Women and the Econometrics of Family Trees

José-Antonio Espín-Sánchez¹ Joseph Ferrie² Chris Vickers³

¹Department of Economics Yale University

²Department of Economics Northwestern University and NBER

> ³Department of Economics Auburn University

Which one is different?

Which one is different?

• *Hint*: Econometric Structures

Women and Social Mobility

- Econometrics
 - No Econometrics of Family Trees
- Why the lack of studies on Women and Social Mobility?
 - Cholli and Durlauf (2021) (NBER): 0 times
 - Deutscher and Mazumber (2023) (JEL): 1 time
 - Chadwick and Solon (2002), Olivetti and Paserman (2015), Jácome et al (2021), Craig et al. (2023): daughters not mothers

- Data
 - Most sources only have status information for males
 - Hard to link matrilineally
 - ★ Women change names upon marriage

Solution

- Use women's birth names and create full Family Trees
- Family Trees: income from males in the matrilineal side
 - Maternal Grandfathers
 - Maternal Uncles
- Fully specify an econometric model of Family Trees
 - Structural parameters: Mobility and Assortment
 - Nuisance parameters: Correlation among all Grandparents

Use Grandfathers and Uncles as instruments

OLS and IV as GMM

- OLS as GMM
 - $Y_i = \beta X_i + \varepsilon_i$
 - $\mathbb{E}[X_i Y_i] = \beta \mathbb{E}[X_i X_i] + \mathbb{E}[X_i \varepsilon_i]$
 - If $\mathbb{E}[X_i \varepsilon_i] = 0$, then $\beta_{OLS} = \frac{\mathbb{E}[X_i Y_i]}{\mathbb{E}[X_i X_i]}$

- IV as GMM
 - $Y_i = \beta X_i + v_i$
 - $\mathbb{E}[Z_i Y_i] = \beta \mathbb{E}[Z_i X_i] + \mathbb{E}[Z_i v_i]$
 - If $\mathbb{E}[X_i v_i] \neq 0$, but $\mathbb{E}[Z_i v_i] = 0$, then $\beta_{IV} = \frac{\mathbb{E}[Z_i Y_i]}{\mathbb{E}[Z_i X_i]}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Standard Approach

$$S_i = \tilde{\beta}_F F_i + v_i$$

GMM

$$S_{i} = \tilde{\beta}_{F}F_{i} + v_{i}$$
$$\mathbb{E}[F_{i}S_{i}] = \tilde{\beta}_{F}\mathbb{E}[F_{i}F_{i}]$$
$$A \equiv \mathbb{E}[F_{i}S_{i}] = \tilde{\beta}_{F}$$

Women Matter

$$S_{i} = \beta_{F}F_{i} + \beta_{M}M_{i} + \varepsilon_{i}^{S}$$
$$\mathbb{E}[F_{i}S_{i}] = \beta_{F}\mathbb{E}[F_{i}F_{i}] + \mathbb{E}[F_{i}M_{i}]\beta_{M} + \varepsilon_{i}^{S}$$
$$\mathbb{E}[F_{i}S_{i}] = \beta_{F} + \rho\beta_{M}$$

Full Trees

$$S_{i} = \beta_{F}F_{i} + \beta_{M}M_{i} + \varepsilon_{i}^{S}$$
$$F_{i} = \beta_{F}PGF_{i} + \beta_{M}PGM_{i} + \varepsilon_{i}^{F}$$
$$M_{i} = \beta_{F}MGF_{i} + \beta_{M}MGM_{i} + \varepsilon_{i}^{M}$$

Two Generations Data

$$F_{i} = \beta_{F} PGF_{i} + \beta_{M} PGM_{i} + \varepsilon_{i}^{F}$$
$$M_{i} = \beta_{F} MGF_{i} + \beta_{M} MGM_{i} + \varepsilon_{i}^{M}$$

First Moment

 $F_{i} = \beta_{F} PGF_{i} + \beta_{M} PGM_{i} + \varepsilon_{i}^{F}$ $\mathbb{E}[F_{i} PGF_{i}] = \beta_{F} \mathbb{E}[PGF_{i} PGF_{i}] + \beta_{M} \mathbb{E}[PGM_{i} PGF_{i}]$

Second Moment

Third Moment

Solving the system

General Tree

(ロ)、(型)、(E)、(E)、 E) のQ(C)

