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Abstract

A signal is privacy-preserving with respect to a collection of privacy sets, if the

posterior probability assigned to every privacy set remains unchanged conditional on

any signal realization. We characterize the privacy-preserving signals for arbitrary state

space and arbitrary privacy sets. A signal is privacy-preserving if and only if it is a

garbling of a reordered quantile signal. These signals are equivalent to couplings, which

in turn lead to a characterization of optimal privacy-preserving signals for a decision-

maker. We demonstrate the applications of this characterization in the contexts of

algorithmic fairness, price discrimination, and information design.

Keywords: Privacy-preserving signal, privacy sets, independence, reordered quantile signal,

protected characteristics.

JEL classification: C11, D63, D42, D83,

∗We thank Dirk Bergemann, Joyee Deb, Laura Doval, Mira Frick, Paul Heidhues, Ryota Iijima, Emir
Kamenica, Elliot Lipnowski, Alessandro Lizzeri, Barry Nalebuff, Aniko Öry, Benjamin Polak, Aaron Roth,
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1 Introduction

In many economic settings, there are constraints on what information can be used or revealed:

Characteristics such as race, gender, and sexual orientation are protected in many contexts,

and the information that can be revealed about them is limited due to legal, regulatory, or

social norms. Motivated by this, we study the set of signals (Blackwell experiments) which

are constrained to not reveal certain information.

For example, consider the case of a bank determining whether to grant a loan to an indi-

vidual. In making this decision, the bank benefits from using an individual’s characteristics

to predict whether they will default. However, the Equal Credit Opportunity Act prohibits

discrimination against loan applicants on the basis of their “protected characteristics”, such

as race, gender, or age. As a result, the bank is legally required to ensure that its loan deci-

sions are not influenced by these protected characteristics. In other words, the information

used by the bank in making loan decisions cannot be based on these characteristics.

This paper presents a framework for understanding information in situations where certain

aspects of the state of the world must be kept private, or equivalently, where decisions must

be taken independent of certain aspects of the state of the world. Following Blackwell (1953),

we model information as a signal about an abstract state of the world. To capture a notion of

protected information, we introduce a collection of events called privacy sets, which represent

the aspects of the state of the world that cannot be disclosed. For instance, in the context

of a bank loan, the privacy sets would include all the protected characteristics. We define

a signal as privacy-preserving if, for any signal realization, the posterior probability of any

privacy set equals its prior probability. In other words, a privacy-preserving signal does not

reveal any information about events that belong to the privacy sets.

We characterize all privacy-preserving signals. We first show that the privacy sets can

always be represented as a component of an extended state space. Specifically, for arbitrary

state of the world ω ∈ Ω, there exists an extended state space (ω, θ) ∈ Ω×Θ such that a signal

is privacy-preserving if and only if it is independent of θ. This representation is convenient, as

the privacy sets might otherwise overlap in arbitrarily complicated ways and are seemingly

intractable. In the bank loan example, realizations of ω would be an applicant’s default

probability and observable attributes, and realizations of θ would be an applicant’s protected

characteristics. A privacy-preserving signal could reveal information about an applicant’s
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default probability ω, but must be independent of applicant’s protected characteristics θ.

Our first main result (Theorem 1) shows that, when Ω is one-dimensional, a signal is

privacy-preserving if and only if it is a garbling of some reordered quantile signal. The

quantile signal is the signal that reveals, for each (ω, θ), the quantile q = F (ω ∣ θ) of ω

given θ, plus potentially some noises when it has an atom. This signal is privacy-preserving

as it is uniformly distributed on [0,1] for every value of θ. A reordered quantile signal is

a signal obtained by further (randomly) reordering the unit interval using some measure

preserving transformation Φθ. As we prove these transformations ensure that the reordered

quantile signal remains privacy-preserving. Theorem 1 establishs that reordered quantile

signals are exactly the frontier of all privacy-preserving signals in Blackwell’s sense: Every

privacy-preserving signal is Blackwell-less informative than some reordered quantile signal,

while reordered quantile signals are Blackwell-undominated.

Although privacy-preserving signals do in general not have a Blackwell-maximum, there

exists a privacy-preserving signal which induces a distribution of posterior means that is the

most dispersed (Theorem 2). Consequently, in settings where the only economically relevant

variables are the posterior means (e.g., when a decision-maker has a payoff that is affine

in ω, or when ω is binary), every privacy-preserving signal is dominated by the generalized

quantile signal.

While independence may seem to be a stringent requirement in some economic examples,

our results extend to a setting where privacy-preserving is defined conditional on another

given random variable. Specifically, consider a further extended state space (ω, θ, y) ∈ Ω×Θ×
Y . A signal said to be conditionally privacy-preserving if it is independent of θ conditional

on y. Thus, our methods can be used to analyze settings where signals are allowed to reveal

information about the protected privacy sets, as long as it is through “materially relevant

characteristics”. For example, banks cannot directly base discriminatory loan decisions on

race, but can make predictions using applicants’ credit history, even though credit histories

may be correlated with race.

Having characterized the set of privacy-preserving signals, we then explore how to op-

timize over this set. Consider a decision-maker who chooses an action a ∈ A to maximize

their payoff u(ω, θ, a), after observing a privacy-preserving signal. Our results imply that it

is without loss to restrict attention to reordered quantile signals. Proposition 2 shows that

the resulting optimization problem is equivalent to a Kantorovich optimal transport problem
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if the protected characteristic is binary (e.g. white/non-white) or an optimization problem

over copulas more generally. Moreover, if the decision-maker’s payoff is either single-crossing

in (ω, a), or linear in ω, or if the state ω is binary then the generalized quantile signal is

optimal for the decision-maker, independent of other details of the decision problem. Finally,

we derive the optimal privacy-preserving signal for binary actions.

Next, we explore some economic applications of our main results. First, we apply our

characterizations to fairness and algorithmic design. In this literature, one of the most

commonly adopted notions of fairness is called independence. It requires decisions to be

independent of protected characteristics (conditionally on materially relevant characteristics).

Our results lead to a characterization of optimal fair algorithms, which generalizes existing

results that apply only to binary-action decision problems with a specific payoff functions.

Furthermore, we lay out an optimal and detail free procedure for regulating algorithm design.

As a second application, we consider price discrimination and market segmentation in the

spirit of Bergemann, Brooks and Morris (2015). In a setting where a monopolist is able to

segment consumers, we consider a situation where consumers with different protected char-

acteristics (e.g., gender, race) or different sensitive information (e.g., genetic information),

must face the same distribution of prices, even though the monopolist engages in third-

degree price discrimination. Theorem 1 implies a characterization of market segmentations

that would allow the monopolist to optimally price-discriminate without discriminating based

on protected characteristics. Solving the optimal transport problem derived in Proposition 2

allows us compute the market segmentation that maximizes the monopolist’s revenue while

preventing price discrimination based on consumers’ protected characteristics.

Third, we show that our results lead to generalizations of an elegant recent result by

He, Sandomirskiy and Tamuz (2023), who study a setting where n ≥ 2 agents are privately

informed about a binary state by independent signals, which they refer to as a private private

information structure. They show that for two agents, a private private information structure

is undominated (i.e., no other private private information structure can induce a more dis-

persed distribution of posterior means for each agent) if and only if each agent’s distribution

of posterior is the conjugate of the other’s. Our results generalize the characterization to the

case of more than two agents and more than two states.

Lastly, we apply our results to Bayesian persuasion, where a sender chooses a privacy-

preserving signal to inform a receiver, who then selects an action after observing the sig-
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nal realization. Our results lead to a familiar “concavification” technique to solve for the

sender’s optimal privacy-preserving signal, as in Kamenica and Gentzkow (2011), except

that the privacy constraints require an extension of underlying state space. When the state

is one-dimensional, and the sender’s indirect utility depends only on the posterior mean, the

persuasion problem can be reduced to choosing a distribution subject to a mean-preserving

contraction constraint (that is more demanding than the one in the case without privacy

constraints derived in Gentzkow and Kamenica 2016).

Related Literature This paper is related to several strands of literature. We follow the

canonical approach of Blackwell (1953) and model information as signals about an underlying

state. We generalize Blackwell’s characterization of feasible signals, by characterizing all

feasible signals that are do not reveal information about a given collection of events. While

Blackwell shows that a signal is feasible if and only if it is dominated by the signal which

fully reveals the state, we show that a signal is feasible and privacy-preserving if and only if

it is dominated by a “reordered quantile signal”.

To illustrate the usefulness of our mathematical results, we apply them to various topics

in economics and computer-science. In the literature on algorithmic fairness, it is well-

documented that recommendations made by predictive algorithms could be discriminatory

(see, for example, Angwin, Larson, Mattu and Kirchner 2016; Arnold, Dobbie and Hull

2022; Fuster, Goldsmith-Pinkham, Ramadorai and Walther forthcoming). Many studies,

both theoretical and empirical, have suggests methods to regulate algorithm design to ensure

fairness.

