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Abstract

Many modern theories of the business cycle generate demand-driven fluctuations by

assuming that monopolistic firms set a price in advance and commit to supplying the

market-clearing quantity. In this paper, we enrich firms’ supply decisions by allowing

them to choose any supply function: a description of the price charged at each quantity

of production. By changing only the strategy space of firms and leaving fixed all other

microfoundations in a standard monetary business cycle model, we provide a novel

theory in which the nature of uncertainty and market power endogenously determine

the aggregate supply curve. We find that aggregate supply flattens when there is: (i)

lower inflation uncertainty, (ii) greater demand uncertainty, and (iii) increased market

power. Money is maximally non-neutral if firms’ quantities are perfectly elastic to

prices (price-setting) and neutral if only if firms’ quantities are perfectly inelastic to

prices (quantity-setting). When mapped to the data, our theory explains: (i) the long-

run flattening of the aggregate supply curve as an outcome of more hawkish monetary

policy and rising market power and (ii) the steepening of aggregate supply in times

of high inflation uncertainty (e.g., the 1970s and 2020s) but not times of high real

uncertainty (e.g., the Great Recession).
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1 Introduction

At the heart of modern models of aggregate supply are monopolistic firms that make decisions

under uncertainty. It is common to restrict these firms’ supply decisions to an important but

narrow class: setting a price and committing to produce enough to meet ex post demand. For

example, price-setting is assumed in classic models of aggregate supply based on exogenous,

infrequent adjustment (Taylor, 1980; Calvo, 1983), menu costs (Barro, 1972; Caplin and

Spulber, 1987; Golosov and Lucas, 2007), and limited information (Mankiw and Reis, 2002;

Woodford, 2003a; Maćkowiak and Wiederholt, 2009).

In this paper, we enrich the baseline model to allow firms to choose any supply function:

a mapping that describes the price charged at each quantity of production.1 Supply function

choice is a standard approach in microeconomic theory (e.g., Grossman, 1981; Hart, 1985;

Klemperer and Meyer, 1989; Vives, 2011, 2017; Pavan et al., 2022) to model firms’ ability

to adjust decisions to realized demand, while remaining consistent with a foundation of

information, contracting, or organizational frictions. Seen through this lens, committing to

a fixed price is not generally the optimal choice. Our goal is to understand how allowing for

richer behaviors at the microeconomic level affects our understanding of the macroeconomy.

Methodologically, we show how to tractably model supply function choice in a macroeco-

nomic setting. To understand the determinants of supply function choice, we first character-

ize how optimal supply functions depend on the elasticity of demand and firms’ uncertainty

about demand, costs, and competitors’ prices in partial equilibrium. To understand the

implications of supply function choices, we then characterize how firm-level supply curves

aggregate in general equilibrium to determine the aggregate supply curve. Putting these

together, we characterize the equilibrium fixed point by which firms’ uncertainty, and hence

supply function choice, depends on the supply function choices of others.

We find that allowing for supply functions in an otherwise standard monetary business

cycle model yields a theory of the aggregate supply curve with novel implications. Concretely,

we find that aggregate supply flattens under: (i) lower price-level uncertainty, (ii) greater

demand uncertainty, (iii) increased market power, and (iv) more hawkish monetary policy.

Applying our model to the data, we find that our model generates variation in the slope of

aggregate supply that coincides with empirical evidence on how the slope of the aggregate

supply curve (the Phillips curve) has changed over time. Taken together, our analysis shows

how structural changes like the commitment to price stability in the 1980s or a secular rise

in market power can cause a flattening of the aggregate supply curve.

1This is different from nonlinear pricing, whereby firms transact different quantities at different prices.
A supply function specifies the uniform price that everyone pays as a function of the total quantity sold.
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Supply Function Choice of a Single Firm. We study the standard model of a monop-

olistically competitive firm that lies at the core of many modern business cycle models. The

firm faces a constant-price-elasticity demand curve and operates a constant-returns-to-scale

production function. It has log-normal uncertainty about its competitors’ prices, demand,

productivity, input prices, and the stochastic discount factor.

Given its information and beliefs, the firm commits to price-quantity pairs described by

a supply function f : R2
++ → R. The firm produces and prices where the market demand

curve intersects the locus of points such that f(p, q) = 0. Internalizing this, the firm chooses

its optimal, non-parametric supply function to maximize its expected real profits under the

stochastic discount factor. In other words, we allow firms to implement the ECON 101

notion of a supply curve: a systematic relationship between the price that they charge and

the quantity that they produce. The ubiquitous “price-setting” model is nested by functions

of the form f(p) = 0, or perfectly elastic supply; the opposite “quantity-setting” model (e.g.,

as in Jaimovich and Rebelo, 2009; Angeletos and La’O, 2010, 2013; Benhabib et al., 2015) is

nested by functions of the form f(q) = 0, or perfectly inelastic supply. Thus, while we allow

firms to set prices or quantities, we also allow them to choose richer and potentially more

preferable strategies that are nonetheless consistent with their informational constraints.

We solve in closed-form for the optimal supply function and show that it is endogenously

log-linear: log p = α0 + α1 log q. Thus, the firm’s behavior in response to shocks to market

demand is described by its optimally chosen inverse supply elasticity, α1: the percentage by

which the firm increases prices in response to a one percent increase in production. In turn,

this elasticity depends on the firm’s market power and its relative uncertainty about demand,

competitors’ prices, and real marginal costs. These relationships arise because uncertainty

and market power shape firms’ relative desires to hedge against different types of shocks,

and manipulating the supply function gives firms a natural tool to do so.

Three comparative statics are particularly important for our subsequent macroeconomic

conclusions. First, higher uncertainty about firm-level demand pushes toward a lower α1,

or firms behaving more like price-setters. Price-setting perfectly insulates firms against

demand shocks as the optimal response of a firm to changing demand conditions is to simply

set its relative price equal to a constant markup on its real marginal cost. Second, higher

uncertainty about competitors’ prices pushes toward a higher α1, or firms behaving more like

quantity-setters. Quantity-setting perfectly insulates firms against shocks to competitors’

prices as it allows the firm’s relative price to adjust perfectly in response to such changes.

Third, an increase in market power (a lower elasticity of demand) pushes toward a lower α1,

or firms behaving more like price-setters. More market power reduces the cost to the firm of

setting the “wrong” price.
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General Equilibrium: From Supply Functions to Aggregate Supply. To study the

aggregate implications of supply-function choice, we embed our framework in a monetary

business-cycle model with incomplete information, following Woodford (2003a) and Hellwig

and Venkateswaran (2009). In addition to exogenous microeconomic and macroeconomic un-

certainty, the model generates endogenous macroeconomic uncertainty about firms’ demand,

aggregate prices, and real marginal costs. In particular, because of imperfect competition

between firms, the model features aggregate demand externalities (Blanchard and Kiyotaki,

1987) whereby firms face greater demand when aggregate output is high. Moreover, because

households demand money, both the level of the money supply and aggregate output jointly

determine the aggregate price level. Finally, because of income effects in labor supply, real

marginal costs are higher when aggregate output is higher.

We first characterize aggregate outcomes given a fixed supply function. We show that

the price level and real output follow an aggregate supply and aggregate demand representa-

tion. In this representation, there is a well-defined “slope of aggregate supply,” which also

corresponds to the relative response of the price level and real GDP to an aggregate demand

(money supply) shock. In particular, aggregate supply is inelastic—or, money is neutral—if

and only if firms are quantity-setters. Aggregate supply is maximally elastic—or, money

is as non-neutral as possible—if firms are price-setters.2 Finally, increased market power

flattens the aggregate supply curve. This effect is present as long as firms are not pure

price-setters. Intuitively, as a lower elasticity of demand decreases how much a given change

in the price level moves any given firm’s demand curve, with greater market power firms

adjust their prices ex-post by less. This strategic interaction is missing in pure price-setting

models, which is why the elasticity of aggregate supply is independent of market power in

these (more familiar) cases.

We next characterize how the slope of aggregate supply is endogenously determined,

via the fixed point relating macroeconomic uncertainty with firms’ supply-function choice.

This reveals feedback loops: uncertainty affects supply functions, which affects the slope of

aggregate supply, and in turn shapes macroeconomic uncertainty.

Under an empirically reasonable parameter restriction that balances strategic comple-

mentarity (from aggregate demand externalities) with substitutability (from wage pressure),

we can further derive the slope of aggregate supply in closed form. This slope smoothly

decreases in firms’ relative uncertainty about idiosyncratic demand shocks vs. the money

supply. For example, an economy with more hawkish monetary policy, defined as a less

2There are other theoretically interesting, but perhaps empirically irrelevant, cases in which firm-level
supply curves are downward-sloping and money has even larger real effects than other the price-setting
model.
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volatile money supply, features a flatter aggregate supply curve and therefore an endoge-

nously smaller effect of demand shocks on the price level. In that sense, this economy has

“more stable prices” for two reinforcing reasons. First, there are fewer demand shocks that

directly decrease variation in the price level. Second, firms respond to more stable prices by

flattening their demand curves, which endogenously reduces the responsiveness of prices to

money supply shocks. This observation would be consistent with the narrative that more

hawkish monetary policy in the United States (e.g., during and after the tenure of Paul

Volcker) achieved price stability by actively flattening the aggregate supply curve.

An economy with higher idiosyncratic demand variation also features a flatter aggregate

supply curve. Combining this with Bloom et al.’s (2018) observation that firms’ idiosyncratic

uncertainty rises substantially in recessions, our theory offers the following resolution to

the puzzle of “missing disinflation” during the Great Recession: aggregate supply itself

endogenously flattened in the face of a large jump in microeconomic uncertainty.

Aggregate Supply in the Model and the Data. In the final section, we study the

model’s implications for the slope of aggregate supply in the United States. To do so, we

obtain estimates of time-varying uncertainty for macroeconomic aggregates by estimating

a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model on aggregate

time series for output, the price level, and real marginal costs. We then embed these estimates

in the general equilibrium structure of our model to analyze how the elasticity of aggregate

supply has changed throughout time.

First, we find that our model can explain a quantitatively significant portion of the

flattening of aggregate supply from the 1970s to the Great Moderation. In particular, we find

that the reduction in the slope of aggregate supply is primarily driven by two components of

uncertainty: (i) a reduction in the volatility of the price level, and (ii) an increased covariance

between real marginal costs and demand. Both of these forces contribute to steeper firm-

level supply functions: pure price-setting becomes less favorable to firms both when relative

price variation is large, and when marginal costs covary positively with demand (as firms

commit to producing exactly when demand is high). This steepening at the micro level

translates to a steeper aggregate supply curve. Notably, our model implies that aggregate

supply remained flat during the Great Recession (a period characterized by a spike in real,

rather than nominal, uncertainty) before steepening again in the post-Covid period.

Second, we show that a rise in market power can lead to a further flattening of aggregate

supply by creating additional incentives for firms to set steeper supply functions in times of

high price volatility. Taken together, our empirical results emphasize that both uncertainty

and market power are crucial in shaping the relative responsiveness of prices and output to

aggregate demand shocks.
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Related Literature. To our knowledge, ours is the first study to derive aggregate supply

in a business-cycle model from a foundation of supply function competition. In microe-

conomic theory, Grossman (1981) and Hart (1985) introduce supply function equilibrium

in oligopoly models under certainty; Klemperer and Meyer (1989) study this model under

uncertainty; and Vives (2011, 2017) and Pavan et al. (2022) study further implications in

specializations with quadratic preferences, private information, and Gaussian uncertainty.3

These papers’ mathematical results cannot be applied “off the shelf” to our macroeconomic

setting due to the combination of the following features: non-quadratic preferences; imper-

fect substitutability; multiple, correlated sources of uncertainty; and strategic interactions

in both input and product markets.

The closest analysis in the literature on firms’ optimal supply decisions is performed

by Reis (2006), who studies a binary comparison of price-setting and quantity-setting for

a rationally inattentive firm in a canonical macroeconomic setting.4 Our analysis differs

from and builds on Reis’ analysis by studying supply schedules beyond price-setting and

quantity-setting, allowing for multiple, correlated shocks to the firm, and studying equilib-

rium implications. Of course, one could argue that price- and quantity-setting are preferable

to firms because they are simple. For this reason, we perform our entire general equilib-

rium analysis under a binary choice of price-setting and quantity-setting in Appendix C and

recover similar insights.

Our finding that uncertainty shapes the slope of aggregate supply is shared with two

literatures. First, and most relatedly, the classic “islands model” analysis of Lucas (1972,

1973, 1975). Unlike Lucas’ model (1972), ours features monopolist producers engaging in

supply-function competition instead of price-taking producers (competitive markets). The

“inference problem” that links uncertainty to supply decisions in our model arises for a differ-

ent reason, without reference to the migration or physically separated markets hypothesized

by Phelps (1970). Our model moreover allows roles for market power and uncertainty about

costs which, in turn, are important in our mapping to the data.

Second, menu cost models of price-setting allow the extent of uncertainty to matter for

the extent of monetary non-neutrality (see e.g., Barro, 1972; Sheshinski and Weiss, 1977;

Golosov and Lucas, 2007). In menu cost models, it is the extent of total uncertainty about

optimal reset prices that determines non-neutrality, with greater uncertainty making money

more neutral in many models (see Vavra, 2014). By contrast, in our theory, we show total

uncertainty has no effect on the slope of aggregate supply, while relative uncertainty does.

3In asset pricing, Kyle (1989) studies an analogous problem of demand-function competition, building on
prior work in perfectly competitive (“price-taking”) markets (Grossman, 1976; Hellwig, 1980).

4This analysis of “prices vs. quantities choice” echoes classic works on choice of instruments (Weitzman,
1974; Poole, 1970; Klemperer and Meyer, 1986).
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Our analysis contributes to an extensive literature studying how assumptions about mar-

ket structure and/or uncertainty affect predictions for the aggregate supply curve. We high-

light a few particularly relevant connections below. Mongey (2021) and Wang and Werning

(2022) study oligopoly with staggered price-setting, and Fujiwara and Matsuyama (2022)

study monopolistic competition with entry and non-CES demand. Some of our findings

regarding the relationship between market power and the Phillips curve are qualitatively

similar to these authors’, but our microfoundations and economic arguments are drastically

different. Woodford (2003a), Maćkowiak and Wiederholt (2009), Afrouzi and Yang (2021),

and Angeletos and Huo (2021), inter alios, study how the slope of aggregate supply in price-

setting models depends on the structure of incomplete information. One implication of our

results is that such conclusions about the role of incomplete information depend critically

on assumptions about the (endogenous or exogenous) shape of supply functions.

Finally, our analysis mapping theory to data provides a theoretical rationalization of

the results from the empirical literature that documents a flattening of the US Phillips

curve (e.g., Ball and Mazumder, 2011; Blanchard, 2016; Hazell et al., 2022) from the 1970s

through the Great Moderation, as well as more recent work that tries to reconcile this with

high inflation after the Covid pandemic (e.g., Blanchard and Bernanke, 2023).

Outline. Section 2 solves for the firm’s optimal supply function in partial equilibrium.

Section 3 introduces the monetary business cycle model in which we embed supply func-

tions. Section 4 characterizes equilibrium with supply function choice and shows how supply

function choices affect aggregate supply. Section 5 compares the model’s predictions for the

slope of aggregate supply to existing empirical evidence. Section 6 concludes.

2 Supply Function Choice in Partial Equilibrium

In this section, we introduce and solve the problem of a monopolist that chooses a supply

function in the presence of uncertainty about demand, costs, aggregate prices, and the

stochastic discount factor. First, to build intuition, we study the case in which firms choose

between two supply functions: price-setting (horizontal supply) or quantity-setting (vertical

supply). We derive a formula for the advantage of price-setting relative to quantity-setting in

units of log expected profits and interpret its comparative statics. The logic and formalism

are reminiscent of Weitzman (1974): firms choose the supply function that best hedges them

against uncontrollable shocks. We next study the more general problem of supply-function

choice. Flexible supply functions give firms more tools to hedge against demand shocks, but

remain an imperfect hedge against cost and price-level shocks. We show that optimal supply

functions are log-linear and characterize their slope and intercept in terms of primitives. In
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particular, we show how changes in uncertainty and market power (i.e., the elasticity of

demand) endogenously affect the firm-level elasticity of supply.

2.1 The Firm’s Problem of Choosing Supply Functions

Set-up. A firm produces output q ∈ R+ via a constant-returns-to-scale production tech-

nology using a single input x ∈ R+:

q = Θx (1)

where Θ ∈ R++ is the firm’s Hicks-neutral productivity. The firm can purchase the input at

price px ∈ R++. The firm faces a constant-elasticity-of-demand demand curve given by:

p

P
=
( q

Ψ

)− 1
η

(2)

where p ∈ R+ is the market price, Ψ ∈ R++ is a demand shifter, P ∈ R++ is the aggre-

gate price level, and η > 1 is the price elasticity of demand. We interpret the elasticity

of demand as an (inverse) measure of market power: when η is high, firms cannot easily

manipulate market prices by altering quantities. The firm’s profits are priced according to

a real stochastic discount factor Λ ∈ R++. For simplicity, we define the firm’s real marginal

cost as M = P−1Θ−1px.

At the beginning of the decision period, the firm is uncertain about demand, costs,

others’ prices, and the stochastic discount factor (SDF). Specifically, they believe that the

state (Ψ,M, P,Λ) follows a log-normal distribution with mean µ and variance Σ.5 The firm’s

payoff is given by its expected real profits (revenue minus costs), as priced by the real SDF:

E
[
Λ
( p

P
−M

)
q
]

(3)

where E [·] is the firm’s expectation given some joint beliefs about (Λ, P,M, p, q).

Supply Functions. The firm commits to implementing price-quantity pairs described by

the implicit equation f(p, q) = 0 where f : R2
++ → R. We will refer to f as the supply

function. Price-setting is nested as a case in which f(p, q) ≡ fP (p). Quantity-setting is

nested as a case in which f(p, q) ≡ fQ(q). More generally, we allow plans to be given by any

non-parametric function f , even allowing for non-monotonicity and discontinuities.

The idea behind a supply function is familiar from ECON 101: it is the price that the

firm plans to charge given any level of production. Of course, even a supply function is

a metaphor for a more complicated organizational process at the firm and market level.

5Of course, M is log-normal so long as P , Θ, and px are log-normal.
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Klemperer and Meyer (1989) provide a detailed justification of how internal firm processes

often correspond to supply functions.6 To exemplify what setting a supply function means,

we borrow and extend an analogy from Reis (2006). Consider a bakery that must decide

upon how much bread to produce and how to price its bread. A price-setting bakery fixes its

price and keeps selling bread until it exhausts customer demand at that price. A quantity-

setting bakery produces bread and sells it at the greatest price such that all of the bread

produced is sold. Extending this analogy, a bakery that chooses a supply function can be

thought of as observing how much bread is being sold at a given price and then adjusting

its price to maximize profits. Thus, if demand happens to be strong and they are selling a

higher quantity than they expected, the baker may decide to raise the price of its bread. The

responsiveness of the baker’s production to its price is precisely its inverse supply elasticity.

The supply function f captures this inverse supply elasticity as the slope of the locus of

price-quantity pairs that it implies. Thus, supply functions allow us to more flexibly model

the short-run responsiveness of the firm to demand fluctuations. This allows us to study

behavior beyond the potentially restrictive assumption of a price-setting bakery (nested as

an inverse elasticity of zero) or a quantity-setting bakery (nested as an inverse elasticity of

infinity).

More formally, after choosing a supply function f , and following the realization of Ψ and

P , the firm produces at a point where f intersects the demand curve. That is, the market

clears. Toward making this rigorous, we define the nominal demand state z = ΨP η and

rewrite the demand curve as q = zp−η. Thus, having set f and following the realization of z,

the firms’ price is given by some solution p̂ to the equation f(p̂, zp̂−η) = 0 with the realized

quantity being q̂ = zp̂−η.

