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Abstract

This paper evaluates the efficiency of market location choices for electric vehicle (EV) charg-

ing stations. The charging industry is central to electrifying the transportation sector and

receives billions of dollars in government support. However, little is known about how the

charging industry is organized and how government funds can improve the efficiency of this

market. We use novel data about EV charging station utilization in the U.S. to test for the

presence of entry complementarities, a form of positive spillovers, across charging locations. We

develop a measure of how much firms in the charging industry internalize their positive spillovers

on other locations. Our paper provides a micro-foundation for EV charging stations subsidy

policies with location targeting or spatial restrictions.

1 Introduction

Climate change is one of the most important and complex challenges facing the world, and the

transportation sector is one of the largest contributors to climate-changing greenhouse gases. A

transition to a low-carbon transportation sector is a high-priority policy objective in many countries.

The mass adoption of electric vehicles (EVs) remains a promising path for dramatically reducing

greenhouse gas emissions from the transportation sector. The electric share of new vehicle sales

relative to conventional gasoline vehicles is growing rapidly. The growth of the EV market depends

on consumer valuation of features of EVs and non-EVs, including purchase price, fuel costs, refueling

time, vehicle acceleration, and, importantly, charging infrastructure.
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thank Lucas Davis, Shanjun Li, James Stock, and Xibo Wan for helpful discussions and suggestions. Michel Gutmann
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The availability of refueling infrastructure is crucial for any alternative fuel transportation

technology to successfully compete against incumbent gasoline. However, in the EV market, the

charging infrastructure industry is still heavily supported by subsidies from government. The Inter-

national Energy Agency estimates that investment in public EV charging infrastructure increased

by more than 20% in 2021 and is expected to reach $10 billion in 2022 (International Energy Agency,

2022). Furthermore, in the US, the 2021 Infrastructure Investment and Jobs Act directs $7.5 billion

toward EV charging infrastructure, and a subsequent memo clarifies that $5 billion will be devoted

to building fast charging stations at most 50 miles apart along U.S. highways. Governments around

the world have established similar measures and policies, recognizing the essential role charging in-

frastructure plays in spurring EV adoption. In addition to generous support from governments, the

EV charging industry greatly relies on support from the automobile manufacturers. This contrasts

with the gasoline transportation system, where the firms that produce vehicles are separate from

the firms that produce and distribute the fuel for those vehicles. The accelerated rollout of EV

charging stations is crucial to a variety of decision makers, yet the issue remains largely understud-

ied – providing a unique opportunity for this research project to address unresolved questions in

the economics literature and inform current and future policy debates. While this research project

focuses on EVs and refueling systems for EVs, the modeling framework developed in this project

and the insights learned about the EV market can contribute to the wider understanding of how

to support the growth of other alternative fuel transportation systems.

For these reasons, it is critical to understand how government subsidies aiming to support the

EV infrastructure can be efficiently allocated and how the EV charging industry – the provider of

‘fuel’ for EVs – can become profitable earlier and outgrow reliance on subsidies from government

and automobile manufacturers. Prior work (see for example Li et al. (2017) and Springel (2021))

has studied the indirect network effects in this two-sided market and found that supporting charging

infrastructure would spur EV demand. Prior work gives little guidance about the efficacy of differ-

entiated subsidies, such as based on station location, charging speed or other characteristics, while

many observed policies and subsidies restrict eligibility by station characteristics. For example,

the U.S. IIJA primarily supports fast charging stations located near highways and spaced every 50

miles. European regulation requires charging stations every 60 kilometers offering at least 150kw

of power.1 The efficiency of this type of policy crucially relies on the existence of frictions in where

the market locates charging stations, which is a different type of market failure from environmental

1Council of the EU Press Release, 2023 July 25, Stable URL.
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externalities and a specific form of indirect network effects from two-sided markets. If the market

generates ‘holes’ in charging networks, then the every-50-mile subsidy could be efficient. Otherwise,

a uniform subsidy over locations would be sufficient to internalize any environmental advantages

of EVs. Similarly, to the best of our knowledge, the economics literature has not yet analyzed

in detail the business decisions of the EV charging industry such as pricing and coordination of

station entry into networks. Therefore, in this project, we seek to answer the following research

question: Would it be more efficient for governments to introduce geographically targeted station

subsidies instead of uniform subsidies that do not restrict eligibility by location or other station

characteristics?

We have compiled a panel dataset of travel patterns, vehicle market outcomes and EV charging

industry outcomes in the US from 2011 to the present. In particular, we obtained a sample of 45

million cellphone users’ location data to observe travel patterns by distance traveled, time spent and

trip purpose. We combine this data with detailed vehicle registration data which includes vehicle

identifiers, quantities sold and car attributes. Finally, a key data component to analyzing the EV

charging industry and the role of related government incentives, is detailed information on the EV

charging network and its evolution over time. In addition to historical data on charging station

entry, location, network, connector types and counts, we acquired utilization at finely disaggregated

geographic and time levels, as well as charging fees and customer reviews allowing us to map out

pricing information and frequency of station visits. Using this uniquely rich data, we are able to

analyze entry and coordination decisions of EV charging stations.

In this paper, we first show empirical evidence of complementary spillovers across charging sta-

tions. This is necessary step to determine whether government subsidies should be distributed uni-

formly or focus on highway corridors since the presence of spillover would necessitate targeted policy

instruments. We have designed the following empirical test for the presence of entry spillovers. We

investigate the impact of entry events on incumbent charging station utilization located along the

same route. Using the data about opening dates, locations, and our measure of demand at indi-

vidual EV charging locations, we can test whether the entry of a new charging location leads to

an increase in demand at incumbent locations that are on the same routes between major urban

population centers. The intuition for this hypothesis is that newly entering charging stations may

fill up certain ‘holes’ in the charging network, making possible EV trips that were not viable or

convenient. However, there will also be a business-stealing effect from competitor entry, especially

if a newly entering station is built near existing charging locations. Thus, whether demand at an
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incumbent station increases or decreases after a new station enters depends on the relative magni-

tudes of these two effects: positive complementary spillovers and negative business-stealing effects.

In particular, we link incumbents to entrants by whether they are on the same route between any

pair of large cities (Census Urban Areas) in the U.S. When the stations are at most d miles apart,

we consider a route connected at d miles. For example, the IIJA implementation plan is to connect

routes at 50 miles. We use the connection event of the route in event studies for a range of distances

from 30 to 150 miles and analyze each charging standard separately.