Family Trees

Nuisance Parameters and Empirical Relations

Main Results

	5	Nuisance	Structura	Point Identified			
Prop.	Data	Assumptions	Assumptions	Parameters			
	Identification using two generations						
Prop. 1	(F,PGF,MGF)	a = b = c = d	$\lambda = ho$	(β_F, β_M, ρ)			
Prop. 2	(F,PGF,MGF)		$\beta_M = 0$	(β_F, ρ)			
Prop. 3	(F,PGF,MGF)	a = b = c = d	$\beta_F = \beta_M$	(β_F,λ, ho)			
Identification using three generations							
Prop. 4 (S, F, PGF, MGF) $b = d$ $(\beta_F, \beta_M, \lambda)$							
Identification from maternal uncles							
Prop. 5	(<i>S</i> , <i>F</i> , <i>MGF</i>)	a = b = c = d	$\lambda = ho$	$(\beta_F, \beta_M, \rho, a)$			
Prop. 6	(<i>S</i> , <i>F</i> , <i>MU</i> , <i>MGF</i>)			$(\beta_F, \beta_M, \lambda, \rho, \gamma)$			
Prop. 7	(S, F, MU, PGF)			$(\beta_F, \beta_M, \lambda, \rho, \gamma)$			
Prop. 8	(<i>S</i> , <i>F</i> , <i>MU</i>)	$\gamma = 0$	$\lambda= ho$	(β_F, β_M, ρ)			

Table 1: Summary of Main Identification results.

Extended Results

Table 2: Summary of Extended Identification results.

Prop. Data		Nuisance	Structura	Point Identified			
Prop.	Data	Assumptions	Assumptions	Parameters			
	Identification allowing heterogeneous effects by gender						
Prop. 9	Prop. 9 (S, F, PGF, MGF) $a = b$			$\left(\beta_{F}^{S},\beta_{M}^{S},\beta_{F}^{D},\beta_{M}^{D},\lambda,\rho\right)$			
Prop. 10	Prop. 10 (<i>S</i> , <i>F</i> , <i>PGF</i> , <i>MGF</i>) <i>b</i> =			$\left(\beta_{F}^{S},\beta_{M}^{S},\beta_{F}^{D},\beta_{M}^{D},\lambda,\rho\right)$			
	Identification allowing heterogeneous effects by generation						
Prop. 11	11 (S, F, PGF, MGF) $b = d$			$(\beta_F, \beta_M, \rho, \alpha)$			
Cor. 1	(S, F, PGF, MGF)	a = b = d	$\alpha_F = \alpha_M$	$(\beta_F, \beta_M, \alpha_F, \lambda, \rho)$			
Prop. 12	(S, F, PGF, MGF)	b=d=0; a=c		$(\beta_F, \beta_M, \alpha_F, \alpha_M, \lambda, \rho)$			
Prop. 13	(S, F, PGF, MGF)	a = b = d	$\lambda = ho$	$(\beta_F, \beta_M, \alpha_F, \alpha_M, \rho)$			
Prop. 14	(S, F, PGF, MGF)	$b = d = \sqrt{ac}$		$(\beta_F, \beta_M, \rho, \tilde{\alpha})$			
Cor. 2	(S, F, PGF, MGF)	$b = d = \sqrt{ac}$	$\alpha_F = \alpha_M$	$(eta_F,eta_M, ho, ildelpha)$			

Finding Women's pre-marriage names Using the NUMIDENT

- Standard Linking across three censuses
 - Grandparents (1900)
 - Parents (1920)
 - Child (1940)
- To come: Buckles, Haws, Price and Wilbert (2023)
- Social Security NUMIDENT (Numerical Identification) file
 - ▶ Individuals dead (or over 110 years old) by December 31, 2007

- Includes mother's pre-marriage surname
- Collected when entering employment (farmers are excluded)

Measuring Socioeconomic Status Beyond OCCSCORES

- Using OCCSCORES
 - Income information only available after 1950
 - Occupation available 1900-1940
 - OCCSCORES: median income for an occupation in 1950
- Problems with OCCSCORES
 - No variation over space
 - No variation over time
 - Reversal of fortunes for farmers
 - ★ 60% of males are farmers in 1900
 - \star 64% of them have a son that is a farmer in 1920
- Solution
 - Add variation over space and time
 - New estimates of farmer's income by State-decade

Farmers Income in 1900

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Chadwick and Solon (2002)

- Clever way to estimate ρ using (F_i, PGF_i, MGF_i) . Assumptions
 - Mother's income relates to Father's income: $F_i = \rho_0 M_i + v_i$
 - Equation for Father's income is then: $F_i = \beta_F PGF_i + \beta_M PGM_i + \rho_0 M_i + \varepsilon_i$
 - Moment: No relation among grandparents: $D = \beta_F a + \beta_M b + \rho_0 B$

• Elegant solution (if
$$a = b = 0$$
)

• $\rho_0 = D/B$

• Why not
$$M_i = \rho_1 F_i + v'_i$$
?

• Summary

- CS: $F_i = \rho_0 M_i + \varepsilon_i^0$, the estimator is $\rho_0 = D/B$.
- Reversed CS: $M_i = \rho_1 F_i + \varepsilon_i^1$, the estimator is $\rho_1 = B/D$.
- Correlational (Prop. 2): $\mathbb{E}[F_iM_i] = \rho$ and $\beta_M = 0$, the estimator is $\rho = BD$.

