The Causal Effects of Global Supply Chain Disruptions

on Macroeconomic Outcomes: Evidence and Theory”

Xiwen Bail Jestis Fernandez-Villaverde! Yiliang Li®

Francesco Zanetti!

October 3, 2023

Abstract

We study the causal effects and policy implications of global supply chain disrup-
tions on the U.S. economy. We construct a new index of supply chain disruptions
from the Automatic Identification System data of containerships, developing a
novel spatial clustering algorithm that determines real-time congestion from the
positions and speeds of containerships in major ports around the globe. We show
important differences between our index and the Global Supply Chain Pressure
Index that are important for the interpretation of supply chain disruptions. We
develop a new theoretical framework with search frictions between exporters and
importers in the goods market, transportation costs, and spare capacity that pro-
vides us with unique identification restrictions arising from the co-movements of
spare capacity, price, and output for the causal effects of supply chain disrup-
tions. A structural VAR with these restrictions establishes that supply chain
disruptions: (i) depress real GDP, raise prices, generate a surge in spare ca-
pacity, and (ii) increase the effectiveness of contractionary monetary policy in
taming inflation while reducing the sensitivity of output to monetary policy.
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1. Introduction

Sudden and large imbalances in the supply and demand for goods, often stemming from
disruptions to the supply chain, can lead to protracted deterioration in macroeconomic
performance. For instance, the severe disruptions to the flow of goods worldwide during the
Covid-19 pandemic led to an unprecedented fall in global trade and a sharp rise in prices,
culminating in the second-largest recession in U.S. history.! Other prominent examples of
potent supply chain disruptions include the blockage of the Suez Canal in 2021 and the war
in Ukraine in 2022, both of which resulted in a shortage of goods, increased transportation
costs, and raised inflation globally.”

Despite the fundamental role of supply chain disruptions in shaping macroeconomic per-
formance and economic policy, research on this topic is scant and progress is challenged by
two key issues. First, existing indices of supply chain disruptions are often inferred from
changes in shipping prices or information from surveys on potential disruptions gleaned
from the Purchasing Managers’ Index (PMI). These measures are problematic since prices
internalize endogenous movements in the demand for goods while being disconnected from
output during supply chain disruptions, and surveys are notoriously prone to measurement
errors accruing to the subjective perceptions of purchasing managers on supply chain issues,
thus providing a potentially biased measurement of supply chain disruptions. The ideal
measurement, of supply chain disruptions requires data that track the disruptions to the
regular flows of goods that are central to the mismatch between supply and demand and the
consequent increase in prices. Second, there is no theoretical framework that studies supply
chain disruptions considering the spare capacity resulting from the imbalances between the
supply and demand for goods. Against this backdrop, mounting evidence points to the ad-
justment in the spare capacity as a systematic attribute of supply chain disturbances, which
is critical to the response of prices and the ensuing policy tradeoffs for the contemporaneous

stabilization of prices and output.®

1. During the Covid-19 recession (February-April 2020), the decline in GDP from peak to trough was
19.2%. During the Great Depression (August 1929-March 1933), the fall in GDP was 26.7%.

2. See https://www.nytimes.com/2021/03/24/world /middleeast/suez-canal-blocked-ship.html (accessed
on July 25, 2023) for coverage on the Suez Canal blockage.

3. Several articles in newspapers and policy institutions discuss the relevance of disruptions to the supply


https://www.nytimes.com/2021/03/24/world/middleeast/suez-canal-blocked-ship.html

Our paper addresses these issues by developing: (i) a new index of global supply chain
disruptions derived from maritime satellite data of containerships, and (ii) a novel theoretical
framework that accounts for the spare capacity arising from the imbalances between the
supply and demand for goods consequent to the disruption to the supply chain. Using
our new data and theory, we shed new lights on the causal effects of global supply chain
disruptions and their implications for the effectiveness of monetary policy.

The measurement of supply chain disruptions. We study disruptions to the sup-
ply chain by examining congestion at container ports. Given the pivotal role of container
ports in international trade, through which approximately 60% of the total value of world
seaborne trade passes (UNCTAD 2019; OECD and EUIPO 2021), even a mild increase in
port congestion can significantly impair regular supply chains and generate large imbalances
between the supply and demand for tradable goods. More importantly, the itineraries of
containerships are rarely altered due to significant switching costs, and the routes of these
vessels remain unchanged for the duration of contracts that normally average more than
one year, ensuring that congestion at a seaport is minimally influenced by strategic deci-
sions of shipping companies to adjust capacity across routes following changes in demand
(Stopford 2008; Song and Dong 2012; Wang, Meng, and Jia 2019; Brancaccio, Kalouptsidi,
and Papageorgiou 2020; Brancaccio et al. 2023).%> This feature of the shipping segment of
containerships separates port congestion from the forces of demand, hence enabling us to

detect supply chain disturbances from the density of inactive vessels stationed at ports.

chain for economic performance and macroeconomic policies. See for instance Attinasi et al. (2021), Forster
van Aerssen et al. (2021), Grimes and Edgecliffe-Johnson (2021), The White House (2021), Dempsey (2022),
Lane (2022), and World Bank (2022).

4. In the maritime shipping industry, long-term contracts between exporters and shipowners often have
a validity period of one year, with a significant proportion of them lasting even longer due to heightened
uncertainty on some specific routes (Bhonsle 2023).

5. Stopford (2008), Kalouptsidi (2014), Brancaccio, Kalouptsidi, and Papageorgiou (2020), Fuchs and
Wong (2022), Wong (2022), and Brancaccio et al. (2023) discuss the different segments of the maritime
shipping industry, namely, containerized liner services and tramp shipping. Specifically, in his textbook
on maritime economics, Stopford (2008) states, “A liner service is a fleet of ships .. which provide a fixed
service, at regular intervals, between named ports, ... A fixed itinerary, inclusion in a regular service, and
the obligation to accept cargo from all comers and to sail ... on the date fixed by a published schedule are
what distinguish the liner from the tramp”. In addition, Brancaccio, Kalouptsidi, and Papageorgiou (2020)
state, “The transportation sector ... can be split into two categories: those that operate on fixed itineraries,
much like buses, and those that operate on flexible routes, much like taxis. Containerships .. belong to the
first group”. In Section 2.3, we also provide statistical evidence that corroborates the above definition of the
containerized liner industry.



We quantify port congestion using granular shipping data from the Automatic Identifi-
cation System (AIS), the mandatory real-time satellite tracking system for containerships
across major ports around the globe from 2017 to 2022. By developing a novel machine learn-
ing clustering algorithm that utilizes the positions and speeds of containerships recorded in
the AIS data, we provide the first mapping of global port congestion by constructing a high-
frequency index of Average Congestion Rate (ACR) for major ports worldwide. Our ACR
index is also the first measurement of global supply chain disruptions derived from maritime
satellite data of containerships.®

Theoretical framework. To interpret the data and study the causal effects of supply
chain disruptions, we develop a simple model that accounts for the imbalances in the supply
and demand for goods and provides new insights into the effects of these disruptions on the
tradeoffs of economic policy. Our model is based on search and matching frictions between
exporters and importers in the international product market, building on the disequilibrium
model of Barro and Grossman (1971), recast in a microfounded framework by Michaillat
and Saez (2015, 2022), and Ghassibe and Zanetti (2022). The presence of search frictions
renders prices not allocative and unable to clear the supply and demand for goods, similar
to the central effect of supply chain disruptions. In our model, exporters supply the goods
demanded by importers, and the transactions are mutually costly since they require exporters
and importers to pay transportation and visiting costs, respectively. In equilibrium, these
costs generate spare capacity and costly congestion. Central to the realization of supply chain
disruptions, exporters draw transportation costs from a given distribution in each period, and
they decide to ship goods if the drawn cost falls below the threshold for profitable shipments.
We assume that a disturbance to the supply chain increases the transportation costs for all
exporters, as evinced by the large empirical evidence linking supply chain disturbances and
transportation costs (Benigno et al. 2022; Finck and Tillmann 2022; Alessandria et al. 2023;
Dunn and Leibovici 2023). We model the general rise in transportation costs as a shift of

the distribution of costs to the right of the domain, making it more likely for each exporter

6. The global nature of our ACR index “averages out” any changes in port congestion resulting from
infrequent adjustments in shipping capacity across routes, thus further underpinning the exogeneity of our
ACR index. In addition, since the AIS data offer unparalleled accuracy in tracking real-time movements of
tradable goods across the globe, our ACR index is not subject to the same measurement errors as those in
the PMI stemming from the subjective perceptions of purchasing managers on supply chain issues.



to draw transportation costs that exceed the profitability threshold and thus increasing the
likelihood of a halt in the shipping of goods. Consequently, the number of unprofitable
shipments increases, leading to a fall in the supply of goods available to importers. The
model shows that the supply chain shock disrupts economic trade, drives up prices, and
widens the spare capacity of exporters.

Our model demonstrates that the responses of macro aggregates to a supply chain dis-
ruption shock differ from standard shocks to the demand and supply of goods. Unlike
demand shocks, disruptions to the supply chain result in negative co-movements between
the quantity and price of goods. While such a property also holds for traditional labor sup-
ply shocks, disruptions to the supply chain uniquely increase spare capacity (or equivalently,
unemployment), whereas labor supply shocks decrease it. Such a distinction is intuitive, as
transportation costs do not change the domestic capacity to produce, but affect whether
selling abroad is profitable. Therefore, the changes in the spare capacity resulting from
the disequilibrium between the supply and demand for goods play a crucial role for the
identification of supply chain disruptions.

The causal effects of supply chain disruptions. Drawing directly from the pre-
diction of our model, we apply our theoretical restrictions on the responses of endogenous
variables in the Structural Vector Autoregressions (SVARs), allowing us to uniquely iden-
tify the shocks to the supply chain and distinguish them from traditional labor supply and
demand shocks. We estimate the SVAR model using the Bayesian approach, as in Arias,
Rubio-Ramirez, and Waggoner (2018), Arias, Caldara, and Rubio-Ramirez (2019), and Arias
et al. (2023), and establish several key results. First, a disruption shock to the supply chain
leads to a large and immediate drop in real GDP, sharp and persistent increases in both
inflation and import prices, and a substantial jump in unemployment. In addition, simi-
lar to a labor supply shock, a supply chain disruption shock tends to generate a persistent
positive response of inflation, an observation consistent with recent evidence (e.g., Bekaert,
Engstrom, and Ermolov (2020) and Gordon and Clark (2023)). Furthermore, the two aggre-
gate supply shocks differ in terms of their effects on unemployment, which is representative
of spare capacity. While the initial fall in unemployment in response to the labor supply

shock is transitory, the initial increase in unemployment in response to the supply chain



disruption shock is persistent, with the median response reverting to zero slightly before the
two-quarter mark.

Second, the decomposition of historical variance shows that the sharp fall in inflation in
early 2020 was mainly driven by a significant contraction of aggregate demand that coincided
with the first wave of the Covid-19 pandemic across the world. Subsequently, aggregate
demand started to rebound, while global supply chain disruptions escalated and made a
significant contribution to the rise in inflation. This pattern continued until the end of 2021,
with labor supply shocks emerging as the primary driving force for the elevated inflation.
In addition, we show that the sharp increase in the Global Supply Chain Pressure Index
(GSCPI) — a prominent index to measure supply chain disruptions in both the literature and
media — during the first seven months of the pandemic (January-July 2020) was not caused by
disruptions to the supply chain. During that time, port congestion was at historical average
levels. Instead, the surge in the GSCPI was likely driven by sudden changes in demand and
the management’s mis-perception of supply chain issues as recorded by the surveys.” We
show that the misclassification of disruptions to the supply chain has important implications
for the statistical significance of supply chain disruption shocks and the associated policy
response, as we discuss below.

Policy implications. Our analysis shows that supply chain disruptions generate stagfla-
tion and a simultaneous increase in spare capacity. The higher spare capacity constrains the
supply of goods and leads to a tighter product market, thus escalating the mismatch between
the supply and demand for goods and increasing the sensitivity of prices to movements in
demand. As larger shifts in prices are needed to ration the product market, these changes
in the relative movements of prices and output increase the effectiveness of monetary policy
in stabilizing inflation amid supply chain disruptions. This reinforces findings that show
state-dependence in the effectiveness of monetary policy (Benigno and Ricci 2011; Tkeda

et al. 2022; Benigno and Eggertsson 2023; Harding, Lindé, and Trabandt 2023).°

7. Specifically, the GSCPI builds on the PMI, which does not differentiate whether the increase in “delivery
times” is caused by a disruption to the supply chain, or to the actual production itself.

8. Benigno and Eggertsson (2023) introduce labor search and matching frictions, as well as wage rigidity,
to a New Keynesian framework and proposes a nonlinear Philips curve, of which the slope increases when
the labor market is tight. Such nonlinearities imply an “easy down” for the economy, meaning small output
losses from bringing inflation under control. In contrast, while our theoretical framework also predicts an
“easy down” for the economy through monetary tightening, it relies on the role of spare capacity in the



We test the theoretical prediction by developing a Threshold Vector Autoregression
(TVAR) model that estimates the differences in the effects of a contractionary monetary
policy shock for different levels of the ACR index. Consistent with our theory, we find that
an exogenous tightening of monetary policy leads to a significantly larger and more persis-
tent decline in inflation for a given decrease in output and employment during periods of
supply chain disruptions. Our results support a more aggressive, yet less contractionary,
monetary policy in response to the elevated inflation consequent to the disturbances to the
supply chain. This approach is consistent with the progressive tightening of monetary policy
in the U.S. during the supply chain disruptions in the post-Covid-19 recession.

Related literature. Our analysis is related to several realms of research. We develop a
theoretical framework that maps the mismatch between the supply and demand for goods to
changes in prices, real activity, and spare capacity. Our model builds on the disequilibrium
framework of Barro and Grossman (1971) by incorporating search and matching frictions in
the goods market that result in spare capacity, similar to the studies by Michaillat and Saez
(2015, 2022) and Ghassibe and Zanetti (2022). We also link to Brancaccio, Kalouptsidi,
and Papageorgiou (2020) and Brancaccio et al. (2023) who develop a search and matching
framework to study the role of the transportation sector, as well as Comin, Johnson, and
Jones (2023) who develop a New Keynesian model with imported inputs to investigate how
potentially binding capacity constraints and demand/supply shocks to them shape inflation.
Unlike these studies, however, we connect disequilibrium and spare capacity in the goods
market with rising transportation costs resulting from the disruptions to the supply chain,
and we focus on the impact on prices and real activity and the changes for the tradeoffs of
economic policy.

We connect to studies linking the transportation sector to the real economy. Brancaccio,
Kalouptsidi, and Papageorgiou (2020) demonstrate the chief role of transportation costs in
equalizing comparative advantages across countries and dampening the response of trade
flows to shocks. Brancaccio et al. (2023) show that search frictions in the transportation
market distort the transportation network and the dynamic allocation of ships over space,

requiring pricing rules or taxes to establish efficiency. Dunn and Leibovici (2023) study

goods market to endogenously generate strong nonlinearities in the aggregate supply curve.



the drivers of global shipping dynamics, showing that supply chain disruptions lead to an
increase in shipping prices and generate aggregate implications. Allen and Arkolakis (2014)
link transportation networks to real activity, and Fuchs and Wong (2022) connect them
to infrastructure investment. Smirnyagin and Tsyvinski (2022) study the effect of supply
chain disasters on asset prices. Li et al. (2022) estimate the patterns of global trade in
crude oil, and Bai and Li (2022) investigate the role of congestion in shipping markets for
international oil trade and the macroeconomy. In contrast to these studies, we concentrate on
the macroeconomic consequences and policy implications of supply chain disruptions arising
from the transportation sector.

Finally, we relate to the empirical research that develops SVAR models to study the causal
effects of supply chain shocks and differentiate them from alternative shocks to aggregate
demand. Representative studies in this large area of research include Balleer et al. (2020),
Bekaert, Engstrom, and Ermolov (2020), Brinca, Duarte, and Faria-e-Castro (2021), Shapiro
(2022), and Gordon and Clark (2023). Unlike these studies, we base the identification of
disturbances to the supply chain on our theory of disequilibrium, and we are the first study
to apply in the SVARs an index of global supply chain disruptions that is derived from
granular shipping data.

The remainder of our study is organized as follows. Section 2 constructs our ACR index
of supply chain disruptions from satellite data. Section 3 develops our theoretical model
and the identification restrictions. Section 4 presents the baseline estimation results and a
comparison with the estimation based on the GSCPI. Section 5 explores the state-dependent

effects of monetary policy shocks following supply chain disruptions. Section 6 concludes.

2. Measuring Global Supply Chain Disruptions

In this section, we develop a novel index designed to track global supply chain disruptions
by analyzing imbalances between the supply and demand for goods through the lens of
containerized trade. Accounting for 60 percent of the total value of seaborne trade (UNCTAD
2019; OECD and EUIPO 2021), containerized seaborne trade plays an indispensable role

in fostering the development and ensuring the smooth operation of global supply chains



(Notteboom, Pallis, and Rodrigue 2022).

In the realm of containerized trade, seaports serve as international hubs for freight col-
lection and distribution. Any disruption to these hubs can lead to port congestion, which in
turn significantly impairs regular supply chains and trade flows, culminating in far-reaching
consequences for all parties involved in international trade.” By leveraging the most recent
satellite data on the positions and speeds of containerships, available from 2017 onwards, we

track port congestion and construct a granular measure of global supply chain disruptions.

2.1. AIS Data

We use satellite data from the AIS, the mandatory tracking system required by the Interna-
tional Maritime Organization (IMO) for international voyaging vessels larger than 300 gross
tonnage (Heiland et al. 2022). The AIS can handle over 2000 reports per minute and may
update information as often as every two seconds, providing comprehensive coverage of the
movements of containerships around the globe from January 2017 to July 2022.'° Each data
entry includes the ship’s IMO number, timestamp, current draught, speed, heading, and
geographical coordinates.!! The detailed positioning and sailing information enables us to
track the behaviors of vessels within various port zones, facilitating the construction of an

accurate measure of port congestion.

9. Port congestion is a multifaceted issue that imposes significant costs on various stakeholders in the
shipping industry. Prior to the pandemic, waiting times at ports were typically measured in hours; however,
stringent COVID-19 restrictions led to extended delays, with waiting times reaching 2-3 days at several major
ports worldwide, incurring substantial daily financial losses. Shippers and freight forwarders encountered
unexpected delays, compounded by surcharges such as the Port Congestion Surcharge (PCS), with charges
escalating to USD 1,250 per container in certain cases. Importers and exporters faced disruptions in their
supply chains, resulting in potential profit losses, additional costs such as demurrage and detention, and
challenges in fulfilling market demands and contractual obligations. Container owners were directly impacted
by the PCS, while truckers and terminal operators experienced restricted transport efficiency and increased
operational costs. Considering that the average value of goods in a 40-foot container is around USD 100,000,
the PCS alone represents a sizable share of the total value, underscoring the substantial economic impact of
port congestion on all parties involved.

10. Over 99 percent of international container shipments are carried by containerships that exceed 500
gross tonnage.

11. The draught measures the vertical distance from the bottom of a vessel’s keel to the water’s surface,
indicating how deeply the ship is situated in the water. Although the draught typically reflects a vessel’s
cargo load (Bai and Li 2022; Li et al. 2022), this measurement can be less informative for containerships
since loading and unloading operations often occur simultaneously.



2.2. A Density-Based Spatial Clustering Algorithm

In order to accurately quantify port congestion, we follow the maritime literature by esti-
mating the likelihood that a vessel will first moor in an anchorage area within the port before
docking at a berth (Talley and Ng 2016; Karimi-Mamaghan et al. 2020; Bai et al. 2023)."
Such an estimation requires the precise identification of berth and anchorage areas, a task
for which practitioners before us have largely relied on navigational charts for individual
ports, making it both labor-intensive and challenging to generalize to global ports. Hence,
we automate the process by developing an iterative, multi-attribute, density-based spatial
clustering algorithm that is not only accurate in identifying different port areas but also
applicable to ports worldwide.

This algorithm identifies different port areas by focusing on the density of ships’ mooring
points recorded in the AIS data, which includes all historical visits of containerships to
each port, with each visit containing numerous AIS data points. Our algorithm operates in
two layers of clustering. The first layer identifies high-density areas, which are considered
potential berth and anchorage areas. The second layer refines these areas by considering
additional domain knowledge, such as the heading of ships during mooring, since vessels are
observed to dock at berths in an orderly and close fashion, while they moor in the anchorage
areas more randomly (Figure 1).

Our algorithm is specifically designed to address two primary challenges inherent in the
identification of berth and anchorage areas that existing clustering algorithms struggle to
handle. The primary challenge is the variability in the density of ships’ mooring points
across ports with large differences in trade volume handled, frequency of vessel visits, and
geographical morphology and boundaries. This variability necessitates an adaptive approach
to parameter setting for different ports. Our algorithm is designed to automatically iterate
and refine its clustering parameters for each individual port, thus facilitating the handling
of varied and complex port environments. This iterative process not only streamlines the

algorithm but also enhances its generalizability. Another challenge is to accurately distin-

12. An anchorage is a location within a port where ships can lower anchors, while a berth is a designated
spot within a port where vessels moor to load and unload cargo. If port congestion were not a concern, a
ship would dock at a berth immediately upon its arrival in the port to begin loading or unloading cargo.



(a) Headings at a Berth (b) Headings at an Anchorage

Figure 1: Information on Headings

Notes. In both figures, a tip represents the bow of a ship. In (a), the headings are either in the same
direction or exactly opposite. As a result, two clusters can be formed with exact opposite headings. In (b),
the headings are random, with some of them appearing in a ring shape.

guish between berth and anchorage areas within ports, as they both have a high density of
ships’ mooring points. Our algorithm overcomes this by leveraging both the spatial (i.e.,
geographical coordinates) and non-spatial attributes (i.e., headings) in its two layers of clus-
tering. This innovative approach, based on our domain knowledge, significantly increases
the granularity and accuracy of our analysis.'?*

To illustrate our algorithm, Figures 2a to 2d show the berth (red, yellow, blue, pur-
ple, pink, cyan, and orange markers) and anchorage (markers of other colors) areas in the

following major container ports: Singapore (Panel a), Ningbo-Zhoushan in China (Panel

b), Rotterdam in the Netherlands (Panel c), and Los Angeles and Long Beach in the U.S.