Figure 1 illustrates ex post market clearing visually. The columns respectively correspond

to a price-setting function, log p = 0 or f(p, q) = 1− p; a quantity-setting function, log q = 0

or f(p, q) = 1 − q; and a flexible rule, log p = log q or f(p, q) = 1 − p
q
. In the first row, we

6For example, they argue that:

“If a consulting firm sticks to a fixed rate per hour, it is fixing a price (perhaps subject to a
capacity constraint). In fact, however, even when firms quote fixed rates, the real price often
varies. When business is slack, more hours are worked on projects than are reported, but when
the office is busy, marginally related training, travel time, and the time spent originally may all
be charged to the client. Top management in effect commits to a supply function by choosing
the number of employees and the rules and organizational values that determine how both
the real price and the number of hours supplied adjust to demand [. . . ] As another example,
airlines use computer systems to adjust the number of discount seats they offer according
to current reservation levels. Here management chooses a particular supply function by its
choice of computer program. Running the program finds the price-quantity pair on this supply
function that lies on the actual market demand curve.” – Klemperer and Meyer (1989).
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Figure 1: An Illustration of Supply-Function Choice
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Note: The columns correspond to different supply functions. The top row illustrates ex post market
clearing for two realizations of the demand curve. The bottom curve illustrates the induced joint
distribution of quantities and prices given log-normal uncertainty about z. See the main text for
more details.

show each supply function (solid black line) and two demand curves, corresponding to a large

demand realization z1 (red dashed line) and a low demand realization z0 (blue dotted line).

The dots indicate the respective intersections of supply and demand, or realized quantity-

price pairs in these states. In the second row, we illustrate the induced joint distribution of

quantity-price pairs in purple, when z is log-normally distributed. The price- and quantity-

setting policies fix uncertainty about one dimension, but induce uncertainty in the other.

The flexible rule induces joint uncertainty in both variables.

We assume that the firm chooses the profit-maximizing selection from the set of solutions

if there are many. We assume that the firm does not produce if no solution exists. We let

the solution function be p̂ : R+ → R++, with p̂(z) being the priced charged in state z ∈ R+.

As we placed no restrictions on f , it is equivalent to think of the firm as choosing p̂ directly.

For a given choice of p̂, the firm’s payoff is given by:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)

P
−M

)
zp̂(z)−η dG (Λ, P,M, z) (4)

where G is the cumulative distribution function representing the firm’s beliefs. We therefore
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study the problem:

sup
p̂:R+→R++

J(p̂) (5)

Given a solution p̂ for how firms optimally adapt their prices to demand, we will recover the

optimal plan f for how firms optimally set a supply function.

2.2 Building Intuition: Prices vs. Quantities

To build intuition for how uncertainty and market power shape the optimal supply function,

we first study the restricted problem of a firm that can either fix a price or a quantity.

Optimal Price-Setting. In this case, p̂ is a constant function and Problem 5 reduces to:

V P = max
p∈R+

E
[
Λ
( p

P
−M

)
Ψ
( p

P

)−η
]

(6)

Taking first-order conditions, the optimal price is given by:

p∗ =
η

η − 1

E [ΛMP ηΨ]

E [ΛP η−1Ψ]
(7)

where the numerator is the expected marginal benefit of charging higher prices in reducing

costs and the denominator is the expected marginal cost of charging higher prices in increas-

ing revenue. In the absence of uncertainty, this reduces to the statement that the optimal

relative price is a constant markup of η
η−1

on real marginal costs. Substituting the optimal

price into the firm’s payoff function and rearranging, we obtain that:

V P =
1

η − 1

(
η

η − 1

)−η

E [ΛMP ηΨ]1−η E
[
ΛP η−1Ψ

]η
(8)

Optimal Quantity-Setting. In this case, in Problem 5, the implemented price function

must be the demand curve evaluated at a fixed q: p̂(z) = z
1
η q−

1
η . The quantity-setting

problem is therefore:

V Q = max
q∈R+

E
[
Λ

(( q

Ψ

)− 1
η −M

)
q

]
(9)

and optimal quantity is given by:

q∗ =

 η

η − 1

E [ΛM]

E
[
ΛΨ

1
η

]
−η

(10)
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where the numerator is the expected marginal cost of expanding production and the de-

nominator is the expected marginal revenue from expanding production. In the absence of

uncertainty, this is the quantity that the firm sells by setting its relative price equal to a

constant markup on its real marginal cost. Substituting the optimal quantity into the firm’s

payoff, we obtain:

V Q =
1

η − 1

(
η

η − 1

)−η

E [ΛM]1−η E
[
ΛΨ

1
η

]η
(11)

Result: When to Set Prices vs. Quantities. A cursory inspection of the values of

price-setting and quantity-setting (Equations 8 and 11) reveals that they are not generally

equal. Define the log-difference between the values of price-setting and quantity-setting as:

∆ = log V P − log V Q (12)

We obtain the following formula for the proportional benefit of prices over quantities:

Proposition 1 (Prices vs. Quantities). The comparative advantage of prices over quantities

is given by:

∆ =
1

2
(η − 1)

(
1

η
σ2
Ψ − ησ2

P − 2σΨ,M − 2ησP,M

)
(13)

This is increasing in demand uncertainty σ2
Ψ. It is decreasing in price uncertainty σ2

P , the

covariance between demand and real marginal costs σΨ,M, and the covariance between prices

and real marginal costs σP,M. Moreover, when σP,M ≥ −1
2
σ2
P , sgn(∆) is decreasing in η.

Proof. See Appendix A.1.

The key idea is that price- and quantity-setting hedge the firm against different shocks—

in analogy to price vs. quantity regulation in Weitzman (1974) or interest-rate vs. money

supply targeting in Poole (1970).

The Role of Uncertainty. To understand the intuition for the comparative statics, we

go case by case. First, in the presence of demand shocks alone, setting relative prices equal

to a constant markup on marginal costs coincides with the first-best. By contrast, fixing

the quantity supplied induces losses. Thus, demand shocks favor price-setting. Second, in

the face of aggregate price shocks, fixing an optimal quantity allows relative prices to adjust

perfectly while fixing an optimal price leads the firm’s price to diverge from the aggregate

price and loses revenue. Thus, aggregate price shocks favor quantity-setting. Third and

fourth, when demand and real marginal costs or aggregate prices and real marginal costs
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negatively covary, price-setting causes the firm to produce a large amount exactly when costs

are low, favoring price-setting.

The Role of Market Power. The extent to which the firm values (i)-(iv) is mediated

by the price elasticity of demand (i.e., the extent of market power), since this determines

how rapidly prices respond to underlying changes. In particular, as long as the covariance

between prices and real marginal costs is not sufficiently negative, lower market power (higher

η) favors quantity-setting and greater market power (lower η) favors price-setting. Fixing

marginal costs, as firms’ demand curves become more flat, price-setting exposes the firm to

significant risk of setting the “wrong” price and either making zero profit (if their price is

higher than competitors’) or a very negative profit (if their price is lower than competitors’).

This is potentially counteracted by a strong negative correlation between costs and others’

prices: if when others charge high prices your marginal cost is very low, it is better to do

price-setting as you undercut your competition precisely when it is very profitable to do

so. In practice, we will later estimate a positive correlation between the price level and real

marginal costs, making this second potential mechanism more of a theoretical curiosity.

2.3 The Optimal Supply Function

We now study the globally optimal supply function, or the solution to Problem 5. The firm

now has considerably more flexibility than it did in the last subsection’s study of prices vs.

quantities choice. Nonetheless, we will be able to characterize the firm’s optimal policy in

closed form and illustrate comparative statics in the extent of uncertainty and the price

elasticity of demand.

Toward the Solution: A Necessary Condition. Recall that we reduced the problem of

choosing an optimal function to the problem of choosing an optimal mapping p̂ from nominal

demand z = ΨP η to the price. In an optimal policy, for any given realization z = t, it is

necessary that there is no local benefit to changing the price p̂(t). This yields the following

condition:

0 = E
[
Λ
1

P
zp̂(z)−η − ηΛ

(
p̂(z)

P
−M

)
zp̂(z)−η−1 | z = t

]
= (1− η)E

[
Λ
1

P
|z = t

]
tp(t)−η + ηE [ΛM|z = t] tp(t)−η−1

(14)

Re-arranging, we obtain the following:

p(t) =
η

η − 1

E[ΛM | z = t]

E[ΛP−1 | z = t]
,∀t ∈ R (15)
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This condition resembles the optimal price under price-setting (Equation 7), with the key

difference that it conditions on nominal demand z. Outcomes under optimal rules therefore

differ from optimal outcomes under price-setting (or quantity-setting) due to the firm’s ability

to make inferences about the stochastic discount factor, real marginal costs, and the price

level (e.g., the relevant deflator for profits). We will be able to solve for optimal functions

in closed form, despite the high dimensionality of Problem 5, because Equation 15 reduces

to a log-linear relation between p and z given lognormality.

Optimal Supply Functions. We now derive the optimal plan in closed form using rig-

orous variational arguments. This reveals how the slope of the optimal supply function,

the “smooth” analog to prices vs. quantities choice, depends on the firm’s uncertainty and

elasticity of demand:

Theorem 1 (The Optimal Supply Function). Any optimal supply curve is almost everywhere

given by:

f(p, q) = log p− α0 − α1 log q (16)

where the slope of the optimal price-quantity locus, α1 ∈ R, is given by:

α1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(17)

Proof. See Appendix A.2.

To obtain more intuition for the result, we re-express α1 as the relative rate at which the

firm wants log prices and log quantities to increase with log z, or

α1 =
d log p

d log z

/
d log q

d log z
=

Cov[log z, log p∗∗]

Cov[log z, log q∗∗]
(18)

where we define p∗∗ and q∗∗ as the optimal ex post choices,

p∗∗ =
η

η − 1
MP and q∗∗ =

(
η

η − 1

)−η
z

(MP )η
(19)

Under this interpretation, the firm’s optimal policy is equivalent to running the following two-

stage least squares (2SLS) regression: the firm wants to work out how its optimal price should

change with its optimal quantity and uses the nominal demand state z as an instrument for

the optimal quantity. The supply function is steep (|α1| is large) if nominal demand predicts

large movements in the ex post optimal price. In the 2SLS metaphor, the supply function

is steep if the coefficient in the “reduced form” regression of p∗∗ on z is high. The supply
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function is shallow (|α1| is small) if nominal demand predicts large movements in the ex post

optimal quantity. In the 2SLS metaphor, the supply function is flat if the coefficient in the

“first stage” regression of q∗∗ on z is high.

Turning to how the nature of uncertainty affects the firm’s optimal inverse supply elastic-

ity, we begin by focusing on the case in which the firm’s supply schedule is upward-sloping.

This occurs if 0 ≤ Cov[log z, log(MP )] ≤ 1
η
Var[log z]: high demand predicts that nominal

costs are higher, but not too much higher. In this case, greater price-level uncertainty in-

creases the slope of the optimal supply schedule. The intuition is similar to the one we

derived earlier: not knowing the prices of your competitors makes quantity-setting relatively

more attractive relative to price-setting because quantity-setting allows your relative price

to adjust ex post. On the other hand, greater demand uncertainty decreases the slope of the

optimal supply schedule. Intuitively, as in the binary comparison of prices vs. quantities,

demand uncertainty favors price-setting as it allows production to adjust to accommodate

greater demand. Finally, greater covariances between real marginal costs and demand and

real marginal costs and the price level increase the firm’s inverse supply elasticity. Intuitively,

when these covariances increase, the firm expects to produce more exactly when it is more

costly. Thus, the firm optimally sets a steeper supply schedule to avoid over-producing in

response to changes in demand.

We finally observe that a positively sloped supply function is not guaranteed: if nominal

costs move sufficiently with nominal demand, then a monopolist may prefer a downward

sloping supply function in order to hedge against high costs in high-demand states. In

practice, however, we will find no empirical evidence for this condition, and it remains a

theoretical curiosity.

Market Power and Supply Functions. The elasticity of demand plays two roles in

determining the optimal (inverse) elasticity of supply. The first relates to payoffs : when η

is high, ex post optimal quantities depend more on nominal marginal costs (holding fixed

nominal demand). This echoes our earlier discussion in the context of prices vs. quantities

choice: when goods are more substitutable, the firm’s optimal policy depends dramatically

on whether its marginal costs are above or below others’ prices. The second role relates to

information: when η is high, nominal demand contains relatively more information about

the price level P and less about real demand Ψ. When studied in our general-equilibrium

environment (Sections 3 and 4), these forces will open up the possibility that the slope of

aggregate supply systematically depends on the extent of competition in the macroeconomy.

In general, the interaction of these two forces can make the optimal supply function

steepen or flatten when η increases. But, below, we describe a sufficient condition under

which steeper demand induces steeper supply:
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Corollary 1 (Market Power and Optimal Supply). A sufficient condition for greater market

power to lower the inverse supply elasticity ∂α1

∂η
> 0 is that each of the following three

inequalities holds:

α1 ≥ 0, σM,P ≥ 0, 2ησM,P + σM,Ψ ≥ σP,Ψ (20)

Proof. See Appendix A.3.

The force of these conditions is to restrict the extent to which high nominal demand

predicts low marginal costs. In this case, the dominant logic is the following. When there

is fiercer competition, an upward-sloping aggregate supply function better allows a firm to

index its prices relative to its nominal costs. As discussed earlier, this allows the firm to

better hedge its risks from setting the “wrong” price when products are very substitutable.

Later, in our empirical analysis (Section 5), we find that the condition of Corollary 1

always holds in US data since 1960 as long as η > 3. Thus, the empirically relevant case

appears to be that market power flattens the firms’ optimal supply function.

Price- and Quantity-Setting Revisited. The previous result and discussion make clear

that pure price- and quantity-setting are “edge cases” amongst the larger space of supply

functions. Nonetheless, we observe below that they are intuitively obtained in the limiting

cases of extreme demand or price-level uncertainty:

Corollary 2 (A Foundation for Price-Setting and Quantity-Setting). The following state-

ments are true:

1. As σ2
P → ∞, |α1| → ∞ and the optimal plan converges to quantity-setting.

2. As σ2
Ψ → ∞, α1 → 0 and the optimal plan converges to price-setting.

This result provides a foundation for focusing on price- and quantity-setting when only

one source of risk is dominant. In a macroeconomic environment, however, we may expect

all sources of risk to be present in comparable orders of magnitude. In such a scenario, the

extreme policies may perform poorly, for both the firm and the economic analyst.

A Demand-Supply Representation. Finally, we observe that outcomes in this market

for the monopolist’s good are outcome-equivalent to those that would have been generated

by the following simple demand and supply model:

Corollary 3 (Demand-Supply Representation). The outcomes generated in the market are

equivalent to those generated by the following “Demand-Supply” Model:

log p = −1

η
log q +

1

η
log z (D)

log p = α0 + α1 log q (S)
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We will now study how the demand and supply curves in this individual market map into

the aggregate supply and aggregate demand curves in the context of a general equilibrium

macroeconomic model. In this context, we will primarily be interested in understanding how

the microeconomic inverse supply elasticity maps into the elasticity of aggregate supply: the

relative responsiveness of aggregate prices to aggregate output. Moreover, we will study how

equilibrium macroeconomic dynamics endogenously influence the optimal microeconomic

supply elasticity.

Extension: Multiple Inputs, Decreasing Returns to Scale, and Monopsony. In

Appendix B, we generalize this analysis to allow for a Cobb-Douglas production technology

with multiple inputs, decreasing returns to scale, and convex costs of hiring additional inputs

(capturing monopsony). We show that all of these forces complicate the analysis solely

by introducing a single composite parameter that aggregates the decreasing returns and

monopsony forces across inputs. We show in Proposition 6 that the optimal supply function

remains optimally log-linear. Moreover, as is perhaps intuitive, decreasing returns to scale

and monopsony power both reduce the optimal supply elasticity of the firm.

3 A Monetary Macroeconomic Model

We now embed supply-function choice in a monetary macroeconomic model. We other-

wise use intentionally standard microfoundations (see, e.g., Woodford, 2003b; Hellwig and

Venkateswaran, 2009; Drenik and Perez, 2020). We use this model to derive a fully micro-

founded, general-equilibrium specialization of Theorem 1 and to study its implications for

the aggregate supply curve.

3.1 Households

Time is discrete and infinite t ∈ N. There is a continuum of differentiated goods indexed by

i ∈ [0, 1], each of which is produced by a different firm.

A representative household has standard (Hellwig and Veldkamp, 2009; Golosov and

Lucas, 2007) expected discounted utility preferences with discount factor β ∈ (0, 1) and per-

period utility defined over consumption of each variety, Cit; holdings of real money balances,
Mt

Pt
; and labor effort supplied to each firm, Nit:

E0

[ ∞∑
t=0

βt

(
C1−γ

t

1− γ
+ ln

Mt

Pt

−
∫
[0,1]

ϕitNit di

)]
(21)
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where γ ≥ 0 indexes income effects in both money demand and labor supply and ϕit > 0

is the marginal disutility of labor supplied to firm i at time t, which is an IID lognormal

variable with time-dependent variance, or log ϕit ∼ N(µϕ, σ
2
ϕ,t). The consumption aggregate

Ct is a constant-elasticity-of-substitution aggregate of the individual consumption varieties

with elasticity of substitution η > 1:

Ct =

(∫
[0,1]

ϑ
1
η

itc
η−1
η

it di

) η
η−1

(22)

where ϑit is an IID preference shock that is also lognormal with time-dependent variance, or

log ϑit ∼ N(µϑ, σ
2
ϑ,t). We also define the corresponding ideal price index:

Pt =

(∫
[0,1]

ϑitp
1−η
it

) 1
1−η

(23)

Households can save in either money or risk-free one-period bonds Bt (in zero net supply)

that pay an interest rate of (1 + it). The household owns the firms in the economy, each of

which has profits of Πit. Thus, the household faces the following budget constraint at each

time t:

Mt +Bt +

∫
[0,1]

pitCit di = Mt−1 + (1 + it−1)Bt−1 +

∫
[0,1]

witNit di+

∫
[0,1]

Πit di (24)

where pit is the price of variety of variety i and wit is a variety-specific nominal wage.

The aggregate money supply follows an exogenous random walk with drift µM and time-

dependent volatility σM
t :

logMt = logMt−1 + µM + σM
t εMt (25)

where the money innovation is an IID random variable that follows εMt ∼ N(0, 1). So that

interest rates remain strictly positive, we assume that 1
2
(σM

t )2 ≤ µM for all t ∈ N. We will

say that monetary policy is more hawkish when monetary volatility σM
t is lower.

3.2 Firms

The production side of the model follows closely the model from Section 2. Each consumption

variety is produced by a separate monopolist firm, also indexed by i ∈ [0, 1]. Each firm

operates a production technology that is linear in labor:

qit = ζitAtLit (26)
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where Lit is the amount of labor employed, ζit is IID lognormal with time-dependent volatility

σζ,t, or log ζit ∼ N(µζ , σ
2
ζ,t), and logAt follows an AR(1) with time-varying volatility σA

t :

logAt = ρ logAt−1 + σA
t ε

A
t (27)

where the productivity innovations are IID and follow εAt ∼ N(0, 1). When the firm sells

output at price pit and hires labor at wage wit, its nominal profits are given by Πit =

pitqit − witLit. Since firms are owned by the representative household, their objective is to

maximize expectations of real profits, discounted by a real stochastic discount factor Λt.

Thus, the firm’s payoff is Λt

Pt
Πit.

At the beginning of time period t, firms first observe At−1 and Mt−1. Firms also receive

private signals about aggregate productivity sAit and the money supply sMit :

sAit = logAt + σA,s,tε
s,A
it

sMit = logMt + σM,s,tε
s,M
it

(28)

where the signal noise is IID and follows εs,Ait , εs,Mit ∼ N(0, 1). Firms are uninformed about

the idiosyncratic productivity shock zit, demand shock ϑit, and labor supply shock ϕit.

3.3 Markets and Equilibrium

In each period, conditional on the aforementioned information set, firms choose a supply

function. As in Section 2, firms make this decision under uncertainty about demand, costs,

and the stochastic discount factor. But, as will become clear, this uncertainty is now partially

about endogenous objects. After firms make their choices, the money supply, idiosyncratic

demand shocks, and both aggregate and idiosyncratic productivity are realized. Finally, the

household makes its consumption and savings decisions and any prices that were not fixed

adjust to clear the market.

