount it needs to borrow is simply too high to be fully repaid at the higher interest rate. The minimum level of cash reserves that a bank must have in order to be run-proof thus rises, as does the measure
of banks that fails.

Next, we explore the use of clearinghouse loan certificates to achieve a better outcome when total cash is too low. We model the certificates designed by the NYCH, which built onto an existing network of bilateral exposures between banks. In 1873, these exposures were payment obligations stemming from check-clearing activity, but the same logic would apply to obligations stemming from derivatives trading, the clearing of which now occurs through modern clearinghouses. We prove that loan certificates reduce bank failures and improve social welfare relative to a decentralized interbank market if (i) most of the cross-sectional variation in cash holdings of banks comes from variation in their bilateral exposures and (ii) the average gross exposure is high. Furthermore, we prove that with a sufficiently high volume of check-clearing activity, loan certificates can achieve the same level of social welfare as a mechanism which pools the reserves of all banks and redistributes them based on need.

Intuitively, the clearinghouse improves welfare by allocating to banks above a cash threshold enough loan certificates to cover the payment obligations stemming from their exposures, e.g., checks owed to other banks. Banks below this threshold receive no loan certificates and must use cash to pay checks owed, while receiving less overall cash from other banks as payment for checks owing. This constitutes a forced reallocation of liquidity from failing banks (and their depositors) to the rest of the system. In turn, the interest rate on loan certificates can be set below the borrowing rate that prevails in the decentralized equilibrium, allowing more banks to fend off runs. The measure of failed banks falls and total welfare rises.

Calibrating the model to historical data, we find that social welfare with loan certificates is 2% higher than the welfare with a decentralized interbank market, absent any other policies. A welfare improvement of 2% is notable since it fills almost half of the gap between the decentralized equilibrium and the first-best level of welfare, which is an upper bound on the welfare that any policy, including a liquidity injection by a central bank, could hope to achieve.

Our calibration also reveals that the total amount of cash in the banking system at the onset of the Panic of 1873 was too low for any reallocation mechanism to have completely eliminated bank failures. Since none of the members of the NYCH failed in the crisis after loan certificates were implemented, other clearinghouse policies must have been responsible for driving bank failures down to zero. The candidate policies based on the historical record are partial suspension of
convertibility and suppression of bank-level information (with only aggregate information revealed). Our quantitative model attributes the lack of bank failures to partial suspension of convertibility. Suspension was a double-edged policy, as it entailed a welfare loss to individual depositors and for plausible parameters reduced aggregate welfare relative to the use of only loan certificates, despite eliminating bank failures. However, we find that suppression of bank-level information without partial suspension of convertibility would have been disastrous for a banking system at the calibrated parameters, triggering a system-wide run due to the paucity of total cash. Pooling of information and pooling of liquidity thus lead to very different outcomes.

Overall, our results show that liquidity reallocation can be an effective policy for mitigating bank runs without the injection of central bank liquidity. At the same time, liquidity reallocation alone will not eliminate bank failures when aggregate liquidity is low. Thus, an external liquidity injection would still be needed to rescue the system against an exceedingly large liquidity shock. However, a combination of liquidity injection and a system of loan certificates would reduce the size of the required injection, preserving policy space for the central bank.

Related Literature Central banks have actively expanded their balance sheets since 2008. While a large literature has established the effectiveness of these interventions, recent work has focused on the limitations of central bank expansions, e.g., Acharya and Rajan (2022), Diamond, Jiang, and Ma (2022), Ferguson, Kornejew, Schmelzing, and Schularick (2023). Thus, it becomes important to ask what else can be done beyond simply injecting reserves when the financial system is disrupted. Our paper explores mechanisms for liquidity reallocation to help answer this question.

Given the historical context of the quantitative exercise, our paper contributes directly to the literature on banking panics during the National Banking Era and the actions of the NYCH to fight these crises. The NYCH responded to the crises by managing the information environment and providing emergency liquidity to the banking system. One strand of research focuses on the importance of information production and suppression to restore confidence in the banking system; see Gorton and Tallman (2016a, 2016b, 2018) for further discussion. A different strand of research focuses on the provision of emergency liquidity through the issuance of clearinghouse loan certificates and its effect on the banking system (e.g., Sprague (1910), Tallman and Moen (2012),

2 See also Dang, Gorton, and Holmstrom (2020) for an overview of the theoretical arguments regarding information.
Moen and Tallman (2013), Hoag (2012)). The Panic of 1873 is interesting to study because the NYCH did not issue loan certificates to the general public, in contrast to the other major panics of the National Banking Era (Gorton (1985)). The system of loan certificates in 1873 was therefore distinct from the injection of central bank liquidity.\(^3\) Compared to previous studies, we are the first to build a structural model to consider the role of loan certificates in reallocating liquidity and examine their ability to improve welfare relative to a decentralized interbank market. We are also able to address how liquidity reallocation through loan certificates compares in effectiveness to centralized liquidity pooling and the first-best level of welfare (i.e., the best case scenario for a central bank / pure liquidity injection).

Our paper also contributes to the literature on interbank markets and liquidity provision more broadly. Diamond and Dybvig (1983) present the classical model of bank runs driven by coordination issues among depositors. Allen and Gale (2000) show that interbank markets can help mitigate bank runs if the banking system is sufficiently liquid. With excess demand for liquidity, however, the interbank market can breed contagion. Freixas, Parigi, and Rochet (2000) show that a central bank can act as a coordinating device to solve liquidity shortages in payment networks, Allen, Carletti, and Gale (2009) show that interbank markets feature excessive price volatility without a central bank, and Bluhm (2018) shows that interbank markets increase total lending but act as channels for financial contagion. See also Farhi, Golosov, and Tsyvinski (2009) who show that competitive secondary markets impede the efficient allocation of liquidity without regulatory intervention and Hachem and Song (2021) who show that interbank market power subverts the effectiveness of liquidity regulation. Our paper adds to this literature a pecuniary externality that operates through the marginal bank able to withstand a run by borrowing on a competitive interbank market.\(^4\)

Several papers have also documented how interbank markets became frozen or highly stressed

\(^3\)Jacobson and Tallman (2015) also distinguish between clearinghouse loan certificates and the issuance of Aldrich-Vreeland emergency currency to combat financial distress in 1914. This distinction underscores that loan certificates were not base money and are thus also distinct from the discount window facilities of central banks.

\(^4\)See Davila and Korinek (2018) for a taxonomy of pecuniary externalities. The externality in our model arises because of a price-dependent solvency constraint. Compared to Freixas, Parigi, and Rochet (2000), the central bank in Freixas, Martin, and Skeie (2011) provides a different form of coordination, setting state-contingent interest rates that select the best equilibrium from a continuum of Pareto-ranked ex ante equilibria. In the case where the aggregate state always requires interbank trade, the interest rate that incentivizes ex ante liquidity holdings is too high to achieve optimal deposit contracts (see also Farhi, Golosov, and Tsyvinski (2009)). This externality differs from ours; it does not operate through the marginal bank that prevents a run by borrowing on the interbank market. Robatto (2023) studies central bank interventions when pecuniary externalities affect liquidity-constrained banks, but the mechanism does not involve run-proofing or operate through an interbank market.
during the 2007-09 financial crisis (e.g., Afonso, Kovner, and Schoar (2011), Cornett, McNutt, Strahan, and Tehranian (2011), Acharya and Merrouche (2012), di Patti and Sette (2016)). Compared to these papers, we analyze the scope for interbank lending during the Panic of 1873 and conclude that shortfalls in aggregate liquidity would have prevented a decentralized interbank market from effectively resolving the panic. We then capitalize on the unique opportunity provided by our historical setting to analyze an alternative mechanism to redistribute liquidity across banks: clearinghouse loan certificates. We show that these certificates functioned better than a decentralized interbank market, particularly when we shut down the partial suspension of convertibility policy that eliminates bank failures at great cost to individual depositors.

Finally, we note that there are similarities between the liquidity reallocation tools of the NYCH and the tools available to modern clearinghouses (i.e., central counterparties or CCPs) to resolve crises. For instance, the ability of modern CCPs to call assets from solvent members can be viewed as an ability to implement a form of reserve pooling. Thus, we contribute to the growing literature on the crisis management tools of CCPs, e.g., Murphy (2017), Huang, Menkveld, and Yu (2021), Wang, Capponi, and Zhang (2022), Ghamami, Paddrik, and Zhang (2022). Our results on the effectiveness of clearinghouse loan certificates during the Panic of 1873 lend support to CCP usage of liquidity reallocation tools to resolve crises and point to conditions under which these tools, when used to their fullest extent, are equivalent to a system of loan certificates.\(^5\)

The rest of the paper is organized as follows. Section 2 introduces the historical background, describes our data, and presents motivating evidence on the effectiveness of clearinghouse loan certificates during the Panic of 1873. Section 3 presents our theoretical model and derives predictions about the ability of loan certificates to improve on a decentralized interbank market. Section 4 estimates the welfare gains from loan certificates using our historical data. Section 5 compares loan certificates with other interventions used by the New York Clearinghouse. Section 6 concludes. All proofs are collected in Appendix A.

\(^5\) Among some CCPs, the ability to implement reserve pooling is only partial and thus loan certificates may even be welfare-improving relative to modern tools. See ISDA (2013) for additional details on the crisis management tools of modern clearinghouses.
2 Historical Background and Empirical Evidence

Before the creation of the Federal Reserve System in 1913, the New York Clearinghouse (NYCH) was the main authority in place for responding to banking panics in New York City. The NYCH was an association of all of the major banks in New York City. Clearinghouses emerged in various cities during the 1850s to facilitate the exchange of checks. In normal times, the function of the clearinghouse was to net payments between parties so that they would not need to be settled bilaterally. Meeting in a single place and settling balances with only one other party (the clearinghouse) dramatically simplified the check-clearing process. During banking crises, member banks within the clearinghouse tended to act cooperatively and the clearinghouse became the de facto leader in liquidity management for its city. We first provide some background on the NYCH’s system of loan certificates and their use in the Panic of 1873. We then discuss our new dataset based on archival records and use it to motivate the effectiveness of clearinghouse loan certificates as a trading mechanism, which we study formally in the rest of the paper.

2.1 Clearinghouse Loan Certificates

An interbank market where members of the NYCH directly traded liquidity with each other did not exist in 1873. Instead, banks typically used the call loan market to manage their reserve balances and meet check-clearing obligations on a daily basis. Call loans were loans to stockbrokers that could be callable on demand by banks. On a typical day, banks would use these call loans to expand or contract their reserves as needed based on depositor inflows and outflows. Stockbrokers used call loans for margin purchases and for the daily settlement of transactions on the exchange. The transactions between brokers and member banks were similar to modern day repurchase agreements.

6 Clearinghouses also helped mitigate counterparty risks involved in check clearing. If a bank is unable to settle its obligations, then the banks it owes might also be unable to settle what they owe to other banks, etc. The netting of positions that occurs when a clearinghouse is the counterparty to all trades helps prevent such contagion. Similar arguments were used to move credit derivatives into central clearing after the 2007-09 financial crisis.

7 Interbank lending existed during the National Banking Era between New York City banks and rural banks. However, New York City banks did not borrow from each other because they acted as the ultimate providers of liquidity for the banking system (Lockhart (1921), Anderson, Erol, and Ordonez (2022)). See Anderson, Paddrik, and Wang (2016) for further discussion of financial network structures after the passage of the National Banking Act in the 1860s. See also Anderson and Bluedorn (2017) and Calomiris and Carlson (2017) for a discussion of financial spillovers from New York City banks to rural banks during financial panics. As stated in p.62 of Peer (2023), “There is no evidence NYCHA traded reserves in an interbank market. On the other hand, these banks heavily relied on non-market mechanisms: high levels of reserves of public money (coin and legal tender notes) and a carefully coordinated system of “secondary reserves” they created (by internally recycling call loans to stockbrokers).”
The member banks of the NYCH were the primary funding source for the call loan market during the National Banking Era (Moen and Tallman (2018)). Banks with a reserve deficit would call in their loans, and banks with excess reserves could make more call loans. The call loans could thus be viewed as an indirect and frictional interbank market.

While call loans were useful for banks to manage their liquidity needs in normal market periods, during times of stress the interest rate on call loans could skyrocket, leading them to be less useful for banks in managing their liquidity needs. As such, other policy tools were implemented by the NYCH to combat bank runs. In particular, the introduction of clearinghouse loan certificates was instrumental in allowing banks to meet their check-clearing obligations and preserve their reserves.

Clearinghouse loan certificates were a special policy tool implemented during banking crises by the NYCH. They were collateralized notes that members of the NYCH could use instead of cash reserves (specie and legal tender) to settle obligations with each other during the check-clearing process. The reallocation of liquidity through clearinghouse loan certificates required having at least some banks with liquidity shortages use the certificates and at least some banks with liquidity surpluses accept them as payment. When receiving payment in the form of loan certificates, the accepting bank was effectively lending the value of those certificates to the paying bank. In this way, the loan certificates created a direct interbank market with a trading mechanism to transfer liquidity from one bank to another. In order to avoid trading frictions, the NYCH forced members to accept any payments made with loan certificates, thereby assuring the transfer of liquidity between the different banks. For all intents and purposes then, clearinghouse loan certificates functioned as a liquidity reallocation mechanism during the check-clearing process.

