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Abstract

We study the causal effects and policy implications of global supply chain disrup-
tions on the U.S. economy. We construct a new index of supply chain disruptions
from the Automatic Identification System data of containerships, developing a
novel spatial clustering algorithm that determines real-time congestion from the
positions and speeds of containerships in major ports around the globe. We show
important differences between our index and the Global Supply Chain Pressure
Index that are important for the interpretation of supply chain disruptions. We
develop a new theoretical framework with search frictions between exporters and
importers in the goods market, transportation costs, and spare capacity that pro-
vides us with unique identification restrictions arising from the co-movements of
spare capacity, price, and output for the causal effects of supply chain disrup-
tions. A structural VAR with these restrictions establishes that supply chain
disruptions: (i) depress real GDP, raise prices, generate a surge in spare ca-
pacity, and (ii) increase the effectiveness of contractionary monetary policy in
taming inflation while reducing the sensitivity of output to monetary policy.
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1. Introduction

Sudden and large imbalances in the supply and demand for goods, often stemming from

disruptions to the supply chain, can lead to protracted deterioration in macroeconomic

performance. For instance, the severe disruptions to the flow of goods worldwide during the

Covid-19 pandemic led to an unprecedented fall in global trade and a sharp rise in prices,

culminating in the second-largest recession in U.S. history.1 Other prominent examples of

potent supply chain disruptions include the blockage of the Suez Canal in 2021 and the war

in Ukraine in 2022, both of which resulted in a shortage of goods, increased transportation

costs, and raised inflation globally.2

Despite the fundamental role of supply chain disruptions in shaping macroeconomic per-

formance and economic policy, research on this topic is scant and progress is challenged by

two key issues. First, existing indices of supply chain disruptions are often inferred from

changes in shipping prices or information from surveys on potential disruptions gleaned

from the Purchasing Managers’ Index (PMI). These measures are problematic since prices

internalize endogenous movements in the demand for goods while being disconnected from

output during supply chain disruptions, and surveys are notoriously prone to measurement

errors accruing to the subjective perceptions of purchasing managers on supply chain issues,

thus providing a potentially biased measurement of supply chain disruptions. The ideal

measurement of supply chain disruptions requires data that track the disruptions to the

regular flows of goods that are central to the mismatch between supply and demand and the

consequent increase in prices. Second, there is no theoretical framework that studies supply

chain disruptions considering the spare capacity resulting from the imbalances between the

supply and demand for goods. Against this backdrop, mounting evidence points to the ad-

justment in the spare capacity as a systematic attribute of supply chain disturbances, which

is critical to the response of prices and the ensuing policy tradeoffs for the contemporaneous

stabilization of prices and output.3

1. During the Covid-19 recession (February-April 2020), the decline in GDP from peak to trough was
19.2%. During the Great Depression (August 1929-March 1933), the fall in GDP was 26.7%.

2. See https://www.nytimes.com/2021/03/24/world/middleeast/suez-canal-blocked-ship.html (accessed
on July 25, 2023) for coverage on the Suez Canal blockage.

3. Several articles in newspapers and policy institutions discuss the relevance of disruptions to the supply
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Our paper addresses these issues by developing: (i) a new index of global supply chain

disruptions derived from maritime satellite data of containerships, and (ii) a novel theoretical

framework that accounts for the spare capacity arising from the imbalances between the

supply and demand for goods consequent to the disruption to the supply chain. Using

our new data and theory, we shed new lights on the causal effects of global supply chain

disruptions and their implications for the effectiveness of monetary policy.

The measurement of supply chain disruptions. We study disruptions to the sup-

ply chain by examining congestion at container ports. Given the pivotal role of container

ports in international trade, through which approximately 60% of the total value of world

seaborne trade passes (UNCTAD 2019; OECD and EUIPO 2021), even a mild increase in

port congestion can significantly impair regular supply chains and generate large imbalances

between the supply and demand for tradable goods. More importantly, the itineraries of

containerships are rarely altered due to significant switching costs, and the routes of these

vessels remain unchanged for the duration of contracts that normally average more than

one year, ensuring that congestion at a seaport is minimally influenced by strategic deci-

sions of shipping companies to adjust capacity across routes following changes in demand

(Stopford 2008; Song and Dong 2012; Wang, Meng, and Jia 2019; Brancaccio, Kalouptsidi,

and Papageorgiou 2020; Brancaccio et al. 2023).4,5 This feature of the shipping segment of

containerships separates port congestion from the forces of demand, hence enabling us to

detect supply chain disturbances from the density of inactive vessels stationed at ports.

chain for economic performance and macroeconomic policies. See for instance Attinasi et al. (2021), Forster
van Aerssen et al. (2021), Grimes and Edgecliffe-Johnson (2021), The White House (2021), Dempsey (2022),
Lane (2022), and World Bank (2022).

4. In the maritime shipping industry, long-term contracts between exporters and shipowners often have
a validity period of one year, with a significant proportion of them lasting even longer due to heightened
uncertainty on some specific routes (Bhonsle 2023).

5. Stopford (2008), Kalouptsidi (2014), Brancaccio, Kalouptsidi, and Papageorgiou (2020), Fuchs and
Wong (2022), Wong (2022), and Brancaccio et al. (2023) discuss the different segments of the maritime
shipping industry, namely, containerized liner services and tramp shipping. Specifically, in his textbook
on maritime economics, Stopford (2008) states, “A liner service is a fleet of ships … which provide a fixed
service, at regular intervals, between named ports, …. A fixed itinerary, inclusion in a regular service, and
the obligation to accept cargo from all comers and to sail … on the date fixed by a published schedule are
what distinguish the liner from the tramp”. In addition, Brancaccio, Kalouptsidi, and Papageorgiou (2020)
state, “The transportation sector … can be split into two categories: those that operate on fixed itineraries,
much like buses, and those that operate on flexible routes, much like taxis. Containerships … belong to the
first group”. In Section 2.3, we also provide statistical evidence that corroborates the above definition of the
containerized liner industry.
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We quantify port congestion using granular shipping data from the Automatic Identifi-

cation System (AIS), the mandatory real-time satellite tracking system for containerships

across major ports around the globe from 2017 to 2022. By developing a novel machine learn-

ing clustering algorithm that utilizes the positions and speeds of containerships recorded in

the AIS data, we provide the first mapping of global port congestion by constructing a high-

frequency index of Average Congestion Rate (ACR) for major ports worldwide. Our ACR

index is also the first measurement of global supply chain disruptions derived from maritime

satellite data of containerships.6

Theoretical framework. To interpret the data and study the causal effects of supply

chain disruptions, we develop a simple model that accounts for the imbalances in the supply

and demand for goods and provides new insights into the effects of these disruptions on the

tradeoffs of economic policy. Our model is based on search and matching frictions between

exporters and importers in the international product market, building on the disequilibrium

model of Barro and Grossman (1971), recast in a microfounded framework by Michaillat

and Saez (2015, 2022), and Ghassibe and Zanetti (2022). The presence of search frictions

renders prices not allocative and unable to clear the supply and demand for goods, similar

to the central effect of supply chain disruptions. In our model, exporters supply the goods

demanded by importers, and the transactions are mutually costly since they require exporters

and importers to pay transportation and visiting costs, respectively. In equilibrium, these

costs generate spare capacity and costly congestion. Central to the realization of supply chain

disruptions, exporters draw transportation costs from a given distribution in each period, and

they decide to ship goods if the drawn cost falls below the threshold for profitable shipments.

We assume that a disturbance to the supply chain increases the transportation costs for all

exporters, as evinced by the large empirical evidence linking supply chain disturbances and

transportation costs (Benigno et al. 2022; Finck and Tillmann 2022; Alessandria et al. 2023;

Dunn and Leibovici 2023). We model the general rise in transportation costs as a shift of

the distribution of costs to the right of the domain, making it more likely for each exporter

6. The global nature of our ACR index “averages out” any changes in port congestion resulting from
infrequent adjustments in shipping capacity across routes, thus further underpinning the exogeneity of our
ACR index. In addition, since the AIS data offer unparalleled accuracy in tracking real-time movements of
tradable goods across the globe, our ACR index is not subject to the same measurement errors as those in
the PMI stemming from the subjective perceptions of purchasing managers on supply chain issues.
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to draw transportation costs that exceed the profitability threshold and thus increasing the

likelihood of a halt in the shipping of goods. Consequently, the number of unprofitable

shipments increases, leading to a fall in the supply of goods available to importers. The

model shows that the supply chain shock disrupts economic trade, drives up prices, and

widens the spare capacity of exporters.

Our model demonstrates that the responses of macro aggregates to a supply chain dis-

ruption shock differ from standard shocks to the demand and supply of goods. Unlike

demand shocks, disruptions to the supply chain result in negative co-movements between

the quantity and price of goods. While such a property also holds for traditional labor sup-

ply shocks, disruptions to the supply chain uniquely increase spare capacity (or equivalently,

unemployment), whereas labor supply shocks decrease it. Such a distinction is intuitive, as

transportation costs do not change the domestic capacity to produce, but affect whether

selling abroad is profitable. Therefore, the changes in the spare capacity resulting from

the disequilibrium between the supply and demand for goods play a crucial role for the

identification of supply chain disruptions.

The causal effects of supply chain disruptions. Drawing directly from the pre-

diction of our model, we apply our theoretical restrictions on the responses of endogenous

variables in the Structural Vector Autoregressions (SVARs), allowing us to uniquely iden-

tify the shocks to the supply chain and distinguish them from traditional labor supply and

demand shocks. We estimate the SVAR model using the Bayesian approach, as in Arias,

Rubio-Ramirez, and Waggoner (2018), Arias, Caldara, and Rubio-Ramírez (2019), and Arias

et al. (2023), and establish several key results. First, a disruption shock to the supply chain

leads to a large and immediate drop in real GDP, sharp and persistent increases in both

inflation and import prices, and a substantial jump in unemployment. In addition, simi-

lar to a labor supply shock, a supply chain disruption shock tends to generate a persistent

positive response of inflation, an observation consistent with recent evidence (e.g., Bekaert,

Engstrom, and Ermolov (2020) and Gordon and Clark (2023)). Furthermore, the two aggre-

gate supply shocks differ in terms of their effects on unemployment, which is representative

of spare capacity. While the initial fall in unemployment in response to the labor supply

shock is transitory, the initial increase in unemployment in response to the supply chain

4



disruption shock is persistent, with the median response reverting to zero slightly before the

two-quarter mark.

Second, the decomposition of historical variance shows that the sharp fall in inflation in

early 2020 was mainly driven by a significant contraction of aggregate demand that coincided

with the first wave of the Covid-19 pandemic across the world. Subsequently, aggregate

demand started to rebound, while global supply chain disruptions escalated and made a

significant contribution to the rise in inflation. This pattern continued until the end of 2021,

with labor supply shocks emerging as the primary driving force for the elevated inflation.

In addition, we show that the sharp increase in the Global Supply Chain Pressure Index

(GSCPI) – a prominent index to measure supply chain disruptions in both the literature and

media – during the first seven months of the pandemic (January-July 2020) was not caused by

disruptions to the supply chain. During that time, port congestion was at historical average

levels. Instead, the surge in the GSCPI was likely driven by sudden changes in demand and

the management’s mis-perception of supply chain issues as recorded by the surveys.7 We

show that the misclassification of disruptions to the supply chain has important implications

for the statistical significance of supply chain disruption shocks and the associated policy

response, as we discuss below.

Policy implications. Our analysis shows that supply chain disruptions generate stagfla-

tion and a simultaneous increase in spare capacity. The higher spare capacity constrains the

supply of goods and leads to a tighter product market, thus escalating the mismatch between

the supply and demand for goods and increasing the sensitivity of prices to movements in

demand. As larger shifts in prices are needed to ration the product market, these changes

in the relative movements of prices and output increase the effectiveness of monetary policy

in stabilizing inflation amid supply chain disruptions. This reinforces findings that show

state-dependence in the effectiveness of monetary policy (Benigno and Ricci 2011; Ikeda

et al. 2022; Benigno and Eggertsson 2023; Harding, Lindé, and Trabandt 2023).8

7. Specifically, the GSCPI builds on the PMI, which does not differentiate whether the increase in “delivery
times” is caused by a disruption to the supply chain, or to the actual production itself.

8. Benigno and Eggertsson (2023) introduce labor search and matching frictions, as well as wage rigidity,
to a New Keynesian framework and proposes a nonlinear Philips curve, of which the slope increases when
the labor market is tight. Such nonlinearities imply an “easy down” for the economy, meaning small output
losses from bringing inflation under control. In contrast, while our theoretical framework also predicts an
“easy down” for the economy through monetary tightening, it relies on the role of spare capacity in the
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We test the theoretical prediction by developing a Threshold Vector Autoregression

(TVAR) model that estimates the differences in the effects of a contractionary monetary

policy shock for different levels of the ACR index. Consistent with our theory, we find that

an exogenous tightening of monetary policy leads to a significantly larger and more persis-

tent decline in inflation for a given decrease in output and employment during periods of

supply chain disruptions. Our results support a more aggressive, yet less contractionary,

monetary policy in response to the elevated inflation consequent to the disturbances to the

supply chain. This approach is consistent with the progressive tightening of monetary policy

in the U.S. during the supply chain disruptions in the post-Covid-19 recession.

Related literature. Our analysis is related to several realms of research. We develop a

theoretical framework that maps the mismatch between the supply and demand for goods to

changes in prices, real activity, and spare capacity. Our model builds on the disequilibrium

framework of Barro and Grossman (1971) by incorporating search and matching frictions in

the goods market that result in spare capacity, similar to the studies by Michaillat and Saez

(2015, 2022) and Ghassibe and Zanetti (2022). We also link to Brancaccio, Kalouptsidi,

and Papageorgiou (2020) and Brancaccio et al. (2023) who develop a search and matching

framework to study the role of the transportation sector, as well as Comin, Johnson, and

Jones (2023) who develop a New Keynesian model with imported inputs to investigate how

potentially binding capacity constraints and demand/supply shocks to them shape inflation.

Unlike these studies, however, we connect disequilibrium and spare capacity in the goods

market with rising transportation costs resulting from the disruptions to the supply chain,

and we focus on the impact on prices and real activity and the changes for the tradeoffs of

economic policy.

We connect to studies linking the transportation sector to the real economy. Brancaccio,

Kalouptsidi, and Papageorgiou (2020) demonstrate the chief role of transportation costs in

equalizing comparative advantages across countries and dampening the response of trade

flows to shocks. Brancaccio et al. (2023) show that search frictions in the transportation

market distort the transportation network and the dynamic allocation of ships over space,

requiring pricing rules or taxes to establish efficiency. Dunn and Leibovici (2023) study

goods market to endogenously generate strong nonlinearities in the aggregate supply curve.
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the drivers of global shipping dynamics, showing that supply chain disruptions lead to an

increase in shipping prices and generate aggregate implications. Allen and Arkolakis (2014)

link transportation networks to real activity, and Fuchs and Wong (2022) connect them

to infrastructure investment. Smirnyagin and Tsyvinski (2022) study the effect of supply

chain disasters on asset prices. Li et al. (2022) estimate the patterns of global trade in

crude oil, and Bai and Li (2022) investigate the role of congestion in shipping markets for

international oil trade and the macroeconomy. In contrast to these studies, we concentrate on

the macroeconomic consequences and policy implications of supply chain disruptions arising

from the transportation sector.

Finally, we relate to the empirical research that develops SVAR models to study the causal

effects of supply chain shocks and differentiate them from alternative shocks to aggregate

demand. Representative studies in this large area of research include Balleer et al. (2020),

Bekaert, Engstrom, and Ermolov (2020), Brinca, Duarte, and Faria-e-Castro (2021), Shapiro

(2022), and Gordon and Clark (2023). Unlike these studies, we base the identification of

disturbances to the supply chain on our theory of disequilibrium, and we are the first study

to apply in the SVARs an index of global supply chain disruptions that is derived from

granular shipping data.

The remainder of our study is organized as follows. Section 2 constructs our ACR index

of supply chain disruptions from satellite data. Section 3 develops our theoretical model

and the identification restrictions. Section 4 presents the baseline estimation results and a

comparison with the estimation based on the GSCPI. Section 5 explores the state-dependent

effects of monetary policy shocks following supply chain disruptions. Section 6 concludes.

2. Measuring Global Supply Chain Disruptions

In this section, we develop a novel index designed to track global supply chain disruptions

by analyzing imbalances between the supply and demand for goods through the lens of

containerized trade. Accounting for 60 percent of the total value of seaborne trade (UNCTAD

2019; OECD and EUIPO 2021), containerized seaborne trade plays an indispensable role

in fostering the development and ensuring the smooth operation of global supply chains
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(Notteboom, Pallis, and Rodrigue 2022).

In the realm of containerized trade, seaports serve as international hubs for freight col-

lection and distribution. Any disruption to these hubs can lead to port congestion, which in

turn significantly impairs regular supply chains and trade flows, culminating in far-reaching

consequences for all parties involved in international trade.9 By leveraging the most recent

satellite data on the positions and speeds of containerships, available from 2017 onwards, we

track port congestion and construct a granular measure of global supply chain disruptions.

2.1. AIS Data

We use satellite data from the AIS, the mandatory tracking system required by the Interna-

tional Maritime Organization (IMO) for international voyaging vessels larger than 300 gross

tonnage (Heiland et al. 2022). The AIS can handle over 2000 reports per minute and may

update information as often as every two seconds, providing comprehensive coverage of the

movements of containerships around the globe from January 2017 to July 2022.10 Each data

entry includes the ship’s IMO number, timestamp, current draught, speed, heading, and

geographical coordinates.11 The detailed positioning and sailing information enables us to

track the behaviors of vessels within various port zones, facilitating the construction of an

accurate measure of port congestion.

9. Port congestion is a multifaceted issue that imposes significant costs on various stakeholders in the
shipping industry. Prior to the pandemic, waiting times at ports were typically measured in hours; however,
stringent COVID-19 restrictions led to extended delays, with waiting times reaching 2-3 days at several major
ports worldwide, incurring substantial daily financial losses. Shippers and freight forwarders encountered
unexpected delays, compounded by surcharges such as the Port Congestion Surcharge (PCS), with charges
escalating to USD 1,250 per container in certain cases. Importers and exporters faced disruptions in their
supply chains, resulting in potential profit losses, additional costs such as demurrage and detention, and
challenges in fulfilling market demands and contractual obligations. Container owners were directly impacted
by the PCS, while truckers and terminal operators experienced restricted transport efficiency and increased
operational costs. Considering that the average value of goods in a 40-foot container is around USD 100,000,
the PCS alone represents a sizable share of the total value, underscoring the substantial economic impact of
port congestion on all parties involved.

10. Over 99 percent of international container shipments are carried by containerships that exceed 500
gross tonnage.

11. The draught measures the vertical distance from the bottom of a vessel’s keel to the water’s surface,
indicating how deeply the ship is situated in the water. Although the draught typically reflects a vessel’s
cargo load (Bai and Li 2022; Li et al. 2022), this measurement can be less informative for containerships
since loading and unloading operations often occur simultaneously.
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2.2. A Density-Based Spatial Clustering Algorithm

In order to accurately quantify port congestion, we follow the maritime literature by esti-

mating the likelihood that a vessel will first moor in an anchorage area within the port before

docking at a berth (Talley and Ng 2016; Karimi-Mamaghan et al. 2020; Bai et al. 2023).12

Such an estimation requires the precise identification of berth and anchorage areas, a task

for which practitioners before us have largely relied on navigational charts for individual

ports, making it both labor-intensive and challenging to generalize to global ports. Hence,

we automate the process by developing an iterative, multi-attribute, density-based spatial

clustering algorithm that is not only accurate in identifying different port areas but also

applicable to ports worldwide.

This algorithm identifies different port areas by focusing on the density of ships’ mooring

points recorded in the AIS data, which includes all historical visits of containerships to

each port, with each visit containing numerous AIS data points. Our algorithm operates in

two layers of clustering. The first layer identifies high-density areas, which are considered

potential berth and anchorage areas. The second layer refines these areas by considering

additional domain knowledge, such as the heading of ships during mooring, since vessels are

observed to dock at berths in an orderly and close fashion, while they moor in the anchorage

areas more randomly (Figure 1).

Our algorithm is specifically designed to address two primary challenges inherent in the

identification of berth and anchorage areas that existing clustering algorithms struggle to

handle. The primary challenge is the variability in the density of ships’ mooring points

across ports with large differences in trade volume handled, frequency of vessel visits, and

geographical morphology and boundaries. This variability necessitates an adaptive approach

to parameter setting for different ports. Our algorithm is designed to automatically iterate

and refine its clustering parameters for each individual port, thus facilitating the handling

of varied and complex port environments. This iterative process not only streamlines the

algorithm but also enhances its generalizability. Another challenge is to accurately distin-

12. An anchorage is a location within a port where ships can lower anchors, while a berth is a designated
spot within a port where vessels moor to load and unload cargo. If port congestion were not a concern, a
ship would dock at a berth immediately upon its arrival in the port to begin loading or unloading cargo.
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(a) Headings at a Berth (b) Headings at an Anchorage

Figure 1: Information on Headings

Notes. In both figures, a tip represents the bow of a ship. In (a), the headings are either in the same
direction or exactly opposite. As a result, two clusters can be formed with exact opposite headings. In (b),
the headings are random, with some of them appearing in a ring shape.

guish between berth and anchorage areas within ports, as they both have a high density of

ships’ mooring points. Our algorithm overcomes this by leveraging both the spatial (i.e.,

geographical coordinates) and non-spatial attributes (i.e., headings) in its two layers of clus-

tering. This innovative approach, based on our domain knowledge, significantly increases

the granularity and accuracy of our analysis.13,14

To illustrate our algorithm, Figures 2a to 2d show the berth (red, yellow, blue, pur-

ple, pink, cyan, and orange markers) and anchorage (markers of other colors) areas in the

following major container ports: Singapore (Panel a), Ningbo-Zhoushan in China (Panel

b), Rotterdam in the Netherlands (Panel c), and Los Angeles and Long Beach in the U.S.

13. The identification of berth and anchorage areas in global ports lays the foundation for a series of
granular measures of port performance, such as port handling efficiency and waiting time. Furthermore,
while our algorithm is tailored to identify berth and anchorage areas, its core mechanism – transforming
domain knowledge into non-spatial attributes and using them as additional metrics between data points in
an iterative clustering process – has broader applications, as it provides a versatile framework for classifying
clusters of varied densities with specific labels in other contexts as well (e.g., identification of disease hot-
spots, urban planning).

14. Appendix A and the companion paper (Bai et al. 2023) provide details on our clustering algorithm,
including pseudo-codes and a case study involving the Port of Ningbo-Zhoushan in China, which illustrates
the effectiveness of our methodology in identifying berth and anchorage areas in ports with different mor-
phologies compared to alternative methods.
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(Panel d). Our algorithm accurately captures the berth and anchorage areas in each port,

despite the large spectrum of geographical and operational port conditions. By applying our

algorithm to the real-time AIS satellite data, we construct a comprehensive, high-frequency

measure of global port congestion, as we discuss in the next section.

(a) Singapore (b) Ningbo-Zhoushan, China

(c) Rotterdam, Netherlands (d) Los Angeles and Long Beach, U.S.