We find that Tesla charging stations on a route receive more charging demand (about .5 more

visits per station and month, on average) when routes become connected at 70 to 120 miles and

do not find effects of connection events at 30 to 50 miles or 150 miles. In contrast, EVs on

the Chademo and Combo standards have higher variability in range and include many shorter-

range EV models. On the other two charging standards, we find that incumbent charging demand

increases when routes become connected at 30 to 50 miles and again at 150 miles, but we find

no discernible effects for distances between 70 miles and 120 miles. These findings are consistent

with drivers charging at stations spaced appropriately apart for the range of EV that they have.

Our results suggest that charging stations are complements for EV drivers when the stations are

located appropriate distances apart from each other or in specific spatial configurations. The first

condition for spatially targeted charging station subsidies to be efficient, the existence of positive

spillovers, is thus satisfied.

Lastly, we investigate how much of these entry spillovers are already internalized in the entry

decisions of charging stations and charging networks. We find substantial heterogeneity in how

networks prioritize network contributions and site-specific benefits. Furthermore, our results sug-

gest that different charging networks may be prioritizing serving EVs with certain driving ranges.

Therefore, our findings indicate that a uniform subsidy is unlikely to efficiently achieve any social

planner objective with a focus on spatial allocation of stations.

Our paper contributes to several strands in the economic literature. First and most importantly,

a recent literature in economics examines the EV market and government policy focusing on the role

of charging networks (Springel, 2021; Li, 2019; Li et al., 2017), energy and emissions (Gillingham

et al., 2021; Holland et al., 2022, 2016), and driver behavior (Sinyashin, 2021; Dorsey et al., 2022;

Houde, 2012). The contribution of our paper to this growing body of work on EVs is twofold. First,

we examine whether subsidies aimed at promoting the expansion of the public charging station

network should be targeted based on station attributes. Second, to the best of our knowledge, we
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are the first to be able to obtain and take advantage of charging station utilization, pricing and

customer check-in data.

This analysis also relates to the large body of work studying firm entry that builds on game-

theoretic models of static entry first developed by Bresnahan and Reiss (1990, 1991). Recent papers

in this literature have added complexities such as endogenizing product-type firm decisions (Mazzeo,

2002; Seim, 2006), relaxing the isolated-markets assumptions (Jia, 2008; Holmes, 2011; Nishida,

2015), and examining the competitive effects of entry (Whinston and Collins, 1992; Goolsbee and

Syverson, 2008; Arcidiacono et al., 2020). Our work contributes to this literature by testing for

the presence of positive entry spillovers for products (charging stations) at different locations and

assessing the social efficiency of the market provision of product locations.

Finally, our work contributes to the broader literature on game theory and assortment planning

that studies firm decisions on the choice of product selection. In particular, Cachon and Kök (2007)

study how the presence of consumers who purchase merchandise from multiple categories might

affect the firm’s profit maximization problem and variety choice. They compare a decentralized

approach in which the focus is on maximizing profits within each merchandise category to a cen-

tralized approach that accounts for interactions between different categories that exist due to the

presence of consumers who desire to purchase from various categories. Our paper contributes to

this literature by examining whether charging networks should follow a decentralized or centralized

approach regarding the expansion of their charging stations.

2 Industry Background

2.1 EV Market and Recharging

The EV market has grown dramatically since their modern revival. After Tesla first unveiled the

Roadster, a high-priced electric sportscar, at an auto show in 2006, Nissan released the LEAF as

a more mass-market option in December 2010. Now, nearly every carmaker offers EVs in their

product line. EV market shares in the 4th quarter of 2022 in the U.S. reached nearly 6%. Despite

the recent dramatic growth in EV market shares, there is a long way to go to reach the stated

policy targets of 50% and two-thirds of new sales being electric by 2030 and 2032 in the U.S. Any

vehicle that can be recharged by plugging in is called an EV. EVs may be fully electric, called

battery-electric vehicles (BEV), or they may include a gasoline engine, which makes them plug-

in hybrids (PHEVs). EVs share many characteristics with gasoline vehicles, and consumers who

consider EVs may choose based on their priorities for certain characteristics such as power, body
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style, and fuel efficiency. In addition to the characteristics that are common to all cars, buyers of

EVs may also pay attention to some characteristics that are particularly important to EVs, such

as battery capacity, battery range, and charging network size and location.

2.2 Infrastructure to Charge EVs

The analog of gas stations for gasoline-powered cars is charging stations for EVs. Options for

recharging EVs range in speeds (see Appendix Table 1). Level 1 charging is with any ordinary

electrical outlet and is the slowest option. A full charge at Level 1 may take overnight or even

multiple days. Level 2 charging is at a power level similar to a home oven or electric dryer.

Residential charging stations, as well as most charging stations offered by employers and retail

establishments are Level 2. Level 2 charging can take 1 to 2 hours for PHEVs and 4 to 10 hours for

BEVs. The fastest charging speed is called Level 3. Although the slowest Level 3 charging station

may be as low as 50kW of power output, the fastest Level 3 charging stations range from 150kW

to as much as 350kW with some models allowing up to 450kW. Level 3 stations tend to be sited

near highways, where drivers need recharging in a few minutes before getting back on their way.

Three different charging standards for fast (Level 3 or DC) charging are present in the U.S.

EV industry: Tesla, Chademo, and Combo. Tesla developed its own charging standard and also

produces EVs. Chademo is a charging standard developed by a consortium of automakers primarily

from Asia and led by Nissan. Combo is developed by the Society of Automotive Engineers and is

short for “SAE J1772 CCS Type 1.” Most European and American automakers now use Combo,

as well as any carmakers that have switched from Chademo to Combo (such as Kia). Tesla has

developed two one-way adapters for their drivers to access the other two networks. The Tesla-

to-Chademo adapter became available in the U.S. market in 2015, and a Tesla-to-Combo adapter

became available in 2021. It is currently not possible for EVs on other standards to use Tesla

charging stations, though Tesla is running some pilot programs to open up their charging stations

to other vehicle brands and standards. We design placebo tests around the existence of incompatible

standards. For example, an incumbent of one standard should not be affected by changes on other

standards’ networks in the short run, before consumers have had time to react in their car purchases.

2.3 EV Charging Industry

We define charging stations as a collection of charging equipment located at a site host. Unlike

most gas stations that have their own polygon and their own street address, charging stations

are considered points and they do not generally have their own street address. Instead, they are
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usually linked to the site host’s street address whose parking space is being offered to host the

station. Each charging station location may have one or more EV charging posts which can house

multiple connectors (also called plugs) on the same and/or different charging standards.

A charging station may be owned by either a site host or a charging network. Site hosts vary in

their primary purpose or business and include a variety of establishments such as shopping malls,

stores, parking lots and garages, restaurants, hotels, etc.