13. The identification of berth and anchorage areas in global ports lays the foundation for a series of
granular measures of port performance, such as port handling efficiency and waiting time. Furthermore,
while our algorithm is tailored to identify berth and anchorage areas, its core mechanism — transforming
domain knowledge into non-spatial attributes and using them as additional metrics between data points in
an iterative clustering process — has broader applications, as it provides a versatile framework for classifying
clusters of varied densities with specific labels in other contexts as well (e.g., identification of disease hot-
spots, urban planning).

14. Appendix A and the companion paper (Bai et al. 2023) provide details on our clustering algorithm,
including pseudo-codes and a case study involving the Port of Ningbo-Zhoushan in China, which illustrates
the effectiveness of our methodology in identifying berth and anchorage areas in ports with different mor-
phologies compared to alternative methods.

10



(Panel d). Our algorithm accurately captures the berth and anchorage areas in each port,
despite the large spectrum of geographical and operational port conditions. By applying our
algorithm to the real-time AIS satellite data, we construct a comprehensive, high-frequency

measure of global port congestion, as we discuss in the next section.

@™\ /Daishan,,

< [ 2 NG Y ' 4 Dongji
Tanjyﬁg/ & 4 \ s € . 9
Pel“ega's

S 1
~

V2

Meishan

(a) Singapore (b) Ningbo-Zhoushan, China

(c) Rotterdam, Netherlands (d) Los Angeles and Long Beach, U.S.

Figure 2: Identification of Anchorage and Berth Areas of a Port Using Machine Learning

Notes. The figures plot the identification results of the berth and anchorage areas for each of the following
representative container ports worldwide: the Port of Singapore, Port of Ningbo-Zhoushan in China, Port
of Rotterdam in the Netherlands, and the Ports of Los Angeles and Long Beach in the U.S. We use different
colors to depict various clusters identified by our machine learning clustering algorithm (IMA-DBSCAN; see
Appendix A for details); specifically, we use red, yellow, blue, purple, pink, cyan, and orange to represent
clusters identified as anchorages, and the other colors to represent clusters identified as berths. The under-
lying sample for each figure takes the first 50,000 AIS observations of containerships entering each port since
1 January 2020.

11



2.3. Port Congestion and the Index of Average Congestion Rate

Port congestion arises when ships cannot immediately load and /or unload cargo upon arrival
at ports, resulting in the vessels having to wait in an anchorage area for an opportunity to
dock at a berth. We define the Average Congestion Rate (ACR) for a port as the ratio of
containerships that moor at an anchorage before docking at a berth to the total number
of ship visits at the port.'> We calculate the monthly ACR for the top 50 container ports
worldwide during the sample period.

We derive a time series measure of global supply chain disruptions by computing the
weighted average of the ACR series for the top 50 container ports worldwide, with the
weights determined by the number of ship visits and thus reflecting the distinctive roles of
different ports within the global supply chain.'® Figure 3 displays our ACR index. Prior to
2019, the index remained stable around the sample median (17.8%), and it declined to 16%
from early 2019 to mid-2020. Subsequently, the index consistently rose to reach its peak at
25% in June 2021, indicative of the significant disruptions to the supply chain caused by the
Covid-19 pandemic.

Figure 4 presents the monthly ACR series for the top ten container ports worldwide
that are located in China, Singapore, South Korea, and the Netherlands, as well as the
Ports of Los Angeles and Long Beach in the U.S., for the period from January 2017 to July
2022 when the AIS data are available. These ports are pivotal in the global supply chain,
as they jointly account for more than 30% of the total volume of containerized seaborne
trade in the world. Following the onset of the Covid-19 pandemic in March 2020, the ACR
indices for several ports remained largely stable (e.g., Port of Rotterdam, Netherlands),
while only a few decreased (e.g., Port of Shanghai, China). However, as the pandemic
progressed from October 2020 onwards, congestion increased in the majority of ports, as

evinced by the increase in chromatic intensity in the figure.!” This implies that containerships

15. A ship visit, which is also known as a port call, refers to the arrival of a ship at a specific port where
it docks to load or unload cargo.

16. The weighting considers the differential impact on global supply chain disruptions resulting from changes
in the ACR at different ports. For instance, a slight increase in the ACR at the Port of Hong Kong in China
would likely have triggered a more pronounced global supply chain disruption than a significant increase at
the Port of Manila in the Philippines.

17. By our calculation, in late-2020, over 80% of inbound ships at the Port of Los Angeles in the U.S.

12
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Figure 3: ACR Index of Global Supply Chain Disruptions

Notes. The ACR index of global supply chain disruptions is derived by taking a weighted average of the ACR
series for the top 50 global container ports. The number of ship visits serves as the weight for each port.
The index is presented in percentage terms and has been seasonally adjusted. For the complete ranking of
container ports, please refer to https://www.worldshipping.org/top-50-ports (Accessed June 15, 2022).

encountered significant delays in the loading and /or unloading operations since October 2020,
thus disrupting the international freight collection and distribution of tradable goods.
Figure 5a plots the ACR index against the Harper Peterson Charter Rates Index (HARPEX).

The HARPEX is a widely-used composite indicator of container shipping rate changes in
the time charter market for eight different classes of containerships (Attinasi et al. 2021;
Benigno et al. 2022; Finck and Tillmann 2022), and is also used in the construction of the
GSCPI as a measure of cross-border transportation costs. Not surprisingly, we observe that
the two indices have moved similarly since the onset of the pandemic. As delays in container
processing became more prevalent and port congestion escalated, ships were tied up at ports.
This led to a significant shortage in the supply of shipping services, resulting in surging ship-
ping prices. However, it is also noteworthy that the two series did not align closely with each
other before the onset of the pandemic and in its aftermath. This observation is intuitive,

as the shipping price is an equilibrium object, and its fluctuations are influenced by both

were unable to dock at a berth immediately upon arrival. This observation aligns with official statistics.
According to figures released by the Pacific Merchant Shipping Association, the percentage of containerships
at Los Angeles waiting five or more days for unloading surged from 10% in August to 26% in December 2020.
Additionally, the Marine Exchange of Southern California reported that the number of vessels anchored in
Los Angeles waters also rose from fewer than 20 in August to more than 35 in December 2020.
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Figure 4: ACR for the Major Container Ports Worldwide

Notes. The heatmap presents the monthly ACR series for the top ten global container ports and the Ports of
Los Angeles and Long Beach in the U.S.; covering the period from January 2017 to July 2022. These ports
jointly represent more than 30% of the total volume of containerized seaborne trade in the world. The ACR
series for each port is normalized, expressed as a percentage of its peak value observed within the sample
period. Cells in a darker shade indicate greater congestion for the corresponding port during the designated
month. The ACR of a port is defined as the proportion of containerships that moor at an anchorage area
before docking at a berth, relative to the total number of ship visits at the port.

demand and supply-side factors.

Lastly, we compare our ACR index with the GSCPI to highlight the differences in the
measurement of supply chain disruptions. The GSCPI uses information on cross-border
transportation costs and sub-components of the country-specific manufacturing PMI to infer
supply chain disruptions. As discussed in the introduction, the GSPI is potentially problem-
atic since it relies on: (i) transportation costs reflecting the mismatch between the supply
and demand for goods, while prices become disjoint from output during supply chain disrup-

tions, and (ii) information gathered from purchasing managers that may reflect subjective
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Figure 5: Comparison Between the ACR and Other Measures of Supply Chain Disruptions

Notes. Figure 5a plots the ACR (red solid line) against the HARPEX (black dotted line), while Figure
5b plots the ACR against the GSCPI (black dashed line) during the sample period from January 2017 to
July 2022. The ACR is computed using the AIS data of containerships and the IMA-DBSCAN algorithm
developed in Appendix A. The original series of HARPEX is published by Harper Peterson and retrieved
from the Refinitiv data platform. Following Attinasi et al. (2021) and Benigno et al. (2022), we transform
the original series by computing the year-on-year percentage changes. The GSCPI is retrieved from the
New York Fed’s website (Source: https://www.newyorkfed.org/research/policy/gscpi#/overview (Accessed
August 10, 2022)). Both the ACR and HARPEX are measured in percent, while the GSCPI is measured in
standard deviations from the mean. All the series are seasonally adjusted.

views rather than realized disturbances to the supply chain.'®

In contrast, our ACR index uses maritime satellite data to estimate the congestion at
seaports around the globe. Our approach avoids the main shortcomings of the alternative
measures. Since containerships operates on fixed itineraries, as extensively documented in
Stopford (2008), Song and Dong (2012), Wang, Meng, and Jia (2019), Brancaccio, Kaloupt-
sidi, and Papageorgiou (2020), and Brancaccio et al. (2023),' our index is instead indepen-

dent from the mismatch between the supply and demand of goods, as evinced by Table 1

18. Appendix B elaborates on the shortcomings of using the shipping cost, sub-components of the man-
ufacturing PMI, and other indices of supply chain disruptions in the causality assessment. In particular,
we compare the U.S. supply disruptions index (SDI) by Smirnyagin and Tsyvinski (2022) to the ACR and
GSCPI indices. We find that the SDI and GSCPI align well, and an alternative estimation with the SDI
included as a measure of supply chain disruptions yields quantitatively similar results to those obtained
using the GSCPL.

19. Routes are rarely altered since diversions in shipping routes usually incur a large transition cost.
Changes in routes severely affect the stability of shipping operations and the loyalty of customers (Wang,
Meng, and Jia 2019).
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that shows that our ACR series is statistically uncorrelated with the number of ship vis-
its at each port (column, 1), whereas the HARPEX index that captures the shipping price
is significantly correlated with the number of ship visits (column 2).?° Furthermore, any
infrequent adjustments in shipping capacity across routes, and the resulting changes in con-
gestion at different ports, are canceled out when we aggregate the indices of port congestion
to construct the ACR index, hence enhancing the exogeneity of our ACR index to imbalances
between supply and demand in measuring global supply chain disruptions. Finally, we avoid
the issue of biased managerial perceptions by tracking the congestion of ports in real time.

Overall, we believe our index provides a powerful measure of supply chain disruptions.

Table 1: ACR, HARPEX, and Ship Visits

(1) (2)
ACR  HARPEX

-0.0018  —0.0286""
(0.00183)  (0.00614)

# Ship Visits

Port FE Yes N/A
Time FE Yes N/A
Obs 3,256 67

R? 0.0355 0.2499

Notes. Column (1) displays the estimated coefficient when we regress the port-specific ACR on the number
of ship visits to each port, controlling for both port and time fixed effects (FE). Column (2) presents the
estimated coefficient when we regress the HARPEX on the total number of ship visits across the top 50
container ports worldwide. Both the ACR and the number of ship visits are computed using the AIS data
of containerships and the IMA-DBSCAN algorithm developed in Appendix A. Meanwhile, the HARPEX is
constructed by taking the year-on-year percentage changes of the original series. *** indicates p < 0.01.

Figure 5b displays the ACR and GSCPI indices over the sample period from January
2017 to July 2022. Before 2020, the dynamics of the two indices were similar, but the
GSCPI substantially increased at the onset of the Covid-19 pandemic in early 2020 and

remained elevated in the first half of the year. From mid-2020 onwards, the two series

20. It should be noted that the correlation between the HARPEX and the number of ship visits is estimated
at the global level, as there is no disaggregated data on shipping prices at the port level. We also check the
robustness of our baseline results in Section 4.1 by applying a fitted ACR in our estimation after regressing
the port-specific ACR on the Oxford Stringency (OS) index (Mathieu et al. 2020) and port fixed effects; as
shown in Appendix F.1, such results are quantitatively similar to those obtained using the ACR directly.
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increased similarly until January 2022. di Giovanni et al. (2022) attribute the jump in the
GSCPI in early 2020 to the onset of the Chinese lockdown, and the sudden fall in the second
half of 2020 to the partial reopening of China and Europe. Our index of port congestion
indicates that the initial lockdown in China did not lead to congestion of a magnitude that
would generate a global supply chain disruption, and equally, the reopening of China and
Europe did not substantially ease the congestion in ports. Thus, the changes in the GSCPI
are likely driven by sudden changes in demand and management’s misperception of supply
chain issues as recorded by the PMI surveys. We also observe that the two series diverged
from each other again in early 2022, as the ACR remained elevated while the GSCPI had
already started plummeting. We argue that the high ACR could be largely attributed to
the stringent containment measures that were still in place in China during the first half of

2022, continuously exerting pressure on the global supply chain.

3. A Model of Congestion and Spare Capacity

In this section, we develop a model featuring imbalances in the supply and demand for
goods that result in spare capacity. The model is based on search and matching frictions
in the international product market similar to the framework in Michaillat and Saez (2015,
2022) and Ghassibe and Zanetti (2022), and incorporates transportation costs that generate
the separation of unprofitable matches; both features render prices no longer allocative and

t.21 Our model illustrates the central role of spare capacity

unable to clear the goods marke
in uniquely identifying supply chain disruptions (Section 4) and links these disruptions to
the efficacy of monetary policy in controlling inflation (Section 5).

The economy is composed of maximizing firms and households. Firms can be either
exporters or importers. Exporters produce goods using a fixed amount of labor supplied by

households and incur transportation costs to sell the goods. Importers buy these goods from

exporters and sell them to the households.?> Households purchase goods from importers

21. Appendix C provides a discussion on the evidence of matching frictions in the international product
market and the separation of commercial trade linked to transportation costs.

22. Our approach is similar to the standard assumption that firms require internationally imported in-
termediate goods for the production of final goods. See, for instance, Costinot, Vogel, and Wang (2013),
Kasahara and Lapham (2013), and Ramondo and Rodriguez-Clare (2013) and the references therein.
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using money that is the numeraire in the economy.

In the rest of this section, we begin by studying the separate problems of exporting
and importing firms that face transportation and visiting costs, respectively, to derive the
aggregate supply. We then study the problem of households, who determine the aggregate
demand. Subsequently, we show that in equilibrium, search frictions and transportation
costs determine the spare capacity in the economy whose adjustment is critical to the study

of disruptions to the supply chain.

3.1. Firms

Firms comprise exporters and importers. Exporters produce goods with a capacity deter-
mined by the inelastic labor inputs [ > 0. Exporters sell goods to the importers in a frictional
goods market that prevents the sale of the full capacity. Each unmatched (identified by the
subscript U) importer makes visits iy to unmatched exporters at a unitary cost p > 0 and

upon a successful trade, resells the purchased goods to households at the set price p.

Matching process. In each period, a constant-returns-to-scale matching function encapsulates

the search frictions in the product market, determining the number of meetings (772) between

unmatched exporters and importers according to:
_ g1
m = (ng + ZUg) i (1)

where zy and iy are the number of unmatched exporters and importers, respectively, and
the parameter ¢ is the elasticity of substitution between the inputs of the matching function.
We assume & > 0, such that 72 < min{xy,iy}.

We define the product market tightness 6 as the ratio between the number of visits by the
unmatched importers and the number of unmatched exporters, such that 6 = iy /zy. Given
the law of large numbers, product market tightness is taken as given by single exporters and
importers, and it determines the probabilities that exporters and importers meet each others

given the constant returns to scale in the matching function. Specifically, the probability for
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an exporter to meet an importer is:

f6) =" =467, 2)
and the probability for an importer to meet an exporter with probability:

al) = == = (14 6%)°<. 3)

29

The function f(€) is smooth and strictly increasing in the domain [0, +00), with f(0) = 0,
limp, 100 f(0) =1, and f'(#) > 0, whereas the function ¢(6) is smooth and strictly decreasing
in the same domain [0, +00), with ¢(0) = 1, limg_,, + ¢(#) = 0, and ¢/(f) < 0. Two properties
that will be useful later are that f(6)/q(0) = 6 and df (0)/d6 = q(0)***.

Transportation cost. Exporters pay an idiosyncratic transportation cost to export goods.?

In each period, exporters draw a transportation cost z from the log-normal distribution
G(z) with a scaling parameter v and the standard deviation o, i.e., G(2) = ®[(logz —7)/a],
where ®(-) is the standard normal cumulative density function.”* As we discuss later, there
exists a reservation level of transportation cost z, above which matches are unprofitable and
therefore severed. Consequently, the matches with a draw of transportation cost higher than

the reservation level (z > Z) are severed, whereas they continue otherwise (z < 2).

Recursive value functions. At the beginning of each period, the matched exporters sell the

produced goods to importers and pay the transportation costs, and the matched importers
sell their imported goods to households and pay the import prices. The exporters and
importers that are unmatched search to form a match with each other. At the beginning
of the next period, each exporter draws a new transportation cost and they continue in
the match if the new cost is sufficiently low for the match to remain profitable while the

unprofitable matches are severed (we describe the match separation decision later in the

23. Our results continue hold if the transportation cost is borne by importers instead. This is because the
match separation condition (12) is invariant to such a modeling choice.

24. We could also apply a more general setup that each exporter maintains its previous draw of transporta-
tion cost with probability 1 — ¢, and with probability ¢, the exporter draws a new transportation cost from
G(z). This setup is often found in the traditional labor search and matching theory that studies the labor
market outcomes following a rise in economic turbulence (den Haan, Ramey, and Haefke 2005; Fujita 2018).
Despite more tedious algebra, our main results still hold.
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section).

Four recursive value functions describe the values for the different status of exporters
and importers. The value for a matched (identified by the subscript M) exporter, X/(z), is
equal to:

Xu(z) =7(z) — 2+ BE. [ max (Xn(2'), Xv)], (4)

where 7(2) is the price of the imported goods that is endogenously determined, z is the cost
of transportation, S for the discount factor, and 2’ for the draw of transportation cost at the
beginning of the next period. Equation (4) shows that the present value of being a matched
exporter is the profit margin r(z) — z, plus the continuation value which depends on whether
the exporter endogenously separates from the match. Such a decision is determined by 2/,
and hence the max operator characterizes the optimal continuation/separation decision.

The value for an unmatched exporter, Xy, is:
Xy = Bf(O)E. [ max (X (2'), Xv)] + 8(1 - f(8)) Xv. (5)

With probability f(€), the unmatched exporter meets an importer and then decides whether
to endogenously separate if the given draw of transportation cost makes the match unprof-
itable. With probability 1 — f(), the exporter forgoes a successful match with an importer
and remains unmatched in the next period.

The value of matched importer, Ip/(2), is:
Iv(z) =p—1r(z) + PE. [max (In(2), Iv)]. (6)

The importer earns the price p by selling the imported goods to the households and it pays
the import price r(z) to the exporter. The max operator characterizes the optimal contin-
uation/separation decision conditional on the draw of transportation cost at the beginning
of the next period. If the drawn transportation cost makes the match unprofitable, the
importer endogenously separates from the match and hence starts the next period with a

value equal to:

Iy = —p + Bg(O)E. [max (I (=), I)] + B(1 — 4(6)) I, (7)
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where p is a fixed cost to pay per visit. We assume free entry into the international product

market that drives the value for an unmatched importer to zero in equilibrium, i.e., Iy = 0.

Nash bargaining. Nash bargaining splits the total surplus from the matching between the

exporter and the importer. The total surplus from matching is equal to:
S(Z):XM<Z)—XU+IM(Z)—IU (8)

The exporter earns a constant share n of the total surplus, and the importer earns the

remaining share 1 — 7, which in equilibrium yields:
n(Iu(z) = Iy) = (1 —n)(Xu(2) — Xv). (9)

Given the equilibrium rule (9), the value functions (4), (5), (6), and the free entry condition

Iy = 0, the import price that splits the surplus is equal to:

r(z) =n(p+pb) + (1 —n)z. (10)

Equation (10) shows that the bargaining power 7 is central to the determination of the
import price. When the exporters have significant bargaining power (n — 1), they earn the
total surplus accrued to the importers from selling the goods to the household (p + pd). On
the other hand, when the bargaining power of the exporter is low (7 — 0), the import price
is close to the cost of transportation (z). Intermediate values for the bargaining parameter
proportionally split the total surplus between exporters and importers, with the share of
surplus determined by the bargaining parameter. Important to our analysis, congestion in
the matching process, captured by tightness in the product market, worsens the bargaining
position of importers by lowering their matching probability, thus increasing the price they

are willing to pay to buy goods from exporters.

Match separation. Since the total value for a matched exporter and a matched importer,

i.e., Xuy(z) + In(2), strictly decreases with the cost of transportation z, there exists a
cut-off transportation cost z, above which the costs are too high and the matches become

unprofitable and are severed. This cut-off makes the total surplus in Equation (8) equal to
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zero, as follows:

S(z) = 0. (11)

By substituting the value functions (4), (5), (6), and the free entry condition Iy = 0 into
Equation (11), we can express the match separation condition as a function of price p,
reservation transportation cost z, and product market tightness 6, defined for all p € (0, +00),

z € (0,+00), and 0 € [0, +00), satisfying:
F(p.z,0) =p— 2+ (1= nf(0))BE.S(2) =0, (12)
where the expected surplus is defined by E.,S(2') = foz S(2")dG(Z).

Match creation. Using the value function for an unmatched importer (7) and the free entry

condition Iy = 0, we define the match creation condition as a function of reservation trans-
portation cost Z and product market tightness 6, defined for all z € (0,400) and 6 € [0, +00),
satisfying:

H(z,0) = L — (1 —n)BE.S(2) = 0. (13)

q(0)

Aggregate supply. The aggregate supply in the economy results from the steady-state equi-

librium in the international product market, which is defined as:

Definition 1. The steady-state equilibrium in the international product market consists of
a price p € (0,+00), a reservation transportation cost z € (0,4+00), and a product market
tightness 6 € [0, +00) such that the conditions for match separation (12) and match creation
(13) simultaneously hold:

F(z,0,p) = H(z,0) = 0.

Definition 1 indicates that the equilibrium product market tightness is a function of
price and reservation transportation cost. This relationship is determined by the conditions

of match separation and creation, as stated in Equations (12) and (13), respectively.

