Revisiting U.S. Wage Inequality at the Bottom 50%

> Oren Danieli Tel Aviv University

NBER Labor Studies 2023

### Inequality Trends at the Bottom 50%



#### Figure: 90/50 and 50/10 Log Hourly Wage Ratio

Quantiles are calculated for all workers with positive earnings at the hours level, using sample weights multiplied by hours worked. Source: CPS Outgoing Rotation Groups

## Leading Hypotheses

In the early 1980s, inequality is rising in both parts of the distribution  $% \left( {{{\left[ {{{\rm{B}}_{\rm{B}}} \right]}_{\rm{B}}}} \right)$ 

• Skill-Biased Technological Change (Katz & Murphy, 1992)

In late 1980s - 1990s inequality decreases at the bottom

- "Wage Polarization" decline in middle wages Figure
- Routine-Biased Technological Change (Autor, Katz & Kearney, 2006; Acemoglu & Autor, 2011)
- Decrease in demand for workers performing routine tasks
- Key support: job/employment polarization (Goos et al., 2014)

## Key Challenges to RBTC

#### **1** Why should middle wages relatively decline?

- Routine workers are dispersed almost equally at bottom 50%
- 💿 🕩 Figure
- **②** Why did middle wages stopped declining around 2000?
  - Employment polarization continues long after
- Why does the market adjusts almost entirely through quantities?
  - Price changes (wages) is too small to generate trend in wages
    - Autor, Katz & Kearney (2005) and Firpo, Fortin & Lemieux (2013)

## Key Challenges to RBTC

#### • Why should middle wages relatively decline?

- Routine workers are dispersed almost equally at bottom 50%
- Figure
- **②** Why did middle wages stopped declining around 2000?
  - Employment polarization continues long after
- Why does the market adjusts almost entirely through quantities?
  - Price changes (wages) is too small to generate trend in wages
    - Autor, Katz & Kearney (2005) and Firpo, Fortin & Lemieux (2013)

**This Paper:** A new theory for the trends in the bottom 50% of the income distribution that addresses these challenges

## This Paper

#### Theory

- Small (but important) modification to RBTC
- Skill-Replacing RBTC
- Tech does not (directly) replace workers it replaces their skill

## This Paper

#### Theory

- Small (but important) modification to RBTC
- Skill-Replacing RBTC
- Tech does not (directly) replace workers it replaces their skill
- 2 New Empirical Facts
  - Decline in return to skill in routine occupations
  - Reallocation of low-skill workers into routine occupations
  - Interactive-Fixed-Effect-Model

## This Paper

#### Theory

- Small (but important) modification to RBTC
- Skill-Replacing RBTC
- Tech does not (directly) replace workers it replaces their skill
- 2 New Empirical Facts
  - Decline in return to skill in routine occupations
  - Reallocation of low-skill workers into routine occupations
  - Interactive-Fixed-Effect-Model
- Oecomposition
  - 93% of wage polarization can be attributed to SR-RBTC
  - Skewness Decomposition

Theoretical Framework

#### Assumptions

Building on Jung and Mercenier (2014) and Cortes (2016)

- Workers have one-dimensional skill  $\theta_i$ 
  - Most results hold for multi-dimensional skill
- Three occupations: Manual, Routine, Abstract
- Key Assumption: Comparative advantage

$$\forall \theta : \frac{\partial \log \varphi_{M}(\theta)}{\partial \theta} < \frac{\partial \log \varphi_{R}(\theta)}{\partial \theta} < \frac{\partial \log \varphi_{A}(\theta)}{\partial \theta}$$

**Theorem (JM):** Under these assumptions, there exist two thresholds  $\theta_0, \theta_1$  such that  $\theta < \theta_0$  sort into  $M, \theta_0 < \theta < \theta_1$  sort into R and  $\theta_1 < \theta$  sort into A.