One of the most common criteria for fairness in this literature requires the decisions to be

statistically independent of protected characteristics (see, e.g., Calders, Kamiran and Pech-

enizkiy 2009; Kamiran, Žilobaitė and Calders 2013; Zafar, Valera, Rodriguez and Gummadi

2015; Corbett-Davies, Pierson, Feller, Goel and Huq 2017; Kitagawa, Sakaguchi and Tetenov

2021; Gillis, McLaughlin and Spiess 2021). These papers characterize the optimal algorithms,

which are fair in the aforementioned sense, for decision problems with binary actions, binary

states and specific payoff structures. Applying our general characterization allows us to unify

and generalize findings in this literature to more than two actions, more than two states, and

general payoff functions. Our results implies a detail-free approach to regulating the design

of predictive algorithms
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In economics, recent work by Liang, Lu and Mu (2023) considers a different notion of

fairness and characterizes the Pareto frontier in terms of payoffs of two groups and the

difference in payoffs for a fixed binary-action decision problem with binary protected groups

and discuss how the optimal policy garbles the inputs to the algorithm. Doval and Smolin

(2023) characterize which vectors of group specific payoffs form the Pareto frontier in an

information design problem and how points on the frontier can be reached by regulating the

output of the algorithm.

A different notion of privacy used in the computer-science literature is differential privacy

proposed by Dwork, McSherry, Nissim and Smith (2006). This notion considers signals as a

function of the characteristics of a population of agents such that each individual agent affects

the log-likelihood of each signal by at most ϵ. Schmutte and Yoder (2022) characterizes the

distribution of posteriors that can be induced by signals satisfying ε-differential privacy and

studies an information design problem subject to differential privacy.

In the literature on price discrimination, several studies explore the welfare implications

of different market segmentations (see, for instance, Varian 1985; Aguirre, Cowan and Vickers

2010; Cowan 2016). Among these papers, Bergemann et al. (2015) interpret market segmen-

tations as a signal about consumers’ values and characterize the set of possible consumer and

producer surplus in the case of unit demand. Haghpanah and Siegel (2022, Forthcoming)

further explore the case when the monopolist sells multiple products. Our results provide

a characterization of feasible market segmentations if the seller can not price discriminate

based on protected characteristics.

Outline The rest of this paper is organized as follows: §2 introduces our framework for

privacy-preserving signals. §3 characterizes privacy-preserving signals for the case of one-

dimensional ω, followed by further results regarding optimal privacy-preserving signals in §4.
§5 discusses economic applications of our results. §6 states the general version of our result

and provides its proof, followed by further discussions in §7. §8 concludes. Proofs for the

auxiliary lemmas are relegated to the Appendix, while proofs for the applications can be

found in the Online Appendix.
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2 Model

State and Signals Consider a standard Borel space (Ω,F) and a probability measure P

on (Ω,F). The state ω is a random variable on (Ω,F ,P).1 A signal (S,π) = (S, (πω)ω∈Ω)
consists of a measurable set S of signal realizations, as well as a conditional distribution over

signal realizations πω ∈ ∆(S) for each state ω.2 To simplify notation, we will refer to the

signal (S,π) simply as π, and leave the set of signal realizations S implicit. We denote by Pπ

the induced probability measure on Ω × S when s is distributed according to πω in state ω.

Since (Ω,F ,P) is a standard probability space, the posterior posterior belief Pπ[⋅ ∣ s] given
each realized s ∈ S is well-defined.3

Privacy-Preserving Signals We are interested in signals about the state—or decisions

that are made conditional on signal realizations—that do not reveal certain type of infor-

mation. For example, in some economic context the signals might be required to preserve

some notion of privacy; or an action taken by a firm might not be allowed to condition on

protected characteristics such as race. For a collection of privacy-sets

P ⊆ F

that are closed under finite intersections,4 each P ∈ P defines an event that has be to “kept

private” and no information about it can be revealed. We do not impose any structures on P
and allow for the number of privacy sets to be finite, or infinite and potentially uncountable.

Definition 1 (Privacy-Preserving Signals). A signal π is privacy-preserving if the prior and

1Note that there are no restrictions on the state space besides being standard. For example, the state
ω might be multidimensional and captures all relevant characteristics of an economic agent such as income,
age, gender, race, address, etc.

2A signal is thus the same as a Blackwell experiment defined in Blackwell (1953).
3Formally, a signal π is a transition probability from Ω to ∆(S). Denote by Σ the σ-algebra of S, we

consider the probability space consisting of the outcome space Ω ×S the product σ-algebra of F and Σ, and
the probability measure Pπ induced by drawing s from πω conditional on ω. The posterior belief Pπ[⋅ ∣ s] is a
regular version of conditional expectation E[1{ω ∈ ⋅} ∣ s] and thus is a transition probability that is consistent
with the joint distribution Pπ of ω and s.

4Namely, P is a π-system. This means that if two sets P1 and P2 are events that need to be kept private,
then their intersection P1 ∩ P2 has to be kept private too.
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posterior probability of the state being in any privacy set coincide, i.e., for all P ∈ P, s ∈ S,

P[ω ∈ P ] = Pπ[ω ∈ P ∣ s] . (1)

According to the definition, under any privacy-preserving signal, observing the signal

realization s reveals no information about any privacy set P ∈ P.

Characteristic-Specific Privacy Sets A particular instance of privacy sets is when the

state is multidimensional, and the privacy sets are given by some components of the state.

These components could capture protected characteristics of individuals such as race, gender,

or age.

Definition 2 (Characteristic-Specific Privacy Sets). The privacy sets P are characteristic-

specific if ω = (ω1, ω2) ∈ Ω = Ω1 ×Ω2 and P is the σ-algebra generated by ω2.

If privacy sets are characteristic-specific, then a signal π is privacy-preserving if and only

if the signal realizations are independent of ω2. In this case, we say that a signal is privacy-

preserving with respect to ω2.

Characteristic-specific privacy sets are tractable because the privacy sets are encoded in

component ω2. In fact, as we argue below, by possibly enlarging the state space, one can

always represent arbitrary privacy sets as characteristic-specific privacy sets.

Proposition 1. There exists a random variable θ ∶ Ω → Θ such that a signal is privacy-

preserving with respect to P if and only if its signal realizations are independent of θ.

Consequently, a signal is privacy-preserving if and only if it is privacy-preserving with

respect to component θ of the extended state (ω, θ). As a result, we henceforth focus on a

state space Ω×Θ and assume, without loss of generality, that the privacy sets are characteristic

specific.

The formal proof of Proposition 1 can be found in the Appendix. To better understand

the intuition, suppose that there are finitely many privacy sets: ∣P ∣ < ∞. As we prove in

Lemma A.1 in the Appendix, a signal is privacy-preserving with respect to P if and only if it

is privacy-preserving with respect to the σ-algebra generated by P. Note that, the minimal

elements {Qk}nk=1 of the σ-algebra generated by P form a partition of Ω. Thus, the σ-algebra
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generated by P is also generated by the random variable θ ∈ {1, . . . , n}, where, for all ω ∈ Ω,

θ(ω) ∶=
n

∑
k=1

k 1{ω ∈ Qk} .

The random variable θ indicates which element of the partition {Qk}nk=1 the state ω falls into.

For example, if the privacy sets divide the population into female/male and white/non-

white, then the minimal sets would be non-white females; non-white males; white females;

and white males. In this case, θ would simply be a random variable indicating to which

group a given person belongs to.

3 Characterization of Privacy-Preserving Signals

For the ease of exposition, we first state the result for the case where Ω ⊆ R.5 The general

result, which does not impose any assumptions on Ω, can be found in §6. To begin with, we

first define a class of (privacy-preserving) signals that are crucial to our characterization.

Quantile Signals Denote by F (⋅ ∣ θ) the cumulative distribution function (CDF) of ω

conditional on θ. That is, F (x ∣ θ) ∶= P[ω ≤ x ∣ θ] for all x ∈ R and θ ∈ Θ. If F (⋅ ∣ θ) is
continuous for all θ ∈ Θ, we define the random variable

q = F (ω ∣ θ) (2)

to be the empirical quantile of the conditional distribution. Whenever the conditional distri-

butions F (⋅ ∣ θ) are continuous, the empirical quantile q = F (ω ∣ θ) is uniformly distributed

on [0,1] for all θ, and revealing it thus constitutes a privacy-preserving signal. If the condi-

tional distributions are not all continuous, the empirical quantile is not uniformly distributed

and additional randomization is needed to construct a privacy-preserving signal based on the

quantile. In general, one can define the generalized quantile to be the quantile at those points

where the CDF is continuous and uniformly randomizing over the associated quantiles at the

5This is equivalent to assuming that every privacy set P ∈ P is totally ordered. Note that this includes
any instances when Ω is finite, as any finite set is totally ordered.
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jump-points, i.e.

q ∼
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δF (ω∣θ) if F (ω− ∣ θ) = F (ω ∣ θ)
Unif([F (ω− ∣ θ), F (ω ∣ θ)]) else

, (3)

where F (ω− ∣ θ) = limε↘0F (ω−ε ∣ θ) denotes the left limit of F (⋅ ∣ θ) at ω, δx denotes a Dirac

measure at x, and Unif([x1, x2]) denotes the uniform distribution over the interval [x1, x2].
We refer to the signal above as the generalized quantile signal, and denote it by π⋆, as it

reveals the empirical quantile with some potential additional randomization.

Reordered Quantile Signals We next use the generalized quantile signal to construct

a family of privacy-preserving signals. Let Φθ ∶ [0,1] → [0,1] be a function that preserve

the Lebesgue measure, indexed by θ ∈ Θ.6 For each state (ω, θ), we first draw a generalized

quantile signal q according to (3). Then, conditional on the realization of q, randomly draw

a signal realization s from the set

Φ−1θ (q) ∶= {s ∈ [0,1] ∶ Φθ(s) = q} .