Proposition 1. In equilibrium, the price p, reservation transportation cost z, and product

market tightness 6 satisfy the relationship:

O(p,z) = 177_—pn(p —Z+ B/OZ G()d?'), (14)
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where G(.) is the log-normal cumulative density function. Hence, the product market tightness

0 has the following properties:

n

1. 0(p™™,z) =0 and lim,_4 0(p, 2) = +00, where p™™ satisfies:

Pt — 4+ 6/ G(2")dz =0;
0
2. 0(p, z) is strictly increasing on [p™", +00);

3. 0(p, z) is linear on [p™", +00);

4. limz 0+ 0(p, 2) = (L —n)p/(np) and O(p, 2™**) = 0, where ™% satisfies:
p—zZ""+ B /Ozm‘” G(2")dz' = 0;
5. 0(p, 2) is strictly decreasing on (0, 2™**]; and
6. 0(p,z) is convex on (0,z2™*"].
Proof. See Appendix D.1. [ |

Proposition 1 establishes that the product market tightness strictly increases with the
price of goods and decreases with the reservation transportation cost. These properties are
intuitive. When the total surplus rises due to a higher price, importers visit more exporters.
Conversely, a higher reservation transportation cost reduces the total surplus shared between
exporters and importers at the margin. This, in turn, dampens the incentives for importers
to visit exporters, leading to a slack product market.?’

Next, the aggregate supply comprises the quantity of goods traded by the importers
and exporters that survive separation for a given productive capacity [. To determine the
steady-state number of matched exporters, we consider the law of motion for the number of

matched exporters at the beginning of the next period:

zhy = G(Z)ay + f(0)G(2)xy,

25. An increase in the reservation transportation cost increases the expected total surplus SE,, S(z’), since
matches are less likely to be dismissed in the next period. However, such a positive effect is outweighed by
the loss in the profit margin p — Z, resulting in a negative net effect on the total surplus.
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and that for the number of unmatched exporters at the beginning of the next period:
/ — _
gy =[1-f0)+ f(0)(1 - G(2)]zv + (1 - G(2))zu.

By focusing on the steady-state equilibrium and normalizing the total number of matched
and unmatched exporters to one, i.e., x); + xy = 1, we derive the equilibrium number of
matched exporters x5/ equal to:

o FO)G(Z)
AL e ST T

The aggregate supply in the economy is equal to the quantity of goods supplied by matched
exporters for a given productive capacity (:

f0)G(z)
1-G(z) + f(0)G(2)

cs(2,0) = 259 (2,0) - | = (15)

By substituting the expressions for f(#) and 6 from Equations (2) and (14) into Equation
(15), we express the aggregate supply in the economy as a function of price and reservation

transportation cost, as stated in the next definition.

Definition 2. The aggregate supply cs, expressed as a function of price p and reservation

transportation cost z, is equal to:

{1+ [ -4 85 G()d)] )G
Cs(pyz - 7 1— B z —£ _1 _
1-G(z)+ {1+ [n—:(p—z+ﬁf0 G(z)dz")] °} ¢G(2)

[ (16)

for all (p,z) € (0,+00) x (0,+00) satisfying:
p—ZzZ+ ﬂ/ G(Z")dZ > 0. (17)
0

Since the aggregate supply in (16) is determined by two endogenous variables, there exists
infinite combinations of the price and reservation transportation cost that yield the same

aggregate supply, as long as they satisfy the constraint (17).?° We resolve the indeterminacy

26. The indeterminacy of the equilibrium is standard in search models. For instance, it arises in Michaillat
and Saez (2015), where either price or tightness must be assumed fixed to select an equilibrium. Our
model also does not allow for an equilibrium in which both the price and reservation transportation cost
can be determined simultaneously. The reason is similar: each importer-household pair decides the price
in a situation of bilateral monopoly. Since the solution to the bilateral monopoly problem is indeterminate
(Howitt and McAfee 1987; Hall 2005), it cannot be used to impose a condition on the price.
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by selecting the equilibrium where the reservation transportation cost is to remain fixed at an
arbitrary level 7, and prices move to satisfy the aggregate supply condition. By considering
the equilibrium with freely adjusting prices, we can study the responses of prices to the
distinct disturbances to demand, supply, and the supply chain, and use the comovements
across variables to formulate unique restrictions to estimate the causal effect of supply chain
shocks in our SVAR model developed in Section 4.

Our next Definition 2’ recasts the original Definition 2 of aggregate supply as a function

of the price p for an arbitrary transportation cost 7.

Definition 2'. For an arbitrary reservation transportation cost T € (0,400), the flexible-

price aggregate supply cl'*® is the function of price p defined by:

e {1 [ -7+ B T G(d)] Y EG()
Cs (p) - 1_ - —& _1
1-G(r)+ {1+ [E2(p—7+ B[, G(zN)dz')] "} ¢G(7)

ne

l, (18)

for all p € [p™™, 400), where p™" satisfies:

p"in — 4 ﬂ/ G(2")dz' = 0.
0

The next proposition outlines the properties of the aggregate supply when the price moves

to satisfy the aggregate supply condition.?”
Proposition 2. The flexible-price aggregate supply c/'*® has the following properties:
1. cflee(pmin) = 0 and lim,_, o I (p) = G(7)l;
2. cl'e(p) is strictly increasing in p on [p™", +00); and
3. cl'°*(p) is concave on [p™", +00).
Proof. See Appendix D.2. [ |

The aggregate supply ¢/'**(p) represents the quantity of goods traded that satisfy (18) for

a given transportation cost 7. Therefore, the dynamics of the aggregate supply is uniquely

27. Appendix E discusses the alternative pricing mechanism in which the price of goods is fixed while
the reservation transportation cost can vary. In addition to the derivation of the analytical properties, we
apply numerical methods to approximate such a fixed-price aggregate supply and illustrate the behavior over
different values of the reservation transportation cost.
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determined by the interaction between the price and tightness in the product market. A
higher price first leads to a higher total surplus by increasing the value of the matched
importer. This, in turn, increases the incentives for importers to visit exporters, resulting in
a higher product market tightness and a greater probability for an exporter to match with
an importer. More matches are created, leading to an increase in aggregate supply. Thus,
while transportation costs and matching frictions decrease the aggregate supply, and the
economy entails spare capacity, the model retains the standard positive relationship between
the price and the aggregate supply.

Figure 6 graphically shows the equilibrium of the aggregate supply in the quantity-price
(Q,p) space. For a given capacity of the economy [ (yellow line), the transportation costs
reduce the production capacity to G(7)l (green line), and the search frictions further reduce
the supply to the produced level ¢/'®(p) (blue line) that standardly increases with the price,
as discussed in the previous paragraph. Spare capacity, represented by the difference between
the capacity of the economy and the actual production (i.e., [ — cI*%(p)), results from the
transportation and the search and matching costs. It is worth noting that in our model the
spare capacity is equivalent to unemployment since it represents the difference the supply of
labor linked to the capacity of the economy and the demand of labor linked with the actual

production.

p cf'*(p) G(r)l 1

Price of Goods

vz yle—s ,
Aggregate Matching | % Transportation
Supply Cost Cost
Spare ’
min Capacity
! . . > Q
0 Quantity Supplied

Figure 6: Supply Side of the Economy when the Price of Goods is Flexible
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3.2. Households

The representative household derives utility from consuming goods and holding real money

balances.?® The household’s utility is given by:

u(C, E): X cez1 ! M=

VT P )
where ¢ denotes consumption, m is the nominal money balance, p is the price, the parameter
x > 0 represents the taste for consumption relative to holding money, and the parameter
€ > 1 is the elasticity of substitution between consumption and real money balances.

Taking the price as given, the representative household chooses consumption and nominal
money balances to maximize utility, subject to the budget constraint. The household, with
an endowment g > 0 of nominal money, purchases ¢ goods at price p from importers and

holds m units of nominal money balances. This leads to the following budget constraint:
pc+m < .

Solving the utility-maximization problem yields the optimal condition for the household:

X 1 m,-1
= — — € 1
1+xc 1+X(p) ’ (19)

o=

implying that she is indifferent between consumption and holding money at the margin.

Aggregate Demand. The aggregate demand in the economy is equal to the level of consump-

tion that maximizes utility at a given price when all resources are consumed:

Definition 3. The aggregate demand cy for a given price p € (0,+00) equals:

€

_ X
14 ye

1
ca(p) —. (20)
p
Proposition 3. c¢,(p) is strictly decreasing and convezx on (0, 400).

Proof. Direct proof from Equation (20). |

28. We borrow the money in the utility function directly from Michaillat and Saez (2015) to ensure that
aggregate demand plays a meaningful role in driving the macro aggregates. More importantly, the presence
of money is necessary for studying the state-dependent effects of a contractionary monetary policy shock, as
outlined in Section 5.
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Figure 7 in the next section shows the aggregate demand, which is downward sloping in
the (¢,p) plane. Since a higher price leads to lower real money balances, the households’
indifference between consumption and holding money implies that they would behave opti-
mally and desire lower consumption when the price is higher. Hence, the aggregate demand

in the economy decreases with the price.

3.3. Flexible-Price Equilibrium

With the flexible-price aggregate supply and aggregate demand sketched out, we define a
flexible-price equilibrium as an equilibrium in which the reservation transportation cost is

an external parameter:

Definition 4. A flexible-price equilibrium parameterized by T > 0 consists of a price p and
a reservation transportation cost zZ such that the flexible-price aggregate supply equals the

aggregate demand:

cf' (p) = calp), (21)

while the reservation transportation cost is given by the parameter T, i.e., Z = T.

Proposition 4. For any T > 0, there exists a unique flexible-price equilibrium parameterized

by T that features positive price and consumption.
Proof. See Appendix D.3. [

Figure 7 depicts the flexible-price aggregate supply, the aggregate demand, and the cor-
responding flexible-price equilibrium. The equilibrium price is at the intersection of the
flexible-price aggregate supply and aggregate demand in the (¢, p) plane. Both the theoreti-
cal upper bound of the flexible-price aggregate supply if the matching frictions were absent

and productive capacity are also plotted in the figure for comparison.

3.4. Comparative Statics

We use comparative statics to derive the responses of the macro aggregates to adverse shocks

to demand, labor supply, and supply chain, respectively. The responses will provide unique
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Figure 7: Flexible-Price Aggregate Supply, Aggregate Demand, and Flexible-Price Equi-
librium

identifying restrictions for studying the causal effects of supply chain disturbances in the
empirical SVAR model in the next section. In our model, an adverse shock to aggregate
demand is either a decrease in the money supply, u, or in the preference for consuming
goods, x. An adverse shock to labor supply is a negative disturbance to the labor supply
(or equivalently, productive capacity), [. An adverse shock to supply chain is a compre-
hensive increase in the distribution of transportation costs, encapsulated by a rise in ~, the
scale parameter of the log-normal distribution of transportation costs. Ceteris paribus, an
increase in 7 implies a higher average transportation cost, i.e., exp(y + ¢2/2). Proposition 5

summarizes the responses of the macro aggregates to these distinct shocks.?
Proposition 5. In equilibrium:

o An adverse shock to aggregate demand increases matching cost and spare capac-
ity (or equivalently, unemployment), while it decreases consumption (or equivalently,

output), price, product market tightness, and import price.

o An adverse shock to labor supply increases price, product market tightness, and
import price, while it decreases consumption (or equivalently, output), matching cost,

and spare capacity (or equivalently, unemployment).

29. Unlike Michaillat and Saez (2015) in which there is a matching cost that differentiates consumption
from output, consumption and output are equivalent in our model.
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« An adverse shock to supply chain increases price and spare capacity (or equiva-
lently, unemployment), while it decreases consumption (or equivalently, output). The
responses of product market tightness, import price, and matching cost are undeter-

mined.

Proof. See Appendix D.4. [ |

Table 2 summarizes the signs of the responses of the macro aggregates to the three dif-
ferent shocks. Figure 8 graphically illustrates the comparative statics (left panels), alongside
the corresponding equilibrium condition between product market tightness and price (right
panels) from Equation (14) that describes the optimal interplay between product market

tightness and price.

Table 2: Comparative Statics for Adverse Shocks to Aggregate Demand, Labor Supply,
and Supply Chain

Effects On:
. Consumption Price Product Market Import Matching Spare Capacity
Adverse Shock To: (or Output) Tightness Price Cost (or Unemployment)
c p 0 T G(r)l—c l—c
Aggregate Demand — - — — + +
Labor Supply - + + 4 — _
Supply Chain — + N/A N/A N/A +

Notes. The table summarizes the comparative statics in Proposition 5. An adverse shock to aggregate
demand is a decrease in money supply, i, or in the taste for consumption of goods, x. An adverse shock
to labor supply is a decrease in labor supply (or equivalently, productive capacity), I. An adverse shock to
supply chain is an increase in the scale parameter of the log-normal distribution of transportation costs, .

Panel (a) in Figure 8 shows the response of the system to a decline in aggregate demand.
The aggregate demand curve shifts inwards, driven by the preference for lower consumption
by households, either because they hold less money or prefer to consume less. In equilib-
rium, the price decreases to clear the market. As the price decreases, importers visit fewer
exporters to participate in trade, hence lowering product market tightness. The declines
in price and product market tightness then contribute to a lower import price, as not only
does a trade itself become less profitable, but also the probability of getting into a trade for

an importer becomes higher, given the weakened congestion. Consequently, exporters sell a
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Figure 8: Graphical Representation of Comparative Statics
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lower fraction of their productive capacity to importers, resulting in a decrease in consump-
tion (or equivalently, output). This leads to an increase in matching cost and spare capacity
(or equivalently, unemployment).

Panel (b) in Figure 8 shows the response of the system to a negative labor supply shock
that decreases productive capacity.’ The negative shock to the aggregate supply causes it
to rotate inwards while leaving p™" unchanged. The price increases to clear the market, and
consumption (or equivalently, output) decreases as the equilibrium moves upwards along the
aggregate demand curve. The increase in the price raises product market tightness. This
simultaneous rise in price and product market tightness leads to a higher import price. Along
with the contraction in productive capacity, this results in lower matching costs and reduced
spare capacity (or equivalently, unemployment).

Lastly, Panel (c) in Figure 8 shows the response of the system to an increase in trans-
portation costs corresponding to a negative supply chain shock, encapsulated by the increase
in the scale parameter of the log-normal distribution of transportation costs. The increase
generates a higher mean transportation cost, increasing the probability of drawing a trans-
portation cost above the reservation threshold. Since the reservation threshold is fixed, the
expected total surplus from a trade decreases without a change in the price. To continue
benefiting from trade, importers raise the price of imported goods to households and pass on
these costs to consumers. Consequently, the price rises while consumption (or equivalently,
output) falls. Graphically, this process is represented by an inward shift of the aggregate
supply curve, and unlike in the negative labor supply shock, p™" increases in response to the
shock. Since the productive capacity (or equivalently, labor supply) is fixed, spare capacity
(or equivalently, unemployment) increases in response to the negative supply chain shock.

In terms of the effect on product market tightness, as seen in Equation (22),

e L Rl =T (22)

J/

Profit Margin 1 Expected Total Surplus |

the result remains ambiguous. On the one hand, an increase in 7 reduces the expected

30. This shock is commonly termed as a “supply shock” and has been studied intensively in the literature.
See, for instance, del Rio-Chanona et al. (2020), Bonadio et al. (2021), Brinca, Duarte, and Faria-e-Castro
(2021), and Leyva and Urrutia (2022).
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total surplus, since it becomes more likely to obtain a bad draw that severs trade. On the
other hand, an increase in v raises the price, and thus, the profit margin. Therefore, if the
price rises to a level that offsets the negative effect of a lower expected total surplus, product
market tightness will increase, as depicted in Panel (c¢) of Figure 8. Alternatively, if the price
increase is insufficient to reverse the aforementioned relationship, product market tightness
will decrease accordingly.

Lastly, as discussed in Appendix D.4, the corresponding changes in import price and
matching cost depend on how the price and product market tightness evolve following an

adverse shock to supply chain. Therefore, their comparative statics also remain ambiguous.

4. The Causal Effects of Supply Chain Disruptions

In this section, we study the causal effects of supply chain disruptions by developing a
SVAR model that uses our ACR index and restricts the responses of the macro aggregates
according to our theoretical results.?’ We also study the differences between our index and
the alternative GSCPI, focusing on the statistical significance and historical contribution of

disruption shocks to the supply chain during the Covid-19 pandemic.

4.1. A SVAR Model with Sign and Zero Restrictions

Our empirical model is based on Rubio-Ramirez, Waggoner, and Zha (2010) and Arias,
Rubio-Ramirez, and Waggoner (2018):

L
Yy, Ao = Z Y A +wC+e, 1<t<T, (23)
=1

where y; is an n x 1 vector of endogenous variables, w; = [1,t]" is a 2 x 1 vector of a constant
and a linear trend, €; is an n x 1 vector of structural shocks, A; is an n x n matrix of

structural parameters for 0 < [ < L with A invertible, C' is a 2 X n matrix of parameters,

31. When we disentangle the causal effects of a supply chain disruption shock from others, it is important to
include the relevant variable(s) necessary for identification in the econometric models. This step is crucial to
prevent the omitted variable bias, which could introduce a serious flaw in certain scenarios. For instance, an
oil price shock could influence real GDP, inflation, and unemployment similarly to a supply chain disruption
shock (Kénzig 2021; Gagliardone and Gertler 2023).
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L is the lag length, and T is the sample size. The vector €;, conditional on past information
and the initial conditions yo,...,y1_r is Gaussian with mean zero and covariance matrix
1,xn, i.e., the n x n identity matrix. The SVAR described in Equation (23) can be written
compactly as:

YA =z A, +e€, 1<t<T, (24)

where A, =[A] ... A} C'land @, =[y;_, ... y;_; wi for 1 <t < T. The dimension
of A, is m x n, where m = nL + 2. The reduced-form representation implied by Equation
(24) is given by:

Y=z Btu, 1<t<T,

where B = A, A;' u, = €,A;", and E(usu,) = ¥ = (AgA))~t. The matrices B and ¥
are the reduced-form parameters, while Ay and A, are the structural parameters.

We estimate the model using the monthly U.S. series for real GDP, GDP deflator, un-
employment, import price, as well as our ACR index over the period from January 2017 to
July 2022, with all series being seasonally adjusted. All the variables are from the Federal
Reserve Economic Data (FRED), maintained by the Federal Reserve Bank of St. Louis.?**
The real GDP, GDP deflator, and import price are in log percent, while the unemployment
and ACR are in percent. We set the number of lags to two in the baseline specification, but
the results are robust to considering one or three lags.**

Our identification scheme applies the sign restrictions from our theoretical model, which

are summarized in Table 2, as well as the zero restrictions on the responses of the ACR

32. The mnemonics of the variables are: GDPC1 (real GDP), INDPRO (industrial production), GDPDEF (GDP
implicit price deflator), CPTAUCSL (consumer price index), PPIFG (producer price index), UNRATE (unem-
ployment), and IREXFDFLS (import price). The monthly time series for real GDP and GDP deflator are
constructed using interpolation of the corresponding quarterly time series, as in Bernanke and Mihov (1998)
and Arias, Caldara, and Rubio-Ramirez (2019). Specifically, we apply the Chow-Lin method for temporal
disaggregation (Chow and Lin 1971) to interpolate the real GDP based on the industrial production index,
while interpolating the GDP deflator based on the consumer price index and the producer price index. The
unemployment and import price are raw series from the U.S. Bureau of Labor Statistics.

33. Considering that international trade in goods, rather than services, was primarily affected by global
supply chain disruptions, we conduct a robustness check of our baseline results. We do this by replacing the
monthly U.S. series of the GDP deflator with the Personal Consumption Expenditures (PCE) goods price
index. The mnemonic for this index in the FRED database is DGDSRG3MO86SBEA. As shown in Appendix
F.2, while the baseline results remain consistent, the identification of the causal effects of an adverse shock
to the supply chain becomes even more pronounced.

34. Appendix F.3 demonstrates the robustness of our baseline results when considering different lag struc-
tures and extended horizons to impose the sign restrictions on IRFs.
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index to adverse aggregate demand and labor supply shocks. We estimate the SVAR using
a Bayesian approach as in Arias, Rubio-Ramirez, and Waggoner (2018), Arias, Caldara, and
Rubio-Ramirez (2019), and Arias et al. (2023) with restrictions on the first period of response
(i.e., K = 1), thus imposing a minimal structure as in Mumtaz and Zanetti (2012, 2015).%

More concretely, we impose the following restrictions:

Restriction 1. An adverse shock to aggregate demand leads to a negative response of
real GDP, GDP deflator, and import price, as well as to a positive response of unemployment

at k =1. ACR does not respond at k = 1.

Restriction 2. An adverse shock to labor supply leads to a negative response of real
GDP and unemployment, as well as to a positive response of GDP deflator and import price

at k =1. ACR does not respond at k = 1.

Restriction 3. An adverse shock to supply chain leads to a negative response of real

GDP, as well as to a positive response of GDP deflator, unemployment, and ACR at k = 1.

Figures 9, 10, and 11 present our baseline results for the responses of the endogenous
variables to an adverse shock to aggregate demand, labor supply, and the supply chain
respectively. The solid line shows the point-wise posterior median IRFs of the endogenous
variables to each structural shock, and the gray-shaded bands represent the corresponding
68% and 90% posterior probability bands.*® We start by discussing the IRFs to an adverse
shock to aggregate demand in Figure 9. On impact, real GDP declines significantly by
approximately 1.0%, while unemployment rises sharply by more than 0.5%. Such responses
persist with a high posterior probability for the first six months after the shock. In contrast,
the response of the GDP deflator is more muted, with its initial fall sitting at -0.1% before

gradually reverting back to zero after a one-year window. Import price exhibits a similar

35. We impose a normal-generalized-normal (NGN) prior distribution over the structural parameters Ag
and A, . The NGN prior is a conjugate prior characterized by four parameters (v, ®, ¥, Q). The parameters
v and ® govern the marginal prior distribution of vec(Ag), while the remaining parameters ¥ and € govern
the prior distribution of vec(A.), conditional on Ag. Our choice of the prior density parameterization is
v=0,P =0,xn, ¥ = 0,,xn, and Q= 0,.xm- This parameterization generates prior densities that are
equivalent to those in Uhlig (2005). Nevertheless, our results are robust to using the prior robust approach
in Giacomini and Kitagawa (2021), as illustrated in Appendix F.4.