General Equilibrium

## Jung & Mercenier Sorting



## RBTC

Focus only on effect on the routine occupation. The production function in the routine occupation is:

$$\varphi_{R}\left(\theta_{i};\tau\right) = \left(\theta_{i}^{\frac{\sigma-1}{\sigma}} + \tau^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

where  $\tau$  is the technology that is common across all workers. RBTC is  $\tau\uparrow$ 

- $\sigma = 1$  skill neutral similar to Acemoglu & Autor (2011)
- $\sigma < 1$  skill enhancing
- $\sigma > 1$  skill replacing

## Skill Replacing Technology

I will focus on the case of Skill-Replacing RBTC

• Increase in  $\tau$  when  $\sigma>1$ 

Examples:

- Arithmetic skills are replaced with calculators
- Memory skills are replaced with computers
- Physical strength is replaced with machinery

## First Stage: Wage Polarization



## First Stage: Wage Polarization



#### 1. Why should middle wages relatively decline?

A: Because these are the highest skill routine workers

Second Stage: Bottom 50% Inequality Rises Large SR-RBTC: comp. advantage flips  $\frac{\partial \log \varphi_R(\theta; \tau)}{\partial \theta} < \frac{\partial \log \varphi_M(\theta)}{\partial \theta}$ 



Second Stage: Bottom 50% Inequality Rises Large SR-RBTC: comp. advantage flips  $\frac{\partial \log \varphi_R(\theta; \tau)}{\partial \theta} < \frac{\partial \log \varphi_M(\theta)}{\partial \theta}$ 



Second Stage: Bottom 50% Inequality Rises Large SR-RBTC: comp. advantage flips  $\frac{\partial \log \varphi_R(\theta; \tau)}{\partial \theta} < \frac{\partial \log \varphi_M(\theta)}{\partial \theta}$ 



#### 2. Why did middle wages stopped declining around 2000?

A: Middle-wage workers are no longer in the routine occupation

• bottom 50% inequality could increase

### List of New Predictions

Decline in return to skill in routine occupations

### List of New Predictions

- Decline in return to skill in routine occupations
- ② Routine workers gradually become less skilled
  - Eventually, routine workers have less skill than manual

### List of New Predictions

- Decline in return to skill in routine occupations
- Routine workers gradually become less skilled
  - Eventually, routine workers have less skill than manual
- Solution of the second more concentrated at lower wages

Empirical Results

#### **IFEM**

Skill is not directly observed

• I use panel data, assume that skill is constant over time Use Interactive Fixed Effect Model (IFEM) • Why?

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \frac{\alpha_{jt}}{\theta_i} + \varepsilon_{ijt}$$

*i* - worker, *j* - 3 occupation categories, *t* - year and  $X_{it}$  experience 2.

We are interested in:

- How  $\alpha_{routine,t}$  changes with time
- 2 How average routine skill  $\frac{1}{N_R} \sum_{i \in R} \hat{\theta}_i$  change

Estimation

#### **IFEM**

Skill is not directly observed

• I use panel data, assume that skill is constant over time Use Interactive Fixed Effect Model (IFEM) • Why?

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \theta_i + \varepsilon_{ijt}$$

*i* - worker, *j* - 3 occupation categories, *t* - year and  $X_{it}$  experience 2.

We are interested in:

- How  $\alpha_{routine,t}$  changes with time
- 2 How average routine skill  $\frac{1}{N_R} \sum_{i \in R} \hat{\theta}_i$  change

Estimation

#### **IFEM**

Skill is not directly observed

• I use panel data, assume that skill is constant over time Use Interactive Fixed Effect Model (IFEM) • Why?

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \frac{\alpha_{jt}}{\theta_i} + \varepsilon_{ijt}$$

*i* - worker, *j* - 3 occupation categories, *t* - year and  $X_{it}$  experience 2.

We are interested in:

- How  $\alpha_{routine,t}$  changes with time
- 2 How average routine skill  $\frac{1}{N_R} \sum_{i \in R} \hat{\theta}_i$  change

Estimation

#### Results for 1-Year: 1987

Predicted log wage in each occupation as a function of skill  $\theta$ 



14

## Long Term Trend of $\alpha_{jt}$



### Decline in Skill in Routine Occupations



#### Routine by Income Percentile

Routine task intensity measured by occupation with O\*NET



Income Percentile

Quantifying the Role of SR-RBTC Using Skewness Decomposition

## Why Decompose?

SR-RBTC is consistent with the data

- But is it large enough to explain the full wage trend?
- Or maybe other explanations also play a role

This is the motivation for decomposition exercise

- Which share of the overall trend can be attributed to different hypotheses
- Focus in the period of "wage polarization"
- Inequality at the bottom is relatively stable afterwards