Figure 1: Primary Purpose/Business of Charging Site Hosts for Level 3 Chargers (2021/11-2023/07)
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Notes: This figure plots the primary purpose or business of level 3 charging site hosts in descending order
of their share out of the total count of Level 3 stations from November 2021 to July 2023, obtained from a
crowd-sourced 3rd-party app data. The figure is restricted to site host types with shares higher than 1%.

Figure 1 shows how charging site hosts for Level 3 chargers vary in their main business activity.

Site hosts typically own a single charging station (or one per site if the site host is a chain of

businesses). Charging networks may own and operate a group of charging stations. Charging

networks in the U.S. differ in their build-out strategies (see Figure 2 for examples) and these

differences seem to relate to how ownership is structured within the network and/or the business

model that the network has chosen to adopt. Some charging networks like ChargePoint do not own

charging stations or monetize driver utilization of stations. On the other end of the spectrum there

are charging networks such as Electrify America which pays for all costs related to the installation

of charging stations belonging to its network. There are many hybrid models that exist between

these two business models such as eVgo’s network which has a mixed ownership (some stations are
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site-host owned while some are owned by eVgo) on its network.

Figure 2: Examples of U.S. Charging Networks in 2023/07; AFDC
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Notes: This figure plots Level 3 stations of different charging networks in the U.S. from July 2023, obtained
from AFDC.

Charging stations may be non-networked or network affiliated. Non-networked stations provide

basic charging functionality without advanced communication, utilization monitoring, or payment

capabilities. Non-networked stations are not connected to the internet, while network-affiliated

stations are connected to the internet. These advanced communication capabilities allow networked

stations to communicate location, access information and pricing directly with EV drivers through

the charging network’s driver map or app, monitor utilization and share real-time updates on

availability of charging services with drivers, and facilitate payment processing.2 Site-host owned

stations may or may not be affiliated with a charging network. Charging network owned stations

are naturally affiliated with the network that owns and operates them.

The costs, benefits, and flows of payments differ by owner type, and some networks also offer

hybrid models where costs and charging revenue are shared. If a station is owned by the site host,

then the site host pays a recurring network fee. The network fee covers the benefit of being listed

in the network’s driver maps and a bundle of software and business services. If a station is owned

by the network, then the network pays the site host a recurring rent or lease payment for the space

2See “Charging Infrastructure Procurement and Installation” Alternative Fuels Data Center December 16, 2023,
URL.
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occupied by the charging equipment. The owner of the station, either the site host of the network,

pays the upfront fixed costs for equipment, permitting, and installation as well as the recurring costs

of owning and operating the station such as maintenance and electricity. The National Renewable

Energy Laboratory (NREL) and Idaho National Laboratory (INL) estimates that equipment costs

for Level 3 chargers can range between $38,000 and $90,000 per connector while installation costs

per Level 3 charger vary from $20,000 to $60,000 (Borlaug et al., 2020). The owner of the station

sets pricing for charging at their station and receives any charging revenue earned from driver visits.

The site host also earns any ancillary benefits such as green glow, reputation gains, and additional

foot traffic and sales.

3 Data

This paper builds on three main categories of data: travel patterns, vehicle market outcomes, and

EV charging industry outcomes.

The data on travel patterns comes from three main sources. First, the National Household

Travel Survey (NHTS) provides information on trip distances, purposes, modes, and vehicle port-

folios for a representative sample of households in the United States as shown in Appendix Tables

2 through 5. However, the NHTS is only statistically representative at the national level and may

be too noisy or sparse at more disaggregated levels such as city and county. The second source is

county-to-county commuting flows from the American Community Survey (ACS). Both the NHTS

and the ACS are publicly available and easily accessible. This research focuses on the importance

of availability of charging locations, so we ideally want as disaggregated data as possible. The third

source of data on travel patterns is from SafeGraph, which collects location information from a

sample of 45 million cellphone users. The cellphone location data have been matched to business

addresses, providing us with a distribution of commercial locations visited by users in each census

block group. Figure 3 illustrates the SafeGraph Patterns data by showing gas stations visited by

people who live in Kansas City, Missouri. Gas stations with more frequent visits have darker shad-

ing. The SafeGraph Patterns data track visits to other business types besides gas stations. These

data have been shown to be representative of the US population, and only a handful of census block

groups are not represented among the users.

Information on vehicle market outcomes include quantities sold of each vehicle model, vehicle

characteristics, prices, and buyer demographics. A vehicle model is defined by make, model, model

year, fuel type, and trim. We have purchased data from Experian Automotive on the universe of
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Figure 3: Visits to Gas Stations by People Who Live in KC, MO, Aug 2020; SafeGraph

vehicle registration counts in the US by make, model, model year, and trim, at finely disaggregated

geographic (census tract) and time (month) levels, from 2012 to 2023. These data on vehicle

quantities are very detailed in the vehicle, geography, and time dimensions, which will allow us to

merge flexibly with other datasets. Detailed vehicle characteristics and list price data have been

purchased from DataOne, such as engine power, fuel efficiency, number of doors, and manufacturer

suggested retail price. We supplement the DataOne characteristics data with publicly available

information from the US EPA about EV battery capacity. Transaction-level micro-data for a

nationally representative sample of buyers in each year is available from the InMoment (formerly

MaritzCX) yearly New Vehicle Customer Survey (NVCS), which we have acquired for the years

2010 to 2020. Each year, InMoment collects survey responses from about 200,000 households who

purchased a new vehicle in each year, or 1% of vehicle buyers. The InMoment NVCS allows us

to observe transacted price and demographics of the buyer, including household income, age of

household head, zip code of residence, and an urbanization indicator.

The third component of our dataset is about charging stations. Data on GPS coordinates

defining station location, entry date, connector count and types, network affiliation, and amenities

are made publicly available by the U.S. Department of Energy’s Alternative Fuels Data Center

(AFDC) on a daily basis. Since historical data is not stored by AFDC, we have collected and

archived these daily files regularly from 2014 to the present. To capture potential entry locations

for charging stations, we collected data on highway exits and rest areas from OpenStreetMap and

points of interest (POIs) from SafeGraph.
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Information on EV charging demand is the most critical as well as novel part of our dataset.

The most ideal dataset would include the number of charging sessions and kilowatt-hours (kWh)

of electricity delivered for each charging station. Instead, we have access to two coarser measures

of charging demand. First, we observe charging station utilization from 2015 and 2016 for the

entire US and several networks, and then from November 2021 to the present in California for one

of the largest charging networks. The utilization data provides information at 30-minute intervals

regarding whether a charging station was in-use, available, or out of service.