36. The results are based on 100,000 independent draws from the posterior distribution of the structural
parameters, and the structural shocks are of size one standard deviation.
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pattern, although a zero response emerges much sooner at the six-month mark. Lastly, the
response of the ACR index is less precisely estimated, with a large posterior probability mass

centered around zero.
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Figure 9: IRFs to an Adverse Shock to Aggregate Demand: Baseline

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using the
ACR index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the
shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is
based on 100,000 independent draws.

Figure 10 shows the IRFs to an adverse shock to labor supply. On impact, following
Restriction 2, both the responses of real GDP and unemployment are negative. Subsequently,
real GDP continues to fall, with a zero response almost at the boundary of the 90% confidence
set near the trough, which occurs about three months after the shock. Largely due to
such a fall in real GDP, the initial decline in unemployment is quickly reversed, and it
turns significantly positive within one quarter from the shock, peaking at approximately
0.25% before reverting back to zero. The GDP deflator increases and remains elevated for
approximately one year, reflecting the lag effects of supply-side shocks. Import price again
exhibits a similar pattern, but the peak is reached at a much earlier horizon. Lastly, the
median response of ACR is zero on impact and consistently above zero for almost one year
afterwards.

Finally, Figure 11 shows the IRFs following a negative shock to the supply chain. The
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Figure 10: IRFs to an Adverse Shock to Labor Supply: Baseline

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using the ACR
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.

median response of real GDP is negative on impact, and it remains below zero for more
than one quarter after the shock. The unemployment response mirrors that of real GDP
in magnitude. The increases in both the GDP deflator and import price align with the
magnitude observed in the labor supply shock, highlighting the significant role of supply
chain disruptions in driving up prices. Despite the uncertainty around our estimates, as
evinced by the wide posterior probability bands, the positive responses of both the GDP
deflator and import price are still statistically significant at the 68% level of significance.

Lastly, the response of the ACR index remains elevated for nearly one year after the shock.

4.2. Comparison Between the ACR and GSCPI

In this section, we assess the implications of the differences between the ACR and GSCPI
indices for the readings that the SVAR model makes regarding the causal effect of supply
chain disruptions on inflation by studying: (i) IRFs to an adverse shock to supply chain, (ii)
Forecast Error Variance Decomposition (FEVD), and (iii) Historical Decomposition (HD),
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Figure 11: IRFs to an Adverse Shock to Supply Chain: Baseline

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the ACR
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.

using our empirical model and the sign and zero restrictions developed in Section 4.1.°" As
illustrated in Section 2.3, we find that the behaviors of the two indices diverge significantly
from early 2020 onwards, and the substantial increase in the GSCPI at the onset of the
Covid-19 pandemic is likely driven by sudden changes in demand and the management’s
misperception of supply chain issues as recorded by the PMI surveys.

Figure 12 shows the IRFs following an adverse shock to the supply chain for the GSCPI
index. The responses of real GDP and unemployment closely resemble the baseline responses
when we use the ACR index (Figure 11). The responses of the GDP deflator and import
price are around zero and statistically insignificant, and the response of the GSCPI is positive
on impact while returning to zero after the one-quarter mark.

Figures 13a and 13b illustrate the proportion of the forecast error variance explained
by each of the three structural shocks, using the ACR and GSCPI indices, respectively. A

comparison of the two figures reveals that aggregate demand shocks account for the largest

37. As a robustness check, Appendix F.5 estimates a version of the model without the zero restrictions
imposed on the GSCPI, and the comparison results remain unchanged.
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Figure 12: IRFs to an Adverse Shock to Supply Chain: The GSCPI and Restrictions 1, 2,
and 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the GSCPI
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. This figure is based
on 100,000 independent draws.

fraction of unexpected fluctuations in real GDP and unemployment for both indices. How-
ever, the supply chain shock explains a significant fraction of the unexpected fluctuations in
the GDP deflator at longer horizons for the ACR index, while it only accounts for a minimal
fraction for the GSCPI index. This latter finding is consistent with the zero response of the
GDP deflator to the supply chain shock for the GSCPI index (Figure 12).

Finally, Figures 14a and 14b show the cumulative historical contribution of each of the
three structural shocks to U.S. inflation for the ACR and GSCPI indices, respectively.®® Our
ACR index attributes the initial fall in inflation at the onset of the Covid-19 pandemic to
a decline in demand, and the subsequent rise in inflation from April 2020 to adverse shocks
to the supply chain, which remains influential for inflation throughout the sample period.
Interestingly, our model shows that supply chain disturbances consistently exert a negative

contribution to inflation prior to the global pandemic period that started in March 2020.%"

38. To facilitate comparison of the series across different scales, we apply Z-score standardization, which
re-scales data to have a mean of zero and a standard deviation of one.

39. The persistent negative contribution of shocks to the supply chain to U.S. inflation supports the political
motives for the enhancements of supply chain operations to ease inflationary pressures. For instance, several
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Figure 13: FEVD from the SVAR

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using the ACR/GSCPI index and Restrictions 1, 2, and 3, and based on 100,000 independent draws.

In contrast, the results based on the GSCPI index attribute the early fall in inflation to
positive shocks to the supply chain, while the rise in inflation subsequent to the onset of the
pandemic is principally explained by demand shocks.

Taken together, we find significant differences between the ACR and GSCPI indices and

show that they provide contrasting interpretations of the contributions of different shocks to

U.S. inflation over the sample period.

U.S. ports underwent considerable infrastructure upgrades in the period 2017-2019, aiming to enhance their
capacity, efficiency, and resilience against potential disruptions.

40



——U.S. Quarterly Inflation ——U.S. Quarterly Inflation

6 || [ Aggregate Demand A 6 |-/ Aggregate Demand .
[ ]Labor Supply [ JLabor Supply
[ ] Supply Chain [ ] Supply Chain

S.D. from Mean
S.D. from Mean

\ ‘O Q W\ «3 o0 o 0 ) Q i~
$ X‘(\ %Qec ()’500 A Q’S“ \Q N $ e %Q 93\& QS QS XQ@ X’%e »&
rlQ{k ‘Lgx% %QX [LQ\, @ ‘L ‘LQ‘) @Q‘)"l rLQ{L %Q\% Q’QX cLQ\r :LQFL rl ’L ‘)Q q, Qo
(a) Baseline (b) The GSCPI and Restrictions 1, 2, and 3

Figure 14: HD of U.S. Inflation

Notes. In both panels, the solid line represents the standardized quarterly inflation rate in the U.S.; i.e
quarter-on-quarter growth of the GDP deflator. The shaded bar represents the standardized cumulative
historical contribution of each of the three structural shocks identified using the ACR/GSCPI index and
Restrictions 1, 2, and 3 to U.S. inflation. The estimation results are obtained with each variable measured
in percent change from the previous period, and are calculated based on 100,000 independent draws.

5. The Effectiveness of Monetary Policy

In this section, we study the interplay between supply chain disruptions and the effectiveness
of monetary policy to control inflation and output. We show through our theoretical model
that a disruption to the supply chain increases the sensitivity of inflation and reduces the
sensitivity of output to a contractionary monetary policy shock, generating state-dependence
that changes the stabilization tradeoff of monetary policy. Subsequently, we test and corrob-

orate our theoretical predictions using a Threshold Vector Autoregression (TVAR) model.
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5.1. Theoretical Prediction

We derive the theoretical prediction for the state-dependence of monetary policy using our
theoretical model described in Section 3. The monetary supply parameter p encapsulates the
action of monetary policy, and the transportation cost parameter v captures the disruption to
the supply chain. We study the comparative statics of the impact of a tightening in monetary
policy, focusing on whether the effects of the policy intervention on inflation and output are

different amid the supply chain disruption. The results are summarized in Proposition 6.

Proposition 6. For any given threshold of transportation cost 7 > 0 and parameter values
w € RY and v € R such that the following constraint holds:

00(p, ) O(1 + 0°%) 1 exp | (log T — 7)?
o (1-G()G(r)ov2r 202 7

(25)

where G(1) = ®[(log T — ) /o], ®(.) is the standard normal cumulative density function, the
responses of the endogenous variables to a change in monetary policy are described by the

partial derivatives:

>0’ M>O’
O

dc(p, ) op(p, ) 0 (1, 7)
op

ol o
0

SalGm= cun] <0, 2 [1= clu] <0

> 0, > 0,

The cross derivatives that describe the variation in the responses of the endogenous variables

ascribed to the supply chain disruption satisfy:

%c(p, ) O*p(p, ) 9%0(,~) %r(p, )
o5, < 0, Sy 0, Sy 0, 0> 0,
0? 0?

[G(T)l = c(p, )] >0, [l = e(u, )] >0,

ooy ooy

where ¢,p,0,r,G(T)l — ¢, and | — ¢ represent consumption (or equivalently, output), price,
product market tightness, import price, matching cost, and spare capacity (or equivalently,

unemployment), respectively.
Proof. See Appendix D.5. |

In words, the partial and cross derivatives in Proposition 6 imply that at an equilibrium

42



where the product market tightness is sufficiently reactive to the supply chain disruption
(as evinced by equation (25)), the contractionary monetary policy shock induces a smaller
decrease in consumption (or equivalently, output) and a larger decrease in price, as evinced
by the second derivatives.*’

Figure 15 provides a graphical representation of our theoretical prediction. In response
to a contractionary monetary policy shock, households reduce consumption at a given price
level due to decreased money holdings. This causes the aggregate demand curve to shift
inwards, leading to a reduced price and lower consumption of goods. Consequently, product
market tightness diminishes as importers visit fewer exporters for trade. This reduction
in price and product market tightness subsequently results in a lower import price. Ex-
porters, in turn, sell a smaller fraction of their productive capacity to importers, leading to
a decrease in output. Correspondingly, matching costs and spare capacity (or equivalently,
unemployment) increase.

[TO Y: I HAVE TRIED TO IMPROVE THE EXPLANATION HERE, BUT IT IS
STILL UNCLEAR. COULD YOU PLEASE HAVE A SECOND GO AT IT?] The increase
in transportation costs that generates the supply chain disruption decreases the likelihood
that the randomly drawn transportation cost of the exporters falls below the reservation
transportation cost, and consequently a lower number of matches materializes. Simultane-
ously, the contractionary monetary policy shock suppresses the demand of the importers. To
instigate such a pronounced decrease in product market tightness, prices must experience a
more dramatic drop. Taken together, these dynamics suggest that supply chain disruptions
enhance the sensitivity of prices to fluctuations in goods supply. This heightened sensitivity
becomes notably significant when product market tightness proves to be more reactive to
the supply chain disruption, as outlined in the constraint (25) of Proposition 6.

[TO Y: THIS SENSENTE IS UNCLEAR. PLEASE REVISE IT.| Subsequently, these
more pronounced decreases in price and product market tightness will result in a more signif-
icant drop in the import price. Furthermore, since changes in consumption (or equivalently,

output) inversely mirror those in price, a steeper decline in price will be paralleled by a

40. Proposition 6 also shows that the responses of product market tightness and import price are greater
while the responses of matching cost and spare capacity (or equivalently, unemployment) are weaker during
the supply chain disruption.
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Figure 15: State-Dependent Effects of a Contractionary Monetary Policy Shock: Theoret-
ical Prediction

Notes. The two figures illustrate how in theory the economy adjusts to a contractionary monetary policy
shock and how such an adjustment depends on whether the supply chain is disrupted or not. The two

respective states — i.e., supply chain disrupted (D) versus undisrupted (U) — are plotted against each other.

cg lg)z and ci lﬁw represent the flexible-price aggregate supply curves in the two states, while 6 and 6y represent

the schedules of product market tightness in the two states. cq and ¢4, represent the aggregate demand
curves before and after the contractionary monetary policy shock. The labels on the axes corresponding to
each state are differentiated by their subscripts, and the capital letters (A — B,C — D) are also included
to facilitate comparison between the two states.

less substantial drop in consumption (or equivalently, output). Accordingly, the increases
in matching cost and spare capacity (or equivalently, unemployment) will be smaller when

responding to a contractionary monetary policy shock.

5.2. Empirical Validation

We test the theoretical result of the state-dependence of monetary policy by developing a
structural TVAR model — building on Chen and Lee (1995) — that allows for endogenous
variation in the estimated parameters based on the estimated threshold of our ACR index.
The reduced-form model is the following:

L L

Y = It [ Z B]{))’[ytfl + Cﬁ)wt + 2]%)/2615] + (1 — It) |:Z B[/U,lyt—l + C{Jwt + Z%J/Qﬁt s (26)

=1 =1
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where 1 <t < T, y; is an n x 1 vector of endogenous variables, w; = [1,t]" is a 2 x 1 vector
of a constant and a linear trend, €; is an n x 1 vector of structural shocks, Bp; and By
are two n X n matrices of coefficients for the lagged endogenous variables y;_;, Cp and Cy
are two 2 X n matrices of coefficients for the constant and linear trend, Xp and Xy are the
covariance matrices, L is the lag length, and T is the sample size."! The vector €;, conditional
on past information and the initial conditions yq, ..., y1_r, is Gaussian with mean zero and
covariance matrix 1,y,, i.e., an n X n identity matrix. Switches between the two regimes —
i.e., supply chain disrupted (D) vs. undisrupted (U) — are governed by the indicator variable
I; € {0, 1}, which is equal to one if the ACR in period t — 1, ACR,_, is above the threshold
ACR, and equal to zero otherwise:

1, if ACR, , > ACR;

0, if ACR,_, < ACR.

Under the Normal-Inverse-Wishart conjugate prior for the TVAR parameters and condi-
tional on the value of the threshold ACR, the posterior distribution of the TVAR parameter
vector is a conditional Normal-Inverse-Wishart distribution, and we use the Gibbs sampler
to draw from the distribution. Since the posterior distribution of the threshold ACR con-
ditional on the TVAR parameters is unknown, we use a Metropolis-Hastings algorithm to
obtain its posterior distribution, similar to Chen and Lee (1995), Lopes and Salazar (2006),
and Pizzinelli, Theodoridis, and Zanetti (2020). Appendix G.1 provides the details on the
Normal-Inverse-Wishart prior.

To retain comparability with our previous results, we include the same variables used
in our SVAR model in Section 4.1, with the addition of the Federal Funds Rate to reflect
the changes in the stance of U.S. monetary policy. For consistency, we also retain the same
sample period 2017M1-2022M7.4?

To identify the contractionary monetary policy shock, we impose the following standard

restriction on IRFs:

41. Note that we allow the covariance matrix to be regime-specific.

42. All the series are seasonally adjusted, except the Federal Funds Rate. Real GDP, GDP deflator, and
import price enter the TVAR in log percent, whereas the Federal Funds Rate, unemployment, and ACR
enter the TVAR in percent.
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Restriction 4. A contractionary monetary policy shock leads to a negative response of
real GDP, GDP deflator, and import price, as well as to a positive response of unemployment

and Federal Funds Rate at k = 1. ACR does not respond at k = 1.%3

We compute the identified set of IRFs using the Bayesian approach similar to Pizzinelli,
Theodoridis, and Zanetti (2020) and Bratsiotis and Theodoridis (2022).** We use one lag
in the baseline estimation, and select the one-month lag of the ACR index as the variable
determining the state I,.*°

Figure 16 plots the IRFs to a contractionary monetary policy shock for both the supply
chain disrupted (black) and undisrupted (red) regimes, reporting both the point-wise pos-
terior medians (solid lines) and the 68% equal-tailed point-wise posterior probability bands
(shaded area and dotted lines) for the horizon k£ = 12 (i.e., four quarters). The figure shows
significant differences in the responses of the variables to the contractionary monetary pol-
icy shock between the two regimes. In accordance with our theoretical results, the GDP
deflator and import price are more responsive, while the output and unemployment are less
responsive in the regime of supply chain disruptions, and the differences in the responses are
statistically significant.

Appendix H shows that our results hold across several variations to the benchmark
model, namely: (i) different lag structures, (ii) a looser prior (i.e., A = 0.5 instead of 0.25;
see Appendix G.1 for the details on the tightness of the prior), and (iii) longer horizons for
the sign restrictions (i.e., k = 1 to k = 1,2,3). Appendix I shows that our results continue
to hold when we use local projections with interaction terms, as in Ghassibe and Zanetti

(2022), to estimate the state-dependent effects of a contractionary monetary policy shock.

43. Restriction 4 enriches Restriction 1, which is intended for the identification of an adverse shock to
aggregate demand, with the positive response of the Federal Funds Rate on impact.

44. To implement the sign and zero restrictions on IRFs, we use the penalty function approach (PFA)
developed in Uhlig (2005) and Mountford and Uhlig (2009). The PFA consists of using a loss function to
find an orthogonal matrix that satisfies the zero restrictions and that satisfies or comes close to satisfying
the sign restrictions. Appendix G.2 provides the details on the PFA.

45. Appendix G.3 plots the posterior distribution of the threshold ACR, together with the time series of
the identified regimes using the median of the posterior ACR.
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Figure 16: State-Dependent Effects of a Contractionary Monetary Policy Shock: Empirical
Validation

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using Restriction 4 for both the supply chain disrupted and undisrupted regimes. The black solid (red solid)
line shows the point-wise posterior medians, and the black shaded area (red dotted lines) depicts the 68%
equal-tailed point-wise posterior probability bands for the supply chain disrupted (undisrupted) regime. The
figure is based on 10,000 independent draws from the posterior.

6. Conclusion

Our study constructs the first index of global supply chain disruptions using data from the
Automatic Identification System — a mandatory tracking system installed on containerships
serving major ports worldwide — that was made publicly available since 2017. We quantify
supply chain disruptions by estimating congestion in major global ports by developing a novel
spatial clustering algorithm that tracks vessel positions and speeds in berth and anchorage
areas within ports.

We develop a theoretical framework to study supply chain disruptions in the context
of imbalances between the supply and demand for goods that generate changes in prices
and spare capacity. Our framework demonstrates that disturbances to the supply chain
reduce output and inflate prices, as in standard models, but also lead to an increase in the
economy’s spare capacity. The co-movements of spare capacity, prices, and output allow us to

uniquely identify the supply chain shocks and explore their causal effects on macroeconomic
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outcomes through an SVAR model with sign and zero restrictions. Our empirical model finds
that supply chain shocks exert an immediate, large, and detrimental effect on real GDP and
unemployment, while simultaneously causing a sharp rise in inflation.

We study the changes in the effectiveness of monetary policy consequent to supply chain
disruptions. We show both theoretically and empirically that monetary policy exerts a
stronger influence on inflation, albeit with diminished effect on output, during periods of
supply chain disruptions. Therefore, disruptions to the supply chain enhance the effectiveness
of contractionary monetary policy in taming inflation while reducing the sensitivity of output
to the policy.

Our study opens several valuable avenues for future research. First, our new index reveals
significant heterogeneity in the congestion of ports around the world. It would be interesting
to study whether the spillovers between ports are primarily driven by geographical proximity
or production synergies, and study the optimal redistribution of resources across ports in
different locations to offset the negative impact of supply chain disruptions. Second, while
our theoretical framework is based on single importer-exporter relationships to study the role
of spare capacity, it would be worthwhile to extend the analysis to input-output networks
and explore the role of spare capacity in the transmission of supply chain disruptions across
firms in the network. The structure of the production network could potentially magnify
or dampen the disturbances to the supply chain, which may trigger endogenous changes
in the structure of the network, as recently documented in Ghassibe (2023). Third, with
the incorporation of predictive analytics, our spatial clustering algorithm could be fine-
tuned to anticipate supply chain disruptions by identifying and analyzing subtle changes
in the positions and speeds of containerships, as recorded in real time by the AIS data.
By effectively modeling these seemingly imperceptible changes, the algorithm could serve
as a valuable tool for preemptive policy actions, enabling timely interventions to counter
potential disruptions before they materialize. We plan to pursue some of these extensions in

our future work.
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Online Appendices

A. A Density-Based Spatial Clustering Algorithm

In this appendix, we provide the technical details of our density-based spatial clustering
algorithm, namely the iterative, multi-attribute, density-based spatial clustering of applica-
tions with noise (IMA-DBSCAN).! This algorithm is used to estimate port congestion for
major container ports worldwide.? In subsequent sections, we first delve into the methodol-
ogy underpinning our algorithm. We then present an illustrative case where we apply the
algorithm to the Port of Ningbo-Zhoushan in China, demonstrating its capability to identify

anchorage and berth areas of a port where other methods fall short.

A.1. Methodology

As depicted in Figure A.1, the proposed IMA-DBSCAN algorithm has several distinct fea-
tures. Foremost among these is its two-tiered, iterative structure. At the first level, we
extract the trajectory of each containership at every port in question from the AIS data. For
each ship, a traditional DBSCAN (Ester et al. 1996) is employed to filter out noise and cluster
all its mooring points. While this level can pinpoint mooring areas, it does not adequately
differentiate between anchorage and berth areas of a port. The second level addresses this
limitation. Here, a spatial-temporal-DBSCAN (ST-DBSCAN; see Birant and Kut (2007)) is
applied to the clustering. During this phase, we employ an iterative method to determine a
generalized and optimal parameter setting for the clustering algorithm. Another hallmark
of IMA-DBSCAN is its integration of multiple attributes at the second level. Beyond spa-
tial data (like coordinates), we also weave in non-spatial information (such as headings and
timestamps) to enhance clustering accuracy. In the sections that follow, we elaborate on the

specifics of each level of IMA-DBSCAN.