To obtain loan certificates, a member bank had to apply to the clearinghouse loan committee, submitting some of its loans and bonds for examination as collateral. Upon accepting the collateral, the clearinghouse would issue loan certificates to the applicant amounting to no more than 75% of the assessed value of the collateral. The applicant also agreed to pay an interest rate on any loan certificates that it used during check clearing. The NYCH set an interest rate of 7% when

\[8\]

New York City banks used the call loan market to invest deposits from interior banks into other parts of the country. Call loans enabled New York City banks to profit from the typically positive spread between the call loan interest rate and the interest paid on deposits. The interest on these loans and their perceived safety and liquidity during normal times made them attractive investments for New York City banks.

\[9\]

In transactions where loan certificates were used, the NYCH acted only as a guarantor of the final repayment of the certificates. If member banks were exposed to losses arising from unpaid loan certificates, the members of the NYCH would share these losses based on their relative capital.
it introduced loan certificates at the beginning of the Panic of 1873. This interest rate was high enough that banks would want to pay off their loan certificates quickly after the crisis terminated, but not so high that it was unaffordable.

2.2 The Panic of 1873

The Panic of 1873 was the first major banking crisis of the National Banking Era. It originated from failures of major financial institutions, such as Jay Cooke & Co., that had lost substantial sums from investments into the massive railroad construction bubble. These failures sent stocks tumbling on September 18th and caused pandemonium throughout Wall Street. In the following days, many more institutions failed and banks experienced runs by depositors. The magnitude of the crisis necessitated a strong response by the NYCH in order to contain the damage.

On September 20th, following the closure of the stock market, the NYCH committee met and authorized the issuance of $10 million in clearinghouse loan certificates. An additional $10 million in clearinghouse loan certificates was authorized a few days later (September 22nd).10 The NYCH also implemented a reserve pooling arrangement on September 20th. Under the arrangement, the reserves of the member banks were mutualized into one pool. If the reserves of a bank fell dangerously low, those of the other members were assessed and reserves were directly provided to the troubled bank from the pool. Unlike loan certificates, which continued to be used after 1873, the reserve pooling arrangement was not used again during the National Banking Era. We will return to this point in Section 4.2.

Two other measures were taken by the NYCH in response to the Panic of 1873. First, the clearinghouse began suppressing bank-specific balance sheet information on September 20th, publishing instead only the aggregate balance sheet across all members in order to avoid revealing the weakest banks. Second, on September 22nd, the NYCH decided to partially suspend the convertibility of deposits into cash to limit the drain of cash reserves. Country banks holding deposits at NYCH members could continue to withdraw, but individual depositors could not. We revisit the other actions of the NYCH (reserve pooling, information suppression, and partial suspension of convertibility) later in the paper.

10Such decisions required unanimous approval. Due to the extent of the crisis in 1873, cooperation was not an issue. However, some disagreements among banks did arise in later crises which hindered recovery efforts.
2.3 Data Sources and Summary Statistics

We use various sources, including archival materials from the New York Clearinghouse, to study how clearinghouse loan certificates helped with bank liquidity management.

We obtain information about clearinghouse loan certificates from the minutes of the NYCH committee. When the Panic of 1873 started, the NYCH appointed a subcommittee of member bank officers to oversee the issuance of loan certificates. The minutes of this committee include the identities of banks who applied for loan certificates, the amount of loan certificates requested, the dates of certificate issues, and the dates of cancellation (repayment) of the certificates. The NYCH also separately tabulated the amount of interest paid and received by each bank in relation to loan certificates on November 1st, December 1st, and January 1st. None of this information was made public during the panic.

Two additional archival materials from the NYCH are useful for our analysis. First, an internal document compiled by the NYCH summarizes the deposits at each member bank on October 21st, 1873. This date falls within the period where bank-specific information was being withheld from the public, providing us with a unique snapshot of the conditions of member banks. Second, we obtained daily ledgers of the New York Clearinghouse. These ledger books feature daily records of payments between major banks that were cleared through the NYCH. In 1873, the NYCH cleared checks twice a day, and we have information for both the morning and afternoon clearings.

Finally, we collected balance sheet information for the member banks of the NYCH to examine their conditions prior to the Panic of 1873. For national banks, this information comes from national bank examination records and the September 1873 call reports. The call reports provide balance sheet information for all national banks on the same date, whereas the examination reports were filed at various dates by OCC bank examiners who visited each bank once or twice a year. That being said, the examination reports are still useful because they contain more detailed information about bank loan books than the call reports. For state banks, we collected balance sheet information from the Annual Report of the Superintendent of the Banking Department of the State of New York. The state banking department made quarterly calls to investigate the conditions of state banks and published this information in its annual report.

Table 1 reports summary statistics separately for banks that received loan certificates during
the Panic of 1873 and banks that did not. The last column reports the same statistics for all banks together. The statistics are based on the September call report right before the crisis. Of the 61 member banks in the NYCH, our data sources recover balance sheet information for all but two.

On the whole, the member banks of the NYCH were liquid and solvent. On average, they held 10% of their total assets as cash reserves, specifically specie (i.e., gold and silver recognized as lawful money) and legal tender notes. These reserves amounted to 16% of total deposits, where we define total deposits to include retail deposits as well as institutional deposits recorded as “due tos.” Moreover, banks held a large amount of equity, almost 30% of their total assets.

Comparing banks that received loan certificates during the crisis to banks that did not, three differences are statistically significant at the 5% level. First, recipient banks tended to be less liquid heading into the crisis. On average, their ratio of cash reserves to total assets was 2.66 percentage points lower than non-recipient banks. Recipient banks also tended to be less well capitalized. On average, their capital ratio was 9.43 percentage points lower than non-recipient banks. Lastly, recipient banks tended to take in more deposits from outside banks, as measured by due-tos. Institutional deposits can be flightier than retail deposits, so a higher incidence of due-tos among recipient banks may have made them more susceptible to runs in the absence of crisis mitigation policies by the NYCH.

2.4 Liquidity Reallocation During the Panic of 1873

We now document some key facts about the use of clearinghouse loan certificates to reallocate liquidity across banks during the Panic of 1873.

We first examine the relationship between balances due to the clearinghouse (i.e., balances owed by banks as part of the check-clearing process) and the daily issuance of clearinghouse loan certificates to individual members. We look at the period from September 22nd to September 30th, since this is when most loan certificates were issued.11 Table 2 presents the results. Issuance of loan certificates is highly correlated with balances due to the clearinghouse; the correlation coefficient is 0.8 and statistically significant. In other words, banks that were experiencing the most pressure on cash reserves because of check settlement received the most loan certificates from the NYCH.

11Following their introduction on September 20th, 30% of loan certificates were issued by the clearinghouse on September 22nd. Total issuance peaked on October 2nd, after which very few new loan certificates were issued.
The allocation of loan certificates to these banks would have freed up their cash in the event of large depositor withdrawals. Banks were vulnerable to cash drains arising from both check-clearing activities and depositor withdrawals. By allowing recipient banks to settle their clearing balances without using specie or legal tender, loan certificates would have helped economize on cash reserves.

Table 3 presents average deposit growth for recipient and non-recipient banks during the Panic of 1873, which lasted from September 20th to December 6th. We use the NYCH’s internal summary of deposits on October 21st to divide the panic into two periods. From September 20th to October 21st, the currency premium defined in Gorton and Tallman (2018) was positive. From October 21st to December 6th, the currency premium was effectively zero. The most intense part of the panic thus occurred in the first month. While the entire banking system experienced large deposit outflows during this month, the first column of Table 3 shows that banks that received loan certificates were experiencing much greater deposit outflows than non-recipient banks. The ability of loan certificates to free up the cash reserves of recipient banks would have therefore been particularly helpful at the beginning of the panic.

Implicit in our discussion is the assumption that recipient banks actually used (circulated) the loan certificates they were granted. Studying the policies of the NYCH in 1884, Goehring, Tallman, and Van Horn (2019) argue that this assumption can be verified by examining the interest paid and received by each bank in relation to loan certificates. Interest was only paid on circulated loan certificates, so the interest data make it possible to compute the amount of loan certificates in actual circulation. Table 4 summarizes average interest payments to and from the NYCH during and immediately following the Panic of 1873. A payment to the clearinghouse means that the bank making the payment used loan certificates to clear checks. A payment from the clearinghouse means that the bank receiving the payment accepted loan certificates while clearing checks. As a benchmark against which to compare actual interest payments, Goehring, Tallman, and Van Horn (2019) propose computing the interest payments that should have been observed had all loan certificates circulated. We find these payments to be exactly equal to the actual payments, indicating that recipient banks used all of their loan certificates in 1873.

Finally, we compare the liquidity positions of recipient and non-recipient banks at the onset and

12 The currency premium became zero on October 24th (Gorton and Tallman (2018)).
13 The difference is statistically significant at the 1% level, in contrast to the difference later in the panic (second column of Table 3) which is not statistically significant at standard levels.
conclusion of the panic. Table 5 reports the ratio of cash reserves to deposits on September 20th and December 6th. Although recipient banks experienced much larger deposit outflows in between these dates (Table 3), both recipient and non-recipient banks emerged from the Panic of 1873 with cash-to-deposit ratios that were similar to the ratios they had before the crisis began.14 Liquidity thus appears to have been successfully redistributed across the members of the NYCH.

3 \textbf{Theoretical Framework}

This section develops a theoretical model of liquidity reallocation among banks that allows us to further analyze the channels through which loan certificates work. We first present a decentralized model of direct interbank lending with no clearinghouse to establish a benchmark against which clearinghouse intervention can be compared.15 The model is based on Diamond and Dybvig (1983) but with multiple banks. We then introduce loan certificates of the type issued by the NYCH to study whether there exists a centralized reallocation of liquidity that improves social welfare. Our model will also provide a laboratory later in the paper to disentangle the effectiveness of loan certificates from the other policies deployed by the NYCH during the Panic of 1873.

3.1 Decentralized Interbank Market

We consider an economy with three dates, \(t = 0, 1, 2 \), and a continuum of banks, \(i \in [0, 1] \). Each bank \(i \) is endowed with cash holdings \(c_i \) and a long-term investment (loans outstanding) \(z_i \) at \(t = 0 \). Loans pay \(x \in (0, 1) \) per unit if liquidated at \(t = 1 \) and \((1 + r_z) \) per unit if held until \(t = 2 \). Naturally, \(r_z > 0 \) so a bank \(i \) only liquidates loans if it needs more cash than \(c_i \) at \(t = 1 \).

Cash is used to pay short-term liabilities at \(t = 1 \), namely depositors who want to withdraw funds before loans have matured. Depositors can be interpreted as short-term creditors more generally. Cash can also be used to make additional loans (i.e., if bank \(i \) needs less cash than \(c_i \) at \(t = 1 \)). To increase its loans by an amount \(z_i \) at \(t = 1 \), bank \(i \) must pay \(z_i \) units of cash upfront plus an additional adjustment cost, \(\frac{1}{2} \zeta z_i^2 \), due at the end of \(t = 2 \). Note that banks that liquidate

14Formally, there is no statistically significant difference between the first and second columns in Table 5 for each group of banks.

15As explained in Section 2.1, there was no formal interbank market in New York City in 1873. Instead, call loans served as an indirect and frictional substitute. Our model will thus provide a lower bound for the welfare improvement generated by the introduction of clearinghouse loan certificates in 1873.
loans will not make additional loans since \(x < 1 \). Thus:

\[
z_il_i = 0
\]

where \(l_i \in [0, \bar{z}] \) denotes the amount of loans liquidated by bank \(i \) at \(t = 1 \). The total amount of loans held by bank \(i \) at the end of \(t = 1 \) is \((\bar{z} - l_i + z_i)\).

Each bank \(i \) serves a unique set of depositors of measure one. The set of depositors in bank \(i \in [0, 1] \) is denoted by \(\{ij\}_{j \in [0,1]} \). Each depositor in the set \(\{ij\}_{j \in [0,1]} \) has 1 unit of deposits in bank \(i \) at \(t = 0 \). Bank \(i \)'s equity at \(t = 0 \) can then be defined as \(c_i + \bar{z} - 1 \), and we assume for each bank \(c_i + \bar{z} \geq 1 \). A depositor is entitled to 1 unit if he withdraws his funds at \(t = 1 \) and \((1 + r)\) units if he waits until \(t = 2 \), where \(r \in [0, r_z) \). A fraction \(\rho \in (0, 1) \) of depositors at each bank will experience a liquidity shock that forces them to withdraw at \(t = 1 \). The remaining depositors can choose whether to withdraw at \(t = 1 \) or \(t = 2 \). The action of depositor \(ij \in [0, 1] \times [0, 1] \) is represented by the date at which he requests to withdraw, i.e., \(a_{ij} \in \{1, 2\} \). Without loss of generality, depositors can be ordered so that \(a_{ij} = 1 \) for \(ij \in [0, 1] \times [0, \rho] \) and \(a_{ij} \in \{1, 2\} \) for \(ij \in [0, 1] \times [\rho, 1] \). Bank \(i \) experiences a run if \(a_{ij} = 1 \) for all depositors in the set \(\{ij\}_{j \in [\rho, 1]} \).

At \(t = 1 \), after observing the withdrawal requests of depositors, banks borrow and lend cash among each other on a Walrasian interbank market. The interest rate charged on interbank loans, \(r_b \), is determined in equilibrium via market clearing. Denote by \(\Delta_i \) the net borrowing of bank \(i \) on the interbank market. If \(\Delta_i < 0 \), then bank \(i \) is a net lender on the interbank market. Market clearing requires:

\[
\int_0^1 \Delta_i di = 0 \tag{1}
\]

so that there is no excess demand or excess supply of interbank loans.