Figure 4: Utilization Profile Averaged over Days
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Notes: This figure plots the charging profile of Level 3 stations for one network nationwide between November
2022 and July 2023. The horizontal axis begins at midnight and increments in half-hours. Each point
represents the percentage of stations that are in-use at a given time, averaged over days observed between
November 2022 and July 2023.

Figure 4 shows the utilization profile throughout the day for one network nationwide, averaged

over days observed between November 2022 and July 2023. Our paper focuses on public charging

stations. The utilization profile rises beginning in the morning, peaks at mid-day, and falls to the

lowest point overnight. Private residential charging stations may show a different charging profile

throughout the day. In each month between November 2021 and July 2023, less than 1% of fast

charging stations experienced utilization at full capacity at least in one 30-minute interval. Figure

5 plots nationwide utilization profiles and shares of free and paid stations for the same network.

Subfigure (a) demonstrates how charging profile of free versus paid fast public charging stations

differ throughout the day, averaged over days observed between November 2022 and July 2023. Free

stations are always used more than stations accessible for a fee and this difference is the largest at

mid-day when utilization peaks. Subfigure (b) indicates that the share of free fast charging stations
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is declining over time on this charging network.

Figure 5: Free vs. Paid Charging Stations (Level 3)

(a) Utilization Profile
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Notes: This figure shows the utilization rates and share of free and paid fast charging stations for one
network nationwide between November 2022 and July 2023. Subfigure (a) plots charging profiles for free
and paid sites. The horizontal axis begins at midnight and increments in half-hours. Each point represents
the percentage of stations that are in-use at a given time, averaged over days observed between November
2022 and July 2023. Subfigure (b) shows how during the same period the share of free fast charging stations
evolved for this particular network.

Second, we have around 2.4 million check-ins and reviews from a crowd-sourced 3rd-party

website and app from 2011 to the present. Each check-in contains a user identifier, station identifier,

and timestamp, which can be aggregated to a check-in count at each station in each time period as a

second measure of charging demand. Some check-ins also include the EV model of the driver, which

we use to understand travel distances between charging events. The correlation between our two

charging demand measures – utilization and number of check-ins – is 0.27 for cumulative check-in

counts and 0.22 for new monthly check-in counts at the census tract level. These check-in data also

allow us to link check-ins across individual users and examine how users change their visited stations

over time in response to network expansion. We have also collected detailed station characteristics

that may be relevant to drivers, such as charging fees, nearby amenities, and customer ratings and

reviews.

4 Impact of Entry that Completes Electrification of Routes

Figure 6 provides intuition for our hypothesis of how individual charging stations may exert positive

spillovers on other charging stations. Between the two cities s and t, three incumbent charging

stations are represented by the full green circles. A potential fourth entrant could generate positive
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spillovers in charging demand for incumbents by connecting the route s− t for a given EV range.

We use the 493 Adjusted Urbanized Areas (AUA) defined by the U.S. Census (shown in Appendix

Figure 1) as the set of potential origin and destination cities and query the geographic coordinates

of the driven route between each pair of cities from a routing software package. We link Level

3 charging stations in our dataset with the set of routes connecting AUAs; a charging station is

considered “on” a route if it is within 0.5 miles from the road or highway.

Figure 6: Illustration of how stations may exert positive spillovers on other stations

Notes: This figure depicts two cities, s and t, with three charging stations represented by the open circles.
For a given EV with range long enough to travel between each adjacent pair of stations but not much beyond,
the route s− t is not connected. A possible fourth entrant could connect the route s− t and may generate
positive spillovers in charging demand on the incumbent charging stations.

4.1 Binary Measure of Route Electrification

We first investigate the impact of entrants on incumbents along shared routes using data on check-

ins and defining route electrification with a binary measure that takes on the value of 1 when a

route is connected for a given distance with the following estimating equation:

yrt = β0 + βdConnected
d
rt + γr + γt + urt, (1)

where r denotes a route and yrt is average utilization of incumbents on route r. Route fixed effects γr

control for unobservables at the route level that are fixed over time, such as the overall importance

of a certain route or the “greenness” of people who live in cities that are connected by route r. Time

(month) fixed effects γt control for unobservables that are fixed for a given time period, such as

seasonal variation in demand for road trips. The variable Connectedd is 0 if the maximum distance

from one station to the next along a route exceeds d, and 1 if there is a charging station every d

miles along the route. The interpretation of βd is the impact of a route becoming connected at

distance d on incumbent utilization. The identifying assumption for the causal interpretation of βd

is that unobserved demand shocks that motivate entry are uncorrelated with whether and when

the route becomes connected. For example, charging stations may enter because they observe or

expect (unobserved to the researchers) rising demand for charging. Our identifying assumption and

interpretation of βd is that any discontinuous increase in utilization for incumbents is due to the
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connection event, and demand would not have increased if not for the last entrant who connects

the route.

We estimate an event study specification of Equation (1) for routes becoming connected, for a range

of distances d:

yrt = β0 +

J∑
j=1

βj(Lead j)d +

K∑
k=0

βk(Lag k)d + γr + γt + urt, (2)

where yrt is the average number of check-ins at stations on route r in period t, and βj is the impact

of the route connection event on the average number of driver check-ins at incumbent stations

j months before a route becomes connected at d miles. Similarly, βk is the impact of the route

connection event on the average number of driver check-ins at incumbent stations k months after

a route becomes connected at d miles.

At what driving distances might we expect to see effects of entry on incumbent charging demand

along the same route? The range of an EV is an upper bound on how far a driver can go between

recharges. It is an upper bound because EV drivers are generally advised to charge their EVs before

completely depleting the battery, but you cannot go beyond the capacity of the car’s battery. In

fact, dealerships often recommend to EV owners to keep their car’s battery between 30% and 80%.

Figure 7: Electric range of EVs that charge at Level 3 stations, 2011-2022
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Notes: This figure plots the distribution of electric range of EVs that charge at fast (or Level 3) charging
stations between 2011 and 2022 in our check-ins data obtained from a 3rd party app.

Figure 7 plots a histogram of the electric range of EVs that charge at Level 3 (fast) charging stations

in our check-ins dataset from 2011 to 2022. A significant share of cars charging at these stations

have electric range of 200 to 300 miles. However, car ranges differ by charging standard so we might

expect to see effects at different distances for different standards. Figure 8 shows the distribution of

electric ranges of vehicles charging at stations of the three fast charging standards, Tesla, Chademo,
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and Combo, respectively. Subfigure (a) shows that most EVs that charge at Tesla Superchargers

have a long electric range around 300 miles. However, as illustrated in Subfigures (b) and (c), the

electric ranges of cars charging at stations with the Chademo and Combo standards have more of a

bimodal distribution. While a significant portion of these vehicles have an electric range somewhere

between 200 and 300 miles, there is a second smaller group of vehicles with electric range around

100 miles. Figure 8 suggests that while we might expect to see positive spillovers from entry only

at longer distances for Tesla stations, for the Chademo and Combo standards we might expect to

see such effects also at shorter traveling distances.