## Skewness Decomposition

# Can measure wage polarization with the third-moment: Skewness

Skewness Over Time Influence Function

$$\mu_{3}(Y) = E\left[\left(\frac{Y-\mu}{\sigma}\right)^{3}\right]$$

## Skewness Decomposition

Can measure wage polarization with the third-moment: Skewness • Skewness Over Time • Influence Function

$$\mu_{3}(Y) = E\left[\left(\frac{Y-\mu}{\sigma}\right)^{3}\right]$$

Similar to variance, skewness has a simple decomposition



### Interpretation



#### Set X to be occupation

- Within component non-occupation explanations (residual)
- Between component skill-neutral RBTC: decrease in routine wages
  - Should be main change in Acemoglu & Autor (2011) ( $p_R \downarrow$ )
- Correlation component higher if:
  - High paying occupations have higher inequality.
  - Low paying occupations have lower inequality.
  - SR-RBTC: decrease in inequality within (low-paid) routine occupations
  - Captures violation of ignorability

### Skewness Decomposition by Occupation



Figure: Skewness Decomposition Changes 1992-2002



## Changes in Variance

- Inequality is increases at high-paying and decreases at low-paying occupations 
   Details
- The decrease in inequality in low paying occupations is unique for the 1990s 
   Details
- This decrease is concentrated in routine occupations Details

#### Changes in Variance

- Inequality is increases at high-paying and decreases at low-paying occupations 
   Details
- The decrease in inequality in low paying occupations is unique for the 1990s 
   Details
- This decrease is concentrated in routine occupations Details
- 3. Why does the market adjust through quantities? A: Significant wage changes within routine occupations

# Conclusion

#### Key Takeaways

#### SR-RBTC model can explain the puzzles with RBTC

- Why middle wage decline in 1990s
- Why inequality at the bottom fluctuates
- Why previous decomposition methods did not work
- 2 Predictions of the model are verified in the data
- Skewness Decomposition shows this explains most of the trend
   R-package available at CRAN

# Thank You!

# Appendix

Wage Growth by 5% Bins



#### Routine Level by Income Percentile Replication of Figure in Autor & Dorn (2013, Fig 4)



Routine index is defined using O\*NET data 
Details
Return

# Routine Index O\*NET

Following Acemoglu-Autor (2011) use O\*NET to take the average of

- Pace determined by speed of equipment
- Controlling machines and processes
- Spend time making repetitive motions.
- Importance of repeating the same tasks
- Importance of being exact or accurate
- Structured v. Unstructured work (reverse)

# Proposition 1

**Proposition:** Let  $w_a < w_b$  denote wages of two routine workers. The effect of RBTC ( $\tau \uparrow$ ) on the wage ratio  $\frac{w_b}{w_a}$  depends on

$$sign\left(rac{\partialrac{w_b}{w_a}}{\partial au}
ight)=sign\left(1-\sigma
ight)$$



# RBTC

Focus only on effect on the routine occupation. RBTC is  $\tau\uparrow$ 

$$\varphi_{R}(\theta_{i};\tau) = \left(\theta_{i}^{\frac{\sigma-1}{\sigma}} + \tau^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- $\sigma = 1$  skill neutral similar to Acemoglu & Autor (2011)
- $\sigma < 1$  skill enhancing
- $\sigma > 1$  skill replacing
- Return

#### General Equilibrium Return

Total amount produced from each intermediate good

$$M = \int_{\theta_{\min}}^{\theta_{0}} \varphi_{M}(\theta) \, \mathrm{d}\theta \quad R = \int_{\theta_{0}}^{\theta_{1}} \varphi_{R}(\theta) \, \mathrm{d}\theta \quad A = \int_{\theta_{1}}^{\theta_{\max}} \varphi_{A}(\theta) \, \mathrm{d}\theta$$

#### General Equilibrium • Return

Total amount produced from each intermediate good

$$M = \int_{\theta_{\min}}^{\theta_0} \varphi_M(\theta) \, \mathrm{d}\theta \quad R = \int_{\theta_0}^{\theta_1} \varphi_R(\theta) \, \mathrm{d}\theta \quad A = \int_{\theta_1}^{\theta_{\max}} \varphi_A(\theta) \, \mathrm{d}\theta$$

The final good is the output of a CES function with  $\rho<0$ 

$$Y = (M^{\rho} + R^{\rho} + A^{\rho})^{\frac{1}{\rho}}$$

Manual and abstract workers become more productive through complementarities



# SR-RBTC

I will focus on the case of Skill-Replacing RBTC

```
• Increase in 	au when \sigma > 1
```

As technology advances (  $\tau\uparrow$  ) the routine occupation see a decline in:

- Price of routine goods  $(p_R)$
- Employment

# SR-RBTC

I will focus on the case of Skill-Replacing RBTC

```
• Increase in 	au when \sigma > 1
```