Figure 2: Identification of Anchorage and Berth Areas of a Port Using Machine Learning

Notes. The figures plot the identification results of the berth and anchorage areas for each of the following
representative container ports worldwide: the Port of Singapore, Port of Ningbo-Zhoushan in China, Port
of Rotterdam in the Netherlands, and the Ports of Los Angeles and Long Beach in the U.S. We use different
colors to depict various clusters identified by our machine learning clustering algorithm (IMA-DBSCAN; see
Appendix A for details); specifically, we use red, yellow, blue, purple, pink, cyan, and orange to represent
clusters identified as anchorages, and the other colors to represent clusters identified as berths. The under-
lying sample for each figure takes the first 50,000 AIS observations of containerships entering each port since
1 January 2020.
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2.3. Port Congestion and the Index of Average Congestion Rate

Port congestion arises when ships cannot immediately load and/or unload cargo upon arrival

at ports, resulting in the vessels having to wait in an anchorage area for an opportunity to

dock at a berth. We define the Average Congestion Rate (ACR) for a port as the ratio of

containerships that moor at an anchorage before docking at a berth to the total number

of ship visits at the port.15 We calculate the monthly ACR for the top 50 container ports

worldwide during the sample period.

We derive a time series measure of global supply chain disruptions by computing the

weighted average of the ACR series for the top 50 container ports worldwide, with the

weights determined by the number of ship visits and thus reflecting the distinctive roles of

different ports within the global supply chain.16 Figure 3 displays our ACR index. Prior to

2019, the index remained stable around the sample median (17.8%), and it declined to 16%

from early 2019 to mid-2020. Subsequently, the index consistently rose to reach its peak at

25% in June 2021, indicative of the significant disruptions to the supply chain caused by the

Covid-19 pandemic.

Figure 4 presents the monthly ACR series for the top ten container ports worldwide

that are located in China, Singapore, South Korea, and the Netherlands, as well as the

Ports of Los Angeles and Long Beach in the U.S., for the period from January 2017 to July

2022 when the AIS data are available. These ports are pivotal in the global supply chain,

as they jointly account for more than 30% of the total volume of containerized seaborne

trade in the world. Following the onset of the Covid-19 pandemic in March 2020, the ACR

indices for several ports remained largely stable (e.g., Port of Rotterdam, Netherlands),

while only a few decreased (e.g., Port of Shanghai, China). However, as the pandemic

progressed from October 2020 onwards, congestion increased in the majority of ports, as

evinced by the increase in chromatic intensity in the figure.17 This implies that containerships

15. A ship visit, which is also known as a port call, refers to the arrival of a ship at a specific port where
it docks to load or unload cargo.

16. The weighting considers the differential impact on global supply chain disruptions resulting from changes
in the ACR at different ports. For instance, a slight increase in the ACR at the Port of Hong Kong in China
would likely have triggered a more pronounced global supply chain disruption than a significant increase at
the Port of Manila in the Philippines.

17. By our calculation, in late-2020, over 80% of inbound ships at the Port of Los Angeles in the U.S.
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Figure 3: ACR Index of Global Supply Chain Disruptions

Notes. The ACR index of global supply chain disruptions is derived by taking a weighted average of the ACR
series for the top 50 global container ports. The number of ship visits serves as the weight for each port.
The index is presented in percentage terms and has been seasonally adjusted. For the complete ranking of
container ports, please refer to https://www.worldshipping.org/top-50-ports (Accessed June 15, 2022).

encountered significant delays in the loading and/or unloading operations since October 2020,

thus disrupting the international freight collection and distribution of tradable goods.

Figure 5a plots the ACR index against the Harper Peterson Charter Rates Index (HARPEX).

The HARPEX is a widely-used composite indicator of container shipping rate changes in

the time charter market for eight different classes of containerships (Attinasi et al. 2021;

Benigno et al. 2022; Finck and Tillmann 2022), and is also used in the construction of the

GSCPI as a measure of cross-border transportation costs. Not surprisingly, we observe that

the two indices have moved similarly since the onset of the pandemic. As delays in container

processing became more prevalent and port congestion escalated, ships were tied up at ports.

This led to a significant shortage in the supply of shipping services, resulting in surging ship-

ping prices. However, it is also noteworthy that the two series did not align closely with each

other before the onset of the pandemic and in its aftermath. This observation is intuitive,

as the shipping price is an equilibrium object, and its fluctuations are influenced by both

were unable to dock at a berth immediately upon arrival. This observation aligns with official statistics.
According to figures released by the Pacific Merchant Shipping Association, the percentage of containerships
at Los Angeles waiting five or more days for unloading surged from 10% in August to 26% in December 2020.
Additionally, the Marine Exchange of Southern California reported that the number of vessels anchored in
Los Angeles waters also rose from fewer than 20 in August to more than 35 in December 2020.
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Figure 4: ACR for the Major Container Ports Worldwide

Notes. The heatmap presents the monthly ACR series for the top ten global container ports and the Ports of
Los Angeles and Long Beach in the U.S., covering the period from January 2017 to July 2022. These ports
jointly represent more than 30% of the total volume of containerized seaborne trade in the world. The ACR
series for each port is normalized, expressed as a percentage of its peak value observed within the sample
period. Cells in a darker shade indicate greater congestion for the corresponding port during the designated
month. The ACR of a port is defined as the proportion of containerships that moor at an anchorage area
before docking at a berth, relative to the total number of ship visits at the port.

demand and supply-side factors.

Lastly, we compare our ACR index with the GSCPI to highlight the differences in the

measurement of supply chain disruptions. The GSCPI uses information on cross-border

transportation costs and sub-components of the country-specific manufacturing PMI to infer

supply chain disruptions. As discussed in the introduction, the GSPI is potentially problem-

atic since it relies on: (i) transportation costs reflecting the mismatch between the supply

and demand for goods, while prices become disjoint from output during supply chain disrup-

tions, and (ii) information gathered from purchasing managers that may reflect subjective
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(a) ACR vs. HARPEX (b) ACR vs. GSCPI

Figure 5: Comparison Between the ACR and Other Measures of Supply Chain Disruptions

Notes. Figure 5a plots the ACR (red solid line) against the HARPEX (black dotted line), while Figure
5b plots the ACR against the GSCPI (black dashed line) during the sample period from January 2017 to
July 2022. The ACR is computed using the AIS data of containerships and the IMA-DBSCAN algorithm
developed in Appendix A. The original series of HARPEX is published by Harper Peterson and retrieved
from the Refinitiv data platform. Following Attinasi et al. (2021) and Benigno et al. (2022), we transform
the original series by computing the year-on-year percentage changes. The GSCPI is retrieved from the
New York Fed’s website (Source: https://www.newyorkfed.org/research/policy/gscpi#/overview (Accessed
August 10, 2022)). Both the ACR and HARPEX are measured in percent, while the GSCPI is measured in
standard deviations from the mean. All the series are seasonally adjusted.

views rather than realized disturbances to the supply chain.18

In contrast, our ACR index uses maritime satellite data to estimate the congestion at

seaports around the globe. Our approach avoids the main shortcomings of the alternative

measures. Since containerships operates on fixed itineraries, as extensively documented in

Stopford (2008), Song and Dong (2012), Wang, Meng, and Jia (2019), Brancaccio, Kaloupt-

sidi, and Papageorgiou (2020), and Brancaccio et al. (2023),19 our index is instead indepen-

dent from the mismatch between the supply and demand of goods, as evinced by Table 1

18. Appendix B elaborates on the shortcomings of using the shipping cost, sub-components of the man-
ufacturing PMI, and other indices of supply chain disruptions in the causality assessment. In particular,
we compare the U.S. supply disruptions index (SDI) by Smirnyagin and Tsyvinski (2022) to the ACR and
GSCPI indices. We find that the SDI and GSCPI align well, and an alternative estimation with the SDI
included as a measure of supply chain disruptions yields quantitatively similar results to those obtained
using the GSCPI.

19. Routes are rarely altered since diversions in shipping routes usually incur a large transition cost.
Changes in routes severely affect the stability of shipping operations and the loyalty of customers (Wang,
Meng, and Jia 2019).
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that shows that our ACR series is statistically uncorrelated with the number of ship vis-

its at each port (column, 1), whereas the HARPEX index that captures the shipping price

is significantly correlated with the number of ship visits (column 2).20 Furthermore, any

infrequent adjustments in shipping capacity across routes, and the resulting changes in con-

gestion at different ports, are canceled out when we aggregate the indices of port congestion

to construct the ACR index, hence enhancing the exogeneity of our ACR index to imbalances

between supply and demand in measuring global supply chain disruptions. Finally, we avoid

the issue of biased managerial perceptions by tracking the congestion of ports in real time.

Overall, we believe our index provides a powerful measure of supply chain disruptions.

Table 1: ACR, HARPEX, and Ship Visits

(1) (2)
ACR HARPEX

# Ship Visits -0.0018 −0.0286∗∗∗

(0.00183) (0.00614)
Port FE Yes N/A
Time FE Yes N/A
Obs 3,256 67
R2 0.0355 0.2499

Notes. Column (1) displays the estimated coefficient when we regress the port-specific ACR on the number
of ship visits to each port, controlling for both port and time fixed effects (FE). Column (2) presents the
estimated coefficient when we regress the HARPEX on the total number of ship visits across the top 50
container ports worldwide. Both the ACR and the number of ship visits are computed using the AIS data
of containerships and the IMA-DBSCAN algorithm developed in Appendix A. Meanwhile, the HARPEX is
constructed by taking the year-on-year percentage changes of the original series. ∗∗∗ indicates p < 0.01.

Figure 5b displays the ACR and GSCPI indices over the sample period from January

2017 to July 2022. Before 2020, the dynamics of the two indices were similar, but the

GSCPI substantially increased at the onset of the Covid-19 pandemic in early 2020 and

remained elevated in the first half of the year. From mid-2020 onwards, the two series

20. It should be noted that the correlation between the HARPEX and the number of ship visits is estimated
at the global level, as there is no disaggregated data on shipping prices at the port level. We also check the
robustness of our baseline results in Section 4.1 by applying a fitted ACR in our estimation after regressing
the port-specific ACR on the Oxford Stringency (OS) index (Mathieu et al. 2020) and port fixed effects; as
shown in Appendix F.1, such results are quantitatively similar to those obtained using the ACR directly.
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increased similarly until January 2022. di Giovanni et al. (2022) attribute the jump in the

GSCPI in early 2020 to the onset of the Chinese lockdown, and the sudden fall in the second

half of 2020 to the partial reopening of China and Europe. Our index of port congestion

indicates that the initial lockdown in China did not lead to congestion of a magnitude that

would generate a global supply chain disruption, and equally, the reopening of China and

Europe did not substantially ease the congestion in ports. Thus, the changes in the GSCPI

are likely driven by sudden changes in demand and management’s misperception of supply

chain issues as recorded by the PMI surveys. We also observe that the two series diverged

from each other again in early 2022, as the ACR remained elevated while the GSCPI had

already started plummeting. We argue that the high ACR could be largely attributed to

the stringent containment measures that were still in place in China during the first half of

2022, continuously exerting pressure on the global supply chain.

3. A Model of Congestion and Spare Capacity

In this section, we develop a model featuring imbalances in the supply and demand for

goods that result in spare capacity. The model is based on search and matching frictions

in the international product market similar to the framework in Michaillat and Saez (2015,

2022) and Ghassibe and Zanetti (2022), and incorporates transportation costs that generate

the separation of unprofitable matches; both features render prices no longer allocative and

unable to clear the goods market.21 Our model illustrates the central role of spare capacity

in uniquely identifying supply chain disruptions (Section 4) and links these disruptions to

the efficacy of monetary policy in controlling inflation (Section 5).

The economy is composed of maximizing firms and households. Firms can be either

exporters or importers. Exporters produce goods using a fixed amount of labor supplied by

households and incur transportation costs to sell the goods. Importers buy these goods from

exporters and sell them to the households.22 Households purchase goods from importers

21. Appendix C provides a discussion on the evidence of matching frictions in the international product
market and the separation of commercial trade linked to transportation costs.

22. Our approach is similar to the standard assumption that firms require internationally imported in-
termediate goods for the production of final goods. See, for instance, Costinot, Vogel, and Wang (2013),
Kasahara and Lapham (2013), and Ramondo and Rodríguez-Clare (2013) and the references therein.
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using money that is the numeraire in the economy.

In the rest of this section, we begin by studying the separate problems of exporting

and importing firms that face transportation and visiting costs, respectively, to derive the

aggregate supply. We then study the problem of households, who determine the aggregate

demand. Subsequently, we show that in equilibrium, search frictions and transportation

costs determine the spare capacity in the economy whose adjustment is critical to the study

of disruptions to the supply chain.

3.1. Firms

Firms comprise exporters and importers. Exporters produce goods with a capacity deter-

mined by the inelastic labor inputs l > 0. Exporters sell goods to the importers in a frictional

goods market that prevents the sale of the full capacity. Each unmatched (identified by the

subscript U) importer makes visits iU to unmatched exporters at a unitary cost ρ > 0 and

upon a successful trade, resells the purchased goods to households at the set price p.

Matching process. In each period, a constant-returns-to-scale matching function encapsulates

the search frictions in the product market, determining the number of meetings (m) between

unmatched exporters and importers according to:

m = (x−ξ
U + i−ξ

U )−
1
ξ , (1)

where xU and iU are the number of unmatched exporters and importers, respectively, and

the parameter ξ is the elasticity of substitution between the inputs of the matching function.

We assume ξ > 0, such that m ≤ min{xU , iU}.

We define the product market tightness θ as the ratio between the number of visits by the

unmatched importers and the number of unmatched exporters, such that θ ≡ iU/xU . Given

the law of large numbers, product market tightness is taken as given by single exporters and

importers, and it determines the probabilities that exporters and importers meet each others

given the constant returns to scale in the matching function. Specifically, the probability for
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an exporter to meet an importer is:

f(θ) =
m

xU

= (1 + θ−ξ)−
1
ξ , (2)

and the probability for an importer to meet an exporter with probability:

q(θ) =
m

iU
= (1 + θξ)−

1
ξ . (3)

The function f(θ) is smooth and strictly increasing in the domain [0,+∞), with f(0) = 0,

limθ→+∞ f(θ) = 1, and f ′(θ) > 0, whereas the function q(θ) is smooth and strictly decreasing

in the same domain [0,+∞), with q(0) = 1, limθ→+∞ q(θ) = 0, and q′(θ) < 0. Two properties

that will be useful later are that f(θ)/q(θ) = θ and df(θ)/dθ = q(θ)1+ξ.

Transportation cost. Exporters pay an idiosyncratic transportation cost to export goods.23

In each period, exporters draw a transportation cost z from the log-normal distribution

G(z) with a scaling parameter γ and the standard deviation σ, i.e., G(z) ≡ Φ
[
(log z−γ)/σ

]
,

where Φ(·) is the standard normal cumulative density function.24 As we discuss later, there

exists a reservation level of transportation cost z̄, above which matches are unprofitable and

therefore severed. Consequently, the matches with a draw of transportation cost higher than

the reservation level (z > z̄) are severed, whereas they continue otherwise (z ≤ z̄).

Recursive value functions. At the beginning of each period, the matched exporters sell the

produced goods to importers and pay the transportation costs, and the matched importers

sell their imported goods to households and pay the import prices. The exporters and

importers that are unmatched search to form a match with each other. At the beginning

of the next period, each exporter draws a new transportation cost and they continue in

the match if the new cost is sufficiently low for the match to remain profitable while the

unprofitable matches are severed (we describe the match separation decision later in the

23. Our results continue hold if the transportation cost is borne by importers instead. This is because the
match separation condition (12) is invariant to such a modeling choice.

24. We could also apply a more general setup that each exporter maintains its previous draw of transporta-
tion cost with probability 1−φ, and with probability φ, the exporter draws a new transportation cost from
G(z). This setup is often found in the traditional labor search and matching theory that studies the labor
market outcomes following a rise in economic turbulence (den Haan, Ramey, and Haefke 2005; Fujita 2018).
Despite more tedious algebra, our main results still hold.
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section).

Four recursive value functions describe the values for the different status of exporters

and importers. The value for a matched (identified by the subscript M) exporter, XM(z), is

equal to:

XM(z) = r(z)− z + βEz′
[

max
(
XM(z′), XU

)]
, (4)

where r(z) is the price of the imported goods that is endogenously determined, z is the cost

of transportation, β for the discount factor, and z′ for the draw of transportation cost at the

beginning of the next period. Equation (4) shows that the present value of being a matched

exporter is the profit margin r(z)−z, plus the continuation value which depends on whether

the exporter endogenously separates from the match. Such a decision is determined by z′,

and hence the max operator characterizes the optimal continuation/separation decision.

The value for an unmatched exporter, XU , is:

XU = βf(θ)Ez′
[

max
(
XM(z′), XU

)]
+ β

(
1− f(θ)

)
XU . (5)

With probability f(θ), the unmatched exporter meets an importer and then decides whether

to endogenously separate if the given draw of transportation cost makes the match unprof-

itable. With probability 1− f(θ), the exporter forgoes a successful match with an importer

and remains unmatched in the next period.

The value of matched importer, IM(z), is:

IM(z) = p− r(z) + βEz′
[

max
(
IM(z′), IU

)]
. (6)

The importer earns the price p by selling the imported goods to the households and it pays

the import price r(z) to the exporter. The max operator characterizes the optimal contin-

uation/separation decision conditional on the draw of transportation cost at the beginning

of the next period. If the drawn transportation cost makes the match unprofitable, the

importer endogenously separates from the match and hence starts the next period with a

value equal to:

IU = −ρ+ βq(θ)Ez′
[

max
(
IM(z′), IU

)]
+ β

(
1− q(θ)

)
IU , (7)
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where ρ is a fixed cost to pay per visit. We assume free entry into the international product

market that drives the value for an unmatched importer to zero in equilibrium, i.e., IU = 0.

Nash bargaining. Nash bargaining splits the total surplus from the matching between the

exporter and the importer. The total surplus from matching is equal to:

S(z) = XM(z)−XU + IM(z)− IU . (8)

The exporter earns a constant share η of the total surplus, and the importer earns the

remaining share 1− η, which in equilibrium yields:

η
(
IM(z)− IU

)
= (1− η)

(
XM(z)−XU

)
. (9)

Given the equilibrium rule (9), the value functions (4), (5), (6), and the free entry condition

IU = 0, the import price that splits the surplus is equal to:

r(z) = η(p+ ρθ) + (1− η)z. (10)

Equation (10) shows that the bargaining power η is central to the determination of the

import price. When the exporters have significant bargaining power (η → 1), they earn the

total surplus accrued to the importers from selling the goods to the household (p+ ρθ). On

the other hand, when the bargaining power of the exporter is low (η → 0), the import price

is close to the cost of transportation (z). Intermediate values for the bargaining parameter

proportionally split the total surplus between exporters and importers, with the share of

surplus determined by the bargaining parameter. Important to our analysis, congestion in

the matching process, captured by tightness in the product market, worsens the bargaining

position of importers by lowering their matching probability, thus increasing the price they

are willing to pay to buy goods from exporters.

Match separation. Since the total value for a matched exporter and a matched importer,

i.e., XM(z) + IM(z), strictly decreases with the cost of transportation z, there exists a

cut-off transportation cost z̄, above which the costs are too high and the matches become

unprofitable and are severed. This cut-off makes the total surplus in Equation (8) equal to
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zero, as follows:

S(z̄) = 0. (11)

By substituting the value functions (4), (5), (6), and the free entry condition IU = 0 into

Equation (11), we can express the match separation condition as a function of price p,

reservation transportation cost z̄, and product market tightness θ, defined for all p ∈ (0,+∞),

z̄ ∈ (0,+∞), and θ ∈ [0,+∞), satisfying:

F(p, z̄, θ) = p− z̄ +
(
1− ηf(θ)

)
βEz′S(z

′) = 0, (12)

where the expected surplus is defined by Ez′S(z
′) =

∫ z̄

0
S(z′)dG(z′).

Match creation. Using the value function for an unmatched importer (7) and the free entry

condition IU = 0, we define the match creation condition as a function of reservation trans-

portation cost z̄ and product market tightness θ, defined for all z̄ ∈ (0,+∞) and θ ∈ [0,+∞),

satisfying:

H(z̄, θ) =
ρ

q(θ)
− (1− η)βEz′S(z

′) = 0. (13)

Aggregate supply. The aggregate supply in the economy results from the steady-state equi-

librium in the international product market, which is defined as:

Definition 1. The steady-state equilibrium in the international product market consists of

a price p ∈ (0,+∞), a reservation transportation cost z̄ ∈ (0,+∞), and a product market

tightness θ ∈ [0,+∞) such that the conditions for match separation (12) and match creation

(13) simultaneously hold:

F(z̄, θ, p) = H(z̄, θ) = 0.

Definition 1 indicates that the equilibrium product market tightness is a function of

price and reservation transportation cost. This relationship is determined by the conditions

of match separation and creation, as stated in Equations (12) and (13), respectively.

Proposition 1. In equilibrium, the price p, reservation transportation cost z̄, and product

market tightness θ satisfy the relationship:

θ(p, z̄) =
1− η

ηρ

(
p− z̄ + β

∫ z̄

0

G(z′)dz′
)
, (14)
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where G(.) is the log-normal cumulative density function. Hence, the product market tightness

θ has the following properties:

1. θ(pmin, z̄) = 0 and limp→+∞ θ(p, z̄) = +∞, where pmin satisfies:

pmin − z̄ + β

∫ z̄

0

G(z′)dz′ = 0;

2. θ(p, z̄) is strictly increasing on [pmin,+∞);

3. θ(p, z̄) is linear on [pmin,+∞);

4. limz̄→0+ θ(p, z̄) = (1− η)p/(ηρ) and θ(p, z̄max) = 0, where z̄max satisfies:

p− z̄max + β

∫ z̄max

0

G(z′)dz′ = 0;

5. θ(p, z̄) is strictly decreasing on (0, z̄max]; and

6. θ(p, z̄) is convex on (0, z̄max].

Proof. See Appendix D.1. ■

Proposition 1 establishes that the product market tightness strictly increases with the

price of goods and decreases with the reservation transportation cost. These properties are

intuitive. When the total surplus rises due to a higher price, importers visit more exporters.

Conversely, a higher reservation transportation cost reduces the total surplus shared between

exporters and importers at the margin. This, in turn, dampens the incentives for importers

to visit exporters, leading to a slack product market.25

Next, the aggregate supply comprises the quantity of goods traded by the importers

and exporters that survive separation for a given productive capacity l. To determine the

steady-state number of matched exporters, we consider the law of motion for the number of

matched exporters at the beginning of the next period:

x′
M = G(z̄)xM + f(θ)G(z̄)xU ,

25. An increase in the reservation transportation cost increases the expected total surplus βEz′S(z′), since
matches are less likely to be dismissed in the next period. However, such a positive effect is outweighed by
the loss in the profit margin p− z̄, resulting in a negative net effect on the total surplus.
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and that for the number of unmatched exporters at the beginning of the next period:

x′
U =

[
1− f(θ) + f(θ)

(
1−G(z̄)

)]
xU +

(
1−G(z̄)

)
xM .

By focusing on the steady-state equilibrium and normalizing the total number of matched

and unmatched exporters to one, i.e., xM + xU = 1, we derive the equilibrium number of

matched exporters xeqm
M equal to:

xeqm
M (z̄, θ) =

f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
.