Figure 8: Electric Range of EVs Charging at Fast Charging Stations, by Charging Standard

(a) Tesla
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(b) Chademo
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Notes: This figure plots the distribution of electric range of EVs that charge at fast (or Level 3) charging
stations between 2011 and 2022 by charging standard.

Figures 9 – 11 present event study graphs for each of the three charging standards, Tesla, Chademo,

and Combo, respectively, using data on station check-in counts across the U.S. from 2011 to 2022.
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Figure 9: Event studies, Station check-ins, Tesla, Monthly
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Figure 9 presents event study graphs for the Tesla network. The title of each subfigure is the

distance of the route connection event. Subfigures (a) and (b) show check-in counts staying fairly

level after a route becomes connected at 30 or 50 miles. Subfigures (c) – (e) show that when routes

become connected at 70 to 120 miles, average check-in counts at incumbent stations increase.

Subfigure (f) for 150 miles shows ambiguous impacts of route connection on check-in counts. The

subfigures together suggest that stations 70 to 120 miles apart generate additional charging demand

at other stations on a route by about 0.5 visits per station and month, on average, while stations

too far apart (150 miles apart) or too close (50 or 30 miles apart) do not generate additional

charging demand. All of Tesla’s vehicles are long-range EVs (200 to 400 miles of range) and Figure

8 indicates that the majority of EVs charging at Tesla stations have an electric range around 300

miles. The patterns from the event study are consistent with long-range EV drivers stopping every

70 to 120 miles for recharging on highways.

EVs with the other two charging standards, Chademo and Combo, are not all long-range as

demonstrated by Figure 8, and the event study results reflect the different electric ranges of the

vehicles. For example, the first-generation Nissan LEAF, which debuted in 2010 on the Chademo

Standard, had 80 miles of range. A more recent example, the 2023 electric Mini Cooper, has 110

miles of range and is on the Combo standard. Figures 10 and 11 are similar, showing in Subfigure

(b) across both figures that check-in counts rise after a route connection event at 50 miles, while

the other panels show little effect of the connection event for other distances, until 150 miles where

again the results indicate a rise in station visits. Together, the subfigures suggest stations every 30

to 50 miles apart as well as 150 miles apart generate additional charging demand at other stations

along the same route by about 0.5 visits per station and month, on average, and 70 miles to 120

miles would not generate additional charging demand at incumbent stations. These results are

consistent with some EVs charging at stations with Chademo and Combo standards having a lower

electric range on average and another of group of longer-range vehicles using the same stations.

In our first test for entry spillovers we defined route connectedness using a simple binary measure

that takes on the value of 1 when a route became electrified for a given traveling distance. However,

such a measure treats any additional stations placed along a route that is already connected as if

they have no value for EV drivers. Furthermore, a simple binary measure cannot take into account

the spatial arrangement of stations along a route beyond a route becoming electrified. Accordingly,

next we develop a continuous measure that accounts for not only whether a route is electrified, but

also the idea that additional charging stations may reduce congestion and ease range anxiety.
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Figure 10: Event studies, Station check-ins, Chademo, Monthly

(a) 30 miles

−
1

0
1

2
3

−10 −5 0 5 10

Time

Point Estimate 95% CI

(b) 50 miles

−
.5

0
.5

1

−10 −5 0 5 10

Time

Point Estimate 95% CI

(c) 70 miles

−
.4

−
.2

0
.2

.4

−10 −5 0 5 10

Time

Point Estimate 95% CI

(d) 100 miles

−
.2

−
.1

0
.1

.2

−10 −5 0 5 10

Time

Point Estimate 95% CI

(e) 120 miles

−
.4

−
.2

0
.2

.4

−10 −5 0 5 10

Time

Point Estimate 95% CI

(f) 150 miles

−
.2

−
.1

0
.1

.2
.3

−10 −5 0 5 10

Time

Point Estimate 95% CI

18



Figure 11: Event studies, Station check-ins, Combo, Monthly
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4.2 Continuous Measure of Route Electrification

In what follows, we first develop a micro-founded model of EV suitability of routes. Then, using

this modeling framework, we derive a continuous measure for routes which accounts for route

traversability, the total number of chargers on a route, and the degree of dispersion of connectors

on a route.

Model Setup. We define a route, r, as a segment between a and b, that is r = [a, b], where a, b ∈ R.

Assume that there are E entry locations along a route, each entry location is indexed by e and

each entry point has a location le which is a point on the segment (le ∈ r). Assume that each entry

location e has ce chargers, where ce ∈ N. As such, entry locations may or may not have installed

chargers. Suppose that EVs have mean battery range b. Then, an entry location e is said to be in

range of a vehicle at point x ∈ r if its range exceeds the distance from the entry point’s location or

|x− le| ≤ b. It follows that a charger is then in range of a vehicle at point x ∈ r if the entry point

is within the range of the vehicle and it has a charger or ∃e ∈ E, |x− le| <= b and ce > 0.

Figure 12: Illustration of routes that are traversable vs. not traversable

(a) Non-traversable Route for d = 75mi

s t
10mi 20mi 20mi 65mi

No ChargerCharger

(b) Traversable Route for d = 75mi

s t
Charger

10mi 20mi 20mi 65mi

Traversability. Figure 12 provides intuition for our first objective for the continuous measure of

route electrification which is to account for whether a route is traversable or not for a given driving

distance. Subfigure (a) illustrates a route that is not traversable at d = 75 miles since the maximum

distance between two adjacent incumbent stations along the route between cities s and t is longer

than 75 miles. Subfigure (b) shows the same route between cities s and t after a new station enters

at the potential entry location indicated by the empty green circle in subfigure (a), resulting in

the maximum distance between two adjacent stations being reduced to less than 75 miles, making

the route now traversable for d = 75. The continuous measure accounts for the probability that a

route is traversable for a given driving distance.
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Assume that there are EC entry locations with at least one charger on a given route. Let us

define the route start point charger as ec = 0 and the end point charger as ec = EC . Suppose

an EV starts traveling the route with a full battery capacity. Assume the vehicle were to stop at

each ec to recharge the car’s battery, resulting in a range bec that is random and is distributed

according to F , i.e., bec ∼ F . At each stop for recharge, the vehicle gets a shock to its range

which is i.i.d. This assumption reflects the impact of factors such as temperature, altitude, driving

speed, traffic conditions, or simply a partial recharge. For example, extremely cold temperatures

can reduce the EV battery’s output. Similarly, EVs may require more energy to travel at higher

altitudes, decreasing the vehicle’s overall electric range. Under these assumptions, the probability

that a route is traversable without any range issues is given by
EC−1∏
ec

P(lec+1 − lec < dec) =

EC−1∏
ec

(1− F (lec+1 − lec)), (3)

where F is the cumulative distribution function (cdf) of bec . For a given cdf F this is computable

and provides a measure that will be close to one if the route is easily traversable with lots of

charging stations and close to zero when there is a large gap without charging opportunities on the

route.

