Women and the Econometrics of Family Trees

José-Antonio Espín-Sánchez ${ }^{1}$ Joseph Ferrie ${ }^{2}$ Chris Vickers ${ }^{3}$

${ }^{1}$ Department of Economics
Yale University
${ }^{2}$ Department of Economics
Northwestern University and NBER
${ }^{3}$ Department of Economics
Auburn University

Which one is different？

[^0]
Which one is different?

- Hint: Econometric Structures

Women and Social Mobility

- Econometrics
- No Econometrics of Family Trees
- Why the lack of studies on Women and Social Mobility?
- Cholli and Durlauf (2021) (NBER): 0 times
- Deutscher and Mazumber (2023) (JEL): 1 time
* Chadwick and Solon (2002), Olivetti and Paserman (2015), Jácome et al (2021), Craig et al. (2023): daughters not mothers
- Data
- Most sources only have status information for males
- Hard to link matrilineally
\star Women change names upon marriage

Solution

- Use women's birth names and create full Family Trees
- Family Trees: income from males in the matrilineal side
- Maternal Grandfathers
- Maternal Uncles
- Fully specify an econometric model of Family Trees
- Structural parameters: Mobility and Assortment
- Nuisance parameters: Correlation among all Grandparents
- Use Grandfathers and Uncles as instruments

OLS and IV as GMM

- OLS as GMM
- $Y_{i}=\beta X_{i}+\varepsilon_{i}$
- $\mathbb{E}\left[X_{i} Y_{i}\right]=\beta \mathbb{E}\left[X_{i} X_{i}\right]+\mathbb{E}\left[X_{i} \varepsilon_{i}\right]$
- If $\mathbb{E}\left[X_{i} \varepsilon_{i}\right]=0$, then $\beta_{O L S}=\frac{\mathbb{E}\left[X_{i} Y_{i}\right]}{\mathbb{E}\left[X_{i} X_{i}\right]}$
- IV as GMM
- $Y_{i}=\beta X_{i}+v_{i}$
- $\mathbb{E}\left[Z_{i} Y_{i}\right]=\beta \mathbb{E}\left[Z_{i} X_{i}\right]+\mathbb{E}\left[Z_{i} v_{i}\right]$
- If $\mathbb{E}\left[X_{i} v_{i}\right] \neq 0$, but $\mathbb{E}\left[Z_{i} v_{i}\right]=0$, then $\beta_{I V}=\frac{\mathbb{E}\left[Z_{i} Y_{i}\right]}{\mathbb{E}\left[Z_{i} X_{i}\right]}$

Standard Approach

$$
S_{i}=\tilde{\beta}_{F} F_{i}+v_{i}
$$

GMM

$$
\begin{gathered}
S_{i}=\tilde{\beta}_{F} F_{i}+v_{i} \\
\mathbb{E}\left[F_{i} S_{i}\right]=\tilde{\beta}_{F} \mathbb{E}\left[F_{i} F_{i}\right] \\
A \equiv \mathbb{E}\left[F_{i} S_{i}\right]=\tilde{\beta}_{F}
\end{gathered}
$$

Women Matter

$$
\begin{gathered}
S_{i}=\beta_{F} F_{i}+\beta_{M} M_{i}+\varepsilon_{i}^{S} \\
\mathbb{E}\left[F_{i} S_{i}\right]=\beta_{F} \mathbb{E}\left[F_{i} F_{i}\right]+\mathbb{E}\left[F_{i} M_{i}\right] \beta_{M}+\varepsilon_{i}^{S} \\
\mathbb{E}\left[F_{i} S_{i}\right]=\beta_{F}+\rho \beta_{M}
\end{gathered}
$$

Full Trees

$$
\begin{gathered}
S_{i}=\beta_{F} F_{i}+\beta_{M} M_{i}+\varepsilon_{i}^{S} \\
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\varepsilon_{i}^{F} \\
M_{i}=\beta_{F} M G F_{i}+\beta_{M} M G M_{i}+\varepsilon_{i}^{M}
\end{gathered}
$$

Two Generations Data

$$
\begin{aligned}
F_{i} & =\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\varepsilon_{i}^{F} \\
M_{i} & =\beta_{F} M G F_{i}+\beta_{M} M G M_{i}+\varepsilon_{i}^{M}
\end{aligned}
$$

$$
\begin{aligned}
a & \equiv \mathbb{E}\left[P G F_{i} M G F_{i}\right] \\
B & \equiv \mathbb{E}\left[P G F_{i} F_{i}\right] \\
D & \equiv \mathbb{E}\left[M G F_{i} F_{i}\right]
\end{aligned}
$$