The aggregate supply in the economy is equal to the quantity of goods supplied by matched

exporters for a given productive capacity l:

cs(z̄, θ) = xeqm
M (z̄, θ) · l = f(θ)G(z̄)

1−G(z̄) + f(θ)G(z̄)
l. (15)

By substituting the expressions for f(θ) and θ from Equations (2) and (14) into Equation

(15), we express the aggregate supply in the economy as a function of price and reservation

transportation cost, as stated in the next definition.

Definition 2. The aggregate supply cs, expressed as a function of price p and reservation

transportation cost z̄, is equal to:

cs(p, z̄) =

{
1 +

[
1−η
ηρ

(
p− z̄ + β

∫ z̄

0
G(z′)dz′

)]−ξ}− 1
ξG(z̄)

1−G(z̄) +
{
1 +

[
1−η
ηρ

(
p− z̄ + β

∫ z̄

0
G(z′)dz′

)]−ξ}− 1
ξG(z̄)

l, (16)

for all (p, z̄) ∈ (0,+∞)× (0,+∞) satisfying:

p− z̄ + β

∫ z̄

0

G(z′)dz′ ≥ 0. (17)

Since the aggregate supply in (16) is determined by two endogenous variables, there exists

infinite combinations of the price and reservation transportation cost that yield the same

aggregate supply, as long as they satisfy the constraint (17).26 We resolve the indeterminacy

26. The indeterminacy of the equilibrium is standard in search models. For instance, it arises in Michaillat
and Saez (2015), where either price or tightness must be assumed fixed to select an equilibrium. Our
model also does not allow for an equilibrium in which both the price and reservation transportation cost
can be determined simultaneously. The reason is similar: each importer-household pair decides the price
in a situation of bilateral monopoly. Since the solution to the bilateral monopoly problem is indeterminate
(Howitt and McAfee 1987; Hall 2005), it cannot be used to impose a condition on the price.
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by selecting the equilibrium where the reservation transportation cost is to remain fixed at an

arbitrary level τ , and prices move to satisfy the aggregate supply condition. By considering

the equilibrium with freely adjusting prices, we can study the responses of prices to the

distinct disturbances to demand, supply, and the supply chain, and use the comovements

across variables to formulate unique restrictions to estimate the causal effect of supply chain

shocks in our SVAR model developed in Section 4.

Our next Definition 2′ recasts the original Definition 2 of aggregate supply as a function

of the price p for an arbitrary transportation cost τ .

Definition 2′. For an arbitrary reservation transportation cost τ ∈ (0,+∞), the flexible-

price aggregate supply cflexs is the function of price p defined by:

cflexs (p) =

{
1 +

[
1−η
ηρ

(
p− τ + β

∫ τ

0
G(z′)dz′

)]−ξ}− 1
ξG(τ)

1−G(τ) +
{
1 +

[
1−η
ηρ

(
p− τ + β

∫ τ

0
G(z′)dz′

)]−ξ}− 1
ξG(τ)

l, (18)

for all p ∈ [pmin,+∞), where pmin satisfies:

pmin − τ + β

∫ τ

0

G(z′)dz′ = 0.

The next proposition outlines the properties of the aggregate supply when the price moves

to satisfy the aggregate supply condition.27

Proposition 2. The flexible-price aggregate supply cflexs has the following properties:

1. cflexs (pmin) = 0 and limp→+∞ cflexs (p) = G(τ)l;

2. cflexs (p) is strictly increasing in p on [pmin,+∞); and

3. cflexs (p) is concave on [pmin,+∞).

Proof. See Appendix D.2. ■

The aggregate supply cflexs (p) represents the quantity of goods traded that satisfy (18) for

a given transportation cost τ . Therefore, the dynamics of the aggregate supply is uniquely

27. Appendix E discusses the alternative pricing mechanism in which the price of goods is fixed while
the reservation transportation cost can vary. In addition to the derivation of the analytical properties, we
apply numerical methods to approximate such a fixed-price aggregate supply and illustrate the behavior over
different values of the reservation transportation cost.
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determined by the interaction between the price and tightness in the product market. A

higher price first leads to a higher total surplus by increasing the value of the matched

importer. This, in turn, increases the incentives for importers to visit exporters, resulting in

a higher product market tightness and a greater probability for an exporter to match with

an importer. More matches are created, leading to an increase in aggregate supply. Thus,

while transportation costs and matching frictions decrease the aggregate supply, and the

economy entails spare capacity, the model retains the standard positive relationship between

the price and the aggregate supply.

Figure 6 graphically shows the equilibrium of the aggregate supply in the quantity-price

(Q,p) space. For a given capacity of the economy l (yellow line), the transportation costs

reduce the production capacity to G(τ)l (green line), and the search frictions further reduce

the supply to the produced level cflexs (p) (blue line) that standardly increases with the price,

as discussed in the previous paragraph. Spare capacity, represented by the difference between

the capacity of the economy and the actual production (i.e., l − cflexs (p)), results from the

transportation and the search and matching costs. It is worth noting that in our model the

spare capacity is equivalent to unemployment since it represents the difference the supply of

labor linked to the capacity of the economy and the demand of labor linked with the actual

production.
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Figure 6: Supply Side of the Economy when the Price of Goods is Flexible

26



3.2. Households

The representative household derives utility from consuming goods and holding real money

balances.28 The household’s utility is given by:

u
(
c,
m

p

)
=

χ

1 + χ
c

ϵ−1
ϵ +

1

1 + χ

(m
p

) ϵ−1
ϵ ,

where c denotes consumption, m is the nominal money balance, p is the price, the parameter

χ > 0 represents the taste for consumption relative to holding money, and the parameter

ϵ > 1 is the elasticity of substitution between consumption and real money balances.

Taking the price as given, the representative household chooses consumption and nominal

money balances to maximize utility, subject to the budget constraint. The household, with

an endowment µ > 0 of nominal money, purchases c goods at price p from importers and

holds m units of nominal money balances. This leads to the following budget constraint:

pc+m ≤ µ.

Solving the utility-maximization problem yields the optimal condition for the household:

χ

1 + χ
c−

1
ϵ =

1

1 + χ

(m
p

)− 1
ϵ , (19)

implying that she is indifferent between consumption and holding money at the margin.

Aggregate Demand. The aggregate demand in the economy is equal to the level of consump-

tion that maximizes utility at a given price when all resources are consumed:

Definition 3. The aggregate demand cd for a given price p ∈ (0,+∞) equals:

cd(p) =
χϵ

1 + χϵ

µ

p
. (20)

Proposition 3. cd(p) is strictly decreasing and convex on (0,+∞).

Proof. Direct proof from Equation (20). ■

28. We borrow the money in the utility function directly from Michaillat and Saez (2015) to ensure that
aggregate demand plays a meaningful role in driving the macro aggregates. More importantly, the presence
of money is necessary for studying the state-dependent effects of a contractionary monetary policy shock, as
outlined in Section 5.
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Figure 7 in the next section shows the aggregate demand, which is downward sloping in

the (c, p) plane. Since a higher price leads to lower real money balances, the households’

indifference between consumption and holding money implies that they would behave opti-

mally and desire lower consumption when the price is higher. Hence, the aggregate demand

in the economy decreases with the price.

3.3. Flexible-Price Equilibrium

With the flexible-price aggregate supply and aggregate demand sketched out, we define a

flexible-price equilibrium as an equilibrium in which the reservation transportation cost is

an external parameter:

Definition 4. A flexible-price equilibrium parameterized by τ > 0 consists of a price p and

a reservation transportation cost z̄ such that the flexible-price aggregate supply equals the

aggregate demand:

cflexs (p) = cd(p), (21)

while the reservation transportation cost is given by the parameter τ , i.e., z̄ = τ .

Proposition 4. For any τ > 0, there exists a unique flexible-price equilibrium parameterized

by τ that features positive price and consumption.

Proof. See Appendix D.3. ■

Figure 7 depicts the flexible-price aggregate supply, the aggregate demand, and the cor-

responding flexible-price equilibrium. The equilibrium price is at the intersection of the

flexible-price aggregate supply and aggregate demand in the (c, p) plane. Both the theoreti-

cal upper bound of the flexible-price aggregate supply if the matching frictions were absent

and productive capacity are also plotted in the figure for comparison.

3.4. Comparative Statics

We use comparative statics to derive the responses of the macro aggregates to adverse shocks

to demand, labor supply, and supply chain, respectively. The responses will provide unique
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Figure 7: Flexible-Price Aggregate Supply, Aggregate Demand, and Flexible-Price Equi-
librium

identifying restrictions for studying the causal effects of supply chain disturbances in the

empirical SVAR model in the next section. In our model, an adverse shock to aggregate

demand is either a decrease in the money supply, µ, or in the preference for consuming

goods, χ. An adverse shock to labor supply is a negative disturbance to the labor supply

(or equivalently, productive capacity), l. An adverse shock to supply chain is a compre-

hensive increase in the distribution of transportation costs, encapsulated by a rise in γ, the

scale parameter of the log-normal distribution of transportation costs. Ceteris paribus, an

increase in γ implies a higher average transportation cost, i.e., exp(γ + σ2/2). Proposition 5

summarizes the responses of the macro aggregates to these distinct shocks.29

Proposition 5. In equilibrium:

• An adverse shock to aggregate demand increases matching cost and spare capac-

ity (or equivalently, unemployment), while it decreases consumption (or equivalently,

output), price, product market tightness, and import price.

• An adverse shock to labor supply increases price, product market tightness, and

import price, while it decreases consumption (or equivalently, output), matching cost,

and spare capacity (or equivalently, unemployment).
29. Unlike Michaillat and Saez (2015) in which there is a matching cost that differentiates consumption

from output, consumption and output are equivalent in our model.
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• An adverse shock to supply chain increases price and spare capacity (or equiva-

lently, unemployment), while it decreases consumption (or equivalently, output). The

responses of product market tightness, import price, and matching cost are undeter-

mined.

Proof. See Appendix D.4. ■

Table 2 summarizes the signs of the responses of the macro aggregates to the three dif-

ferent shocks. Figure 8 graphically illustrates the comparative statics (left panels), alongside

the corresponding equilibrium condition between product market tightness and price (right

panels) from Equation (14) that describes the optimal interplay between product market

tightness and price.

Table 2: Comparative Statics for Adverse Shocks to Aggregate Demand, Labor Supply,
and Supply Chain

Effects On:

Adverse Shock To: Consumption
(or Output)

c

Price

p

Product Market
Tightness

θ

Import
Price
r

Matching
Cost

G(τ)l − c

Spare Capacity
(or Unemployment)

l − c

Aggregate Demand − − − − + +

Labor Supply − + + + − −
Supply Chain − + N/A N/A N/A +

Notes. The table summarizes the comparative statics in Proposition 5. An adverse shock to aggregate
demand is a decrease in money supply, µ, or in the taste for consumption of goods, χ. An adverse shock
to labor supply is a decrease in labor supply (or equivalently, productive capacity), l. An adverse shock to
supply chain is an increase in the scale parameter of the log-normal distribution of transportation costs, γ.

Panel (a) in Figure 8 shows the response of the system to a decline in aggregate demand.

The aggregate demand curve shifts inwards, driven by the preference for lower consumption

by households, either because they hold less money or prefer to consume less. In equilib-

rium, the price decreases to clear the market. As the price decreases, importers visit fewer

exporters to participate in trade, hence lowering product market tightness. The declines

in price and product market tightness then contribute to a lower import price, as not only

does a trade itself become less profitable, but also the probability of getting into a trade for

an importer becomes higher, given the weakened congestion. Consequently, exporters sell a
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Figure 8: Graphical Representation of Comparative Statics
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lower fraction of their productive capacity to importers, resulting in a decrease in consump-

tion (or equivalently, output). This leads to an increase in matching cost and spare capacity

(or equivalently, unemployment).

Panel (b) in Figure 8 shows the response of the system to a negative labor supply shock

that decreases productive capacity.30 The negative shock to the aggregate supply causes it

to rotate inwards while leaving pmin unchanged. The price increases to clear the market, and

consumption (or equivalently, output) decreases as the equilibrium moves upwards along the

aggregate demand curve. The increase in the price raises product market tightness. This

simultaneous rise in price and product market tightness leads to a higher import price. Along

with the contraction in productive capacity, this results in lower matching costs and reduced

spare capacity (or equivalently, unemployment).

Lastly, Panel (c) in Figure 8 shows the response of the system to an increase in trans-

portation costs corresponding to a negative supply chain shock, encapsulated by the increase

in the scale parameter of the log-normal distribution of transportation costs. The increase

generates a higher mean transportation cost, increasing the probability of drawing a trans-

portation cost above the reservation threshold. Since the reservation threshold is fixed, the

expected total surplus from a trade decreases without a change in the price. To continue

benefiting from trade, importers raise the price of imported goods to households and pass on

these costs to consumers. Consequently, the price rises while consumption (or equivalently,

output) falls. Graphically, this process is represented by an inward shift of the aggregate

supply curve, and unlike in the negative labor supply shock, pmin increases in response to the

shock. Since the productive capacity (or equivalently, labor supply) is fixed, spare capacity

(or equivalently, unemployment) increases in response to the negative supply chain shock.

In terms of the effect on product market tightness, as seen in Equation (22),

θ(γ) =
1− η

ηρ

[
p(γ)− τ︸ ︷︷ ︸

Profit Margin ↑

+ β

∫ τ

0

Φ(
log z′ − γ

σ
)dz′︸ ︷︷ ︸

Expected Total Surplus ↓

]
, (22)

the result remains ambiguous. On the one hand, an increase in γ reduces the expected

30. This shock is commonly termed as a “supply shock” and has been studied intensively in the literature.
See, for instance, del Rio-Chanona et al. (2020), Bonadio et al. (2021), Brinca, Duarte, and Faria-e-Castro
(2021), and Leyva and Urrutia (2022).
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total surplus, since it becomes more likely to obtain a bad draw that severs trade. On the

other hand, an increase in γ raises the price, and thus, the profit margin. Therefore, if the

price rises to a level that offsets the negative effect of a lower expected total surplus, product

market tightness will increase, as depicted in Panel (c) of Figure 8. Alternatively, if the price

increase is insufficient to reverse the aforementioned relationship, product market tightness

will decrease accordingly.

Lastly, as discussed in Appendix D.4, the corresponding changes in import price and

matching cost depend on how the price and product market tightness evolve following an

adverse shock to supply chain. Therefore, their comparative statics also remain ambiguous.

4. The Causal Effects of Supply Chain Disruptions

In this section, we study the causal effects of supply chain disruptions by developing a

SVAR model that uses our ACR index and restricts the responses of the macro aggregates

according to our theoretical results.31 We also study the differences between our index and

the alternative GSCPI, focusing on the statistical significance and historical contribution of

disruption shocks to the supply chain during the Covid-19 pandemic.

4.1. A SVAR Model with Sign and Zero Restrictions

Our empirical model is based on Rubio-Ramirez, Waggoner, and Zha (2010) and Arias,

Rubio-Ramirez, and Waggoner (2018):

y′
tA0 =

L∑
l=1

y′
t−lAl + ω′

tC + ϵ′t, 1 ≤ t ≤ T, (23)

where yt is an n×1 vector of endogenous variables, ωt = [1, t]′ is a 2×1 vector of a constant

and a linear trend, ϵt is an n × 1 vector of structural shocks, Al is an n × n matrix of

structural parameters for 0 ≤ l ≤ L with A0 invertible, C is a 2× n matrix of parameters,

31. When we disentangle the causal effects of a supply chain disruption shock from others, it is important to
include the relevant variable(s) necessary for identification in the econometric models. This step is crucial to
prevent the omitted variable bias, which could introduce a serious flaw in certain scenarios. For instance, an
oil price shock could influence real GDP, inflation, and unemployment similarly to a supply chain disruption
shock (Känzig 2021; Gagliardone and Gertler 2023).
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L is the lag length, and T is the sample size. The vector ϵt, conditional on past information

and the initial conditions y0, . . . ,y1−L is Gaussian with mean zero and covariance matrix

1n×n, i.e., the n× n identity matrix. The SVAR described in Equation (23) can be written

compactly as:

y′
tA0 = x′

tA+ + ϵ′t, 1 ≤ t ≤ T, (24)

where A′
+ = [A′

1 . . . A′
L C ′] and x′

t = [y′
t−1 . . . y′

t−L ω′
t] for 1 ≤ t ≤ T . The dimension

of A+ is m× n, where m = nL + 2. The reduced-form representation implied by Equation

(24) is given by:

y′
t = x′

tB + u′
t, 1 ≤ t ≤ T,

where B = A+A
−1
0 ,u′

t = ϵ′tA
−1
0 , and E(utu

′
t) = Σ = (A0A

′
0)

−1. The matrices B and Σ

are the reduced-form parameters, while A0 and A+ are the structural parameters.

We estimate the model using the monthly U.S. series for real GDP, GDP deflator, un-

employment, import price, as well as our ACR index over the period from January 2017 to

July 2022, with all series being seasonally adjusted. All the variables are from the Federal

Reserve Economic Data (FRED), maintained by the Federal Reserve Bank of St. Louis.32,33

The real GDP, GDP deflator, and import price are in log percent, while the unemployment

and ACR are in percent. We set the number of lags to two in the baseline specification, but

the results are robust to considering one or three lags.34

Our identification scheme applies the sign restrictions from our theoretical model, which

are summarized in Table 2, as well as the zero restrictions on the responses of the ACR

32. The mnemonics of the variables are: GDPC1 (real GDP), INDPRO (industrial production), GDPDEF (GDP
implicit price deflator), CPIAUCSL (consumer price index), PPIFG (producer price index), UNRATE (unem-
ployment), and IREXFDFLS (import price). The monthly time series for real GDP and GDP deflator are
constructed using interpolation of the corresponding quarterly time series, as in Bernanke and Mihov (1998)
and Arias, Caldara, and Rubio-Ramírez (2019). Specifically, we apply the Chow-Lin method for temporal
disaggregation (Chow and Lin 1971) to interpolate the real GDP based on the industrial production index,
while interpolating the GDP deflator based on the consumer price index and the producer price index. The
unemployment and import price are raw series from the U.S. Bureau of Labor Statistics.

33. Considering that international trade in goods, rather than services, was primarily affected by global
supply chain disruptions, we conduct a robustness check of our baseline results. We do this by replacing the
monthly U.S. series of the GDP deflator with the Personal Consumption Expenditures (PCE) goods price
index. The mnemonic for this index in the FRED database is DGDSRG3M086SBEA. As shown in Appendix
F.2, while the baseline results remain consistent, the identification of the causal effects of an adverse shock
to the supply chain becomes even more pronounced.

34. Appendix F.3 demonstrates the robustness of our baseline results when considering different lag struc-
tures and extended horizons to impose the sign restrictions on IRFs.
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index to adverse aggregate demand and labor supply shocks. We estimate the SVAR using

a Bayesian approach as in Arias, Rubio-Ramirez, and Waggoner (2018), Arias, Caldara, and

Rubio-Ramírez (2019), and Arias et al. (2023) with restrictions on the first period of response

(i.e., k = 1), thus imposing a minimal structure as in Mumtaz and Zanetti (2012, 2015).35

More concretely, we impose the following restrictions:

Restriction 1. An adverse shock to aggregate demand leads to a negative response of

real GDP, GDP deflator, and import price, as well as to a positive response of unemployment

at k = 1. ACR does not respond at k = 1.

Restriction 2. An adverse shock to labor supply leads to a negative response of real

GDP and unemployment, as well as to a positive response of GDP deflator and import price

at k = 1. ACR does not respond at k = 1.

Restriction 3. An adverse shock to supply chain leads to a negative response of real

GDP, as well as to a positive response of GDP deflator, unemployment, and ACR at k = 1.

Figures 9, 10, and 11 present our baseline results for the responses of the endogenous

variables to an adverse shock to aggregate demand, labor supply, and the supply chain

respectively. The solid line shows the point-wise posterior median IRFs of the endogenous

variables to each structural shock, and the gray-shaded bands represent the corresponding

68% and 90% posterior probability bands.36 We start by discussing the IRFs to an adverse

shock to aggregate demand in Figure 9. On impact, real GDP declines significantly by

approximately 1.0%, while unemployment rises sharply by more than 0.5%. Such responses

persist with a high posterior probability for the first six months after the shock. In contrast,

the response of the GDP deflator is more muted, with its initial fall sitting at -0.1% before

gradually reverting back to zero after a one-year window. Import price exhibits a similar

35. We impose a normal-generalized-normal (NGN) prior distribution over the structural parameters A0

and A+. The NGN prior is a conjugate prior characterized by four parameters (ν,Φ,Ψ,Ω). The parameters
ν and Φ govern the marginal prior distribution of vec(A0), while the remaining parameters Ψ and Ω govern
the prior distribution of vec(A+), conditional on A0. Our choice of the prior density parameterization is
ν = 0,Φ = 0n×n,Ψ = 0m×n, and Ω−1 = 0m×m. This parameterization generates prior densities that are
equivalent to those in Uhlig (2005). Nevertheless, our results are robust to using the prior robust approach
in Giacomini and Kitagawa (2021), as illustrated in Appendix F.4.

36. The results are based on 100,000 independent draws from the posterior distribution of the structural
parameters, and the structural shocks are of size one standard deviation.

35



pattern, although a zero response emerges much sooner at the six-month mark. Lastly, the

response of the ACR index is less precisely estimated, with a large posterior probability mass

centered around zero.

Figure 9: IRFs to an Adverse Shock to Aggregate Demand: Baseline

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using the
ACR index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the
shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is
based on 100,000 independent draws.

Figure 10 shows the IRFs to an adverse shock to labor supply. On impact, following

Restriction 2, both the responses of real GDP and unemployment are negative. Subsequently,

real GDP continues to fall, with a zero response almost at the boundary of the 90% confidence

set near the trough, which occurs about three months after the shock. Largely due to

such a fall in real GDP, the initial decline in unemployment is quickly reversed, and it

turns significantly positive within one quarter from the shock, peaking at approximately

0.25% before reverting back to zero. The GDP deflator increases and remains elevated for

approximately one year, reflecting the lag effects of supply-side shocks. Import price again

exhibits a similar pattern, but the peak is reached at a much earlier horizon. Lastly, the

median response of ACR is zero on impact and consistently above zero for almost one year

afterwards.

Finally, Figure 11 shows the IRFs following a negative shock to the supply chain. The
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Figure 10: IRFs to an Adverse Shock to Labor Supply: Baseline

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using the ACR
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.

median response of real GDP is negative on impact, and it remains below zero for more

than one quarter after the shock. The unemployment response mirrors that of real GDP

in magnitude. The increases in both the GDP deflator and import price align with the

magnitude observed in the labor supply shock, highlighting the significant role of supply

chain disruptions in driving up prices. Despite the uncertainty around our estimates, as

evinced by the wide posterior probability bands, the positive responses of both the GDP

deflator and import price are still statistically significant at the 68% level of significance.

Lastly, the response of the ACR index remains elevated for nearly one year after the shock.