Since Φθ is measure-preserving and since q is uniformly distributed for each θ, s can be

drawn in a way so that s is uniformly distributed on [0,1] for each θ.7 This defines a

privacy-preserving signal, which we denote by π⋆Φ, and refer to as a reordered quantile signal.

Intuitively, π⋆Φ is obtained by (randomly) reordering the generalized quantile signal in such

a way that the uniform measure is preserved. Note that given any realizations of s, q, and

θ, the signal s and the characteristic θ together reveal the generalized quantile as

Φθ(s) = q .

For example, if θ ∈ {0,1}, then revealing s = q when θ = 0 and s = 1− q when θ = 1 constitutes

a reordered quantile signal, with Φ0(s) = s and Φ1(s) = 1− s. Note that a reordered quantile

6A function ϕ preserves the Lebesgue measure if ∫
1
0 1{ϕ(r) ≤ x}dr = x for all x ∈ [0,1].

7More precisely, let s be drawn from (any version of) the disintegration of the (Borel) probability measure:
C(A ×B) ∶= ∫A 1{Φθ(s) ∈ B}ds with respect to he Lebesgue measure. Then s is uniformly distributed since
Φθ is measure-preserving.
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signal might induce additional non-trivial randomization (even conditional on the realization

of q), as demonstrated by the following example:8

Example 1. Consider the measure-preserving transformation Φθ(s) = 2s − 1{s ≥ 1/2}. Then
the signal realization s given by the reordered quantile signal conditional on q and θ is random

and equals q/2 and q/2 + 1/2 with equal probability. As q is uniformly distributed on [0,1], s
is uniformly distributed on [0,0.5] and [0.5,1] with equal probability, which implies it is

uniformly distributed on [0,1] for any θ, and hence is privacy-preserving.

Our next result establishes that the reordered quantile signals are the maximals and

completely characterize the set of privacy-preserving signals.

Theorem 1 (Characterization of Privacy-Preserving Signals). Suppose that Ω ⊆ R.

(i) A signal is privacy-preserving if and only if it is Blackwell-dominated by some reordered

quantile signal π⋆Φ.

(ii) Every reordered quantile signal is Blackwell-undominated among privacy-preserving sig-

nals.

Part (i) of Theorem 1 establishes that each privacy-preserving signal can be described

by two components: First, a family of measure-preserving transformations that identify a

reordered quantile signal, and second, a garbling which describes what information is not

revealed. An immediate economic consequence of this result is that every privacy-preserving

signal can be generated by adding noises to a reordered quantile signal. Thus, it is without

loss of generality in decision problems to optimize only over reordered quantile signals instead

of all privacy-preserving signals, as the decision-maker can always ignore additional informa-

tion. Part (ii) of Theorem 1 establishes that every reordered quantile signal is Blackwell

undominated. Thus, without imposing further structure on the decision problem, no further

restriction of the set of privacy-preserving signals is without loss of generality.

Together, Theorem 1 characterizes the set of privacy-preserving signals, and identifies its

Blackwell frontier as the reordered quantile signals. In §6, we develop the general version of

this result, which does not impose any restrictions on the state space Ω.

8While in this example the randomization over the preimage of q is uniform, this is not necessarily the
case for general reordered quantile signals.
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Distributions of Posterior Means Our characterization of Theorem 1 can be further

sharpened if one focuses on distributions of posterior means. Consider the case where Ω ⊆ R

and E[ω ∣ θ] exists for all θ ∈ Θ. It is well-known that a CDF G is a distribution of posterior

means Eπ[ω ∣ s] under some signal π if and only if G is a mean-preserving contraction of

the prior distribution F (x) ∶= P[ω ≤ x] of ω (see e.g., Strassen 1965). However, not every

mean-preserving contraction of F can be the distribution of posterior mean under a privacy-

preserving signal. For example, if ω and θ are not independent, then F could never be the

distribution of posterior means, since it can only be induced by fully revealing ω, which

violates the privacy constraint.

Let F be defined as

F (x) ∶= inf {q ∈ [0,1] ∶ E [F −1(q ∣ θ)] ≥ x} ,

for all x ∈ R. By definition, F is a CDF on R. Note that F is exactly the distribution over

posterior means Eπ⋆[ω ∣ s] induced by the generalized quantile signal π⋆.

Theorem 2 (Distributions of Posterior Means). Suppose that Ω ⊆ R. Then a CDF G is the

distribution of posterior means induced by some privacy-preserving signal if and only if G is

a mean-preserving contraction of F .

Although privacy-preserving signals do not have a Blackwell-maximum in general accord-

ing to Theorem 1, in settings where only the posterior means of ω are relevant, Theorem 2 im-

plies that the generalized quantile signal is the most informative among all privacy-preserving

signals. In other words, Theorem 2 means that the distributions of posterior means induced

by reordered quantile signals can be further ranked under the mean-preserving contraction

order, with the one induced by the generalized quantile signal being the most dispersed.

Consequently, in settings where only posterior means of ω are relevant, the undominated

privacy-preserving signals collapse to a singleton.

This observation reduces an optimization problem over the set of privacy-preserving sig-

nals to an optimization problem over mean preserving contractions of F . Recent results in

Kleiner, Moldovanu and Strack (2021) and Arieli, Babichenko, Smorodinsky and Yamashita

(2023) characterize the extreme points of this set, which allows one to further restrict the set

of signals one needs to consider.
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In addition, Theorem 2 generalizes an elegant recent result of He et al. (2023), which

characterizes the distributions of posterior means when ω can take only two values {0,1}.
Their proof relies on a very different methodology based on tools from mathematical to-

mography. Our methodology allows us to greatly simplify the proofs and extend the results

beyond binary states.

Remark 1 (Conditionally Privacy-Preserving Signals). In many economic applications, a

signal is only required to be privacy-preserving conditional on certain information. For ex-

ample, if some information y is already publicly available, then it would be natural to only

restrict signal to not reveal additional information. This can be captured by considering the

state space (ω, θ, y) and defining a signal to be conditionally privacy-preserving, if its realiza-

tion is independent of θ, conditional on y. Mathematically, our Theorem 1 and Theorem 2

immediately extend to this case by simply applying them for each fixed value of y, defining

the quantile signal as q = F (ω ∣ θ, y) and the generalized quantile signal analogously.

Remark 2 (Relaxing the Independence Criterion). An immediate implication of Remark 1 is

a relaxation of the definition of privacy-preserving signals. While we define privacy-preserving

signals by the notion of independence, conditionally privacy-preserving signals relaxes the

independence requirement by allowing for correlations with the component y. In particular,

one may consider a joint distribution of (ω, θ, y) where y is independent of ω but correlated

with θ.9 Conditionally privacy-preserving signals in this environment can then be regarded as

privacy-preserving signals with a less stringent requirement for independence, as correlation

between s and θ would be allowed as long as it is through y.

4 Optimizing over Privacy-Preserving Signals

In this section, we apply Theorem 1 and Theorem 2 to characterize optimal signals for a

decision-maker who takes an action after observing the signal realization. For the ease of

exposition, we focus on the case where Ω ⊂ R and assume that θ takes finitely many values:

Θ = {θ1, . . . , θJ}. Moreover, we assume that the conditional expectation E[ω ∣ θ] exists for all
θ ∈ Θ.

9In fact, we can fully characterize these joint distributions, as they are equivalent to privacy-preserving
signals for θ that are independent of ω.
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Consider a (Bayesian) decision-making problem: The decision-maker chooses an action

a ∈ A to maximize expected payoff. The decision-maker’s payoff is given by

u ∶ Ω ×Θ ×A→ R,

where u(ω, θ, a) denotes the agent’s ex-post payoff when the state is (ω, θ) and the action

is a. Before taking actions, the decision-maker observes a signal realization drawn from a

privacy-preserving signal π.

Clearly, the optimal signal for the decision-maker who faces no privacy constraint is the

one that fully reveals (ω, θ). However, this signal would not be privacy-preserving if θ is non-

degenerate or if ω and θ are correlated. From Theorem 1 and Blackwell’s theorem, it follows

that there always exists an optimal signal that is a reordered quantile signal. Therefore, it is

without loss to restrict attention to these signals. For any reordered quantile signal π⋆Φ and

for any signal realization s ∈ [0,1], the state ω is determined by θ through ω = F −1(Φθ(s) ∣ θ).
Thus,

Pπ⋆Φ
[ω ∈ A, θ = θj ∣ s] = 1{F −1(Φθj(s) ∣ θj) ∈ A} ⋅ P[θ = θj] ,

for all s ∈ [0,1], for all measurable A ⊆ Ω, and for all j ∈ {1, . . . , J}.
As a result, the distribution of posteriors over Ω ×Θ induced by π⋆Φ can be summarized

by the joint distribution of (ω̃j)Jj=1 ∈ ΩJ with

ω̃j = F −1(Φθj(s) ∣ θj) ,

where s is uniformly distributed on [0,1]. Here, the i-th component of (ω̃j)Jj=1 indicates the

state revealed by the signal realization s conditional on θ = θi.
One obstacle to finding optimal privacy-preserving signals is that it involves an opti-

mization over measure preserving transformations Φ. We next establish that this problem is

equivalent to an optimal transport problem.