Interbank loans are repaid at the end of \(t = 2 \). There is no uncertainty in the model after depositors make withdrawal decisions. Therefore, when a bank borrows on the interbank market, it knows whether or not it will be able to repay the loan. We assume banks can only take out loans that they can repay alongside withdrawals at \(t = 2.\)

\footnote{Our assumption that banks only take out loans that they can repay in equilibrium can be interpreted as a non-distortionary collateral requirement. The same requirement will extend to the model with loan certificates (Section 3.4). Blickle, Brunnermeier, and Luck (2022) find that banks that ended up failing during the German banking crisis of 1931 did not receive interbank loans leading up to their failure.}
The timing of events in the model can be summarized as follows:

- Date $t = 0$: Each bank i begins with endowments of cash c_i and loans \tilde{z}.

- Date $t = 1$: Depositors learn their liquidity shocks and decide whether or not to request withdrawal from their banks, with full information about the bank’s portfolio (more on this below). After observing the decisions of its depositors, each bank i chooses liquidations l_i, additional loans z_i, and net interbank borrowing Δ_i. Banks with insufficient cash to pay depositors after these choices fail.

- Date $t = 2$: Solvent banks obtain returns from unliquidated loans and repay any interbank loans they borrowed or receive payment for any interbank loans they lent. They also repay depositors who did not withdraw at $t = 1$.

3.2 Equilibrium

An equilibrium is a set of actions for the banks $\{l_i, z_i, \Delta_i\}_{i \in [0,1]}$ that maximizes each bank i’s profit, a set of actions for the depositors $\{a_{ij}\}_{ij \in [0,1] \times [0,1]}$ that maximizes each depositor ij’s profit, and an interest rate r_b such that the interbank market clears (Eq. (1)).

Since depositors act simultaneously and before each bank i chooses $\{l_i, z_i, \Delta_i\}$, each depositor $ij \in [0,1] \times [\rho, 1]$ must have beliefs about the actions of banks and other depositors when choosing a_{ij}. As is common in bank-run models, there could be multiple equilibria based on depositor beliefs. In choosing among different equilibria, we assume that depositors are conservative and decide whether or not to withdraw at $t = 1$ based on the worst case scenario that all other depositors in their bank withdraw at $t = 1$, taking as given all other variables. If the bank can survive this scenario, then a patient depositor prefers to wait until $t = 2$ to get $(1 + r)$ instead of 1. If the bank cannot survive it, then the depositor would get 0 from waiting until $t = 2$ and thus prefers to show up at $t = 1$. Formally:

Definition 1. A conservative equilibrium is an equilibrium such that, for each bank $i' \in [0,1]$, fixing $\{l_i, z_i, \Delta_i\}_{i \neq i'}$ and $\{a_{ij}\}_{i \neq i'}$, depositor $i'j' \in [0,1] \times [\rho, 1]$ withdraws at $t = 1$ if and only if he prefers to withdraw at $t = 1$ when $a_{i'j} = 1$ for all $i'j \neq i'j'$.

17
The modeling of depositor behavior in Definition 1 is less extreme than the bad equilibrium in Diamond and Dybvig (1983), which in our setup would amount to all depositors withdrawing from all banks, but more challenging than the good equilibrium because individual banks may experience runs. We now characterize the conservative equilibria of our model:

Proposition 1. Consider \(c_i + (1 + r_z) \tilde{z} \geq 1 + r \) for all \(i \).

1. If \(\int_0^1 c_i \, di \geq \rho \), then there exists a conservative equilibrium where \(a_{ij}^* = 2 \) for all depositors \(ij \in [0,1] \times [\rho,1] \).

2. If \(\int_0^1 c_i \, di < \rho \), then a conservative equilibrium will involve runs on a positive measure of banks, namely any bank \(i \) with cash endowment

\[
c_i < \pi(\tau_b^*) \equiv 1 - \frac{(1 + r_z) \tilde{z}}{1 + r_b^*}
\]

where the interbank rate \(\tau_b^* \) solves

\[
\int_{\{i|c_i \geq \pi(\tau_b^*)\}} (\rho - c_i) \, di = 0
\]

and existence of the conservative equilibrium requires parameters such that \(\tau_b^* \in (r_z, \frac{1+r_x}{x} - 1) \).

Proposition 1 shows that there exists a conservative equilibrium without runs if and only if the total amount of cash in the system, \(\int_0^1 c_i \, di \), is at least as large as the fraction \(\rho \) of depositors who experience liquidity shocks at \(t = 1 \) (i.e., impatient depositors). When \(\int_0^1 c_i \, di \) is below \(\rho \), there is not enough cash in the system to pay off all the impatient depositors. Since the interbank market only redistributes liquidity instead of creating it, there must be some banks that cannot meet the needs of their impatient depositors. The patient depositors of these banks realize that their bank will be insolvent and thus all choose to run at \(t = 1 \). In contrast, when total cash exceeds \(\rho \), the interbank market is effective at redistributing liquidity across banks and there is a conservative equilibrium where no banks face runs. The scope for welfare-improving interventions will therefore be highest when aggregate liquidity is low, as represented by \(\int_0^1 c_i \, di < \rho \). We analyze the potential improvement in social welfare at low liquidity levels next.
3.3 Social Welfare

We consider a social welfare function that puts equal weight on all agents. We model the recipients of bank loans as firms who engage in production. This can include stockbrokers who intermediate between banks and producers of goods and services. A firm that has loans \(\tilde{z} - \ell + z \) at \(t = 1 \) is able to generate output \(f(\tilde{z} - \ell + z) \) at \(t = 2 \), where \(f'(\cdot) > 0 \) with \(f(0) = 0 \) and \(f(\tilde{z}) \geq (1 + rz) \tilde{z} \).

If \(\int_0^1 c_i \, d\bar{z} \geq \rho \) as in the first part of Proposition 1, then no banks fail and an additional amount of loans \(z_a \) is made, with \(z_a = \int_0^1 c_i \, d\bar{z} - \rho \) if the adjustment cost parameter \(\zeta \) is not too high. Social welfare in the benchmark model with a decentralized interbank market is then:

\[
W_b^{(4)} = \int_1^0 c_i \, d\bar{z} + f(\tilde{z} + z_a) - \frac{\zeta}{2} z_a^2
\]

Now consider \(\int_0^1 c_i \, d\bar{z} < \rho \) as in the second part of Proposition 1. Banks with initial cash \(c_i < \bar{c}(r^*_b) \) experience runs and liquidate all loans. Banks with initial cash \(c_i \geq \bar{c}(r^*_b) \) do not experience runs and do not liquidate, but even the most liquid among these banks do not make additional loans because the scarcity of aggregate cash bids up the interbank rate and makes lending on the interbank market more profitable, i.e., \(r^*_b > rz \). Social welfare is therefore:

\[
W_b^{(2)} = \int_0^1 c_i \, d\bar{z} + f(\tilde{z}) - x\tilde{z} \int_{\{c_i \geq \bar{c}(r^*_b)\}}^1 d\bar{z}
\]

Eq. (5), with \(\bar{c}(r^*_b) \) as defined in Eq. (2), clearly highlights that social welfare is decreasing in the market-clearing interest rate \(r^*_b \). Therefore, a mechanism which successfully lowers the interbank rate would improve social welfare.

The intuition is as follows. An individual bank does not internalize the effect of its net borrowing on the interest rate in the interbank market. This imposes a pecuniary externality because the measure of banks that fails in a conservative equilibrium is increasing in the interbank rate when \(\int_0^1 c_i \, d\bar{z} < \rho \) (see Proposition 1). The higher the interbank rate, the more expensive it is to get additional cash to pay depositors at \(t = 1 \). The marginal bank that was preventing a run by borrowing on the interbank market can no longer do so profitably; the amount it needs to borrow given its endowed cash holdings is simply too high to be fully repaid at the higher interest rate. The minimum level of endowed cash that a bank must have in order to be run-proof thus rises, as
does the measure of banks that fails. The lower the interbank rate, the lower the measure of banks that fails. Such an externality opens the door for centralized intervention, which we consider in Section 3.4.

For comparison, it will be useful to define the maximum level of welfare when integration $R_0^1 c_i d_i < \rho$, assuming surviving banks do not liquidate loans. Social welfare in Eq. (5) is maximized when the measure of banks that survives is maximized. The highest possible measure of surviving banks is $\frac{\int_0^1 c_i d_i}{\rho}$ when $\int_0^1 c_i d_i < \rho$ and surviving banks do not liquidate, leading to a maximum welfare level of

$$W_{\text{max}}^{(2)} = \int_0^1 c_i d_i + x\hat{z} + [f(\hat{z}) - x\hat{z}] \frac{\int_0^1 c_i d_i}{\rho}$$

Eq. (6) abstracts from the feasibility of so many banks surviving when depositors behave as in Definition 1, i.e., not running if and only if their bank can survive a run by all of its depositors. If (i) $\rho \geq 1 - x\hat{z}$ and (ii) $c_i = \rho$ for all $i \in S$, where $S \subset [0,1]$ and $|S| = \frac{\int_0^1 c_i d_i}{\rho}$, and $c_i = 0$ for all $i \notin S$, then $W_{\text{max}}^{(2)}$ is also feasible as a conservative equilibrium; each bank $i \in S$ could liquidate enough loans to survive a run, in which case runs and liquidations do not occur for those banks. An immediate implication is that a social planner could improve on the decentralized equilibrium by reallocating cash so that each bank has cash holdings of either 0 or ρ. If $\rho < 1 - x\hat{z}$, then the planner would also specify a set of (off-equilibrium) transfers that eliminate runs. We present the formal planning problem in Appendix B. It corresponds to the use of reserve pooling, wherein the cash reserves of banks are pooled and redistributed.

3.4 Loan Certificates

We now explore whether a social planner can use loan certificates to achieve a better outcome than the decentralized interbank market when $\int_0^1 c_i d_i < \rho$. The model is similar to Section 3.1, except that loan certificates are introduced as an alternative to the interbank market. Specifically, the planner allocates a maximum amount of loan certificates \hat{k}_i to bank i at $t = 0$, which bank i can use at $t = 1$ to meet certain obligations with other banks. Loan certificates incur an interest

\footnote{The case of $\int_0^1 c_i d_i > \rho$ is innocuous; a social planner cannot do better than $W_{\text{max}}^{(1)}$ as in Eq. (4), and, for ζ not too high, he will also choose the same z_α. We therefore focus on $\int_0^1 c_i d_i < \rho$. The assumption on loan liquidations is an outcome in the decentralized equilibrium, which we impose here to obtain a conservative benchmark for comparison. This benchmark may differ from the second-best level of welfare, which is discussed separately in Appendix B.}
rate \(r_k \) if used, and both principal and interest must be repaid by solvent banks at \(t = 2 \). The planner sets the allocation of loan certificates \(\{\hat{k}_i\}_{i \in [0,1]} \) and the interest rate \(r_k \), understanding the best responses of banks and their depositors. Restrictions on the allocation could be imposed to simulate collateral requirements, but we do not impose such restrictions yet.

As discussed in Section 2, the loan certificates issued by the NYCH during the Panic of 1873 were connected to the check-clearing process. They could only be used in the settlement of obligations that involved the transfer of cash from one member bank to another, not obligations that involved the withdrawal of cash out of the system. To model this constraint on the design of loan certificates, which is what sets them apart from central bank liquidity injections, we decompose \(c_i \), the notation for bank \(i \)'s cash holdings before any depositor withdrawals in Section 3.1, into three components:

\[
c_i \equiv \bar{c}_i - \nu_i + \bar{v}
\]

where \(\bar{c}_i \) is an endowment of cash reserves (specie and legal tender), \(\nu_i \) is cash outflows associated with checks owed to other banks, and \(\bar{v} \) is cash inflows associated with checks owing from other banks. For simplicity, we assume that bank \(i \) owes the same amount of checks \(\nu_i \) to each bank \(i' \neq i \). The total amount owed by bank \(i \) to all other banks is \(\int_{i' \neq i} \nu_i \, di' \), which simplifies to \(\nu_i \). The total amount owed to bank \(i \) from all other banks is \(\bar{v} \equiv \int \nu_i \, di' \). We consider \(\nu_i \geq 0 \) for all \(i \) and \(\bar{v} > 0 \), that is, there exists check-clearing activity before depositors make withdrawal decisions.

In the model of Section 3.1, only cash could be used to settle checks, hence \(c_i \) was the amount of cash brought by bank \(i \) into \(t = 1 \). Now, loan certificates exist as an alternative to cash for check settlement. In particular, loan certificates can be used to pay \(\nu_i \) and must be accepted in lieu of \(\bar{v} \), helping banks to preserve cash reserves \(\bar{c}_i \) for depositors who withdraw from the system at \(t = 1 \). The preservation occurs because the loan certificate defers the final settlement (in cash and at the interest rate \(r_k \)) to \(t = 2 \), after depositor withdrawal decisions have been made. To simplify the exposition, when a bank uses a loan certificate, we assume the loan certificate is given in equal proportions to all other banks.