Formally, we define an equilibrium as follows:

Definition 1 (Supply-Function General Equilibrium). An equilibrium is a collection of vari-

ables {
{pit, qit, Cit, Nit, Lit, wit,Πit}i∈[0,1], Ct, Pt,Mt, At, Bt, Nt,Λt

}
t∈N

and a sequence of supply functions {ft : R2
++ → R}t∈N such that, in all periods:

1. All firms choose their supply function ft to maximize expected real profits under the

household’s stochastic discount factor.
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2. The household chooses consumption Cit, labor supply Nit, money holdings Mt, and bond

holdings Bt to maximize their expected utility subject to their lifetime budget constraint,

while Λt is the household’s marginal utility of consumption.

3. Money supply Mt and productivity At and evolve exogenously via Equations 25 and 27.

4. Firms’ and consumers’ expectations are consistent with the equilibrium law of motion.

5. The markets for the intermediate goods, final good, labor varieties, bonds, and money

balances all clear.

Note that this definition restricts to symmetric supply functions for all firms. We argue

that this is a natural restriction natural given firms’ ex ante symmetry, but it would not

otherwise be guaranteed in equilibrium.7 We will also often be interested in describing

equilibrium dynamics conditional on a (potentially suboptimal) supply function for firms.

Formally, these temporary equilibria are equilibria in which we do not require statement (1)

of Definition 1.

4 Supply Function Choice and Aggregate Supply

We now study the equilibrium determination of the aggregate supply curve. We do this in

four steps. First, we solve for all equilibrium conditions except for the firm’s supply func-

tion decision. By doing this, we pin down the equilibrium interest rate as a function of

exogenous parameters and show that the dynamic economy can be studied as a sequence

of one-shot economies. Second, within such a one-shot economy, we hypothesize that firms

use log-linear supply functions and show that equilibrium macroeconomic dynamics are en-

dogenously log-linear. This allows us to derive a simple Aggregate Demand and Aggregate

Supply (AD/AS) representation of the equilibrium dynamics. In this representation, the

equilibrium aggregate supply elasticity governs the responsiveness of the economy to shocks.

Third, we study how the aggregate supply elasticity depends on firms’ microeconomic sup-

ply elasticities, the extent of information about the money supply, and market power. From

this, we learn that price-setting maximizes the non-neutrality of monetary and allows for

no role of market power in determining the aggregate supply curve while quantity-setting

implies that money is neutral. Finally, we combine the previous steps, find that firms’ sup-

ply functions are endogenously log-linear, and fully characterize equilibrium in terms of a

single, scalar fixed-point equation for the firm-level supply elasticity. We study how strate-

gic interactions, market power, and the combination of microeconomic demand uncertainty

7In particular, there will be an (essentially unique) supply function given that aggregates are lognor-
mal, applying Theorem 1. But heterogeneous supply functions could support non-log-normal aggregates,
conditional on which there is not a unique supply function.
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alongside aggregate productivity and monetary uncertainty affect the equilibrium aggregate

supply elasticity.

4.1 Firms’ Uncertainty in Equilibrium

We begin by deriving the general-equilibrium analogs of the four objects that were central

to the firm’s problem in Section 2: firm-specific demand shocks, firm-specific marginal costs,

the price level, and the stochastic discount factor.

From the intratemporal Euler equation for consumption demand vs. labor supply, the

household equates the marginal benefit of supplying additional labor witC
−γ
t P−1

t with its

marginal cost ϕit. Thus, variety-specific wages are given by

wit = ϕitPtC
γ
t (29)

From the intertemporal Euler equation between consumption and money today, the cost of

holding an additional dollar today equals the benefit of holding an additional dollar today

plus the value of an additional dollar tomorrow:

C−γ
t

1

Pt

=
1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
(30)

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+it times the value of an additional dollar tomorrow:

C−γ
t

1

Pt

= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(31)

By combining Equations 30 and 31, we obtain that aggregate consumption follows:

Ct =

(
it

1 + it

) 1
γ
(
Mt

Pt

) 1
γ

(32)

which implies that aggregate consumption is increasing in real money balances, with elasticity

given by 1
γ
. Intuitively, when consumption utility has greater curvature, income effects in

money demand are larger and money demand is more responsive to changes in consumption.

Thus, consumption responds less to real money balances when γ is large. The level of real

money balances naturally depends on the opportunity cost of holding money it, and so money

demand is lower when interest rates are high, all else equal.

Moreover, by substituting Equation 32 back into Equation 31, we obtain a recursion that
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interest rates must satisfy:

1 + it
it

= 1 + βEt

[
1 + it+1

it+1

Mt

Mt+1

]
(33)

As money follows a random walk, solving this equation forward and employing the house-

hold’s transversality condition, we obtain that:8

1 + it
it

= 1 + β exp{−µ+
1

2
(σM

t )2}
∞∑
i=1

i∏
j=1

β exp{−µ+
1

2
σ2
M,t+j} (35)

which is deterministic, but depends on the full future path of monetary volatility.

From the household’s choice among varieties, the demand curve for each variety i is

pit
Pt

=

(
cit

ϑitCt

)− 1
η

(36)

Firm i faces strong demand when aggregate consumption is high, its competitors’ prices are

low, or its idiosyncratic demand is high. Moreover, η is the price elasticity of demand.

Summarizing the above, we have derived the following equilibrium mapping from endoge-

nous objects to the objects that are relevant to the firm in partial equilibrium.

Proposition 2 (Firm-Level Shocks in General Equilibrium). In any temporary equilibrium,

demand shocks, aggregate price shocks, stochastic discount factor shocks, and marginal cost

shocks follow:

Ψit = ϑitCt , Pt =
it

1 + it
C−γ

t Mt , Λt = C−γ
t , Mit =

ϕitC
γ
t

zitAt

(37)

Proof. See Appendix A.4.

The first expression says that demand shocks have two components: an idiosyncratic

shock deriving from consumer preferences and an aggregate shock corresponding to the

aggregate demand externality (Blanchard and Kiyotaki, 1987). The second expression says

that the price level must increase in nominal money balances, increase in the nominal interest

rate, and decrease in consumption to lie on this demand curve. The third expression says that

marginal utility is higher when consumption is lower. The fourth expression says that costs

8Observe also that in the case of time-invariant money volatility, interest rates follow the familiar equation:

1 + i∗ = β−1 exp

{
µM − 1

2
(σM )2

}
(34)
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increase when wages increase due to disutility shocks or income effects and when productivity

decreases at the micro or macro level.

The uncertainty described in Proposition 2 concerns endogenous objects. This introduces

strategic uncertainty (i.e., meaningful uncertainty about other firms’ choices), familiar from

the analysis of Woodford (2003a) under price-setting but missing, for example, from the

analysis of Lucas (1972). Moreover, firms’ uncertainty is correlated across variables due to

macroeconomic linkages in the product, money, and labor markets.

An important technical implication of Proposition 2 is that, if Ct is log-normal, then so

too is (Ψit, Pt,Λt,Mit). This follows from the fact that all four expressions are log-linear

and all other fundamentals (At,Mt, ϑit, ϕit, zit) are log-normal by assumption. Therefore, if

we can find that Ct is log-normal in equilibrium, our Theorem 1 can be directly applied to

determine the optimal supply function in general equilibrium in a fully non-linear setting.

We will call an equilibrium in which logCt is linear in (logAt, logMt) a log-linear equilibrium.

4.2 From Supply to Aggregate Supply with Fixed Functions

We next characterize aggregate outcomes given a fixed supply function. This allows us to

define the aggregate supply elasticity and describe how it depends on firms’ supply functions.

In particular, we consider a class of economies in which firms’ exogenously set log-linear

supply functions of the form

log pit = α∗
0t,i(α1,t) + α1,t log qit (38)

where α1,t ∈ R is a fixed parameter and α∗
0t,i(α1,t) is the profit-maximizing “intercept”

conditional on this slope. This optimal intercept depends on the slope α1,t, the firm’s beliefs,

and realized demand, but not (independently) on the realized quantity.

Conditional on these supply function choices, we guess and verify that there exists a

unique equilibrium allocation in which aggregate consumption and the price level are log-

linear in aggregate shocks:

logPt = χ0,t(α1,t) + χA,t(α1,t) logAt + χM,t(α1,t) logMt

logCt = χ̃0,t(α1,t) + χ̃A,t(α1,t) logAt + χ̃M,t(α1,t) logMt

(39)

where, in each equation, the “intercepts” and “slopes” depend on α1,t.

Define the posterior weight on the firms’ signals of productivity and the aggregate money
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supply as, respectively,

κA
t =

1

1 +
(

σA,s,t

σA
t

)2 , κM
t =

1

1 +
(

σM,s,t

σM
t

)2 (40)

Moreover, define the slope of supply functions in log zit = η logPt + logΨit as

ω1,t =
α1,t

1 + ηα1,t

(41)

We now characterize equilibrium macroeconomic dynamics with fixed supply functions:

Proposition 3 (Macroeconomic Dynamics with Supply Functions). If all firms use log-

linear supply functions of the form 38, output in the unique log-linear temporary equilibrium

follows:

logCt = χ̃0,t +
1

γ

κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

1

γ

(1− κM
t )(1− ηω1,t)

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (42)

and the aggregate price in the unique log-linear temporary equilibrium is given by:

logPt = χ0,t −
κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

κM
t + ω1,t

γ
(1− κM

t )

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (43)

where χ0,t and χ̃0,t are constants that depend only on parameters (including α1,t) and past

shocks to the economy.

Proof. See Appendix A.5

To build intuition for this result, it is helpful to think of these dynamics as being generated

by a simple AD/AS model, in which productivity shocks shift the AS curve and money shocks

shift the AD curve. Indeed, the dynamics derived in Proposition 3 are formally equivalent

to those that we would have derived if we had written down the following AD/AS model.

Corollary 4 (AD/AS Representation). The dynamics generated in the unique log-linear

equilibrium are equivalent to those of the following “Aggregate Demand and Aggregate Supply”

model:

logPt = log

(
it

1 + it

)
− ϵDt log Yt + logMt (AD)

logPt =
(
χ0,t − ϵSt χ̃0,t

)
+ ϵSt log Yt + (χA,t − ϵSt χ̃A,t) logAt (AS)
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where the inverse supply and demand elasticities are given by:

ϵSt = γ
κM
t + ω1,t

γ
(1− κM

t )

(1− ω1,tη)(1− κM
t )

and ϵDt = γ (44)

Proof. See Appendix A.6.

In this representation, the aggregate demand curve is Equation 32, which combines the

Euler equations for money and bonds with the transversality condition and implies that:

i) the interest rate is a function of exogenous parameters and ii) aggregate consumption

demand has an elasticity of 1/γ to changes in real money balances. Thus, the “inverse

elasticity of aggregate demand” is fixed in our model as γ. The aggregate supply curve

describes the equilibrium relationship between aggregate output and aggregate prices by

aggregating firms’ microeconomic pricing and production decisions conditional on a fixed

inverse supply elasticity (which we will soon endogenize). Note that the elasticity of the

aggregate supply curve intuitively captures the relative response of prices and output to a

monetary shock: ϵSt =
χM,t

χ̃M,t
.

The Propagation of Demand Shocks. To illustrate this representation, we use it to

understand the propagation of a “demand shock,” an increase of the money supply by

logM1 = logM0 = ∆ logM > 0, in Figure 2. The shock shifts up the aggregate demand

curve. The effects of this shock on output and prices depend on the relative size of the

inverse supply and demand elasticities. In particular, prices move more and quantities move

less if ϵS is large. Thus, the state-dependent effects of demand (and supply) shocks hinge on

the slope of the aggregate supply curve.

We can gain some intuition for this formula by expanding out the total effect into a

partial equilibrium effect and a series of higher-order general equilibrium effects:9

∆ logP

∆ logM
=

ϵSt
ϵDt + ϵSt

=

(
κM
t +

ω1,t

γ
(1− κM

t )

)
︸ ︷︷ ︸

PE

×
∞∑
j=0

(
ω1,t

(
η − 1

γ

)
(1− κM

t )

)j

︸ ︷︷ ︸
GE

(45)

To understand the partial equilibrium (PE) effect, observe that when M goes up by

1%, all else equal, real money balances increase by 1%. From the household’s optimality

conditions, this increases their consumption demand by ϵD
−1

t % = 1
γ
%. This has two effects.

First, the firm experiences a 1
γ
% demand shock. As the firm has inverse supply elasticity of

9This summation only converges when
∣∣∣ω1,t

(
η − 1

γ

)
(1− κM

t )
∣∣∣ < 1. Our fixed point arguments establish

that the claimed formulae hold more generally whenever (
∣∣∣ω1,t

(
η − 1

γ

)
(1− κM

t )
∣∣∣ ̸= 1).
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Figure 2: An Aggregate Supply and Demand Representation
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Note: An aggregate supply and demand illustration of dynamics after a shock of size ∆ logM to
the money supply (see Corollary 4).

ω1,t, this leads the firm to increase its prices by ω1,t

γ
%. Second, from the household’s labor

supply condition, real marginal costs increase by γ × 1
γ
% = 1%. As the firm wishes to set

its relative price equal to a constant markup on its real marginal costs, this makes the firm

want to increase prices by 1%. As they have already increased their prices by ω1,t

γ
%, they

would achieve this 1% total price increase by increasing prices by 1 − ω1,t

γ
% in response to

the 1% increase in real marginal costs. However, as firms receive imperfect signals of the

money supply, their posterior means after the 1% shock increase in money and real marginal

costs increase by only κM
t %. Thus, on average, they respond to the increase in marginal

costs by raising prices by κM
t × (1− ω1,t

γ
)%. Thus, in partial equilibrium, the firms increase

their prices on average by ω1,t

γ
+ κM

t × (1− ω1,t

γ
)% = κM

t + ω1,t

γ
(1− κM

t )%, which leads to an

equal-sized effect on the aggregate price level.

To understand the general equilibrium effects, consider a 1% increase in the aggregate

price level. This has three effects. First, as others’ prices have risen by 1%, the firm

experiences an η% demand shock. Second, as the price level has risen by 1%, real money

balances fall and consumption demand falls by 1
γ
%. Together, given the inverse supply

elasticity of ω1,t, these effects lead firms to increase their prices by ω1,t × (η − 1
γ
)%. Third,

from the households’ labor supply condition, the fall in real consumption demand induces a

reduction in real marginal costs by 1
γ
×γ% = 1%. With perfect information of the 1% increase

in the price level, the firm would wish to reduce its price by ω1,t× (η− 1
γ
)%, since this would

imply that its relative price (which would fall by 1%) is maintained as a constant mark-up
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over real marginal costs (which has fallen by 1%). However, as firms are imperfectly informed

of the monetary shock, if a money shock induced a 1% increase in prices, then they would

only on average perceive a κM
t % increase in the price level. Thus, they reduce their prices by

κM
t ×ω1,t×(η− 1

γ
)%. In total, out of a monetarily induced 1% increase in the aggregate price

level, the average increase in firms’ prices is therefore ω1,t × (η − 1
γ
)× (1− κM

t )%. Applying

this logic to the initial κM
t + ω1,t

γ
(1−κM

t )% increase in prices from the PE effect and iterating

it to all subsequent price increases in GE yields Equation 45.

This increase in the aggregate price level is necessarily less than one-for-one to the mon-

etary shock when ϵSt < ∞ as
ϵSt

ϵDt +ϵSt
< 1. Thus, from the household’s consumption demand,

we have that output in the economy increases according to:

∆ log Y

∆ logM
=

1

ϵDt + ϵSt
> 0 (46)

The rich economics of this situation would be absent if price-setting (ω1,t = 0) were ex-

ogenously assumed: the PE effect would be κM
t % and the GE effect would be 0%. More

generally, a novel implication of our model is that general-equilibrium strategic interaction,

known to depend on uncertainty via higher-order beliefs in price-setting models (e.g., Wood-

ford, 2003a) and quantity-setting models (e.g., Angeletos and La’O, 2010), hinges critically

on the slope of the supply function. We will explore in more detail how the inverse supply

elasticity affects aggregate supply in the following analysis.

The Propagation of Supply Shocks. While our study is primarily focused on predic-

tions for the aggregate supply curve and transmission of demand shocks, our model also

makes predictions for the aggregate demand curve and the transmission of supply shocks.

These predictions are mediated by the slope of supply functions.

The response of the economy to a supply shock follows a very similar logic:

∆ logP

∆ logA
= κA

t︸︷︷︸
PE

×
∞∑
j=0

(
ω1,t

(
η − 1

γ

)
(1− κA

t )

)j

︸ ︷︷ ︸
GE

(47)

The PE effect is immediate: firms perceive a κA
t % decrease in their real marginal costs and

adjust their prices by an equal percentage. The GE effectsofo the change in the price level

are identical other than that productivity uncertainty may differ from monetary uncertainty.

Thus, strategic interactions are attenuated by a factor of 1− κA
t rather than 1− κM

t . A key

takeaway from our analysis is that the general equilibrium transmission of shocks crucially

depends on the slope of microeconomic supply curves in the economy.
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4.3 The Elasticity of Aggregate Supply in Temporary Equilibrium

Having demonstrated that the response of the economy to demand and supply shocks can

be understood solely in terms of the slope of the aggregate supply curve, we now formally

investigate how various microeconomic forces affect it.

Corollary 5 (How Microeconomic Forces Affect Aggregate Supply). If firms’ supply curves

are upward-sloping (i.e., ω1,t ∈ [0, 1/η]), then the following statements are true:

1. Steeper microeconomic supply steepens the AS curve: ∂ϵSt
/
∂ω1,t ≥ 0

2. Monetary uncertainty flattens the AS curve: ∂ϵSt
/
∂κM

t ≥ 0.

3. Income effects steepen the AS curve: ∂ϵSt
/
∂γ ≥ 0.

4. Market power flattens the AS curve: ∂ϵSt
/
∂η ≥ 0.

The proof is immediate from differentiation of Equation 44. To understand the first state-

ment, observe that a steeper microeconomic supply function makes prices more responsive to

realized quantity ex-post. At the aggregate level, this implies that the price level is also more

responsive to changes in output. Second, less monetary uncertainty steepens the AS curve

because firms respond to the perceived increase in the money supply by increasing average

prices (as modulated through the intercept α∗
0,t). This reduces variation in real money bal-

ances, thereby attenuating the effect of demand shocks on aggregate output. Third, output

responds less to money balances the higher is γ (cf. Proposition 2). Consequently, a higher

γ steepens the AS curve.

Finally, market power flattens the AS curve. Crucially, this effect is non-zero if and only

if ω1,t ̸= 0, i.e., firms do not undertake pure price-setting. This flattening operates through

the general equilibrium transmission mechanisms of the model. When other firms raise their

prices in response to a money supply shock, firm-level demand increases because the firm’s

relative price is now lower. The magnitude of this demand change is exactly parameterized

by the elasticity of substitution η. If the responsiveness of prices to quantities at the firm level

is non-zero, this demand increase generates an additional price level response. Consequently,

higher market power flattens the AS curve by lowering the responsiveness of firm-level prices

to relative price changes. Our analysis highlights that strategic considerations that arise

from market structure disappear under the well-studied case of pure price-setting (and only

in this case). Thus, we emphasize that monetary models can allow for a non-trivial role for

market power without resorting to a change in their microfoundations, such as the addition

of oligopoly (Mongey, 2021; Wang and Werning, 2022) or more complicated demand curves

(Fujiwara and Matsuyama, 2022).

The precision of private information about the money supply, κM
t , interacts with the slope

of supply functions. An important implication is that existing quantitative results about the
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Figure 3: Aggregate Supply Under Price-Setting and Quantity-Setting

(a) Price-Setting (ω1,t = 0)
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Note: An aggregate supply and demand illustration of dynamics after a shock of size ∆ logM to
the money supply (see Corollary 4) under price-setting (panel a) and quantity-setting (panel b).

influence of uncertainty on the slope of the Phillips curve (e.g., in Woodford, 2003a) depend

on the assumed slope of firms’ supply functions;

Corollary 6 (Aggregate Supply Under Price- and Quantity-Setting). If firms engage in

price-setting (ω1,t = 0), then:

ϵSt = γ
κM
t

1− κM
t

(48)

If firms engage in quantity-setting (ω1,t =
1
η
), then:

ϵSt = ∞ (49)

In particular, the AS curve is vertical under quantity-setting and money cannot have any

real effects. This is not a foregone conclusion, but an equilibrium result. Indeed, quantity-

setting firms could condition their production on their monetary signal and money would

have real effects if they did so.10 However, if firms set quantities, there is no equilibrium in

which firms’ quantities depend on the monetary signal as this is suboptimal. Under price-

setting, money has real effects but market power has no role in shaping the slope of the

aggregate supply curve. Moreover, as ϵSt is increasing in ω1,t, price-setting provides a lower

bound on the inverse elasticity of the aggregate supply curve and therefore maximizes the

real effects of demand shocks. We illustrate these two “extreme” predictions for aggregate

supply and demand in Figure 3.