Figure 13: Illustration of routes with different charging capacity and degrees of dispersion

(a) 4 Chargers Uniformly Dispersed
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(b) 8 Chargers Uniformly Dispersed
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1 11

5

Capacity and Dispersion. Figure 13 provides intuition for our second and third objectives for

the continuous measure of route electrification which are to account for the total number of fast

chargers placed on a route and the degree to which these chargers are dispersed along a route.

Subfigure (a) shows a route between cities s and t with 4 uniformly dispersed chargers that is
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traversable for a given d distance. In comparison, Subfigure (b) illustrates the same route, but with

twice as many chargers at each existing station location. Given the higher capacity, the probability

that a vehicle finds an available charger is going to be higher when the route has 8 uniformly

dispersed chargers than it would be with only 4 chargers as in Subfigure (a). The continuous

measure increases in the total charging capacity along a route, reflecting this relation between the

total number of chargers and the average probability that there is an available charger on the route.

The last route depicted in Figure 13, Subfigure (c), shows the same route as in Subfigure

(b) with a total of 8 chargers, but the chargers are placed on the route in a highly concentrated

fashion instead of being uniformly distributed. The more concentrated distribution of the chargers

in Subfigure (c) means that the probability of a charger being available will be higher at the

station location with 5 chargers and lower at stations locations with a single charger than it is in

Subfigure (b) where each station location has 2 chargers. Furthermore, since routes with more entry

locations without any installed chargers, holding traversability and the number of chargers fixed,

are less convenient from the EV drivers’ point of view, the continuous measure accounts for the

probability that vehicles are dispatched to an entry location with at least one charger. Therefore,

we are going to measure the model-implied probability of a charger being available at every point

along the route and the probability of being randomly assigned to an entry location without a

charger.

Assume that EVs that need charging arrive at Poisson rate λ on a grid “arrival points”

a1, . . . , an. Suppose vehicles are randomly assigned across entry locations in range of aj (indepen-

dently of each other), and within each entry location vehicles are randomly assigned to chargers.

Note that EV drivers can be also assigned to an entry location with no installed chargers. Let E(x)

denote the set of entry locations that are in range of point x. The probability an EV at point x is

assigned to entry location e ∈ E(x) is then 1
|E(x)| . This indicates that the ‘by exit’ Poisson arrival

rate at point x for entry location e ∈ E(x) is λ 1
|E(x)| . Under this set of assumptions, the number

of vehicles assigned to an exit, Ne, follows a Poisson distribution with parameter λe, where λe can

be expressed as

λe =
∑
aj

1{|aj−le|≤d}
λ

|E(aj)|
. (4)

For each arrival point we determine whether it is in range of the given entry location and what

is the probability at that arrival point that the EV gets dispatched to this given entry location.

Since vehicles are randomly assigned to chargers in each entry location, henceforth the number of
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cars assigned to a charger i, Ni, then follows a Poisson distribution with parameter λi = λei/|Iei |,

where ei denotes the entry location to which i ∈ Ie charger belongs to.

Assuming these conditions, we can simulate the probability that at least one charger i in range of

point x is available, given by

P( min
i∈I(x)

Ni = 0). (5)

This probability is increasing in the number of chargers because having more chargers at an entry

location decreases their arrival rates λi. This probability measure can be integrated over x ∈ r to

compute route accessibility. Given the above assumptions, we can also compute the probability

that a vehicle is assigned to an entry location without a charger which can be expressed as

P(v assigned to e ∈ E(x) \ Ec(x)) = 1− |Ec(x)|
|E(x)|

, (6)

where Ec(x) denotes the set of entry locations with at least one charger in range of point x. We

are going to use the probability of the opposite event in our measure, i.e., an EV is dispatched to

an entry location having a minimum of one charger.

Continuous Measure. Within the modeling framework of these assumptions, we can then define

our continuous measure of route electrification or coverage as

Coverager = P(r is traversable)

∫
x∈r

f(P( min
i∈I(x)

Ni = 0),P(v assigned to e ∈ Ec(x))). (7)

Empirical Implementation. Only routes that both start and end in a given state are included.

We assume that the mean vehicle range follows a normal distribution as given by bec ∼ N(100, 10) or

bec ∼ N(50, 50). The ‘entry location’ dataset used for clustering is filtered to only keep points within

0.5 miles of a route. Entry locations are composed of the highway exit/rest areas and all SafeGraph

POIs. These ‘entry locations’ are then clustered using MiniBatchKMeans with K = 1200. The

database of fast (or Level 3) charging stations from AFDC is restricted to those within 0.5 miles

of a route and are assigned to entry location clusters. We assume a common vehicle arrival rate

λ = 0.1 using an arrival point grid of 1 point per mile on routes. This is equivalent to an expected

number of arrivals of 1 vehicle per 10 miles. Then, for each route-standard-month, we have the

locations of each entry location cluster and the number of connectors at each cluster, which allows

us to calculate the continuous measure as specified above.

Preliminary Results. Figures 14–16 present the different terms from Equation (7) we use to

calculate the continuous measure (shown in Figure 17) for each fast charging standard in Califor-
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nia and in Illinois using the charging station database from AFDC between November 2021 and

December 2022. Figure 14 shows the average probability of a route being traversable, assuming a

mean electric range b of 50 miles or 100 miles. First, the comparison across the three fast charging

standards in Subfigure (a) shows that Tesla’s network does not serve well EVs with shorter ranges

in California. On the other hand, the other two standards (Combo and Chademo) serve very well

cars with short ranges with average probabilities of traversability being close to 0.9. For longer

ranges, Tesla’s network performs a lot better though still slightly below the other two standards.

Tesla’s own EV models are all long-range cars with 200 to 400-mile ranges and these findings are

consistent with Tesla’s network being primarily designed to serve these long-range models. For

the Combo and Chademo charging standards, under the modeling assumptions outlined above,

Subfigures (a) and (b) indicate that the average probability of traversability is close to 1 at both

shorter and longer ranges. In comparison, the average probability of a route being traversable is

much lower in Illinois across all three standards for both longer and shorter mean vehicle ranges.