The amount of loan certificates used by bank \(i \) to pay \(\nu_i \) before depositor withdrawals at the

18 Loan certificates must be repaid by solvent banks, regardless of whether the bank that accepted them survives to \(t = 2 \). In the historical setting, we can think of payments to failed banks as going to the clearinghouse instead.
beginning of $t = 1$ is denoted by k_i, where

$$k_i \in \left[0, \min \left\{ \nu_i, \tilde{k}_i + R_i \right\} \right]$$

(7)

and $R \equiv \int k_i d\nu'$ denotes the amount of loan certificates used by other banks to pay bank i the obligations ν. As loan certificates can be recirculated during the check-clearing process, receiving more loan certificates from others allows a bank to utilize loan certificates beyond its initial allocation \tilde{k}_i. The R thus represents an equilibrium of the loan certificate exchange process, whereby the loan certificates received by a bank can affect the amount of loan certificates it distributes to other banks.\(^\text{19}\)

In addition to choosing the initial allocation of loan certificates and the interest rate r_k, the planner can impose limits on the recirculation of loan certificates, i.e., the upper bound on k_i in (7) can be made stricter for some banks. The following proposition establishes the existence of an allocation of loan certificates, an interest rate, and a recirculation policy that improves on the decentralized equilibrium in Proposition 1 when total cash in the system is low:

Proposition 2. Consider $\tilde{c}_i = \tilde{c}$ for all $i \in [0, 1]$ and hence $\int_0^1 c_i d\nu = \tilde{c}$. If $\nu > \rho - \tilde{c}$, then there exists an allocation of loan certificates $\left\{ \tilde{k}_i^* \right\}_{i \in [0, 1]}$ and an interest rate r_k^* that achieves higher welfare than the decentralized equilibrium when $\rho > \tilde{c}$. This allocation involves:

$$\tilde{k}_i^* = \begin{cases} 0 & \text{if } c_i < \nu \left(r_k^* \right) \\ \nu_i & \text{if } c_i \geq \nu \left(r_k^* \right) \end{cases}$$

(8)

and r_k^* solving:

$$\int_{\{i \mid c_i \geq \nu \left(r_k^* \right) \}} (\rho - c_i) d\nu = \int_{\{i \mid c_i < \nu \left(r_k^* \right) \}} \min \{ \tilde{k}, c_i \} d\nu > 0$$

(9)

Any bank i with $c_i < \nu \left(r_k^* \right)$ experiences a run. However, $r_k^* < r_k^*$ so there are fewer runs than in Proposition 1. The welfare-improving allocation implements $\Delta_i = 0$ for all i and imposes that any bank with $c_i < \nu \left(r_k^* \right)$ uses cash before recirculated loan certificates during check-clearing.

\(^{19}\)Our concept of a payment equilibrium is analogous to the payment equilibrium concept presented in the system of payments literature, for instance in Eisenberg and Noe (2001). The literature shows that there exists a unique payment equilibrium in certain settings and that this payment equilibrium can be derived as the limit of a repeated series of payment transaction steps among the banks.
The condition $\bar{c}_i = \bar{c}$ at the beginning of Proposition 2 captures an environment where most of the variation in initial cash holdings across banks comes from variation in check-clearing obligations. Then, as long as there is enough aggregate check-clearing activity, i.e., $\nu > \rho - \bar{c}$, Proposition 2 says that the planner can reduce bank failures and improve social welfare by allocating to banks above the cash threshold $\bar{c}(r_k^*)$ enough loan certificates to cover their checks owed to other banks. Banks below this threshold receive no loan certificates and must use cash reserves before loan certificates received from other banks to pay checks owed. The result is a reallocation of cash reserves away from failing banks (and their depositors) towards the rest of the system. In turn, the interest rate on loan certificates can be set below the borrowing rate that prevails in the decentralized equilibrium, allowing more banks to fend off runs. The measure of failed banks falls and total welfare rises.

The allocation in Proposition 2 only issues loan certificates to banks who repay them in full. While the planner does not explicitly demand collateral in this model, a restriction to allocations where all loan certificates are repaid can be interpreted as a (non-distortionary) collateral requirement. Recall that a similar restriction was imposed on loans in the decentralized interbank market so the results are directly comparable.

Next, we compare the social welfare generated by the loan certificates in Proposition 2 to the welfare from reserve pooling in Eq. (6). Appendix B establishes (sufficient) conditions under which reserve pooling achieves the second-best level of welfare. These conditions are independent of the level of check-clearing activity. The following lemma summarizes how the welfare achieved in Proposition 2 compares to the reserve-pooling benchmark in Eq. (6):

Lemma 1. Consider $\nu > \rho - \bar{c} > 0$ as in Proposition 2.

- **Case 1 (Unconstrained):** If $\bar{c}(r_k^*) \leq \nu + \bar{c} - \rho$, then loan certificates will transfer all the cash of failing banks to run-proof banks, achieving the same level of welfare as reserve pooling.

- **Case 2 (Constrained):** If $\bar{c}(r_k^*) > \nu + \bar{c} - \rho$, then some cash will remain with failing banks under the loan certificate arrangement in Proposition 2, making the welfare improvement over the decentralized equilibrium smaller than the welfare improvement achieved by reserve pooling.

The solution r_k^* to Eq. (9) is increasing in ρ, so the unconstrained case applies for ρ not too large above \bar{c}. Alternatively, fix any value of $\rho > \bar{c}$ and consider an increase in check-clearing obligations from ν_i to $\nu_i + \varepsilon$ at all banks i, where $\varepsilon > 0$. The unconstrained case will apply at higher ε.

23
The unconstrained case in Lemma 1 introduces a condition \(\nu \geq \rho - \bar{c} + e (r_k^*) \) which is stricter than the condition \(\nu > \rho - \bar{c} \) in Proposition 2. The condition in Proposition 2 determines whether the loan certificates can provide higher social welfare than the interbank market, while the condition in Lemma 1 determines whether the loan certificates can achieve the same welfare as reserve pooling (which is also the second-best under the conditions on \(x \) and \(f (\cdot) \) in Appendix B). Overall, Lemma 1 highlights that the loan certificates in Proposition 2 are as capable as reserve pooling when all banks are highly involved in check-clearing activity. The intuition follows from the fact that loan certificates are connected to the check-clearing process. With more checks owed, failing banks have to transfer more cash towards run-proof banks without receiving more cash in return for checks owing. This achieves the same outcome as reserve pooling when the volume of check-clearing activity is high enough that failing banks have to transfer all of their cash.

4 Quantitative Analysis

We now use historical data to parameterize the model developed in Section 3 and obtain some plausible estimates of the welfare gains from loan certificates during the Panic of 1873 relative to a hypothetical interbank market with decentralized trade.

4.1 Parameterization

We consider a range of 0.068 to \(c_{\text{max}} \) for the cash levels of the NYCH member banks, where the 1873 level of \(c_{\text{max}} \) is 0.311. Our model normalizes deposits at each bank to 1 so the range of cash levels captures that the least liquid banks in the NYCH held 6.8% of their deposits as cash reserves while the most liquid banks held 31.1%. These ratios trim the sample at the 7th and 93rd percentiles to exclude outliers. We use a uniform distribution for simplicity, with density \(f (c_i) = \frac{1}{c_{\text{max}} - 0.068} \) at each cash level \(c_i \in [0.068, c_{\text{max}}] \). The average cash ratio (which is also the aggregate cash level) implied by the uniform distribution at \(c_{\text{max}} = 0.311 \) is \(\bar{c} = 0.189 \). For the decomposition of cash holdings, \(c_i = \bar{c} - \nu_i + \bar{p} \), we assume \(c_{\text{max}} = \bar{c} + \bar{p} \), i.e., the most liquid banks owe no checks. Then, \(\nu_i = c_{\text{max}} - c_i \) and \(\bar{p} = \frac{c_{\text{max}} - 0.068}{2} \) with \(\bar{c} = \frac{0.068 + c_{\text{max}}}{2} \). Notice that a higher (lower) value of \(c_{\text{max}} \) would capture a system with more (less) total cash. We will vary \(c_{\text{max}} \) from its 1873 level in counterfactual computations and quantify the effect on welfare.
During the period we study, depositors were paid an average of 2% on their deposits, so we set \(r = 0.02 \) for the deposit interest rate. Using average interest rates from the period, we estimate the average interest rate on bank loans at \(r_z = 0.04 \). We set the output function for recipients of bank loans to \(f(z) = (1 + r_z) z \). The loan liquidation value is set to \(x = 0.75 \), which is to say 75% of the face value of bank loans could be recovered on demand. This is consistent with full recovery on more liquid loans and a recovery rate of two-thirds for other less liquid loans. We consider \(\zeta \to \infty \) for the loan adjustment cost to capture the difficulty of finding additional profitable lending opportunities during a financial crisis. We then set loans outstanding to \(\tilde{z} = 1 - 0.068 = 0.932 \), which ensures \(c_i + \tilde{z} \geq 1 \) for all \(i \) and reflects the fact that the total amount of investments was roughly equal to the total amount of deposits among the banks.

A key parameter for our analysis is the fraction of early deposit withdrawals \(\rho \). The NYCH set an interest rate of 7% on outstanding loan certificates, so we calibrate \(\rho \) to get \(r^*_k = 0.07 \) from Proposition 2. This gives \(\rho = 0.212 \). While there is no direct data on \(\rho \), the calibrated value is reasonable given the composition of bank deposits. Around 64% of total deposits in the NYCH members in 1873 were individual checking deposits. Assuming a withdrawal rate of 0.2 for individual depositors based on the typical withdrawals in 1872, the calibrated \(\rho \) implies a withdrawal rate of 0.23 by institutional depositors, i.e., country banks, which is consistent with greater withdrawal pressures from banks in the interior of the country during the crisis.

4.2 Welfare Gains from Loan Certificates

Figure 1(a) compares the welfare with loan certificates to the welfare under reserve pooling and the welfare that could have been achieved with a decentralized interbank market. We also plot the “first best” level of welfare, measured as \(\bar{c} + f(\tilde{z}) \).

In the baseline parameterization of Section 4.1 with \(c_{\text{max}} = 0.311 \), Figure 1(a) shows that loan certificates are able to achieve the same welfare as reserve pooling, i.e., the unconstrained case in Lemma 1 applies. This suggests that loan certificates were working as well as the liquidity reallocation tools available to modern CCPs, which are similar to reserve pooling as they involve centralized liquidity redistribution across members.

We note that the NYCH abandoned reserve pooling after 1873. This is rationalized in our model as the numerical results show it was redundant for the NYCH to explicitly adopt reserve
pooling in 1873. In fact, given that they achieved the same welfare, loan certificates would seem politically preferable to reserve pooling as the interest rate paid to banks that ended up having to accept the certificates would have made it easier to achieve consensus on re-instituting a system of loan certificates in later crises, in contrast to reserve pooling which imparts a pure tax on the subset of banks that end up having to cross-subsidize their peers.

Figure 1(a) also shows that social welfare with loan certificates is 2% higher than the welfare with a decentralized interbank market in the baseline parameterization, reflecting that the market-clearing interbank rate, \(r^* = 0.094 \), would have exceeded the 7% interest rate on loan certificates. A welfare improvement of 2% is notable since it fills almost half of the gap between the decentralized market and the first-best plotted in the figure.

Notice from Section 4.1 that the average cash ratio \(\bar{c} \) is below the calibrated \(\rho \) when \(c_{\text{max}} = 0.311 \). Thus, the banking system during the Panic of 1873 was in the range of parameters where loan certificates alone would not have been able to completely prevent bank failures (recall Proposition 2, where banks with \(c_i < \bar{c}(r^*) \) experience a run when \(\bar{c} < \rho \)).\(^{20}\) When total cash in the system is below \(\rho \), there is simply no redistribution of cash across banks that allows them all to become run-proof. An important difference between the analysis in Proposition 2 and the historical episode is that none of the members of the NYCH actually failed during the Panic of 1873. This suggests that additional policies pursued by the NYCH helped drive failures down to zero, despite possibly introducing costs of their own. We consider these policies in Section 5. Among surviving banks, however, the welfare-improving allocation in Proposition 2 issues more loan certificates to banks that owe more checks. This is consistent with Table 2, where we found that banks with higher amounts due to the NYCH received more loan certificates. Our model thus shows that there is an allocation of loan certificates that improves welfare over a decentralized market and that, on the intensive margin, this allocation is in line with the allocation implemented by the NYCH during the Panic of 1873.

The horizontal axis in Figure 1(a) varies \(c_{\text{max}} \) to analyze the welfare effect of loan certificates under different liquidity scenarios for the banking system. We keep all other parameters as in

\(^{20}\) As a robustness check, we shifted the cash distribution rightward, from \(c_i \) to \(c_i + 0.05 \) for each \(i \), to consider a somewhat broader definition of liquid assets than cash reserves. The gap between the new \(\bar{c} \) and the recalibrated \(\rho \) widens, i.e., the latter increases more than one-for-one with the former to justify the same solution \(r^* = 0.07 \), bolstering the welfare gain from loan certificates relative to a decentralized interbank market.
Section 4.1, including $\rho = 0.212$, and use Proposition 2 to solve for r_k at each value of c_{max}. The welfare gains from loan certificates relative to the interbank market are largest at low c_{max} (and hence low \tilde{c}) even though at these values the constrained case in Lemma 1 applies and loan certificates do not achieve the same welfare as reserve pooling. As c_{max} increases to bring \tilde{c} equal to or above ρ, all mechanisms for redistributing cash (interbank market, loan certificates, reserve pooling) are able to achieve the first-best level of welfare.

5 Other Interventions by the NYCH

We now consider the additional policies introduced by the NYCH during the Panic of 1873 – information suppression and partial suspension – and assess their potential welfare effects relative to loan certificates.