1. Most of the details provided in this appendix can also be found in the companion paper (Bai et al. 2023).

2. See https://www.worldshipping.org/top-50-ports (Accessed June 15, 2022) for the full list of ports.
The Port of Tokyo Ko, Japan, is not included as its observations are merged with those of the Port of
Keihin, Japan.


https://www.worldshipping.org/top-50-ports

A 4

[dentify AIS observations|
in a port

IMA-DBSCAN |

Remove noise & reduce

First level
the data frequency st feve

\
o .
A y lteration pmfessﬂ

ST-DBSCAN

1 S a stable resu
! obtained?

> Second level

Yes

+ Merge clusters

Get the range of berths
and anchorages based on
domain knowledge

____________________________________________________________________________________

Berths and anchorages End
database

Figure A.1: Methodology Framework of IMA-DBSCAN

A.1.1. The First Level — Data Pre-Processing

While AIS data provides detailed information on the positions of each ship, direct clustering
of these positions to determine the anchorage and berth areas of a port presents several
challenges. Firstly, even if we restrict the data to a specific port area within a certain
timeframe, the sheer volume of records means that inputting them directly into DBSCAN
would lead to extended processing times. Secondly, a high incidence of incorrect AIS signal
assignments could result in inaccurate clustering outcomes, such as identifying a cluster that
is not an actual berth or one that covers an unusually large geographical area. Thirdly, if
a ship stays in a port area for an extended period (e.g., for maintenance), the dense AIS
data could lead DBSCAN to mistakenly identify it as a cluster. Given these challenges, it
is essential to preprocess the AIS data before using it to pinpoint the anchorage and berth

areas of a port.

A-2



In the first level of IMA-DBSCAN, we begin by filtering the AIS data for each ship in the
port area, focusing on records indicating speeds of less than one knot. Such positions suggest
that a ship is either berthed, anchored, or in an unusual situation (e.g., under maintenance).
We then tally these positions; if their number falls outside an acceptable range (e.g., less
than 100 or more than 100,000), we deem the ship’s data abnormal and exclude it from
further analysis. Since a ship might dock at a port multiple times, we establish a period,
At (e.g., 12 hours), as the cut-off between two consecutive arrivals. If the gap between two
arrivals exceeds At, we treat them as separate port calls. To streamline the data while
maintaining consistency, we retain only the first data point for each hour. For every port
call of a ship, its positions are clustered using the traditional DBSCAN with parameters Eps
and MinPts. We choose an Eps value small enough to identify the ship’s mooring areas
and an appropriate MinPts value to ensure transient stops are classified as noise. At this
stage, the AIS data preprocessing is complete. The refined samples are then used to identify
the anchorage and berth areas of a port in the second level of IMA-DBSCAN. For reference,
the pseudo-code for the first level of IMA-DBSCAN is detailed in Algorithm 1.

A.1.2. The Second Level — Multiple Attributes and Iteration

Information on Headings. As highlighted in the main text, AIS data integrates both spatial

(i.e., geographical coordinates) and non-spatial (i.e., headings) information. In Figure 1
from the main text, we illustrate the positions of a ship in a port alongside their headings.
We observe that the headings of a ship at a berth are either aligned in the same direction
or are exact opposites. In contrast, headings in an anchorage area appear random, with
no discernible pattern. This observation aligns with real-world scenarios, where ships in
anchorage areas often struggle to maintain consistent headings over time due to significant
wind and wave variations.

Consequently, in the second level of IMA-DBSCAN, we leverage this heading information

to enhance estimation accuracy.® Specifically, IMA-DBSCAN incorporates three parameters,

3. Such non-spatial information is also useful when we distinguish between different berths (see Algorithm
2). In our initial experiment, the coordinates could only help us identify the approximate locations of
anchorage and berth areas of a port, not to mention the exact number of berths.
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as opposed to the traditional two in DBSCAN. These are Epsl, Eps2, and MinPts. Here,
Epsl denotes the maximum geographical coordinate (spatial) distance, Eps2 represents the
maximum non-spatial distance between two headings, and MinPts is the minimum number
of points within the distances defined by Epsl and Eps2. The geographical coordinate

(spatial) distance D is calculated using the Haversine formula:

D|(xy,z2), (yl,yQ)] =2- R -arcsin [\/sm2 (%) + cos 1 cos y; sin? (#)], (A1)

where the coordinates are measured in radians, and R = 6,371 is the mean radius of Earth
in kilometers. On the other hand, the non-spatial distance Ah is calculated as:

|h1 - h2|, if |h1 - th S 1800;
Ah(hy, hsy) = (A.2)

360° — |hy — hg|, otherwise.
With the two measures of distance defined above, the neighbors of a point are those with
geographical coordinate (spatial) distance less than Epsl and non-spatial distance less than

Eps2, and a core is defined as a point with more than or equivalent to MinPts neighbors.

The clusters in IMA-DBSCAN contain only these cores.

Iteration Process. As previously discussed, there are three parameters to set in IMA-

DBSCAN. Given that the geographical shapes of anchorage and berth areas vary signif-
icantly across ports, the values of these three parameters should ideally differ to achieve
optimal estimation results. Therefore, we propose an iterative method to determine these
parameter values. Specifically, while we fix Eps2 at 1°, our method allows the values of Epsl
and MinPts to vary between different ports. During the iteration process, we define four
intermediate variables: Dist, m, m’, and NumC'. Here, Dist represents the average distance
between a point in a cluster and the center of its respective cluster. m denotes the number of
points, while m’ represents the number of noisy points (initialized to zero). Lastly, NumC

indicates the number of clusters.* Using these intermediate variables, MinPts and Epsl

4. Since there are no clusters at initialization, we treat all points as if they were part of the same cluster.
Additionally, if all points are classified as noise, we set NumC = 1.
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are calculated as:
m—m'

Epsl = a - Dist, MinPts =3 - .
DS a - Dist, MinPts = (8 NamC

Regarding « and 3, even though there is no explicit constraint on their values, they should
fall within a reasonable range to ensure both the algorithm’s convergence and the validity of
the identification results. After evaluating the performance of IMA-DBSCAN under various
parameter settings, we find that an admissible range of (0.4 < o < 0.6, 0.06 < § < 0.1) is
appropriate. We also introduce an intermediate variable, Disty, which records the value of
Dist from the previous iteration and is initialized to zero.

Following this, we iteratively execute ST-DBSCAN. In each iteration, ST-DBSCAN op-
erates with Epsl and MinPts set to their current values, and Eps2 set to 1°. The outputs
classify each point either into a cluster or as noise. Based on these outputs, the values of the
intermediate variables, as well as those for Epsl and MinPts, are updated. These updated
values are then re-applied in ST-DBSCAN for the subsequent iteration. The entire process
concludes when the difference Dist — Disty is less than or equal to ADist (e.g., 100 m).
Consequently, each point is either assigned to a cluster or labeled as noise. We then interpret

the cluster areas as berths and the areas of noisy points as anchorages.

Information on Timestamp. After running ST-DBSCAN, we find that there exists a large

proportion of clusters that should be merged together as they essentially represent the same
berth in reality. To achieve a more accurate identification of berth areas, we merge certain
clusters by taking advantage of the time information (i.e., timestamps) in the AIS data (see
Figure A.2 for an illustration). More precisely, we first calculate the start and end times of
each port call in each cluster. Subsequently, since only one ship can dock at a berth for a
given moment, for each cluster under consideration, we find the cluster that is the closest
to it, and then check whether there is any overlap in the docking times. If there exists (at
least) one overlap, the two clusters are considered to represent two different berths. If there
is no overlap, the two clusters are merged together to represent one berth.

Furthermore, in order to differentiate between different anchorage areas, we perform
another DBSCAN on those points that are classified as noise. In the process, the two

parameters associated with the DBSCAN, i.e, Eps’ and MinPts’, are set according to our
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A Port Call in Cluster 2

Case 1 1 1 1 1 >
ax dy 2 do t

A Port Call in Cluster 1
A Port Call in Cluster 2

—
Case 2 1 1 1 1 >
ax a2 d, dy t
-

A Port Call in Cluster 1
Figure A.2: Merging Clusters

Notes. The figure illustrates two scenarios and discusses the criteria for merging clusters after executing
ST-DBSCAN on the second level. Here, a; and d; represent the arrival and departure times of a ship during
a port call assigned to cluster 1. Similarly, as and ds correspond to the times for a port call assigned to
cluster 2, which is geographically the closest to cluster 1. In the first scenario, there is no overlap in the
docking times, so clusters 1 and 2 are merged. In contrast, the second scenario shows an overlap in the
docking times. As a result, clusters 1 and 2 are kept distinct since two ships cannot occupy a single berth
simultaneously.

domain knowledge. Finally, we remove clusters with less than N port calls, with N set
according to our domain knowledge. For reference, the pseudo-codes for the second level of
IMA-DBSCAN can be found in Algorithms 2, 3, and 4.

Lastly, in the estimation of port congestion for the major container ports worldwide, the

parameter values set for IMA-DBSCAN are provided in Table A.1.

Table A.1: Parameter Values for IMA-DBSCAN

Parameter Value

At 12 hours
First Level Eps 50 m
MinPts 10
o' 0.5
6] 0.08
Second Level ADist 100 m
Eps’ 1,000 m
MinPts' 50
N 5
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Algorithm 1 Level 1 IMA-DBSCAN

Inputs:

A ={ayy,...,a,;}: the set of coordinates recorded in the AIS data for a ship !
1 = {s14,- -, Sns}: the set of speeds recorded in the AIS data for a ship [
Ty = {t1s,-..,tns}: the set of timestamps recorded in the AIS data for a ship {

Outputs:

[N N T e T o T o S S S o G S Gy S
B2 9 0 gl o

[NCR )
[SVI \V]

Dy ={dy,,...,dmn,}: the coordinates of the first observation for each hour in B,
H; ={h1y,..., hm,}: the headings of the first observation for each hour in B,

/* Data Pre-Processing */
By ={by,...bg,} < the set of coordinates in A; that indicate a speed less than 1 knot
/* Exception Identification */
if |B;| < 100 or |B;| > 100,000 then

‘ Remove the data and stop > The ship has an abnormal port call
else

‘ Continue

end if

/* DBSCAN Clustering */
X b17l

cfori+—2:kdo

if t;, —t;_1 < At then

‘ Append b;; to X

else
DBSCAN(X, Eps, MinPts)
X<+ 0
Append b;; to X

end if

: end for
: Remove the observations labeled as noise from B,
: Keep only the first observation for each hour in B; > Note that only m observations re-

main in By at this stage

: Dy ={dy,,...,dn,} < the coordinates of the first observation for each hour in B,
: Hy={hiy,..., hm,;} < the headings of the first observation for each hour in B,
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Algorithm 2 Level 2 IMA-DBSCAN

Inputs:

D = {D,...,Dr}: the set of coordinates for all ships after Level 1 IMA-DBSCAN
H = {H,,...,H.}: the set of headings for all ships after Level 1 IMA-DBSCAN
O={D,H} ={01,...,0pn}: the combined set of coordinates and headings

Outputs:

_ =
= O

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

Chertn: the set of clusters marked as berths
Canchorage: the set of clusters marked as anchorages

/* Parameter Initialization */
Dist < the average distance between a point in D and the center of the mass of D
m < |D|
Epsl < a - Dist
MinPts < (3 -m
/* Iteration Process */
Disty < 0
while Dist — Disty > ADist km do
ST — DBSCAN(O, Epsl, Eps2 = 1°, MinPts) > See function ST-DBSCAN
Disty < Dist
Dist + the average distance between a non-noisy point in D and the center of the
mass of its assigned cluster
m’ < |noisy points in O|
NumC' < |clusters in O|
Epsl < « - Dist
MinPts < - (m —m') /[NumC
end while
/* Merging Clusters */
Use the center of the mass of each cluster to calculate the distance in between

for all clusters ¢ in O do
¢ « the nearest cluster less than 500 m away from ¢
if the docking times of ¢ and ¢ do not overlap then
‘ Replace the cluster label of ¢ with that of ¢
end if
end for
/* Berth and Anchorage Detection */
Cherth, < clusters in O
Coanchorage < DBSCAN (Noisy points in O, Eps’, MinPts’)
/* Exception Removal */
for all clusters ¢ in Cher, and Copehorage do
NumP <« the number of port calls in cluster ¢
if NumP < N then
‘ Remove ¢
end if
end for
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Algorithm 3 ST-DBSCAN

Inputs:

O = {o01,...,0p}: the combined set of coordinates and headings

Epsl: maximum geographical coordinate (spatial) distance

Eps2: maximum non-spatial distance

MinPts: minimum number of points within the distance of Epsl and Eps2
Outputs:

C ={ci,...,cu}: the set of clusters in O

1: /* The codes are adapted from those in Birant and Kut (2007). */
2: function ST — DBSCAN (D, Epsl, Eps2, MinPts)

3: Cluster Label = 0

4: fori+1:mdo

5: if o; is not in a cluster then

6: Y < RetrieveNeighbors(o;, Epsl, Eps2) > See function Retrieve Neighbors
7 if |Y| < MinPts then

8: ‘ Mark o; as noise

9: else > Construct a new cluster
10: Cluster Label < Cluster Label + 1

11: for j < 1:]Y| do

12: ‘ Mark all objects in Y with current Cluster Label

13: end for

14: Push(all objects in Y)

15: while not IsEmpty() do

16: CurrentObj = Pop()

17: Z <+ RetrieveNeighbors(CurrentObj, Epsl, Eps2)

18: if |Z| > MinPts then

19: for all objects o0 in Z do

20: if o0 is not marked as noise or it is not in a cluster then

21: Mark o with current Cluster Label

22: Push(o)

23: end if

24: end for

25: end if

26: end while

27: end if

28: end if

29: end for
30: C ={ci,...,cu} < the set of clusters in O

31: end function
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Algorithm 4 RetrieveNeighbors

Inputs:

o: an observation in O

Epsl: maximum geographical coordinate (spatial) distance

Eps2: maximum non-spatial distance
Outputs:

Netghbors: the set of neighbors for o

1: function RetrieveNeighbors(o, Epsl, Eps2)
2: Neighbors <+ ()
3 for all observations o' in O do
4: Distl « D(o0,0) > See Equation (A.1)
5: Dist2 < Ah(o,0) > See Equation (A.2)
6 if Distl < Epsl and Dist2 < Eps2 then

7 ‘ Append o' to Neighbors

8 end if

9: end for
10: return Neighbors
11: end function

A.2. Illustrative Case: Port of Ningbo-Zhoushan, China

To demonstrate the capability of IMA-DBSCAN in accurately identifying anchorage and
berth areas of a port, which other methods might fail to achieve, we apply the algorithm to
the Port of Ningbo-Zhoushan in China. We choose this specific example primarily due to its
intricate port layout. Figure A.3a showcases the first 50,000 AIS observations from January
2020 within the Port of Ningbo-Zhoushan.” The observations are represented by blue dots
on the map, with each dot indicating the position of a low-speed containership. Before
applying IMA-DBSCAN to the AIS data, we mark the approximate locations of anchorages
and berths using both satellite images and nautical charts as benchmarks. The red boxes
indicate the anchorage areas, while the yellow rectangles denote the berth locations.

Figure A.3b presents the clustering results of IMA-DBSCAN for the Port of Ningbo-

Zhoushan, mirroring the map in Figure A.3a for a direct comparison between our algorithm’s

5. This example focuses on a one-month snapshot. It is reasonable to assume that the identification
results would be indicative of anchorage and berth areas in subsequent months, given that we do not expect
significant short-term changes in the port areas. In real-world applications of IMA-DBSCAN, periodic
identification can be conducted to monitor potential changes in port anchorages and berths.
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outcomes and the actual observations. The clusters in Figure A.3b (colored in red, yellow,
blue, purple, cyan, and orange) correspond closely with the anchorage areas in Figure A.3a
(represented by red polygons).® Additionally, in Figure A.3e, we spotlight the locations
of four terminals within Ningbo-Zhoushan: Beilun, Daxie, Pukou, and Yuandong. Using
satellite maps as a reference, we confirm the accuracy of these identifications; each berth in
the terminals is pinpointed precisely, and the delineated areas align closely with reality.”

To assess the performance of IMA-DBSCAN, we contrast it with the outcomes from ST-
DBSCAN.® Given that ST-DBSCAN is capable of processing spatial-temporal databases and
is recognized as one of the most prominent spatial clustering algorithms in the literature, this
comparison is relevant. Figure A.3c illustrates the results derived from ST-DBSCAN, un-
derscoring its lesser precision in comparison to IMA-DBSCAN. Notably, while ST-DBSCAN
can generally detect points within the anchorages (highlighted in blue in A.3c), it mistakenly
identifies several high-density regions as berths, even though they are not genuine berths. For
example, within the blue rectangle in Figure A.3f, points that ought to be categorized as noise
are marked as berths, given that ships stayed in these locations for extended periods (poten-
tially for maintenance tasks). Additionally, in the black rectangle, ST-DBSCAN mislabels
several points as berths when they should be designated as mooring areas. Consequently,
while employing ST-DBSCAN on the sample data offers insights into the arrangement of
anchorages, it does not succeed in precisely pinpointing berth locations.

Furthermore, in Figure A .4, we present the detailed results of berth identification for each
of the four terminals, i.e., Beilun, Daxie, Pukou, and Yuandong, within the Port of Ningbo-
Zhoushan. The outcomes from ST-DBSCAN are ambiguous and feature overlapping sections
(proximate in position but with significant differences in heading). Although the general
range of these terminals can be discerned, individual berths are scarcely distinguishable.
In contrast, our IMA-DBSCAN method can produce clusters that align precisely with each
berth within a terminal. Admittedly, increasing the MinPts or reducing the Epsl value

could enhance the ST-DBSCAN results. However, this would require constant parameter

6. For clarity, we also display the convex hulls formed by these clusters in Figure A.3d.

7. Moreover, some of the blue dots in Figure A.3a do not correspond to any anchorage or berth in Figure
A.3Db, indicating that ships anchored in these areas for only a short duration.

8. For this comparison, the input parameters of ST-DBSCAN are set to Epsl = 2500m, Eps2 = 1°, and
MinPts = 100, as recommended by Ester et al. (1996).
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adjustments, which is challenging to execute consistently for each port. Our IMA-DBSCAN

algorithm, conversely, operates iteratively to automatically determine a set of parameters

that can accurately identify both berths and anchorages.

(a) Sample AIS Data (b) Result of IMA-DBSCAN (c) Result of ST-DBSCAN

Dais i

O =
L |Daxie]

Zhoushan

‘‘‘‘‘‘‘

% _- W

(d) Anchorages (IMA-DBSCAN) (e) Berths (IMA-DBSCAN) (f) Berths (ST-DBSCAN)

Figure A.3: Identification of Anchorage and Berth Areas in the Port of Ningbo-Zhoushan

Notes. In Figure (a), the sample data comprises the first 50,000 AIS observations taken in January 2020
within the Port of Ningbo-Zhoushan. These observations are represented by blue dots on the map, corre-
sponding to coordinates ranging from 121.60°E to 123.00°E and from 29.50°N to 30.35°N. As a benchmark,
using satellite maps and nautical charts, we identify the approximate areas of the anchorages with red poly-
gons and the approximate locations of the berths with yellow rectangles. We apply two clustering algorithms,
IMA-DBSCAN and ST-DBSCAN, to the sample data. The resulting clusters are depicted in Figures (b)
and (c) respectively. Notably, blue dots in Figure (b) represent the identified anchorage areas, while those
in Figure (c) represent noise, which outlines the general layout of anchorage areas but does not distinctly
identify each one. In Figure (d), the anchorages from Figure (b) are shown separately in red. In Figure (e),
the berths from Figure (b) are displayed separately in yellow. The four terminals are identified as Pukou,
Daxie, Beilun, and Yuandong. Lastly, in Figure (f), the yellow areas depict the approximate positions of the
berths as identified by ST-DBSCAN. The blue and black rectangles indicate misidentifications of noise as
berths and confusion between anchorages and berths, respectively.
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(a) Terminal Beilun (b) Terminal Daxie (c) Terminal Pukou (d) Terminal Yuandong

Figure A.4: Detailed Results of Berth Identification: IMA-DBSCAN (Top Row) vs. ST-DBSCAN (Bottom Row)

Notes. The figure displays the detailed results of berth identification for each of the four terminals: Beilun, Daxie, Pukou, and Yuandong, within the
Port of Ningbo-Zhoushan. The berths identified by IMA-DBSCAN are presented in yellow on the top row, while those pinpointed by ST-DBSCAN
are depicted in brown on the bottom row.



B. Discussion on the Shortcomings of Existing Indices
of Supply Chain Disruptions

In this appendix, we elaborate on the shortcomings of using the shipping cost, the sub-
components of the manufacturing PMI, and other indices of supply chain disruptions in the
causality assessment.

Since our goal is to identify a supply chain disruption shock, the variables to include
in the SVARs should in principle reflect how well the global supply chain is functioning.
Shipping cost is a natural candidate, as supply chain issues could arise internationally due to
a shortage of containers and port congestion (Klachkin 2021; Benigno et al. 2022). However,
it should be noted that dynamics in the transportation sector are subject to both supply- and
demand-side factors. An increase in the demand for tradable goods would fuel the derived
demand for international shipping services, leading to a tighter transportation market and
a higher shipping cost.

Another choice is the sub-components of the manufacturing PMI, such as “delivery
times”, which are used in Kamali and Wang (2021) and Benigno et al. (2022) to capture the
extent of supply chain delays and hence act as a barometer of the effectiveness of the global
supply chain.” Yet, since the PMI is computed based on responses to survey questions, it is
inevitably subject to large, persistent, and time-varying measurement errors. Moreover, the
PMI does not differentiate whether an increase in delivery times is caused by a disruption
to the supply chain or the actual production itself.