First Moment

$$
\begin{gathered}
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\varepsilon_{i}^{F} \\
\mathbb{E}\left[F_{i} P G F_{i}\right]=\beta_{F} \mathbb{E}\left[P G F_{i} P G F_{i}\right]+\beta_{M} \mathbb{E}\left[P G M_{i} P G F_{i}\right]
\end{gathered}
$$

$B=\beta_{F}+\rho \beta_{M}$

Second Moment

$$
\begin{gathered}
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\varepsilon_{i}^{F} \\
\mathbb{E}\left[F_{i} M G F_{i}\right]=\beta_{F} \mathbb{E}\left[P G F_{i} M G F_{i}\right]+\beta_{M} \mathbb{E}\left[P G M_{i} M G F_{i}\right]
\end{gathered}
$$

$B=\beta_{F}+\rho \beta_{M}$
$D=a \beta_{F}+a \beta_{M}$

Third Moment

$$
\begin{gathered}
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\varepsilon_{i}^{F} \\
M_{i}=\beta_{F} M G F_{i}+\beta_{M} M G M_{i}+\varepsilon_{i}^{M} \\
\mathbb{E}\left[F_{i} M_{i}\right]=\mathbb{E}\left[\left(\beta_{F} P G F_{i}+\beta_{M} P G M_{i}\right)\left(\beta_{F} M G F_{i}+\beta_{M} M G M_{i}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
B=\beta_{F}+\rho \beta_{M} \\
D=\left(\beta_{F}+\beta_{M}\right) a \\
\rho=\left(\beta_{F}+\beta_{M}\right)^{2} a
\end{gathered}
$$

Solving the system

$$
\begin{gathered}
B=\beta_{F}+\rho \beta_{M} \\
D=\left(\beta_{F}+\beta_{M}\right) a \\
\rho=\left(\beta_{F}+\beta_{M}\right)^{2} a
\end{gathered}
$$

$$
\begin{gathered}
\rho=\frac{D^{2}}{a} \\
\beta_{F}=\frac{D}{a}+\frac{a B-D}{a-D^{2}} \\
\beta_{M}=-\frac{a B-D}{a-D^{2}}
\end{gathered}
$$

General Tree

Family Trees

Nuisance Parameters and Empirical Relations

Main Results

Table 1: Summary of Main Identification results.

Prop.	Data	Nuisance Assumptions	Structural Assumptions	Point Identified Parameters
Identification using two generations				
Prop. 1	$(F, P G F, M G F)$	$a=b=c=d$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \rho\right)$
Prop. 2	$(F, P G F, M G F)$		$\beta_{M}=0$	$\left(\beta_{F}, \rho\right)$
Prop. 3	$(F, P G F, M G F)$	$a=b=c=d$	$\beta_{F}=\beta_{M}$	$\left(\beta_{F}, \lambda, \rho\right)$

Identification using three generations

Prop. 4	$(S, F, P G F, M G F)$	$b=d$		$\left(\beta_{F}, \beta_{M}, \lambda, \rho\right)$

Identification from maternal uncles

Prop. 5	$(S, F, M G F)$	$a=b=c=d$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \rho, a\right)$
Prop. 6	$(S, F, M U, M G F)$			$\left(\beta_{F}, \beta_{M}, \lambda, \rho, \gamma\right)$
Prop. 7	$(S, F, M U, P G F)$			$\left(\beta_{F}, \beta_{M}, \lambda, \rho, \gamma\right)$
Prop. 8	$(S, F, M U)$	$\gamma=0$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \rho\right)$

Extended Results

Table 2: Summary of Extended Identification results.

Prop.	Data	Nuisance Assumptions	Structural Assumptions	Point Identified Parameters

Identification allowing heterogeneous effects by gender				
Prop. 9	$(S, F, P G F, M G F)$	$a=b=c=d$		$\left(\beta_{\digamma}^{S}, \beta_{M}^{S}, \beta_{F}^{D}, \beta_{M}^{D}, \lambda, \rho\right)$
Prop. 10	$(S, F, P G F, M G F)$	$b=d=0 ; a=c$		$\left(\beta_{\digamma}^{S}, \beta_{M}^{S}, \beta_{F}^{D}, \beta_{M}^{D}, \lambda, \rho\right)$