5.1 Information Suppression

Starting on September 20th, the NYCH stopped publishing weekly balance sheet information about individual banks, reporting instead the aggregate across its members. The NYCH made this decision on behalf of all member banks. Had the decision to suppress bank-level information been left up to each bank individually, the lack of a coordination mechanism could have caused information suppression to unravel.

To characterize the effect of information suppression on welfare independently of loan certificates, consider an environment where (i) banks trade in a decentralized interbank market as in Section 3.1 and (ii) depositors know the distribution from which the cash endowments c_i are drawn but not the value of c_i for any bank i. The following proposition shows that information suppression alone, even if coordinated by an entity like the NYCH, cannot reduce bank failures when total cash in the system is low:

Proposition 3. Consider a decentralized interbank market with $\tilde{c} < \rho$.

1. For a fixed interbank rate, there are (weakly) fewer bank failures if information is suppressed than if it is not.

2. If there exists an equilibrium with information suppression where patient depositors do not
run (i.e., \(a_{ij} = 2 \) for all \(ij \in [0,1] \times [\rho,1] \)), then the measure of banks that fails is exactly the same as in Proposition 1 but social welfare may be higher.

The first part of Proposition 3 compares bank failures with and without information suppression for the same interbank rate. With information suppression, depositors cannot distinguish strong (i.e., run-proof) banks from weak ones. Instead, all banks appear the same to patient depositors, hence patient depositors at all banks make the same decision. Ex post, patient depositors would only want to have run on weak banks, so, if there are enough strong banks in the system, depositors may prefer not to run ex ante. This sort of cross-subsidization of weak banks by strong ones is what would permit information suppression to achieve fewer bank failures for a fixed interbank rate.

Importantly though, the interbank rate is not fixed. The second part of Proposition 3 establishes that the interbank interest rate will adjust in equilibrium to deliver exactly the same measure of bank failures as in Proposition 1. Intuitively, there would be more banks with low cash participating in the interbank market if information suppression decreased the threshold level of cash below which banks fail. This would imply an increase in loan demand on the interbank market, pushing up the interbank rate and increasing the threshold. Unlike loan certificates, information suppression offers no mechanism by which to extract cash from failing banks for use by the rest of the system. As a result, information suppression cannot allow fewer banks to fail when the interbank rate is endogenously determined in a decentralized market.

Even though information suppression does not reduce the measure of bank failures, the second part of Proposition 3 reveals that welfare may still increase relative to the decentralized market without information suppression. The welfare gains come from fewer loans being liquidated at \(t = 1 \). The key to this result is that information suppression defers some bank failures until \(t = 2 \) if there are enough strong banks in the system to convince patient depositors to wait until \(t = 2 \) to withdraw. Specifically, banks with \(c_i \in (\rho - x \overline{z}, \overline{c} (r^*_b)) \) now only need to liquidate a fraction of their loans at \(t = 1 \) to repay impatient depositors. The unliquidated fraction then earns the interest rate \(r_z \), which can be used to partly repay the patient depositors at \(t = 2 \). These depositors are not fully repaid (i.e., they do not get \(1 + r \) at \(t = 2 \)), but they do get more than if they ran at \(t = 1 \) and forced the bank to liquidate all of its loans \(\overline{z} \).

Figure 1(b) plots welfare under information suppression for different values of \(c_{\text{max}} \). There is
a value of c_{max}, call it c^*_{max}, at which welfare jumps discontinuously. For any $c_{\text{max}} < c^*_{\text{max}}$, there does not exist an equilibrium with information suppression where patient depositors do not run. The cash distribution is not strong enough to convince patient depositors that the average bank in the system can withstand a run, hence all depositors withdraw from all banks at $t = 1$. This leads to much lower welfare than without information suppression where banks towards the top of the same cash distribution do not experience runs.

For any $c_{\text{max}} > c^*_{\text{max}}$, there exists an equilibrium with information suppression where patient depositors do not run; Figure 1(b) plots the welfare in that equilibrium. As c_{max} is increased above c^*_{max}, a decentralized interbank market achieves higher welfare with information suppression than without. Suppressing information also achieves higher welfare than replacing the decentralized market with loan certificates. The welfare gains reflect fewer liquidations at $t = 1$, as discussed above in relation to Proposition 3. As c_{max} is increased further, the system moves to $\tilde{c} \geq \rho$ and the first-best level of welfare is attained in all the models we consider.

The important lesson from Figure 1(b) is that the 1873 level of c_{max} was well below c^*_{max}. Thus, information suppression alone would have been disastrous for the banking system. The system-wide run induced by information suppression at low c_{max} renders any mechanism for redistributing cash across banks moot. No bank can lend without liquidating the principal of the interbank loan from \tilde{z} and no amount of interbank lending changes the run probability for the recipient bank; the recipient’s liquidations just decrease by the amount that the lender liquidates to fund the interbank loan. While the mechanism through which cash is redistributed (decentralized market versus loan certificates) can affect the value of c^*_{max}, the 1873 level of c_{max} is low enough that it does not matter which mechanism we consider alongside information suppression to conclude that another policy was responsible for the lack of bank failures during the Panic of 1873. The final policy of the NYCH, partial suspension of convertibility, is discussed next.

5.2 Suspension of Convertibility

On September 22nd, the NYCH partially suspended the convertibility of deposits, preventing individual depositors in New York City from withdrawing while still allowing withdrawals from country banks. We inferred a withdrawal rate of 0.23 for country banks at the end of Section 4.1, with country banks accounting for around 36% of total deposits in the NYCH members. All else constant
then, the suspension policy of the NYCH would have decreased the fraction of early withdrawals to $\rho = 0.36 \times 0.23 = 0.083$, putting the banking system in a situation where the average cash ratio $\bar{c} = 0.189$ was high enough to achieve a conservative equilibrium without any bank failures as long as there existed a mechanism to redistribute liquidity across banks. Loan certificates provided this mechanism in the absence of a formal, decentralized interbank market. No banks fail under partial suspension, and banks with less cash received more loan certificates, in line with the summary statistics in Section 2.

The NYCH’s suspension policy differs from the one that achieves the first-best in Diamond and Dybvig (1983) when the fraction of impatient depositors is known. In particular, the NYCH was restricting withdrawals below the true fraction of impatient depositors, imposing a cost on individual depositors who really needed access to their funds at $t = 1$. Denote by κ the welfare loss incurred by impatient depositors per dollar of deposits that they cannot withdraw at $t = 1$. Based on our quantitative model, the NYCH’s suspension policy would have improved aggregate welfare relative to loan certificates alone if and only if $\kappa < 0.225$. That is, the average individual depositor in New York City who needed to withdraw deposits early but could not would have had to incur a welfare loss of no more than 22.5% of the value of those deposits.

The currency premium in New York City reached 5% by September 29th, meaning that some depositors were getting cash from brokers at this much of a discount against their deposits. At face value, this motivates $\kappa = 0.05$, in which case the combination of partial suspension and loan certificates brings welfare just shy of its first-best level and constitutes a 2% improvement relative to just loan certificates. However, the currency premium is a lower bound for κ in our model. It would suffice for just 20% of individual depositors to not have had access to cash brokers (i.e. $\kappa = 1$ for such depositors) to bring the weighted average κ above 0.225. Sprague (1910, p. 57) also notes that “there were wide differences both in supply and demand from hour to hour, and especially high rates were regularly paid for currency in quantity.” It is therefore plausible that partial suspension of convertibility reduced aggregate welfare despite eliminating bank failures.

Had there existed a formal, decentralized interbank market in New York in 1873 and loan certificates not been implemented, the suspension policy would have improved aggregate welfare if and only if $\kappa < 0.393$. Since a decentralized equilibrium would have involved more bank failures than loan certificates in the absence of suspension, the welfare gain from suspension is higher when
the mechanism for redistributing liquidity is a decentralized interbank market. The welfare cost can then also be higher before the suspension policy becomes overall welfare-reducing.

6 Conclusion

The March 2023 banking crisis occurred in an environment with high inflation, putting central banks in the challenging position of resolving a banking panic while not expanding their balance sheets too drastically. Several liquidity reallocation policies were implemented to reassure the public and help stop bank runs. These policies aimed to facilitate the continuation of contractionary monetary policy to lower inflation while mitigating the spread of bank runs.

This paper investigated whether liquidity reallocation policies can be effective in stabilizing the financial system against a crisis. We built a structural model that incorporates into the classic Diamond and Dybvig (1983) framework a role for cross-subsidization between banks to quell runs and studied loan certificates as a mechanism to achieve it. We then calibrated our model using data from the Panic of 1873. In this episode, the NYCH introduced a liquidity reallocation mechanism via loan certificates that member banks were required to accept in lieu of cash during the check-clearing process. We showed that this mechanism achieved fewer bank failures than in a decentralized market for interbank loans due to a pecuniary externality in the decentralized equilibrium. The welfare improvement provided by loan certificates is notable, as it recovered almost half of the welfare gap between the decentralized equilibrium and the first-best level of welfare at the calibrated parameters. Moreover, due to the large volume of check clearing at the time, we found that loan certificates achieved the same welfare as a centralized reserve pooling policy. Overall, our results showed that liquidity reallocation policies can be an effective tool for resolving bank runs absent the direct injection of liquidity by a central bank. With recent work highlighting the limitations of central bank balance sheet expansions (e.g., Acharya and Rajan (2022), Diamond, Jiang, and Ma (2022), Ferguson, Kornejew, Schmelzing, and Schularick (2023)), tools that reduce the need for direct injections are important for policymakers to consider.

Our findings bring to light a role for clearinghouse loan certificates or similar liquidity reallocation policies in the management of future liquidity crises. The effectiveness of loan certificates at resolving the Panic of 1873 suggests that similar liquidity reallocation tools can help resolve bank
runs when the ability of the central bank to provide liquidity to the banking system is constrained. Less reliance on monetary injections reduces inflation concerns, which is particularly useful for central banks attempting to reduce the size of their balance sheets after more than a decade of monetary stimulus. At the same time, liquidity reallocation alone will not eliminate bank failures when aggregate liquidity is low. Thus, an external liquidity injection would still be needed to rescue the system against an exceedingly large liquidity shock. However, a combination of liquidity injection and a system of loan certificates would reduce the size of the required injection, preserving policy space for the central bank.

A common concern with all crisis resolution tools is moral hazard, particularly if the tools are effective. The contribution of our paper has been to establish the effectiveness of loan certificates, both structurally and quantitatively, when interbank markets are plagued by a pecuniary externality. Thus, a natural next step could be to explore the potential for loan certificates to have led to excessive risk-taking by member banks following the Panic of 1873. Encouragingly, Hoag (2012) finds little evidence of loan certificates leading to moral hazard during the National Banking Era. Moreover, any moral hazard that could arise would likely be more modest than when banks anticipate broad-based government bailouts, especially since some banks are allowed to fail in a system of loan certificates (in the absence of other interventions) when aggregate liquidity is low. To study moral hazard more formally, future work could extend our model to allow for endogenous cash endowments or check-clearing activity. The optimal design of loan certificates in environments with multiple clearinghouses, potentially based across different countries, is also an interesting avenue for extension.
References

Table 1:
Summary Statistics, NYCH Members

<table>
<thead>
<tr>
<th>Non-Recipient Banks</th>
<th>Recipient Banks</th>
<th>All Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash / Total Assets</td>
<td>11.18</td>
<td>8.52</td>
</tr>
<tr>
<td></td>
<td>(4.88)</td>
<td>(3.29)</td>
</tr>
<tr>
<td>Cash / Total Deposits</td>
<td>20.08</td>
<td>12.43</td>
</tr>
<tr>
<td></td>
<td>(8.87)</td>
<td>(4.78)</td>
</tr>
<tr>
<td>Investment / Total Assets</td>
<td>66.68</td>
<td>62.13</td>
</tr>
<tr>
<td></td>
<td>(5.50)</td>
<td>(11.40)</td>
</tr>
<tr>
<td>Equity / Total Liabilities</td>
<td>34.53</td>
<td>25.10</td>
</tr>
<tr>
<td></td>
<td>(7.07)</td>
<td>(8.58)</td>
</tr>
<tr>
<td>Due From Banks / Total Assets</td>
<td>4.46</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>(2.54)</td>
<td>(3.52)</td>
</tr>
<tr>
<td>Due To Banks / Total Liabilities</td>
<td>5.67</td>
<td>19.23</td>
</tr>
<tr>
<td></td>
<td>(6.12)</td>
<td>(19.77)</td>
</tr>
<tr>
<td>Loan Certificate Volume / Total Deposits</td>
<td>0</td>
<td>13.09</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(7.67)</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$6,164,669</td>
<td>$8,870,033</td>
</tr>
<tr>
<td></td>
<td>(5,824,123)</td>
<td>(8,345,285)</td>
</tr>
<tr>
<td>Obs.</td>
<td>26</td>
<td>33</td>
</tr>
</tbody>
</table>

Notes: Recipient refers to whether or not the bank received clearinghouse loan certificates during the panic. Data are averages over the indicated NYCH members just before the panic. All ratios are expressed as percentages. Cash refers to cash reserves (i.e., specie and legal tender). Investment is the sum of loans, bonds, and stocks. “Due froms” are interbank deposits due from other banks. “Due tos” are interbank deposits due to other banks. Loan certificate volume is the aggregate value of loan certificates taken out during the Panic of 1873. Total assets is the average value of total assets. Total deposits are the sum of retail deposits and institutional deposits (due-tos). Standard deviations are in parentheses. Sources: Office of the Comptroller of Currency, Annual Report of the Superintendent of the Banking Department of the State of New York, and authors’ calculations.