As technology advances ( $\tau\uparrow$ ) the routine occupation see a decline in:

- Price of routine goods  $(p_R)$
- Employment
- Mean skill level ( $E[\theta_i|R]$ )
- Inequality within the routine occupation

### SR-RBTC: First Stage

Impact on bottom 50% inequality changes with time

• Divide it into two stages

In the first stage,  $\tau$  is still "small"

- Comparative advantage still holds
- Returns to skill are higher in R then M

During the first stage, overall wage trend would be U-Shaped



# GE Theorem

#### Theorem

Assume  $\rho$  < 0, so  $\tau\uparrow$  implies decrease in  $p_R$  and the income share of routine workers

- $\bullet\,$  Does not depend on  $\sigma\,$
- Empirically shown by Cortes (2016), Eden & Gaggl (2018)



#### Weaker Assumptions

#### Theorem

Assuming a skill replacing technology ( $\sigma > 1$ ). An RBTC (increase in  $\tau$ ) would generate:

- A decline in gaps between routine workers who do not switch occupations
- **2** The most skilled routine workers would leave the routine occupation  $(\frac{\partial \theta_1}{\partial \tau} < 0)$
- Solution Wages for the highest skill routine worker ( $\theta_1$ ) would fall relative to any other worker.

#### Stronger Assumptions

Assume  $0 < \frac{d\theta_0}{d\tau} < \left| \frac{d\theta_1}{d\tau} \right|$  as seen in the data.

Theorem

SR-RBTC generates

- Decline in: employment, within occupation inequality and mean skill level in the routine occupation.
- Overall wage trend would be U-shaped ("wage polarization")

Return

#### Theorem

#### Theorem

There exists  $\widetilde{\tau}$ , such that for every  $\tau \geq \widetilde{\tau}$ 

$$\frac{\partial \log \varphi_{\mathsf{R}}\left(\theta;\tau\right)}{\partial \theta} < \frac{\partial \log \varphi_{\mathsf{M}}\left(\theta\right)}{\partial \theta}$$

and routine workers would earn the lowest wages. Any additional SR-RBTC ( $\tau \uparrow$ ) would (still)

- Decrease employment in the routine occupation  $\left(\frac{d\theta_0}{d\tau} < 0\right)$
- Decrease gaps between routine workers who do not switch occupation

Return

#### Testing Decline in Return to Skill

The key prediction of the model is that inequality is declining within routine occupations

- But this is only for "stayers" those who do not switch occupations
- Overall inequality in routine occupations is affected by compositional changes

# Testing Decline in Return to Skill

The key prediction of the model is that inequality is declining within routine occupations

- But this is only for "stayers" those who do not switch occupations
- Overall inequality in routine occupations is affected by compositional changes

There are several challenges in measuring inequality for stayers

- Regression to mean
- Selected sample (especially over long time periods)
- On be confused with income volatility

#### Return

#### Estimation

 $\theta_i$  is a nuisance parameter. Can only get some estimate of it  $\hat{\theta}_i$  based on a small number of observations. **Details** 

**Problem:**  $\hat{\theta}_i$  is noisy, so least squares will suffer from attenuation bias because

$$E\left[\widehat{\theta}_i\varepsilon_{ijt}\right]\neq 0$$

Therefore we need additional moments.

• Holtz-Eakin et al. (1988), Ahn et al. (2001)



Years of Schooling • Return

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \frac{\alpha_{jt}}{\theta_i} \theta_i + \varepsilon_{ijt}$$

I use years of schooling  $S_i$  as an instrument

• For every occupation j and year t

 $E[S_i \varepsilon_{ijt} | j, t] = 0$   $E[X_{ijt} \varepsilon_{ijt} | j, t] = 0$  $E[\varepsilon_{ijt} | j, t] = 0$ 

where  $\varepsilon_{ijt}$  is a function of the parameters  $(\alpha_{jt}, \beta_{jt}, \lambda_{jt})$ . • Estimate using GMM. Years of Schooling • Return

$$\log w_{ijt} = \beta_{jt} X_{it} + \lambda_{jt} + \frac{\alpha_{jt}}{\theta_i} + \varepsilon_{ijt}$$

I use years of schooling  $S_i$  as an instrument

• For every occupation j and year t

 $E[S_i \varepsilon_{ijt} | j, t] = 0$   $E[X_{ijt} \varepsilon_{ijt} | j, t] = 0$  $E[\varepsilon_{ijt} | j, t] = 0$ 

where  $\varepsilon_{ijt}$  is a function of the parameters  $(\alpha_{jt}, \beta_{jt}, \lambda_{jt})$ . • Estimate using GMM.