In addition to the shipping cost and PMI sub-components, the Kiel trade indicator
(Stamer 2021), which uses the same AIS data as ours, provides another angle to assess
the widespread strain on the global supply chain; not only does it estimate imports and ex-
ports, but it also tracks containership traffic at major ports as well as freight on stationary
ships. However, it has several drawbacks. First, the calculation of twenty-foot equivalent

units (TEU) is problematic because the draught of a containership is not indicative of its

9. For instance, THS Markit (Williamson 2021) calculates the suppliers’ delivery times using responses to
its PMI business surveys. Specifically, participating purchasing managers are asked if it takes their suppliers
more or less time to provide inputs to their factories on average. The percentages of companies reporting an
improvement, deterioration, or no change in delivery times are then weighted to derive the index.
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loading status since loading and unloading operations could occur simultaneously. Second,
variations in imports and exports are also subject to demand-side factors, leading to endo-
geneity issues. Third, the calculation of cargo capacity tied up at ports does not differentiate
mooring positions of containerships (berth vs. anchorage), which, as argued in Talley and
Ng (2016), could result in an overestimation of port congestion.

Other indices of supply chain disruptions employ either more advanced techniques (e.g.,
machine learning) or more granular data (e.g., import transactions). Burriel et al. (2023)
develop a text-based index of supply disruptions, in which they apply the methodology by
Baker, Bloom, and Davis (2016) using newspaper data. While such an index overcomes the
endogeneity issue by selecting only supply-side events, it is not immune to measurement
errors that naturally arise from word definitions; for instance, a disruption to “supply” is
not the same as one to the “supply chain”, as the former may stem from a shortage in labor
supply. Another example is Smirnyagin and Tsyvinski (2022), who use the S&P Global
Panjiva dataset, a comprehensive source of U.S. seaborne import records, to derive the
U.S. supply disruptions index (SDI). They identify supply chain disruptions by monitoring
regular and active consignee-shipper relationships over quarterly periods; a disruption occurs
when a consistently active relationship goes inactive for a quarter and then resumes. While
this identification isolates disruptions in the context of established trading relationships,
potential endogeneity issues could still arise if, for instance, a consignee temporarily halts
orders due to decreased demand, not because of a disruption in the supply chain. It might be
challenging to disentangle these situations solely based on the activity status of consignee-
shipper relationships. Moreover, while the SDI offers valuable insights into U.S. imports and
is adept at delivering asset pricing predictions, the ACR, being a global index, aligns more
closely with our specific goal of identifying global supply chain disruptions.

Figure B.1 plots the SDI alongside the ACR and GSCPI series. It is observed that the
SDI and GSCPI align well and broadly capture the same patterns: fluctuations around the
sample median before 2020, a massive but short-lived spike in 2020, and finally, a prolonged
yet muted increase in 2021-2022. Figures B.2, B.3, and B.4 plot the estimation results with
the SDI included in the SVAR as a measure of supply chain disruptions. Similar to those
obtained using the GSCPI, the response of the GDP deflator to a supply chain shock is
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around zero and statistically insignificant, and only a minimal fraction of the unexpected
fluctuations in the GDP deflator is explained by supply chain disturbances. In terms of the
historical decomposition of U.S. inflation, the SDI attributes the initial fall in inflation at
the onset of the pandemic to both the collapse in demand and disruptions to the supply
chain, and it attributes the subsequent rise in inflation from April 2020 to a combination of
demand and supply shocks.

2 : : : : : 5
——ACR (LHS)
- - GSCPI (RHS)
----SDI (RHS)

24+
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S.D. from Mean
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14 ! ! ! ! ! 92
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Figure B.1: Comparison Between the ACR, GSCPI, and SDI

Notes. The figure plots the ACR against the GSCPI (black dashed line) and SDI (blue dashed-dotted line)
during the sample period from January 2017 to July 2022. The ACR is computed using the AIS data of
containerships and the IMA-DBSCAN algorithm developed in Appendix A. The GSCPI is retrieved from the
New York Fed’s website (Source: https://www.newyorkfed.org/research/policy /gscpi#/overview (Accessed
August 10, 2022)), while the SDI is retrieved from the author’s website (Source: https://www.disruptions.
supply (Accessed July 31, 2023)). The ACR is measured as a percentage, while the GSCPI and SDI are
measured in standard deviations from the mean. All the series are seasonally adjusted.
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Figure B.2: IRFs to an Adverse Shock to Supply Chain: The SDI and Restrictions 1, 2,
and 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the SDI
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded

bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.
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Figure B.3: FEVD from the SVAR: The SDI and Restrictions 1, 2, and 3

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using the SDI index and Restrictions 1, 2, and 3, and based on 100,000 independent draws.
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Figure B.4: HD of U.S. Inflation: The SDI and Restrictions 1, 2, and 3

Notes. The solid line represents the standardized quarterly inflation rate in the U.S., i.e., quarter-on-quarter
growth of the GDP deflator. The shaded bar represents the standardized cumulative historical contribution
of each of the three structural shocks identified using the SDI index and Restrictions 1, 2, and 3 to U.S.
inflation. The estimation results are obtained with each variable measured in percent change from the
previous period, and are calculated based on 100,000 independent draws.
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C. Discussion on the Assumptions in the Model

In this appendix, we discuss two critical assumptions in the model: matching frictions on
the international product market and endogenous separation of exporter-importer matches
on transportation cost. First, to represent the matching frictions in a tractable manner,
we assume that the number of trades between exporters and importers are governed by a
matching function. Second, to succinctly capture the decision-making process between an
exporter and an importer when their trade is subject to a transportation cost, we assume
that upon meeting, both parties choose to endogenously separate from each other once the
idiosyncratic transportation cost to pay lies above a reservation threshold. We discuss each

of these two assumptions in turn.

The matching function. There is ample literature that studies the origins of matching fric-

tions on the international product market, including but not limited to locating and building
connections with overseas buyers (Benguria 2021; Krolikowski and McCallum 2021; Lenoir,
Martin, and Mejean 2022), costly information acquisition about market conditions elsewhere
(Allen 2014; Chaney 2014), and informal trade barriers such as common language (Melitz and
Toubal 2014) and geography (Eaton and Kortum 2002). Different as these theories/evidence
might be, they all show that there exist prevalent trade barriers between exporting and im-
porting firms, implying that not all the unmatched exporters engage in trade, while not all
the sourcing visits by importers are successful. Following in this vein, we assume a constant-
returns-to-scale matching function that summarizes how unmatched exporters and visits of
importers are transformed into trades through the matching process. As such, we abstract
away from modeling the complex matching process while still preserving its main implica-
tion: the unmatched exporters only engage in trade with probability f(0)G(7) < 1 and the

visits of importers to exporters are only successful with probability ¢(0)G(7) < 1.

Endogenous separation on transportation cost. Much in the same way the separation margin

on the labor market could be modeled endogenously when workers face productivity shocks
to their employment matches and bad draws possibly lead to separations (Bils, Chang, and

Kim 2011; Menzio and Shi 2011; Fujita and Ramey 2012), the separation margin on the inter-
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national product market could be modeled endogenously when exporters face idiosyncratic
transportation costs to their trading relationships with importers and bad draws possibly
lead to terminations of such relationships. Such a modeling assumption is reasonable only if
we find convincing evidence that (1) transportation cost is taken into account when trading
partners decide on a potential trade, and (2) there exists a threshold of transportation cost
above which trading partners choose to sever their relationship.

The prediction that transportation cost affects the possibility of a trade has been exam-
ined empirically in the international trade literature. To name a few, evidence in Rodrigue
(2020) underlines that across all modes, raising transportation costs by 10% reduces trade
volumes by more than 20%. In the context of maritime transportation, Brancaccio, Kaloupt-
sidi, and Papageorgiou (2020) exploit changes in tariffs across the trade network to estimate
the elasticity of world trade value with respect to shipping costs. They estimate that a 1%
change in shipping costs leads to approximately a 1% change in world trade value. Similarly,
Wong (2022) estimates the containerized trade elasticity with respect to freight rates using
the round-trip effect as an instrument (in particular, for route i, j, the author uses a Bartik-
style instrument to proxy for the predicted trade value on route j, 7). The author reports that
a 1% increase in per unit container freight rates decreases containerized trade value by 2.8%
when dyad-by-product controls are included in the regression. Together, these elasticities
emphasize that transportation costs are indeed taken into account when trading partners
choose to form a relationship, and that a rise in transportation cost deters international
trade substantially.

Both theory and casual observation also suggest the presence of a reservation trans-
portation cost, which trading partners often consider when assessing the profitability of a
potential trade on the international product market. Notably, to reconcile the empirical ev-
idence that export and import intensities vary across plants, Kasahara and Lapham (2013)
extend the model in Melitz (2003) by allowing for heterogeneity in transportation costs. In-
corporating heterogeneous transportation costs provides a plausible self-selection mechanism
regarding trade decisions, as plants with low transportation costs self-select into exporting

and importing. As such, there must exist a threshold value of transportation cost below
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which plants choose to engage in trade.!® Casual observations are also consistent with this
theoretical prediction. For instance, according to the Global Transport Costs Dataset for
International Trade (UNCTAD 2021), the cost of transporting medical care commodities by
sea from China to the U.S. normally accounts for 5% of their Free On Board values. When
the transportation cost rises above 5%, exporters in China will reconsider whether it is still
profitable to export medical care commodities to the U.S. Hence, following the Covid-19
pandemic, as the transportation cost skyrocketed while the initial increase in the final price
of medical care commodities was not on par, trades collapsed as exporters in China exited
the market, leading to a great shortage of medical supplies in the U.S. Furthermore, it is
noted that the reservation transportation cost is largely fixed in the short run, given that
transportation technology and price outlook for shipping fuel are unlikely to vary in few
years’ time. As such, our modeling assumption regarding the flexible-price aggregate supply
is consistent with the reality.

Lastly, the modeling assumption that transportation cost follows a log-normal distribu-
tion is borrowed from Kasahara and Lapham (2013). We make this crude but convenient
assumption for two reasons. First, since transportation cost varies across countries, routes,
directions, and commodities in reality (Brown, Englert, and Hoffmann 2021), an assumption
that it is randomly distributed according to a distribution is more plausible than a fixed value
(for instance, the “iceberg” formulation of trade costs as in Samuelson (1954)). Second, using
a log-normally distributed transportation cost provides us with a purely exogenous measure
of transportation cost. With the scale parameter of the log-normal distribution of trans-
portation costs acting as the model counterpart to the ACR, our model mimics the positive

relationship between the ACR and shipping costs, as shown in Figure 5a in the main text.!!

10. A similar argument can be found in the discussion of transport infrastructure and its effects on firm’s
exporting decision. For instance, Naudé and Matthee (2011) argue that the availability of transport infras-
tructure will have a threshold effect — a certain minimum of transport infrastructure is required for a firm
to start exporting, but once the threshold is reached, improved infrastructure will not necessarily have a
large impact on the extent of an individual firm’s exports. Since the availability of transport infrastructure
(at least partially) determines the transportation cost, this argument is consistent with the presence of a
reservation transportation cost that firms take into account when making an exporting decision.

11. Alternatively, we could augment the current model with a full-fledged transportation sector in which the
interactions between exporters and shipowners determine the transportation cost. Such an endogenous set-
ting can be found in Brancaccio, Kalouptsidi, and Papageorgiou (2020) and Bai and Li (2022). Nonetheless,
we maintain the current setting for its tractability.
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D. Long Proofs

D.1. Proof of Proposition 1

We first derive Equation (14). Rewriting Equations (12) and (13) and applying the property
0 = f(0)/q(0), we obtain that:

1—
0(p,z) = —(p— 2+ BE.S(2)). (D.1)
np
Then we rewrite E./S(z'). Using the definition of S(z), we have:

S(z)=p—z+ (1—nf(0)BE,S(Z").

Subtracting Equation (12) from the above equation yields S(z) = zZ — z. Replacing S(2’) in
E. S(2") with z — 2/, we derive that:

Subsequently, replacing E.,S(z') in Equation (D.1) with foz G(2')dZ gives Equation (14).

The first property is obvious. Since # cannot be negative, for a given z, p is bounded on
[p™" 400), where p™" is such that it solves p™™" — z + (3 fog G(Z')dz' =0 for any z > 0. As
for the second and third properties, we derive that:

M(p,z) 1-n
op np

> 0.

Hence, the product market tightness 0(p, z) is strictly increasing and linear on [p™™, +00).
The fourth property is also obvious from the definition of Z**  as 6 cannot be negative.

In terms of the fifth and last properties, we derive that:

89<p72)_1_77 _
bt = =014 G() <0
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P0(p,z)  (L—-m)B 1  logZz—n
022 yp 20¢( o )

> 0,

where ¢(.) is the standard normal probability density function. Hence, the product market

tightness 6(p, z) is strictly decreasing and convex on (0, Z2%*].

D.2. Proof of Proposition 2

The first property is obvious. When p = p™™, §(p™™") = 0, f(8(p™")) = 0, and cf'e* (p™m) =
0. When p — 400, lim,, , o 0(p) = 400, lim,, | f(e(p)) — 1, and hence lim,_, | C£l6m<p) _
G(7)l. In terms of the second and third properties, we derive that:
del'e® (p) 1-q (1 — G(T))q<9)1+§G(T)l -
o (1= G+ FO)G)
' (p) 1 —7\2
= () (- e
(1= G(r) + [O)G))O (1 +E(1+65) € +2G(7)g(0)*1+9 0
(1-G() + fOGD)’

Hence, the flexible-price aggregate supply c¢/'*® is strictly increasing and concave on [p™", +00).

D.3. Proof of Proposition 4

Since we look for a flexible-price equilibrium with positive consumption, we restrict our search
of price p within the range [p™", +00). The equilibrium condition (21) can be re-written as:

f(0(p))p _ X
1—=G(r)+ f(0(p)G(r) 1+xG(T)

(D.2)

For any 7 > 0, the right hand side is a constant that is strictly positive. For the left hand
side, when p = p™™, 0(p™™) = 0, and f(A(p™™)) = 0, it has a limit of zero; when p — 400,
lim, 4o 0(p) = 400, and lim,  f(f(p)) = 1, it has a limit of positive infinity. For
p € [p™", +00), the derivative of the left hand side with respect to p is given by:

d f(0(p)p } _ (1=G(7)5a0)p+ [(6) (1 = G(r) + f(0)G(7))

ol G(r) + F(6()G() (1-G(r) + f(6)G(7)” -
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Therefore, the left hand side is strictly increasing from zero to positive infinity on [p™", +00).

As such, there is a unique p € [p™", +00) that solves Equation (D.2).

D.4. Proof of Proposition 5

We first consider an adverse shock to aggregate demand. No matter whether the negative
aggregate demand shock is represented by a decrease in money supply p or in the taste for
consumption of goods Y, the right hand side of Equation (D.2) will decrease. To balance
both sides of Equation (D.2), price p will decrease, since the derivative of the left hand
side with respect to p is positive (see the proof for Proposition 4). As p decreases, by the
second property in Proposition 1 and the second property in Proposition 2, product market
tightness 6 and consumption (or equivalently, output) ¢ will decrease. Since both p and 6
decrease, according to Equation (10), import price r will decline as well. For the matching
cost, G(7)l— ¢, and spare capacity (or equivalently, unemployment), [ —¢, since they both are
strictly decreasing in ¢, they will increase following an adverse shock to aggregate demand.
Next, we consider an adverse shock to labor supply (or equivalently, productive capacity),
which is parameterized by a decrease in [. On impact, the right hand side of Equation (D.2)
increases. Similar to the above reasoning, price p will increase. As p increases, by the
second property in Proposition 1 and Proposition 3, product market tightness 6 will increase
while consumption (or equivalently, output) ¢ will fall. Again, since both p and 6 increase,
according to Equation (10), import price r will rise. As for the matching cost and spare
capacity (or equivalently, unemployment), they can be alternatively expressed as:
(1-G()(1 - f(0)
1 (1= f(0))G(r)
1—G(7)
1—G(r)+ f(O)G(T)

respectively. With 6 increasing and [ decreasing following an adverse production shock, it is

G(T)l,

matching cost =

spare capacity =

easy to verify that both the matching cost and spare capacity will decrease.
Lastly, we consider an adverse shock to supply chain, which is represented by an increase
in 7, i.e., the scale parameter of the log-normal distribution of transportation costs G(.). We

first look at the effect on price. Using the re-arranged equilibrium condition (D.2), we define

A-24



a function T : [p™" 4+00) x R — R:

X f@®)p
T = eemi ~ 1-a0) + 060
X {1+ 5 —r+8fy® logi 7)CZZ)}{}%p

PRl e (1 [ 7 BT 0] e
where ®(.) is the standard normal cumulative density function. Assuming the existence of
a tuple (po,70) € [p™", +00) x R such that T(po, ) = 0 and IT(p,7)/0plp=po.y=y # 0, by
the Implicit Function Theorem, there is a neighborhood of (pg, 7o) such that whenever = is
sufficiently close to 7y, there is a unique p so that T(p,v) = 0. This assignment makes p a
continuous function of 4. Applying implicit differentiation to T(p,~) around (pg, 7o) yields:

dp(y)  O0T(p,v)/0v

dy — OT(p,v)/0p

In terms of 0T (p,~)/07, we derive that:

OT(p,y) _ x ppo(r) (1= GEO)ERE[T 59(=)d]a(0)p
Oy 1+xLG(r)? (1-G(r) + F(O)G(T))*
(L= O 0ot

where ¢g(7) = ¢[(logT — ) /0], g(z') = ¢[(logz’ — 7)/o], while ¢(.) is the standard normal
probability density function. In terms of 0T (p,~)/0p, it can be written as:

OM(py) _ (L=G(m)Ta0) p + F(0)(1 - G(7) + f()G(7)) 0

op (1-G(r)+ F(O)G(T)?

By combining 0T (p,~y)/0v with T (p,~)/0p and collecting terms, we have:

d]zz—g) =[(1 = G = a0) " p+ S(O) (1= G + FO)G(7)]

A (- G + FOGE) F6) o) =L

s (7) (D.3)
+ (1= 6 S [ e

+ (L= F0) 10 9(r)} > 0.

Hence, price p will increase on impact of an adverse shock to supply chain. In terms of
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consumption (or equivalently, output), it is written as:

€

_ X K
=1 +xp(v)’

where p is an implicit function of «v. Therefore, the derivative of ¢ with respect to  is:
T X4 a) g0+ 0)(1- 60) + FO)6)]
dry L4+xp np
1 1

A =GE+ FOCM) ) 9 G

+ (1 - G(T))(l;—:)ﬁ[ OT %g(z')dz'}q(é’)1Jr£

+ (1= 1(0) £6) Sg(r)} <0

Hence, consumption (or equivalently, output) ¢ will fall. Next, in terms of product market

tightness, it is given by:

00) =) =5 [ 0 EE T ax). (0.4

Accordingly, the derivative of 6 with respect to = is:

d9Cy) _1=mp _ - 1—n i+ —alr 1!
o o [(1-G(n) s (0) +21+f(9)(1 G(1) + f(0)G( ))1}
{1 -G(r) + f(9)G(T))f(9);9(T)GfT) +(1- f(9))f(9)p;9(7) (D.5)

1
- (1= G+ OGO [ o)1),
0
whose value depends on the values of 6 and p; as we will discuss later in Appendix D.5, this
dependence is crucial for the state-dependence result of a contractionary monetary policy
shock. Similarly, by substituting Equation (D.4) into Equation (10), the import price can
be expressed as:

r(v) =p(y) + (1 =n)B /0 ‘I’(w)d% +(1—=n)(z—7).

(o)
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Differentiating r(vy) with respect to v yields:

d;(;) ~[(1-G(n) 17]_/)77 (0)"4p + f(9)(1 - G+ FO)GE)]
(1= G() + F(OG(T) F(6)
+(1- DP| /Oé ng

+O—f@»ﬂ@pgﬁ)
—wl—Gv>+ﬂva»ﬂmu—nmL42§@mhqh

whose value is also dependent on the values of 6 and p. As for the matching cost, given that
it is measured by the difference between G(7)l and ¢, its derivative with respect to v can be

written as:

%[matching cost(+)] =[(1 - G(r)) 177_/)77 (0)+p + £(0)(1 — G(r) + F(O)G(r))]

(P 1= 60+ 5066 50290
(1= 6) S22 [ 2ot ate)

-+@—f@ﬂﬂ@%ﬂﬂ}

- (1= ) La(0) *p g

— JO)(1= G(7) + JOGM) 59()),

whose value is again dependent on the values of # and p. On the contrary, since the spare
capacity (or equivalently, unemployment) is measured by the difference between [ and ¢, its
derivative with respect to ~ is positive, i.e.,

4 [spare capacity(v)] =
dry

€

B 0= 6N ) + 101 - G + F0)6()])

(1= G + SO0 10 29(r)

+(1- G(T))%[/OT §g<z')dz']q(e)1+€
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D.5. Proof of Proposition 6

We start the proof by re-visiting the function T : [p™", +00) x R* x R — R:

X° K f(O)p
T ) = T G ~ 100 + 0G0
X ____b (4 [Sn(p— 7+ B f7 o(E2=0)d)] ¢} Fp

14 <I>(1°g+_“’)l 1— q;(logT )+ {1+ [ B(p—r+ B [T D P (los *’Y)dzl)}*f}*%q)(log;*’g?

g

where ®(.) is the standard normal cumulative density function. Subsequently, assuming
the existence of a tuple (pg, to, 7o) € [pP™", +00) x RT x R such that T(py, ito,70) = 0 and
IT(p, 14, 7) ) OP|p=po,pi=pioy=o 7 0, by the Implicit Function Theorem, there is a neighborhood
of (po, o, o) such that whenever (u, ) is sufficiently close to (uo,v), there is a unique p so
that T(p, u,v) = 0. This assignment makes p a continuous function of x4 and 7. Applying
implicit differentiation to T(p, u,~y) around (po, o, Y0) yields:

Op(p.7) _ 9T (p )/ Op
Op OT(p, p1,7)/Op

The numerator can be written as:

oT(p,py) _ x° 1
ou 1+ x<G(7)l

> 0,

whereas the denominator is given by:

AT (p, i, 7y) _ (1- G(T))%Q(H)HSP + f(0)(1 = G(1) + f(O)G(7))
ap (1-G(7) + f(O)G(r))’

By combining 0T (p, p,)/0p with 0T (p, p,7)/0p, we derive that:

< 0.