10As a simple example, setting log qit = sMit is feasible for firms and this would allow money to have real
effects: logCt = const + logMt.
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4.4 The Equilibrium Elasticity of Supply

The final step in our analysis is to endogenize the firm-level inverse supply elasticity as a

best response to equilibrium macroeconomic dynamics. Observe that we have verified that

if firms use log-linear supply functions, then aggregate dynamics are endogenously log-linear

(by Proposition 3). Moreover, we have verified that if aggregate dynamics are log-linear,

then firms’ uncertainty is endogenously log-normal (by Proposition 2). Thus, we have shown

that firms’ supply curves are endogenously log-linear in a log-linear equilibrium (by Theorem

1). By combining all of these results, we reduce the determination of log-linear equilibrium

in the full dynamic economy with functional supply decisions by firms to a single, scalar

fixed-point equation for firms’ transformed inverse supply elasticities:

Theorem 2 (Equilibrium Supply Elasticity Characterization). All (and only all) solutions

ω1,t ∈ (−∞,∞) of the following equation correspond to transformed inverse supply elasticities

in log-linear equilibrium:

ω1,t = Tt(ω1,t) ≡
(η− 1

γ )κA
t

1−ω1,t(η− 1
γ )(1−κA

t )
(σA

t|s)
2 +

1
γ
+(η− 1

γ )κM
t

1−ω1,t(η− 1
γ )(1−κM

t )
(σM

t|s)
2

σ2
ϑ,t +

(
(η− 1

γ )κA
t

1−ω1,t(η− 1
γ )(1−κA

t )

)2

(σA
t|s)

2 +

(
1
γ
+(η− 1

γ )κM
t

1−ω1,t(η− 1
γ )(1−κM

t )

)2

(σM
t|s)

2

(50)

Proof. See Appendix A.7.

This fixed-point equation incorporates the variances and covariances that enter the op-

timal supply function as a function of equilibrium macroeconomic dynamics when firms use

supply functions with transformed inverse supply elasticities ω1,t. This depends on the re-

sponsiveness of aggregate prices and output to aggregate productivity and monetary shocks

as well as the conditional uncertainty about these shocks when firms set their supply func-

tions. Firms’ idiosyncratic uncertainty about demand matters, but firms’ uncertainty about

idiosyncratic productivity and factor prices do not as the variance of marginal costs per se

does not matter for the choice of an optimal supply function.

In the remainder of this section, we will study this equation to understand equilibrium

dynamics. First, we can use this result to establish log-linear equilibrium existence and

provide a bound on the number of equilibria by rewriting the fixed-point equation as a

quintic polynomial in ω1,t:

Proposition 4 (Existence, Number, and Uniqueness of Equilibria). There exists a log-linear

equilibrium. There exist at most five log-linear equilibria.

Proof. See Appendix A.8
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We now study how uncertainty, strategic interactions, and market power shape the ag-

gregate supply elasticity in equilibrium.

A Simple Characterization Under Balanced Strategic Interactions. We first char-

acterize the elasticity of aggregate supply under the parametric condition ηγ = 1. Recall

from our discussion in Section 4.2 that η parameterizes the strength of strategic complemen-

tarities : the additional increase in demand a firm faces from an increase in the aggregate

price level due to a change in relative prices. In contrast, 1/γ parameterizes the strength

of strategic substitutabilities : the reduction in demand a firm faces from an increase in the

aggregate price level due to a reduction in aggregate consumption (that results from the

reduction in real money balances). Hence, ηγ = 1 considers the case when these two strate-

gic interactions exactly balance. This allows us to simplify the fixed point in Equation 50

considerably.

Corollary 7 (Idiosyncratic vs. Aggregate Demand Uncertainty). When ηγ = 1, the unique

inverse elasticity of aggregate supply is

ϵSt = γ
κM
t

1− κM
t

(
1 +

1

γ2ρ2tκ
M
t

)
(51)

where ρt =
σϑ,t

σM
t|s

is the relative uncertainty about demand vs. the money supply.

Proof. See Appendix A.9

First, observe that uncertainty about aggregate productivity does not enter the elasticity

of aggregate supply as ηγ = 1. This is because a perceived increase in aggregate productivity

induces all firms to decrease their prices. In the absence of additional strategic interactions,

firms will not respond to other firms’ price reductions. Hence, the demand state z (Equation

15) is not useful for inference on nominal marginal costs and κA
t does not enter the fixed

point. The same is not true for uncertainty about the money supply, as it induces direct

variation on the demand state z by changing aggregate consumption through real money

balances. Consequently, firms can condition on the demand state z to learn about their real

marginal costs when the money supply is uncertain.

Second, as ρt → ∞, the inverse elasticity of aggregate supply approaches 1
γ

κM
t

1−κM
t
. It

is easily seen that this is the “classic” AS curve that arises from pure price-setting, in

which ω1,t = 0. Intuitively, idiosyncratic demand conditions do not affect a given firm’s

marginal cost. Hence, as idiosyncratic demand becomes relatively more volatile, the firm

optimally sets a constant price to keep its markup over marginal cost constant. Had the

firm chosen ω1,t ̸= 0, the firm would induce unprofitable variation in its price by responding

to idiosyncratic demand conditions.
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Third, as ρt → 0, the inverse elasticity of aggregate supply becomes vertical. Conse-

quently, money has no real no effects on output. It is easily seen that this is the AS curve

that arises from pure quantity-setting (ω1,t =
1
η
), which generates monetary neutrality. In-

tuitively, as uncertainty about the money supply – and therefore the aggregate price level –

increases, firms find it optimal to keep their quantities constant and let their relative price

adjust to demand.

This discussion highlights that relative uncertainty about idiosyncratic vs. aggregate

demand shocks is a crucial determinant of the responsiveness of output to monetary shocks.

Moreover, this feature only becomes relevant once firms are allowed to optimally choose

their supply functions. As Corollary 6 demonstrates, if one were to exogenously impose

price-setting or quantity-setting, the slope of aggregate supply is independent of any feature

of idiosyncratic or aggregate uncertainty other than the signal-to-noise ratio for the money

supply.

Equilibrium Under Dominant-Uncertainty Limits. To better understand how each

source of uncertainty matters, we next characterize how equilibria behave as each source of

uncertainty becomes dominant:11

Corollary 8 (Dominant-Shock Limits). The following statements are true:

1. As σϑ,t → ∞, in any equilibrium ω1,t → 0 (price-setting)

2. As σM
t|s → ∞, in any equilibrium ω1,t → 1

η
(quantity-setting)

3. As σA
t|s → ∞ and ηγ ̸= 1, in any equilibrium ω1,t → 1

η− 1
γ

Proof. See Appendix A.10

The intuition for this result mirrors that of Corollary 7. As idiosyncratic uncertainty

about demand becomes dominant, firms find it optimal to set prices to keep their markup over

real marginal costs constant. As uncertainty about the money supply becomes dominant,

firms become more uncertain about the aggregate price level. Consequently, firms find it

optimal to set quantities and let their relative prices adjust to meet demand. Finally, as

uncertainty about aggregate productivity becomes dominant, firms use the demand state

z to make inferences solely about the realization of aggregate productivity. Under perfect

information, a 1% decrease in productivity would imply that firms raise their prices by 1%.

This translates to an (η − 1
γ
)% increase in demand for a given firm. Since firms would

optimally like to keep their mark-up over marginal cost constant, they infer that this implies

a 1% reduction in productivity, and decrease their prices by
[
1/(η − 1

γ
)
]
%. Observe that

11Formally, we take these limits for σx
t|s and x ∈ {M,A} by scaling σx,s,t and σx

t by a common factor.
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this force implies a downward-sloping supply curve whenever ηγ < 1. Intuitively, if ηγ < 1,

income effects in labor supply are weak and the firm expects a lower real marginal cost when

a positive demand shock hits them.

The (Absent) Role of Total Uncertainty. We have so far seen that the nature of

uncertainty (idiosyncratic vs. aggregate and demand vs. productivity) matters. Thus, the

presence of uncertainty is of central importance to our analysis. However, a distinguishing

feature of the theory that we have developed is that the total level of uncertainty does not

matter. To make this claim formal, fix a scalar λ ≥ 0 and scale all uncertainty in the

economy according to:

(σϑ,t, σz,t, σϕ,t, σA,t, σA,s,t, σM,t, σM,s,t) 7→ (λσϑ,t, λσz,t, λσϕ,t, λσA,t, λσA,s,t, λσM,t, λσM,s,t) (52)

In this sense, λ is a measure of the total level of uncertainty faced by firms. Define the

correspondence ES
t : R+ ⇒ R̄, where ES

t (λ) is the set of equilibrium inverse supply elasticities

for the level of uncertainty λ. We observe the following:

Proposition 5 (Invariance to Uncertainty and Discontinuity in the Limit). For λ > 0,

ES
t (λ) is a constant function and the equilibrium supply elasticity is invariant to the level

of uncertainty. Moreover, ES
t (0) = {∞}. Therefore, the equilibrium supply elasticity is

discontinuous in the zero uncertainty limit:

lim
λ→0

ES
t (λ) ̸= ES

t (0) (53)

Proof. See Appendix A.11

Thus, the predictions that our theory makes for the slope of the aggregate supply curve

are invariant to the level of uncertainty. This distinguishes our theory from models of costly

adjustment of prices or quantities, such as menu cost models (Barro, 1972; Sheshinski and

Weiss, 1977). In these theories, the level of uncertainty matters because it both affects

the probability that firms hit their adjustment thresholds and firms’ optimal adjustment

thresholds. For example, in the standard menu cost model with quadratic payoffs and

Gaussian shocks, greater risk increases the chance that firms adjust their prices and makes

the aggregate supply curve steeper.

Moreover, our model is discontinuous in the zero uncertainty limit. Indeed, ES
t (λ) is

typically neither upper hemi-continuous nor lower hemi-continuous at λ = 0. Thus, even

a vanishingly small level of uncertainty can have significant effects on firm and aggregate

behavior.
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5 Model Meets Data: Aggregate Supply in the US

In this final section, we study our model’s implications for the slope of aggregate supply in

the United States. We find that our model can explain a quantitatively significant portion

of the secular flattening of aggregate supply from the 1980s to the Great Moderation due

to changing relative uncertainty about inflation versus demand. The model explains even

more of this flattening if we allow for an upward trend in market power. Our model remains

consistent with a relatively flat aggregate supply curve in the Great Recession, since this

period is characterized by a spike in real rather than nominal uncertainty (at the micro

and macro levels), and a pronounced increase in the supply curve’s slope in the post-Covid

period, due to a resurgence of inflation and cost shocks.

5.1 Mapping the Data to the Model

Our model provides explicit formulae for the firm-level inverse supply elasticity ω1,t (Theorem

1) and the inverse elasticity of aggregate supply ϵSt (Corollary 4). To obtain estimates of

these quantities, we need to know two sets of objects: the structural parameters (η, γ) and

firms’ time-varying uncertainty. We summarize our calibration in Table 1 and describe the

details below.

Structural Parameters. We set the price elasticity of demand at η = 9, based on the

study of Broda and Weinstein (2006). These authors use comprehensive panel data on US

imports to estimate demand curves at the level of disaggregated products. This is, usefully

for our purposes, direct evidence for the slope of demand curves, as opposed to indirect

evidence from matching average product markups under the assumption that firms are full-

information price setters. Later, in an extension, we study the effects of a secular downward

trend in η (i.e., a secular upward trend in market power) over our studied time period (1960-

2022). We set the size of income effects at γ = 0.095, based on the calibration in Flynn and

Sastry (2022) for the cyclicality of US real wages. This is the relevant moment in our model

given Proposition 2. We will later perform a full sensitivity analysis of these choices (see

Figure 17).

Time-Varying Uncertainty. We next need to estimate firms’ time-varying uncertainty

about aggregate prices Pt, demand Ψit, and real marginal costs Mit. To our knowledge,

there are no datasets that directly measure firms’ potentially correlated uncertainty about

both microeconomic and macroeconomic objects. Our approach is to proxy for this using

time-varying statistical uncertainty about macroeconomic aggregates implied by a GARCH

model and assumptions, based on the existing literature, about the systematic relation-
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ship between macroeconomic and microeconomic uncertainty. This gives us estimates of

(σ2
P,t, σ

2
Ψ,t, σM,Ψ,t, σP,Ψ,t, σM,P,t). We then choose a time-invariant value of κM , the quality of

firms’ signal of the money supply, to target a sample-average aggregate supply slope of 0.15.

To estimate our model of macroeconomic uncertainty, we use quarterly-frequency US data

on real GDP, the GDP deflator, and capacity-utilization adjusted total factor productivity

(TFP) (Basu et al., 2006; Fernald, 2014) from 1960Q1 to 2022 Q4. Thus, our mapping from

model to data considers quarterly-frequency decisions.

We map these variables to our general equilibrium model from Section 3 as follows. First,

by Proposition 2, the model-implied demand shock is Ψit = Ytϑit, where Yt is aggregate real

GDP (i.e., “aggregate demand”) and ϑit is a firm-specific demand shock that is, by construc-

tion, orthogonal to aggregate conditions. Thus, we can decompose σ2
Ψ,t = σ2

Y,t + σ2
ϑ,t, where

the latter two terms are respectively the perceived variances of log Yt and log ϑit. Second,

we may use Proposition 2 to obtain that real marginal costs are Mit = (ϕitY
γ)/(ζitAt).

However, as the firm-level factor price shock ϕit and productivity shock ζit are idiosyncratic

and we only need to measure the covariances of Mit with Ψit and Pt, we do not need to

measure ϕit or ζit. Thus, it is sufficient for us to measure the common component of real

marginal costs Mt = Y γ
t /At. We use capacity-adjusted TFP as our measure of At.

Finally, we assume that uncertainty about idiosyncratic demand is directly proportional

to uncertainty about aggregate marginal costs, or σ2
ϑ,t = R2σ2

M,t. We justify this based

on the finding of Bloom et al. (2018) that the stochastic volatility of TFPR among man-

ufacturing firms (“micro volatility”) is well modeled as directly proportional to stochastic

volatility in aggregate conditions (“macro volatility”). This justification relies on an as-

sumption that TFPR dispersion is primarily driven by demand shocks. This assumption is

consistent with the findings of Foster et al. (2008) that cross-firm variation in revenue total

factor productivity (TFPR) derives almost exclusively from demand differences rather than

marginal cost differences within specific industries. Based on the quantitative findings of

Bloom et al. (2018), we take R = 6.5 as a baseline. In an extension, to examine robustness

to this proportionality assumption, we directly use (annual) data on TFPR dispersion from

Bloom et al. (2018) to perform our calculation and find very similar results.

We next estimate time-varying uncertainties regarding inflation, real output, and real

marginal costs using a multivariate GARCH model. In particular, letting Zt denote the

vector (∆ logPt,∆ log Yt,∆ logMt), we model

Zt = AZt−1 + εt, εt ∼ N(0,Σt), Σt = D
1
2
t CD

1
2
t (54)

where A is a matrix of AR(1) coefficients, Dt is a diagonal matrix of time-varying variances
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(and D
1
2
t is a diagonal matrix of standard deviations), and C is a static matrix of correlations.

We assume that each diagonal element of Dt, denoted as σ2
i,t, evolves according to:

σ2
i,t = si + αiε

2
i,t−1 + βiσ

2
i,t−1 (55)

with unknown constant si and coefficients (αi, βi). Formally, this is a GARCH(1,1) model

with constant conditional correlations (Bollerslev, 1990). In our context, the restriction to

constant correlations restricts the covariances in Equation 13 to move in proportion to the

variances and thus rules out the possibility that the correlation structure among output,

prices, and marginal costs varies over time. We estimate all of the parameters via joint

maximum likelihood.

From this, we derive maximum-likelihood point estimates of every element of Σt, which

correspond to the variances in the (Gaussian) conditional forecast of Zt. Letting σ̂t denote

the point estimates of specific elements of that matrix, we directly obtain σ̂2
P,t and σ̂2

M,P,t

from the GARCH model and then we compute:

σ̂2
Ψ,t = σ̂2

Y,t +R2σ̂2
M,t , σ̂M,Ψ,t = σ̂M,Y,t , σ̂Ψ,P,t = σ̂Y,P,t (56)

We plot our estimates of these objects in Figure 14 in the Appendix. We observe that our

estimates of demand uncertainty are an order of magnitude larger than our estimates of

other uncertainties. This is natural given our large assumed value of R. But this does not

necessarily imply that demand uncertainty is the only influential force shaping the slope of

microeconomic or macroeconomic supply, since uncertainties enter our formulas in interaction

with the slope of demand. We will return to this point when presenting our results.

Estimates of Model Objects. Armed with these estimates, we calculate our empirical

proxies for the firm-level inverse supply elasticity as simple plug-in estimates:

α̂1,t =
ησ̂2

P,t + σ̂M,Ψ,t + σ̂P,Ψ,t + ησ̂M,P,t

σ̂2
Ψ,t − ησ̂M,Ψ,t + ησ̂P,Ψ,t − η2σ̂M,P,t

and ω̂1,t =
α̂1,t

1 + ηα̂1,t

(57)

Our calculation captures uncertainty about outcomes realized in quarter t and is measur-

able in data from quarter t−1 and prior. It therefore describes incentives of a decisionmaker

fixing a choice for quarter t based on their uncertainty at the end of quarter t − 1. We

similarly compute our estimate of the inverse elasticity of aggregate supply:

ϵ̂St = γ
κM + ω̂1,t

γ
(1− κM)

(1− ω̂1tη)(1− κM)
(58)
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Table 1: Model Parameters and Estimation Approach

Parameter Interpretation Method Value
η Price elas. of demand Match Broda and Weinstein (2006) 9
γ Income effects Match Flynn and Sastry (2022) 0.095
κM Prec. of monetary info. Match average slope of aggregate supply 0.40
σ2
P,t Price uncertainty GARCH Model Fig. 14

σ2
Ψ,t Demand uncertainty GARCH + match Bloom et al. (2018) Fig. 14

σM,Ψ,t Cost-demand covariance GARCH model Fig. 14
σP,Ψ,t Pice-demand covariance GARCH model Fig. 14
σM,P,t Cost-price covariance GARCH model Fig. 14

Note: Description of model parameters, how we interpret them, how we estimate them, and their
values. The time series for the time-varying uncertainties are presented in Figure 14. The text of
Section 5.1 describes our methods in full detail.

Given our earlier estimates, this is pinned down given a single unknown parameter, the

precision of private information about the money supply, κM . As mentioned earlier, we set

κM so that the average ϵ̂St from 1960 to 2022 is 0.15. This yields a value of κM = 0.40.

5.2 Results: Aggregate Supply Over Time

Figure 4 plots our main, quarterly-frequency estimates from Equation 58 from 1960 Q1

to 2022 Q4. Aggregate supply was relatively flat in the 1960s, steepened in the 1970s

and 1980s, before flattening again during the Volcker disinflation. Furthermore, aggregate

supply was notably flat during the Great Moderation leading up to the financial crisis and

then steepened again after the Covid-19 pandemic. Figure 15 plots our secondary, annual-

frequency estimates that directly incorporate data on microeconomic uncertainty from Bloom

et al. (2018). These estimates imply an even more dramatic flattening from the 1970s to the

Great Moderation, although we cannot use them to make predictions for the 1960s or 2020s

as the estimates from Bloom et al. (2018) do not cover these periods.

Our estimates are consistent with external estimates of the time-varying slope of aggre-

gate supply. In Figure 4, we indicate estimates of the slope of aggregate supply by Hazell

et al. (2022) with a blue dashed line and estimates by Ball and Mazumder (2011) with a

red dotted line. The former authors use state-level data on unemployment and inflation and

an instrumental variables (IV) strategy based on isolating state-level demand shocks. The

latter authors use aggregate data on the output gap and inflation and measure their uncondi-

tional relationship; in the presence of confounding supply shocks, this should systematically

understate the slope of aggregate supply.
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Figure 4: The Slope of Aggregate Supply Over Time
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 57 and 58. The blue dashed line indicates the estimates of Hazell et al. (2022), based
on state-level estimates of consumer prices and unemployment and an identification strategy that
isolates local demand shocks (columns 3 and 4, panel B, of Table II). The red dotted line indicates
the estimates of Ball and Mazumder (2011), based on aggregate data (column 4 of Table 3).