Let M be the set of joint distributions ρ on ΩJ such that the marginal of the j-th

coordinate equals F (⋅ ∣ θj). The next lemma shows thatM characterizes the distribution of

posteriors over Ω ×Θ induced by all reordered quantile signals.

Lemma 1. Let s be a the random variable uniformly drawn from [0,1]. For any ρ ∈∆(ΩJ),
ρ is the joint distribution of (F −1(Φθj(s) ∣ θj))Jj=1 for some family Φ = {Φθj}Jj=1 of measure-
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preserving transformations if and only if ρ ∈M.

Intuitively, we have established that the marginal distribution over posterior beliefs condi-

tional on each characteristic θ is the same for each Blackwell undominated privacy-preserving

signal. Thus, the only dimension on which a designer needs to optimize is the correlation

structure across different components of the agent’s belief. The above result establishes that

indeed each correlation structure can be generated by some collection of measure preserving

transformations. Thus, we might optimize over correlation structures instead of measure

preserving transformations.

Optimal Privacy-Preserving Signal With Lemma 1, we can now characterize the op-

timal privacy-preserving signals for the decision-maker. To this end, let V ⋆ be the optimal

value of the decision-maker. That is,

V ⋆ = sup
π
{Eπ [sup

a∈A
Eπ[u(ω, θ, a) ∣ s]]} ,

where the first supremum is taken over all privacy-preserving signals.10 Moreover, let V ∶
ΩJ → R be defined as

V (ω1, . . . , ωJ) ∶= sup
a∈A
(

J

∑
j=1
u(ωj, θj, a)P[θ = θj]) , (4)

for all (ωj)Jj=1 ∈ ΩJ . We then have the following characterization:

Proposition 2 (Optimal Privacy-Preserving Signal). The decision-maker’s optimal value

V ⋆ among all privacy-preserving signals is given by

V ⋆ = sup
ρ∈M
∫
ΩJ
V (ω1, . . . , ωJ)dρ . (5)

Moreover, any optimal privacy-preserving signal must be Blackwell-equivalent to a reordered

quantile signal π⋆Φ such that the distribution of (F −1(Φθj(s) ∣ θj))Jj=1 is a solution of (5),

where s is a random variable uniformly drawn from [0,1].
10From Theorem 1, the set of privacy-preserving signals, up to Blackwell-equivalent classes, is well-defined.
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The optimization problem (5) is a multi-marginal optimal transport problem. The ex-

istence of solutions can be guaranteed if Ω is compact and if V is upper-semicontinuous.

According to Sklar’s theorem, the feasible setM of (5) can be represented by all the copulas

on [0,1]J . Therefore, one optimal privacy preserving signal must correspond to an extreme

point of the set of copulas. There has been recent progress in mathematics towards a charac-

terization of these extreme points (see, for instance, Ghosh and Bhandari 2017 and Perronea

and Durante 2021).11 In the special case where J = 2, (5) becomes the classical Kantorovich

optimal transport problem, whose dual problem is given by

inf
L,K
(∫ L(ω1)dF (ω1∣θ2) + ∫ K(ω2)dF (ω2∣θ2)) (6)

s.t. L(ω1) +K(ω2) ≥ V (ω1, ω2) , ∀(ω1, ω2) ∈ Ω2

where the infimum is taken over all bounded continuous functions on Ω. In particular, if Ω

is compact and if V is upper-semicontinuous, then by Theorem 1.46 of Santambrogio (2015),

the value of the dual problem (6) is V ⋆.

Increasing Difference Payoffs While Proposition 2 characterizes the decision-maker’s

optimal privacy-preserving signals by (5) for any payoff function, we may in fact obtain a

closed-form solution for a specific class of decision-making problems.

Proposition 3. Suppose that A is a totally ordered set and that u ∶ Ω × Θ × A → R has

increasing difference in (ω, a). Moreover, suppose that

argmax
a∈A

J

∑
j=1
u(ωj, θj, a)P[θ = θj]

is nonempty for all (ωj)Jj=1 ∈ ΩJ . Then the generalized quantile signal π⋆ is optimal for the

decision-maker. That is,

V ⋆ = Eπ⋆ [sup
a∈A

Eπ⋆[u(ω, θ, a) ∣ q]] .
11Recall that a copula on [0,1]J is a joint CDF C such that the marginal distribution on each dimension

is uniform. Ghosh and Bhandari (2017) show that a copula C ∶ [0,1]J → [0,1] is an extreme point only if
it is singular with respect to the Lebesgue measure on [0,1]J . Moreover, C is an extreme point if it assigns
probability 1 to a set {(ω1, . . . , ωn) ∶ ωi = g(ω−i)} for some i ∈ {1, . . . , n} and for some measurable function
g ∶ [0,1]J−1 → [0,1].
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According to Proposition 3, for any decision-maker who chooses a one-dimensional action

a to maximize a payoff u(ω, θ, a) that has increasing difference in (ω, a), the generalized

quantile signal is the optimal signal. For example, if the decision-maker seeks to minimize

a loss function ∣ω − a∣p, for some p ∈ (1,∞), by choosing an action a ∈ R to match the state

ω ∈ R, then the generalized quantile signal is optimal. The assumption of increasing difference

preferences is natural in many applications. For example, if ω measures the probability of

a borrower repaying a loan and a is the interest rate a bank requires from a borrower, then

it would be natural to assume that the bank wants to charge a lower interest rate to those

borrowers who are more likely to repay.

However, as our next example shows, for preferences that do not exhibit increasing dif-

ference, the generalized quantile signal may not be optimal.

Example 2. Let A = {0,1}, Ω = {0,1,2} and suppose that Θ = {θ1, θ2}, with equal proba-

bility. Suppose that ω follows F1 = 1/2δ{0} + 1/2δ{1} if θ = θ1, and follows F2 = 1/2δ{1} + 1/2δ{2}
if θ = θ2. The possible reordered quantile signals are convex combinations of the following

two signals: either pooling agents of characteristic θ = θ1, ω = 0 with agents of characteristic

θ = θ2, ω = 1, or agents of characteristic θ = θ2, ω = 2. These two signals generate payoffs

proportional to:

(max
a
u(0, θ1, a) + u(1, θ2, a)) + (max

a
u(1, θ1, a) + u(2, θ2, a)) ;

(max
a
u(1, θ1, a) + u(1, θ2, a)) + (max

a
u(0, θ1, a) + u(2, θ2, a)) ,

respectively. Note that either of these (privacy-preserving) signals can be optimal: For

u(1, θ,1) = 1, u(1, θ,0) = u(1, θ,2) = −2, the later signal is optimal and if u(ω, θ, a) = −(a−ω)2
the former signal, which corresponds to the general quantile signal, is optimal.

Binary Actions An important special case is when the decision is only between two ac-

tions, A = {0,1} (e.g., a bank decides whether to extend a loan at an exogenously fixed

interest rate). In this case, define Φθ ∶ [0,1]→ [0,1] to be any function such that for all θ ∈ Θ

ω ↦ u(Φθ(ω), θ,1) − u(Φθ(ω), θ,0) is non-decreasing. (7)

Then, Φ = {Φθ}θ∈Θ is indeed the optimal family of measure preserving transformations.
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Corollary 1. Suppose that A = {0,1}. Then any reordered quantile signal π⋆Φ such that Φ

solves (7) is an optimal privacy-preserving signal.

Corollary 1 follows immediately from Proposition 3. To see this, let ω̃ = Φθ(ω), the

decision-maker’s payoff then exhibits increasing difference (ω̃, a). Corollary 1 thus completely

solves the design problem for binary actions, arbitrary payoffs and arbitrary privacy sets.

Characteristic-Independent Preferences Another natural assumption is that the pay-

off u(ω, θ, a) is independent of the characteristic θ. For instance, in the aforementioned

example of a bank extending a loan, if θ captures the race or gender of an applicant it is a

natural assumption that the bank has no intrinsic preferences over race or gender. In this

case the optimization problem reduces to

sup
ρ∈M
∫
ΩJ

sup
a∈A
(

J

∑
j=1
u(ωj, a)P[θ = θj])dρ .

As Example 2 shows, even if the utility does not depend on θ, the generalized quantile signal

might not be optimal. However, our next result shows that if preferences are linear in the

state in addition, then the generalized quantile signal is optimal.

Corollary 2. If u(ω, θ, a) is constant in θ and either (i) is affine in ω or (ii) the state is

binary: ω ∈ {0,1}, then the generalized quantile signal is optimal.

This corollary follows directly from Theorem 2, which establishes that the generalized

quantile signal is the signal that induces the most dispersion in the posterior means. The

assumption that payoffs are linear in the state is often satisfied in applications. For instance,

in the bank loan example, it corresponds to assuming that the banks preference depends only

on the expected amount repaid by the borrower. Since the linearity assumption is always

satisfied if the state is binary, the second part of the corollary follows.

5 Economic Applications

To illustrate the relevance of privacy-preserving signals and to demonstrate the implications

of our main results, we discuss several economic examples.
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5.1 Algorithmic Fairness

Our first application pertains to “algorithmic fairness”. The literature on algorithmic fairness

in computer science and legal studies aims to explore optimal algorithms for decision-making

under constraints that capture some notion of fairness, by which the literature means that

people of different protected characteristics, such as race, gender, or sexual orientation are

treated equally.12 Our characterization of privacy-preserving signals implies a generalization

of results in this literature under one of the most commonly adopted notions of fairness.