Identification allowing heterogeneous effects by generation

Prop. 11	$(S, F, P G F, M G F)$	$b=d$		$\left(\beta_{F}, \beta_{M}, \rho, \alpha\right)$
Cor. 1	$(S, F, P G F, M G F)$	$a=b=d$	$\alpha_{F}=\alpha_{M}$	$\left(\beta_{F}, \beta_{M}, \alpha_{F}, \lambda, \rho\right)$
Prop. 12	$(S, F, P G F, M G F)$	$b=d=0 ; a=c$		$\left(\beta_{F}, \beta_{M}, \alpha_{F}, \alpha_{M}, \lambda, \rho\right)$
Prop. 13	$(S, F, P G F, M G F)$	$a=b=d$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \alpha_{F}, \alpha_{M}, \rho\right)$
Prop. 14	$(S, F, P G F, M G F)$	$b=d=\sqrt{a c}$		$\left(\beta_{F}, \beta_{M}, \rho, \tilde{\alpha}\right)$
Cor. 2	$(S, F, P G F, M G F)$	$b=d=\sqrt{a c}$	$\alpha_{F}=\alpha_{M}$	$\left(\beta_{F}, \beta_{M}, \rho, \tilde{\alpha}\right)$

Finding Women's pre-marriage names

Using the NUMIDENT

- Standard Linking across three censuses
- Grandparents (1900)
- Parents (1920)
- Child (1940)
- To come: Buckles, Haws, Price and Wilbert (2023)
- Social Security NUMIDENT (Numerical Identification) file
- Individuals dead (or over 110 years old) by December 31, 2007
- Includes mother's pre-marriage surname
- Collected when entering employment (farmers are excluded)

Measuring Socioeconomic Status

Beyond OCCSCORES

- Using OCCSCORES
- Income information only available after 1950
- Occupation available 1900-1940
- OCCSCORES: median income for an occupation in 1950
- Problems with OCCSCORES
- No variation over space
- No variation over time
- Reversal of fortunes for farmers
* 60% of males are farmers in 1900
* 64% of them have a son that is a farmer in 1920
- Solution
- Add variation over space and time
- New estimates of farmer's income by State-decade

Farmers Income in 1900

Chadwick and Solon (2002)

- Clever way to estimate ρ using ($F_{i}, P G F_{i}, M G F_{i}$). Assumptions
- Mother's income relates to Father's income: $F_{i}=\rho_{0} M_{i}+v_{i}$
- Equation for Father's income is then:

$$
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\rho_{0} M_{i}+\varepsilon_{i}
$$

- Moment: No relation among grandparents: $D=\beta_{F} a+\beta_{M} b+\rho_{0} B$
- Elegant solution (if $a=b=0$)
- Why not $M_{i}=\rho_{1} F_{i}+v_{i}^{\prime}$?
- Summary
- CS: $F_{i}=p_{0} M_{i}+\varepsilon_{i}^{0}$, the estimator is $p_{0}=D / B$.
- Reversed CS: $M_{i}=\rho_{1} F_{i}+\varepsilon_{i}^{1}$, the estimator is $\rho_{1}=B / D$.
- Correlational (Prop. 2): $\mathbb{E}\left[F_{i} M_{i}\right]=\rho$ and $\beta_{M}=0$, the estimator is $\rho=B D$

Chadwick and Solon (2002)

- Clever way to estimate ρ using ($F_{i}, P G F_{i}, M G F_{i}$). Assumptions
- Mother's income relates to Father's income: $F_{i}=\rho_{0} M_{i}+v_{i}$
- Equation for Father's income is then:

$$
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\rho_{0} M_{i}+\varepsilon_{i}
$$

- Moment: No relation among grandparents: $D=\beta_{F} a+\beta_{M} b+\rho_{0} B$
- Elegant solution (if $a=b=0$)
- $\rho_{0}=D / B$
- Why not $M_{i}=\rho_{1} F_{i}+v_{i}^{\prime}$?
- Summary

Chadwick and Solon (2002)

- Clever way to estimate ρ using ($F_{i}, P G F_{i}, M G F_{i}$). Assumptions
- Mother's income relates to Father's income: $F_{i}=\rho_{0} M_{i}+v_{i}$
- Equation for Father's income is then:

$$
F_{i}=\beta_{F} P G F_{i}+\beta_{M} P G M_{i}+\rho_{0} M_{i}+\varepsilon_{i}
$$

- Moment: No relation among grandparents: $D=\beta_{F} a+\beta_{M} b+\rho_{0} B$
- Elegant solution (if $a=b=0$)
- $\rho_{0}=D / B$
- Why not $M_{i}=\rho_{1} F_{i}+v_{i}^{\prime}$?
- Summary
- CS: $F_{i}=\rho_{0} M_{i}+\varepsilon_{i}^{0}$, the estimator is $\rho_{0}=D / B$.
- Reversed CS: $M_{i}=\rho_{1} F_{i}+\varepsilon_{i}^{1}$, the estimator is $\rho_{1}=B / D$.
- Correlational (Prop. 2): $\mathbb{E}\left[F_{i} M_{i}\right]=\rho$ and $\beta_{M}=0$, the estimator is $\rho=B D$.