4.2. Comparison Between the ACR and GSCPI

In this section, we assess the implications of the differences between the ACR and GSCPI

indices for the readings that the SVAR model makes regarding the causal effect of supply

chain disruptions on inflation by studying: (i) IRFs to an adverse shock to supply chain, (ii)

Forecast Error Variance Decomposition (FEVD), and (iii) Historical Decomposition (HD),
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Figure 11: IRFs to an Adverse Shock to Supply Chain: Baseline

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the ACR
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.

using our empirical model and the sign and zero restrictions developed in Section 4.1.37 As

illustrated in Section 2.3, we find that the behaviors of the two indices diverge significantly

from early 2020 onwards, and the substantial increase in the GSCPI at the onset of the

Covid-19 pandemic is likely driven by sudden changes in demand and the management’s

misperception of supply chain issues as recorded by the PMI surveys.

Figure 12 shows the IRFs following an adverse shock to the supply chain for the GSCPI

index. The responses of real GDP and unemployment closely resemble the baseline responses

when we use the ACR index (Figure 11). The responses of the GDP deflator and import

price are around zero and statistically insignificant, and the response of the GSCPI is positive

on impact while returning to zero after the one-quarter mark.

Figures 13a and 13b illustrate the proportion of the forecast error variance explained

by each of the three structural shocks, using the ACR and GSCPI indices, respectively. A

comparison of the two figures reveals that aggregate demand shocks account for the largest

37. As a robustness check, Appendix F.5 estimates a version of the model without the zero restrictions
imposed on the GSCPI, and the comparison results remain unchanged.
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Figure 12: IRFs to an Adverse Shock to Supply Chain: The GSCPI and Restrictions 1, 2,
and 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the GSCPI
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. This figure is based
on 100,000 independent draws.

fraction of unexpected fluctuations in real GDP and unemployment for both indices. How-

ever, the supply chain shock explains a significant fraction of the unexpected fluctuations in

the GDP deflator at longer horizons for the ACR index, while it only accounts for a minimal

fraction for the GSCPI index. This latter finding is consistent with the zero response of the

GDP deflator to the supply chain shock for the GSCPI index (Figure 12).

Finally, Figures 14a and 14b show the cumulative historical contribution of each of the

three structural shocks to U.S. inflation for the ACR and GSCPI indices, respectively.38 Our

ACR index attributes the initial fall in inflation at the onset of the Covid-19 pandemic to

a decline in demand, and the subsequent rise in inflation from April 2020 to adverse shocks

to the supply chain, which remains influential for inflation throughout the sample period.

Interestingly, our model shows that supply chain disturbances consistently exert a negative

contribution to inflation prior to the global pandemic period that started in March 2020.39

38. To facilitate comparison of the series across different scales, we apply Z-score standardization, which
re-scales data to have a mean of zero and a standard deviation of one.

39. The persistent negative contribution of shocks to the supply chain to U.S. inflation supports the political
motives for the enhancements of supply chain operations to ease inflationary pressures. For instance, several
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(a) Baseline

(b) The GSCPI and Restrictions 1, 2, and 3

Figure 13: FEVD from the SVAR

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using the ACR/GSCPI index and Restrictions 1, 2, and 3, and based on 100,000 independent draws.

In contrast, the results based on the GSCPI index attribute the early fall in inflation to

positive shocks to the supply chain, while the rise in inflation subsequent to the onset of the

pandemic is principally explained by demand shocks.

Taken together, we find significant differences between the ACR and GSCPI indices and

show that they provide contrasting interpretations of the contributions of different shocks to

U.S. inflation over the sample period.

U.S. ports underwent considerable infrastructure upgrades in the period 2017-2019, aiming to enhance their
capacity, efficiency, and resilience against potential disruptions.
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(a) Baseline (b) The GSCPI and Restrictions 1, 2, and 3

Figure 14: HD of U.S. Inflation

Notes. In both panels, the solid line represents the standardized quarterly inflation rate in the U.S., i.e.,
quarter-on-quarter growth of the GDP deflator. The shaded bar represents the standardized cumulative
historical contribution of each of the three structural shocks identified using the ACR/GSCPI index and
Restrictions 1, 2, and 3 to U.S. inflation. The estimation results are obtained with each variable measured
in percent change from the previous period, and are calculated based on 100,000 independent draws.

5. The Effectiveness of Monetary Policy

In this section, we study the interplay between supply chain disruptions and the effectiveness

of monetary policy to control inflation and output. We show through our theoretical model

that a disruption to the supply chain increases the sensitivity of inflation and reduces the

sensitivity of output to a contractionary monetary policy shock, generating state-dependence

that changes the stabilization tradeoff of monetary policy. Subsequently, we test and corrob-

orate our theoretical predictions using a Threshold Vector Autoregression (TVAR) model.
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5.1. Theoretical Prediction

We derive the theoretical prediction for the state-dependence of monetary policy using our

theoretical model described in Section 3. The monetary supply parameter µ encapsulates the

action of monetary policy, and the transportation cost parameter γ captures the disruption to

the supply chain. We study the comparative statics of the impact of a tightening in monetary

policy, focusing on whether the effects of the policy intervention on inflation and output are

different amid the supply chain disruption. The results are summarized in Proposition 6.

Proposition 6. For any given threshold of transportation cost τ > 0 and parameter values

µ ∈ R+ and γ ∈ R such that the following constraint holds:

∂θ(µ, γ)

∂γ
>

θ(1 + θξ)(
1−G(τ)

)
G(τ)

1

σ
√
2π

exp
[
− (log τ − γ)2

2σ2

]
, (25)

where G(τ) ≡ Φ[(log τ − γ)/σ], Φ(.) is the standard normal cumulative density function, the

responses of the endogenous variables to a change in monetary policy are described by the

partial derivatives:

∂c(µ, γ)

∂µ
> 0,

∂p(µ, γ)

∂µ
> 0,

∂θ(µ, γ)

∂µ
> 0,

∂r(µ, γ)

∂µ
> 0,

∂

∂µ

[
G(τ)l − c(µ, γ)

]
< 0,

∂

∂µ

[
l − c(µ, γ)

]
< 0.

The cross derivatives that describe the variation in the responses of the endogenous variables

ascribed to the supply chain disruption satisfy:

∂2c(µ, γ)

∂µ∂γ
< 0,

∂2p(µ, γ)

∂µ∂γ
> 0,

∂2θ(µ, γ)

∂µ∂γ
> 0,

∂2r(µ, γ)

∂µ∂γ
> 0,

∂2

∂µ∂γ

[
G(τ)l − c(µ, γ)

]
> 0,

∂2

∂µ∂γ

[
l − c(µ, γ)

]
> 0,

where c, p, θ, r,G(τ)l − c, and l − c represent consumption (or equivalently, output), price,

product market tightness, import price, matching cost, and spare capacity (or equivalently,

unemployment), respectively.

Proof. See Appendix D.5. ■

In words, the partial and cross derivatives in Proposition 6 imply that at an equilibrium
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where the product market tightness is sufficiently reactive to the supply chain disruption

(as evinced by equation (25)), the contractionary monetary policy shock induces a smaller

decrease in consumption (or equivalently, output) and a larger decrease in price, as evinced

by the second derivatives.40

Figure 15 provides a graphical representation of our theoretical prediction. In response

to a contractionary monetary policy shock, households reduce consumption at a given price

level due to decreased money holdings. This causes the aggregate demand curve to shift

inwards, leading to a reduced price and lower consumption of goods. Consequently, product

market tightness diminishes as importers visit fewer exporters for trade. This reduction

in price and product market tightness subsequently results in a lower import price. Ex-

porters, in turn, sell a smaller fraction of their productive capacity to importers, leading to

a decrease in output. Correspondingly, matching costs and spare capacity (or equivalently,

unemployment) increase.

[TO Y: I HAVE TRIED TO IMPROVE THE EXPLANATION HERE, BUT IT IS

STILL UNCLEAR. COULD YOU PLEASE HAVE A SECOND GO AT IT?] The increase

in transportation costs that generates the supply chain disruption decreases the likelihood

that the randomly drawn transportation cost of the exporters falls below the reservation

transportation cost, and consequently a lower number of matches materializes. Simultane-

ously, the contractionary monetary policy shock suppresses the demand of the importers. To

instigate such a pronounced decrease in product market tightness, prices must experience a

more dramatic drop. Taken together, these dynamics suggest that supply chain disruptions

enhance the sensitivity of prices to fluctuations in goods supply. This heightened sensitivity

becomes notably significant when product market tightness proves to be more reactive to

the supply chain disruption, as outlined in the constraint (25) of Proposition 6.

[TO Y: THIS SENSENTE IS UNCLEAR. PLEASE REVISE IT.] Subsequently, these

more pronounced decreases in price and product market tightness will result in a more signif-

icant drop in the import price. Furthermore, since changes in consumption (or equivalently,

output) inversely mirror those in price, a steeper decline in price will be paralleled by a

40. Proposition 6 also shows that the responses of product market tightness and import price are greater
while the responses of matching cost and spare capacity (or equivalently, unemployment) are weaker during
the supply chain disruption.
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Figure 15: State-Dependent Effects of a Contractionary Monetary Policy Shock: Theoret-
ical Prediction

Notes. The two figures illustrate how in theory the economy adjusts to a contractionary monetary policy
shock and how such an adjustment depends on whether the supply chain is disrupted or not. The two
respective states – i.e., supply chain disrupted (D) versus undisrupted (U) – are plotted against each other.
cflexs,D and cflexs,U represent the flexible-price aggregate supply curves in the two states, while θD and θU represent
the schedules of product market tightness in the two states. cd and cd,µ↓ represent the aggregate demand
curves before and after the contractionary monetary policy shock. The labels on the axes corresponding to
each state are differentiated by their subscripts, and the capital letters (A → B,C → D) are also included
to facilitate comparison between the two states.

less substantial drop in consumption (or equivalently, output). Accordingly, the increases

in matching cost and spare capacity (or equivalently, unemployment) will be smaller when

responding to a contractionary monetary policy shock.

5.2. Empirical Validation

We test the theoretical result of the state-dependence of monetary policy by developing a

structural TVAR model – building on Chen and Lee (1995) – that allows for endogenous

variation in the estimated parameters based on the estimated threshold of our ACR index.

The reduced-form model is the following:

yt = It

[ L∑
l=1

B′
D,lyt−l +C ′

Dωt +Σ
1/2
D ϵt

]
+ (1− It)

[ L∑
l=1

B′
U,lyt−l +C ′

Uωt +Σ
1/2
U ϵt

]
, (26)
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where 1 ≤ t ≤ T , yt is an n× 1 vector of endogenous variables, ωt = [1, t]′ is a 2× 1 vector

of a constant and a linear trend, ϵt is an n × 1 vector of structural shocks, BD,l and BU,l

are two n × n matrices of coefficients for the lagged endogenous variables yt−l, CD and CU

are two 2× n matrices of coefficients for the constant and linear trend, ΣD and ΣU are the

covariance matrices, L is the lag length, and T is the sample size.41 The vector ϵt, conditional

on past information and the initial conditions y0, . . . ,y1−L, is Gaussian with mean zero and

covariance matrix 1n×n, i.e., an n× n identity matrix. Switches between the two regimes –

i.e., supply chain disrupted (D) vs. undisrupted (U) – are governed by the indicator variable

It ∈ {0, 1}, which is equal to one if the ACR in period t− 1, ACRt−1, is above the threshold

ACR, and equal to zero otherwise:

It =

1, if ACRt−1 > ACR;

0, if ACRt−1 ≤ ACR.

(27)

Under the Normal-Inverse-Wishart conjugate prior for the TVAR parameters and condi-

tional on the value of the threshold ACR, the posterior distribution of the TVAR parameter

vector is a conditional Normal-Inverse-Wishart distribution, and we use the Gibbs sampler

to draw from the distribution. Since the posterior distribution of the threshold ACR con-

ditional on the TVAR parameters is unknown, we use a Metropolis-Hastings algorithm to

obtain its posterior distribution, similar to Chen and Lee (1995), Lopes and Salazar (2006),

and Pizzinelli, Theodoridis, and Zanetti (2020). Appendix G.1 provides the details on the

Normal-Inverse-Wishart prior.

To retain comparability with our previous results, we include the same variables used

in our SVAR model in Section 4.1, with the addition of the Federal Funds Rate to reflect

the changes in the stance of U.S. monetary policy. For consistency, we also retain the same

sample period 2017M1-2022M7.42

To identify the contractionary monetary policy shock, we impose the following standard

restriction on IRFs:

41. Note that we allow the covariance matrix to be regime-specific.
42. All the series are seasonally adjusted, except the Federal Funds Rate. Real GDP, GDP deflator, and

import price enter the TVAR in log percent, whereas the Federal Funds Rate, unemployment, and ACR
enter the TVAR in percent.
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Restriction 4. A contractionary monetary policy shock leads to a negative response of

real GDP, GDP deflator, and import price, as well as to a positive response of unemployment

and Federal Funds Rate at k = 1. ACR does not respond at k = 1.43

We compute the identified set of IRFs using the Bayesian approach similar to Pizzinelli,

Theodoridis, and Zanetti (2020) and Bratsiotis and Theodoridis (2022).44 We use one lag

in the baseline estimation, and select the one-month lag of the ACR index as the variable

determining the state It.45

Figure 16 plots the IRFs to a contractionary monetary policy shock for both the supply

chain disrupted (black) and undisrupted (red) regimes, reporting both the point-wise pos-

terior medians (solid lines) and the 68% equal-tailed point-wise posterior probability bands

(shaded area and dotted lines) for the horizon k = 12 (i.e., four quarters). The figure shows

significant differences in the responses of the variables to the contractionary monetary pol-

icy shock between the two regimes. In accordance with our theoretical results, the GDP

deflator and import price are more responsive, while the output and unemployment are less

responsive in the regime of supply chain disruptions, and the differences in the responses are

statistically significant.

Appendix H shows that our results hold across several variations to the benchmark

model, namely: (i) different lag structures, (ii) a looser prior (i.e., λ = 0.5 instead of 0.25;

see Appendix G.1 for the details on the tightness of the prior), and (iii) longer horizons for

the sign restrictions (i.e., k = 1 to k = 1, 2, 3). Appendix I shows that our results continue

to hold when we use local projections with interaction terms, as in Ghassibe and Zanetti

(2022), to estimate the state-dependent effects of a contractionary monetary policy shock.

43. Restriction 4 enriches Restriction 1, which is intended for the identification of an adverse shock to
aggregate demand, with the positive response of the Federal Funds Rate on impact.

44. To implement the sign and zero restrictions on IRFs, we use the penalty function approach (PFA)
developed in Uhlig (2005) and Mountford and Uhlig (2009). The PFA consists of using a loss function to
find an orthogonal matrix that satisfies the zero restrictions and that satisfies or comes close to satisfying
the sign restrictions. Appendix G.2 provides the details on the PFA.

45. Appendix G.3 plots the posterior distribution of the threshold ACR, together with the time series of
the identified regimes using the median of the posterior ACR.
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Figure 16: State-Dependent Effects of a Contractionary Monetary Policy Shock: Empirical
Validation

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using Restriction 4 for both the supply chain disrupted and undisrupted regimes. The black solid (red solid)
line shows the point-wise posterior medians, and the black shaded area (red dotted lines) depicts the 68%
equal-tailed point-wise posterior probability bands for the supply chain disrupted (undisrupted) regime. The
figure is based on 10,000 independent draws from the posterior.

6. Conclusion

Our study constructs the first index of global supply chain disruptions using data from the

Automatic Identification System – a mandatory tracking system installed on containerships

serving major ports worldwide – that was made publicly available since 2017. We quantify

supply chain disruptions by estimating congestion in major global ports by developing a novel

spatial clustering algorithm that tracks vessel positions and speeds in berth and anchorage

areas within ports.

We develop a theoretical framework to study supply chain disruptions in the context

of imbalances between the supply and demand for goods that generate changes in prices

and spare capacity. Our framework demonstrates that disturbances to the supply chain

reduce output and inflate prices, as in standard models, but also lead to an increase in the

economy’s spare capacity. The co-movements of spare capacity, prices, and output allow us to

uniquely identify the supply chain shocks and explore their causal effects on macroeconomic
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outcomes through an SVAR model with sign and zero restrictions. Our empirical model finds

that supply chain shocks exert an immediate, large, and detrimental effect on real GDP and

unemployment, while simultaneously causing a sharp rise in inflation.

We study the changes in the effectiveness of monetary policy consequent to supply chain

disruptions. We show both theoretically and empirically that monetary policy exerts a

stronger influence on inflation, albeit with diminished effect on output, during periods of

supply chain disruptions. Therefore, disruptions to the supply chain enhance the effectiveness

of contractionary monetary policy in taming inflation while reducing the sensitivity of output

to the policy.

Our study opens several valuable avenues for future research. First, our new index reveals

significant heterogeneity in the congestion of ports around the world. It would be interesting

to study whether the spillovers between ports are primarily driven by geographical proximity

or production synergies, and study the optimal redistribution of resources across ports in

different locations to offset the negative impact of supply chain disruptions. Second, while

our theoretical framework is based on single importer-exporter relationships to study the role

of spare capacity, it would be worthwhile to extend the analysis to input-output networks

and explore the role of spare capacity in the transmission of supply chain disruptions across

firms in the network. The structure of the production network could potentially magnify

or dampen the disturbances to the supply chain, which may trigger endogenous changes

in the structure of the network, as recently documented in Ghassibe (2023). Third, with

the incorporation of predictive analytics, our spatial clustering algorithm could be fine-

tuned to anticipate supply chain disruptions by identifying and analyzing subtle changes

in the positions and speeds of containerships, as recorded in real time by the AIS data.

By effectively modeling these seemingly imperceptible changes, the algorithm could serve

as a valuable tool for preemptive policy actions, enabling timely interventions to counter

potential disruptions before they materialize. We plan to pursue some of these extensions in

our future work.
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Online Appendices

A. A Density-Based Spatial Clustering Algorithm

In this appendix, we provide the technical details of our density-based spatial clustering

algorithm, namely the iterative, multi-attribute, density-based spatial clustering of applica-

tions with noise (IMA-DBSCAN).1 This algorithm is used to estimate port congestion for

major container ports worldwide.2 In subsequent sections, we first delve into the methodol-

ogy underpinning our algorithm. We then present an illustrative case where we apply the

algorithm to the Port of Ningbo-Zhoushan in China, demonstrating its capability to identify

anchorage and berth areas of a port where other methods fall short.

A.1. Methodology

As depicted in Figure A.1, the proposed IMA-DBSCAN algorithm has several distinct fea-

tures. Foremost among these is its two-tiered, iterative structure. At the first level, we

extract the trajectory of each containership at every port in question from the AIS data. For

each ship, a traditional DBSCAN (Ester et al. 1996) is employed to filter out noise and cluster

all its mooring points. While this level can pinpoint mooring areas, it does not adequately

differentiate between anchorage and berth areas of a port. The second level addresses this

limitation. Here, a spatial-temporal-DBSCAN (ST-DBSCAN; see Birant and Kut (2007)) is

applied to the clustering. During this phase, we employ an iterative method to determine a

generalized and optimal parameter setting for the clustering algorithm. Another hallmark

of IMA-DBSCAN is its integration of multiple attributes at the second level. Beyond spa-

tial data (like coordinates), we also weave in non-spatial information (such as headings and

timestamps) to enhance clustering accuracy. In the sections that follow, we elaborate on the

specifics of each level of IMA-DBSCAN.

1. Most of the details provided in this appendix can also be found in the companion paper (Bai et al. 2023).
2. See https://www.worldshipping.org/top-50-ports (Accessed June 15, 2022) for the full list of ports.

The Port of Tokyo Ko, Japan, is not included as its observations are merged with those of the Port of
Keihin, Japan.
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Figure A.1: Methodology Framework of IMA-DBSCAN

A.1.1. The First Level – Data Pre-Processing

While AIS data provides detailed information on the positions of each ship, direct clustering

of these positions to determine the anchorage and berth areas of a port presents several

challenges. Firstly, even if we restrict the data to a specific port area within a certain

timeframe, the sheer volume of records means that inputting them directly into DBSCAN

would lead to extended processing times. Secondly, a high incidence of incorrect AIS signal

assignments could result in inaccurate clustering outcomes, such as identifying a cluster that

is not an actual berth or one that covers an unusually large geographical area. Thirdly, if

a ship stays in a port area for an extended period (e.g., for maintenance), the dense AIS

data could lead DBSCAN to mistakenly identify it as a cluster. Given these challenges, it

is essential to preprocess the AIS data before using it to pinpoint the anchorage and berth

areas of a port.
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In the first level of IMA-DBSCAN, we begin by filtering the AIS data for each ship in the

port area, focusing on records indicating speeds of less than one knot. Such positions suggest

that a ship is either berthed, anchored, or in an unusual situation (e.g., under maintenance).

We then tally these positions; if their number falls outside an acceptable range (e.g., less

than 100 or more than 100,000), we deem the ship’s data abnormal and exclude it from

further analysis. Since a ship might dock at a port multiple times, we establish a period,

∆t (e.g., 12 hours), as the cut-off between two consecutive arrivals. If the gap between two

arrivals exceeds ∆t, we treat them as separate port calls. To streamline the data while

maintaining consistency, we retain only the first data point for each hour. For every port

call of a ship, its positions are clustered using the traditional DBSCAN with parameters Eps

and MinPts. We choose an Eps value small enough to identify the ship’s mooring areas

and an appropriate MinPts value to ensure transient stops are classified as noise. At this

stage, the AIS data preprocessing is complete. The refined samples are then used to identify

the anchorage and berth areas of a port in the second level of IMA-DBSCAN. For reference,

the pseudo-code for the first level of IMA-DBSCAN is detailed in Algorithm 1.

A.1.2. The Second Level – Multiple Attributes and Iteration

Information on Headings. As highlighted in the main text, AIS data integrates both spatial

(i.e., geographical coordinates) and non-spatial (i.e., headings) information. In Figure 1

from the main text, we illustrate the positions of a ship in a port alongside their headings.

We observe that the headings of a ship at a berth are either aligned in the same direction

or are exact opposites. In contrast, headings in an anchorage area appear random, with

no discernible pattern. This observation aligns with real-world scenarios, where ships in

anchorage areas often struggle to maintain consistent headings over time due to significant

wind and wave variations.

Consequently, in the second level of IMA-DBSCAN, we leverage this heading information

to enhance estimation accuracy.3 Specifically, IMA-DBSCAN incorporates three parameters,

3. Such non-spatial information is also useful when we distinguish between different berths (see Algorithm
2). In our initial experiment, the coordinates could only help us identify the approximate locations of
anchorage and berth areas of a port, not to mention the exact number of berths.
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as opposed to the traditional two in DBSCAN. These are Eps1, Eps2, and MinPts. Here,

Eps1 denotes the maximum geographical coordinate (spatial) distance, Eps2 represents the

maximum non-spatial distance between two headings, and MinPts is the minimum number

of points within the distances defined by Eps1 and Eps2. The geographical coordinate

(spatial) distance D is calculated using the Haversine formula:

D
[
(x1, x2), (y1, y2)

]
= 2 ·R · arcsin

[√
sin2

(x1 − y1
2

)
+ cosx1 cos y1 sin2

(x2 − y2
2

)]
, (A.1)

where the coordinates are measured in radians, and R = 6, 371 is the mean radius of Earth

in kilometers. On the other hand, the non-spatial distance ∆h is calculated as:

∆h(h1, h2) =

|h1 − h2| , if |h1 − h2| ≤ 180◦;

360◦ − |h1 − h2| , otherwise.
(A.2)

With the two measures of distance defined above, the neighbors of a point are those with

geographical coordinate (spatial) distance less than Eps1 and non-spatial distance less than

Eps2, and a core is defined as a point with more than or equivalent to MinPts neighbors.