Specifically, the literature on algorithmic fairness considers a decision problem, also re-

ferred to as a classification problem, where there is an underlying outcome x. A decision-

maker, or an algorithm, observes covariates (ω, θ) that are correlated with the outcome x

and has to take an action a ∈ {0,1}. The decision-maker has payoff u(x, a) ∈ R when the

outcome is x and when the action is a. While the decision-maker can contingent their actions

on the covariates (ω, θ) in principle, the actions taken must satisfy a fairness constraint. A

commonly adopted notion of fairness in computer science is (conditional) independence,13

which requires the action to be independent of the protected characteristics θ (conditional on

materially relevant characteristics that are part of ω), and is also interpreted as preventing

disparate impact in legal studies (see, e.g., Yang and Dobbie 2020).14

For example, suppose that a bank, who faces many loan applicants with observable char-

acteristics (ω, θ), needs to make loan decisions a. The relevant outcome is whether an

applicant will default in the future, denoted by x ∈ {0,1}. The Equal Credit Opportunity

Act (15 U.S.C. 1691 et seq.)15

12To avoid confusion we follow the computer-science literature in calling decisions that do not discriminate
based on certain characteristics “fair”, even though “non-discriminatory” might be more descriptive.

13See, e.g., Darlington (1971); Calders et al. (2009); Dwork, Hardt, Pitassi, Reingold and Zemel (2012);
Calders and Verwer (2010); Kamishima, Akaho and Sakuma (2011); Corbett-Davies et al. (2017); Kitagawa
et al. (2021); Gillis et al. (2021).

14This notion is also referred to as demographic parity, statistical parity, or group fairness. Another two
commonly adopted criteria are (i) separation, which requires balanced type-I and type-II errors (see, e.g.,
Hardt, Price and Srebro 2016), or more generally, independence between a and θ conditional on the true
outcome ω; and (ii) sufficiency, which requires the action a to be a sufficient statistics for ω, so that the
outcome ω is independent of θ conditional on a. It is well-known that none of any pairs of these three
common fairness criteria can be satisfied at the same time, and hence the choice of a fairness criteria is
necessary (see Barocas, Hardt and Narayanan (2019) and Carey and Wu (2023) for a comprehensive review
of these criteria). With appropriate projections, our results can also be applied when the notion of separation,
instead of independence, is adopted. See §7 for more details.

15See https://www.justice.gov/crt/equal-credit-opportunity-act-3.
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“prohibits creditors from discriminating against credit applicants on the basis of

race, color, religion, national origin, sex, marital status, age [..].”

A concrete (although stringent) interpretation of this requirement taken in the algorithmic

fairness literature is that the information about each individual’s default probability the

bank uses to make loan decisions must be independent of an individual’s protected charac-

teristics (potentially conditional on materially relevant information, such as income). This

requirement avoids the problem that even when restricting the bank to not condition on race

directly it might still do so indirectly through the use of covariates such as zip code. This is a

well-known issue highlighted in the actuarial sciences and legal studies, for example Wiggins

(2020) states:16

“[...] race has become so highly correlated with other social statistics that actuar-

ial science in general has developed a baked-in racial bias. Racial discrimination

by proxy (e.g., zip code standing in for race) can be glimpsed in the disparate im-

pact of data-driven decision-making in housing, healthcare, policing, sentencing,

and more. Simply leaving out racial data in statistically aided decision-making

distances institutions from claims of intentional discrimination, but a disparate,

discriminatory impact lingers when other factors correlated with race power ac-

tuarial analyses.”

Existing results in the fairness literature (see, e.g., Calders et al. 2009; Hardt et al. 2016;

Corbett-Davies et al. 2017) solve the decision-maker’s constraint optimization problem and

characterize the optimal fair algorithm in a simple setting when the decision-maker’s choice is

binary, e.g., when the bank only decides whether to grant a loan, and when the payoff is given

by u(x, a) = a ⋅(1−x−c) for some c ∈ (0,1). The optimal algorithm adopts different thresholds

for different groups θ (conditional on materially relevant characteristics), and chooses action

a = 1, e.g., grants the loan to an applicant, if and only if the conditional expectation E[x ∣ ω, θ],
e.g., expected default probability, is below their group-specific thresholds.

16Former Attorney Eric Holder also made a similar remark in the context of sentencing: “[...] basing
sentencing decisions on static factors and immutable characteristics—like the defendant’s education level,
socioeconomic background, or neighborhood—they may exacerbate unwarranted and unjust disparities that
are already far too common in our criminal justice system and in our society.” See https://www.justice.

gov/opa/speech/attorney-general-eric-holder-speaks-national-association-criminal-defense

-lawyers-57th.
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However, in many applications, the payoff-relevant outcomes might be richer, the decision-

maker may need to make more than a binary choice, and might care about protected char-

acteristics θ directly. For example, a bank typically needs to decide—in addition to whether

to grant the loan—how much to grant, what the interest rate should be, the amount of down

payment, and the form of the collateral. What would optimal fair algorithms be for a general

decision-making problem? With more than binary actions, the underlying decision-making

problem may be highly complex. Using existing methods to characterize optimal fair algo-

rithms in a systematic way would be challenging, as they rely on the specific payoff structure

and the simplicity of the action space. In fact, we are not aware of any paper solving explicitly

a model with more than two actions.

Nonetheless, Theorem 1 and Theorem 2 lead to a simple and complete characteriza-

tion of optimal algorithms for arbitrary decision problems. For any decision problem, let

ũ(ω, θ, a) ∶= E[u(x, a) ∣ ω, θ], the optimal fair algorithms can be characterized by solving the

linear program given in (5) with the payoff function being ũ.17 If ũ is either affine in ω or

exhibits increasing difference in (ω, a), then the optimal algorithms must be equivalent to

the optimal decision rule under the generalized quantile signal, according to Corollary 2. In

particular, if the underlying outcome is binary: x ∈ {0,1}, as commonly encountered in the

context of algorithm-assisted decision making, by redefining ω ∈ [0,1] as the conditional ex-

pected outcome given all available covariates and letting ũ(ω, θ, a) ∶= ωu(1, a)+(1−ω)u(0, a)
for all a ∈ A, Corollary 2 then implies that the optimal algorithms can be found by simply

computing the optimal decision rule under the generalized quantile signal.18

This provides a simple and detail-free method to finding the optimal fair algorithm for

a wide class of decision problems, as the generalized quantile signal does not depend on the

structure of the underlying decision problem. In particular, we may recover the optimal

group-specific threshold policy discovered in the literature by simply computing the optimal

decision rule under the generalized quantile signal in the special case with a binary action and

a characteristic-independent payoff that is monotone and affine in ω. Note, however, that in

general the optimal decision rule might involve randomization inherited from the randomness

17Although Proposition 2 is stated under the assumption that ω ∈ R, it can be extended to the case of
multi-dimensional ω, as we discuss in §6. Therefore, the covariates ω are allowed to be high-dimensional.

18This result generalizes the characterization of algorithmically fair optimal decisions obtained in Theorem
2 of He et al. (2023), which assumes the outcome x to be binary, and the covariates ω to be perfectly
informative about the outcome of interest x.
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of the generalized quantile signal.

A Regulation Procedure In practice, our results provide a simple and detail-free ap-

proach for regulating algorithm, such as loan decisions, product offers, bail decisions, etc to

ensure that they satisfy fairness constraints while preserving as much prediction power as

possible. A regulator can ensure fairness without any knowledge of the underlying decision

problem, through the following regulatory procedure:19

1. Identify materially relevant characteristics (e.g., credit history or employment status).

2. Allow decision-makers to use any algorithms and any covariates to predict the relevant

outcome ω.

3. Require a “post-processing step” after generating the raw prediction and orthogonalize

these predictions, by computing the quantiles of the predicted outcome for each group

of protected characteristic, conditional on the materially relevant characteristics.

4. Allow decision-makers to reorder, possibly randomly, the quantiles, in a way that the

reordered quantiles remain uniformly distributed.

5. Decision-makers take an action based on the reordered quantiles.

By Theorem 1, decisions made under this procedure are the most efficient among those that

meet the same fairness criteria, regardless of the decision-maker’s objectives. Moreover, if

the underlying decision-making problem has a payoff that is independent of θ and affine in

ω, then Theorem 2 further allows the regulator to eliminate Step 4, so that decision-makers

would take actions based only on the quantiles of each protected group.

The implementation of this procedure is practical since the regulator can monitor the

decision-maker by simply observing the empirical joint distribution of decisions, protected

characteristics, and materially relevant characteristics. In essence, this procedure does not

regulate the inputs or algorithms themselves, but rather the outputs of the algorithm. It

requires the decision-maker to make final decisions based on the orthogonalized predictions

while permitting them to use any algorithm and all available inputs.

19Kamiran et al. (2013) and Feldman, Friedler, Moeller, Scheidegger and Venkatasubramanian (2015) pro-
pose a similar procedure to “repair” unfair algorithms. See also, Calders and Verwer (2010) and Kamishima
et al. (2011), for earlier work on repairing and regularizing unfair algorithms. This literature focuses on
transforming any (potentially unfair) algorithm into a fair one. Our results imply that, not only does a
similar procedure lead to a fair algorithm, it is in fact the optimal way to transform any algorithm into a fair
one.
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5.2 Price Discrimination

In addition to algorithmic fairness, our results can be applied to settings of price discrimi-

nation in the spirit of Bergemann et al. (2015). Consider a monopolist who uses consumer

data to price-discriminate consumers. The monopolist sells a single product to a unit mass

of consumers. Each customer demands a single unit and has value ω ∈ Ω ∶= [ω,ω] ⊂ R+ for

the product. With different combinations of consumer data, the monopolist is able to charge

different prices to different groups of consumers and engage in third-degree price discrimina-

tion.