In Table 2, we quantitatively compare our model’s estimates for the flattening of the AS

curve during the Great Moderation with those of the aforementioned references. The model

with changing uncertainties but fixed structural parameters can explain 51% of the flattening

estimated by Hazell et al. (2022) and 84% of the flattening estimated by Ball and Mazumder

(2011). By an equivalent calculation, our model can also explain 54% of the latter authors’

estimated steepening of aggregate supply between 1960-1972 and 1973-1984.

Mechanisms: Which Uncertainties Matter More? The time variation in our esti-

mate of ϵSt arises from time-varying uncertainty about several objects. To better understand

the role of each component of the calculation, we perform a variant calculation in which

we hold each uncertainty term fixed at its sample average, one by one. We plot the re-

sults in Figure 5. The combination of time-varying uncertainty about the price-level and

time-varying uncertainty about the relationship between prices and (real) marginal costs

helps quantitatively explain the overall flattening from the 1970s into the Great Moderation.

While uncertainty about demand is large, and features significant high-frequency variation

(see Appendix Figure 14), it is not essential for our low-frequency predictions. By con-

37



Table 2: The Flattening Aggregate Supply Curve: Theory vs. Evidence

HHNS (2022) BM (2011)

Pre-Period
Period 1978-1990 1973-1984
Data 0.198 0.371

Model: Uncertainty Only 0.166 0.223
Model: + Mkt. Power Trend 0.182 0.262

Post-Period
Period 1991-2018 1985-2007
Data 0.090 0.136

Model: Uncertainty Only 0.119 0.104
Model: + Mkt. Power Trend 0.108 0.104

Flattening
Data 55% 63%

Model: Uncertainty Only 28% 53%
Model: + Mkt. Power Trend 41% 60%

Note: Comparison of model predictions and literature estimates for the long-run flattening of the
aggregate supply curve from Hazell et al. (2022) and Ball and Mazumder (2011). The “Uncertainty
Only” model is the baseline with fixed elasticity of demand η = 9 (Figure 4). The “+ Market
Power Trend” model is the “Small Change” scenario (Figure 6), which introduces a linear trend
from η = 12 in 1960 to η = 6 in 2022. “Flattening” is 100 · (1− SlopePost/SlopePre).

trast, incorporating demand uncertainty is essential to avoid predicting a large spike in the

aggregate supply slope in the first several quarters of the Covid-19 lockdown.

Market Power and the Flattening Supply Curve. A recent literature has suggested

that market power, as measured by rising mark-ups, has risen throughout time (De Loecker

et al., 2020; Edmond et al., 2023; Demirer, 2020). Combined with our theoretical finding

that increased market power flattens aggregate supply under plausible parameter values, this

suggests another potentially relevant culprit for the long-run flattening of supply. To study

this possibility, we now consider alternative calibrations of the model in which we allow a

secular downward trend in the elasticity of demand faced by firms. We consider a “small

change” in which η linearly declines from 12 to 6 and a more exaggerated “large change” in

which η linearly declines from 15 to 3.

Introducing a decline in market power increases the slope of aggregate supply in the 1970s

and decreases the slope in modern times (Figure 6). In Table 2, we observe that adding the

“small change” in market power allows us to fit 75% of the flattening measured by Hazell

et al. (2022) and 95% of the flattening measured by Ball and Mazumder (2011). The more

extreme scenario for market power (the red dotted line in Figure 6) allows our model to

explain a greater flattening, but incorrectly predicts a relatively flat aggregate supply curve

in the 2020s.
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Figure 5: Deconstructing the Slope of Aggregate Supply: Which Uncertainties Matter?
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 57 and 58, holding fixed one component of uncertainty at a time. The grey solid line
corresponds to the baseline estimate from Figure 4.

Supply over a Longer Time Period. In our main analysis, we focus on the period

after 1960. In an extension, we consider all data since World War II. This necessitates

estimating a different GARCH model for macroeconomic uncertainty, so in principle, it

could affect our estimates for the entire sample. We plot the results in Appendix Figure

16. We find very comparable estimates from 1960 onward, and a very large and volatile

slope of aggregate supply between 1947 and 1960. The latter finding is consistent with there

being large volatility in the money supply and the price level in the wake of the War and

the Bretton Woods agreement.

Robustness and Sensitivity Analysis. Finally, in Appendix Figure 17 we report the

robustness of these findings to different calibrations of η, R, and γ. Specifically, we re-

calibrate the model to match the average slope of 0.15 and check how different assumptions

affect our model’s predictions for the long-run flattening during the Great Moderation. We

predict a larger flattening under larger assumed values of η, which exacerbate the effect of

changing inflation uncertainty; smaller R, which allows inflation uncertainty to play a larger

role in the calculation; and larger γ, which makes real wages more cyclical, especially in the

1970s.
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Figure 6: Rising Market Power and Flattening Aggregate Supply
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(b) Implications for Aggregate Supply
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Note: This Figure plots the inverse elasticity of aggregate supply under different scenarios of
declining market power (Panel b). The solid line keeps η constant at 9 and corresponds to our
baseline estimates. The blue, dashed line (“small change”) assumes a linear decline in η from 12
to 6 over the time sample. The red, dotted line assumes a linear decline in η from 15 to 3 over the
time sample.

6 Conclusion

In this paper, we enrich firms’ supply decisions by allowing them to choose an arbitrary

supply function that describes the price charged at each quantity of production. We show

how to model supply functions in a macroeconomic setting and characterize how the optimal

supply function depends on the elasticity of demand and the nature of uncertainty that

firms face. Our framework yields rich implications when embedded in an otherwise standard

monetary business cycle model. We find that greater market power and increased uncertainty

about the price level relative to demand endogenously steepen the slope of aggregate supply.

When mapped to the data, our theory explains the long-run flattening of the aggregate

supply curve as an outcome of more hawkish monetary policy and rising market power.

On the basis of our analysis, we argue that supply schedules warrant serious consideration

as an alternative model of firm conduct in macroeconomics for three core reasons. First,

most existing work assumes that firms set a price in advance and commit to supply at

the market-clearing quantity. Our results emphasize that this is not generally an optimal

way for a firm to behave and that the macroeconomic conclusions that one draws about

the effects of uncertainty, the propagation of monetary and productivity shocks, and the

role of market power are highly sensitive to this choice. For example, the price-setting
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assumption maximizes the degree of monetary non-neutrality and leaves no role for market

power. Second, we have shown that working with supply schedules is analytically tractable

under the standard assumptions in the literature, making them a viable alternative. Finally,

taking the supply-schedule perspective yields economic predictions that are consistent with

broad trends in US aggregate supply over the last 60 years.

Within the context of supply schedules and the macroeconomy, our study is only a first

exploration; there remains much to examine, both empirically and theoretically. We high-

light two particularly salient implications of our analysis that we leave open to future work.

First, our work highlights the importance of firm-level supply elasticities as a critical moment

for the business cycle. Empirical work that measures such elasticities and investigates how

they systematically vary would be highly valuable for disciplining richer models with supply

schedules. Such work would require detailed firm-level data on both prices and quantities.

Second, it would be interesting to examine the conduct of optimal monetary policy in a

setting with supply schedule choice. We have shown that more volatile monetary policy

(perhaps associated with more discretionary monetary policy) can be self-defeating by mak-

ing the economy endogenously less responsive to monetary stimulus. A complete normative

analysis of this issue is an interesting avenue for future research.
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Appendices

A Omitted Proofs

A.1 Proof of Proposition 1

To derive the optimal price, we take the first-order condition of Equation 6. This yields:

ηp∗
−η−1E [ΛMP ηΨ] = (η − 1)p∗

−ηE
[
ΛP η−1Ψ

]
(59)

which rearranges to Equation 7. Substituting p∗ into Equation 6, we obtain Equation 8:

V P = E

[
Λ

(
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P
−M

)
Ψ

(
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P

)−η
]

= E
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− 1
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1
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(
η

η − 1
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1−η E

[
ΛP η−1Ψ

]η
(60)

where ξP = E [ΛMP ηΨ] and ζP = E [ΛP η−1Ψ].

To derive the optimal quantity, we take the first-order condition of Equation 9. This

yields:

E [ΛM] =
η − 1

η
q∗

− 1
η E[ΛΨ

1
η ] (61)

which rearranges to Equation 10. Substituting q∗ into Equation 9, we obtain Equation 11:

V Q = E
[
Λ

(( x
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η −M
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q
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(62)

where ξQ = E [ΛM] and ζQ = E[ΛΨ
1
η ].

To find ∆, we first write V P − V Q as:

∆ = η(log ζP − log ζQ)− (η − 1)(log ξP − log ξQ) (63)
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Thus, it suffices to compute (ζP , ζQ, ξP , ξQ). Given log-normality of (Ψ, P,Λ,M), we may

write: 
log Ψ

logP

log Λ

logM

 ∼ N




µΨ

µP

µΛ

µM

 ,


σ2
Ψ σΨ,P σΨ,Λ σΨ,M

σΨ,P σ2
P σP,Λ σP,M

σΨ,Λ σP,Λ σ2
Λ σΛ,M

σΨ,M σP,M σΛ,M σ2
M


 (64)

To compute the second term of Equation 63, we compute:

log ξP = logE [ΛMP ηΨ] = logE [exp{log Λ + logM+ η logP + logΨ}]

= µΛ + µM + ηµP + µΨ +
1

2

(
σ2
Λ + σ2

M + η2σ2
P + σ2

Ψ

)
+ σΛ,M + ησΛ,P + σΛ,Ψ + ησM,P + σM,Ψ + ησP,Ψ

(65)

and

log ξQ = logE[ΛM] = logE[exp{log Λ + logM}]

= µΛ + µM +
1

2

(
σ2
Λ + σ2

M
)
+ σΛ,M

(66)

Thus, the second term of Equation 63 is given by:

(η − 1)(log ξP − log ξQ) = (η − 1)

[
ηµP + µΨ +

1

2

(
η2σ2

P + σ2
Ψ

)
+ ησΛ,P + σΛ,Ψ + ησM,P + σM,Ψ + ησP,Ψ

] (67)

To compute the first term of Equation 63, we compute:

log ζP = logE
[
ΛP η−1Ψ

]
= logE[exp{log Λ + (η − 1) logP + logΨ}]

= µΛ + (η − 1)µP + µΨ +
1

2

(
σ2
Λ + (η − 1)2σ2

P + σ2
Ψ

)
+ (η − 1)σΛ,P + σΛ,Ψ + (η − 1)σP,Ψ

(68)

and

log ζQ = logE
[
ΛΨ

1
η

]
= logE

[
exp

{
log Λ +

1

η
log Ψ

}]
= µΛ +

1

η
µΨ +

1

2

(
σ2
Λ +

1

η2
σ2
Ψ

)
+

1

η
σΛ,Ψ

(69)
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Thus, the first term of Equation 63 is given by:

η(log ζP − log ζQ) = η

[
(η − 1)µP +

η − 1

η
µΨ +

1

2

(
(η − 1)2σ2

P +

(
1− 1

η2

)
σ2
Ψ

)

+ (η − 1)σΛ,P +
η − 1

η
σΛ,Ψ + (η − 1)σP,Ψ

] (70)

Taking the difference between the two terms, we obtain Equation 13:

∆ =
1

2

[(
η(η − 1)2 − η2(η − 1)

)
σ2
P +

(
η

(
1− 1

η2

)
− (η − 1)

)
σ2
Ψ

]
− η(η − 1)σM,P − (η − 1)σM,Ψ

=
1

2

(
η − 1

η
σ2
Ψ − η(η − 1)σ2

P − 2(η − 1)σM,Ψ − 2η(η − 1)σM,P

) (71)

This completes the derivation of Equation 13. The comparative statics in the variance

terms are immediate from the expression. The comparative statics for sgn(∆) come from

inspection of the expression for ∆/(η−1), which has the same sign as ∆ under the maintained

assumption that η > 1.

A.2 Proof of Theorem 1

Proof. We first derive Equation 15 using variational methods. Consider a variation p̃(z) =

p(z) + εh(z). The expected payoff under this variation is:

J(ε;h) =

∫
R4
++

Λ

(
p(z) + εh(z)

P
−M

)
z (p(z) + εh(z))−η dG (Λ, P,M, z) (72)

A necessary condition for the optimality of a function p is that Jε(0;h) = 0 for all F−measurable

h. Taking this derivative and setting ε = 0, we obtain:

0 =

∫
R4
++

[
Λ
h(z)

P
zp(z)−η − ηΛh(z)

(
p(z)

P
−M

)
zp(z)−η−1

]
dG (Λ, P,M, z) (73)

Consider h functions given by the Dirac delta functions on each z, h(z) = δz. This condition

becomes:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M, t) dΛdP dM (74)
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for all t ∈ R++. This is equivalent to:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M|t) dΛdP dM

= (1− η)E
[
Λ
1

P
|z = t

]
tp(t)−η + ηE [ΛM|z = t] tp(t)−η−1

(75)

Thus, we have that an optimal solution necessarily follows:

p(t) =
η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]
(76)

as claimed in Equation 15.

We now evaluate the expectations. Using log-normality,

E[ΛM|z = t] = exp

{
µΛ|z(t) + µM|z(t) +

1

2
σ2
Λ|z +

1

2
σ2
M|z + σΛ,M|z

}
E[ΛP−1|z = t] = exp

{
µΛ|z(t)− µP |z(t) +

1

2
σ2
Λ|z +

1

2
σ2
P |z − σΛ,P |z

} (77)

where µX|z = E[logX| log z] and σX,Y |z = Cov[logX, log Y | log z]. Thus,

E[ΛM|z = t]

E[ΛP−1|z = t]
= exp

{
µM|z(t) + µP |z(t) +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z

}
(78)

Using standard formulas for Gaussian conditional expectations,

µM|z(t) =

(
1− σM,z

σ2
z

)
µM +

σM,z

σ2
z

log t

σ2
M|z = σ2

M − σ2
M,z

σ2
z

σΛ,M|z = σΛ,M − σΛ,zσM,z

σ2
z

µP |z(t) =

(
1− σP,z

σ2
z

)
µP +

σP,z

σ2
z

log t

σ2
P |z = σ2

P − σ2
P,z

σ2
z

σΛ,P |z = σΛ,P − σΛ,zσP,z

σ2
z

(79)

where:
σ2
z = σ2

Ψ + η2σ2
P + 2ησΨ,P

σM,z = σM,Ψ + ησM,P

σP,z = σP,Ψ + ησ2
P

σΛ,z = σΛ,Ψ + ησΛ,P

(80)

We now combine these expressions with Equation 76 to derive the optimal supply func-

tion. We first observe that

log p = ω0 + ω1 log t (81)
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where:

ω0 = log
η

η − 1
+

(
1− σM,z

σ2
z

)
µM +

(
1− σP,z

σ2
z

)
µP +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z (82)

ω1 =
σM,z + σP,z

σ2
z

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + η2σ2

P + 2ησΨ,P

(83)

Next, using the demand curve, we observe that z = qpη. Therefore, log t = log q − η log p.

Substituting this into Equation 81, and re-arranging, we obtain

log p = α0 + α1 log q (84)

where:

α0 =
ω0

1− ηω1

, α1 =
ω1

1− ηω1

(85)

We finally derive the claimed expression for α1,

α1 =

σM,Ψ+ησM,P+σP,Ψ+ησ2
P

σ2
Ψ+η2σ2

P+2ησΨ,P

1− η
σM,Ψ+ησM,P+σP,Ψ+ησ2

P

σ2
Ψ+η2σ2

P+2ησΨ,P

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + ησΨ,P − ησM,Ψ − η2σM,P

(86)

Completing the proof.

A.3 Proof of Corollary 1

Proof. If 2ησM,P + σM,Ψ ≥ σP,Ψ, then the denominator of Equation 17 is decreasing in

η. Moreover, if σM,P ≥ 0, the numerator is increasing in η. Hence, α1 is increasing in η

whenever α1 > 0.

A.4 Proof of Proposition 2

Proof. We first derive Equation 32. From Equations 30 and 31, we obtain:

1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(87)

It follows that:
1

Mt

= βitEt

[
C−γ

t+1

1

Pt+1

]
=

it
1 + it

C−γ
t

1

Pt

(88)
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where the second equality uses Equation 31 once again. This rearranges to Equation 32.

We next derive Equation 35. Substituting equation 32 into Equation 31, we obtain:

1 + it
it

1

Mt

= β(1 + it)Et

[
1 + it+1

it+1

1

Mt+1

]
(89)

Dividing both sides by (1 + it), multiplying by Mt, and then adding one, we obtain:

1 + it
it

= 1 + βEt

[
1 + it+1

it+1

Mt

Mt+1

]
= 1 + βEt

[
exp{−µ− σM

t εMt }1 + it+1

it+1

]
(90)

where the second equality exploits the fact that Mt follows a random walk with drift. If we

guess that it is deterministic and define xt =
1+it
it

, then we obtain that:

xt = 1 + δtxt+1 (91)

where:

δt = β exp

{
−µ+

1

2
(σM

t )2
}

(92)

We observe that δt ∈ [0, β] for all t due to the assumption that 1
2
(σM

t )2 ≤ µM . Solving this

equation forward, we obtain that:

xt = 1 + δt

T−1∑
i=1

i∏
j=1

δt+j + δt

(
T∏

j=1

δt+j

)
xt+T+1 (93)

Taking the limit T → ∞, this becomes:

xt = 1 + δt

∞∑
i=1

i∏
j=1

δt+j + δt lim
T→∞

(
T∏

j=1

δt+j

)
xt+T+1 (94)

where the final term can be bounded using the fact that δt ∈ [0, β]:

0 ≤ δt lim
T→∞

(
T∏

j=1

δt+j

)
xt+T+1 ≤ lim

T→∞
βT+1xt+T+1 (95)

The household’s transversality condition ensures that this upper bound is zero. Formally,

the transversality condition (necessary for the optimality of the household’s choices) is that:

lim
T→∞

βT C
−γ
T

PT

(MT + (1 + iT )BT ) = 0 (96)
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Moreover, as Bt = 0 for all t ∈ N, this reduces to limT→∞ βT C−γ
T

PT
MT = 0. By Equation 88,

we have that xt

Mt
=

C−γ
t

Pt
. Thus, the transversality condition reduces to limT→∞ βTxT = 0.

Combining this with Equation 95, we have that limT→∞
(∏T

j=1 δt+j

)
xt+T+1 = 0. Equation

35 follows:

1 + it
it

= 1 + β exp{−µ+
1

2
(σM

t )2}
∞∑
i=1

i∏
j=1

β exp{−µ+
1

2
σ2
M,t+j} (97)

The formulae in Equation 37 then follow. In particular, Ψit = ϑitCt follows from comparing

Equations 2 and 36. Pt =
it

1+it
C−γ

t Mt follows from Equation 32. Λt = C−γ
t is the households

marginal utility from consumption. Finally, Mit =
1

zitAt

wit

Pt
=

ϕitC
γ
t

zitAt
follows from Equation

29.