Chadwick and Solon (2002)

- Clever way to estimate ρ using (F_i, PGF_i, MGF_i) . Assumptions
 - Mother's income relates to Father's income: $F_i = \rho_0 M_i + v_i$
 - Equation for Father's income is then: $F_i = \beta_F PGF_i + \beta_M PGM_i + \rho_0 M_i + \varepsilon_i$
 - Moment: No relation among grandparents: $D = \beta_F a + \beta_M b + \rho_0 B$
- Elegant solution (if a = b = 0)
 - $\rho_0 = D/B$
- Why not $M_i = \rho_1 F_i + v'_i$?
- Summary
 - CS: $F_i = \rho_0 M_i + \varepsilon_i^0$, the estimator is $\rho_0 = D/B$.
 - Reversed CS: $M_i = \rho_1 F_i + \varepsilon_i^1$, the estimator is $\rho_1 = B/D$.
 - Correlational (Prop. 2): $\mathbb{E}[F_iM_i] = \rho$ and $\beta_M = 0$, the estimator is $\rho = BD$.

Chadwick and Solon (2002)

- Clever way to estimate ρ using (F_i, PGF_i, MGF_i) . Assumptions
 - Mother's income relates to Father's income: $F_i = \rho_0 M_i + v_i$
 - Equation for Father's income is then: $F_i = \beta_F PGF_i + \beta_M PGM_i + \rho_0 M_i + \varepsilon_i$
 - Moment: No relation among grandparents: $D = \beta_F a + \beta_M b + \rho_0 B$
- Elegant solution (if a = b = 0)

•
$$\rho_0 = D/B$$

• Why not $M_i = \rho_1 F_i + v'_i$?

Summary

- CS: $F_i = \rho_0 M_i + \varepsilon_i^0$, the estimator is $\rho_0 = D/B$.
- Reversed CS: $M_i = \rho_1 F_i + \varepsilon_i^1$, the estimator is $\rho_1 = B/D$.
- Correlational (Prop. 2): $\mathbb{E}[F_iM_i] = \rho$ and $\beta_M = 0$, the estimator is $\rho = BD$.

Main Results

	D .	Nuisance	Structura	Point Identified			
Prop.	Data	Assumptions	Assumptions	Parameters			
	Identification using two generations						
Prop. 1	(F,PGF,MGF)	a = b = c = d	$\lambda = ho$	(β_F, β_M, ρ)			
Prop. 2	(F,PGF,MGF)		$\beta_M = 0$	(β_F, ρ)			
Prop. 3	(F,PGF,MGF)	a = b = c = d	$\beta_F = \beta_M$	(β_F,λ, ho)			
Identification using three generations							
Prop. 4	(S, F, PGF, MGF)	b = d		$(\beta_F,\beta_M,\lambda, ho)$			
	Identification from maternal uncles						
Prop. 5	(<i>S</i> , <i>F</i> , <i>MGF</i>)	a = b = c = d	$\lambda = ho$	$(\beta_F, \beta_M, \rho, a)$			
Prop. 6	(<i>S</i> , <i>F</i> , <i>MU</i> , <i>MGF</i>)			$(\beta_F, \beta_M, \lambda, \rho, \gamma)$			
Prop. 7	(S, F, MU, PGF)			$(\beta_F, \beta_M, \lambda, \rho, \gamma)$			
Prop. 8	(<i>S</i> , <i>F</i> , <i>MU</i>)	$\gamma = 0$	$\lambda = ho$	(β_F, β_M, ρ)			

Table 1: Summary of Main Identification results.

Two Generations Empirical Results

Parameter		Estimate	
	Prop. 1	Prop. 2	Prop. 3
β_F	0.167	0.930	0.465
	(0.025)	(0.015)	(0.007)
β_M	0.763		
	(0.039)		
ρ	0.416	0.416	0.416
	(0.012)	(0.012)	(0.007)

(ロ)、(型)、(E)、(E)、 E) のQ()

Table 3: Identification using Two Generations

Model using Generational Effects

Allowing for gendered effects the model becomes

$$S_i = \beta_F F_i + \beta_M M_i + \varepsilon_i^S$$

$$F_i = \alpha_F PGF_i + \alpha_M PGM_i + \varepsilon_i^F$$

$$M_i = \alpha_F MGF_i + \alpha_M MGM_i + \varepsilon_i^M$$

where

- β_F is the effect of the father on a child in the second generation
- eta_M is the effect of the mother on a child in the second generation
- α_F is the effect of the father on a child in the first generation
- α_M is the effect of the mother on a child in the first generation

Extended Results

Table 2: Summary of Extended Identification results.