While consumer data enables the monopolist to engage in price discrimination, it is often

required by law or regulations that consumers cannot be price-discriminated based upon

their protected characteristics. For example, the Civil Rights Act of the state of California

prohibits businesses from engaging in “unlawful discrimination [...] based on a person’s

sex, race, color, religion, ancestry, national origin, age, disability, medical condition, genetic

information, marital status, sexual orientation, citizenship, primary language, or immigration

status”.20 Given such legal constraints, it is natural to ask: What market segmentations allow

the monopolist to price-discriminate, but are not based on protected characteristics?

Clearly, the market segmentation that fully segments consumers by their values allows

the monopolist to extract all the surplus. This, however, would typically lead to price

discrimination based on protected characteristics, in the sense that consumer of different

characteristics, e.g. race, would face a different distribution of prices. Moreover, simply

prohibiting the monopolist from using protected characteristics to segment consumers would

not be privacy-preserving either, since the monopolist may have access to close proxies of

these characteristics. For example, as noted by The White House (2015):

“Big data naturally raises concerns among groups that have historically been

victims of discrimination. Given hundreds of variables to choose from, it is easy

to imagine that statistical models could be used to hide more explicit forms of

discrimination by generating customer segments that are closely correlated with

race, gender, ethnicity, or religion [...], even if the profit motive is different from,

20Similarly, a recent legislation (AB1287) specifically prohibits businesses from price-discriminating based
on gender. Likewise, the Genetic Information Nondiscrimination Act prohibits health insurers from using
genetic information to “determine if someone is eligible for insurance or to make coverage, underwriting or
premium-setting decisions”.
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and in many cases fundamentally inconsistent with, the sort of prejudice that our

antidiscrimination laws seek to prohibit.”

Our results lead to a characterization of all market segmentations that prohibit the mo-

nopolist from price-discriminating consumers based on their protected characteristics, in the

sense that consumers of different protected characteristics face the same distribution of prices.

By Theorem 1, a market segmentation is non-discriminatory in the this sense if and only if

it corresponds to a garbling of some reordered quantile signal π⋆Φ.

Seller-Optimal Segmentations A natural question is what non-discriminatory market

segmentation maximizes the seller’s profit. Proposition 2 shows that this question reduces to

an multi-marginal optimal transport problem. To simplify expositions, we consider the case

of two protected characteristics in this section Θ = {θ1, θ2}. Let

u(ω, θ, p) ∶= 1{ω ≥ p}p

be the seller’s profit. The optimal pricing problem is then a decision problem with payoff u,

and the price charged to each segment of consumers is given by the optimal price given the

signal realization that corresponds to this segment.

For any pair of consumer values (ω1, ω2) ∈ [ω,ω]2, let V (ω1, ω2) be the maximal profit

obtainable by selling either to only one or both types of consumers

V (ω1, ω2) =max{min{ω1, ω2}, ω1P[θ = θ1], ω2P[θ = θ2]} .

Proposition 2 implies that the profit-maximizing market segmentation, among all market

segmentations that prohibit price discrimination based on protected characteristics, can be

identified by finding the joint distribution ρ of ω1, ω2 with marginals equal to the conditional

distribution of buyer values F (⋅ ∣ θ1), F (⋅ ∣ θ2) that solves the optimal transport problem

sup
ρ
∫ V (ω1, ω2)dρ .

Suppose that both types are equally likely P[θ = θ1] = P[θ = θ2] = 1/2 and and the minimal
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ω and maximal willingness to pay ω satisfy

2ω ≥ ω .

In that case we have that V (ω1, ω2) = min{ω1, ω2}. This corresponds to the classical Monge

optimal transport problem with transport cost ∣ω1 −ω2∣ for which the assortative assignment

is optimal.21

Proposition 4. Suppose that 2ω ≥ ω and P[θ = θ1] = P[θ = θ2] = 1/2.
(i) The market segmentation corresponding to the generalized quantile signal maximizes the

seller’s revenue.

(ii) The outcome is efficient and every consumer purchases the good.

(iii) If, furthermore, consumers with characteristic θ1 have higher values than those with

characteristic θ2 in the sense of FOSD22 then consumers with characteristic θ2 retain

zero surplus under the seller-optimal market segmentation while consumers with char-

acteristic θ1 retain positive surplus.

The first part of the result follows as V (ω1, ω2) = min{ω1, ω2} is supermodular and thus

the assortative matching (which corresponds to the generalized quantile signal) is optimal

(see, e.g., Lorenz 1949 and Theorem 3.12 of Rachev and Rüschendorf 1998). Moreover, under

the assumption of the proposition, consumers’ values are not too dispersed,. Thus, it always

optimal to sell to both consumer types in each segment and charge the lower valuation. As a

result, if the valuations are ordered in FOSD then one of the types will always have a lower

value and thus make zero surplus, while the other type with some strictly higher valuation

will be left with positive surplus. Thus, relative to the case where no constraints on market

segmentation are imposed (and thus both types make zero surplus), it is not the weaker,

but the stronger type who benefits from these constraints. This observation may serve as a

cautionary tale, as in practice the legislations imposing privacy constraints typically mention

explicitly that they are meant to protect groups that plausibly have lower willingness to pay.

When the assumptions in Proposition 4 are violated, V is not super-modular and the

generalized quantile signal may not be not optimal. In this case, non-trivial reorderings of

21See the Online Appendix for detailed derivations.
22F (ω ∣ θ1) ≤ F (ω ∣ θ2), with strict inequality for a positive measure of ω.
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quantiles are involved in the seller-optimal segmentation. As an example, suppose that the

buyer value ω takes three possible values, 1, 2, or 3. Suppose that θ = θ1 indicates a male

person and θ = θ2 indicates a female person, and both characteristics equally likely. The

conditional distribution of ω given θ = θ1 equals (1/2, 1/3, 1/6); while the conditional distri-

bution of ω given θ = θ2 equals (1/6, 1/3, 1/2). One can show that the solution to the above

optimal transport problem is given by the joint distribution ρ⋆, where ρ∗(1,1) = ρ∗(3,3) = 1/6,
ρ∗(2,2) = ρ∗(1,3) = 1/3.23 Note that ρ⋆ corresponds to the reordered quantile signal generated

by the measure-preserving transformations:

Φθ1(q) = q Φθ2(q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q, if q ∈ [0, 1/6] ∪ (5/6,1]
1/2 + (q − 1/6), if q ∈ (1/6, 1/2]
1/6 + (q − 1/2), if q ∈ (1/2, 5/6]

.

This signal corresponds to the (optimal) market segmentation described by Figure 1.

Under this market segmentation, all the value ω = 2 male and female consumers are pooled

together in a segment; 1/3 of the male consumers with value ω = 1 and all the female consumers

with value ω = 1 are pooled together in a segment; 1/3 of the female consumers with value

ω = 3 and all the male consumers with value ω = 3 are pooled together in a segment; and

the remaining male consumers with values ω = 1 are pooled together in a segment with

the remaining female consumers with values ω = 3. Note that in each of these segments,

the fractions of male and female consumers are exactly one-half, which are the same as the

population frequency. Therefore, the monopolist is not able to price-discriminate based on

gender under this market segmentation. Intuitively, this signal obtains a high revenue as it

completely reveals the values of consumers with value 2, female consumer with value 1, and

male consumers with value 3, and charges them their valuation. It pools male consumers of

value 1 and female consumers of value 3, which ensures that the mechanism treats male and

female consumers equally, but excludes 2/3 of the value 1 male consumer from consumption

to do so. In this example, no consumer is better off due to the fact that both groups of

consumers have to be treated equally.

23See the Online Appendix for detailed arguments.
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Figure 1: The profit-maximizing market segmentation. Segments of the customers which are
shaded the same way are pooled together in the optimal privacy-preserving signal, and will
hence face the same price. Columns signify the value of the consumer and rows their gender.

5.3 Private Private Information

Our results also lead to a generalization of an elegant recent result by He, Sandomirskiy

and Tamuz (2023), henceforth HST. They ask, in a multi-agent setting, what private signals

about a binary state have the property that they reveal no information about the signals

received by other agents: n ≥ 2 agents observe private signals about a binary state ω ∈ {0,1}.
An information structure is a random vector (s1, . . . , sn), whose distribution depends on the

state, such that each agent i privately observes the realization of si. It is private private if

the signals s1, . . . , sn are independent (unconditional on the state).

A main result of HST is a characterization of undominated private private information

structures. A private private information structure is said to be (mean-)undominated if

there does not exist any other private private information structure where every agent’s

distribution of posterior means is more dispersed (in the sense of mean-preserving spreads).