A.5 Proof of Proposition 3

Proof. We suppress dependence on t to ease of notation. Consider a plan:

log pi = log α̃0,i + α1 log qi (98)

where α̃0,i = eα0,i . The demand-supply relationship that the firm faces is:

log pi = −1

η
(log qi − log Ψ) + logP (99)

The realized quantity therefore is:

log qi =
−η

1 + ηα1

log α̃0,i +
1

1 + ηα1

log ΨiP
η (100)

and the realized price is:

log pi =
1

1 + ηα1

log α̃0,i +
α1

1 + ηα1

log ΨiP
η (101)

It is useful to make the change of variables ω1 =
α1

1+ηα1
, which implies that we may write

log pi = (1− ηω1) log α̃0,i + ω1 log ΨiP
η (102)
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Our goal is to express dynamics only as a function of ω1. We first find the optimal α0,i in

terms of ω1. The firm therefore solves:

max
α̃0,i

Ei

[
Λ
(pi
P

−Mi

)(pi
P

)−η

Ψi

]
(103)

Substituting for the realized price using the demand-supply relationship yields:

max
α̃0,i

E

[
Λ

(
α̃1−ηω1

0,i

P
(ΨiP

η)ω1 −Mi

)
α̃η2ω1−η
0,i (ΨiP

η)1−ηω1

]
(104)

The optimal α̃0,i is:

α̃1−ηω1

0,i =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(105)

Substituting back into the realized price yields:

pi =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(ΨiP
η)ω1 (106)

We may express this only in terms of P by using Proposition 2, where we let I = 1+i
i

for

ease of notation:

pi =
η

η − 1

Ei

[
ϕ(ziA)

−1

(
ϑiI

− 1
γP− 1

γM
1
γ

i P
η

)1−ηω1
]

Ei

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1

i ϑ1+ω1−ηω1P (η− 1
γ )(1+ω1−ηω1)

]
×
(
ϑiI

− 1
γM

1
γ

i P
η− 1

γ

)ω1

(107)

Given the ideal price index formula (Equation 23), P must satisfy the aggregation:

P 1−η = E
[
ϑip

1−η
i

]
(108)

where the expectation is over the cross-section of firms. We guess and verify that the

aggregate price is log-linear in aggregates

logP = χ0 + χA logA+ χM logM (109)
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Moreover, if the pi are log-normally distributed (we will verify this below), then:

logP = E[log pi] +
1

2(1− η)
Var((1− η) log pi) + constants (110)

We first simplify the numerator of the first term by collecting all the terms involving sAi

and sMi :

logEi

[
ϕi(ziA)

−1
(
ϑI−

1
γP− 1

γM
1
γP η

)1−ηω1
]
=

[
−κA + κA

(
η − 1

γ

)
χA(1− ηω1)

]
sAi

+

[
χM

(
η − 1

γ

)
(1− ηω1)κ

M +
1

γ
(1− ηω1)κ

M

]
sMi + constants

(111)

where the constants are independent of signals. We similarly simplify the denominator of

the second term:

logEi

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]
=[

χA

(
η − 1

γ

)
(1 + ω1 − ηω1)κ

A

]
sAi

+

[[
1

γ
(1 + ω1 − ηω1)− 1

] (
κM
)
+ χM

(
η − 1

γ

)
(1 + ω1 − ηω1)

(
κM
)]

sMi

+ constants

(112)

where the constants are again independent of signals. Finally, we can simplify the last term:

log
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

= ω1χA

(
η − 1

γ

)
logA+ ω1

[
χM

(
η − 1

γ

)
+

1

γ

]
logM + constants

(113)

where the constants are independent of the aggregate shocks. Hence, log pi is indeed normally

distributed and its variance is independent of the realization of aggregate shocks. We can

now collect terms to verify our log-linear guess. Substituting the resulting expression for

log pi and our guess for logP from Equation 109 into Equation 110, and solving for χA by

collecting coefficients on logA yields:

χA = − κA

1− ω1

(
η − 1

γ

)
(1− κA)

(114)
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We may similarly solve for χM :

χM =
κM + ω1

γ
(1− κM)

1− ω1

(
η − 1

γ

)
(1− κM)

(115)

This proves the dynamics for the price level. The dynamics for consumption then follow

from Proposition 2.

A.6 Proof of Corollary 4

Proof. Using Equation 42 and market clearing Ct = Yt, we have:

logMt =
1

χ̃M,t

(log Yt − χ̃A,t logAt − χ̃0,t) (116)

Substituting for logMt in Equation 43 then yields Equation AS. Doing a similar substitution

for logAt in Equation 42 then yields Equation AD. Note that this can also be derived by

taking logarithms of

Pt =
it

1 + it

C−γ
t

Mt

(117)

in Proposition 2.

A.7 Proof of Theorem 2

Proof. We suppress dependence on t for ease of notation. We have χM and χA as a function

of ω1 from Proposition 3. We also know that:

ω1 =
σMi,z + σP,z

σ2
z

(118)
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from Equation 83. As zi = ϑi

(
i

1+i

) 1
γ M

1
γP η− 1

γ and Mi = ϕi(ziA)
−1 i

1+i
M
P
, we have that:

σMi,z = Cov

(
−(1 + χA) logA+ (1− χM) logM, (η − 1

γ
)χA logA+ (

1

γ
+ (η − 1

γ
)χM) logM

)
= −(η − 1

γ
)χA(1 + χA)σ

2
A + (1− χM)(

1

γ
+ (η − 1

γ
)χM)σ2

M

σP,z = Cov

(
χA logA+ χM logM, (η − 1

γ
)χA logA+ (

1

γ
+ (η − 1

γ
)χM) logM

)
= (η − 1

γ
)χ2

Aσ
2
A + χM(

1

γ
+ (η − 1

γ
)χM)σ2

M

σ2
z = σ2

ϑ + (η − 1

γ
)2χ2

Aσ
2
A + (

1

γ
+ (η − 1

γ
)χM)2σ2

M

(119)

Thus:

ω1 =
−(η − 1

γ
)χAσ

2
A + ( 1

γ
+ (η − 1

γ
)χM)σ2

M

σ2
ϑ + (η − 1

γ
)2χ2

Aσ
2
A + ( 1

γ
+ (η − 1

γ
)χM)2σ2

M

(120)

Note that the optimal ω1 is common across all firms i. We may express this in fully reduced

form as:

ω1 = T (ω1) =
(η − 1

γ
) κA

1−ω1(η− 1
γ )(1−κA)

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)σ2
M

σ2
ϑ + (η − 1

γ
)2
(

κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)2σ2
M

(121)

or

ω1 = T (ω1) =

(η− 1
γ )κA

1−ω1(η− 1
γ )(1−κA)

σ2
A +

1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

σ2
M

σ2
ϑ +

(
(η− 1

γ )κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A +

(
1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

)2

σ2
M

(122)

A.8 Proof of Proposition 4

Proof. We first establish equilibrium existence. First, we observe that Tt is a continuous func-

tion. The only possible points of discontinuity are: ωM
1,t =

1
(η− 1

γ
)(1−κM

t )
and ωA

1,t =
1

(η− 1
γ
)(1−κA

t )
.

However, at these points limω1,t→ωM
1,t
Tt(ω1,t) = limω1,t→ωA

1,t
Tt(ω1,t) = Tt(ω

M
1,t) = Tt(ω

A
1,t) = 0.

Second, we observe that limω1,t→−∞ Tt(ω1,t) = limω1,t→∞ Tt(ω1,t) = 0. Consider now the func-

tion Wt(ω1,t) = ω1,t − Tt(ω1,t). This is a continuous function, limω1,t→−∞ Wt(ω1,t) = −∞,

and limω1,t→∞Wt(ω1,t) = ∞. Thus, by the intermediate value theorem, there exists an ω∗
1,t
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such that Wt(ω
∗
1,t) = 0. By Theorem 2, ω∗

1,t defines a log-linear equilibrium.

We now show that there are at most five log-linear equilibria. For ω1,t ̸= ωA
1,t, ω

M
1,t (neither

of which can be a fixed point), we can rewrite Equation 50 as:

ω1,t

[
σ2
ϑ,t

(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2
]

=
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)
+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)
(123)

This is a quintic polynomial in ω1,t, which has at most five real roots. Thus, by Theorem 2,

there are at most five log-linear equilibria.

A.9 Proof of Corollary 7

Proof. We drop time subscripts for ease of notation. Substituting η = 1
γ
in Equation 50

yields:

ω1 =

1
γ

ρ2 +
(

1
γ

)2 (124)

Substituting this into Equation 44 yields:

ϵSt = γ
κM
t

(1− κM
t )

+
1

γρ2(1− κM
t )

(125)
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A.10 Proof of Corollary 8

We drop time subscripts for ease of notation. From Equation 50, as σM
t|s → ∞, ω1,t must

solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κM

)
1
γ
+
(
η − 1

γ

)
κM

=
γ

1 + (ηγ − 1)κM
+

(
1− ηγ

1 + (ηγ − 1)κM

)
ω1

=
1

η

(126)

This proves the first statement. As σt|s → ∞ and ηγ ̸= 1, the ω1,t must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κA

)(
η − 1

γ

)
κA

=
γ

(ηγ − 1)κA
+

(
1− 1

κA

)
ω1

=
1

η − 1
γ

(127)

This proves the second statement. The third statement follows directly from Equation 50.

A.11 Proof of Proposition 5

Proof. By Theorem 2, The map describing equilibrium ω1,t is invariant to λ for λ > 0.

Thus, ES
t (λ) is constant for λ > 0. If λ = 0, there are potentially many equilibria in supply

functions. Nevertheless, from the proof of Theorem 1, we have that firms set pit/Pt =
η

η−1
Mit =

η
η−1

Cγ
t /At under any optimal supply function. This implies that η

η−1
Cγ

t /At = 1,

and so money has no real effects, which implies that ϵSt = ∞.
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B Supply Function Choice with Multiple Inputs, De-

creasing Returns, and Monopsony

In this section, we generalize our baseline model of supply function choice to allow for

multiple inputs, decreasing returns, and monopsony. We find that: (i) supply functions

remain endogenously log-linear and (ii) decreasing returns and monopsony flatten the optimal

supply schedule.

Primitives. Consider the baseline model from Section 2 with two modifications. First, the

production function uses multiple inputs with different input shares and possibly features

decreasing returns-to-scale:

q = Θ
I∏

i=1

xai
i (128)

where xi ∈ R+, ai ≥ 0, and
∑I

i=1 ai ≤ 1. Moreover, suppose that the producer potentially

has monopsony power and faces a cost of acquiring each type of input that is given by:

ci(xi) = pxix
bi
i (129)

where pxi ∈ R++ and bi ≥ 1. The firm believes that (Ψ, P,Λ,Θ, px) is jointly log-normal.

The Firm’s Problem. We begin by solving the firm’s cost minimization problem:

K(q; Θ, px) = min
x

I∑
i=1

pxi
xbi
i s.t. q = Θ

I∏
i=1

xai
i (130)

This has first-order condition given by:

λ =
bipxi
ai

xbi
i q

−1 (131)

Which implies that:

K(q; Θ, px) = λq
I∑

i=1

ai
bi

(132)

Moreover, fixing i, the FOC implies that we may write for all j ̸= i:

xj =

 bipxi
ai

bjpxj
αj

 1
bj

x
bi
bj

i (133)
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By substituting this into the production function we have that:

q = Θx
ai+bi

∑
j ̸=i

aj
bj

i

∏
j ̸=i

 bipxi
ai

bjpxj
αj

 1
bj

(134)

which implies that:

xi =


q

Θ
∏

j ̸=i

(
bipxi
ai

bjpxj
αj

) 1
bj



1

ai+bi
∑

j ̸=i
aj
bj

(135)

Returning to the FOC, we have that the Lagrange multiplier is given by:

λ = q
−1+ 1∑I

i=1

aj
bj
bipxi
ai

Θ
∏
j ̸=i

 bipxi
ai

bjpxj
αj

 1
bj


−1∑I

i=1

aj
bj

(136)

Which then yields the cost function:

K(q; Θ, px) = MPq
1
δ (137)

where:

δ =
I∑

i=1

aj
bj

and M = P−1 bipxi
ai

Θ
∏
j ̸=i

 bipxi
ai

bjpxj
αj

 1
bj


−1∑I

i=1

aj
bj I∑

i=1

ai
bi

(138)

and we observe that M is log-normal given the joint log-normality of (Θ, px).

Turning to the firm’s payoff function, we therefore have:

E
[
Λ
( p

P
q −Mq

1
δ

)]
(139)

Thus, the problem with multiple inputs, monopsony, and decreasing returns modifies the

firms’ original payoff by only introducing the parameter δ. Helpfully, observe that δ = 1

when: (i) there are constant returns to scale
∑I

i=1 ai = 1 and (ii) there is no monopsony

bi = 1 for all i.

Given this, we can write the firm’s objective as:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)1−η

P
z −Mz

1
δ p̂(z)−

η
δ

)
dG (Λ, P,M, z) (140)
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And, as before, we study the problem:

sup
p̂:R+→R++

J(p̂) (141)

By doing this, we obtain a modified formula for the optimal supply function:

Proposition 6 (Optimal Supply Schedule With Multiple Inputs, Decreasing Returns, and

Monopsony). Any optimal supply schedule is almost everywhere given by:

f(p, q) = log p− ω0 − log δ

1− ηω1

− η
(
ω1 +

1−δ
δ

)
1− ηω1

log q (142)

where ω0 and ω1 are the same as those derived in Theorem 1. Thus, the optimal inverse

supply elasticity is given by:

α̂1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(
1 +

1− δ

δ

σ2
Ψ + η2σ2

P + 2ησΨ,P

σM,Ψ + ησM,P + σP,Ψ + ησ2
P

)
(143)

Proof. Applying the same variational arguments as in the Proof of Theorem 1, we obtain

that p̂(t) must solve:

(η − 1)E[ΛP−1|z = t]tp̂(t)−η =
η

δ
E[ΛM|z = t]t

1
δ p̂(z)−

η
δ
−1 (144)

Which yields:

p̂(t) =

(
δ−1 η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]

) 1

1+η( 1−δ
δ )

t

1−δ
δ

1+η( 1−δ
δ ) (145)

Thus, we have that:

log p =
1

1 + η
(
1−δ
δ

) (ω0 − log δ) +
1

1 + η
(
1−δ
δ

) (ω1 +
1− δ

δ

)
log z (146)

where ω0 and ω1 are as in Theorem 1. Rewriting as a supply schedule, we obtain:

log p =

1

1+η( 1−δ
δ )

(ω0 − log δ)

1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) + η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

)
1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) log q (147)

Which reduces to the claimed formula.

Thus, when the supply curve is initially upward-sloping (ω1 ∈ [0, η−1]), the introduction

of decreasing returns and/or monopsony unambiguously reduces the supply elasticity and

makes firms closer to quantity-setting.
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C Prices vs. Quantities in General Equilibrium

C.1 Model and Equilibrium

All of the model primitives are as in Section 3. However, we now restrict firms to follow

either price-setting or quantity-setting at all times. We define equilibrium in two steps. We

first fix firms’ “choice of choices” at each date t to define a rational expectations temporary

equilibrium:

Definition 2 (Temporary Equilibrium). A temporary equilibrium is a partition of N into

two sets T P and T Q and a collection of variables{
{pit, qit, Cit, Nit, Lit, wit, ϕit, ϑit, zit,Πit}i∈[0,1], Ct, Pt,Mt, At, Bt, Nt,Λt, σ

ϕ
t , σ

ϑ
t , σ

z
t , σ

A
t , σ

M
t

}
t∈N

such that:

1. In periods t ∈ T P , all firms choose their prices pit to maximize expected real profits

under the household’s real stochastic discount factor.

2. In periods t ∈ T Q, all firms choose their quantities qit to maximize expected real profits

under the household’s real stochastic discount factor.

3. In all periods, the household chooses consumption Cit, labor supply Nit, money holdings

Mt, and bond holdings Bt to maximize their expected utility subject to their lifetime

budget constraint, while Λt is the household’s marginal utility of consumption.

4. In all periods, money supply Mt and productivity At and evolve exogenously via Equa-

tions 25 and 27.

5. In all periods, firms’ and consumers’ expectations are consistent with the equilibrium

law of motion.

6. In all periods, the markets for the intermediate goods, final good, labor varieties, bonds,

and money balances all clear.

In a temporary equilibrium, firms set either prices or quantities, but the choice between

the two is not necessarily optimal. We define an equilibrium as a temporary equilibrium in

which the choice between price and quantity-setting is optimal at all times:

Definition 3 (Equilibrium). An equilibrium is a temporary equilibrium in which:

1. If t ∈ T P , all firms find price-setting optimal. That is, expected real profits under the

household’s real stochastic discount factor are weakly higher under price-setting than

quantity-setting.

62



2. If t ∈ T Q, all firms find quantity-setting optimal. That is, expected real profits under

the household’s real stochastic discount factor are weakly higher under price-setting

than quantity-setting.

We now study the equilibrium properties of the model.

C.2 Prices vs. Quantities in Equilibrium: Incentives and Strategic

Interactions

We first describe dynamics in temporary equilibria (Definition 2) in which all firms set prices

or quantities by assumption. To this end, we use Proposition 3 to express the dynamics of

consumption and prices under pure price-setting and pure quantity-setting. Concretely, we

assume that the dynamics for consumption are log-linear in the aggregate shocks:

logCt = χ̃X
0,t + χX

A,t logAt + χX
M,t logMt (148)

where we allow the coefficients to be regime-specific X ∈ {Q,P}. We then verify that

dynamics take a log-linear form.

Corollary 9. Output and the price level under pure price-setting follow in the unique log-

linear equilibrium of the economy follow:

logCt = χP
0,t +

1

γ
κA
t logAt +

1

γ
(1− κM

t ) logMt (149)

logPt = χ̃P
0,t − κA

t logAt (150)

Output and the price level under pure quantity-setting in the unique log-linear equilibrium of

the economy follow:

logCt = χQ
0,t +

1

γ

κA
t

1−
(
1− 1

ηγ

)
(1− κA

t )
logAt (151)

logPt = χ̃Q
0,t −

κA
t

1−
(
1− 1

ηγ

)
(1− κA

t )
logAt + logMt (152)

where χP
0,t, χ̃

P
0,t, χ

Q
0,t, and χ̃Q

0,t are constants independent of At and Mt.

Proof. Setting ω1,t = 0 in Proposition 3 yields dynamics under pure price-setting. Setting

ω1,t = 1/η in Proposition 3 yields dynamics under pure quantity-setting.
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Observe that money is neutral under pure quantity-setting, but not under pure price-

setting, as discussed in Corollary 6. Moreover, productivity shocks have a larger effect on

output in a quantity-setting regime relative to a price-setting regime if and only if ηγ > 1.

Intuitively, it is the elasticity of substitution that mediates how much firms will adjust their

output in response to a perceived increase in productivity under a quantity-setting regime.

In contrast, it is real money balances (that is independent of η) that mediates the output

response in a pure price-setting regime.

We now ask when would firms prefer to set prices or quantities in equilibrium. To study

this, we first derive an expression for ∆ in terms of uncertainty about equilibrium objects.

We combine Proposition 1 with (i) Proposition 2 and (ii) the observation that consumption

is log-linear in both temporary equilibria to derive that:

∆t =
1

2
(η − 1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C,t − η(σM
t )2 + 2(1− ηγ)σC,A,t

)
(153)

where σ2
C,t is the firm’s posterior variance for output, σC,A,t is the firm’s posterior covariance

for output and productivity, σ2
ϑ,t is the variance of idiosyncratic demand shocks, and (σM

t )2

is the variance of money supply innovations. Higher uncertainty about idiosyncratic demand

shocks and lower uncertainty about the money supply provide exogenous incentives for price-

setting. Higher uncertainty about consumption provides an endogenous incentive that un-

ambiguously favors price-setting. This is the net effect of two forces that favor price-setting

– increasing demand uncertainty and decreasing the covariance of prices and marginal costs

– with two forces that favor quantity-setting – increasing price uncertainty and increasing

the covariance between demand and marginal costs. Higher covariance between consumption

and productivity favors price-setting if ηγ < 1 and quantity-setting otherwise. In the former

case, the dominant effect of this covariance is to lower the covariance of marginal costs and

demand (favoring price-setting); in the latter case, the dominant effect is to raise the covari-

ance of marginal costs and the price level (favoring quantity-setting). Finally, the variance

of idiosyncratic productivity shocks and the variance of idiosyncratic labor supply (factor

price) shocks drop out, because they do not induce covariance between marginal costs and

either demand or the price level.

We now combine the previous observation with the equilibrium dynamics (Corollary 9)

to fully describe ∆t in terms of primitives in each regime:

Lemma 1 (Prices vs. Quantities in Equilibrium). If all firms set quantities, then the com-
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parative advantage of price-setting is:

∆Q
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t − ηκM

t σ2
M,s

+

(
1

η
(1− ηγ)

ηκA
t

1− κA
t (1− ηγ)

+ 2

)
(1− ηγ)

η
(
κA
t

)2
1− κA

t (1− ηγ)
σ2
A,s

) (154)

Moreover, all firms can set quantities in equilibrium at time t if and only if ∆Q
t ≤ 0.