Figure 14: Average probability of a route being traversable (2021/11-2022/12)
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(b) California, b = 100 miles
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(c) Illinois, b = 50 miles
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(d) Illinois, b = 100 miles
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Figure 15 shows the average probability of a charger being available. Note that these results

are calculated for an assumed vehicle arrival rate. In particular, we assume a common arrival rate
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λ = 0.1 using an arrival point grid of 1 point per mile on the route.3 Therefore, instead of analyzing

the levels of these probabilities, we focus on the changes observed over time, the differences across

charging standards, and the differences across geographic areas (which are the states of California

and Illinois in this case). Thus, our interpretation of the findings from Figure is that, for a fixed

level of demand, they are driven by the changes in spatial allocations of stations across standards,

across geographic areas, and over time. In all subfigures, the Combo standard serves vehicles the

best. The figures together show that in both California and in Illinois, the average probability of

a charger being available along a route improved over time for all three charging standards and

for both shorter and longer vehicle ranges. The figures also indicate that for the same fixed level

of demand, the average probability of charging availability is much higher in California than in

Illinois.

Figure 15: Average probability of a charger being available (2021/11-2022/12)

(a) California, b = 50 miles
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(b) California, b = 100 miles
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(c) Illinois, b = 50 miles
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(d) Illinois, b = 100 miles
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Figure 16 shows the average probability of an EV driver being assigned to an entry location

with at least one charger. These figures reveal an interesting difference across charging standard in

California. In particular, Tesla stations seem to be placed in denser areas with more highway exits

3Replacing the assumed λ with an empirically-based arrival rate by route is currently work in progress.
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and rest areas. Thus, they cover significantly less of the available exits along a route. However,

Tesla also puts more chargers at each location. Thus, we can observe a high probability for whether

chargers are available as we saw in Figure 15, while noting a low probability for a car being

dispatched to an exit (or rest area) with a charger for the Tesla network. The figures together

suggest that the probability of being assigned to a highway exit or rest area with a charger increased

over time for all three standards, for both shorter and longer vehicle ranges and in both California

and Illinois.

Figure 16: Average probability of EVs dispatched to an entry location with a charger (2021/11-
2022/12)

(a) California, b = 50 miles
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(b) California, b = 100 miles
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(c) Illinois, b = 50 miles
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(d) Illinois, b = 100 miles
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Using Equation 7, we can calculate our continuous measure expressing EV suitability of routes

across the three different fast charging standards and compare it to a policy counterfactual guided

by the IIJA implementation plan for fast charging infrastructure. In particular, 2 chargers built

every 50 miles on a 300-mile route with average vehicle range b = 100 miles yields a continuous

measure value from 1.152 to 1.334. Figure 17 shows the continuous measure we computed. Under

the conditions of our modeling framework, the calculated continuous measure values in California

exceed the policy counterfactual values for the Combo and Chademo standards at both longer
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and shorter mean vehicle ranges. In comparison, all three standards fare much worse in Illinois,

regardless of the vehicle range considered.

Figure 17: Continuous measure (2021/11-2022/12)
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(b) California, b = 100 miles
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(c) Illinois, b = 50 miles
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(d) Illinois, b = 100 miles
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5 Site and Network Entry Motives

How much of the entry spillovers are internalized by the market placement of charging stations?

A station may be owned by either the site host or the charging network. From a social planner’s

point of view, one key potential difference between the two types of owners is that site hosts may

put more weight on the benefit of a charging station to their site (or group of sites if the site host

is a chain of stores), while the network may also consider the contribution of a charging station to

the rest of the network and thus internalize more entry spillovers.

Some charging networks are publicly listed companies and thus state their business model very

clearly in their filings to the U.S. Securities and Exchange Commission. However, not all networks

are publicly listed, and some networks offer hybrid options, with some site-owned stations, network-

owned stations, as well as co-owned stations with differing degrees of cost-and-revenue-sharing.

Therefore, it is difficult to know the entry motive of an observed charging station entrant without
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Figure 18: Network vs. Site Entry Motives Averaged by Network; All Ranges
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detailed information on the contracts between site hosts and networks for each station. Such a

dataset is not possible to obtain, to our knowledge. Therefore, we take a revealed preference

approach. For each station, we construct measures of private and network benefits. Each station

occupies a point in the 2-D space of site vs. network benefits, and we can compare whether certain

networks’ stations tend to occupy different regions in this space. We use network centrality to

reflect site entry motives, in particular, a version of betweeness centrality – between how many

pairs of cities does a station sit. For network benefits, we ask for how many pairs of cities is a

charging station pivotal. A station is pivotal if an EV with a given range is able to travel the route

between two cities with a station and unable to travel that route without the station.

Figures 18 and 19 plot networks by the fraction of their highway stations that are pivotal for

any route (network benefit) against the mean number of driving routes (shortest path between two

cities in a car) that pass a highway station (site benefit). Figure 18 averages over all EV ranges,

and Subfigures (a) and (b) of Figure 19 plot network positions for 50 miles of range and 150 miles

of range, respectively. EV range enters the construction of the y-axis position of networks on these

graphs because whether a station is pivotal for the route depends on the given EV range. The

position of networks along the x-axis do not change across subfigures because whether a driving

route passes through a station does not depend on EV range.

Figure 18 indicates Tesla and Electrify America appear to be trying to maximize the number
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of routes that they connect across the U.S., which is reflected in their stations with high site as

well as network benefits. In contrast, ChargePoint, for example, publicly states that their business

model is to not own charging assets and allow their site host partners to optimize for themselves.

ChargePoint focuses on providing equipment and software to help site hosts, and this strategy is

reflected in their stations having relatively low network contributions yet fairly high site benefits.

Figure 19 suggests that networks seem to specialize in serving EVs with different electric ranges.