The clusters in IMA-DBSCAN contain only these cores.

Iteration Process. As previously discussed, there are three parameters to set in IMA-

DBSCAN. Given that the geographical shapes of anchorage and berth areas vary signif-

icantly across ports, the values of these three parameters should ideally differ to achieve

optimal estimation results. Therefore, we propose an iterative method to determine these

parameter values. Specifically, while we fix Eps2 at 1◦, our method allows the values of Eps1

and MinPts to vary between different ports. During the iteration process, we define four

intermediate variables: Dist, m, m′, and NumC. Here, Dist represents the average distance

between a point in a cluster and the center of its respective cluster. m denotes the number of

points, while m′ represents the number of noisy points (initialized to zero). Lastly, NumC

indicates the number of clusters.4 Using these intermediate variables, MinPts and Eps1

4. Since there are no clusters at initialization, we treat all points as if they were part of the same cluster.
Additionally, if all points are classified as noise, we set NumC = 1.
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are calculated as:

Eps1 = α ·Dist, MinPts = β · m−m′

NumC
.

Regarding α and β, even though there is no explicit constraint on their values, they should

fall within a reasonable range to ensure both the algorithm’s convergence and the validity of

the identification results. After evaluating the performance of IMA-DBSCAN under various

parameter settings, we find that an admissible range of (0.4 ≤ α ≤ 0.6, 0.06 ≤ β ≤ 0.1) is

appropriate. We also introduce an intermediate variable, Dist0, which records the value of

Dist from the previous iteration and is initialized to zero.

Following this, we iteratively execute ST-DBSCAN. In each iteration, ST-DBSCAN op-

erates with Eps1 and MinPts set to their current values, and Eps2 set to 1◦. The outputs

classify each point either into a cluster or as noise. Based on these outputs, the values of the

intermediate variables, as well as those for Eps1 and MinPts, are updated. These updated

values are then re-applied in ST-DBSCAN for the subsequent iteration. The entire process

concludes when the difference Dist − Dist0 is less than or equal to ∆Dist (e.g., 100 m).

Consequently, each point is either assigned to a cluster or labeled as noise. We then interpret

the cluster areas as berths and the areas of noisy points as anchorages.

Information on Timestamp. After running ST-DBSCAN, we find that there exists a large

proportion of clusters that should be merged together as they essentially represent the same

berth in reality. To achieve a more accurate identification of berth areas, we merge certain

clusters by taking advantage of the time information (i.e., timestamps) in the AIS data (see

Figure A.2 for an illustration). More precisely, we first calculate the start and end times of

each port call in each cluster. Subsequently, since only one ship can dock at a berth for a

given moment, for each cluster under consideration, we find the cluster that is the closest

to it, and then check whether there is any overlap in the docking times. If there exists (at

least) one overlap, the two clusters are considered to represent two different berths. If there

is no overlap, the two clusters are merged together to represent one berth.

Furthermore, in order to differentiate between different anchorage areas, we perform

another DBSCAN on those points that are classified as noise. In the process, the two

parameters associated with the DBSCAN, i.e, Eps′ and MinPts′, are set according to our
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Case 1
ta1 d1 a2 d2

A Port Call in Cluster 1

A Port Call in Cluster 2

Case 2
ta1 d1a2 d2

A Port Call in Cluster 1

A Port Call in Cluster 2

Figure A.2: Merging Clusters

Notes. The figure illustrates two scenarios and discusses the criteria for merging clusters after executing
ST-DBSCAN on the second level. Here, a1 and d1 represent the arrival and departure times of a ship during
a port call assigned to cluster 1. Similarly, a2 and d2 correspond to the times for a port call assigned to
cluster 2, which is geographically the closest to cluster 1. In the first scenario, there is no overlap in the
docking times, so clusters 1 and 2 are merged. In contrast, the second scenario shows an overlap in the
docking times. As a result, clusters 1 and 2 are kept distinct since two ships cannot occupy a single berth
simultaneously.

domain knowledge. Finally, we remove clusters with less than N port calls, with N set

according to our domain knowledge. For reference, the pseudo-codes for the second level of

IMA-DBSCAN can be found in Algorithms 2, 3, and 4.

Lastly, in the estimation of port congestion for the major container ports worldwide, the

parameter values set for IMA-DBSCAN are provided in Table A.1.

Table A.1: Parameter Values for IMA-DBSCAN

Parameter Value

First Level
∆t 12 hours
Eps 50 m

MinPts 10

Second Level

α 0.5
β 0.08

∆Dist 100 m
Eps′ 1,000 m

MinPts′ 50
N 5
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Algorithm 1 Level 1 IMA-DBSCAN
Inputs:

Al = {a1,l, . . . , an,l}: the set of coordinates recorded in the AIS data for a ship l
Sl = {s1,l, . . . , sn,l}: the set of speeds recorded in the AIS data for a ship l
Tl = {t1,l, . . . , tn,l}: the set of timestamps recorded in the AIS data for a ship l

Outputs:
Dl = {d1,l, . . . , dm,l}: the coordinates of the first observation for each hour in Bl

Hl = {h1,l, . . . , hm,l}: the headings of the first observation for each hour in Bl

1: /* Data Pre-Processing */
2: Bl = {b1,l . . . bk,l} ← the set of coordinates in Al that indicate a speed less than 1 knot
3: /* Exception Identification */
4: if |Bl| < 100 or |Bl| > 100, 000 then
5: Remove the data and stop ▷ The ship has an abnormal port call
6: else
7: Continue
8: end if
9: /* DBSCAN Clustering */

10: X ← b1,l
11: for i← 2 : k do
12: if ti − ti−1 ≤ ∆t then
13: Append bi,l to X
14: else
15: DBSCAN(X,Eps,MinPts)
16: X ← ∅
17: Append bi,l to X
18: end if
19: end for
20: Remove the observations labeled as noise from Bl

21: Keep only the first observation for each hour in Bl ▷ Note that only m observations re-
main in Bl at this stage

22: Dl = {d1,l, . . . , dm,l} ← the coordinates of the first observation for each hour in Bl

23: Hl = {h1,l, . . . , hm,l} ← the headings of the first observation for each hour in Bl
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Algorithm 2 Level 2 IMA-DBSCAN
Inputs:

D = {D1, . . . , DL}: the set of coordinates for all ships after Level 1 IMA-DBSCAN
H = {H1, . . . , HL}: the set of headings for all ships after Level 1 IMA-DBSCAN
O = {D,H} = {o1, . . . , oM}: the combined set of coordinates and headings

Outputs:
Cberth: the set of clusters marked as berths
Canchorage: the set of clusters marked as anchorages

1: /* Parameter Initialization */
2: Dist← the average distance between a point in D and the center of the mass of D
3: m← |D|
4: Eps1← α ·Dist
5: MinPts← β ·m
6: /* Iteration Process */
7: Dist0 ← 0
8: while Dist−Dist0 > ∆Dist km do
9: ST −DBSCAN(O, Eps1, Eps2 = 1◦,MinPts) ▷ See function ST-DBSCAN

10: Dist0 ← Dist
11: Dist← the average distance between a non-noisy point in D and the center of the

mass of its assigned cluster
12: m′ ← |noisy points in O|
13: NumC ← |clusters in O|
14: Eps1← α ·Dist
15: MinPts← β · (m−m′) /NumC
16: end while
17: /* Merging Clusters */
18: Use the center of the mass of each cluster to calculate the distance in between
19: for all clusters c in O do
20: c′ ← the nearest cluster less than 500 m away from c
21: if the docking times of c′ and c do not overlap then
22: Replace the cluster label of c′ with that of c
23: end if
24: end for
25: /* Berth and Anchorage Detection */
26: Cberth ← clusters in O
27: Canchorage ← DBSCAN(Noisy points in O, Eps′,MinPts′)
28: /* Exception Removal */
29: for all clusters c in Cberth and Canchorage do
30: NumP ← the number of port calls in cluster c
31: if NumP < N then
32: Remove c
33: end if
34: end for

A-8



Algorithm 3 ST-DBSCAN
Inputs:

O = {o1, . . . , oM}: the combined set of coordinates and headings
Eps1: maximum geographical coordinate (spatial) distance
Eps2: maximum non-spatial distance
MinPts: minimum number of points within the distance of Eps1 and Eps2

Outputs:
C = {c1, . . . , cM}: the set of clusters in O

1: /* The codes are adapted from those in Birant and Kut (2007). */
2: function ST −DBSCAN(D,Eps1, Eps2,MinPts)
3: ClusterLabel = 0
4: for i← 1 : m do
5: if oi is not in a cluster then
6: Y ← RetrieveNeighbors(oi, Eps1, Eps2) ▷ See function RetrieveNeighbors
7: if |Y | < MinPts then
8: Mark oi as noise
9: else ▷ Construct a new cluster

10: ClusterLabel ← ClusterLabel + 1
11: for j ← 1 : |Y | do
12: Mark all objects in Y with current ClusterLabel
13: end for
14: Push(all objects in Y )
15: while not IsEmpty() do
16: CurrentObj = Pop()
17: Z ← RetrieveNeighbors(CurrentObj, Eps1, Eps2)
18: if |Z| ≥MinPts then
19: for all objects o in Z do
20: if o is not marked as noise or it is not in a cluster then
21: Mark o with current ClusterLabel
22: Push(o)
23: end if
24: end for
25: end if
26: end while
27: end if
28: end if
29: end for
30: C = {c1, . . . , cM} ← the set of clusters in O
31: end function
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Algorithm 4 RetrieveNeighbors
Inputs:

o: an observation in O
Eps1: maximum geographical coordinate (spatial) distance
Eps2: maximum non-spatial distance

Outputs:
Neighbors: the set of neighbors for o

1: function RetrieveNeighbors(o, Eps1, Eps2)
2: Neighbors← ∅
3: for all observations o′ in O do
4: Dist1← D(o, o′) ▷ See Equation (A.1)
5: Dist2← ∆h(o, o′) ▷ See Equation (A.2)
6: if Dist1 ≤ Eps1 and Dist2 ≤ Eps2 then
7: Append o′ to Neighbors
8: end if
9: end for

10: return Neighbors
11: end function

A.2. Illustrative Case: Port of Ningbo-Zhoushan, China

To demonstrate the capability of IMA-DBSCAN in accurately identifying anchorage and

berth areas of a port, which other methods might fail to achieve, we apply the algorithm to

the Port of Ningbo-Zhoushan in China. We choose this specific example primarily due to its

intricate port layout. Figure A.3a showcases the first 50,000 AIS observations from January

2020 within the Port of Ningbo-Zhoushan.5 The observations are represented by blue dots

on the map, with each dot indicating the position of a low-speed containership. Before

applying IMA-DBSCAN to the AIS data, we mark the approximate locations of anchorages

and berths using both satellite images and nautical charts as benchmarks. The red boxes

indicate the anchorage areas, while the yellow rectangles denote the berth locations.

Figure A.3b presents the clustering results of IMA-DBSCAN for the Port of Ningbo-

Zhoushan, mirroring the map in Figure A.3a for a direct comparison between our algorithm’s

5. This example focuses on a one-month snapshot. It is reasonable to assume that the identification
results would be indicative of anchorage and berth areas in subsequent months, given that we do not expect
significant short-term changes in the port areas. In real-world applications of IMA-DBSCAN, periodic
identification can be conducted to monitor potential changes in port anchorages and berths.
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outcomes and the actual observations. The clusters in Figure A.3b (colored in red, yellow,

blue, purple, cyan, and orange) correspond closely with the anchorage areas in Figure A.3a

(represented by red polygons).6 Additionally, in Figure A.3e, we spotlight the locations

of four terminals within Ningbo-Zhoushan: Beilun, Daxie, Pukou, and Yuandong. Using

satellite maps as a reference, we confirm the accuracy of these identifications; each berth in

the terminals is pinpointed precisely, and the delineated areas align closely with reality.7

To assess the performance of IMA-DBSCAN, we contrast it with the outcomes from ST-

DBSCAN.8 Given that ST-DBSCAN is capable of processing spatial-temporal databases and

is recognized as one of the most prominent spatial clustering algorithms in the literature, this

comparison is relevant. Figure A.3c illustrates the results derived from ST-DBSCAN, un-

derscoring its lesser precision in comparison to IMA-DBSCAN. Notably, while ST-DBSCAN

can generally detect points within the anchorages (highlighted in blue in A.3c), it mistakenly

identifies several high-density regions as berths, even though they are not genuine berths. For

example, within the blue rectangle in Figure A.3f, points that ought to be categorized as noise

are marked as berths, given that ships stayed in these locations for extended periods (poten-

tially for maintenance tasks). Additionally, in the black rectangle, ST-DBSCAN mislabels

several points as berths when they should be designated as mooring areas. Consequently,

while employing ST-DBSCAN on the sample data offers insights into the arrangement of

anchorages, it does not succeed in precisely pinpointing berth locations.

Furthermore, in Figure A.4, we present the detailed results of berth identification for each

of the four terminals, i.e., Beilun, Daxie, Pukou, and Yuandong, within the Port of Ningbo-

Zhoushan. The outcomes from ST-DBSCAN are ambiguous and feature overlapping sections

(proximate in position but with significant differences in heading). Although the general

range of these terminals can be discerned, individual berths are scarcely distinguishable.

In contrast, our IMA-DBSCAN method can produce clusters that align precisely with each

berth within a terminal. Admittedly, increasing the MinPts or reducing the Eps1 value

could enhance the ST-DBSCAN results. However, this would require constant parameter

6. For clarity, we also display the convex hulls formed by these clusters in Figure A.3d.
7. Moreover, some of the blue dots in Figure A.3a do not correspond to any anchorage or berth in Figure

A.3b, indicating that ships anchored in these areas for only a short duration.
8. For this comparison, the input parameters of ST-DBSCAN are set to Eps1 = 2500m, Eps2 = 1◦, and

MinPts = 100, as recommended by Ester et al. (1996).
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adjustments, which is challenging to execute consistently for each port. Our IMA-DBSCAN

algorithm, conversely, operates iteratively to automatically determine a set of parameters

that can accurately identify both berths and anchorages.

(a) Sample AIS Data (b) Result of IMA-DBSCAN (c) Result of ST-DBSCAN

(d) Anchorages (IMA-DBSCAN) (e) Berths (IMA-DBSCAN) (f) Berths (ST-DBSCAN)

Figure A.3: Identification of Anchorage and Berth Areas in the Port of Ningbo-Zhoushan

Notes. In Figure (a), the sample data comprises the first 50,000 AIS observations taken in January 2020
within the Port of Ningbo-Zhoushan. These observations are represented by blue dots on the map, corre-
sponding to coordinates ranging from 121.60◦E to 123.00◦E and from 29.50◦N to 30.35◦N. As a benchmark,
using satellite maps and nautical charts, we identify the approximate areas of the anchorages with red poly-
gons and the approximate locations of the berths with yellow rectangles. We apply two clustering algorithms,
IMA-DBSCAN and ST-DBSCAN, to the sample data. The resulting clusters are depicted in Figures (b)
and (c) respectively. Notably, blue dots in Figure (b) represent the identified anchorage areas, while those
in Figure (c) represent noise, which outlines the general layout of anchorage areas but does not distinctly
identify each one. In Figure (d), the anchorages from Figure (b) are shown separately in red. In Figure (e),
the berths from Figure (b) are displayed separately in yellow. The four terminals are identified as Pukou,
Daxie, Beilun, and Yuandong. Lastly, in Figure (f), the yellow areas depict the approximate positions of the
berths as identified by ST-DBSCAN. The blue and black rectangles indicate misidentifications of noise as
berths and confusion between anchorages and berths, respectively.

A-12



(a) Terminal Beilun (b) Terminal Daxie (c) Terminal Pukou (d) Terminal Yuandong

Figure A.4: Detailed Results of Berth Identification: IMA-DBSCAN (Top Row) vs. ST-DBSCAN (Bottom Row)

Notes. The figure displays the detailed results of berth identification for each of the four terminals: Beilun, Daxie, Pukou, and Yuandong, within the
Port of Ningbo-Zhoushan. The berths identified by IMA-DBSCAN are presented in yellow on the top row, while those pinpointed by ST-DBSCAN
are depicted in brown on the bottom row.
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B. Discussion on the Shortcomings of Existing Indices

of Supply Chain Disruptions

In this appendix, we elaborate on the shortcomings of using the shipping cost, the sub-

components of the manufacturing PMI, and other indices of supply chain disruptions in the

causality assessment.

Since our goal is to identify a supply chain disruption shock, the variables to include

in the SVARs should in principle reflect how well the global supply chain is functioning.

Shipping cost is a natural candidate, as supply chain issues could arise internationally due to

a shortage of containers and port congestion (Klachkin 2021; Benigno et al. 2022). However,

it should be noted that dynamics in the transportation sector are subject to both supply- and

demand-side factors. An increase in the demand for tradable goods would fuel the derived

demand for international shipping services, leading to a tighter transportation market and

a higher shipping cost.

Another choice is the sub-components of the manufacturing PMI, such as “delivery

times”, which are used in Kamali and Wang (2021) and Benigno et al. (2022) to capture the

extent of supply chain delays and hence act as a barometer of the effectiveness of the global

supply chain.9 Yet, since the PMI is computed based on responses to survey questions, it is

inevitably subject to large, persistent, and time-varying measurement errors. Moreover, the

PMI does not differentiate whether an increase in delivery times is caused by a disruption

to the supply chain or the actual production itself.

In addition to the shipping cost and PMI sub-components, the Kiel trade indicator

(Stamer 2021), which uses the same AIS data as ours, provides another angle to assess

the widespread strain on the global supply chain; not only does it estimate imports and ex-

ports, but it also tracks containership traffic at major ports as well as freight on stationary

ships. However, it has several drawbacks. First, the calculation of twenty-foot equivalent

units (TEU) is problematic because the draught of a containership is not indicative of its

9. For instance, IHS Markit (Williamson 2021) calculates the suppliers’ delivery times using responses to
its PMI business surveys. Specifically, participating purchasing managers are asked if it takes their suppliers
more or less time to provide inputs to their factories on average. The percentages of companies reporting an
improvement, deterioration, or no change in delivery times are then weighted to derive the index.
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loading status since loading and unloading operations could occur simultaneously. Second,

variations in imports and exports are also subject to demand-side factors, leading to endo-

geneity issues. Third, the calculation of cargo capacity tied up at ports does not differentiate

mooring positions of containerships (berth vs. anchorage), which, as argued in Talley and

Ng (2016), could result in an overestimation of port congestion.

Other indices of supply chain disruptions employ either more advanced techniques (e.g.,

machine learning) or more granular data (e.g., import transactions). Burriel et al. (2023)

develop a text-based index of supply disruptions, in which they apply the methodology by

Baker, Bloom, and Davis (2016) using newspaper data. While such an index overcomes the

endogeneity issue by selecting only supply-side events, it is not immune to measurement

errors that naturally arise from word definitions; for instance, a disruption to “supply” is

not the same as one to the “supply chain”, as the former may stem from a shortage in labor

supply. Another example is Smirnyagin and Tsyvinski (2022), who use the S&P Global

Panjiva dataset, a comprehensive source of U.S. seaborne import records, to derive the

U.S. supply disruptions index (SDI). They identify supply chain disruptions by monitoring

regular and active consignee-shipper relationships over quarterly periods; a disruption occurs

when a consistently active relationship goes inactive for a quarter and then resumes. While

this identification isolates disruptions in the context of established trading relationships,

potential endogeneity issues could still arise if, for instance, a consignee temporarily halts

orders due to decreased demand, not because of a disruption in the supply chain. It might be

challenging to disentangle these situations solely based on the activity status of consignee-

shipper relationships. Moreover, while the SDI offers valuable insights into U.S. imports and

is adept at delivering asset pricing predictions, the ACR, being a global index, aligns more

closely with our specific goal of identifying global supply chain disruptions.

Figure B.1 plots the SDI alongside the ACR and GSCPI series. It is observed that the

SDI and GSCPI align well and broadly capture the same patterns: fluctuations around the

sample median before 2020, a massive but short-lived spike in 2020, and finally, a prolonged

yet muted increase in 2021-2022. Figures B.2, B.3, and B.4 plot the estimation results with

the SDI included in the SVAR as a measure of supply chain disruptions. Similar to those

obtained using the GSCPI, the response of the GDP deflator to a supply chain shock is
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around zero and statistically insignificant, and only a minimal fraction of the unexpected

fluctuations in the GDP deflator is explained by supply chain disturbances. In terms of the

historical decomposition of U.S. inflation, the SDI attributes the initial fall in inflation at

the onset of the pandemic to both the collapse in demand and disruptions to the supply

chain, and it attributes the subsequent rise in inflation from April 2020 to a combination of

demand and supply shocks.

Figure B.1: Comparison Between the ACR, GSCPI, and SDI

Notes. The figure plots the ACR against the GSCPI (black dashed line) and SDI (blue dashed-dotted line)
during the sample period from January 2017 to July 2022. The ACR is computed using the AIS data of
containerships and the IMA-DBSCAN algorithm developed in Appendix A. The GSCPI is retrieved from the
New York Fed’s website (Source: https://www.newyorkfed.org/research/policy/gscpi#/overview (Accessed
August 10, 2022)), while the SDI is retrieved from the author’s website (Source: https://www.disruptions.
supply (Accessed July 31, 2023)). The ACR is measured as a percentage, while the GSCPI and SDI are
measured in standard deviations from the mean. All the series are seasonally adjusted.
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Figure B.2: IRFs to an Adverse Shock to Supply Chain: The SDI and Restrictions 1, 2,
and 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the SDI
index and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.

Figure B.3: FEVD from the SVAR: The SDI and Restrictions 1, 2, and 3

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using the SDI index and Restrictions 1, 2, and 3, and based on 100,000 independent draws.
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Figure B.4: HD of U.S. Inflation: The SDI and Restrictions 1, 2, and 3

Notes. The solid line represents the standardized quarterly inflation rate in the U.S., i.e., quarter-on-quarter
growth of the GDP deflator. The shaded bar represents the standardized cumulative historical contribution
of each of the three structural shocks identified using the SDI index and Restrictions 1, 2, and 3 to U.S.
inflation. The estimation results are obtained with each variable measured in percent change from the
previous period, and are calculated based on 100,000 independent draws.
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C. Discussion on the Assumptions in the Model

In this appendix, we discuss two critical assumptions in the model: matching frictions on

the international product market and endogenous separation of exporter-importer matches

on transportation cost. First, to represent the matching frictions in a tractable manner,

we assume that the number of trades between exporters and importers are governed by a

matching function. Second, to succinctly capture the decision-making process between an

exporter and an importer when their trade is subject to a transportation cost, we assume

that upon meeting, both parties choose to endogenously separate from each other once the

idiosyncratic transportation cost to pay lies above a reservation threshold. We discuss each

of these two assumptions in turn.