If all firms set prices, then the comparative advantage of price-setting is:

∆P
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t +

(
−η +

1

η
(1− ηγ)2

(
1− κM

t

γ

)2
)
κM
t σ2

M,s

+

(
1

η
(1− ηγ)

κA
t

γ
+ 2

)
(1− ηγ)

(
κA
t

)2
γ

σ2
A,s

) (155)

Proof. From Proposition 1, we have that:

∆t =
1

2
(η − 1)

(
1

η
σ2
Ψ,t − ησ2

P,t − 2σΨ,M,t − 2ησP,M,t

)
(156)

where, now, all the variances are time-dependent. Applying Proposition 2 to obtain expres-

sions for (Ψ, P,M) in equilibrium, and exploiting the log-linearity of each expression, we

have that:
σ2
Ψ,t = σ2

ϑ,t + σ2
C,t

σ2
P,t = γ2σ2

C,t + (σM
t )2 − 2γσC,M,t

σΨ,M,t = γσ2
C,t − σC,A,t

σP,M,t = γσC,A,t − γ2σ2
C,t + γσC,M,t

(157)

where σ2
X,t denotes the firm’s posterior variance of variable X at time t and σX,Y,t denotes

the firm’s posterior covariance of variables X and Y at time t. Substituting these formulae,

we obtain Equation 153:

∆t =
1

2
(η − 1)

(
1

η
σ2
ϑ,t +

1

η
(1− ηγ)2 σ2

C,t − η(σM
t )2 + 2(1− ηγ)σC,A,t

)
(158)

Moreover, applying Proposition 3, we have that these variances for the firm in each of the
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price-setting and quantity-setting regimes are given in each regime X ∈ {Q,P} by

(σX
C,t)

2 = (χX
A,t)

2σ2
A|s,t + (χX

M,t)
2σ2

M |s,t

(σX
C,A,t)

2 = χX
A,tσ

2
A|s,t

(159)

Substituting Equation 159 into Equation 153, we obtain the following expression for ∆t

indexed by the regime X ∈ {Q,P}:

∆X
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t +

(
−η +

1

η
(1− ηγ)2(χX

M,t)
2

)
σ2
M |s,t

+

(
1

η
(1− ηγ)χX

A,t + 2

)
(1− ηγ)χX

A,tσ
2
A|s,t

) (160)

We now derive the two desired expressions for ∆t, splitting the calculation into the

quantity-setting and price-setting cases.

Quantity-Setting. Substituting χQ
A,t and χQ

M,t (quantity-setting) from Corollary 9 and

exploiting the fact that the conditional variances are given by σ2
A|s,t = κA

t σ
2
A,s and σ2

M |s,t =

κM
t σ2

M,s, we obtain:

∆Q
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t − ηκM

t σ2
M,s

+

(
1

η
(1− ηγ)

ηκA
t

1− κA
t (1− ηγ)

+ 2

)
(1− ηγ)

ηκA
t

1− κA
t (1− ηγ)

κA
t σ

2
A,s

) (161)

as desired.

Price-Setting. Mirroring the steps above using the coefficients from Corollary 9, we obtain

∆P
t =

1

2
(η − 1)

(
1

η
σ2
ϑ,t +

(
−η +

1

η
(1− ηγ)2

(
1− κM

t

γ

)2
)
κM
t σ2

M,s

+

(
1

η
(1− ηγ)

κA
t

γ
+ 2

)
(1− ηγ)

κA
t

γ
κA
t σ

2
A,s

) (162)

yielding the claimed expressions.

Next, consider the comparative statics for ∆P
t . First,

∂∆P
t

∂κM
t

= σ2
M,s

(
−η +

1

η
(1− ηγ)2

(
1− κM

t

γ

)2

+
2

ηγ2
(1− ηγ)2(1− κM

t )κM
t

)
(163)
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The condition
∂∆P

t

∂κM
t

> 0 corresponds to

(
ηγ

1− ηγ

)2

< (1− κM
t )2 + 2(1− κM

t )κM
t = 1− (κM

t )2 (164)

Re-arranging gives, as desired, κM
t <

√
1−

(
ηγ

1−ηγ

)2
. Next, ∆P

t is strictly increasing in κA
t if

and only if: (
1

η
(1− ηγ)

κA
t

γ
+ 2

)
(1− ηγ)

(
κA
t

)2
γ

(165)

is strictly increasing in κA
t . As argued above, this condition holds if ηγ < 1 and does not if

ηγ > 1.

Importantly, since ∆Q
t ̸= ∆P

t in general, others’ choice of whether to set prices or quanti-

ties affects any given firm’s incentives to set prices or quantities. Does the fact that others set

prices (quantities) increase or decrease my own desire to set prices (quantities)? Strikingly,

we find that these decisions are always strategic complements. That is, when all other firms

set prices, a given firm has stronger incentives to set prices:

Proposition 7 (Complementarity in Choices of Choices). The decision to set a price or

a quantity is one of strategic complements, i.e, ∆P
t ≥ ∆Q

t , with strict inequality whenever

ηγ ̸= 1.

Proof. Define ∆∆t = ∆P
t −∆Q

t and observe that:

∆∆t =
1

2
(η − 1)

[
1

η
(1− ηγ)2

(
1− κM

t

γ

)2

κM
t σ2

M,s

+

(
1

η
(1− ηγ)2

(
χP 2

A,t − χQ2

A,t

)
+ 2(1− ηγ)(χP

A,t − χQ
A,t)

)
κA
t σ

2
A,s

] (166)

First, when ηγ = 1, we have that ∆∆t = 0. Second, suppose that ηγ < 1. We observe that

the first term in brackets is strictly positive. Turning to the second term, as ηγ < 1, we have

that ∆∆t > 0 if and only if χP
A,t > χQ

A,t. This inequality is equivalent to:

κA
t

γ
>

ηκA
t

1− κA
t (1− ηγ)

(167)

As ηγ < 1 and κA
t ∈ (0, 1), we have that the denominator on the right-hand side is positive.
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Thus, we can re-express this required inequality as:

1− ηγ > κA
t (1− ηγ) (168)

which is true as ηγ < 1 and κA
t ∈ (0, 1). Thus, ∆∆t > 0 when ηγ < 1. Third, suppose that

ηγ > 1. Once again, the first term in brackets is strictly positive. Thus, it suffices to show

that:
1

η
(1− ηγ)2

(
χP 2

A,t − χQ2

A,t

)
+ 2(1− ηγ)(χP

A,t − χQ
A,t) > 0 (169)

See that we can factor the left-hand side of this expression as:

(1− ηγ)(χP
A,t − χQ

A,t)

(
1

η
(1− ηγ)(χP

A,t + χQ
A,t) + 2

)
(170)

By the reverse of the logic in part two, we have that χP
A,t < χQ

A,t. Thus, the expression in

question is strictly positive if and only if:

2 >
1

η
(ηγ − 1)(χP

A,t + χQ
A,t) (171)

We now observe that χP
A,t + χQ

A,t < 2χQ
A,t. Moreover, χQ

A,t is an increasing function of κA
t and

is therefore bounded above by η
1+ηγ−1

= 1
γ
. Thus, we have that:

1

η
(ηγ − 1)(χP

A,t + χQ
A,t) <

2

ηγ
(ηγ − 1) = 2− 2

ηγ
< 2 (172)

This establishes that ∆∆t > 0 if ηγ > 1. Taken together, we have shown that ∆∆t ≥ 0 and

∆∆t > 0 if and only if ηγ ̸= 1, establishing the claim.

To give the intuition for this result, we first consider the case when ηγ < 1. In this case,

it can easily be seen that consumption responds more to productivity shocks under price-

setting. Moreover, regardless of the value of ηγ, consumption responds more to monetary

shocks under price-setting. Therefore, others being price-setters increases both the variance

of consumption and the covariance of consumption with productivity. Both of these forces

favor price-setting, as shown in Equation 153. In summary, others setting prices induces

aggregate volatility which makes it more attractive for any given firm to also set a price. In

the case of ηγ ≥ 1, consumption is more responsive to monetary shocks but less responsive to

productivity shocks under price-setting versus quantity-setting. In the proof, we show how

these effects net out in Equation 153 in the direction of making price-setting more attractive

when other firms set prices.
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We now use this result to show the existence of equilibria in which all firms optimally

choose to set prices or quantities:

Corollary 10 (Existence of Pure Equilibria). There exists an equilibrium in which, at each

date t, either all firms set prices or all firms set quantities.

To prove this result, we consider two cases at each date t. First, suppose that firms

prefer to set prices if others set quantities, or ∆Q
t ≥ 0. In this case, they even more strongly

prefer to set prices if others set prices, or ∆P
t ≥ ∆Q

t ≥ 0. Therefore, choosing to set prices

is consistent with equilibrium. Conversely, suppose that firms prefer to set quantities when

others set quantities, ∆Q
t < 0. In this case, choosing to set quantities is consistent with

equilibrium. As these cases are exhaustive, a pure equilibrium exists. Note that this logic

heavily relies on our finding that the decision to set prices was one of complements; if it were

one of substitutes, then pure equilibria could fail to exist.12

C.3 Time-Varying Uncertainty and Regime Switches

As shown in Lemma 1, the comparative advantage of price-setting vs. quantity-setting

changes over time because firms’ uncertainty about microeconomic and macroeconomic vari-

ables changes over time. This observation, combined with Corollary 10, implies the existence

of equilibria in which time-varying volatility induces time-varying uncertainty and regime

changes between price- and quantity-setting. These regime changes, in turn, affect the

propagation of aggregate shocks as summarized in Corollary 9. Thus, “uncertainty shocks”

that affect exogenous volatility have further effects on the volatility of endogenous outcomes

(income, prices) due to the endogenous “choice of choices.”

To better understand these forces, we now study the comparative statics of (∆Q
t ,∆

P
t )

in the parameters for time-varying volatility. We start by studying uncertainty about the

aggregate productivity state At. Higher aggregate productivity uncertainty pushes toward

either price- or quantity-setting depending on the parameter condition ηγ ≷ 1:

Corollary 11. If ηγ > 1, then both ∆Q
t and ∆P

t are decreasing in κA
t and in σA

t . If ηγ < 1,

then both ∆Q
t and ∆P

t are increasing in κA
t and in σA

t . If ηγ = 1, then ∆Q
t and ∆P

t are equal

and invariant to κA
t and σA

t .

Proof. We consider the three cases ηγ = 1, ηγ < 1, and ηγ > 1 separately.

1. ηγ = 1. By Lemma 1, we have that ∆Q
t = ∆Q(0) and ∆P

t = ∆Q(0), which are both

independent of κA
t .

12A mixed equilibrium would always exist.
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2. ηγ < 1. By Lemma 1, we have that ∆Q
t is strictly increasing in κA

t if and only if

(
1

η
(1− ηγ)

ηκA
t

1− κA
t (1− ηγ)

+ 2

)
(1− ηγ)

η
(
κA
t

)2
1− κA

t (1− ηγ)
(173)

is strictly increasing in κA
t . As ηγ < 1 and

ηκA
t

1−κA
t (1−ηγ)

is strictly increasing in κA
t and

strictly positive, we have that the term in parentheses is strictly positive and strictly

increasing. The term outside parentheses is strictly increasing and strictly positive for

the same reasons. Moreover, ∆P
t is strictly increasing in κA

t if and only if:

(
1

η
(1− ηγ)

κA
t

γ
+ 2

)
(1− ηγ)

(
κA
t

)2
γ

(174)

is strictly increasing in κA
t . As ηγ < 1, this is immediate.

3. ηγ > 1. By Lemma 1, we have that ∆Q
t is strictly decreasing in κA

t if and only if

Expression 173 is strictly decreasing in κA
t . Define ω = 1 − ηγ and observe that we

need to show that: (
ωκA

t

1− ωκA
t

+ 2

)
ω
(
κA
t

)2
1− ωκA

t

(175)

is a strictly decreasing function of κA
t . Taking the derivative of this expression and

rearranging, we require that:

ωκA
t

(
ω2
(
κA
t

)2 − 3ωκA
t + 4

)
< 0 (176)

As ω < 0, we require that ω2
(
κA
t

)2 − 3ωκA
t + 4 > 0. This is positive if the quadratic

on the left-hand side has no real roots. As 9ω2 − 16ω2 < 0, the quadratic indeed has

no real roots and so ∆Q
t is strictly decreasing in κA

t .

∆P
t is strictly decreasing in κA

t if and only:(
ω

1− ω
κA
t + 2

)
ω

1− ω

(
κA
t

)2
(177)

is strictly decreasing in κA
t . Taking the derivative of this expression and rearranging,

we require that:

κA
t <

4

3

ω − 1

ω
(178)

which is always satisfied as ω < 0.

As κA
t is increasing in σA

t , this establishes the result.

70



Figure 7: Equilibrium with Changing Productivity Uncertainty
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Note: This figure illustrates firms’ equilibrium incentives for price-setting as uncertainty about
productivity changes. In each panel, we plot ∆Q (dashed line) and ∆P (dotted line) as a function
of κA, fixing all other parameter values. In Example A, we use parameters such that ηγ < 1. In
Example B, we use parameters such that ηγ > 1. We shade the region with only a quantity-setting
equilibrium blue, the region with only a price-setting equilibrium orange, and the region with both
equilibria red.

When ηγ < 1, the dominant effects of productivity uncertainty are to increase aggregate

demand uncertainty and to lower the covariance between demand and marginal costs. When

ηγ > 1, the dominant effect is to increase the covariance between marginal costs and the

price level. Finally, in the special case in which ηγ = 1, these forces net out to zero.

We illustrate this result and its implications for equilibrium regime-switching in a nu-

merical example. In Figure 7, we plot ∆Q and ∆P as a function of κA for two different

calibrations, corresponding to ηγ < 1 and ηγ > 1. We shade regions of the parameter space

in which only one equilibrium exists (blue for quantity-setting and orange for price-setting)

and in which both equilibria exist (red). In the economies corresponding to each parameter

case, as κA
t moves exogenously (because of underlying movements in σA

t ), the equilibrium

transitions between quantity-setting and price-setting. For example, in the left panel with

ηγ < 1, periods of high productivity uncertainty (high κA
t ) correspond to price-setting and

periods of low productivity uncertainty (high κA
t ) correspond to quantity-setting. If κA

t lies

in the middle, red-shaded region in any period t, there exists an equilibrium in which firms

set prices in that period as well as one in which they set quantities in that period. In this

way, even if κA
t were constant over time but lying in this multiple-equilibrium region, there

could be self-fulfilling macroeconomic volatility that arises from endogenous regime shifts.
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Figure 8: Equilibrium with Changing Money-Supply Uncertainty
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Note: This figure illustrates firms’ equilibrium incentives for price-setting as uncertainty about the
money supply changes. We plot ∆Q (dashed line) and ∆P (dotted line) as a function of κM , fixing
all other parameter values. We use parameters such that ηγ > 1

2 , so both functions are monotone
decreasing (see Corollary 13). We shade the region with only a quantity-setting equilibrium blue,
the region with only a price-setting equilibrium orange, and the region with both equilibria red.

We next study the role of idiosyncratic uncertainty. We find that idiosyncratic demand

uncertainty unambiguously favors quantity-setting, while idiosyncratic uncertainty about

productivity and factor prices (via labor supply) do not matter:

Corollary 12. Both ∆Q
t and ∆P

t are increasing in σ2
ϑ,t and neither depends on σ2

z,t or σ2
ϕ,t.

This result is immediate from inspection of the formulas in Lemma 1 and is not inter-

mediated by equilibrium forces. Economically, it implies that “uncertainty shocks” that

increase idiosyncratic variation in firms’ demand unambiguously push the economy toward

price-setting. In light of empirical evidence that (i) idiosyncratic volatility in firms’ revenue

TFP rises dramatically in recessions (e.g., Bloom et al., 2018) and (ii) a majority of revenue

TFP variation arises from demand rather than productivity shocks (Foster et al., 2008),

Corollary 12 suggests a powerful force for regime switches that line up with the business

cycle. By contrast, uncertainty about idiosyncratic productivity and factor prices does not

behave symmetrically to uncertainty about demand. This follows from our original obser-

vation that the uncertainty about marginal costs matters only through its covariance with

demand and the price level, and not through its variance (Proposition 1).

We finally study uncertainty about the money supply Mt. As with uncertainty about

productivity, understanding its effect requires disciplining opposing equilibrium forces:
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Corollary 13. ∆Q
t is always decreasing in κM

t and σM
t . If ηγ ≥ 1

2
, then ∆P

t is strictly

decreasing in κM
t and σM

t . If ηγ < 1
2
, then there exists a κ̄M ∈ [0, 1/3] such that ∆P

t is

increasing for κM
t < κ̄M and decreasing for κM

t > κ̄M .

Proof. The fact that ∆Q
t is decreasing in κM

t is immediate from Lemma 1. Moreover, from

Lemma 1, ∆P
t is decreasing in κM

t if and only if(
−η +

1

η
(1− ηγ)2

(
1− κM

t

γ

)2
)
κM
t (179)

is decreasing in κM
t . Taking the derivative of this expression, this is equivalent to

(1− ηγ)2

(ηγ)2

(
1− 2ηγ

(1− ηγ)2
− 4κM

t + 3(κM
t )2
)

< 0 (180)

This is a strictly convex quadratic. Hence, if we show that this expression is weakly negative

evaluated at κM
t = 0 and κM

t = 1, it will be strictly negative for all κM
t ∈ (0, 1). A sufficient

condition for this expression to be weakly negative at κM
t = 0 is that

1− 2ηγ

(1− ηγ)2
≤ 0 (181)

which occurs if and only if ηγ ≥ 1/2. It is easily verified that ηγ ≥ 1/2 also makes the

expression strictly negative at κM
t = 1. This proves that ∆P

t is strictly decreasing for all

κM
t ∈ (0, 1) whenever ηγ ≥ 1/2.

We next study the case in which ηγ < 1
2
. We re-arrange condition 180 to

κM
t (4− 3κM

t ) >
1− 2ηγ

(1− ηγ)2
(182)

We first observe that this condition always holds at κM
t = 1, as the left-hand-side is 1 and the

right-hand-side, given ηγ < 1/2, is bounded above by 1. Therefore, the critical value κ̄M is

the smaller root of the quadratic equation κM
t (4− 3κM

t )− 1−2ηγ
(1−ηγ)2

= 0. By direct calculation,
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this is

κ̄M =
1

3

(
2−

√
4− 3

1− 2ηγ

(1− ηγ)2

)
(183)

=
1

3

2−
√
1−

(
ηγ

1− ηγ

)2
 (184)

=
2

3
−
√

1

9
+

1

3

(
ηγ

1− ηγ

)2

(185)

where, in the second equality, we use the fact that 1−2ηγ
(1−ηγ)2

= 1 −
(

ηγ
1−ηγ

)2
. We finally note

that κ̄M is monotone increasing in ηγ, is minimized at 0 when ηγ = 1/2, and is maximized

at 1
3
when ηγ = 0.

Under quantity-setting, because monetary shocks are neutral for output, increasing the

volatility of money-supply shocks (lowering κM
t ) serves only to increase the volatility of the

price level and further favor quantity-setting. Under price-setting, because monetary shocks

are not neutral for output, there is a countervailing effect from increasing the volatility

of aggregate demand. Therefore, when ηγ is sufficiently low, the effect of money-supply

uncertainty is ambiguous.

We illustrate this result numerically in Figure 8. We focus on a calibration in which

ηγ > 1
2
, so both ∆Q

t and ∆P
t are monotone decreasing in κM

t . In periods of low money-supply

uncertainty, firms have stronger incentives to set prices; in periods of high money-supply un-

certainty, firms have stronger incentives to set quantities. Moreover, in the quantity-setting

regimes, the aggregate price level responds more to money-supply innovations (Corollary 9)

which further sharpens the incentives for quantity-setting. This positive feedback loop un-

derlies our comparative statics result. We will explore the further implications of this logic

for systematic monetary policy in the next section.