For example, eVgo stations have high network contributions at the 50-mile range, while Tesla and

Electrify America stations have high network contributions at the 150-mile range. This analysis

shows that the joint entry decision between site hosts and networks, along with different business

strategies of the networks, lead to very different network configurations. This heterogeneity across

networks suggest that a uniform subsidy is unlikely to meet any social planner objectives that

prioritize particular spatial arrangements of stations. For example, if the U.S. government wants

stations to serve all EV ranges, including the lowest ones, then a uniform subsidy would subsidize

networks focusing on longer-range EVs as well. Whether government policy should aim to serve all

EV ranges, including the lowest ones, depends on consumer preferences and welfare weights, and

could be studied with a structural approach with a model.
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Figure 19: Network vs. Site Entry Motives Averaged by Network; Different Ranges
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(b) 150 miles
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6 Conclusion

Policy makers at the national, state, and local levels have established ambitious goals for promot-

ing EV sales, often going as far as promising to completely phase out internal combustion engine

(ICE) vehicles. EV sales are rising quickly compared to traditional gas vehicles, but to reach these

ambitious EV adoption goals—take for example California’s 2035 goal of 100% of new cars and

light trucks sales being zero-emission vehicles (California Governor, 2020)—the growth rate must

accelerate (Cui and Hall, 2022). Many subsidy programs for charging stations are also spatially

targeted, sometimes with the every-50-mile policy as in the U.S. IIJA. In some other cases, poli-

cymakers try to directly choose where to place charging stations using transportation metrics such

as traffic flow or number of stations per EV for a given area. These spatially targeted subsidies

can enhance social welfare if the market provision of EV charging stations inefficiently allocates

stations in space, or in other words, if the market-provided charging network has holes. We study

the U.S. EV charging industry to test for the presence of entry complementarities across charging

stations. We find evidence of entry complementarities using two different empirical specifications.

In ongoing work, we are investigating whether and how much firms already internalize these entry

complementarities in their observed location choices.
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Online Appendix

Appendix Figure 1: Map of FHWA Adjusted Urban Areas

Notes: This map shows where the 493 Adjusted Urban Areas, as defined by the FHWA, are located in the
U.S., using data from the FHWA.
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Appendix Table 1: Charger Types and Speeds; AFDC

c

Level 1 Level 2 Level 3

Connector Type J1772 connector J1772 connector Combo connector

Chademo connector

Tesla connector

Voltage 120 V AC 208 - 240 V AC 400 - 1000 V DC

Typical Power Output 1 kW 7 - 19 kW 50 - 350 kW

Estimated PHEV Charge Time
from Empty 8-kWh Battery

5 - 6 hours 1 - 2 hours N/A

Estimated BEV Charge Time
from Empty 60-kWh Battery

40 - 50 hours 4 - 10 hours 20 minutes - 1 hour

Estimated Electric Range
per Hour of Charging

2 - 5 miles 10 - 20 miles 180 - 240 miles

Notes: This table provides an overview of chargers for EVs. The table is adapted from the U.S. Department of
Energy’s Alternative Fuels Data Center. See https://afdc.energy.gov/fuels/electricity_infrastructure.html
for more detail.

Appendix Table 2: Number of Vehicle Trip by Trip Distance; 2017 NHTS

Trip Distance
Travel Day Vehicle Trips

Sample Size Sum (Millions) Percent

Less than 0.5 miles 31,851 11,063 5
1 mile 98,955 36,078 16.4
2 miles 84,856 30,430 13.8
3 miles 64,205 22,820 10.4
4 miles 48,361 17,357 7.9
5 miles 37,449 13,276 6
6 - 10 miles 106,830 38,153 17.3
11 - 15 miles 50,791 18,597 8.4
16 - 20 miles 28,913 10,999 5
21 - 30 miles 27,860 10,747 4.9
31 miles or more 31,228 10,895 4.9
Not ascertained 43 16 0

All 611,342 220,430 100

Notes: This table shows the distribution of vehicle trips by trip distance (in miles), obtained from the 2017 National
Household Travel Survey (NHTS). Vehicle trips are defined as trips by a single privately-operated vehicle, regardless
of the number of people traveling in the vehicle.
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Appendix Table 3: Number of Vehicle Trip by Purpose; 2017 NHTS

Trip Purpose Summary
Travel Day Vehicle Trips

Sample Size Sum (Millions) Percent

Home 205,765 75,569 34.3
Work 92,401 36,568 16.6
School/Daycare/Religious activity 16,288 6,789 3.1
Medical/Dental services 11,568 3,301 1.5
Shopping/Errands 134,052 42,977 19.5
Social/Recreational 52,879 18,616 8.4
Transport someone 44,996 18,746 8.5
Meals 43,348 14,832 6.7
Something else 10,045 3,031 1.4

All 611,342 220,430 100

Notes: This table shows the distribution of vehicle trips by travel purpose, obtained from the 2017 National Household
Travel Survey (NHTS). Vehicle trips are defined as trips by a single privately-operated vehicle, regardless of the
number of people traveling in the vehicle.

Appendix Table 4: Number of Households by Household Vehicle Count; 2017 NHTS

Count of Households Vehicles
Number of Households

Sample Size Sum (Thousands) Percent

0 6,249 10,567 8.9
1 41,534 39,648 33.5
2 49,936 39,125 33.1
3 20,267 17,598 14.9
4 7,562 7,194 6.1
5+ 4,148 4,077 3.4

All 129,696 118,208 100

Notes: This table shows the distribution of households by the number of vehicles owned by households, obtained from
the 2017 National Household Travel Survey (NHTS). The 2017 NHTS weights its household data based on control
totals found in the American Community Survey (ACS).
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Appendix Table 5: Number of Person Trips by Transportation Mode; 2017 NHTS

Transportation Mode Used on Trip
Travel Day Person Trips

Sample Size Sum (Millions) Percent

Walk 81,288 38,947 10.5
Bicycle 8,034 3,575 1
Car 396,931 156,940 42.3
SUV 229,466 84,659 22.8
Van 60,463 27,857 7.5
Pickup truck 108,303 35,115 9.5
Golf cart/Segway 826 186 0.1
Motorcycle/Moped 2,088 835 0.2
RV (motor home, ATV, snowmobile) 814 212 0.1
School bus 11,313 7,038 1.9
Public or commuter bus 6,616 5,300 1.4
Paratransit/Dial-a-ride 624 393 0.1
Private/Charter/Tour/Shuttle bus 1,581 814 0.2
City-to-city bus (Greyhound, Megabus) 120 69 0
Amtrak/Commuter rail 1,148 794 0.2
Subway/elevated/light rail/street car 3,326 3,350 0.9
Taxi/limo (including Uber/Lyft) 2,813 1,849 0.5
Rental car (Including Zipcar/Car2Go) 2,006 780 0.2
Airplane 1,823 639 0.2
Boat/ferry/water taxi 458 176 0
Something Else 3,515 1,617 0.4
I prefer not to answer 2 0 0
I don’t know 13 7 0
Not ascertained 1 0 0

All 923,572 371,152 100

Notes: This table shows the distribution of vehicle trips by transportation mode, obtained from the 2017 National
Household Travel Survey (NHTS). A person trip is defined as a trip from one address to another by one person using
any mode of transportation.
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