The matching function. There is ample literature that studies the origins of matching fric-

tions on the international product market, including but not limited to locating and building

connections with overseas buyers (Benguria 2021; Krolikowski and McCallum 2021; Lenoir,

Martin, and Mejean 2022), costly information acquisition about market conditions elsewhere

(Allen 2014; Chaney 2014), and informal trade barriers such as common language (Melitz and

Toubal 2014) and geography (Eaton and Kortum 2002). Different as these theories/evidence

might be, they all show that there exist prevalent trade barriers between exporting and im-

porting firms, implying that not all the unmatched exporters engage in trade, while not all

the sourcing visits by importers are successful. Following in this vein, we assume a constant-

returns-to-scale matching function that summarizes how unmatched exporters and visits of

importers are transformed into trades through the matching process. As such, we abstract

away from modeling the complex matching process while still preserving its main implica-

tion: the unmatched exporters only engage in trade with probability f(θ)G(τ) < 1 and the

visits of importers to exporters are only successful with probability q(θ)G(τ) < 1.

Endogenous separation on transportation cost. Much in the same way the separation margin

on the labor market could be modeled endogenously when workers face productivity shocks

to their employment matches and bad draws possibly lead to separations (Bils, Chang, and

Kim 2011; Menzio and Shi 2011; Fujita and Ramey 2012), the separation margin on the inter-
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national product market could be modeled endogenously when exporters face idiosyncratic

transportation costs to their trading relationships with importers and bad draws possibly

lead to terminations of such relationships. Such a modeling assumption is reasonable only if

we find convincing evidence that (1) transportation cost is taken into account when trading

partners decide on a potential trade, and (2) there exists a threshold of transportation cost

above which trading partners choose to sever their relationship.

The prediction that transportation cost affects the possibility of a trade has been exam-

ined empirically in the international trade literature. To name a few, evidence in Rodrigue

(2020) underlines that across all modes, raising transportation costs by 10% reduces trade

volumes by more than 20%. In the context of maritime transportation, Brancaccio, Kaloupt-

sidi, and Papageorgiou (2020) exploit changes in tariffs across the trade network to estimate

the elasticity of world trade value with respect to shipping costs. They estimate that a 1%

change in shipping costs leads to approximately a 1% change in world trade value. Similarly,

Wong (2022) estimates the containerized trade elasticity with respect to freight rates using

the round-trip effect as an instrument (in particular, for route i, j, the author uses a Bartik-

style instrument to proxy for the predicted trade value on route j, i). The author reports that

a 1% increase in per unit container freight rates decreases containerized trade value by 2.8%

when dyad-by-product controls are included in the regression. Together, these elasticities

emphasize that transportation costs are indeed taken into account when trading partners

choose to form a relationship, and that a rise in transportation cost deters international

trade substantially.

Both theory and casual observation also suggest the presence of a reservation trans-

portation cost, which trading partners often consider when assessing the profitability of a

potential trade on the international product market. Notably, to reconcile the empirical ev-

idence that export and import intensities vary across plants, Kasahara and Lapham (2013)

extend the model in Melitz (2003) by allowing for heterogeneity in transportation costs. In-

corporating heterogeneous transportation costs provides a plausible self-selection mechanism

regarding trade decisions, as plants with low transportation costs self-select into exporting

and importing. As such, there must exist a threshold value of transportation cost below
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which plants choose to engage in trade.10 Casual observations are also consistent with this

theoretical prediction. For instance, according to the Global Transport Costs Dataset for

International Trade (UNCTAD 2021), the cost of transporting medical care commodities by

sea from China to the U.S. normally accounts for 5% of their Free On Board values. When

the transportation cost rises above 5%, exporters in China will reconsider whether it is still

profitable to export medical care commodities to the U.S. Hence, following the Covid-19

pandemic, as the transportation cost skyrocketed while the initial increase in the final price

of medical care commodities was not on par, trades collapsed as exporters in China exited

the market, leading to a great shortage of medical supplies in the U.S. Furthermore, it is

noted that the reservation transportation cost is largely fixed in the short run, given that

transportation technology and price outlook for shipping fuel are unlikely to vary in few

years’ time. As such, our modeling assumption regarding the flexible-price aggregate supply

is consistent with the reality.

Lastly, the modeling assumption that transportation cost follows a log-normal distribu-

tion is borrowed from Kasahara and Lapham (2013). We make this crude but convenient

assumption for two reasons. First, since transportation cost varies across countries, routes,

directions, and commodities in reality (Brown, Englert, and Hoffmann 2021), an assumption

that it is randomly distributed according to a distribution is more plausible than a fixed value

(for instance, the “iceberg” formulation of trade costs as in Samuelson (1954)). Second, using

a log-normally distributed transportation cost provides us with a purely exogenous measure

of transportation cost. With the scale parameter of the log-normal distribution of trans-

portation costs acting as the model counterpart to the ACR, our model mimics the positive

relationship between the ACR and shipping costs, as shown in Figure 5a in the main text.11

10. A similar argument can be found in the discussion of transport infrastructure and its effects on firm’s
exporting decision. For instance, Naudé and Matthee (2011) argue that the availability of transport infras-
tructure will have a threshold effect – a certain minimum of transport infrastructure is required for a firm
to start exporting, but once the threshold is reached, improved infrastructure will not necessarily have a
large impact on the extent of an individual firm’s exports. Since the availability of transport infrastructure
(at least partially) determines the transportation cost, this argument is consistent with the presence of a
reservation transportation cost that firms take into account when making an exporting decision.

11. Alternatively, we could augment the current model with a full-fledged transportation sector in which the
interactions between exporters and shipowners determine the transportation cost. Such an endogenous set-
ting can be found in Brancaccio, Kalouptsidi, and Papageorgiou (2020) and Bai and Li (2022). Nonetheless,
we maintain the current setting for its tractability.
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D. Long Proofs

D.1. Proof of Proposition 1

We first derive Equation (14). Rewriting Equations (12) and (13) and applying the property

θ = f(θ)/q(θ), we obtain that:

θ(p, z̄) =
1− η

ηρ

(
p− z̄ + βEz′S(z

′)
)
. (D.1)

Then we rewrite Ez′S(z
′). Using the definition of S(z), we have:

S(z) = p− z +
(
1− ηf(θ)

)
βEz′S(z

′).

Subtracting Equation (12) from the above equation yields S(z) = z̄ − z. Replacing S(z′) in

Ez′S(z
′) with z̄ − z′, we derive that:

Ez′S(z
′) =

∫ z̄

0

(z̄ − z′)dG(z′)

= (z̄ − z′)G(z′)
∣∣∣z̄
0
+

∫ z̄

0

G(z′)dz′

=

∫ z̄

0

G(z′)dz′.

Subsequently, replacing Ez′S(z
′) in Equation (D.1) with

∫ z̄

0
G(z′)dz′ gives Equation (14).

The first property is obvious. Since θ cannot be negative, for a given z̄, p is bounded on

[pmin,+∞), where pmin is such that it solves pmin − z̄ + β
∫ z̄

0
G(z′)dz′ = 0 for any z̄ > 0. As

for the second and third properties, we derive that:

∂θ(p, z̄)

∂p
=

1− η

ηρ
> 0.

Hence, the product market tightness θ(p, z̄) is strictly increasing and linear on [pmin,+∞).

The fourth property is also obvious from the definition of z̄max, as θ cannot be negative.

In terms of the fifth and last properties, we derive that:

∂θ(p, z̄)

∂z̄
=

1− η

ηρ

(
− 1 + βG(z̄)

)
< 0,
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∂2θ(p, z̄)

∂z̄2
=

(1− η)β

ηρ

1

z̄σ
ϕ(

log z̄ − γ

σ
) > 0,

where ϕ(.) is the standard normal probability density function. Hence, the product market

tightness θ(p, z̄) is strictly decreasing and convex on (0, z̄max].

D.2. Proof of Proposition 2

The first property is obvious. When p = pmin, θ(pmin) = 0, f
(
θ(pmin)

)
= 0, and cflexs (pmin) =

0. When p→ +∞, limp→+∞ θ(p) = +∞, limp→+∞ f
(
θ(p)

)
= 1, and hence limp→+∞ cflexs (p) =

G(τ)l. In terms of the second and third properties, we derive that:

dcflexs (p)

dp
=

1− η

ηρ

(
1−G(τ)

)
q(θ)1+ξG(τ)l(

1−G(τ) + f(θ)G(τ)
)2 > 0,

d2cflexs (p)

dp2
=−

(1− η

ηρ

)2(
1−G(τ)

)
G(τ)l

·
(
1−G(τ) + f(θ)G(τ)

)
θξ−1(1 + ξ)(1 + θξ)−

1+ξ
ξ

−1 + 2G(τ)q(θ)2(1+ξ)(
1−G(τ) + f(θ)G(τ)

)3 < 0.

Hence, the flexible-price aggregate supply cflexs is strictly increasing and concave on [pmin,+∞).

D.3. Proof of Proposition 4

Since we look for a flexible-price equilibrium with positive consumption, we restrict our search

of price p within the range [pmin,+∞). The equilibrium condition (21) can be re-written as:

f
(
θ(p)

)
p

1−G(τ) + f
(
θ(p)

)
G(τ)

=
χϵ

1 + χϵ

µ

G(τ)l
. (D.2)

For any τ > 0, the right hand side is a constant that is strictly positive. For the left hand

side, when p = pmin, θ(pmin) = 0, and f
(
θ(pmin)

)
= 0, it has a limit of zero; when p→ +∞,

limp→+∞ θ(p) = +∞, and limp→+∞ f
(
θ(p)

)
= 1, it has a limit of positive infinity. For

p ∈ [pmin,+∞), the derivative of the left hand side with respect to p is given by:

d

dp

[ f
(
θ(p)

)
p

1−G(τ) + f
(
θ(p)

)
G(τ)

]
=

(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξp+ f(θ)
(
1−G(τ) + f(θ)G(τ)

)(
1−G(τ) + f(θ)G(τ)

)2 > 0.
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Therefore, the left hand side is strictly increasing from zero to positive infinity on [pmin,+∞).

As such, there is a unique p ∈ [pmin,+∞) that solves Equation (D.2).

D.4. Proof of Proposition 5

We first consider an adverse shock to aggregate demand. No matter whether the negative

aggregate demand shock is represented by a decrease in money supply µ or in the taste for

consumption of goods χ, the right hand side of Equation (D.2) will decrease. To balance

both sides of Equation (D.2), price p will decrease, since the derivative of the left hand

side with respect to p is positive (see the proof for Proposition 4). As p decreases, by the

second property in Proposition 1 and the second property in Proposition 2, product market

tightness θ and consumption (or equivalently, output) c will decrease. Since both p and θ

decrease, according to Equation (10), import price r will decline as well. For the matching

cost, G(τ)l−c, and spare capacity (or equivalently, unemployment), l−c, since they both are

strictly decreasing in c, they will increase following an adverse shock to aggregate demand.

Next, we consider an adverse shock to labor supply (or equivalently, productive capacity),

which is parameterized by a decrease in l. On impact, the right hand side of Equation (D.2)

increases. Similar to the above reasoning, price p will increase. As p increases, by the

second property in Proposition 1 and Proposition 3, product market tightness θ will increase

while consumption (or equivalently, output) c will fall. Again, since both p and θ increase,

according to Equation (10), import price r will rise. As for the matching cost and spare

capacity (or equivalently, unemployment), they can be alternatively expressed as:

matching cost =

(
1−G(τ)

)(
1− f(θ)

)
1−

(
1− f(θ)

)
G(τ)

G(τ)l,

spare capacity =
1−G(τ)

1−G(τ) + f(θ)G(τ)
l,

respectively. With θ increasing and l decreasing following an adverse production shock, it is

easy to verify that both the matching cost and spare capacity will decrease.

Lastly, we consider an adverse shock to supply chain, which is represented by an increase

in γ, i.e., the scale parameter of the log-normal distribution of transportation costs G(.). We

first look at the effect on price. Using the re-arranged equilibrium condition (D.2), we define
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a function T : [pmin,+∞)× R→ R:

T(p, γ) =
χϵ

1 + χϵ

µ

G(τ)l
− f(θ)p

1−G(τ) + f(θ)G(τ)

=
χϵ

1 + χϵ

µ

Φ( log τ−γ
σ

)l
−

{
1 +

[
1−η
ηρ

(
p− τ + β

∫ τ

0
Φ( log z′−γ

σ
)dz′

)]−ξ}− 1
ξ p

1− Φ( log τ−γ
σ

) +
{
1 +

[
1−η
ηρ

(
p− τ + β

∫ τ

0
Φ( log z′−γ

σ
)dz′

)]−ξ}− 1
ξΦ( log τ−γ

σ
)
,

where Φ(.) is the standard normal cumulative density function. Assuming the existence of

a tuple (p0, γ0) ∈ [pmin,+∞) × R such that T(p0, γ0) = 0 and ∂T(p, γ)/∂p|p=p0,γ=γ0 ̸= 0, by

the Implicit Function Theorem, there is a neighborhood of (p0, γ0) such that whenever γ is

sufficiently close to γ0, there is a unique p so that T(p, γ) = 0. This assignment makes p a

continuous function of γ. Applying implicit differentiation to T(p, γ) around (p0, γ0) yields:

dp(γ)

dγ
= −∂T(p, γ)/∂γ

∂T(p, γ)/∂p
.

In terms of ∂T(p, γ)/∂γ, we derive that:

∂T(p, γ)
∂γ

=
χϵ

1 + χϵ

µ

l

1
σ
g(τ)

G(τ)2
+

(
1−G(τ)

)
(1−η)β

ηρ

[ ∫ τ

0
1
σ
g(z′)dz′

]
q(θ)1+ξp(

1−G(τ) + f(θ)G(τ)
)2

+

(
1− f(θ)

)
f(θ)p 1

σ
g(τ)(

1−G(τ) + f(θ)G(τ)
)2 > 0,

where g(τ) ≡ ϕ[(log τ − γ)/σ], g(z′) ≡ ϕ[(log z′ − γ)/σ], while ϕ(.) is the standard normal

probability density function. In terms of ∂T(p, γ)/∂p, it can be written as:

∂T(p, γ)
∂p

= −
(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξp+ f(θ)
(
1−G(τ) + f(θ)G(τ)

)(
1−G(τ) + f(θ)G(τ)

)2 < 0.

By combining ∂T(p, γ)/∂γ with ∂T(p, γ)/∂p and collecting terms, we have:

dp(γ)

dγ
=
[(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp+ f(θ)

(
1−G(τ) + f(θ)G(τ)

)]−1

·
{(

1−G(τ) + f(θ)G(τ)
)
f(θ)

1

σ
g(τ)

p

G(τ)

+
(
1−G(τ)

)(1− η)β

ηρ

[ ∫ τ

0

1

σ
g(z′)dz′

]
q(θ)1+ξp

+
(
1− f(θ)

)
f(θ)p

1

σ
g(τ)

}
> 0.

(D.3)

Hence, price p will increase on impact of an adverse shock to supply chain. In terms of
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consumption (or equivalently, output), it is written as:

c(γ) =
χϵ

1 + χϵ

µ

p(γ)
,

where p is an implicit function of γ. Therefore, the derivative of c with respect to γ is:

dc(γ)

dγ
=− χϵ

1 + χϵ

µ

p

[(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp+ f(θ)

(
1−G(τ) + f(θ)G(τ)

)]−1

·
{(

1−G(τ) + f(θ)G(τ)
)
f(θ)

1

σ
g(τ)

1

G(τ)

+
(
1−G(τ)

)(1− η)β

ηρ

[ ∫ τ

0

1

σ
g(z′)dz′

]
q(θ)1+ξ

+
(
1− f(θ)

)
f(θ)

1

σ
g(τ)

}
< 0.

Hence, consumption (or equivalently, output) c will fall. Next, in terms of product market

tightness, it is given by:

θ(γ) =
1− η

ηρ

(
p(γ)− τ + β

∫ τ

0

Φ(
log z′ − γ

σ
)dz′

)
. (D.4)

Accordingly, the derivative of θ with respect to γ is:

dθ(γ)

dγ
=
1− η

ηρ

[(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp+ f(θ)

(
1−G(τ) + f(θ)G(τ)

)]−1

·
{(

1−G(τ) + f(θ)G(τ)
)
f(θ)

1

σ
g(τ)

p

G(τ)
+
(
1− f(θ)

)
f(θ)p

1

σ
g(τ)

−
(
1−G(τ) + f(θ)G(τ)

)
f(θ)β

[ ∫ τ

0

1

σ
g(z′)dz′

]}
,

(D.5)

whose value depends on the values of θ and p; as we will discuss later in Appendix D.5, this

dependence is crucial for the state-dependence result of a contractionary monetary policy

shock. Similarly, by substituting Equation (D.4) into Equation (10), the import price can

be expressed as:

r(γ) = p(γ) + (1− η)β

∫ τ

0

Φ(
log z′ − γ

σ
)dz′ + (1− η)(z − τ).
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Differentiating r(γ) with respect to γ yields:

dr(γ)

dγ
=
[(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp+ f(θ)

(
1−G(τ) + f(θ)G(τ)

)]−1

·
{(

1−G(τ) + f(θ)G(τ)
)
f(θ)

1

σ
g(τ)

p

G(τ)

+
(
1−G(τ)

)(1− η)β

ρ

[ ∫ τ

0

1

σ
g(z′)dz′

]
q(θ)1+ξp

+
(
1− f(θ)

)
f(θ)p

1

σ
g(τ)

−
(
1−G(τ) + f(θ)G(τ)

)
f(θ)(1− η)β

[ ∫ τ

0

1

σ
g(z′)dz′

]}
,

whose value is also dependent on the values of θ and p. As for the matching cost, given that

it is measured by the difference between G(τ)l and c, its derivative with respect to γ can be

written as:

d

dγ

[
matching cost(γ)

]
=
[(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp+ f(θ)

(
1−G(τ) + f(θ)G(τ)

)]−1

·
( χϵ

1 + χϵ

µ

p

{(
1−G(τ) + f(θ)G(τ)

)
f(θ)

1

σ
g(τ)

1

G(τ)

+
(
1−G(τ)

)(1− η)β

ηρ

[ ∫ τ

0

1

σ
g(z′)dz′

]
q(θ)1+ξ

+
(
1− f(θ)

)
f(θ)

1

σ
g(τ)

}
−

(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp

1

σ
g(τ)l

− f(θ)
(
1−G(τ) + f(θ)G(τ)

) 1
σ
g(τ)l

)
,

whose value is again dependent on the values of θ and p. On the contrary, since the spare

capacity (or equivalently, unemployment) is measured by the difference between l and c, its

derivative with respect to γ is positive, i.e.,

d

dγ

[
spare capacity(γ)

]
=

χϵ

1 + χϵ

µ

p

[(
1−G(τ)

)1− η

ηρ
q(θ)1+ξp+ f(θ)

(
1−G(τ) + f(θ)G(τ)

)]−1

·
{(

1−G(τ) + f(θ)G(τ)
)
f(θ)

1

σ
g(τ)

1

G(τ)

+
(
1−G(τ)

)(1− η)β

ηρ

[ ∫ τ

0

1

σ
g(z′)dz′

]
q(θ)1+ξ

+
(
1− f(θ)

)
f(θ)

1

σ
g(τ)

}
> 0.
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D.5. Proof of Proposition 6

We start the proof by re-visiting the function T : [pmin,+∞)× R+ × R→ R:

T(p, µ, γ) =
χϵ

1 + χϵ

µ

G(τ)l
− f(θ)p

1−G(τ) + f(θ)G(τ)

=
χϵ

1 + χϵ

µ

Φ( log τ−γ
σ

)l
−

{
1 +

[
1−η
ηρ

(
p− τ + β

∫ τ

0
Φ( log z′−γ

σ
)dz′

)]−ξ}− 1
ξ p

1− Φ( log τ−γ
σ

) +
{
1 +

[
1−η
ηρ

(
p− τ + β

∫ τ

0
Φ( log z′−γ

σ
)dz′

)]−ξ}− 1
ξΦ( log τ−γ

σ
)
,

where Φ(.) is the standard normal cumulative density function. Subsequently, assuming

the existence of a tuple (p0, µ0, γ0) ∈ [pmin,+∞) × R+ × R such that T(p0, µ0, γ0) = 0 and

∂T(p, µ, γ)/∂p|p=p0,µ=µ0,γ=γ0 ̸= 0, by the Implicit Function Theorem, there is a neighborhood

of (p0, µ0, γ0) such that whenever (µ, γ) is sufficiently close to (µ0, γ0), there is a unique p so

that T(p, µ, γ) = 0. This assignment makes p a continuous function of µ and γ. Applying

implicit differentiation to T(p, µ, γ) around (p0, µ0, γ0) yields:

∂p(µ, γ)

∂µ
= −∂T(p, µ, γ)/∂µ

∂T(p, µ, γ)/∂p
.

The numerator can be written as:

∂T(p, µ, γ)
∂µ

=
χϵ

1 + χϵ

1

G(τ)l
> 0,

whereas the denominator is given by:

∂T(p, µ, γ)
∂p

= −
(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξp+ f(θ)
(
1−G(τ) + f(θ)G(τ)

)(
1−G(τ) + f(θ)G(τ)

)2 < 0.

By combining ∂T(p, µ, γ)/∂µ with ∂T(p, µ, γ)/∂p, we derive that:

∂p(µ, γ)

∂µ
=

χϵ

1 + χϵ

1

G(τ)l

(
1−G(τ) + f(θ)G(τ)

)2(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξp+ f(θ)
(
1−G(τ) + f(θ)G(τ)

)
=

1

µ

[ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

) +
1

p

]−1

> 0.
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In terms of the partial derivative ∂c(µ, γ)/∂µ, using the expression of the aggregate demand

in Equation (20), we can derive that:

∂c(µ, γ)

∂µ
=

χϵ

1 + χϵ

(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξp+ f(θ)
(
1−G(τ) + f(θ)G(τ)

)
=

χϵ

1 + χϵ

[
p+

f(θ)
(
1−G(τ) + f(θ)G(τ)

)(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

]−1

.