Prop. Data		Nuisance	Structura	Point Identified			
Prop.	Data	Assumptions	Assumptions	Parameters			
	Identification allowing heterogeneous effects by gender						
Prop. 9	Prop. 9 (S, F, PGF, MGF) $a = b$			$\left(\beta_{F}^{S},\beta_{M}^{S},\beta_{F}^{D},\beta_{M}^{D},\lambda,\rho\right)$			
Prop. 10	Prop. 10 (<i>S</i> , <i>F</i> , <i>PGF</i> , <i>MGF</i>) <i>b</i> =			$\left(\beta_{F}^{S},\beta_{M}^{S},\beta_{F}^{D},\beta_{M}^{D},\lambda,\rho\right)$			
	Identification allowing heterogeneous effects by generation						
Prop. 11	11 (S, F, PGF, MGF) $b = d$			$(\beta_F, \beta_M, \rho, \alpha)$			
Cor. 1	(S, F, PGF, MGF)	a = b = d	$\alpha_F = \alpha_M$	$(\beta_F, \beta_M, \alpha_F, \lambda, \rho)$			
Prop. 12	(S, F, PGF, MGF)	b=d=0; a=c		$(\beta_F, \beta_M, \alpha_F, \alpha_M, \lambda, \rho)$			
Prop. 13	(S, F, PGF, MGF)	a = b = d	$\lambda= ho$	$(\beta_F, \beta_M, \alpha_F, \alpha_M, \rho)$			
Prop. 14	(S, F, PGF, MGF)	$b = d = \sqrt{ac}$		$(\beta_F, \beta_M, \rho, \tilde{\alpha})$			
Cor. 2	(S, F, PGF, MGF)	$b = d = \sqrt{ac}$	$\alpha_F = \alpha_M$	$(eta_F,eta_M, ho, ildelpha)$			

Generational Effects Empirical Results

Parameter		Esti	nate	
	Prop. 11	Prop. 12	Prop. 13	Prop. 14
α	0.465			
	(0.015)			
α _F		0.568	0.138	
		(0.013)	(0.295)	
α _M		0.098	0.792	
•••		(1.094)	(0.299)	
ã				0.465
				(0.007)
β _F	0.272	0.346	0.272	0.272
	(0.080)	(0.022)	(0.080)	(0.080)
β _M	0.220	0.169	0.220	0.220
1 101	(0.081)	(0.024)	(0.081)	(0.081)
λ		0.010		0.041
		(0.125)		(0.021)
ρ	0.437	0.157	0.437	0.437
	(0.207)	(0.105)	(0.207)	(0.207)

Table 4: Identification Allowing Heterogeneous Effects by Generation

▲□→ ▲圖→ ▲国→ ▲国→ 国 - のへで

Generational Effects Empirical Results

Parameter	Estimate			
	Prop. 11	Prop. 12	Prop. 13	Prop. 14
α	0.465			
	(0.015)			
α _F		0.568	0.138	
		(0.013)	(0.295)	
α _M		0.098	0.792	
101		(1.094)	(0.299)	
ã				0.465
				(0.007)
β _F	0.272	0.346	0.272	0.272
	(0.080)	(0.022)	(0.080)	(0.080)
βм	0.220	0.169	0.220	0.220
1.141	(0.081)	(0.024)	(0.081)	(0.081)
λ		0.010		0.041
		(0.125)		(0.021)
ρ	0.437	0.157	0.437	0.437
r	(0.207)	(0.105)	(0.207)	(0.207)

Table 4: Identification Allowing Heterogeneous Effects by Generation

Generational Effects Empirical Results

Parameter		Esti	nate	
	Prop. 11	Prop. 12	Prop. 13	Prop. 14
α	0.465			
	(0.015)			
α _F		0.568	0.138	
		(0.013)	(0.295)	
α _M		0.098	0.792	
		(1.094)	(0.299)	
ã				0.465
	\frown		\sim	(0.007)
β _F	0.272	0.346	0.272	0.272
PF	(0.080)	(0.022)	(0.080)	(0.080)
β _M	0.220	0.169	0.220	0.220
РМ	(0.081)	(0.024)	(0.081)	(0.081)
		()		
λ	\smile	0.010	\bigcirc	0.041
		(0.125)		(0.021)
ρ	0.437	0.157	0.437	0.437
	(0.207)	(0.105)	(0.207)	(0.207)

Table 4: Identification Allowing Heterogeneous Effects by Generation

Conclusions

Mobility estimates for Mothers are large

- Assortative Mating is high
 - Rethinking the implication of mobility estimates
 - Interaction with mobility estimates
- Grandparents may affect mobility via Assortative Mating

Extensions

- Direct Grandparents effects
- Mating on unobservables
- > Estimates of nuisance parameters with data on other relatives