Biased when school affects wages not through "main skill"

- Example: bonus for useless degrees
- Results with three skills Details

#### **IFEM-Literature**

- Holtz-Eakin et al. (1988) use lagged variables
  - Violated (for instance) is  $\varepsilon$  are serially correlated
- Ahn et al. (2001) add assumption on covariance structure of  $V(\varepsilon_{ijt})$ 
  - For instance constant variance for  $\ensuremath{\varepsilon}$
  - Rules out changes in volatility

Return

Define

$$\nu_{ijt} = \frac{1}{\alpha_{jt}} \left( y_{ijt} - \beta_{jt} X_{ijt} - \lambda_{jt} \right) = \theta_i + \frac{\varepsilon_{ijt}}{\alpha_{jt}}$$

For every  $\sum_{t} w_{ijt} = 1$  can define

$$\widehat{\theta}(\mathbf{y}_i, \mathbf{X}_i, \alpha, \beta, \lambda) = \sum_t w_{ijt} \overline{\nu_{ijt}} = \theta_i + \widetilde{\varepsilon}_i$$
(1)

such that

$$y_{ijt} - \beta_{jt} X_{it} - \lambda_{jt} - \alpha_{jt} \widehat{\theta}_i = \varepsilon_{ijt} - \alpha_{jt} \widetilde{\varepsilon}_i = \epsilon_{ijt}$$

I choose  $w_{ijt} = \frac{\alpha_{jt}^2}{\sum_{j't'} \alpha_{j't'}^2}$  which minimizes the mean squared error  $\overline{\epsilon_{ijt}^2}$ .  $\blacktriangleright$  Return

# Three Skills

Estimate IFEM with

$$\log w_{ijt} = \beta_{ijt} X_{it} + \lambda_{jt} + \alpha_{jt} \theta_{ij} + \varepsilon_{ijt}$$

|          | Abstract | Routine | Manual |
|----------|----------|---------|--------|
| Abstract | 1        |         |        |
| Routine  | .74      | 1       |        |
| Manual   | .83      | .69     | 1      |

# $\alpha_{jt}$ by 1-Digit $\bullet$ Return



### IFEM 2011



#### Decline in Skill in Routine: 1-Digit Return



#### Skewness Trend Back



The vertical lines are where changes in occupational coding took part. Source: CPS Outgoing Rotation Groups

Looking by other categories yields large residual component

- 3 digit Industry
- Years of School

Decomposing jointly shows occupations explain the large increase







Longer time period Details

Using imputed wages • Details

#### Changes in Variance 1992-2002 • Return



Documented before by Firpo et al. (2013)

• Explains full increase in covariance component • Decompose

#### Variance Trends in Other Decades • Return



Figure: Change in  $V [\ln w | occ]$  by  $E [\ln w | occ]$  - Binned Scatter Plot

Data resource: CPS-ORG

#### Variance Trend in Routine/Non-routine Occupations • Return



Figure: Change in V  $[\ln w | occ]$  by E  $[\ln w | occ]$  1992-2002

Data resource: CPS-ORG. Routine occupations are administrators, producers and operators. Categories are divided same as in Acemoglu & Autor (2011)

### Counterfactual Covariance Return



Figure: Covariance of Expectation and Variance of Log-Wage

Data resource: CPS-ORG return

### Influence Function





# Decomposing by Industry





#### Decomposing by Education and Experience





#### Linear Skewness Decomposition

If 
$$Y = \sum_{i} X_{i}$$
 can write  

$$\mu_{3}(Y) = \sum_{i} \mu_{3}(X_{i}) + \sum_{i} \sum_{j \neq i} COV(X_{i}^{2}, X_{j}) + \sum_{i} \sum_{j \neq i} \sum_{k \neq i, j} E[X_{i}X_{j}X_{k}]$$
(2)
and decompose into several components. The simple skins

decomposition is for  $Y = E[Y|X] + \varepsilon$ 

Can first run a regression such as

$$\ln w_i = occ_i + ind_i + \varepsilon_i$$

and decompose by each component.

▶ Return

#### Joint Occupation-Industry Decomposition



#### Joint Occupation-School-Experience Decomposition



#### Decomposition with Imputed Wages





Decomposition with Imputed Wages