~—
N~—r
[

op(p,y) _ x° 1 (1-G(r) + fO)G(r
O L4 xG(r)l (1= G(r)) - ra(0)+ep + f(0) (1 — G(7) + F(O)G(7))

_ l[ (1-G(r)) " a(0)** . 1} o
pLfO)(1—G(r) + f(O)G(T) P '
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In terms of the partial derivative Oc(pu,y)/0p, using the expression of the aggregate demand

in Equation (20), we can derive that:

Oe(p7) X (1 - G(n) Fra(0)*
BN 1+ x (1 G@)%ﬁ(eH%+fW(1—G )+ f(0)G(7))

X FO)(1-G(1) )G(1))1-1

14 e [p—i— (1-G(r ) q(@) +€ } '

Hence, both dp(u,~y)/0p and dc(p,y)/Op depend on the fraction:

(1—G(r)) % a(0)"*
FO)(1=G(r)+ f(OG(T))

Next, we study the dependence of the fraction (D.6) on ~, as it directly determines the

(D.6)

signs of 0%p(u,~y)/Oudy and 0c(u,~)/Oudy. It is given by:

0 | (1-G(r))=ng(6)1¢ ]:f(ﬁ)(l—G<T)+f(9)G(T>) [Lg(r)=1g(0)+¢]
07 LF(0)(1 - G(r) + f()G(7)) [£0)(1— G(r) + F(O)G (1))’

£6)(1 = G(r) + F(OGD) [(1 - G(r >)1,7:89<“”<1+5>ef 1+ 667

[fO)(1-G(r G(1)]*

(1 G(r)) g (g) € [ 2 >q<e>1+f(1 <> FO)G(1))]
[/0)(1 - G(r) + F(O)G(r))]’

(1= G(r))=2q(0) <[ £(0) (2g(7) + ZL2q(6) 4G (7) — F(6)29(r))]

[£(0)(1 — G(r) + F(O)G(r))]’

and is proportional to:

9 [ (1-G() Loy |
g e s e <O 0

&—1
= JO)(1-Gr) + FOGE) (1 —G(ﬂ)%ﬂﬂ%ﬁeﬁ
- (1= Gr) P20 (1~ Gl) + F0)6()

— (1—=G(7)) f(6 )aeg‘;V)q(e)”fG(T),

where g(7) = ¢[(logT — 7v)/o| and ¢(.) is the standard normal probability density function.
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When the partial derivative of # with respect to v satisfies:

00(u,v) f(0)*39(7) _ o +95)§ (7)
dy (1= G()f(0)a0) G (1) (1-G(r))G(r)

it is easy to verify that:

> 0,

o1_(-Cm) g0
o7 LF0) (1= G + F0)G )

and the values of the cross derivatives can thus be determined:

o) _ { a9 | (1 - G(7)) % a(6) }_apw,m}
opdy OvLfO)(1 - G(r)+ F(O)G(7)) oy PP
] (1 - G(r) F71a(0)"™ S
FO(1=G(r)+ f(O)G(r))  p ’
Pe(p) _ {819(#,7) Y [ (1—G(r)) % a(0)" H (1-G(n) % () }_2}
Opdry oy (1 G(7) —|—f(9)G(T)) f(e)(l_G(T)+f<9)G(T))
,[p+f<6)(1— G(r) + /(6)G (T))} B
(1= G(7) S a(0)+ L+ x¢

where dp(u,v)/0vy > 0 according to Equation (D.3). With them, it is straightforward to

<0,

<0,

derive the rest of the cross derivatives: specifically, for the product market tightness,

06(p, ) _ 1 —n0p(p,) 0%(, ) _ 1—nd”p(p,v)

> 0, = > 0;
op np  Ou opdy np  Opdy

for the import price,

Or(p,y) _ 9p(p,) Pr(py) _ Pp(,y) o

— > 0, = > 0;
ol ol oo~y opudy
for the matching cost,
0 0? 0?

% [matchz'ng cost(u,’y)} =— C(a'LZ ) <0, O [matchz'ng cost(u,’y)} = —% > 0;
and lastly, for the spare capacity (or equivalently, unemployment),
0 . dc(p, 0 . e,y
o [spare capacity(u,y)] = —% <0 5.5 [spare capacity(u, )] = —% > 0.
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E. Fixed-Price Aggregate Supply

In contrast to the flexible-price aggregate supply as discussed in the main text, we consider
here the alternative pricing mechanism in which the price of goods is fixed while the reser-
vation transportation cost can vary. A careful exposition of such a fixed-price mechanism is
essential to understand how the matching frictions and endogenous separation mechanism
could affect aggregate supply differently. The fixed-price aggregate supply is defined below,

and its key analytical properties are summarized in Proposition 2.

Definition 2”. For an arbitrary price k € (0,+00), the fized-price aggregate supply ¢l is

the function of reservation transportation cost zZ defined by:

(14 [S2(k — 24 8 [7 G(z)d=)] "} EG(2)l

cf;”(é = — gy 1L ’ (El)
1-GE) + {1+ [T (k= 2+ 8 [y G(z)d2)] "} ¢G(2)
for all z € (0, 2™, where Z™** satisfies:
Kk — 2 4 ﬁ/ G(Z)dZ = 0. (E.2)
0

Proposition 2'. The fized-price aggregate supply c/® has the following properties:
1. limz o+ cf®(2) = 0;
2. cliz(zmae) = (; and
3. There exists at least one z* € (0, 2™%] such that dc!®(z)/dz|s—z = 0.

Proof. Tt is straightforward to prove the first property. When z — 07, lim; o+ 0(Z) =
(1= n)s/(np), limso+ f(0(2)) = {1+ [(1 = n)r/(np)]¢}/¢ > 0. At the same time, when
Z — 0%, lim;_,o+ G(2) = 0. Therefore, lim;_,o+ ¢/®(z) = 0. In terms of the second property,

it is obvious from the definition of z™**  together with that f(0) = 0. Regarding the last
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property, the derivative of ¢/* with respect to Z can be written as:

dcli®(z _
B (o) + 10)66)
1- 1
(1= GE)—L (= 1+ BG(2)0 F(0)EG(2) + 109N ],
. np s
Product Market Tightness Separation Margin
Channel < 0 Channel > 0

where G(z) = ®[(logz — 7v)/0], g(2) = ¢[(logz — v)/o], while ®(.) and ¢(.) are the stan-
dard normal cumulative density function and probability density function respectively. The
product market tightness channel is negative, because a higher reservation transportation
cost would reduce the total surplus to be shared between exporters and importers at the
margin, hence dampening the incentives for importers to visit exporters, leading to a slack
product market as well as a lower aggregate supply. The separation margin channel is posi-
tive, because a larger proportion of matches that would otherwise have been dismissed could
now continue, hence contributing to a higher aggregate supply. These two channels jointly
determine the fixed-price aggregate supply, and the extent to which one channel dominates
the other depends on both the parameter values and reservation transportation cost itself.

When z — 07, it can be shown that:

T L g [ 1 A

zZ—=07t Z np z—=0t 20
since the probability density function of a log-normal distribution is always positive. When
Z — Z™* it can be derived that:

fiz (> —
lim dcl™(z) 1 1

N _ _
pr— _ 1 max max .
zozmez  (Z 1— G(zman) gp ( + BG(Z™*))G(2") < 0

Consider an infinitesimal number ¢ > 0 such that dc/*(2)/dz|;—. and lim;_+ de/™®(2)/dz
have the same sign. By the Intermediate Value Theorem, since dc/(z)/dz is continuous on
e, 2m%], there must exist at least one z* € [e, 2™*] such that de/™(2)/dz|;—- = 0. Since

max

€, 2] is a sub-interval of (0, 2%*], the last property thus holds. [ |

To plot the fixed-price aggregate supply, we also need to pin down its curvature. Since

the value of the second derivative of ¢/® cannot be determined analytically, we resort to
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numerical methods for an approximation.'? Figure E.1 plots the fixed-price aggregate supply,
its theoretical upper bound if the matching frictions were absent, and the productive capacity.
As seen, the non-monotonic behavior of the fixed-price aggregate supply clearly illustrates
the two aforementioned, counteracting channels at play; specifically, when the reservation
transportation cost is relatively low, the separation margin channel dominates the product
market tightness channel, and vice versa. Therefore, there exists a level of reservation
transportation cost such that the aggregate supply is maximized. Such a behavior is similar
to the one considered in Michaillat and Saez (2015), where both the matching frictions on
the product market and matching cost per visit give rise to the non-standard behavior of
the aggregate supply curve.'®

In terms of the other variables of interest, as the reservation transportation cost increases,
the matching cost, i.e., G(Z)l—c, increases, the transportation cost, i.e., (1—G(Z2))l, decreases,

while the spare capacity (or equivalently, unemployment), i.e., [ — ¢, first decreases then

increases.

12. Nevertheless, the second derivative of ¢/ with respect to Z is given by:

QCf'ixg _
djizg() = (1-G(2) + [()G(2))" - (UW")Z;Ug(z)( — 1+ 28G(2) +2G(2) — 3G (2)?)q(0)*¢
0=l geyae) (- )2l Mpe S

oy (1= GE)GE) (- 1+ 8G(=) — 26 1+ (1 +6)

— —¢-1 logz — log z — 7)?
+177777(*1+5G(2))975—1(1+9*5) ; ;g(z)lf(o)z{%g(g)+MeXp[(g%z’y)]})
[
1

[Tpn( 148G (14078 G - (1- f(e))%g

zZo

(1;1077)[(1 — G(E))G(E)( -1+ BG(E))q(Q)H‘E n f(e)ig(,?)l]

1

' (2)]2(1 - G(2) + £(0)G(2)),

13. In contrast to our fixed-price aggregate supply curve which is plotted in the (¢, Z) plane, the aggregate
supply curve in Michaillat and Saez (2015) is plotted in the (¢, z) plane, where x refers to the product market
tightness. See Figure I of their paper for details.
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Figure E.1: Supply Side of the Economy When the Price of Goods Is Fixed

Notes. The figure plots the fixed-price aggregate supply c£ (%), its theoretical upper bound if the matching
frictions were absent G(z)[, and the productive capacity [ for certain values of reservation transportation cost
z. The gap between ¢f*®(2) and G(2)l represents the matching cost, the gap between G/(2)l and [ represents
the transportation cost (measured in units of goods), whereas the gap between c/?*(Z) and [ represents the
spare capacity of exporters, or equivalently, the unemployment. In the numerical approximation, parameter
values are n = 0.5,p = 0.5,k = 1.2, =099, = 2,0 = 1,7y =0, and o = 1. Z takes its values from 1,000
evenly spaced numbers over [0.1, 2] where 2% is solved numerically using its definition in (E.2).
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F. Robustness of SVAR Results

F.1. The Fitted ACR

In this appendix, we conduct a robustness check of our baseline results by using a fitted ACR
index in our estimation after regressing the port-specific ACR on the Oxford Stringency (OS)
index (Mathieu et al. 2020) and port fixed effects.'* Such a robustness check is intended
to resolve the potential endogeneity concern regarding the ACR index when there are non-
negligible changes in the container capacity between shipping routes that arise due to demand
shifters which ultimately contribute to port congestion.

The OS index is essentially an indicator of mobility curtailment policies. Specifically, the
authors of the OS index compile information on when and which measures governments take
to contain the spread of the Covid-19 virus. The particular index we use is a simple average
of nine individual component indicators, which measure the intensity of school closures,
workplace closures, cancellation of public events, restrictions on public gatherings, closures
of public transport, stay-at-home requirements, public information campaigns, restrictions
on internal movements, and international travel controls, respectively. Since the OS index is
dedicated to measuring the strictness of government policies, its variations are not subject
to any demand-side factor. More importantly, strict containment policies enacted by local
governments, as measured by a high value of the OS index, are expected to have contributed
significantly to the escalation of port congestion worldwide, hence serving as the main cause
of the global supply chain disruptions.!® As such, the OS index could be applied as an
instrument to the ACR index, and the resulting fitted ACR index could help us isolate the
causal effects of global supply chain disruptions.

In the actual implementation, we first calculate the monthly average OS index for the

country where each of the major container ports worldwide is located. In the process, we

14. We thank Kun Wang for suggesting this robustness check.

15. The pandemic-related containment measures have put enormous strain on the global supply chain,
disrupting the international shipping of tradable goods to the U.S. from around the world (Attinasi et
al. 2021; Grimes and Edgecliffe-Johnson 2021; Dempsey 2022). For instance, lock-downs introduced to
combat Covid-19 have limited the availability of workers to process cargo in ports as well as their work
arrangements, leading to a slow-down of container processing, an escalation of port congestion, and hence a
supply chain disruption cascading both upstream and downstream.
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truncate our sample at 2020M1 as the OS index is only available after then. Subsequently,
we regress the port-specific ACR on the corresponding OS index and port fixed effects, and
extract the fitted values, i.e., ACR. Lastly, we replace the ACR index with ACR in our
estimation. Once again, Restrictions 1, 2, and 3 are imposed on IRFs, and the estimation is
undertaken using the Bayesian approach as in Arias, Rubio-Ramirez, and Waggoner (2018),
Arias, Caldara, and Rubio-Ramirez (2019), and Arias et al. (2023). While all the other
specifications are kept the same as those in the baseline, due to the reduced sample length,
we include only one lag in the estimation and compute the IRFs and FEVD for only one
year after impact to reduce parameter uncertainty.

As shown in Figures F.1 to F.3, the IRFs to each structural shock are quantitatively
similar to those in Figures 9 to 11.
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Figure F.1: IRFs to an Adverse Shock to Aggregate Demand: ACR and Restrictions 1, 2,
and 3

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using ACR
and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded bands
represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based on
100,000 independent draws.
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Figure F.2: IRFs to an Adverse Shock to Labor Supply: ACR and Restrictions 1,2, and 3

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using A/CT{ and
Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded bands
represent the 68% and 90% equal-tailed point-wise posterior probability bands.

100,000 independent draws.
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Figure F.3: IRFs to an Adverse Shock to Supply Chain: ACR and Restrictions 1,2, and 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using A/C\R and
Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded bands
represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based on

100,000 independent draws.
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F.2. PCE Goods Price Index

In light of the fact that disruptions to the global supply chain predominantly impacted the
trade of goods over services, we check the robustness of our baseline results by replacing the
monthly U.S. series of the GDP deflator with the PCE goods price index in the SVAR model.
As shown in Figures F.4 to F.8, the estimation results are quantitatively similar to those
outlined in Section 4.1. Furthermore, it is noted in Figure F.6 that the stagflationary effects
of a supply chain disturbance are more pronounced than those in Figure 11, confirming that
the propagation of a supply chain shock is mostly through a severing of trading relationships
in goods.
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Figure F.4: IRFs to an Adverse Shock to Aggregate Demand: PCE Goods Price Index

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using an
SVAR specification with the PCE goods price index included. The solid line shows the point-wise posterior
medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability
bands. The figure is based on 100,000 independent draws.
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Figure F.5: IRFs to an Adverse Shock to Labor Supply: PCE Goods Price Index

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using an SVAR
specification with the PCE goods price index included. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.
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Figure F.6: IRFs to an Adverse Shock to Supply Chain: PCE Goods Price Index

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using an SVAR
specification with the PCE goods price index included. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.
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Figure F.7: FEVD from the SVAR: PCE Goods Price Index

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated

using an SVAR specification with the PCE goods price index included, and based on 100,000 independent
draws.
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Figure F.8: HD of U.S. Goods Inflation

Notes. The solid line represents the standardized quarterly goods inflation rate in the U.S., i.e., quarter-
on-quarter growth of the PCE goods price index. The shaded bar represents the standardized cumulative
historical contribution of each of the three structural shocks identified using an SVAR specification with
the PCE goods price index included to U.S. goods inflation. The estimation results are obtained with

each variable measured in percent change from the previous period, and are calculated based on 100,000
independent draws.
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F.3. Different Lag Structures and Longer Restrictions

In Figures F.9 to F.14, we show that our baseline results are robust to considering different
lag structures, i.e., one or three lags. We do not consider four lags or beyond due to parameter
uncertainty resulting from our limited sample length. We also extend the horizons at which
we impose the sign restrictions —i.e., from £ =1 to £k = 1,2 — to put more disciplines on the

behaviors of the IRFs. As shown in Figures F.15 to F.17, our baseline results still hold.
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Figure F.9: IRFs to an Adverse Shock to Aggregate Demand: L =1

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using an
SVAR specification as in Equation (24) with one lag, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.10: IRFs to an Adverse Shock to Labor Supply: L =1

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using an SVAR
specification as in Equation (24) with one lag, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise

posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.11: IRFs to an Adverse Shock to Supply Chain: L =1

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using an SVAR
specification as in Equation (24) with one lag, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.12: IRFs to an Adverse Shock to Aggregate Demand

:L=3

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using an
SVAR specification as in Equation (24) with three lags, as well as Restrictions 1, 2, and 3. The solid line
shows the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-

wise posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.13: IRFs to an Adverse Shock to Labor Supply: L =3

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using an SVAR

specification as in Equation (24) with three lags, as well as Restrictions 1, 2, and 3.

The solid line shows

the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise

posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.14: IRFs to an Adverse Shock to Supply Chain: L =3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using an SVAR
specification as in Equation (24) with three lags, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.15: IRFs to an Adverse Shock to Aggregate Demand: k£ = 1,2

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using a set
of restrictions that are the same as Restrictions 1, 2, and 3, except that the sign restrictions on IRFs are
imposed for longer horizons, i.e., k = 1 to kK = 1,2. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.
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Figure F.16: IRFs to an Adverse Shock to Labor Supply: £ = 1,2

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using a set of
restrictions that are the same as Restrictions 1, 2, and 3, except that the sign restrictions on IRFs are
imposed for longer horizons, i.e., k = 1 to kK = 1,2. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.
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Figure F.17: IRFs to an Adverse Shock to Supply Chain: £ = 1,2

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using a set of
restrictions that are the same as Restrictions 1, 2, and 3, except that the sign restrictions on IRFs are
imposed for longer horizons, i.e., k = 1 to kK = 1,2. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The

figure is based on 100,000 independent draws.
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F.4. Prior Robustness

Figures F.18, F.19, and F.20 show that the main conclusions from our baseline SVAR anal-
ysis are robust to using the prior robust approach for the SVARs proposed by Giacomini
and Kitagawa (2021). Such an approach removes the need to specify the prior for the struc-
tural parameter given the reduced-form parameter, which is the component of the prior
that is responsible for the asymptotic disagreement between Bayesian and frequentist infer-
ence. This is mainly achieved by constructing a class of priors that shares a single prior
for the reduced-form parameter but allows for arbitrary conditional priors for the structural
parameters given the reduced-form parameter.

In practice, we apply their Algorithm 1 to numerically approximate the set of posterior
means and the associated robust credible regions for the IRFs of the selected endogenous
variables to each structural shock. We make two modifications in the implementation of
Algorithm 1. First, in Step 2 of Algorithm 1, to draw the orthonormal )’s subject to
Restrictions 1, 2, and 3, we apply the ) R decomposition method as in Arias, Rubio-Ramirez,
and Waggoner (2018) instead of the original linear projection approach. These two ways of
drawing () are comparable in terms of both the resulting distribution of () and computational
cost. Second, we replace Step 3 of Algorithm 1 with Step 3’ of Algorithm 2 to approximate
the lower and upper bounds of the prior robust posterior means, as well as those associated
with the robust credible regions.

In Figures F.18, F.19, and F.20, the solid line shows the point-wise posterior medians,
and the shaded area represents the 68% equal-tailed point-wise posterior probability bands.
Their underlying data are from our baseline estimation outlined in Section 4.1. Alongside
the posterior medians and probability bands, we plot the set of prior robust posterior means
using dotted curves, and the corresponding 68% robust credible regions using dashed-dotted
curves. Their underlying data are based on 1,000 independent draws of the reduced-form

parameters and 100,000 orthogonal matrices draws for each reduced-form parameter.
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Figure F.18: IRFs to an Adverse Shock to Aggregate Demand Using the Prior Robust
Approach in Giacomini and Kitagawa (2021)

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are estimated using the
prior robust approach for the SVARs proposed by Giacomini and Kitagawa (2021). The solid line shows
the point-wise posterior medians, and the shaded area represents the 68% equal-tailed point-wise posterior
probability bands, which are based on the data from our baseline estimation outlined in Section 4.1. The
dotted curves illustrate the set of prior robust posterior means, and the dashed-dotted curves depict the
68% robust credible regions. These curves are obtained from 1,000 independent draws of the reduced-form
parameters and 100,000 orthogonal matrix draws for each reduced-form parameter.
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Figure F.19: IRFs to an Adverse Shock to Labor Supply Using the Prior Robust Approach
in Giacomini and Kitagawa (2021)

Notes. The IRFs to a one standard deviation adverse shock to labor supply are estimated using the prior
robust approach for the SVARs proposed by Giacomini and Kitagawa (2021). The solid line shows the point-
wise posterior medians, and the shaded area represents the 68% equal-tailed point-wise posterior probability
bands, which are based on the data from our baseline estimation outlined in Section 4.1. The dotted curves
illustrate the set of prior robust posterior means, and the dashed-dotted curves depict the 68% robust
credible regions. These curves are obtained from 1,000 independent draws of the reduced-form parameters
and 100,000 orthogonal matrix draws for each reduced-form parameter.
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Figure F.20: IRFs to an Adverse Shock to Supply Chain Using the Prior Robust Approach
in Giacomini and Kitagawa (2021)

Notes. The IRFs to a one standard deviation adverse shock to supply chain are estimated using the prior
robust approach for the SVARs proposed by Giacomini and Kitagawa (2021). The solid line shows the point-
wise posterior medians, and the shaded area represents the 68% equal-tailed point-wise posterior probability
bands, which are based on the data from our baseline estimation outlined in Section 4.1. The dotted curves
illustrate the set of prior robust posterior means, and the dashed-dotted curves depict the 68% robust
credible regions. These curves are obtained from 1,000 independent draws of the reduced-form parameters
and 100,000 orthogonal matrix draws for each reduced-form parameter.
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F.5. No Zero Restrictions When Estimating with the GSCPI

As argued in the introduction and Section 4.2, the GSCPI index is not a pure supply chain
disruption measure, as not only could the movements in its underlying data be driven by the
demand-side factors (e.g., a high demand for tradable goods translates to a high shipping
price), but also there is no differentiation between the supply-side factors (e.g., a rise in
“delivery times” could originate from either a supply chain disruption or a labor shortage).
As a result, the zero restrictions in Restrictions 1, 2, and 3 are no longer valid in the
identification of the adverse shocks to aggregate demand and labor supply.'®

Therefore, we conduct a robustness check by relaxing the zero restrictions when estimat-
ing the SVAR model with the GSCPI index included as an endogenous variable. Specifically,

the identification restrictions are now the following:

Restriction 1. An adverse shock to aggregate demand leads to a negative response of
real GDP, GDP deflator, and import price, as well as to a positive response of unemployment

at k=1.

