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Motivation

“We will primarily deploy this capital in two areas: (1) to accelerate

ongoing technology development by investing in project and debt finance;

and (2) to invest in new innovations through equity and debt capital.”
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Motivation

Politico Opinion piece by Athey, Glennerster, Ransohoff, Snyder (2022)
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Motivation

Consider the following scenarios:

• An altruist pledges to spend a fixed amount of money to a
address an environmental issue.

• A government agency is given a budget and mandate to
procure goods from a firm to alleviate a shortage.

• A company with access to limited funds contracts with a
specialist to implement a project.
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Contributions

Model: principal wishes to maximize production of agent subject to

• Heterogeneous private production costs

• Ex-post budget constraint

• No value for leftover budget

• Extension with outside options

Characterization which implies that

• Optimal schedule always pools most efficient types

• For separable costs, pool size independent of budget size
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Practical Takeaways

• Principal should always pool most efficient firms.
=⇒ The fund should adjust the schedule so the highest offers
are selected by multiple firms.

• If efficient firms are sufficiently rare, offer bang-bang schedule.
=⇒ A fund with a single take-it-or-leave-it offer of a fixed
investment amount for a fixed production amount.

• With (better) outside option, have higher expectations of
efficient types and lower expectations of inefficient types.
=⇒ If there are cheap carbon credits on the open market,
the fund should offer steeper schedules.
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Related Work

• Monopoly Regulation: Baron and Myerson (1983), Laffont and
Tirole (1986, 1993), Amador and Bagwell (2022)
=⇒ no consumer surplus, weaker instruments for the
principal, budget constraint

• Delegation: Alonso and Matouschek (2008), Amador and
Bagwell (2013), Amador, Bagwell and Frankel (2018), Amador
and Bagwell (2022) =⇒ allow transfers

• Similar features: Gomes and Pavan (2016), Kominers,
Dworczak, and Akbarpour (2021), Kang (2023)
=⇒ different environments
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Outline

• Model

• Optimal mechanism

• Qualitative features

• Separable types
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Model

Principal-agent design problem where the principal would like an
agent to produce something costly.

• Production quantity is X = R+. Principal’s utility is
uP(x) = x .

• Agent type θ ∈ Θ = [θ
¯
, θ̄] ⊂ R+, drawn from a distribution

µ ∈ ∆(Θ).

• The agent incurs a cost Ψ : X ×Θ → R+.
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Model

Principal-agent design problem where the principal would like an
agent to produce something costly.

• Production quantity is X = R+. Principal’s utility is
uP(x) = x .

• Agent type θ ∈ Θ = [θ
¯
, θ̄] ⊂ R+, drawn from a distribution

µ ∈ ∆(Θ).

• The agent incurs a cost Ψ : X ×Θ → R+.
Normalize Ψ(0, θ) = 0 for all θ.
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Assumptions

Assumptions on Ψ:

• Ψ is strictly increasing in both arguments, twice continuously
differentiable, and supermodular.

• Ψ and Ψθ are convex in x .

• µ admits a density f , CDF F

Interpretation: costs are convex in x , and θ is a scalability
parameter, so higher θ means costs grow faster.

Example: Ψ = θx2.
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Optimization Problem

By revelation principle, sufficient to find production levels
x : Θ → X and transfers t : Θ → R+ that maximize:

max
x ,t

∫
θ∈Θ

x(θ)f (θ) dθ

s.t. t(θ)−Ψ(x(θ), θ) ≥ t(θ′)−Ψ(x(θ′), θ) ∀θ, θ′ ∈ Θ (IC)

t(θ)−Ψ(x(θ), θ) ≥ 0 ∀θ ∈ Θ (IR)

t(θ) ≤ T ∀θ ∈ Θ (B)

Note: Any feasible solution can be equivalently represented as a
transfer schedule t̂ : X → R+.
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Optimal Mechanism



Monotonicity

Lemma

x : Θ → X is a feasible schedule iff following two conditions hold:

1. x is nonincreasing.