HST characterize the undominated private private information structures in the setting where

ω ∈ {0,1} and show that a private private information structure is undominated if and only

if it corresponds to a set of uniqueness in the hypercube [0,1]n. In the case when n = 2, as
shown by Theorem 1 of HST, this is equivalent to saying that the distribution of posterior

means of one agent equals the conjugate of the distribution of posterior means of the other

agent.24,25 HST also show how this result can be used to analyze algorithmic fairness similar

24This in turn generalizes Proposition 2 of Arieli, Babichenko, Sandomirskiy and Tamuz (2021)
25The conjugate of a CDF G ∶ [0,1]→ [0,1] is given by Ĝ(x) ∶= 1 −G−1(1 − x) for all x ∈ [0,1].
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to our application in §5.1.
We can encompass their notion of private private information by focusing on a given

agent i and fixing the signals s−i of other agents. An information structure is private private

if and only if, for each agent i, their signal si is privacy-preserving with respect to the

privacy sets generated by other agents’ signals s−i. The following corollary, which follows

from Theorem 2, generalizes Theorem 1 of HST to more than two states and more than two

agents, and characterizes the undominated private private information structures.26

Corollary 3. A private private information structure (s1, . . . , sn) is undominated if and only

if for every agent i, the distribution of their posterior mean E[ω ∣ si] is given by F i, where

F i(x) ∶= inf {q ∈ [0,1] ∶ E [F −1(q ∣ s−i)] ≥ x} ,

and F (⋅ ∣ s−i) is the conditional distribution of ω given s−i.

When there are only two states ω ∈ {0,1} and two agents n = 2, F (x ∣ si) = 1 − E[ω ∣ si]
for all x ∈ [0,1), and hence

F −1(q ∣ si) = 1{E[ω ∣ si] > 1 − q} .

Since

inf {q ∈ [0,1] ∶ E[F −1(q ∣ si)]} = inf {q ∈ [0,1] ∶ E[1{E[ω ∣ si] > 1 − q}]}

is the conjugate of the distribution of E[ω ∣ si], Corollary 3 implies Theorem 1 of HST.27

26When ω ∈ {0,1}, the notion of dominance defined in terms of distributions of posterior means is equivalent
to dominance in terms of Blackwell’s order. In general, the Blackwell order is coarser than the mean-
preserving contraction order of distributions of posterior means. Theorem 5 of HST, which can be found in
their appendix, shows that when the state space is finite, Blackwell-undominated private private information
structures are equivalent to partitions of uniqueness on the hypercube [0,1]n. This, however, as they note, is
a complex mathematical object. Our Theorem 1 alone does not generalize their Theorem 5 in the appendix.
Doing so requires a characterization of the maximal element of distributions over posteriors over Ω under the
mean-preserving spread order. Although our Theorem 1 implies a characterization of maximal elements of
the distributions of posteriors over Ω ×Θ, it does not lead to a characterization of the maximal elements of
the distributions of posteriors over Ω. Generalizations and simplifications in this direction remain as open
questions.

27Our Theorem 1 can be used to obtain a characterization of feasible distributions of posterior beliefs in
addition to the undominated distributions of posterior means.
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5.4 Bayesian Persuasion

Consider the Bayesian persuasion setting where a sender discloses information about (ω, θ)
to a receiver who chooses an action a, and suppose that the sender is restricted to choose

only signals that are privacy-preserving. For example, the sender might be the prosecutor as

in Kamenica and Gentzkow (2011), trying to convince the judge that the defendant should

not be released on bail, but is restricted to not using any information related to the race

of the defendant even though such information might be predictive about the probability

of reoffense. Let the sender’s payoff be uS ∶ Ω × Θ × A → R and the receiver’s payoff be

uR ∶ Ω × Θ × A → R.28 Let V ⋆S be the sender’s value from choosing the optimal privacy-

preserving signal. For simplicity, suppose again that ∣Θ∣ = J <∞ and write Θ as {θ1, . . . , θJ}.
Let VR ∶ ΩJ ×A→ R be defined as

VR(ω1, . . . , ωJ , a) ∶=
J

∑
j=1
uR(ωj, θj, a)P[θ = θj] ,

for any (ωj)Jj=1 ∈ ΩJ . Moreover, for any ρ ∈∆(ΩJ), let

VS(ρ) ∶= Eρ [
J

∑
j=1
uS(ωj, θj, a

⋆(ρ))P[θ = θj]] ,

where a⋆(ρ) is the (sender-preferred) optimal action of the receiver that maximizes VR when

the posterior over (ωj)Jj=1 is ρ. To ensure the existence of optimal signals, we assume that

Ω is compact and that VS is upper-semicontinuous. The next proposition characterizes the

sender’s value V ⋆S .

Proposition 5 (Value of Persuasion). Let V S be the concave closure of VS, the sender’s

value V ⋆S is given by

V ⋆S =max
ρ∈M

V S(ρ) ,

whereM is the set of joint distributions on ΩJ such that the marginal of the j-th coordinate

equals F (⋅ ∣ θj).
28Recall that Kamenica and Gentzkow (2011) characterize the sender’s optimal value over all signals

(including non-privacy-preserving ones) as the concave closure of the sender’s indirect payoff as a function of
posterior beliefs.
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Proposition 5 states that the sender’s value can be found by a two-step procedure: First,

fix a joint distribution ρ and find the optimal garbling of it by computing V S(ρ). Then,

optimize across all reordered canonical signals.

Just as in standard persuasion problems, the characterization of Proposition 5 requires

computing the concave closure of the function VS, which is typically computationally de-

manding. Nonetheless, when payoffs are such that the sender’s indirect utility is measurable

with respect to the posterior mean, Theorem 2 provides a tractable way to characterize op-

timal signals. Specifically, suppose that the sender’s indirect utility is a function only of the

posterior mean E[ω ∣ s], which we denote by US ∶ R → R. Then the sender’s payoff given a

signal can be written as ∫RUS(x)dG, where G is the CDF of posterior means induced by the

signal. Theorem 2 implies the following characterization:

Proposition 6 (Value of Mean-Measurable Persuasion). Suppose that the sender’s indirect

utility is measurable with respect to posterior means and is denoted by US ∶ R → R. The

sender’s value V ⋆S is given by

V ⋆S = sup
G⪯MPSF

∫
R
US(x)dG, (8)

As a result, since the objective of (8) is affine and since the feasible set is convex, one

of the solutions must be an extreme point of the feasible set. If US is upper-semicontinuous

and if F is continuous, then by Theorem 2 of Kleiner et al. (2021), there must be a solution

G⋆ that takes the form of

G⋆(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x), if x ∉ ⋃i∈I[xi, xi)
F (xi), if x ∈ [xi, yi)
xi, if x ∈ [y

i
, yi)

F (xi), if x ∈ [yi, xi)

,

for some collection of intervals {[xi, xi]}i∈I and {[yi, yi]}i∈I such that [y
i
, yi] ⊆ [xi, xi], and for

some {xi}i∈I ⊆ R. Furthermore, G⋆ can be implemented by fulling revealing the realizations

q of the generalized quantile signal whenever q ∉ ∪i∈I[xi, xi), while pooling at most two signal

realizations in each interval [xi, xi) for all i ∈ I.
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6 General Result and its Proof

In this section, we state the general version of our main result, which does not require Ω to

be a subset of R. To begin with, we introduce a family of signals that are analogous to the

reordered quantile signals when Ω is not necessarily one-dimensional.

6.1 Canonical Signals and Reordered Canonical Signals

We first show that it is without loss to focus on the case where for each given value of

θ, the state ω can be expressed as a random variable on a probability space where the only

randomness is generated by drawing θ and an independently distributed uniformly distributed

random variable.29 The next lemma shows that this reduction is indeed without loss of

generality. To this end, let λ denote the Lebesgue measure on [0,1], and let νΘ be the

marginal distribution of θ.

Lemma 2. There exists a random variable ω⋆ ∶ [0,1] × Θ → Ω such that (ω, θ(ω)) and

(ω⋆(q, θ), θ) have the same distribution, where ω is distributed according to P and (q, θ) is
distributed according to λ × νΘ.30

We henceforth refer to [0,1]×Θ as the canonical state space, and to the random variable

ω⋆ ∶ [0,1] ×Θ → Ω as the canonical map. Note that when Ω ⊆ R, the canonical map can be

chosen to be F −1.

Reordered Canonical Signals By normalizing the state to the canonical state space, a

privacy-preserving signal is naturally defined: The signal π⋆ that reveals the underlying noise

q of the canonical state space conditional on ω⋆(q, θ) = ω and θ is, by definition, independent

of θ.31 By Proposition 1, it is thus privacy-preserving. We refer to the signal π⋆ as the

canonical signal.

29Here we follow ideas from von Neumann (1932) and Rokhlin (1952) who show that for standard proba-
bility spaces it is without loss to assume that all randomness is generated by a uniform random variable.

30More precisely, there exists a random variable ω⋆ ∶ [0,1] × Θ → Ω defined on the probability space
([0,1]×Θ,B⊗G, λ× νΘ) such that P[(ω, θ(ω)) ∈ A×B] = λ× νΘ({ω⋆(q, θ), θ) ∈ A×B}) for all A ∈ F , B ∈ G,
where B is the Borel σ-algebra on [0,1] and G is the σ-algebra of Θ.