Hence, both ∂p(µ, γ)/∂µ and ∂c(µ, γ)/∂µ depend on the fraction:(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

) . (D.6)

Next, we study the dependence of the fraction (D.6) on γ, as it directly determines the

signs of ∂2p(µ, γ)/∂µ∂γ and ∂2c(µ, γ)/∂µ∂γ. It is given by:

∂

∂γ

[ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

)] =
f(θ)

(
1−G(τ) + f(θ)G(τ)

)[
1
σ
g(τ)1−η

ηρ
q(θ)1+ξ

][
f(θ)

(
1−G(τ) + f(θ)G(τ)

)]2
−

f(θ)
(
1−G(τ) + f(θ)G(τ)

)[(
1−G(τ)

)
1−η
ηρ

∂θ(µ,γ)
∂γ

(1 + ξ)θξ−1(1 + θξ)−
1+ξ
ξ

−1
][

f(θ)
(
1−G(τ) + f(θ)G(τ)

)]2
−

(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ
[∂θ(µ,γ)

∂γ
q(θ)1+ξ

(
1−G(τ) + f(θ)G(τ)

)][
f(θ)

(
1−G(τ) + f(θ)G(τ)

)]2
−

(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ
[
f(θ)

(
1
σ
g(τ) + ∂θ(µ,γ)

∂γ
q(θ)1+ξG(τ)− f(θ) 1

σ
g(τ)

)][
f(θ)

(
1−G(τ) + f(θ)G(τ)

)]2 ,

and is proportional to:

∂

∂γ

[ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

)] ∝ f(θ)2
1

σ
g(τ)

− f(θ)
(
1−G(τ) + f(θ)G(τ)

)(
1−G(τ)

)∂θ(µ, γ)
∂γ

(1 + ξ)
θξ−1

1 + θξ

−
(
1−G(τ)

)∂θ(µ, γ)
∂γ

q(θ)1+ξ
(
1−G(τ) + f(θ)G(τ)

)
−

(
1−G(τ)

)
f(θ)

∂θ(µ, γ)

∂γ
q(θ)1+ξG(τ),

where g(τ) ≡ ϕ[(log τ − γ)/σ] and ϕ(.) is the standard normal probability density function.
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When the partial derivative of θ with respect to γ satisfies:

∂θ(µ, γ)

∂γ
>

f(θ)2 1
σ
g(τ)(

1−G(τ)
)
f(θ)q(θ)1+ξG(τ)

=
θ(1 + θξ) 1

σ
g(τ)(

1−G(τ)
)
G(τ)

> 0,

it is easy to verify that:

∂

∂γ

[ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

)] < 0,

and the values of the cross derivatives can thus be determined:

∂2p(µ, γ)

∂µ∂γ
=−

{ ∂

∂γ

[ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

)]− ∂p(µ, γ)

∂γ

1

p2

}
·
[ (

1−G(τ)
)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

) +
1

p

]−2 1

µ
> 0,

∂2c(µ, γ)

∂µ∂γ
=−

{∂p(µ, γ)

∂γ
− ∂

∂γ

[ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

)][ (
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

f(θ)
(
1−G(τ) + f(θ)G(τ)

)]−2}
·
[
p+

f(θ)
(
1−G(τ) + f(θ)G(τ)

)(
1−G(τ)

)
1−η
ηρ

q(θ)1+ξ

]−2 χϵ

1 + χϵ
< 0,

where ∂p(µ, γ)/∂γ > 0 according to Equation (D.3). With them, it is straightforward to

derive the rest of the cross derivatives: specifically, for the product market tightness,

∂θ(µ, γ)

∂µ
=

1− η

ηρ

∂p(µ, γ)

∂µ
> 0,

∂2θ(µ, γ)

∂µ∂γ
=

1− η

ηρ

∂2p(µ, γ)

∂µ∂γ
> 0;

for the import price,

∂r(µ, γ)

∂µ
=

∂p(µ, γ)

∂µ
> 0,

∂2r(µ, γ)

∂µ∂γ
=

∂2p(µ, γ)

∂µ∂γ
> 0;

for the matching cost,

∂

∂µ

[
matching cost(µ, γ)

]
= −∂c(µ, γ)

∂µ
< 0,

∂2

∂µ∂γ

[
matching cost(µ, γ)

]
= −∂2c(µ, γ)

∂µ∂γ
> 0;

and lastly, for the spare capacity (or equivalently, unemployment),

∂

∂µ

[
spare capacity(µ, γ)

]
= −∂c(µ, γ)

∂µ
< 0,

∂2

∂µ∂γ

[
spare capacity(µ, γ)

]
= −∂2c(µ, γ)

∂µ∂γ
> 0.
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E. Fixed-Price Aggregate Supply

In contrast to the flexible-price aggregate supply as discussed in the main text, we consider

here the alternative pricing mechanism in which the price of goods is fixed while the reser-

vation transportation cost can vary. A careful exposition of such a fixed-price mechanism is

essential to understand how the matching frictions and endogenous separation mechanism

could affect aggregate supply differently. The fixed-price aggregate supply is defined below,

and its key analytical properties are summarized in Proposition 2′.

Definition 2′′. For an arbitrary price κ ∈ (0,+∞), the fixed-price aggregate supply cfixs is

the function of reservation transportation cost z̄ defined by:

cfixs (z̄) =

{
1 +

[
1−η
ηρ

(
κ− z̄ + β

∫ z̄

0
G(z′)dz′

)]−ξ}− 1
ξG(z̄)l

1−G(z̄) +
{
1 +

[
1−η
ηρ

(
κ− z̄ + β

∫ z̄

0
G(z′)dz′

)]−ξ}− 1
ξG(z̄)

, (E.1)

for all z̄ ∈ (0, z̄max], where z̄max satisfies:

κ− z̄max + β

∫ z̄max

0

G(z′)dz′ = 0. (E.2)

Proposition 2′. The fixed-price aggregate supply cfixs has the following properties:

1. limz̄→0+ cfixs (z̄) = 0;

2. cfixs (z̄max) = 0; and

3. There exists at least one z̄∗ ∈ (0, z̄max] such that dcfixs (z̄)/dz̄|z̄=z̄∗ = 0.

Proof. It is straightforward to prove the first property. When z̄ → 0+, limz̄→0+ θ(z̄) =

(1− η)κ/(ηρ), limz̄→0+ f
(
θ(z̄)

)
= {1 + [(1 − η)κ/(ηρ)]−ξ}−1/ξ > 0. At the same time, when

z̄ → 0+, limz̄→0+ G(z̄) = 0. Therefore, limz̄→0+ cfixs (z̄) = 0. In terms of the second property,

it is obvious from the definition of z̄max, together with that f(0) = 0. Regarding the last
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property, the derivative of cfixs with respect to z̄ can be written as:

dcfixs (z̄)

dz̄
=
(
1−G(z̄) + f(θ)G(z̄)

)−2

·
[ (

1−G(z̄)
)1− η

ηρ

(
− 1 + βG(z̄)

)
θ−ξ−1f(θ)1+ξG(z̄)l︸ ︷︷ ︸

Product Market Tightness
Channel < 0

+ f(θ)
1

z̄σ
g(z̄)l︸ ︷︷ ︸

Separation Margin
Channel > 0

]
,

where G(z̄) ≡ Φ[(log z̄ − γ)/σ], g(z̄) ≡ ϕ[(log z̄ − γ)/σ], while Φ(.) and ϕ(.) are the stan-

dard normal cumulative density function and probability density function respectively. The

product market tightness channel is negative, because a higher reservation transportation

cost would reduce the total surplus to be shared between exporters and importers at the

margin, hence dampening the incentives for importers to visit exporters, leading to a slack

product market as well as a lower aggregate supply. The separation margin channel is posi-

tive, because a larger proportion of matches that would otherwise have been dismissed could

now continue, hence contributing to a higher aggregate supply. These two channels jointly

determine the fixed-price aggregate supply, and the extent to which one channel dominates

the other depends on both the parameter values and reservation transportation cost itself.

When z̄ → 0+, it can be shown that:

lim
z̄→0+

dcfixs (z̄)

dz̄
=

{
1 +

[(1− η)κ

ηρ

]−ξ}− 1
ξ lim
z̄→0+

1

z̄σ
g(z̄)l > 0,

since the probability density function of a log-normal distribution is always positive. When

z̄ → z̄max, it can be derived that:

lim
z̄→z̄max

dcfixs (z̄)

dz̄
=

1

1−G(z̄max)

1− η

ηρ

(
− 1 + βG(z̄max)

)
G(z̄max)l < 0.

Consider an infinitesimal number ϵ > 0 such that dcfixs (z̄)/dz̄|z̄=ϵ and limz̄→0+ dcfixs (z̄)/dz̄

have the same sign. By the Intermediate Value Theorem, since dcfixs (z̄)/dz̄ is continuous on

[ϵ, z̄max], there must exist at least one z̄∗ ∈ [ϵ, z̄max] such that dcfixs (z̄)/dz̄|z̄=z̄∗ = 0. Since

[ϵ, z̄max] is a sub-interval of (0, z̄max], the last property thus holds. ■

To plot the fixed-price aggregate supply, we also need to pin down its curvature. Since

the value of the second derivative of cfixs cannot be determined analytically, we resort to
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numerical methods for an approximation.12 Figure E.1 plots the fixed-price aggregate supply,

its theoretical upper bound if the matching frictions were absent, and the productive capacity.

As seen, the non-monotonic behavior of the fixed-price aggregate supply clearly illustrates

the two aforementioned, counteracting channels at play; specifically, when the reservation

transportation cost is relatively low, the separation margin channel dominates the product

market tightness channel, and vice versa. Therefore, there exists a level of reservation

transportation cost such that the aggregate supply is maximized. Such a behavior is similar

to the one considered in Michaillat and Saez (2015), where both the matching frictions on

the product market and matching cost per visit give rise to the non-standard behavior of

the aggregate supply curve.13

In terms of the other variables of interest, as the reservation transportation cost increases,

the matching cost, i.e., G(z̄)l−c, increases, the transportation cost, i.e., (1−G(z̄))l, decreases,

while the spare capacity (or equivalently, unemployment), i.e., l − c, first decreases then

increases.

12. Nevertheless, the second derivative of cfixs with respect to z̄ is given by:

d2cfixs (z̄)

dz̄2
=

(
1−G(z̄) + f(θ)G(z̄)

)2 · ( (1− η)l

ηρ

1

z̄σ
g(z̄)

(
− 1 + 2βG(z̄) + 2G(z̄)− 3βG(z̄)2

)
q(θ)1+ξ

− (1− η)l

ηρ

(
1−G(z̄)

)
G(z̄)

(
− 1 + βG(z̄)

)2 1− η

ηρ
θξ−1(1 + ξ)

(
1 + θξ

)− 1+ξ
ξ −1

+
1− η

ηρ

(
− 1 + βG(z̄)

)
θ−ξ−1

(
1 + θ−ξ

)− 1
ξ−1 1

z̄σ
g(z̄)l − f(θ)l

{ 1

z̄2σ
g(z̄) +

log z̄ − γ

z̄2σ3
√
2π

exp
[
− (log z̄ − γ)2

2σ2

]})
−
[ (1− η)l

ηρ

(
1−G(z̄)

)
G(z̄)

(
− 1 + βG(z̄)

)
q(θ)1+ξ + f(θ)

1

z̄σ
g(z̄)l

]
·
[1− η

ηρ

(
− 1 + βG(z̄)

)
θ−ξ−1

(
1 + θ−ξ

)− 1
ξ−1

G(z̄)−
(
1− f(θ)

) 1

z̄σ
g(z̄)

]
2
(
1−G(z̄) + f(θ)G(z̄)

)
,

13. In contrast to our fixed-price aggregate supply curve which is plotted in the (c, z̄) plane, the aggregate
supply curve in Michaillat and Saez (2015) is plotted in the (c, x) plane, where x refers to the product market
tightness. See Figure I of their paper for details.
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Figure E.1: Supply Side of the Economy When the Price of Goods Is Fixed

Notes. The figure plots the fixed-price aggregate supply cfixs (z̄), its theoretical upper bound if the matching
frictions were absent G(z̄)l, and the productive capacity l for certain values of reservation transportation cost
z̄. The gap between cfixs (z̄) and G(z̄)l represents the matching cost, the gap between G(z̄)l and l represents
the transportation cost (measured in units of goods), whereas the gap between cfixs (z̄) and l represents the
spare capacity of exporters, or equivalently, the unemployment. In the numerical approximation, parameter
values are η = 0.5, ρ = 0.5, κ = 1.2, β = 0.99, ξ = 2, l = 1, γ = 0, and σ = 1. z̄ takes its values from 1,000
evenly spaced numbers over [0.1, z̄max], where z̄max is solved numerically using its definition in (E.2).
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F. Robustness of SVAR Results

F.1. The Fitted ACR

In this appendix, we conduct a robustness check of our baseline results by using a fitted ACR

index in our estimation after regressing the port-specific ACR on the Oxford Stringency (OS)

index (Mathieu et al. 2020) and port fixed effects.14 Such a robustness check is intended

to resolve the potential endogeneity concern regarding the ACR index when there are non-

negligible changes in the container capacity between shipping routes that arise due to demand

shifters which ultimately contribute to port congestion.

The OS index is essentially an indicator of mobility curtailment policies. Specifically, the

authors of the OS index compile information on when and which measures governments take

to contain the spread of the Covid-19 virus. The particular index we use is a simple average

of nine individual component indicators, which measure the intensity of school closures,

workplace closures, cancellation of public events, restrictions on public gatherings, closures

of public transport, stay-at-home requirements, public information campaigns, restrictions

on internal movements, and international travel controls, respectively. Since the OS index is

dedicated to measuring the strictness of government policies, its variations are not subject

to any demand-side factor. More importantly, strict containment policies enacted by local

governments, as measured by a high value of the OS index, are expected to have contributed

significantly to the escalation of port congestion worldwide, hence serving as the main cause

of the global supply chain disruptions.15 As such, the OS index could be applied as an

instrument to the ACR index, and the resulting fitted ACR index could help us isolate the

causal effects of global supply chain disruptions.

In the actual implementation, we first calculate the monthly average OS index for the

country where each of the major container ports worldwide is located. In the process, we

14. We thank Kun Wang for suggesting this robustness check.
15. The pandemic-related containment measures have put enormous strain on the global supply chain,

disrupting the international shipping of tradable goods to the U.S. from around the world (Attinasi et
al. 2021; Grimes and Edgecliffe-Johnson 2021; Dempsey 2022). For instance, lock-downs introduced to
combat Covid-19 have limited the availability of workers to process cargo in ports as well as their work
arrangements, leading to a slow-down of container processing, an escalation of port congestion, and hence a
supply chain disruption cascading both upstream and downstream.
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truncate our sample at 2020M1 as the OS index is only available after then. Subsequently,

we regress the port-specific ACR on the corresponding OS index and port fixed effects, and

extract the fitted values, i.e., ÂCR. Lastly, we replace the ACR index with ÂCR in our

estimation. Once again, Restrictions 1, 2, and 3 are imposed on IRFs, and the estimation is

undertaken using the Bayesian approach as in Arias, Rubio-Ramirez, and Waggoner (2018),

Arias, Caldara, and Rubio-Ramírez (2019), and Arias et al. (2023). While all the other

specifications are kept the same as those in the baseline, due to the reduced sample length,

we include only one lag in the estimation and compute the IRFs and FEVD for only one

year after impact to reduce parameter uncertainty.

As shown in Figures F.1 to F.3, the IRFs to each structural shock are quantitatively

similar to those in Figures 9 to 11.

Figure F.1: IRFs to an Adverse Shock to Aggregate Demand: ÂCR and Restrictions 1, 2,
and 3

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using ÂCR
and Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded bands
represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based on
100,000 independent draws.
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Figure F.2: IRFs to an Adverse Shock to Labor Supply: ÂCR and Restrictions 1, 2, and 3

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using ÂCR and
Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded bands
represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based on
100,000 independent draws.

Figure F.3: IRFs to an Adverse Shock to Supply Chain: ÂCR and Restrictions 1, 2, and 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using ÂCR and
Restrictions 1, 2, and 3. The solid line shows the point-wise posterior medians, and the shaded bands
represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based on
100,000 independent draws.
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F.2. PCE Goods Price Index

In light of the fact that disruptions to the global supply chain predominantly impacted the

trade of goods over services, we check the robustness of our baseline results by replacing the

monthly U.S. series of the GDP deflator with the PCE goods price index in the SVAR model.

As shown in Figures F.4 to F.8, the estimation results are quantitatively similar to those

outlined in Section 4.1. Furthermore, it is noted in Figure F.6 that the stagflationary effects

of a supply chain disturbance are more pronounced than those in Figure 11, confirming that

the propagation of a supply chain shock is mostly through a severing of trading relationships

in goods.

Figure F.4: IRFs to an Adverse Shock to Aggregate Demand: PCE Goods Price Index

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using an
SVAR specification with the PCE goods price index included. The solid line shows the point-wise posterior
medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability
bands. The figure is based on 100,000 independent draws.
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Figure F.5: IRFs to an Adverse Shock to Labor Supply: PCE Goods Price Index

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using an SVAR
specification with the PCE goods price index included. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.

Figure F.6: IRFs to an Adverse Shock to Supply Chain: PCE Goods Price Index

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using an SVAR
specification with the PCE goods price index included. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.
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Figure F.7: FEVD from the SVAR: PCE Goods Price Index

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using an SVAR specification with the PCE goods price index included, and based on 100,000 independent
draws.

Figure F.8: HD of U.S. Goods Inflation

Notes. The solid line represents the standardized quarterly goods inflation rate in the U.S., i.e., quarter-
on-quarter growth of the PCE goods price index. The shaded bar represents the standardized cumulative
historical contribution of each of the three structural shocks identified using an SVAR specification with
the PCE goods price index included to U.S. goods inflation. The estimation results are obtained with
each variable measured in percent change from the previous period, and are calculated based on 100,000
independent draws.
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F.3. Different Lag Structures and Longer Restrictions

In Figures F.9 to F.14, we show that our baseline results are robust to considering different

lag structures, i.e., one or three lags. We do not consider four lags or beyond due to parameter

uncertainty resulting from our limited sample length. We also extend the horizons at which

we impose the sign restrictions – i.e., from k = 1 to k = 1, 2 – to put more disciplines on the

behaviors of the IRFs. As shown in Figures F.15 to F.17, our baseline results still hold.

Figure F.9: IRFs to an Adverse Shock to Aggregate Demand: L = 1

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using an
SVAR specification as in Equation (24) with one lag, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.10: IRFs to an Adverse Shock to Labor Supply: L = 1

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using an SVAR
specification as in Equation (24) with one lag, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.

Figure F.11: IRFs to an Adverse Shock to Supply Chain: L = 1

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using an SVAR
specification as in Equation (24) with one lag, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.12: IRFs to an Adverse Shock to Aggregate Demand: L = 3

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using an
SVAR specification as in Equation (24) with three lags, as well as Restrictions 1, 2, and 3. The solid line
shows the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-
wise posterior probability bands. The figure is based on 100,000 independent draws.

Figure F.13: IRFs to an Adverse Shock to Labor Supply: L = 3

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using an SVAR
specification as in Equation (24) with three lags, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.
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Figure F.14: IRFs to an Adverse Shock to Supply Chain: L = 3

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using an SVAR
specification as in Equation (24) with three lags, as well as Restrictions 1, 2, and 3. The solid line shows
the point-wise posterior medians, and the shaded bands represent the 68% and 90% equal-tailed point-wise
posterior probability bands. The figure is based on 100,000 independent draws.

Figure F.15: IRFs to an Adverse Shock to Aggregate Demand: k = 1, 2

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are identified using a set
of restrictions that are the same as Restrictions 1, 2, and 3, except that the sign restrictions on IRFs are
imposed for longer horizons, i.e., k = 1 to k = 1, 2. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.
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Figure F.16: IRFs to an Adverse Shock to Labor Supply: k = 1, 2

Notes. The IRFs to a one standard deviation adverse shock to labor supply are identified using a set of
restrictions that are the same as Restrictions 1, 2, and 3, except that the sign restrictions on IRFs are
imposed for longer horizons, i.e., k = 1 to k = 1, 2. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.

Figure F.17: IRFs to an Adverse Shock to Supply Chain: k = 1, 2

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using a set of
restrictions that are the same as Restrictions 1, 2, and 3, except that the sign restrictions on IRFs are
imposed for longer horizons, i.e., k = 1 to k = 1, 2. The solid line shows the point-wise posterior medians,
and the shaded bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The
figure is based on 100,000 independent draws.

A-45



F.4. Prior Robustness

Figures F.18, F.19, and F.20 show that the main conclusions from our baseline SVAR anal-

ysis are robust to using the prior robust approach for the SVARs proposed by Giacomini

and Kitagawa (2021). Such an approach removes the need to specify the prior for the struc-

tural parameter given the reduced-form parameter, which is the component of the prior

that is responsible for the asymptotic disagreement between Bayesian and frequentist infer-

ence. This is mainly achieved by constructing a class of priors that shares a single prior

for the reduced-form parameter but allows for arbitrary conditional priors for the structural

parameters given the reduced-form parameter.

In practice, we apply their Algorithm 1 to numerically approximate the set of posterior

means and the associated robust credible regions for the IRFs of the selected endogenous

variables to each structural shock. We make two modifications in the implementation of

Algorithm 1. First, in Step 2 of Algorithm 1, to draw the orthonormal Q’s subject to

Restrictions 1, 2, and 3, we apply the QR decomposition method as in Arias, Rubio-Ramirez,

and Waggoner (2018) instead of the original linear projection approach. These two ways of

drawing Q are comparable in terms of both the resulting distribution of Q and computational

cost. Second, we replace Step 3 of Algorithm 1 with Step 3′ of Algorithm 2 to approximate

the lower and upper bounds of the prior robust posterior means, as well as those associated

with the robust credible regions.

In Figures F.18, F.19, and F.20, the solid line shows the point-wise posterior medians,

and the shaded area represents the 68% equal-tailed point-wise posterior probability bands.

Their underlying data are from our baseline estimation outlined in Section 4.1. Alongside

the posterior medians and probability bands, we plot the set of prior robust posterior means

using dotted curves, and the corresponding 68% robust credible regions using dashed-dotted

curves. Their underlying data are based on 1,000 independent draws of the reduced-form

parameters and 100,000 orthogonal matrices draws for each reduced-form parameter.
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Figure F.18: IRFs to an Adverse Shock to Aggregate Demand Using the Prior Robust
Approach in Giacomini and Kitagawa (2021)

Notes. The IRFs to a one standard deviation adverse shock to aggregate demand are estimated using the
prior robust approach for the SVARs proposed by Giacomini and Kitagawa (2021). The solid line shows
the point-wise posterior medians, and the shaded area represents the 68% equal-tailed point-wise posterior
probability bands, which are based on the data from our baseline estimation outlined in Section 4.1. The
dotted curves illustrate the set of prior robust posterior means, and the dashed-dotted curves depict the
68% robust credible regions. These curves are obtained from 1,000 independent draws of the reduced-form
parameters and 100,000 orthogonal matrix draws for each reduced-form parameter.
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Figure F.19: IRFs to an Adverse Shock to Labor Supply Using the Prior Robust Approach
in Giacomini and Kitagawa (2021)

Notes. The IRFs to a one standard deviation adverse shock to labor supply are estimated using the prior
robust approach for the SVARs proposed by Giacomini and Kitagawa (2021). The solid line shows the point-
wise posterior medians, and the shaded area represents the 68% equal-tailed point-wise posterior probability
bands, which are based on the data from our baseline estimation outlined in Section 4.1. The dotted curves
illustrate the set of prior robust posterior means, and the dashed-dotted curves depict the 68% robust
credible regions. These curves are obtained from 1,000 independent draws of the reduced-form parameters
and 100,000 orthogonal matrix draws for each reduced-form parameter.
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Figure F.20: IRFs to an Adverse Shock to Supply Chain Using the Prior Robust Approach
in Giacomini and Kitagawa (2021)

Notes. The IRFs to a one standard deviation adverse shock to supply chain are estimated using the prior
robust approach for the SVARs proposed by Giacomini and Kitagawa (2021). The solid line shows the point-
wise posterior medians, and the shaded area represents the 68% equal-tailed point-wise posterior probability
bands, which are based on the data from our baseline estimation outlined in Section 4.1. The dotted curves
illustrate the set of prior robust posterior means, and the dashed-dotted curves depict the 68% robust
credible regions. These curves are obtained from 1,000 independent draws of the reduced-form parameters
and 100,000 orthogonal matrix draws for each reduced-form parameter.
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F.5. No Zero Restrictions When Estimating with the GSCPI

As argued in the introduction and Section 4.2, the GSCPI index is not a pure supply chain

disruption measure, as not only could the movements in its underlying data be driven by the

demand-side factors (e.g., a high demand for tradable goods translates to a high shipping

price), but also there is no differentiation between the supply-side factors (e.g., a rise in

“delivery times” could originate from either a supply chain disruption or a labor shortage).