2. Ψ(x(θ
¯
), θ

¯
) +

∫ θ̄
θ
¯
Ψθ(x(s), s) ds ≤ T

Further, given a feasible schedule x , a transfer function that
supports the schedule is given by

t(θ) = Ψ(x(θ), θ) +

∫ θ̄

θ
Ψθ(x(s), s) ds
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Monotonicity

Lemma

x : Θ → X is a feasible schedule iff following two conditions hold:

1. x is nonincreasing.

2. Ψ(x(θ
¯
), θ

¯
) +

∫ θ̄
θ
¯
Ψθ(x(s), s) ds ≤ T

Further, given a feasible schedule x , a transfer function that
supports the schedule is given by

t(θ) = Ψ(x(θ), θ) +

∫ θ̄

θ
Ψθ(x(s), s) ds

Implication: a feasible mechanism is implementable as a subsidy
schedule
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Illustration

θ
θ
¯ θ̄

xfb : Ψ(xfb, θ) = T

x

Any decreasing x will do...
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Illustration

θ
θ
¯ θ̄

xfb : Ψ(xfb, θ) = T

x

... as long as the weighted area is less than T .
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Illustration

θ
θ
¯ θ̄

xfb : Ψ(xfb, θ) = T

x

Example: weighted area is exactly T .
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Optimal Control Problem

Rewrite as optimal control problem where “time” is type θ.

max
x

∫
Θ
x(θ)f (θ) dθ

s.t. ẋ(θ) = u(θ) ≤ 0 ∀θ ∈ Θ

Ψ(x(θ
¯
), θ

¯
) +

∫ θ̄

θ
¯

Ψθ(x(s), s) ds ≤ T

Let ρ(θ) ≥ 0 be costate variable of first constraint; λ ≥ 0 be
Lagrangian of second constraint.

Interpretation: λ is shadow value of money
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Characterization Result

Theorem

An optimal mechanism (x , t) exists, is unique, and, together with
Lagrange multiplier λ ≥ 0 and costate function ρ(θ) ≥ 0, satisfies:

ρ(θ) > 0 =⇒ ẋ(θ) = 0 (1)

ρ̇(θ) = λΨxθ(x(θ), θ)− f (θ) (2)

ρ(θ̄) = 0 (3)

ρ(θ
¯
) = λΨx(x(θ

¯
), θ

¯
) (4)

t(θ
¯
) = Ψ(x(θ

¯
), θ

¯
) +

∫ θ̄

θ
¯

Ψθ(x(s), s) ds = T (5)
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Illustration

θ
θ
¯ θ̄

xfb : Ψ(xfb, θ) = T

ρ(λ)

x
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Qualitative Features



Pooling at the Top

θ
θ
¯ θ̄

ρ

x

θ̂

• if ρ > 0, then x is constant by complementary slackness

• pooling at the top: ρ(θ
¯
) = λΨx(x(θ

¯
), θ

¯
) > 0
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Pooling Threshold

Proposition

Suppose optimal x∗ is not constant on [θ
¯
, θ̄]. Let x

¯
≡ x∗(θ

¯
).

Then largest type θ̂ that receives full transfer has:

Ψx(x
¯
, θ̂)f (θ̂) = Ψxθ(x¯

, θ̂)F (θ̂)

Furthermore, there is always pooling at the top, i.e., θ̂ > θ̄.

Rationale: Principle faces trade off between utilizing more budget
on inefficient types with providing info rents to efficient types.

• LHS is marginal direct cost paid to threshold type

• RHS is marginal information rent paid to more efficient types

20



Shadow Value of Money

The threshold equation is:

Ψx(x
¯
, θ̂)f (θ̂) = Ψxθ(x¯

, θ̂)F (θ̂)
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Shadow Value of Money

The threshold equation is:

λ∗Ψx(x
¯
, θ̂) = F (θ̂)

The marginal value of extra budget is how much the principal can
get out of the types that are more efficient than the threshold.