Table 2:
Check Clearing and Loan Certificates, Correlations

<table>
<thead>
<tr>
<th></th>
<th>Due to CH</th>
<th>Due from CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuance</td>
<td>0.799***</td>
<td>-0.138</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.235)</td>
</tr>
<tr>
<td>Obs.</td>
<td>76</td>
<td>76</td>
</tr>
</tbody>
</table>

Notes: This table computes Pearson correlations between the volume of clearinghouse loan certificates and the volume of debit and credit payments with the clearinghouse from September 22nd to September 30th. Among 61 banks in the clearinghouse, 33 banks received loan certificates. Loan certificates were issued 76 times because some banks received loan certificates multiple times in this window. p-values are in parentheses. ***p<0.01, **p<0.05, *p<0.1. Sources: NYCH minutes and authors’ calculations.
Table 3:
Deposit Growth During the Panic, Recipient and Non-Recipient Banks

<table>
<thead>
<tr>
<th></th>
<th>9/20-10/21</th>
<th>10/21-12/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Recipient Banks</td>
<td>-13.92</td>
<td>22.34</td>
</tr>
<tr>
<td></td>
<td>(16.12)</td>
<td>(34.48)</td>
</tr>
<tr>
<td>Recipient Banks</td>
<td>-32.76</td>
<td>13.24</td>
</tr>
<tr>
<td></td>
<td>(29.07)</td>
<td>(25.69)</td>
</tr>
</tbody>
</table>

Notes: This table provides information on deposit growth for banks that received clearinghouse loan certificates and banks that did not during the periods 9/20/1873 to 10/21/1873 and 10/21/1873 to 12/6/1873. The deposit information for 10/21/1873 was not made public. Standard deviations are in parentheses. Sources: Deposit information for Sept 20th and Dec 6th comes from the Commercial and Financial Chronicles; Deposit information for Oct 21st comes from the NYCH Loan Certificate Committee minutes.

Table 4:
Average Interest Payments, Recipient and Non-Recipient Banks

<table>
<thead>
<tr>
<th></th>
<th>Non-Recipient Banks</th>
<th>Recipient Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paid to the CH</td>
<td>Received from the CH</td>
<td>Paid to the CH</td>
</tr>
<tr>
<td>0</td>
<td>$5,240.17</td>
<td>$8,877.30</td>
</tr>
<tr>
<td>(0)</td>
<td>(5,754.94)</td>
<td>(11,448.72)</td>
</tr>
</tbody>
</table>

Notes: Average value of interest payments made to and received from the clearinghouse. Data presented separately for banks that received clearinghouse loan certificates and banks that did not receive clearinghouse loan certificates. Standard deviations are in parentheses. Sources: NYCH minutes and authors’ calculations.

Table 5:
Ratio of Cash Reserves to Deposits, Recipient and Non-Recipient Banks

<table>
<thead>
<tr>
<th></th>
<th>9/20/1873</th>
<th>12/6/1873</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Recipient Banks</td>
<td>0.332</td>
<td>0.339</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>(0.192)</td>
</tr>
<tr>
<td>Recipient Banks</td>
<td>0.263</td>
<td>0.278</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.107)</td>
</tr>
</tbody>
</table>

Notes: Ratio of cash reserves (specie and legal tender) to deposits, reported separately for banks that received clearinghouse loan certificates and banks that did not receive clearinghouse loan certificates. Standard deviations are in parentheses. Sources: Commercial and Financial Chronicles, authors’ calculations.
Figure 1:
Welfare Relative to Reserve Pooling

(a) Loan Certificates

(b) Information Suppression

Notes: The dashed vertical line indicates the 1873 level of c_{max}.

39
Appendix A – Proofs

Proof of Proposition 1

Let ω_i denote the fraction of depositors that withdraw from bank i at $t = 1$. Fixing ω_i, the optimization problem of bank i is given by:

$$V_i(\omega_i) \equiv \max_{\ell_i, z_i, \Delta_i} \left\{ c_i + x\ell_i - z_i + \Delta_i - \omega_i - \frac{1}{2} \zeta z_i^2 \right.$$
$$+ (1 + r_z) (\tilde{z} - \ell_i + z_i) - (1 + r_b) \Delta_i - (1 + r) (1 - \omega_i) \right\}$$

s.t.

$$c_i + x\ell_i - z_i + \Delta_i \geq \omega_i$$

The Lagrangian (with multiplier $\lambda_i \geq 0$ on the constraint) is:

$$\mathcal{L} = c_i + x\ell_i - z_i + \Delta_i - \omega_i - \frac{1}{2} \zeta z_i^2$$
$$+ (1 + r_z) (\tilde{z} - \ell_i + z_i) - (1 + r_b) \Delta_i - (1 + r) (1 - \omega_i)$$
$$+ \lambda_i [c_i + x\ell_i - z_i + \Delta_i - \omega_i]$$

F.O.C. wrt ℓ_i:

$$\frac{\partial \mathcal{L}}{\partial \ell_i} = x (1 + \lambda_i) - (1 + r_z)$$

F.O.C. wrt z_i:

$$\frac{\partial \mathcal{L}}{\partial z_i} = r_z - \lambda_i - \zeta z_i$$

F.O.C. wrt Δ_i:

$$\frac{\partial \mathcal{L}}{\partial \Delta_i} = \lambda_i - r_b$$

Consider the various cases for ℓ_i:

1. If $\ell_i \in (0, \tilde{z})$, then $\lambda_i = \frac{1 + r_z}{x} - 1 > 0$, where the inequality follows from the assumptions of $r_z > 0$ and $x \in (0, 1)$ in the main text. Subbing λ_i into the F.O.C. for z_i:

$$\frac{\partial \mathcal{L}}{\partial z_i} = - (1 + r_z) \left(\frac{1}{x} - 1 \right) - \zeta z_i < 0$$
Therefore \(z_i = 0 \). Now sub \(\lambda_i \) into the F.O.C. for \(\Delta_i \):

\[
\frac{\partial L}{\partial \Delta_i} = \frac{1 + r_z}{x} - (1 + r_b)
\]

- If \(1 + r_b > \frac{1 + r_z}{x} \), then the bank sets \(\Delta_i \) as low as possible (i.e., lend as much as possible on the interbank market). With \(\lambda_i > 0 \), complementary slackness requires

\[
\Delta_i = \omega_i - c_i - x\ell_i
\]

(A.1)

so \(\Delta_i \) is minimized by setting \(\ell_i = \tilde{z} \), which contradicts \(\ell_i \in (0, \tilde{z}) \).

- If \(1 + r_b < \frac{1 + r_z}{x} \), then the bank sets \(\Delta_i \) as high as possible (i.e., borrow as much as possible on the interbank market). From Eq. (A.1), \(\Delta_i \) is maximized by setting \(\ell_i = 0 \), which contradicts \(\ell_i \in (0, \tilde{z}) \).

- If \(1 + r_b = \frac{1 + r_z}{x} \), then \(\Delta_i \) is indeterminate. Rearranging Eq. (A.1):

\[
\ell_i = \frac{\omega_i - c_i - \Delta_i}{x}
\]

We thus need

\[
\Delta_i \in (\omega_i - c_i - x\tilde{z}, \omega_i - c_i)
\]

for \(\ell_i \in (0, \tilde{z}) \) to be satisfied.

2. If \(\ell_i = 0 \), then \(\lambda_i < \frac{1 + r_z}{x} - 1 \).

- If \(\lambda_i > r_z \), then \(z_i = 0 \) and \(\lambda_i > 0 \) so

\[
\Delta_i = \omega_i - c_i
\]

The above satisfies the F.O.C. for \(\Delta_i \) if (and only if) \(\lambda_i = r_b \), so this case requires

\(r_b \in (r_z, \frac{1 + r_z}{x} - 1) \).

- If \(\lambda_i < r_z \), then consider an interior solution for \(z_i \):

\[
z_i = \frac{r_z - \lambda_i}{\zeta}
\]
Note that \(\lambda_i < r_z \) is stricter than \(\lambda_i < \frac{1+ r_z}{x} - 1 \). There are two subcases:

- If \(\lambda_i > r_b \), then the bank sets \(\Delta_i \) as high as possible. Moreover, the constraint in the optimization problem holds with equality:

\[
\lambda_i = r_z - \zeta (\Delta_i + c_i - \omega_i)
\]

The highest possible \(\Delta_i \) is the one that delivers \(\lambda_i = r_b \), so

\[
\Delta_i = \omega_i - c_i + \frac{r_z - r_b}{\zeta}
\]

\[
z_i = \frac{r_z - r_b}{\zeta}
\]

This case requires \(r_b < r_z \).

- If \(\lambda_i < r_b \), then the bank sets \(\Delta_i \) as low as possible, where

\[
\Delta_i \geq \omega_i - c_i + \frac{r_z - \lambda_i}{\zeta}
\]

Note that this case requires \(\lambda_i < \min \{r_b, r_z\} \). The lowest possible \(\Delta_i \) is the one that makes the above hold with equality at \(\lambda_i = \min \{r_b, r_z\} \), namely

\[
\Delta_i = \omega_i - c_i + \frac{r_z - \min \{r_b, r_z\}}{\zeta}
\]

If \(r_b < r_z \), then \(\lambda_i = r_b \) and we get the results of the previous bullet. If \(r_b > r_z \), then \(\lambda_i = r_z \) and we get \(\Delta_i = \omega_i - c_i \) with \(z_i = 0 \).

3. If \(\ell_i = \tilde{z} \), then \(\lambda_i > \frac{1+ r_z}{x} - 1 \). Note that this implies \(\lambda_i > r_z \) so \(z_i = 0 \). Moreover, with \(\lambda_i > 0 \), the constraint in the optimization problem holds with equality. We can thus write

\[
\Delta_i = \omega_i - c_i - x \tilde{z}
\]

The above satisfies the F.O.C. for \(\Delta_i \) if (and only if) \(\lambda_i = r_b \), so this case requires \(1+ r_b > \frac{1+r_z}{x} \).

Putting things together:
1. If \(r_b < r_z \), then

\[
\ell_i = 0
\]

\[
z_i = \frac{r_z - r_b}{\zeta}
\]

\[
\Delta_i = \omega_i - c_i + \frac{r_z - r_b}{\zeta}
\]

\[
V_i(\omega_i) = (r_z - r_b) \tilde{z} + (1 + r_b) (c_i + \tilde{z} - 1) + \frac{(r_z - r_b)^2}{2\zeta} + (r_b - r) (1 - \omega_i)
\]

If \(r_b \geq r \), then \(V_i^* \) is (weakly) decreasing in \(\omega_i \). In the worst-case scenario of \(\omega_i = 1 \),

\[
V_i(1) = (r_z - r_b) \tilde{z} + (1 + r_b) (c_i + \tilde{z} - 1) + \frac{(r_z - r_b)^2}{2\zeta} > 0
\]

so the bank is run-proof and thus \(\omega_i = \rho \), i.e., only depositors that really need to withdraw money out of the banking system at \(t = 1 \) do. If instead \(r_b < r \), then \(V_i^* \) is increasing in \(\omega_i \), i.e., it is less costly for the bank to cover a run by borrowing on the interbank market and repaying the interest rate \(r_b \) than it is to pay patient depositors the interest rate \(r \) if they do not run. We therefore need \(V_i(\rho) \geq 0 \), or equivalently,

\[
(1 + r_b) c_i + (1 + r_z) \tilde{z} - (1 + r) + \frac{(r_z - r_b)^2}{2\zeta} + (r - r_b) \rho \geq 0
\]

a sufficient condition for which is \(c_i + (1 + r_z) \tilde{z} \geq 1 + r \) for all \(i \). Under this condition, \(\omega_i = \rho \) regardless of the sign of \(r_b - r \). This is true for all banks so the interbank market clearing condition pins down

\[
r_b = \max \left\{ r_z - \zeta \left(\int_0^1 c_i \, di - \rho \right), 0 \right\}
\]

The case \(r_b < r_z \) is thus valid if and only if \(\int_0^1 c_i \, di > \rho \) (i.e., aggregate cash holdings are sufficient to cover all depositors that really need to withdraw at \(t = 1 \)).

2. If \(r_b \in \left(r_z, \frac{1 + r_z}{x} - 1 \right) \), then

\[
\ell_i = 0
\]

\[
z_i = 0
\]
\[\Delta_i = \omega_i - c_i \]

\[V_i(\omega_i) = (r_z - r_b) \tilde{z} + (1 + r_b) (c_i + \tilde{z} - 1) + (r_b - r) (1 - \omega_i) \]

In the worst-case scenario of \(\omega_i = 1 \),

\[V_i(1) = (r_z - r_b) \tilde{z} + (1 + r_b) (c_i + \tilde{z} - 1) \]

The bank is run-proof if and only if \(c_i \geq \overline{c}(r_b) \), where \(\overline{c}(\cdot) \) is as defined in Eq. (2). If \(c_i \geq \overline{c}(r_b) \), then \(\omega_i = \rho \) with \(\ell_i, z_i, \) and \(\Delta_i \) as above. If \(c_i < \overline{c}(r_b) \), then the bank experiences a run at \(t = 1 \) (i.e., \(\omega_i = 1 \)) and fails with \(\ell_i = 1, z_i = 0, \) and \(\Delta_i = 0 \). The interbank market clearing condition is given by Eq. (3). The equilibrium value of \(r_b \) is pinned down by Eq. (3), with \(\overline{c}(\cdot) \) is as defined in Eq. (2). More on this below.