Main Results

Table 1: Summary of Main Identification results.

Prop.	Data	Nuisance Assumptions	Structural Assumptions	Point Identified Parameters
Identification using two generations				
Prop. 1	$(F, P G F, M G F)$	$a=b=c=d$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \rho\right)$
Prop. 2	$(F, P G F, M G F)$		$\beta_{M}=0$	$\left(\beta_{F}, \rho\right)$
Prop. 3	$(F, P G F, M G F)$	$a=b=c=d$	$\beta_{F}=\beta_{M}$	$\left(\beta_{F}, \lambda, \rho\right)$

Identification using three generations

Prop. 4	$(S, F, P G F, M G F)$	$b=d$		$\left(\beta_{F}, \beta_{M}, \lambda, \rho\right)$

Identification from maternal uncles

Prop. 5	$(S, F, M G F)$	$a=b=c=d$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \rho, a\right)$
Prop. 6	$(S, F, M U, M G F)$			$\left(\beta_{F}, \beta_{M}, \lambda, \rho, \gamma\right)$
Prop. 7	$(S, F, M U, P G F)$			$\left(\beta_{F}, \beta_{M}, \lambda, \rho, \gamma\right)$
Prop. 8	$(S, F, M U)$	$\gamma=0$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \rho\right)$

Two Generations Empirical Results

Table 3: Identification using Two Generations

Parameter	Estimate		
	Prop. 1	Prop. 2	Prop. 3
β_{F}	0.167	0.930	0.465
	(0.025)	(0.015)	(0.007)
β_{M}	0.763		
	(0.039)		
ρ	0.416	0.416	0.416
	(0.012)	(0.012)	(0.007)

Model using Generational Effects

Allowing for gendered effects the model becomes

$$
\begin{gathered}
S_{i}=\beta_{F} F_{i}+\beta_{M} M_{i}+\varepsilon_{i}^{S} \\
F_{i}=\alpha_{F} P G F_{i}+\alpha_{M} P G M_{i}+\varepsilon_{i}^{F} \\
M_{i}=\alpha_{F} M G F_{i}+\alpha_{M} M G M_{i}+\varepsilon_{i}^{M}
\end{gathered}
$$

where

- β_{F} is the effect of the father on a child in the second generation
- β_{M} is the effect of the mother on a child in the second generation
- α_{F} is the effect of the father on a child in the first generation
- α_{M} is the effect of the mother on a child in the first generation

Extended Results

Table 2: Summary of Extended Identification results.

Prop.	Data	Nuisance Assumptions	Structural Assumptions	Point Identified Parameters

Identification allowing heterogeneous effects by gender				
Prop. 9	$(S, F, P G F, M G F)$	$a=b=c=d$		$\left(\beta_{\digamma}^{S}, \beta_{M}^{S}, \beta_{F}^{D}, \beta_{M}^{D}, \lambda, \rho\right)$
Prop. 10	$(S, F, P G F, M G F)$	$b=d=0 ; a=c$		$\left(\beta_{\digamma}^{S}, \beta_{M}^{S}, \beta_{F}^{D}, \beta_{M}^{D}, \lambda, \rho\right)$

Identification allowing heterogeneous effects by generation

Prop. 11	$(S, F, P G F, M G F)$	$b=d$		$\left(\beta_{F}, \beta_{M}, \rho, \alpha\right)$
Cor. 1	$(S, F, P G F, M G F)$	$a=b=d$	$\alpha_{F}=\alpha_{M}$	$\left(\beta_{F}, \beta_{M}, \alpha_{F}, \lambda, \rho\right)$
Prop. 12	$(S, F, P G F, M G F)$	$b=d=0 ; a=c$		$\left(\beta_{F}, \beta_{M}, \alpha_{F}, \alpha_{M}, \lambda, \rho\right)$
Prop. 13	$(S, F, P G F, M G F)$	$a=b=d$	$\lambda=\rho$	$\left(\beta_{F}, \beta_{M}, \alpha_{F}, \alpha_{M}, \rho\right)$
Prop. 14	$(S, F, P G F, M G F)$	$b=d=\sqrt{a c}$		$\left(\beta_{F}, \beta_{M}, \rho, \tilde{\alpha}\right)$
Cor. 2	$(S, F, P G F, M G F)$	$b=d=\sqrt{a c}$	$\alpha_{F}=\alpha_{M}$	$\left(\beta_{F}, \beta_{M}, \rho, \tilde{\alpha}\right)$