D Prices vs. Quantities in the Data

If a researcher wishes to focus on price-setting or quantity-setting model, they should wish

to do so in the macroeconomic circumstances in which each is actually preferable to firms. In

this appendix, we develop an empirical approach to determining which is a more preferable

choice and test its predictive power for the pass-through of monetary policy.
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Figure 9: The Relative Benefit of Price-Setting in US Data
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Note: This figure plots our empirical estimate of ∆̂t (the comparative advantage of price-setting
relative to quantity-setting) and its components, as defined in Proposition 1 (Equation 13). The
black line plots ∆̂t, in units of expected percent profit improvement (100 times log points). The
blue (dashed), orange (dotted), green (dashed), and red (dash-dotted) lines plot each of the four
components of ∆̂t, corresponding to uncertainty about different variables. The grey shading denotes
periods in which ∆̂t < 0 and thus, according to Proposition 1, quantity-setting is optimal for firms.
As described in Section 5, the calculation uses estimates of time-varying volatilities from a CCC
GARCH(1,1) model and a calibrated demand elasticity of η = 9. The demand component exceeds
the scale of the figure in Q2 and Q3 of 2020.

D.1 When Might Price-Setting Be a Better Approximation Than

Quantity-Setting?

Using our GARCHmodel from the main text and Proposition 1, we can compute an empirical

estimate for when firms should prefer price-setting:

∆̂t =
1

2
(η − 1)

(
1

η
σ̂2
Ψ,t − ησ̂2

P,t − 2σ̂Ψ,M,t − 2ησ̂P,M,t

)
(186)

Our calculation captures uncertainty about outcomes realized in quarter t, and is measurable

in data from quarter t − 1 and earlier. It therefore describes incentives of a decisionmaker

fixing a choice for quarter t based on their uncertainty at the beginning of the quarter, before

data are realized.

We plot our calculation of ∆̂t in Figure 9. We show our overall calculation in black

and each component in color. We shade periods which favor quantity-setting, or for which
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∆̂t < 0.

Strikingly, both quantity- and price-setting are optimal at different points in the sample.

Thus, viewed through the lens of our model and its mapping to the data, firms may be either

price- or quantity-setters depending on the macroeconomic context. Moreover, through the

same lens, this evidence rules out the conventional assumption that firms always choose

prices or always choose quantities.

Price-setting is optimal in most of the sample, or 219 of 251 quarters. This notably

comprises the 1960s and the Great Moderation, in which both inflation and demand variance

were relatively tame, and the Great Recession and the onset of the Covid-19 Lockdown

Recession (Q2 2020), when demand variance abruptly spiked.

Quantity-setting is optimal intermittently between 1972 Q2 and 1981 Q2, for a total of

25 of the possible 37 quarters in this period, and continuously between 2021 Q2 and the end

of the sample. These all correspond to periods of particularly high contributions of the terms

corresponding to inflation variance and inflation-marginal-cost covariance. Through the lens

of the model, firms would prefer to set quantities in these periods to hedge against the increase

in uncertainty about joint movements in inflation and marginal costs. Our calculation weighs

this consideration against demand risk, which favors price-setting and may also be elevated

in recessions. For example, in 1975 Q2 and 2021 Q1, demand uncertainty is sufficiently high

to outweigh elevated inflation and inflation-marginal-cost uncertainty, and our calculation

favors price-setting on net (∆̂t > 0).

We finally note that the advantage of one method over another is always relatively small

in payoff terms. In our sample, this advantage peaks at 0.48% (0.0048 log points) in Q3 of

2020. In all periods excluding Q2 and Q3 of 2020, the difference peaks at 0.16%. This is

a striking juxtaposition with the model prediction that a change in firm behavior between

price- and quantity-setting can have large effects on equilibrium outcomes.

Robustness to Parameter Values and Measurement Strategies. Two parameters

that were central to our calculation, but difficult to pin down in the data, were the price

elasticity of demand (η = 9) and the ratio of micro to macro volatility (R = 6.5). In Figure

10, we plot the implied time series for ∆ under specific alternative assumptions for each

parameter. In Figure 11, we vary both parameters continuously over a larger grid and plot

“heat maps” for the average value of ∆̂t and the percentage of the sample with ∆̂t > 0.

Decreasing the elasticity of demand favors price-setting, while increasing the elasticity

of demand favors quantity-setting (left panel). The primary reason, quantitatively, is that

highly inelastic demand curves amplify the effects of demand shocks on prices for fixed

quantities, and hence increase potential losses from quantity-setting. In the data, this further

pushes toward price-setting, especially in time periods with especially high demand volatility.
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Figure 10: The Relative Benefit of Price-Setting Under Alternative Parameters
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Note: Both panels plot our empirical estimate of ∆̂t defined in Proposition 1 (Equation 13) under
alternative assumptions for the elasticity of substitution η (left) and the micro-to-macro volatility
ratio R (right). In both plots, our baseline estimate corresponds to the solid black line.

Increasing demand risk favors price-setting by construction (right panel). In particular,

increasing the extent of microeconomic volatility by 50% favors price-setting in all periods

(orange dotted line), while decreasing this parameter by 50% implies quantity-setting in a

majority of periods (blue dashed line). As noted by Bloom et al. (2018), calibrating this

parameter on the basis of observed variances in measured firm-level fundamentals requires

modeling choices. In particular, one must take a stand on what fraction of measured volatility

corresponds to measurement error and what fraction of volatility from an econometrician’s

perspective is unknown to firm managers, who likely have superior information.

As an alternative strategy to measure the contribution of idiosyncratic volatility, we can

use the direct measurements of Bloom et al. (2018) based on annual data from manufac-

turing establishments from 1972 to 2010, along with assumptions about measurement error

and observability of shocks. To accommodate this variant calculation, we re-estimate the

VAR(1) CCC GARCH(1,1) model on annual data for the same macro time series. We then

use the Bloom et al. (2018) estimates of the cross-sectional standard deviation of manufac-

turing TFPR along with those authors’ quantitative assumption that 45.4% of this measured

volatility (standard deviation) corresponds to measurement error. We make the intentionally

extreme assumption that all of this remaining variance is unforecastable by firms. Figure

12 shows our results. This calculation echoes the conclusion that the 1970s were favorable
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Figure 11: The Relative Benefit of Price-Setting in an Alternative, Annual Calculation
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Note: This figure summarizes the relative advantage of price-setting for alternative values of the
elasticity of demand (horizontal axis) and the ratio of microeconomic to macroeconomic volatility
(vertical axis). The left panel plots the average advantage of price-setting over the sample, in
units of 100 times log points (percent). The right panel plots the fraction of the sample in which
price-setting is optimal, or in which ∆̂t > 0. In both panels, our baseline calibration is indicated
with a solid dot.
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Figure 12: The Relative Benefit of Price-Setting in an Alternative, Annual Calculation
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Note: This figure plots our empirical estimate of ∆̂t (the comparative advantage of price-setting
relative to quantity-setting) and its components, as defined in Proposition 1 (Equation 13), under a
variant method with annual-frequency data and direct measurement of micro volatility from Bloom
et al. (2018). Note that the time period (1972-2010) and time-frequency (annual) differs from that
in Figures 9 and 10 (quarterly, 1960 Q1 to 2022 Q4). The black line plots ∆̂t, in units of expected
percent profit improvement (100 times log points). The blue (dashed), orange (dotted), green
(dashed), and red (dash-dotted) lines plot each of the four components of ∆̂t, corresponding to
uncertainty about different variables. The grey shading denotes periods in which ∆̂t < 0 and thus,
according to Proposition 1, quantity-setting is optimal for firms. As described in Section 5, the
calculation uses estimates of time-varying volatilities from an annual-frequency CCC GARCH(1,1)
model and a calibrated elasticity of demand η = 9

to quantity-setting due to the relatively high inflation volatility and relatively low demand

volatility.

Comparison to External Evidence. An alternative way to gauge the plausibility of

firms’ entertaining both price- and quantity-setting plans is via direct survey evidence. As

observed by Reis (2006), Aiginger (1999) collected data on this topic. In a survey of managers

of Austrian manufacturing firms, he asked: “What is your main strategic variable: do you

decide to produce a specific quantity, thereafter permitting demand to decide upon price

conditions, or do you set the price, with competitors and the market determining the quantity

sold?” Among managers, 32% said that they use the quantity plan and 68% said that they

use the price plan. We interpret this as additional evidence that neither price nor quantity

plans are obviously favored in practice.
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D.2 Testing the Model: Asymmetric Effects of Monetary Policy

in Price and Quantity Regimes

Our model predicts that expansionary monetary shocks have muted effects on real output

and exaggerated effects on prices in a quantity-setting regime compared to a price-setting

regime (Corollary 9). The model also predicts that incentives for price-setting are shaped by

the volatility of macroeconomic and microeconomic aggregates in a specific way (Proposition

1 and Lemma 1). Crucially, both predictions rely purely on the premise of “choice of choices”

and not on specific parameter restrictions.13 Thus, we can use them to derive an empirical

test.

In this final section, we provide suggestive evidence consistent with these predictions. In

particular, using local projection regressions, we find that output responds more negatively

and prices respond less negatively to contractionary Romer and Romer (2004) monetary

policy shocks in price-setting regimes relative to quantity-setting regimes, measured using

the method of Section 5.

Hypotheses and Strategy. We test the main model prediction that monetary shocks are:

(i) neutral for output under quantity-setting regimes, (ii) contractionary for output under

price-setting regimes, and (iii) more inflationary under quantity-setting regimes. Formally,

the theory implies that the following relationships hold:

log Yt = χP
MI[∆t > 0] logMt + εYt (187)

logPt = logMt − χ̃P
MI[∆t > 0] logMt + εPt (188)

where χP
M > 0, χ̃P

M ∈ (0, 1), and ∆t, logMt ⊥ εYt , ε
P
t . Thus, given a measure of ∆t and

exogenous monetary shocks Mt, we can estimate these equations consistently via ordinary

least squares. Here the model-implied definition of an exogenous monetary shock is one

that is not a response by the central bank to either endogenous or exogenous economic

circumstances.

Measurement and Empirical Specification. We measure monetary policy shocks using

the methodology of Romer and Romer (2004). These authors residualize changes in the

Federal Funds Rate on the Federal Reserve’s macroeconomic projections reported in the

Greenbook. Specifically, we use the updated series reported in Ramey (2016) which spans

March 1969 to December 2007. We aggregate these shocks to a quarterly-frequency variable,

13By contrast, the sign of the differential response to productivity shocks in each regime depends on the
parametric condition ηγ ≷ 1.
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MonShockt by summing. The key quantity-setting regimes that overlap with the studied

sample of Romer and Romer (2004) shocks are primarily in the 1970s.

To proxy for whether the economy is in a price-setting or quantity-setting regime, we

translate ∆̂t into a binary variable PriceSett = 1∆t+1>0. In the model, this object determines

whether decisionmakers who observe data before and during time t would set prices as their

decision variable for period t+ 1. This timing convention is appropriate since we will focus

on how macroeconomic aggregates at time t+ 1 and onward respond to shocks at time t.

To estimate an empirical analog of Equations 187 and 188, we proxy for real output

with real GDP and the price level with the GDP deflator. We estimate the state-dependent

response of outcomes Zt ∈ {RealGDPt,GDPDeflatort} to the variable MonShockt by running

the following local projection regressions for each horizon h ∈ {1, . . . , 12}:

Zt+h = βh ·MonShockt + γh · PriceSett + ϕh · (MonShockt × PriceSett) + τ ′Xt + εt,h

(189)

As control variables, we include the contemporaneous and lagged values of real GDP, GDP

deflator, and utilization-adjusted TFP, and interactions of all of these variables with PriceSett.
14

Including the interaction variables is consistent with our model’s implications that the joint

dynamics of macroeconomic variables may change between the two regimes.15 In all reported

results, we report frequentist confidence intervals based on Newey and West (1987) standard

errors with a six-quarter bandwidth.

The coefficients {βh}Hh=1 measure the response of output (or prices) to monetary shocks

in the quantity regime. We predict that βh < 0 for both outcomes. The coefficients {ϕh}Hh=1

measure the differential response of output (or prices) to monetary shocks in the price regime,

compared to the quantity regime. We predict that ϕh < 0 when real GDP is the outcome

and ϕh > 0 when the GDP deflator is the outcome.

Results: State-Dependent Effects of Monetary Policy. We show our results graph-

ically in Figure 13. We first consider our results for output (top row). We find on average

a zero response to monetary shocks in quantity-setting regimes (βh = 0; first column). This

average zero response belies weak evidence of a negative response at shorter horizons (h < 6)

and a positive response at longer horizons (h ∈ {7, 8}). By contrast, we find a consistently

14As observed by Ramey (2016), including contemporaneous values amounts to assuming a zero con-
temporaneous response of macroeconomic quantities to shocks on impact, as is typical in the structural
VAR literature (e.g., Christiano et al., 2005). This is also consistent with our conditioning on ∆t, which
is measurable in time-t macroeconomic aggregates. Results are very similar when we do not control for
contemporaneous values, suggesting that this timing assumption is close to correct in the data.

15Tenreyro and Thwaites (2016) make a similar observation about the necessity of these controls in a local-
projections estimation of whether monetary policy shocks, also measured as in Romer and Romer (2004),
have different effects in recessions.
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Figure 13: IRFs to Monetary Shocks in Price-Setting and Quantity-Setting Regimes
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Note: These plots display our estimates of the state-dependent response to monetary policy shocks
from Equation 189. The outcome variable is real GDP in the top row and GDP deflator in the
bottom row. The columns respectively show our estimates of βh, the response under quantity-
setting; βh + ϕh, the response under price-setting; and ϕh, the difference between the price-setting
and quantity-setting responses. In each plot, the solid line gives the point estimates, the dark-
shaded region gives 68% confidence intervals, and the light-shaded region gives 95% confidence
intervals, where the latter two are based on Newey and West (1987) standard errors with a six-
quarter bandwidth.

negative response under price-setting for all horizons h > 4. This is statistically significant

at the 68% level for h ≥ 6 and at the 95% level for h ∈ {10, 11}. The difference between

these responses is also negative (ϕ < 0) at these longer horizons, and statistically significant

at the 95% level for h ≥ 7. These results, taken together, are consistent with our theory: in

price-setting regimes, contractionary monetary policy has considerably more power to shape

real outcomes.

We next consider our results for prices (bottom row). We find a small negative response

in quantity-setting regimes (column 1) and a significant positive response in price-setting

regimes (column 2). The second prediction violates the theory in the direction of the fa-

miliar “price puzzle” (see, e.g., Ramey, 2016). But our prediction for the difference of
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coefficients is consistent with the theory (ϕh > 0, column 3): under quantity-setting regimes,

contractionary policy is more able to control the price level.

Robustness. In Table 3, we probe the robustness of these findings on three margins. When

reporting these results, we focus on the interactive coefficients ϕ at the horizon h = 12. First,

we vary the timing of our measurement of PriceSet, since the mapping from theory to data

imperfectly captured the realistic delays in the effects of monetary policy. When we replace

PriceSet with a four-quarter backward-looking average (model (2) of Table 3) or a four-

quarter forward-looking average (model (3) of Table 3), we continue to find ϕRGDP < 0 and

ϕPGDP > 0. Next, we parametrize the model using the continuous measure of ∆ rather

than the binary measure of PriceSet. This guards against the possibility that our binary

transformation masked non-monotone effects. We again find ϕRGDP < 0 and ϕPGDP > 0.

Comparison to the Literature. Existing work draws a mixed conclusion on whether

monetary policy is more or less powerful in “downturns,” broadly defined. Weise (1999)

finds weaker price effects and stronger output effects when output is initially low; Garcia and

Schaller (2002) and Lo and Piger (2005) find stronger responses of output in recessions; and

Tenreyro and Thwaites (2016) find weaker responses of output and prices in recessions. Our

analysis differs both because (i) it conditions on a different variable, the model’s prediction

for whether firms set prices or quantities, which itself depends on uncertainties rather than

means; and (ii) it tests for differences in both the response of output to monetary shocks

and the response of prices to monetary shocks, as predicted by the theory.

83



Table 3: Asymmetric Effects of Monetary Policy, Robustness

Panel (a): Outcome is log RealGDPt+12

(1) (2) (3) (4)
Baseline Lag Avg. Lead Avg. Continuous

MonShockt × PriceSett -0.0172 -0.0071 -0.0253
(0.0077) (0.0101) (0.0162)

MonShockt × ∆̂t+1 -28.50
(13.51)

MonShockt ✓ ✓ ✓ ✓
PriceSett ✓ ✓ ✓
∆̂t+1 ✓
Macro Controls ✓ ✓ ✓ ✓
Macro Controls ×PriceSett ✓ ✓ ✓
Macro Controls ×∆̂t+1 ✓
N 156 156 156 156

Panel (b): Outcome is logGDPDeflatort+12

(1) (2) (3) (4)
Baseline Lag Avg. Lead Avg. Continuous

MonShockt × PriceSett 0.0120 0.0042 0.0184
(0.0053) (0.0059) (0.0083)

MonShockt × ∆̂t+1 1.018
(10.38)

MonShockt ✓ ✓ ✓ ✓
PriceSett ✓ ✓ ✓
∆̂t+1 ✓
Macro Controls ✓ ✓ ✓ ✓
Macro Controls ×PriceSett ✓ ✓ ✓
Macro Controls ×∆̂t+1 ✓
N 156 156 156 156

Note: This Table shows results from estimating Equation 189 at the 12-quarter horizon with
different constructions of the interactive variable, focusing only on estimates of the interaction
coefficient. In Panel (a) the outcome variable is Real GDP and in Panel (b) the outcome variable is
GDP Deflator. Model (1) is our baseline. Model (2) uses a four-quarter lagged average of PriceSet,
or sets PriceSett = (

∑3
j=0 PriceSetBaselinet−j)/4. Model (3) uses a four-quarter lead average of

PriceSet, or sets PriceSett = (
∑3

j=0 PriceSetBaselinet+j)/4. Model (4) uses the continuous variable

∆̂t+1. In all cases, we control for interactions of the macroeconomic variables (contemporaneous
and lagged values of log Real GDP, log GDP Deflator, and log TFP) interacted with the variant
construction of PriceSet or ∆. Standard errors in parentheses are based on the method of Newey
and West (1987) with a six-quarter bandwidth.
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E Additional Tables and Figures

Figure 14: Estimates of Time-Varying Uncertainty
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Note: Both panels plot our quarterly time-series estimates of uncertainty, estimated as described
in Section 5.1. All lines except for “Demand” (solid blue) are one-quarter-ahead volatility predic-
tions from a constant conditional correlations (CCC) GARCH model. The “Demand” estimates
combine the GARCH model’s predictions for real GDP uncertainty and TFP uncertainty with an
assumption about the relationship between microeconomic (demand) volatility and macroeconomic
(productivity) uncertainty, as described in the main text. The left plot shows all series on a com-
mon scale, and the right plot zooms in on the series other than demand. Both plots feature spikes
that are off the scale of the graph during the Covid-19 lockdown.
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Figure 15: The Slope of Aggregate Supply (Annual-Frequency Calculation)
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 57 and 58. These estimates correspond to our secondary calculation using an annual-
frequency GARCHmodel and a direct measure of microeconomic (demand) uncertainty from Bloom
et al. (2018). The blue dashed line indicates the estimates of Hazell et al. (2022), based on state-
level estimates of consumer prices and unemployment and an identification strategy that isolates
local demand shocks (columns 3 and 4, panel B, of Table II). The red dotted line indicates the
estimates of Ball and Mazumder (2011), based on aggregate data (column 4 of Table 3).
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Figure 16: The Slope of Aggregate Supply Since World War II
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 57 and 58. In this calculation, in contrast to the calculation of Figure 4, we extend the
calculation back to 1947:Q2. The elasticity of aggregate supply is off the scale of the graph from
1951:Q1 to 1952:Q2. Note that the estimates from 1960 onward numerically differ from the ones in
Figure 2 because we re-estimate the GARCH model for macroeconomic uncertainty over the larger
sample.
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Figure 17: Sensitivity of Aggregate Supply Estimates to Parameters
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(c) Flattening from 1978-1990 vs. 1991-2018
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(d) Flattening from 1978-1990 vs. 1991-2018
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Note: This Figure plots the sensitivity of the inverse elasticity of aggregate supply to the elasticity
of substitution η (Panel a), to varying ratios of microeconomic to macroeconomic uncertainty R
(Panel b), and to varying calibrations of wealth effects (Panel c). Panels (c) and (d) each plot a
heat map for the difference in the average slope for aggregate supply from 1970-1980 to 1991-2018,
varying different pairs of parameters. In each of these panels, the white “x” denotes our baseline
calibration.
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