3. If \(r_b > \frac{1 + r_z}{x} - 1 \), then

\[\ell_i = \tilde{z} \]

\[z_i = 0 \]

\[\Delta_i = \omega_i - c_i - x \tilde{z} \]

\[V_i(\omega_i) = (1 + r_b) (c_i + x \tilde{z} - 1) + (r_b - r) (1 - \omega_i) \]

In the worst-case scenario of \(\omega_i = 1 \),

\[V_i(\omega_i) = (1 + r_b) (c_i + x \tilde{z} - 1) \]

The bank is run-proof if and only if \(c_i + x \tilde{z} \geq 1 \), in which case all run-proof banks have \(\Delta_i = \rho - (c_i + x \tilde{z}) < 0 \). In words, all run-proof banks are net lenders on the interbank market, which violates the market clearing condition. Therefore, we can rule out \(r_b > \frac{1 + r_z}{x} - 1 \).

To summarize, there exists a conservative equilibrium with no runs if \(\int_0^1 c_i \, di > \rho \). If instead \(\int_0^1 c_i \, di < \rho \), then a conservative equilibrium, if it exists, involves runs on some banks. To determine existence in this case, return to Eq. (3), with \(\overline{c}(\cdot) \) is as defined in Eq. (2). This pins down the
equilibrium interbank rate \(r_b^* \) as the solution to

\[
\int_{\{c_i \geq 1 - \frac{(1 + r_z) \bar{z}}{1 + r_b}\}} (\rho - c_i) \, di = 0 \tag{A.2}
\]

Parameter conditions such that the solution to Eq. (A.2) satisfies \(r_b^* \in (r_z, \frac{1 + r_z}{b} - 1) \) are necessary and sufficient for the existence of a conservative equilibrium when \(\int_0^1 c_i \, di < \rho \). By way of example, consider \(c_i \) uniformly distributed over the unit interval. Then Eq. (A.2) implies

\[
r_b^* = \frac{(1 + r_z) \bar{z}}{2(1 - \rho)} - 1 \tag{A.3}
\]

so existence requires \(\frac{\bar{z}}{2(1 - \rho)} \in (1, \frac{1}{2}) \), where \(\rho > \frac{1}{2} = \int_0^1 c_i \, di \). ■

Proof of Proposition 2

The optimization problem of bank \(i \) in the model with loan certificates is:

\[
V_i(\omega_i) \equiv \max_{\ell_i, z_i, \Delta_i, k_i} \left\{ \begin{array}{l}
\bar{c} - (\nu_i - k_i) + (\bar{\nu} - \bar{k}) + x\ell_i - z_i + \Delta_i - \omega_i - \frac{1}{2} \zeta z_i^2 \\
+ (1 + r_z) (\bar{z} - \ell_i + z_i) - (1 + r_b) \Delta_i - (1 + r) (1 - \omega_i) - (1 + r_k) (k_i - \bar{k})
\end{array} \right\}
\]

s.t.

\[
\bar{c} - (\nu_i - k_i) + (\bar{\nu} - \bar{k}) + x\ell_i - z_i + \Delta_i \geq \omega_i
\]

\[
k_i \in [0, k_i^{\text{max}}]
\]

where \(k_i^{\text{max}} \leq \min \{ \nu_i, \hat{k}_i + \bar{k} \} \). The Lagrangian (with multipliers \(\lambda_i \geq 0, \mu_i^0 \geq 0, \) and \(\mu_i^1 \geq 0 \) on the constraints) is:

\[
\mathcal{L} = \bar{c} - (\nu_i - k_i) + (\bar{\nu} - \bar{k}) + x\ell_i - z_i + \Delta_i - \omega_i - \frac{1}{2} \zeta z_i^2
\]

\[
+ (1 + r_z) (\bar{z} - \ell_i + z_i) - (1 + r_b) \Delta_i - (1 + r) (1 - \omega_i) - (1 + r_k) (k_i - \bar{k})
\]

\[
+ \lambda_i \left[\bar{c} - (\nu_i - k_i) + (\bar{\nu} - \bar{k}) + x\ell_i - z_i + \Delta_i - \omega_i \right] + \mu_i^0 k_i + \mu_i^1 [k_i^{\text{max}} - k_i]
\]

F.O.C. wrt \(\ell_i \):

\[
\frac{\partial \mathcal{L}}{\partial \ell_i} = x (1 + \lambda_i) - (1 + r_z)
\]
F.O.C. wrt z_i:
\[
\frac{\partial L}{\partial z_i} = r_z - \lambda_i - \zeta z_i
\]

F.O.C. wrt Δ_i:
\[
\frac{\partial L}{\partial \Delta_i} = \lambda_i - r_b
\]

F.O.C. wrt k_i:
\[
\frac{\partial L}{\partial k_i} = \mu_0^i - \mu_1^i + \lambda_i - r_k
\]

We restrict attention to combinations of r_k and $\left\{ \frac{\hat{k}_i}{z_i} \right\}_{i \in [0,1]}$ that implement $\Delta_i = 0$ for all i (i.e., all interbank trade is conducted through loan certificates) in equilibrium. We then show that there exists such a combination where welfare is higher than in the decentralized equilibrium.

Notice that $\Delta_i = 0$ satisfies the F.O.C. for $\Delta_i \in \mathbb{R}$ if (and only if) $\lambda_i = r_b$. The remaining conditions are:
\[
\frac{\partial L}{\partial \ell_i} = \text{sign} \left(r_b - \left(\frac{1 + r_z}{x} - 1 \right) \right)
\]
\[
\frac{\partial L}{\partial z_i} = \frac{r_z - r_b}{\zeta} - z_i
\]
\[
\frac{\partial L}{\partial k_i} = \mu_0^i - \mu_1^i + r_b - r_k
\]

In the equilibrium we are considering, no one transacts at the interest rate r_b. However, a value of r_b must still be specified in case a bank were to deviate and use the interbank market off equilibrium, e.g., in the evaluation of run-proofness. Specifying a latent value of r_b effectively selects an equilibrium from a continuum of possible equilibria.

We set the latent interbank rate at $r_b = r_k$ and conjecture $r_k \in (r_z, \frac{1 + r_z}{x} - 1)$, in which case $\ell_i = 0$ and $z_i = 0$. Moreover, $\bar{c} - (\nu_i - k_i) + (\bar{v} - \bar{k}) + \Delta_i = \omega_i$ by complementary slackness with $\lambda_i = r_b > 0$. Bank i’s maximized value is then
\[
V_i(\omega_i) = (1 + r_z) \bar{z} + (1 + r_k)(\bar{c} - \nu_i + \bar{v}) - (1 + r) - (r_k - r) \omega_i
\]

where we recall
\[
e_i \equiv \bar{c} - \nu_i + \bar{v} \quad \text{(A.4)}
\]
The bank is run-proof if and only if $V_i(1) \geq 0$, or equivalently $c_i \geq \overline{c}(r_k)$, where $\overline{c}(\cdot)$ is as defined in Eq. (2). Thus, we focus on $\Delta_i = 0$ and

$$\overline{c} - (\nu_i - k_i) + (\overline{\sigma} - \overline{k}) = \rho$$

(A.5)

for all i such that $c_i \geq \overline{c}(r_k)$. Banks that are not run-proof fail at $t = 1$ and are precluded from interbank borrowing, i.e., they also have $\Delta_i = 0$.

With $r_b = r_k$, bank i is indifferent between any $k_i \in [0, k_i^{\text{max}}]$ so we proceed with $k_i = k_i^{\text{max}}$.\footnote{Alternatively, we could have set $r_b = r_k + \epsilon$, with $\epsilon > 0$ arbitrarily small, in which case the cutoff for run-proofness would be arbitrarily close to $\overline{c}(r_k)$ and the F.O.C. for k_i would deliver $k_i = k_i^{\text{max}}$ without indifference. Setting instead $r_b = r_k - \epsilon$ would deliver $k_i = 0$ for all i, i.e., the environment in Proposition 1 with $r_b = r_k^*$, and will be ruled out with $r_k < r_k^*$ as derived below.}

Consider $\hat{k}_i = 0$ if $c_i < \overline{c}(r_k)$ and

$$k_i^{\text{max}} = \begin{cases}
\max \{ k - c_i, 0 \} & \text{if } c_i < \overline{c}(r_k) \\
\min \{ \nu_i, \hat{k}_i + \overline{k} \} & \text{if } c_i \geq \overline{c}(r_k)
\end{cases}
$$

where we note

$$\overline{k} - c_i \equiv \nu_i - (\overline{c} + (\overline{\sigma} - \overline{k}))$$

from Eq. (A.4). In words, any bank i with $c_i < \overline{c}(r_k)$ receives no initial allocation of loan certificates and must use its available cash, $\overline{c} + (\overline{\sigma} - \overline{k})$, to cover its check-clearing obligations ν_i before it is allowed to use any recirculated loan certificates \overline{k}. Then,

$$\overline{k} \equiv \int_0^1 k_i di = \int_{\{i|c_i<\overline{c}(r_k)\}} \max \{ k - c_i, 0 \} di + \int_{\{i|c_i\geq\overline{c}(r_k)\}} \min \{ \nu_i, \hat{k}_i + \overline{k} \} di$$

(A.6)

where Eq. (A.5) implies

$$\min \{ \nu_i, \hat{k}_i + \overline{k} \} = \rho + \overline{k} - c_i$$

(A.7)

for all i such that $c_i \geq \overline{c}(r_k)$. Subbing Eq. (A.7) into (A.6) delivers

$$\int_{\{i|c_i\geq\overline{c}(r_k)\}} (\rho - c_i) di = \int_{\{i|c_i<\overline{c}(r_k)\}} \min \{ c_i, \overline{k} \} di$$

(A.8)

which pins down r_k conditional on the initial allocations \hat{k}_i for $c_i \geq \overline{c}(r_k)$.
Social welfare takes the same form as Eq. (5), but with \(r_k \) in place of \(r_b^* \), where \(r_b^* \) solves (3). The right-hand side of Eq. (A.8) is strictly positive if loan certificates are issued, i.e., if \(k > 0 \), in which case Eqs. (3) and (A.8) imply
\[
\int_{\{i|c_i \geq \bar{c}(r_k)\}} (\rho - c_i) \, di > \int_{\{i|c_i \geq \bar{c}(r_b^*)\}} (\rho - c_i) \, di
\]
(A.9)
Recall \(\bar{c}'(\cdot) > 0 \) from Eq. (2). Then, \(r_k < r_b^* \) from (A.9) and it follows immediately from Eq. (5) that welfare is higher than in the decentralized equilibrium. Also recall from Proposition 1 that \(r_b^* < \frac{1+r_z}{x} - 1 \) if \(\int_0^1 c_i \, di < \rho \), provided a conservative equilibrium exists. Thus, Eq. (A.8) delivers \(r_k < \frac{1+r_z}{x} - 1 \) for any parameters where a conservative equilibrium exists, verifying our initial conjecture about \(r_k \). Verification of \(r_k > r_z \) follows trivially from \(\int_0^1 c_i \, di < \rho \).

It only remains to find initial allocations \(\hat{k}_i \) for \(c_i \geq \bar{c}(r_k) \) such that \(k > 0 \). Use Eq. (A.4) to rewrite Eq. (A.7) as
\[
\min \{ \nu_i, \hat{k}_i + \bar{k} \} = (\rho + \bar{k} - \bar{c} - \bar{\nu}) + \nu_i
\]
(A.10)
The planner can satisfy Eq. (A.10) for all \(c_i \geq \bar{c}(r_k) \) by setting an initial allocation of loan certificates
\[
\hat{k}_i = \begin{cases}
0 & \text{if } c_i < \bar{c}(r_k) \\
\nu_i & \text{if } c_i \geq \bar{c}(r_k)
\end{cases}
\]
(A.11)
and an interest rate \(r_k \) such that
\[
\bar{k} = \bar{\nu} + \bar{c} - \rho
\]
(A.12)
Notice that \(\bar{k} > 0 \) will require \(\bar{\nu} > \rho - \bar{c} \). Subbing Eqs. (A.11) and (A.12) into the definition of \(\bar{k} \) in Eq. (A.6) delivers
\[
\int_{\{i|c_i < \bar{c}(r_k)\}} \min \{ \nu_i, \rho \} \, di = \rho - \bar{c}
\]
(A.13)
The left-hand side of Eq. (A.13) is positive, strictly increasing in \(r_k \), and ranges from 0 to at most \(\bar{\nu} \). Therefore, with \(\bar{\nu} > \rho - \bar{c} > 0 \), there is a unique solution for \(r_k \).