Restriction 2. An adverse shock to labor supply leads to a negative response of real
GDP and unemployment, as well as to a positive response of GDP deflator and import price

at k=1.

Restriction 3'. An adverse shock to supply chain leads to a negative response of real

GDP, as well as to a positive response of GDP deflator, unemployment, and GSCPI at k = 1.

The estimation is still conducted using the Bayesian approach as in Arias, Rubio-Ramirez,
and Waggoner (2018), Arias, Caldara, and Rubio-Ramirez (2019), and Arias et al. (2023).
All the estimation specifications are kept the same as those applied in the baseline. As can
be clearly seen in Figures F.21, F.22, and F.23, the biases of using the GSCPI index as a

measure of global supply chain disruptions still persist.

16. Nevertheless, we still apply Restrictions 1, 2, and 3 in the identification of the structural shocks in
Section 4.2 so as to control for any potential discrepancy that may arise due to differences in the identification
restrictions.
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Figure F.21: IRFs to an Adverse Shock to Supply Chain: The GSCPI and Restrictions 1,
2', and 3’

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the GSCPI
index and Restrictions 1/, 2/, and 3’. The solid line shows the point-wise posterior medians, and the shaded

bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.
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Figure F.22: FEVD from the SVAR: The GSCPI and Restrictions 1, 2’, and 3’

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using the GSCPI index and Restrictions 1/, 2/, and 3’, and based on 100,000 independent draws.
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Figure F.23: HD of U.S. Inflation: The GSCPI and Restrictions 1, 2’, and 3’

Notes. The solid line represents the standardized quarterly inflation rate in the U.S., i.e., quarter-on-quarter
growth of the GDP deflator. The shaded bar represents the standardized cumulative historical contribution
of each of the three structural shocks identified using the GSCPI index and Restrictions 1/, 2/, and 3’ to
U.S. inflation. The estimation results are obtained with each variable measured in percent change from the
previous period, and are calculated based on 100,000 independent draws.
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G. Priors and Identification in TVAR

G.1. Priors

Our formulation of the prior in the TVAR model follows Banbura, Giannone, and Reichlin
(2010), Mumtaz and Zanetti (2012), and Pizzinelli, Theodoridis, and Zanetti (2020), and the
same prior has been applied to the parameters in both the supply chain disrupted (D) and
undisrupted (U) regimes. Specifically, we write the TVAR model in Equation (26) compactly

as a system of multivariate regressions:

y = (Mpzxp + up)I + (Myzy + uy)(Lrxr — I), (G.1)
where y = [y1 ... yr] is an n x T matrix, xp = [®p1 ... Tpr) is an m x T matrix
with &p; = [y;_; ... Y, wi], v = [xys ... xyr] is an m x T matrix with xy,; =
Y,y . Yy, w, w = [1,t] is a 2 x 1 vector of a constant and a linear trend, up =
[Ellm/?el . EHI)/QGT] is an n x T matrix, uy = [Z%j/zel . E%{QGT] is an n x T matrix, Xp
and Xy are the covariance matrices, I = diag[l; ... Ir|is a T x T diagonal matrix, Mp =
By, ... By, Cpl and My = [By,; ... By, Cy] are two n X m matrices containing

the TVAR coefficients associated with each regime, and m = nL 4 2. Given Equation (G.1),
for each regime r € {D, U}, we assume that the prior distribution of the parameter vector,

vec(M,), has a Normal-Inverse-Wishart conjugate form.'” Such a form can be written as:
vec(M,)| %, ~ N<U€C(M£), 3. ® Q?),
(G.2)

S, ~ IW (SS, a?),

where vec(M?) is the prior mean of the parameter vector, Q° controls the tightness around
this prior, S? is the prior scale matrix of the Inverse-Wishart (IW) distribution, and o! de-
notes the prior degrees of freedom. Essentially, the prior in Equation (G.2) is a generalization
of the Minnesota prior discussed in Litterman (1986) and assumes that the endogenous vari-
ables follow a random walk or an AR(1) process. This is based on the idea that recent lags

provide more reliable information on the dynamics of the system and therefore the estima-

17. vec(-) denotes the operator that stacks the columns of a matrix into a vector.
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tion should assign them a higher weighting. Unlike the original formulation in Litterman
(1986) however, the prior in Equation (G.2) does not assume a diagonal, fixed, and known
covariance matrix, making it more suitable for our structural analysis.

The Normal-Inverse-Wishart prior implies that, while the prior expectations and vari-
ances of the coefficient matrices for the constant and linear trend, C,, are diffuse, those

associated with the autoregressive matrices, B, ;, can be written as:

0, ifi=4j, =1,

)

E[(Br)i] =
0, otherwise; (G-3)
V{(By1)i ] = Ad; o3,

0

where 54, ..

. ,59771 are the prior means of the autoregressive coefficients, oy, ..., o, are the
prior error standard deviations, and the hyper-parameter A\ controls the overall tightness of
the prior distribution such that a larger \ corresponds to a looser prior. As described in
Banbura, Giannone, and Reichlin (2010) and commonly used in the literature of Bayesian
SVARs, the prior moments in Equation (G.3) can be implemented by adding 7}, dummy

observations y, 4 and @, 4 to the system of regressions in Equation (G.1) that correspond to

each regime, with y, 4 and «, 4 satisfying:

diag[ﬁglal . ﬁgnan]/)\ Jp @ diagloy ... on]/A Onrxi Onrxi
On(L—l)Xn 0nxnL 0nx1 0nx1
Yrd = ) y Lpd = )
diagloy ... oy) O1xnL § 0
i 02><n i | 01 xnL 0 é i
where J;, = diag[l ... L] and the hyper-parameter £ controls the prior on the constant and

the linear trend such that a small number makes the prior uninformative. Subsequently, the

prior moments in Equation (G.2) are simply functions of y, 4 and «, 4, which are given by:

MS = yr,da:/r,d(mhdm:*,d)_l7
Q) = (wr,dw;,d)_17
SO = (yr,d - M;«)wr,d) (yr,d - Mgwr,d)la

o, = 1ypg— M.
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With the Normal-Inverse-Wishart prior being conjugate, the conditional posterior dis-
tribution of the parameter vector is also Normal-Inverse-Wishart (Banbura, Giannone, and

Reichlin 2010; Mumtaz and Zanetti 2012):

vec(M,)|X,,y ~ N(vec(M,,), 3, ® (i,nafc;)*),
S|y ~ IW(S,,,TM Fo4T— m),
where the parameters associated with the posterior are given by:

M, = §,@,(<,@,) ",

T

5'79 = (gr - Mrir)('gr - MriT)la
in which the terms gy, and «, are the matrices of y, and x, augmented with the dummy

observations y, 4 and @, 4 respectively.'®

Following Mumtaz and Zanetti (2012) and Pizzinelli, Theodoridis, and Zanetti (2020),

0

we obtain the values of the prior mean of each autoregressive coefficient, 3,;, as well as the
prior error standard deviation, o;, from the OLS estimation of a univariate AR (1) model for
each endogenous variable. In addition, we set A = 0.25 to ensure fast lag decay towards zero.
Finally, in terms of the prior distribution of AC'R, we assume that it is normally distributed,
with the mean set at the median of the ACR series and the standard deviation calibrated to

deliver a Markov Chain Monte Carlo (MCMC) acceptance rate of approximately 70%.

G.2. Identification Using the PFA

Following Uhlig (2005) and Mountford and Uhlig (2009), the identification scheme we employ
in the study of the state-dependent effects of a contractionary monetary policy shock amounts
to finding an impulse vector a that minimizes a given criterion function f(-) on the space of
all impulse vectors. This function penalizes positive impulse responses of real GDP, GDP
deflator, and import price as well as negative impulse responses of the Federal Funds Rate
and unemployment at horizons £ = 1,..., K, while satisfying the zero restriction imposed
on the impulse response of ACR at horizon & = 1. The scheme is applied separately for

the observations in each regime. Hence, for simplicity, we drop the regime-specific notation

18. vy, is the part of y that is associated with regime r € {, U}.
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r € {D,U} in the following description.
The PFA is implemented numerically as follows. Define the penalty function as:
x, if x <0;
flx) = (G.4)
100x, if x>0,
which penalizes positive responses in linear proportion and rewards negative responses in
linear proportion, albeit at a slope 100 times smaller than the slope for penalties on the
positive side. For the true VAR coefficients, let r; ,(k), k = 1,..., K be the impulse response
of variable j and o; be the standard deviation of the series for variable j. Let ¢; = —1 if
J is the index of Federal Funds Rate or unemployment in the data vector, and ¢; = 1 if
J is the index of real GDP, GDP deflator, or import price in the data vector. Define the
contractionary monetary policy impulse vector as that impulse vector a, which minimizes
the total penalty ¢(a) subject to the zero restriction imposed on the impulse response of the

ACR index at horizon k = 1:

o, Tialk)
7,a
pla) = > [Zf(bj - )]
“Federal Funds Rate”,
“real GDP”,
i€ “GDP deflator”,
“unemployment”,

“import price”

The re-scaling by o; is necessary to make the deviations across different impulse responses
comparable to each other. Note that the sign of the penalty direction is flipped for the Federal
Funds Rate and unemployment. Since the true VAR is unknown, we find the contractionary
monetary policy vector for each draw from the posterior. Such a step involves numerical
minimization, and we keep all the draws and accordingly calculate all the corresponding

impulse vectors. As a result, the IRFs in the main text are calculated based on these.

G.3. Posterior and Identified Regimes

The posterior distribution of the threshold ACR is plotted in Figure G.1, while the time

series of the identified regimes using the median of such a posterior is plotted in Figure G.2.
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Figure G.1: Posterior Distribution of the Threshold ACR

Notes. The figure plots the posterior distribution of the ACR threshold value, i.e., ACR, based on 10,000
independent draws.

Regime (0: Undisrupted, 1: Disrupted)

2018-Jan  2019-Jan  2020-Jan  2021-Jan  2022-Jan

Figure G.2: Regimes Based on the Median of the Posterior ACR

Notes. The solid line, switching from zero to one, represents the current regime as identified by the median of
the posterior distribution of the ACR threshold, i.e., median(ACR) = 17.7595. The value of one corresponds
to the supply chain disrupted (D) regime, while the value of zero corresponds to the supply chain undisrupted
(U) regime.
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H. Robustness of TVAR Results

In Figures H.1 and H.2, we show that our state-dependence results are robust to considering
different lag structures in the TVAR model, i.e., two or three lags. We do not consider four
lags or beyond due to parameter uncertainty resulting from our limited sample length. We
also show in Figure H.3 that the results are robust when a looser prior is undertaken in the
estimation, i.e., A = 0.5. Furthermore, we extend the horizons at which we impose the sign
restrictions —i.e., from k =1 to kK = 1,2,3 — so as to put more disciplines on the behaviors

of IRFs. As shown in Figure H.4, once again, our benchmark results still hold.

Federal Funds Rate Real GDP 00 GDP Deflator
e .05

0.1 0.4

0.05

Quarters Quarters Quarters

Unemployment Import Price ACR

p-p-

Quarters Quarters Quarters

Figure H.1: State-Dependent Effects of a Contractionary Monetary Policy Shock: L = 2

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using a TVAR specification as in Equation (26) with two lags, as well as Restriction 4, for both the supply
chain disrupted and undisrupted regimes. The black solid (red solid) line shows the point-wise posterior
medians, and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior
probability bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000
independent draws from the posterior.
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Figure H.2: State-Dependent Effects of a Contractionary Monetary Policy Shock: L = 3

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using a TVAR specification as in Equation (26) with three lags, as well as Restriction 4, for both the supply
chain disrupted and undisrupted regimes. The black solid (red solid) line shows the point-wise posterior
medians, and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior
probability bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000
independent draws from the posterior.
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Figure H.3: State-Dependent Effects of a Contractionary Monetary Policy Shock: A = 0.5

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using a TVAR specification as in Equation (26) with A = 0.5, as well as Restriction 4, for both the supply
chain disrupted and undisrupted regimes. The black solid (red solid) line shows the point-wise posterior
medians, and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior
probability bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000
independent draws from the posterior.
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Figure H.4: State-Dependent Effects of a Contractionary Monetary Policy Shock: k =
1,2,3

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using Restriction 4 for both the supply chain disrupted and undisrupted regimes. Restriction 4 is imposed
for longer horizons, i.e., k = 1,2,3. The black solid (red solid) line shows the point-wise posterior medians,
and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior probability
bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000 independent draws
from the posterior.
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I. State-Dependence Results Using the LPs

In this appendix, as a robustness check to our state-dependence results obtained using the
TVAR model, we work with LPs to identify a contractionary monetary policy shock and
analyze how it affects the macro aggregates for the U.S. economy depending on the level
of global supply chain disruptions. LPs are a flexible approach that allows us to address
the state-dependence of monetary policy without making strong parametric assumptions.
Specifically, we use the LPs with interaction terms as in Ghassibe and Zanetti (2022), and
our identification scheme consists of sign restrictions implemented as described in Plagborg-

Mgller and Wolf (2021). Consider the following n x (K + 1) projections:

L
Yit+k =1t [ﬁﬁ»,z‘,k,oyt + Z B Yi—1 + Cﬁ»,i,kwt}

=1 . (1.1)

+(1—-1) [ﬁuﬂ',k,oyt + Z BuikiYi-1 + C{J,i,kwt] + Uikt
=1

where 1 <1< n,0< k< K, y, is an n x 1 vector of the same endogenous variables as in
Section 5.2 save for the ACR index (since it is the variable we use to split the sample), y; 11«
is the value of the i-th variable in y; 4k, wy = [1,t]' is a 2 x 1 vector of a constant and a linear
trend, and u; ;, is the reduced-form error corresponding to the ¢-th variable. The vector of
the reduced-form errors for k = 1, w1y = [u114 ... up1.), is assumed to have mean zero
and covariance matrix equal to E(u; ) ,) = 3.

Similar to the setup in the TVAR model, I; is a dummy variable that indicates whether
the supply chain is disrupted. The supply chain disrupted regime is determined based on
whether the one-month lag of the ACR index is above its median level over the sample. Figure
.1 shows the times series of the ACR index along with its 50th and 60th percentiles. As seen,
there were frequent switches between the supply chain disrupted and undisrupted regimes
before 2019. Subsequently, from early-2019 to mid-2020, the ACR index was constantly
below its sample median. Such a pattern was reversed from mid-2020 onwards, as the ACR
index started to climb up and the U.S. economy stepped into the disrupted regime. Note

that the switches between the two regimes shown in Figure 1.1 are almost identical to those
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illustrated in Figure G.2 when the threshold ACR is determined endogenously in the TVAR
estimation.

26

— ACR
-------- 50th Percentile
= = 60th Percentile

24+

22

20

Percent

18 \' . 'A'/\'\'/W'A ----------
V

16

14 1 1 1 1 1
2017-Jan  2018-Jan  2019-Jan  2020-Jan  2021-Jan  2022-Jan

Figure 1.1: ACR and Its 50th and 60th Percentiles

Notes. The figure plots the ACR index as well as its 50th and 60th percentiles during the sampling period
from January 2017 to July 2022. The ACR index is computed using the AIS data of containerships and the
IMA-DBSCAN algorithm developed in Appendix A. The index is presented in percentage terms and has
been seasonally adjusted.

With the two regimes defined, the parameters Bp.; k.0, Bk, and Cp; j correspond to the
supply chain disrupted regime (D), while the parameters By, 1.0, Bu,i k1, and Cy; , correspond
to the supply chain undisrupted regime (U). Same as our choice of the lag structure in the
TVAR model, we include only one lag in the estimation of the LPs so as to reduce parameter
uncertainty.

In order to identify a contractionary monetary policy shock, we follow our theoretical
prediction in Proposition 6 and come up with an identification scheme similar to that in
Section 5.2. Yet, since the ACR is not included in the estimation, we drop the zero restriction

in Restriction 4 and re-write it as the following:

Restriction 4. A contractionary monetary policy shock leads to a negative response
of real GDP, GDP deflator, and import price, as well as to a positive response of unemploy-
ment and Federal Funds Rate at k = 1,2,3. In addition, the on-impact response of GDP
deflator in p.p. is bounded to be smaller than that of Federal Funds Rate in p.p.
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Note that Restriction 4" is similar to Restriction 4, except that we impose restrictions on
the subsequent horizons to sharpen our identification, and an elasticity bound is imposed to
discipline the identified set of IRFs corresponding to the GDP deflator. The latter variation
is critical to ensure that our estimation is plausible, as in the absence of such a bound, the
identified set would include a decline in the GDP deflator of 100 p.p. as being equally likely
as a decline in the GDP deflator of 1 p.p. following an unexpected increase in the Federal
Funds Rate of 0.05 p.p. Hence, we use a bound to rule out dubious IRFs following Kilian
and Murphy (2012), Arias, Caldara, and Rubio-Ramirez (2019), and Arias et al. (2023).

With Restriction 4’, we compute the identified set of IRFs in each regime by numerically
solving the quadratic program described in the supplement to Plagborg-Mgller and Wolf
(2021) using Algorithm 2 of Giacomini and Kitagawa (2021). Without loss of generality, we
normalize the first shock to be the shock of interest. Let S denote a 15 x n matrix that
selects the IRFs which we restrict to be either positive or negative (there are in total 15
sign restrictions in Restriction 4’). Then, for each regime, we draw D = 100, 000 orthogonal

matrices Q,q (i.e., Q) ,Qra = QraQ, ;= laxn) that satisfy the following:

SBT,OQQQT,del >0,
egBir,OS}Qr,del +1>0, (1.2)
e B, QQ, e,

where r € {D, U}, 1 <d < D, B,go = (Bl Bl, B, B = [Briwo --- Brakol's Brino
is the OLS estimate of 3, 0, Q= chol(f))’ , chol is the upper triangular Cholesky decompo-
sition of 3, and 3 is the OLS estimate of .Y Given that the entry (i, 7) in B, xQQ,.q4 gives
the response of the i-th variable to the j-th shock at horizon k, the first inequality condition
in Equation (I.2) summarizes all the sign restrictions imposed on IRFs, while the second
inequality condition contains the elasticity bound, as (e’gBervoleﬁdel) / (e’lﬁnoler,del) de-
notes the ratio between the on-impact responses of the GDP deflator and the Federal Funds

Rate, where e; is the i-th column of the n-dimensional identity matrix.

-----

19. Vector inequalities are to be understood element-wise.
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(I.2). The identified set of IRFs of the i-th variable at horizon k is thus given by:

'B, ,QQ, B .QQ,
[ min {0.05 22 0 <L . max {0.05 51 L <L |
¢ e B, 00Q, e, 7 d=1...D" d €' B,00Q, je;’ d=1...D

where the factor 0.05/ (€}, B,.02Q,.q€1) is a normalization so that in both regimes, the con-
tractionary monetary policy shock raises the Federal Funds Rate by 0.05 p.p. on impact.

Figure 1.2 plots the point-wise medians and 68% equal-tailed point-wise probability bands
associated with the identified set of IRFs in each regime following a contractionary monetary
policy shock. We show the IRFs from horizon k£ = 0 up to horizon k = 6. The shorter horizon
relative to the horizon of the IRFs shown in the TVAR model (Figure 16) is due to parameter
uncertainty associated with the LPs. Nevertheless, as clearly seen in Figure 1.2, the state-
dependent effects of a contractionary monetary policy shock are still observable, as the
responses of real GDP and unemployment are weaker while those of the GDP deflator and
import price are stronger when the global supply chain is disrupted (i.e., ACR;_; > 17.8%),
which is the sample median of the ACR index).

As a robustness check, we also consider a threshold at the 60th percentile of the ACR in-
dex (i.e., 18.2%) to distinguish between the supply chain disrupted and undisrupted regimes.
As shown in Figure 1.3, the main results are robust. We do not consider thresholds higher
than the 60th percentile because, as shown in Figure [.1, they would imply a sharp division

of our sample at around mid-2020, which may lead to a biased result.
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Figure 1.2: State-Dependent Effects of a Contractionary Monetary Policy Shock: Using
LPs With Interaction Terms and a Threshold at the Median of the ACR Index

Notes. The figure shows the IRFs to a contractionary monetary policy shock identified using LPs with
interaction terms, as in Ghassibe and Zanetti (2022), along with Restriction 4’, for both the supply chain
disrupted and undisrupted regimes. A threshold at the sample median of the ACR index (i.e., 17.8%) is
applied to distinguish between the two regimes. The black solid (red solid) line shows the point-wise medians,
and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise probability bands for the
supply chain disrupted (undisrupted) regime. The figure is based on 100,000 draws of orthogonal matrices.
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Figure 1.3: State-Dependent Effects of a Contractionary Monetary Policy Shock: Using
LPs With Interaction Terms and a Threshold at the 60th Percentile of the ACR Index

Notes. The figure shows the IRFs to a contractionary monetary policy shock identified using LPs with
interaction terms, as in Ghassibe and Zanetti (2022), along with Restriction 4’, for both the supply chain
disrupted and undisrupted regimes. A threshold at the 60th percentile of the ACR index (i.e., 18.2%) is
applied to distinguish between the two regimes. The black solid (red solid) line shows the point-wise medians,
and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise probability bands for the
supply chain disrupted (undisrupted) regime. The figure is based on 100,000 draws of orthogonal matrices.
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