As a result, the zero restrictions in Restrictions 1, 2, and 3 are no longer valid in the

identification of the adverse shocks to aggregate demand and labor supply.16

Therefore, we conduct a robustness check by relaxing the zero restrictions when estimat-

ing the SVAR model with the GSCPI index included as an endogenous variable. Specifically,

the identification restrictions are now the following:

Restriction 1′. An adverse shock to aggregate demand leads to a negative response of

real GDP, GDP deflator, and import price, as well as to a positive response of unemployment

at k = 1.

Restriction 2′. An adverse shock to labor supply leads to a negative response of real

GDP and unemployment, as well as to a positive response of GDP deflator and import price

at k = 1.

Restriction 3′. An adverse shock to supply chain leads to a negative response of real

GDP, as well as to a positive response of GDP deflator, unemployment, and GSCPI at k = 1.

The estimation is still conducted using the Bayesian approach as in Arias, Rubio-Ramirez,

and Waggoner (2018), Arias, Caldara, and Rubio-Ramírez (2019), and Arias et al. (2023).

All the estimation specifications are kept the same as those applied in the baseline. As can

be clearly seen in Figures F.21, F.22, and F.23, the biases of using the GSCPI index as a

measure of global supply chain disruptions still persist.

16. Nevertheless, we still apply Restrictions 1, 2, and 3 in the identification of the structural shocks in
Section 4.2 so as to control for any potential discrepancy that may arise due to differences in the identification
restrictions.
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Figure F.21: IRFs to an Adverse Shock to Supply Chain: The GSCPI and Restrictions 1′,
2′, and 3′

Notes. The IRFs to a one standard deviation adverse shock to supply chain are identified using the GSCPI
index and Restrictions 1′, 2′, and 3′. The solid line shows the point-wise posterior medians, and the shaded
bands represent the 68% and 90% equal-tailed point-wise posterior probability bands. The figure is based
on 100,000 independent draws.

Figure F.22: FEVD from the SVAR: The GSCPI and Restrictions 1′, 2′, and 3′

Notes. Each line presents the median fraction of the forecast error variance for each endogenous variable,
explained by each of the three identified structural shocks at various time horizons. The FEVD is estimated
using the GSCPI index and Restrictions 1′, 2′, and 3′, and based on 100,000 independent draws.
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Figure F.23: HD of U.S. Inflation: The GSCPI and Restrictions 1′, 2′, and 3′

Notes. The solid line represents the standardized quarterly inflation rate in the U.S., i.e., quarter-on-quarter
growth of the GDP deflator. The shaded bar represents the standardized cumulative historical contribution
of each of the three structural shocks identified using the GSCPI index and Restrictions 1′, 2′, and 3′ to
U.S. inflation. The estimation results are obtained with each variable measured in percent change from the
previous period, and are calculated based on 100,000 independent draws.
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G. Priors and Identification in TVAR

G.1. Priors

Our formulation of the prior in the TVAR model follows Bańbura, Giannone, and Reichlin

(2010), Mumtaz and Zanetti (2012), and Pizzinelli, Theodoridis, and Zanetti (2020), and the

same prior has been applied to the parameters in both the supply chain disrupted (D) and

undisrupted (U) regimes. Specifically, we write the TVAR model in Equation (26) compactly

as a system of multivariate regressions:

y = (MDxD + uD)I + (MUxU + uU)(1T×T − I), (G.1)

where y = [y1 . . . yT ] is an n × T matrix, xD = [xD,1 . . . xD,T ] is an m × T matrix

with xD,t = [y′
t−1 . . . y′

t−L ω′
t]
′, xU = [xU,1 . . . xU,T ] is an m × T matrix with xU,t =

[y′
t−1 . . . y′

t−L ω′
t]
′, ωt = [1, t]′ is a 2 × 1 vector of a constant and a linear trend, uD =

[Σ
1/2
D ϵ1 . . . Σ

1/2
D ϵT ] is an n× T matrix, uU = [Σ

1/2
U ϵ1 . . . Σ

1/2
U ϵT ] is an n× T matrix, ΣD

and ΣU are the covariance matrices, I = diag[I1 . . . IT ] is a T ×T diagonal matrix, MD =

[B′
D,1 . . . B′

D,L C ′
D] and MU = [B′

U,1 . . . B′
U,L C ′

U] are two n × m matrices containing

the TVAR coefficients associated with each regime, and m = nL+2. Given Equation (G.1),

for each regime r ∈ {D,U}, we assume that the prior distribution of the parameter vector,

vec(Mr), has a Normal-Inverse-Wishart conjugate form.17 Such a form can be written as:

vec(Mr)|Σr ∼ N
(
vec(M 0

r ),Σr ⊗Ω0
r

)
,

Σr ∼ IW
(
S0

r , α
0
r

)
,

(G.2)

where vec(M 0
r ) is the prior mean of the parameter vector, Ω0

r controls the tightness around

this prior, S0
r is the prior scale matrix of the Inverse-Wishart (IW ) distribution, and α0

r de-

notes the prior degrees of freedom. Essentially, the prior in Equation (G.2) is a generalization

of the Minnesota prior discussed in Litterman (1986) and assumes that the endogenous vari-

ables follow a random walk or an AR(1) process. This is based on the idea that recent lags

provide more reliable information on the dynamics of the system and therefore the estima-

17. vec(·) denotes the operator that stacks the columns of a matrix into a vector.

A-53



tion should assign them a higher weighting. Unlike the original formulation in Litterman

(1986) however, the prior in Equation (G.2) does not assume a diagonal, fixed, and known

covariance matrix, making it more suitable for our structural analysis.

The Normal-Inverse-Wishart prior implies that, while the prior expectations and vari-

ances of the coefficient matrices for the constant and linear trend, Cr, are diffuse, those

associated with the autoregressive matrices, Br,l, can be written as:

E[(Br,l)i,j] =

β0
r,i, if i = j, l = 1;

0, otherwise;

V[(Br,l)i,j] = λσ2
i /σ

2
j ,

(G.3)

where β0
r,1, . . . , β

0
r,n are the prior means of the autoregressive coefficients, σ1, . . . , σn are the

prior error standard deviations, and the hyper-parameter λ controls the overall tightness of

the prior distribution such that a larger λ corresponds to a looser prior. As described in

Bańbura, Giannone, and Reichlin (2010) and commonly used in the literature of Bayesian

SVARs, the prior moments in Equation (G.3) can be implemented by adding Tr,d dummy

observations yr,d and xr,d to the system of regressions in Equation (G.1) that correspond to

each regime, with yr,d and xr,d satisfying:

yr,d =


diag[β0

r,1σ1 . . . β0
r,nσn]/λ

0n(L−1)×n

diag[σ1 . . . σn]

02×n

 , xr,d =


JL ⊗ diag[σ1 . . . σn]/λ 0nL×1 0nL×1

0n×nL 0n×1 0n×1

01×nL ξ 0

01×nL 0 ξ

 ,

where JL = diag[1 . . . L] and the hyper-parameter ξ controls the prior on the constant and

the linear trend such that a small number makes the prior uninformative. Subsequently, the

prior moments in Equation (G.2) are simply functions of yr,d and xr,d, which are given by:

M 0
r = yr,dx

′
r,d(xr,dx

′
r,d)

−1,

Ω0
r = (xr,dx

′
r,d)

−1,

S0
r = (yr,d −M 0

rxr,d)(yr,d −M 0
rxr,d)

′,

α0
r = Tr,d −m.
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With the Normal-Inverse-Wishart prior being conjugate, the conditional posterior dis-

tribution of the parameter vector is also Normal-Inverse-Wishart (Bańbura, Giannone, and

Reichlin 2010; Mumtaz and Zanetti 2012):

vec(Mr)|Σr,y ∼ N
(
vec(M̃r),Σr ⊗ (x̃rx̃

′
r)

−1
)
,

Σr|y ∼ IW
(
S̃r, Tr,d + 2 + T −m

)
,

where the parameters associated with the posterior are given by:

M̃r = ỹrx̃
′
r(x̃rx̃

′
r)

−1,

S̃0
r = (ỹr − M̃rx̃r)(ỹr − M̃rx̃r)

′,

in which the terms ỹr and x̃r are the matrices of yr and xr augmented with the dummy

observations yr,d and xr,d respectively.18

Following Mumtaz and Zanetti (2012) and Pizzinelli, Theodoridis, and Zanetti (2020),

we obtain the values of the prior mean of each autoregressive coefficient, β0
r,i, as well as the

prior error standard deviation, σi, from the OLS estimation of a univariate AR(1) model for

each endogenous variable. In addition, we set λ = 0.25 to ensure fast lag decay towards zero.

Finally, in terms of the prior distribution of ACR, we assume that it is normally distributed,

with the mean set at the median of the ACR series and the standard deviation calibrated to

deliver a Markov Chain Monte Carlo (MCMC) acceptance rate of approximately 70%.

G.2. Identification Using the PFA

Following Uhlig (2005) and Mountford and Uhlig (2009), the identification scheme we employ

in the study of the state-dependent effects of a contractionary monetary policy shock amounts

to finding an impulse vector a that minimizes a given criterion function f(·) on the space of

all impulse vectors. This function penalizes positive impulse responses of real GDP, GDP

deflator, and import price as well as negative impulse responses of the Federal Funds Rate

and unemployment at horizons k = 1, . . . , K, while satisfying the zero restriction imposed

on the impulse response of ACR at horizon k = 1. The scheme is applied separately for

the observations in each regime. Hence, for simplicity, we drop the regime-specific notation

18. yr is the part of y that is associated with regime r ∈ {D,U}.
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r ∈ {D,U} in the following description.

The PFA is implemented numerically as follows. Define the penalty function as:

f(x) =

x, if x ≤ 0;

100x, if x > 0,

(G.4)

which penalizes positive responses in linear proportion and rewards negative responses in

linear proportion, albeit at a slope 100 times smaller than the slope for penalties on the

positive side. For the true VAR coefficients, let rj,a(k), k = 1, . . . , K be the impulse response

of variable j and σj be the standard deviation of the series for variable j. Let ιj = −1 if

j is the index of Federal Funds Rate or unemployment in the data vector, and ιj = 1 if

j is the index of real GDP, GDP deflator, or import price in the data vector. Define the

contractionary monetary policy impulse vector as that impulse vector a, which minimizes

the total penalty φ(a) subject to the zero restriction imposed on the impulse response of the

ACR index at horizon k = 1:

φ(a) =
∑

j∈



“Federal Funds Rate”,
“real GDP”,

“GDP deflator”,
“unemployment”,

“import price”



[ K∑
k=1

f
(
ιj
rj,a(k)

σj

)]
.

The re-scaling by σj is necessary to make the deviations across different impulse responses

comparable to each other. Note that the sign of the penalty direction is flipped for the Federal

Funds Rate and unemployment. Since the true VAR is unknown, we find the contractionary

monetary policy vector for each draw from the posterior. Such a step involves numerical

minimization, and we keep all the draws and accordingly calculate all the corresponding

impulse vectors. As a result, the IRFs in the main text are calculated based on these.

G.3. Posterior and Identified Regimes

The posterior distribution of the threshold ACR is plotted in Figure G.1, while the time

series of the identified regimes using the median of such a posterior is plotted in Figure G.2.

A-56



Figure G.1: Posterior Distribution of the Threshold ACR

Notes. The figure plots the posterior distribution of the ACR threshold value, i.e., ACR, based on 10,000
independent draws.

Figure G.2: Regimes Based on the Median of the Posterior ACR

Notes. The solid line, switching from zero to one, represents the current regime as identified by the median of
the posterior distribution of the ACR threshold, i.e., median(ACR) = 17.7595. The value of one corresponds
to the supply chain disrupted (D) regime, while the value of zero corresponds to the supply chain undisrupted
(U) regime.
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H. Robustness of TVAR Results

In Figures H.1 and H.2, we show that our state-dependence results are robust to considering

different lag structures in the TVAR model, i.e., two or three lags. We do not consider four

lags or beyond due to parameter uncertainty resulting from our limited sample length. We

also show in Figure H.3 that the results are robust when a looser prior is undertaken in the

estimation, i.e., λ = 0.5. Furthermore, we extend the horizons at which we impose the sign

restrictions – i.e., from k = 1 to k = 1, 2, 3 – so as to put more disciplines on the behaviors

of IRFs. As shown in Figure H.4, once again, our benchmark results still hold.

Figure H.1: State-Dependent Effects of a Contractionary Monetary Policy Shock: L = 2

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using a TVAR specification as in Equation (26) with two lags, as well as Restriction 4, for both the supply
chain disrupted and undisrupted regimes. The black solid (red solid) line shows the point-wise posterior
medians, and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior
probability bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000
independent draws from the posterior.
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Figure H.2: State-Dependent Effects of a Contractionary Monetary Policy Shock: L = 3

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using a TVAR specification as in Equation (26) with three lags, as well as Restriction 4, for both the supply
chain disrupted and undisrupted regimes. The black solid (red solid) line shows the point-wise posterior
medians, and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior
probability bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000
independent draws from the posterior.

A-59



Figure H.3: State-Dependent Effects of a Contractionary Monetary Policy Shock: λ = 0.5

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using a TVAR specification as in Equation (26) with λ = 0.5, as well as Restriction 4, for both the supply
chain disrupted and undisrupted regimes. The black solid (red solid) line shows the point-wise posterior
medians, and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior
probability bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000
independent draws from the posterior.
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Figure H.4: State-Dependent Effects of a Contractionary Monetary Policy Shock: k =
1, 2, 3

Notes. The figure shows the IRFs to a one standard deviation contractionary monetary policy shock identified
using Restriction 4 for both the supply chain disrupted and undisrupted regimes. Restriction 4 is imposed
for longer horizons, i.e., k = 1, 2, 3. The black solid (red solid) line shows the point-wise posterior medians,
and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise posterior probability
bands for the supply chain disrupted (undisrupted) regime. The figure is based on 10,000 independent draws
from the posterior.
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I. State-Dependence Results Using the LPs

In this appendix, as a robustness check to our state-dependence results obtained using the

TVAR model, we work with LPs to identify a contractionary monetary policy shock and

analyze how it affects the macro aggregates for the U.S. economy depending on the level

of global supply chain disruptions. LPs are a flexible approach that allows us to address

the state-dependence of monetary policy without making strong parametric assumptions.

Specifically, we use the LPs with interaction terms as in Ghassibe and Zanetti (2022), and

our identification scheme consists of sign restrictions implemented as described in Plagborg-

Møller and Wolf (2021). Consider the following n× (K + 1) projections:

yi,t+k =It

[
β′
D,i,k,0yt +

L∑
l=1

β′
D,i,k,lyt−l +C ′

D,i,kωt

]
+ (1− It)

[
β′
U,i,k,0yt +

L∑
l=1

β′
U,i,k,lyt−l +C ′

U,i,kωt

]
+ ui,k,t,

(I.1)

where 1 ≤ i ≤ n, 0 ≤ k ≤ K, yt is an n × 1 vector of the same endogenous variables as in

Section 5.2 save for the ACR index (since it is the variable we use to split the sample), yi,t+k

is the value of the i-th variable in yt+k, ωt = [1, t]′ is a 2×1 vector of a constant and a linear

trend, and ui,k,t is the reduced-form error corresponding to the i-th variable. The vector of

the reduced-form errors for k = 1, u1,t = [u1,1,t . . . un,1,t]
′, is assumed to have mean zero

and covariance matrix equal to E(u1,tu
′
1,t) = Σ.

Similar to the setup in the TVAR model, It is a dummy variable that indicates whether

the supply chain is disrupted. The supply chain disrupted regime is determined based on

whether the one-month lag of the ACR index is above its median level over the sample. Figure

I.1 shows the times series of the ACR index along with its 50th and 60th percentiles. As seen,

there were frequent switches between the supply chain disrupted and undisrupted regimes

before 2019. Subsequently, from early-2019 to mid-2020, the ACR index was constantly

below its sample median. Such a pattern was reversed from mid-2020 onwards, as the ACR

index started to climb up and the U.S. economy stepped into the disrupted regime. Note

that the switches between the two regimes shown in Figure I.1 are almost identical to those
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illustrated in Figure G.2 when the threshold ACR is determined endogenously in the TVAR

estimation.

Figure I.1: ACR and Its 50th and 60th Percentiles

Notes. The figure plots the ACR index as well as its 50th and 60th percentiles during the sampling period
from January 2017 to July 2022. The ACR index is computed using the AIS data of containerships and the
IMA-DBSCAN algorithm developed in Appendix A. The index is presented in percentage terms and has
been seasonally adjusted.

With the two regimes defined, the parameters βD,i,k,0,βD,i,k,l, and CD,i,k correspond to the

supply chain disrupted regime (D), while the parameters βU,i,k,0,βU,i,k,l, and CU,i,k correspond

to the supply chain undisrupted regime (U). Same as our choice of the lag structure in the

TVAR model, we include only one lag in the estimation of the LPs so as to reduce parameter

uncertainty.

In order to identify a contractionary monetary policy shock, we follow our theoretical

prediction in Proposition 6 and come up with an identification scheme similar to that in

Section 5.2. Yet, since the ACR is not included in the estimation, we drop the zero restriction

in Restriction 4 and re-write it as the following:

Restriction 4′. A contractionary monetary policy shock leads to a negative response

of real GDP, GDP deflator, and import price, as well as to a positive response of unemploy-

ment and Federal Funds Rate at k = 1, 2, 3. In addition, the on-impact response of GDP

deflator in p.p. is bounded to be smaller than that of Federal Funds Rate in p.p.
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Note that Restriction 4′ is similar to Restriction 4, except that we impose restrictions on

the subsequent horizons to sharpen our identification, and an elasticity bound is imposed to

discipline the identified set of IRFs corresponding to the GDP deflator. The latter variation

is critical to ensure that our estimation is plausible, as in the absence of such a bound, the

identified set would include a decline in the GDP deflator of 100 p.p. as being equally likely

as a decline in the GDP deflator of 1 p.p. following an unexpected increase in the Federal

Funds Rate of 0.05 p.p. Hence, we use a bound to rule out dubious IRFs following Kilian

and Murphy (2012), Arias, Caldara, and Rubio-Ramírez (2019), and Arias et al. (2023).

With Restriction 4′, we compute the identified set of IRFs in each regime by numerically

solving the quadratic program described in the supplement to Plagborg-Møller and Wolf

(2021) using Algorithm 2 of Giacomini and Kitagawa (2021). Without loss of generality, we

normalize the first shock to be the shock of interest. Let S denote a 15 × n matrix that

selects the IRFs which we restrict to be either positive or negative (there are in total 15

sign restrictions in Restriction 4′). Then, for each regime, we draw D = 100, 000 orthogonal

matrices Qr,d (i.e., Q′
r,dQr,d = Qr,dQ

′
r,d = 1n×n) that satisfy the following:

SB̂r,0:2Ω̂Qr,de1 ≥ 0,

e′
3B̂r,0Ω̂Qr,de1

e′
1B̂r,0Ω̂Qr,de1

+ 1 ≥ 0,
(I.2)

where r ∈ {D,U}, 1 ≤ d ≤ D, B̂r,0:2 = [B̂′
r,0 B̂′

r,1 B̂′
r,2]

′, B̂r,k = [β̂r,1,k,0 . . . β̂r,n,k,0]
′, β̂r,i,k,0

is the OLS estimate of βr,i,k,0, Ω̂ = chol(Σ̂)′, chol is the upper triangular Cholesky decompo-

sition of Σ̂, and Σ̂ is the OLS estimate of Σ.19 Given that the entry (i, j) in B̂r,kΩ̂Qr,d gives

the response of the i-th variable to the j-th shock at horizon k, the first inequality condition

in Equation (I.2) summarizes all the sign restrictions imposed on IRFs, while the second

inequality condition contains the elasticity bound, as (e′
3B̂r,0Ω̂Qr,de1)/(e

′
1B̂r,0Ω̂Qr,de1) de-

notes the ratio between the on-impact responses of the GDP deflator and the Federal Funds

Rate, where ei is the i-th column of the n-dimensional identity matrix.

Given B̂r,k and Ω̂, let {Qr,d}d=1,...,D be the draws that satisfy the restrictions in Equation

19. Vector inequalities are to be understood element-wise.
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(I.2). The identified set of IRFs of the i-th variable at horizon k is thus given by:[
min
d

{
0.05

e′
iB̂r,kΩ̂Qr,de1

e′
1B̂r,0Ω̂Qr,de1

}
d=1,...,D

, max
d

{
0.05

e′
iB̂r,kΩ̂Qr,de1

e′
1B̂r,0Ω̂Qr,de1

}
d=1,...,D

]
, (I.3)

where the factor 0.05/(e′
1B̂r,0Ω̂Qr,de1) is a normalization so that in both regimes, the con-

tractionary monetary policy shock raises the Federal Funds Rate by 0.05 p.p. on impact.

Figure I.2 plots the point-wise medians and 68% equal-tailed point-wise probability bands

associated with the identified set of IRFs in each regime following a contractionary monetary

policy shock. We show the IRFs from horizon k = 0 up to horizon k = 6. The shorter horizon

relative to the horizon of the IRFs shown in the TVAR model (Figure 16) is due to parameter

uncertainty associated with the LPs. Nevertheless, as clearly seen in Figure I.2, the state-

dependent effects of a contractionary monetary policy shock are still observable, as the

responses of real GDP and unemployment are weaker while those of the GDP deflator and

import price are stronger when the global supply chain is disrupted (i.e., ACRt−1 > 17.8%,

which is the sample median of the ACR index).

As a robustness check, we also consider a threshold at the 60th percentile of the ACR in-

dex (i.e., 18.2%) to distinguish between the supply chain disrupted and undisrupted regimes.

As shown in Figure I.3, the main results are robust. We do not consider thresholds higher

than the 60th percentile because, as shown in Figure I.1, they would imply a sharp division

of our sample at around mid-2020, which may lead to a biased result.
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Figure I.2: State-Dependent Effects of a Contractionary Monetary Policy Shock: Using
LPs With Interaction Terms and a Threshold at the Median of the ACR Index

Notes. The figure shows the IRFs to a contractionary monetary policy shock identified using LPs with
interaction terms, as in Ghassibe and Zanetti (2022), along with Restriction 4′, for both the supply chain
disrupted and undisrupted regimes. A threshold at the sample median of the ACR index (i.e., 17.8%) is
applied to distinguish between the two regimes. The black solid (red solid) line shows the point-wise medians,
and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise probability bands for the
supply chain disrupted (undisrupted) regime. The figure is based on 100,000 draws of orthogonal matrices.
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Figure I.3: State-Dependent Effects of a Contractionary Monetary Policy Shock: Using
LPs With Interaction Terms and a Threshold at the 60th Percentile of the ACR Index

Notes. The figure shows the IRFs to a contractionary monetary policy shock identified using LPs with
interaction terms, as in Ghassibe and Zanetti (2022), along with Restriction 4′, for both the supply chain
disrupted and undisrupted regimes. A threshold at the 60th percentile of the ACR index (i.e., 18.2%) is
applied to distinguish between the two regimes. The black solid (red solid) line shows the point-wise medians,
and the black shaded area (red dotted lines) depicts the 68% equal-tailed point-wise probability bands for the
supply chain disrupted (undisrupted) regime. The figure is based on 100,000 draws of orthogonal matrices.
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