21



Shadow Value of Money

We should have complete pooling if for all θ:

λ∗Ψx(x
¯
, θ) ≥ F (θ)

21



Complete Pooling

Let x̄ be such that T = Ψ
(
x̄ , θ̄
)
. Then

Proposition

The optimal mechanism pools all types if and only if ∀θ,

F (θ) ≤ Ψx (x̄ , θ) /Ψx(x̄ , θ̄)

Interpretation: If agents of efficient types are sufficiently rare,
then it is optimal to offer a single menu item (x̄ ,T ).

22



Constant-Rate Subsidy

Proposition
Let xr be the outcome from offering a constant-rate subsidy at
rate r up to the budget. Then there exists a feasible schedule x∗

that Pareto dominates it.

Intuition: under a linear subsidy, agent chooses marginal cost
equal to subsidy rate. A mechanism can set transfers to target
average cost equal to subsidy rate.
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Constant-Rate Subsidy: Illustration

(a) Production schedule x (b) Transfer schedule t

24



The Shadow Value of Money

θ
θ
¯ θ̄

x : λΨxθ(x , θ)− f (θ) = 0

ρ

x

Recall λ is shadow value of money.

• if ẋ < 0, then ρ = 0 by complementary slackness

• hence x defined by costate evolution constraint,
λΨxθ(x , θ)− f (θ) = ρ̇ = 0
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Pool Size

θ
θ
¯ θ̄

x : λΨxθ(x , θ)− f (θ) = 0

ρ

x

θ̂

If budget increases, shadow value λ decreases,

• increasing dotted-blue curve pointwise

• whether ρ increases or decreases depends:
ρ(θ

¯
) = λΨx(x(θ

¯
), θ

¯
) and ρ̇ = λΨxθ(x , θ)− f (θ)

• so θ̂ depends on how fast Ψx and Ψxθ grow in x
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Separable Costs



Characterization

Special case: multiplicatively separable Ψ, e.g., Ψ = θx2.

Theorem

Suppose that Ψ(x , θ) = θΓ(x). Then the optimal mechanism
(x∗, t∗) induces a production schedule

x∗(θ) = (Γ′)−1

(
f̃ (θ)

λ∗

)

where f̃ = d
dθ (cav

∗F ) and λ∗ is the Lagrange multiplier chosen so
that

∫
Θ Γ(x∗(θ)) dθ = T .

Example: Ψ = θx2; Γ = x2, so

x∗(θ) =
f̃ (θ)

2λ∗ =⇒ x∗ is linearly proportional to f̃
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Pooling

Agents are pooled according to linear segments in the concave hull
of the type CDF F .

Example: Ψ(x , θ) = θx2, θ ∈ {1, 2}, µ = Pr[θ = 1]

θ

0 1 2

(a) complete pooling: µ ≤ 1/2

θ

0 1 2

(b) separating: µ > 1/2

Note: Pool size is invariant to changes in budget T !
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Outside Value: Pooling

Suppose principal can obtain x in outside market at per-unit cost of
k , i.e., objective changes to

∫
θ∈Θ [x(θ)− kt(θ)] f (θ) dθ.

Example: Opt mechs for Ψ(x , θ) = θx2, T = 2, θ ∼ U[1, 2]

The pooling size shrinks and the optimal mechanism demands more
of most efficient types, and less of least efficient types, as k grows.
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Outside Value: Constant-Rate Subsidy

Naive Mechanism: ignoring the budget constraint

Example: Ψ(x , θ) = θx2, T = 1, θ ∼ U[1, 2], k = 0.3

(a) Production schedule x (b) Transfer schedule t

Naive mechanism uses more budget in expectation, obtains less
output from more efficient types, and separates fewer types.
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Conclusion



Conclusion

• Pooling at the Top: The principal always pools a positive
measure of the most efficient types.

• Buying at a price: A common form of advance market
commitment is a constant-rate subsidy: buy quantity at fixed
rate r up to the budget T . This is always strictly suboptimal.

• Scalability: As the distribution over agent production
technologies becomes less efficient (scalable), more types are
pooled in the optimal contract.
If efficient firms are sufficiently rare, the principal should only
offer a single target and pay entire budget on meeting target.
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