Generational Effects Empirical Results

Table 4: Identification Allowing Heterogeneous Effects by Generation

Parameter	Estimate			
	Prop. 11	Prop. 12	Prop. 13	Prop. 14
α	0.465			
	(0.015)			
α_{F}		0.568	0.138	
		(0.013)	(0.295)	
α_{M}		0.098	0.792	
		(1.094)	(0.299)	
$\tilde{\alpha}$				0.465
				(0.007)
β_{F}	0.272	0.346	0.272	0.272
	(0.080)	(0.022)	(0.080)	(0.080)
β_{M}	0.220	0.169	0.220	0.220
	(0.081)	(0.024)	(0.081)	(0.081)
λ		0.010		0.041
		(0.125)		(0.021)
				0.437
ρ	(0.207)	(0.105)	(0.207)	(0.207)

Generational Effects Empirical Results

Table 4: Identification Allowing Heterogeneous Effects by Generation

Parameter	Estimate			
	Prop. 11	Prop. 12	Prop. 13	Prop. 14
α	$\begin{gathered} 0.465 \\ (0.015) \end{gathered}$			
α_{F}		$\begin{gathered} 0.568 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.138 \\ (0.295) \end{gathered}$	
α_{M}		$\begin{gathered} 0.098 \\ (1.094) \end{gathered}$	$\begin{gathered} 0.792 \\ (0.299) \end{gathered}$	
$\tilde{\alpha}$				$\begin{gathered} 0.465 \\ (0.007) \end{gathered}$
β_{F}	$\begin{gathered} 0.272 \\ (0.080) \end{gathered}$	$\begin{gathered} 0.346 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.272 \\ (0.080) \end{gathered}$	$\begin{gathered} 0.272 \\ (0.080) \end{gathered}$
β_{M}	$\begin{gathered} 0.220 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.169 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.220 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.220 \\ (0.081) \end{gathered}$
λ		$\begin{gathered} 0.010 \\ (0.125) \end{gathered}$		$\begin{gathered} 0.041 \\ (0.021) \end{gathered}$
ρ	$\begin{gathered} 0.437 \\ (0.207) \end{gathered}$	$\begin{gathered} 0.157 \\ (0.105) \end{gathered}$	$\begin{gathered} 0.437 \\ (0.207) \end{gathered}$	$\begin{gathered} 0.437 \\ (0.207) \end{gathered}$

Generational Effects Empirical Results

Table 4: Identification Allowing Heterogeneous Effects by Generation

Parameter	Estimate			
	Prop. 11	Prop. 12	Prop. 13	Prop. 14
α	$\begin{gathered} 0.465 \\ (0.015) \end{gathered}$			
α_{F}		$\begin{gathered} 0.568 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.138 \\ (0.295) \end{gathered}$	
α_{M}		$\begin{gathered} 0.098 \\ (1.094) \end{gathered}$	$\begin{gathered} 0.792 \\ (0.299) \end{gathered}$	
$\tilde{\alpha}$				$\begin{gathered} 0.465 \\ (0.007) \end{gathered}$
β_{F}	$\begin{gathered} 0.272 \\ (0.080) \end{gathered}$	$\begin{gathered} 0.346 \\ (0.022) \end{gathered}$	$\begin{aligned} & 0.272 \\ & (0.080) \end{aligned}$	$\begin{array}{r} 0.272 \\ (0.080) \end{array}$
β_{M} λ	$\begin{gathered} 0.220 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.169 \\ (0.024) \\ 0.010 \\ (0.125) \end{gathered}$	$\binom{0.220}{(0.081)}$	
ρ	$\begin{gathered} 0.437 \\ (0.207) \end{gathered}$	$\begin{gathered} 0.157 \\ (0.105) \end{gathered}$	$\begin{gathered} 0.437 \\ (0.207) \end{gathered}$	$\begin{gathered} 0.437 \\ (0.207) \end{gathered}$

Conclusions

- Mobility estimates for Mothers are large
- Assortative Mating is high
- Rethinking the implication of mobility estimates
- Interaction with mobility estimates
- Grandparents may affect mobility via Assortative Mating
- Extensions
- Direct Grandparents effects
- Mating on unobservables
- Estimates of nuisance parameters with data on other relatives

[^0]: 4ロ・回。