We have thus found a combination of \(r_k \) and \(\{\hat{k}_i\}_{i \in [0,1]} \) that implements \(\Delta_i = 0 \) for all \(i \) and achieves higher welfare than the decentralized equilibrium. By way of example, consider \(\bar{c} = \frac{1}{2} \) and
\(\nu_i \) uniformly distributed over the unit interval, with \(\rho > \frac{1}{2} \). Then, \(\overline{\nu} = \frac{1}{2} \) and Eq. (A.13) implies

\[
r_k = \begin{cases}
2\rho (1 + r_z) \overline{z} - 1 & \text{if } \rho \in \left(\frac{1}{2}, \frac{1}{\sqrt{2}} \right] \\
\frac{(1+r_z)\overline{z}}{\sqrt{1-\rho^2}} - 1 & \text{if } \rho \in \left(\frac{1}{\sqrt{2}}, 1 \right)
\end{cases}
\]

which is lower than the \(r^*_b \) in Eq. (A.3) in the \(\rho > \frac{1}{2} \) region. ■

Proof of Lemma 1

Recall Eq. (A.13), which pins down \(r_k \) under the loan certificate arrangement in Proposition 2:\(^{22}\)

\[
\int_{\{i|c_i < \overline{\tau}(r_k)\}} \min \{\nu_i, \rho\} \, di = \rho - \overline{c}
\]

Suppose the parameters are such that the solution to Eq. (A.13) satisfies \(\overline{\tau}(r_k) \leq \overline{\nu} + \overline{c} - \rho \). Then, using Eq. (A.4), the solution must also satisfy \(\tau(r_k) \leq c_i + \nu_i - \rho \) for all \(i \). This implies \(\nu_i > \rho \) for any \(i \) with \(c_i < \overline{\tau}(r_k) \), simplifying Eq. (A.13) to

\[
\int_{\{i|c_i \geq \overline{\tau}(r_k)\}} \, di = \frac{\overline{c}}{\rho}
\]

The social welfare with loan certificates (given by Eq. (5) with \(r_k \) in place of \(r^*_b \)) then simplifies to

\[
\int_0^1 c_i \, di + x\overline{z} + [f(\overline{z}) - x\overline{z}] \frac{\overline{c}}{\rho}
\]

which is exactly the welfare in Eq. (6) when \(c_i \) is determined by Eq. (A.4).

Using Eq. (A.12), \(\overline{\tau}(r_k) \leq \overline{\nu} + \overline{c} - \rho \) can also be expressed as \(\overline{\tau}(r_k) \leq \overline{k} \). Any bank \(i \) with \(c_i < \overline{\tau}(r_k) \) thus has

\[
\nu_i - (\overline{c} + (\overline{\nu} - \overline{k})) \equiv \overline{k} - c_i > 0
\]

which is to say it uses all of its cash and then some recirculated loan certificates to cover its check-clearing obligations. We call this the “unconstrained case” because check-clearing obligations are such that all of the cash holdings of failing banks can be transferred towards run-proof banks.

\(^{22}\)Recall that Eq. (A.13) is equivalent to Eq. (9) with \(c_i \) as per Eq. (A.4) and \(\overline{k} \) as per Eq. (A.12).
If instead \(r_k > \bar{\tau} + \bar{\varepsilon} - \rho \), then \(\bar{\tau}(r_k) > \bar{k} \) and any bank \(i \) with \(c_i \in (\bar{k}, \bar{\tau}(r_k)) \) has

\[
\nu_i - (\bar{\varepsilon} + (\bar{\tau} - \bar{k})) \equiv \bar{k} - c_i < 0
\]

which is to say it covers all of its check-clearing obligations with cash and still has some cash left over, i.e., it does not use any recirculated loan certificates. We call this the “constrained case” because check-clearing obligations are such that not all of the cash holdings of failing banks can be transferred towards run-proof banks.

Both sides of Eq. (A.13) are increasing in \(\rho \), with the right-hand side increasing one-for-one and the left-hand side increasing less than one-for-one. The left-hand side is also increasing in \(r_k \), thus Eq. (A.13) defines \(r_k \) increasing in \(\rho \). The unconstrained case, \(\bar{\tau}(r_k) \leq \bar{\tau} + \bar{\varepsilon} - \rho \), will therefore require \(\rho \) not too high. For the example considered at the end of the proof of Proposition 2, that is, \(\bar{\varepsilon} = \frac{1}{2} < \rho \) and \(\nu_i \) uniformly distributed over the unit interval, the unconstrained case corresponds to \(\rho \in \left(\frac{1}{2}, \frac{1}{\sqrt{2}} \right) \).

Alternatively, consider an increase in check-clearing obligations from \(\nu_i \) to \(\nu_i + \varepsilon \) at all banks \(i \), where \(\varepsilon > 0 \). From Eq. (A.4), \(c_i \) is unchanged. The left-hand side of Eq. (A.13) is then increasing in \(\varepsilon \), which means the solution \(r_k \) is decreasing in \(\varepsilon \). The condition for the unconstrained case, \(\bar{\tau}(r_k) \leq \bar{\tau} + \bar{\varepsilon} - \rho \), is therefore easier to satisfy for higher \(\varepsilon \). ■

Proof of Proposition 3

Consider the model with a decentralized interbank market and no loan certificates.

If \(r_b \in (r_z, \frac{1 + r_z}{x} - 1) \), then:

\[
V_i(\omega_i) = (r_z - r_b) \bar{z} + (1 + r_b) (c_i + \bar{z} - 1) + (r_b - r) (1 - \omega_i)
\]

from the proof of Proposition 1. This is the maximized value of bank \(i \) at \(t = 2 \) if it honors withdrawals \(\omega_i \) at \(t = 1 \).

With information suppression, \(\omega_i = \phi \) for all \(i \in [0, 1] \), where \(\phi \in [\rho, 1] \) is to be determined in equilibrium. If \(\phi \in (\rho, 1) \), then patient depositors are playing a mixed strategy where they withdraw at \(t = 1 \) with probability \(\frac{\phi - \rho}{1 - \phi} \in (0, 1) \).
Bank i survives beyond $t = 1$ if and only if $V_i(\phi) \geq 0$, or equivalently:

$$c_i \geq \bar{c}(r_b) \equiv \bar{c}(r_b) - \frac{(r_b - r)(1 - \phi)}{1 + r_b}$$

(A.14)

where $\bar{c}(\cdot)$ is as defined in Eq. (2). We can see from Eq. (A.14) that $\bar{c}(r_b) \leq \bar{c}(r_b)$ for the same interest rate r_b, with strict inequality if and only if $\phi < 1$.

Let r_b^* denote the equilibrium interbank rate with information suppression. Market clearing pins down r_b^* as the solution to:

$$\int_{\{i|c_i \geq \bar{c}(r_b^*)\}} \phi - c_i \, di = 0$$

(A.15)

Suppose there exists an equilibrium with $\phi = \rho$. Comparing Eq. (3) and (A.15), it must be the case that $\bar{c}(r_b^*) = \bar{c}(r_b^*)$, where r_b^* is the equilibrium interbank rate without information suppression. Comparing Eq. (2) and (A.14), we then conclude $\bar{c}(r_b^*) > \bar{c}(r_b^*)$ and $r_b^* > r_b^*$.

Next, define:

$$\tilde{c} \equiv \phi - x\tilde{z}$$

A sufficient condition for $\tilde{c} < \bar{c}(r_b^*)$ is:

$$\phi < 1 - \frac{(1-x)(1+r)\tilde{z}}{1+r}$$

Suppose this sufficient condition is satisfied. Then, banks with $c_i \in (\tilde{c}, \bar{c}(r_b^*))$ only have to liquidate $\ell_i = \frac{\phi - c_i}{x} \leq \tilde{z}$ to satisfy depositor withdrawals at $t = 1$. Social welfare is then:

$$\mathcal{W}_{s}^{(2)} = \int_{0}^{1} c_i \, di + x\tilde{z} + \frac{x}{\phi} \left(f(\tilde{z}) - x\tilde{z} \right) \int_{\{i|c_i \geq \bar{c}(r_b^*)\}} \phi - c_i \, di$$

$$+ \left(\frac{1-\phi}{x} \right) \left(\frac{1 + r}{1 + r_b} - 1 \right) \int_{\{i|c_i \in (\tilde{c}, \bar{c}(r_b^*))\}} \left(c_i + x\tilde{z} - \phi \right) \, di$$

positive iff $\phi < 1 - \frac{1-x}{1+r} \frac{(1+r)\tilde{z}}{1+r}$

positive by definition of \tilde{c}

If there exists an equilibrium with $\phi = \rho$, then $\mathcal{W}_{s}^{(2)}$ exceeds $\mathcal{W}_{b}^{(2)}$ as defined in Eq. (5) if $\rho < \min \left\{ 1 - \frac{x}{1+r}, 1 - \frac{(1-x)(1+r)\tilde{z}}{1+r} \right\}$. ■
Appendix B – Welfare Under Reserve Pooling

Consider \(\int_0^1 c_i di < \rho \). Some loans will have to be liquidated to repay depositors who receive liquidity shocks, so it follows immediately that \(z_i = 0 \) for all \(i \), i.e., it cannot be optimal for the planner to make additional loans. Social welfare is then

\[
\int_0^1 c_i di + x\bar{z} + [f(\bar{z}) - x\bar{z}] \times |S|
\]

where \(S \) is the set of run-proof banks. We constrain the planner to not liquidate loans among run-proof banks, as noted in Section 3.3 (more on this below). The best he can do is then

\[
|S| = \frac{\int_0^1 c_i di}{\rho}
\]

It remains to show that this is achievable given depositor behavior.

Consider the allocation \(c_i = \rho \) for all \(i \in S \) and \(c_i = 0 \) for all \(i \notin S \). As in the proof of Proposition 1, let \(\omega_i \) denote the fraction of depositors that withdraw from bank \(i \) at \(t = 1 \). Suppose \(\omega_i = \rho \) for all \(i \in S \) then consider a deviation to \(\omega_i' = 1 \) for one bank \(i' \in S \). Bank \(i' \) is run-proof, that is, this deviation can be ruled out, if

\[
(1 + r_z) (\bar{z} - \ell_{i'}) - T_{3i'} \geq 0
\]

\[
\rho + x\ell_{i'} + T_{1i'} = 1
\]

where \(T_{1i'} \) and \(T_{3i'} \) are transfers between bank \(i' \) and other banks \(i \in S \).\(^{23}\) Transfers must satisfy

\[
T_{1i'} + \frac{\int_0^1 c_i di}{\rho} \times T_{1i} = 0
\]

\[
T_{3i'} + \frac{\int_0^1 c_i di}{\rho} \times T_{3i} = 0
\]

with

\[
(1 + r_z) (\bar{z} - \ell_{i}) - T_{3i} - (1 + r) (1 - \rho) \geq 0
\]

\(^{23}\)These transfers (and any liquidations) are all off equilibrium if the deviation is ultimately ruled out.
\[x\ell_i + T_{1i} = 0 \]

The program reduces to finding values of \(\ell_{i'} \) and \(T_{3i'} \) that satisfy

\[T_{3i'} \leq (1 + r_z) (\tilde{z} - \ell_{i'}) \]
\[T_{3i'} \geq [(1 + r) (1 - \rho) - (1 + r_z) \tilde{z}] \frac{\int_0^1 c_{i} di}{\rho} + \frac{1 + r_z}{x} (1 - \rho - x\ell_{i'}) \]
\[\ell_{i'} \leq \frac{1 - \rho}{x} \]
\[\ell_{i'} \geq \frac{1}{x} \left(1 - \rho - x\tilde{z} \right) \frac{\int_0^1 c_{i} di}{\rho} \]

The first inequality is the solvency condition for \(i' \) and the second inequality is the solvency condition for each \(i \in S \) (where \(i \neq i' \)) after the final transfers. The third and fourth inequalities are the conditions \(\ell_i \geq 0 \) and \(\ell_i \leq \tilde{z} \), respectively.

The bounds on \(T_{3i'} \) define a non-empty set if and only if

\[x\tilde{z} \geq \left(1 - \frac{1 - x(1+r)}{1 + \frac{\rho}{\int_0^1 c_{i} di}} \right) (1 - \rho) \] (B.1)

which is also sufficient for the bounds on \(\ell_{i'} \) to define a non-empty set with \(\ell_{i'} \in [0, \tilde{z}] \). Thus, for parameters satisfying (B.1), which is a weaker condition than \(\rho \geq 1 - x\tilde{z} \), there is a reserve pooling arrangement that achieves the welfare in Eq. (6).

Now return to the restriction that loans are not liquidated among run-proof banks in Eq. (6). We derive a sufficient condition for this to be efficient. Consider an allocation \(c_i = \rho - x\ell \) for all \(i \in \tilde{S} \) and \(c_i = 0 \) for all \(i \notin \tilde{S} \), where \(\tilde{S} \subset [0, 1] \) and \(|\tilde{S}| = \frac{\int_0^1 c_{i} di}{\rho - x\ell} \) with \(\ell \geq 0 \). Social welfare is at most

\[W = \int_0^1 c_{i} di + x\tilde{z} + [f(\tilde{z} - \ell) - x(\tilde{z} - \ell)] \frac{\int_0^1 c_{i} di}{\rho - x\ell} \]

where

\[\frac{\partial W}{\partial \ell} = \left(\frac{x}{\rho - x\ell} [f(\tilde{z} - \ell) - x(\tilde{z} - \ell)] - [f'(\tilde{z} - \ell) - x] \right) \frac{\int_0^1 c_{i} di}{\rho - x\ell} \]
and
\[\frac{\partial^2 W}{\partial \ell^2} = 2x \frac{\partial W}{\rho - x\ell} + f''(\tilde{z} - \ell) \int_0^1 c_i d_i \frac{\rho}{\rho - x\ell} \]

Therefore, \(\ell = 0 \) is indeed optimal if \(f''(\cdot) \leq 0 \) and \(\frac{\partial W}{\partial \ell} \big|_{\ell=0} \leq 0 \), i.e.,

\[f(\tilde{z}) \leq x\tilde{z} + \rho \left(\frac{f'(\tilde{z})}{x} - 1 \right) \quad (B.2) \]

For any parameterization satisfying both (B.1) and (B.2), the welfare in Eq. (6) is also the second-best level of welfare.