31More formally, the conditional distribution π⋆(ω,θ) is defined as the transition probability implied by the

joint distribution of (ω⋆(q, θ), θ, q) on the canonical state space. The transition probability exists due to the
disintegration theorem (c.f., Çinlar (2010) pp.154)
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We now define a class of signals that are analogous to the reordered quantile signals. For

any family Φ = {Φθ}θ∈Θ of measure-preserving transformations that preserve the Lebesgue

measure and for any realization (ω, θ), draw the canonical signal q from π⋆(ω,θ). Then, for each

realized generalized quantile q, further draw a signal s ∈ Φ−1θ (q) randomly so that the distri-

bution of s conditional on θ is uniform.32 This defines a privacy-preserving signal, which is

denoted by π⋆Φ, and referred to as the Φ-reordered canonical signal. Just like reordered quan-

tile signals, reordered canonical signals are obtained by (randomly) reordering the canonical

signal in a way that preserves the uniform measure.

6.2 Characterization of Privacy-Preserving Signals

We now present our main result, which generalizes Theorem 1 and characterizes what infor-

mation can be revealed by a privacy-preserving signal.

Theorem 3 (Characterization of Privacy-Preserving Signals).

(i) A signal is privacy-preserving if and only if it is Blackwell dominated by some reordered

canonical signal π⋆Φ.

(ii) Every reordered canonical signal is Blackwell undominated among privacy-preserving

signals.

When Ω ⊆ R, the canonical map ω⋆ equals the generalized quantile function, and any

Φ-reordered canonical signal is the Φ-reordered quantile signal. Thus, Theorem 3 generalizes

Theorem 1.

6.3 Proof of Theorem 3

We now provide a proof of Theorem 3, which in turn implies Theorem 1. The proof consists

of several lemmas. Proofs of these lemmas can be found in the Appendix.

To begin with, we first argue that any garbling of a privacy-preserving signal remains

privacy-preserving, which, together with the fact that any reordered canonical signal is

privacy-preserving, proves the sufficiency part of (i).

Lemma 3. Any signal that is Blackwell dominated by a privacy-preserving signal is also

privacy-preserving.

32As noted in footnote 7, such signal is well-defined and perfectly reveals q.
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Next, we prove the necessity part of (i). To this end, we first introduce a class of signals

referred to as conditionally revealing signals. These are signals that fully reveal the state ω

conditional on θ. Secondly, we show that every privacy-preserving signal is a garbling of a

conditionally revealing privacy-preserving signal. Lastly, we argue that every conditionally

revealing privacy-preserving signal is a reordered canonical signal.

Definition 3 (Conditionally Revealing Signals). A privacy-preserving signal π is condition-

ally revealing if ω is fully revealed by s conditional on θ. That is, there exists a measurable

function η ∶ S ×Θ→ Ω such that, for almost all s ∈ S, ω = η(s, θ) with Pπ[⋅ ∣ s]-probability 1.

Note that the canonical signal is conditionally revealing, with η being the canonical map

ω⋆. Conditionally revealing signals fully reveal ω if θ is known. Since a conditionally revealing

privacy-preserving signal fully reveals ω conditional on θ, every privacy-preserving signal that

has residual noise even if θ is known must be less informative than a conditionally revealing

signal. The next proposition formalizes this intuition.

Lemma 4. Every privacy-preserving signal is a garbling of some conditionally revealing

privacy-preserving signal.

Finally, we argue in Lemma 5 below that any conditionally revealing signal can be gen-

erated by reordering the canonical signal for each θ ∈ Θ.

Lemma 5. Every conditionally revealing privacy-preserving signal is equivalent to a reordered

canonical signal.

Combining lemmas 3 through 5, we now prove Theorem 3.

Proof of Theorem 3.

Part (i): For sufficiency, as every reordered canonical signal is privacy-preserving, any gar-

bling of the reordered canonical signal is also privacy-preserving, by Lemma 3. For necessity,

consider any privacy-preserving signal π. Lemma 4 implies that π is Blackwell-less infor-

mative than a conditionally revealing privacy-preserving signal. From Lemma 5, this signal

must be equivalent to a reordered canonical signal.

Part (ii): Suppose that π and π′ are two Blackwell-nonequivalent reordered canonical sig-

nals, and suppose that π is Blackwell more informative than π′. By Lemma 5, both π and
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π′ are conditionally revealing privacy-preserving signals. However, since π is Blackwell more

informative than π′, π′ is not conditionally revealing, a contradiction. Therefore, any two

reordered canonical signals are either Blackwell-incomparable or Blackwell-equivalent.

For any reordered canonical signal π and any privacy-preserving signal π̂. Part (i) implies

that π̂ must be a Blackwell-dominated by some reordered canonical signal π′. Since π and π′

must be either Blackwell-equivalent or Blackwell-incomparable, π is not Blackwell-dominated

by π̂.

7 Discussion

Relationship with Differential Privacy While we define privacy-preserving signals through

an abstract collection of privacy sets, another notion of privacy is differential privacy. Specif-

ically, suppose that Ω is a finite product set Ω1 ×⋯×Ωn, where each dimension Ωi represents

characteristics of a different agent. A signal π satisfies ε-differential privacy for ε > 0 if for

every signal realization s ∈ S and for any ω,ω′ that differ only in the characteristic of a single

agent i (i.e., ω−i = ω′−i),

∣log Pπ[ω ∣ s]
Pπ[ω′ ∣ s]

− log P[ω]
P[ω′]∣ ≤ ε .

Intuitively, the log-likelihood induced by the signal cannot be influenced by more than ε by

each individual agent. Our notion of privacy considers signals only depends on the charac-

teristics of a single individual, and are restricted to not not reveal certain information. In

contrast, differential privacy considers signals which depend on a whole population of agents,

but who are only influenced to a limited extent by each individual agent. Mathematically,

these notions are unrelated and aim to capture different aspects of privacy.

Separation as a Notion of Fairness In the literature on algorithmic fairness, there are

other notions of fairness that do not require statistical independence, as discussed in §5.
One of the most commonly used alternatives to statistical independence is called separation.

Separation requires the decisions to be independent of protected characteristics conditional

on the true state.

Our results can also be applied to this setting. To see this, suppose that the underlying

outcome, z, is binary and takes values 0 or 1. Let ω be the expected probability of the
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underlying state being z = 1, conditional on all the observable covariates (including protected

characteristics θ). A signal would satisfy the requirement of separation if its realization is

independent of θ conditional on z. Consider any conditionally privacy-preserving signals

π for the extended state space (ω, θ, z). By definition, signal realizations s drawn from π

would be independent of θ conditional on z. Moreover, a conditionally privacy-preserving

signal is Blackwell-undominated if and only if it takes the form of (s, z), where s is drawn

from some reordered canonical signal π∗Φ conditional on z. Although the signal that reveals

(s, z) may not be feasible, as the outcome z is typically unknown, one can project this signal

by computing the conditional expectation of (s, z) given ω. This conditional expectation

is thus, by construction, a garbling of ω, and is conditionally independent of θ given z.

Furthermore, since taking the conditional expectation preserves the Blackwell order, this

signal must remain Blackwell-undominated among all feasible signals.

8 Conclusion

We provide a characterization of signals which do not reveal certain information, and among

others presented application to price discrimination, and algorithmic fairness. We believe

the mathematical characterization of privacy preserving signals can be useful in other con-

texts. For instance, we conjecture that our results can be used to prove generalizations of

Border’s theorem (Border 1991; Hart and Reny 2015). Another interesting avenue for future

research is to use the mathematical characterization presented in this paper to understand

the consequences of different notion of privacy and fairness.

Appendix

Lemma A.1. A signal is privacy-preserving with respect to P ⊆ F if and only if it is privacy-

preserving with respect to the σ-algebra generated by P.

Proof. Fix any nonempty collection P ⊆ F . Consider any signal π that is privacy-preserving

with respect to the σ-algebra generated by P, denoted by σ(P). Since P ⊆ σ(P), π is

privacy-preserving with respect to P. Conversely, consider any signal π that is privacy-

preserving with respect to P. Let Pπ ⊆ F be the collection of events for which (1) holds for
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all signal realizations s. Clearly, Pπ is nonempty since π is privacy-preserving with respect

to P. Moreover, from the facts that P and P[⋅ ∣ s] are probability measures for all s ∈ S, it
follows that Pπ is a λ-system. Therefore, by Dynkin’s π − λ theorem, since the π-system P
is contained in the λ-system Pπ, the σ-algebra σ(P) generated by P must also be contained

in Pπ. Therefore, π is privacy-preserving with respect to σ(P).

Proof of Proposition 1. By Lemma A.1, it is without loss to assume that P is a σ-algebra.

Let Θ ∶= Ω, G ∶= P, (Θ,G) is a measurable space. Moreover, let θ ∶ (Ω,F) → (Θ,G) be the

identity function, i.e., θ(ω) ∶= ω for all ω ∈ Ω. Clearly, θ is measurable since for any B ∈ G = P,
θ−1(B) ∶= {ω ∈ Ω ∶ θ(ω) ∈ B} = B ∈ F . Furthermore, since for any B ∈ P, θ−1(B) = B, it must

be that σ(θ) = P. Lastly, for any signal π and for any B ∈ P, since (Ω,F ,P) is a standard

probability space, the conditional probability Pπ[θ ∈ B ∣ s] is well-defined. Moreover,

Pπ[θ ∈ B ∣ s] = Pπ[ω ∈ θ−1(B) ∣ s] = Pπ[ω ∈ B ∣ s] .

Therefore, π is privacy-preserving if and only if for all B ∈ G = P,

Pπ[θ ∈ B ∣ s] = P[θ ∈ B] .

Proof of Theorem 2. For any privacy-preserving signals π,π′, let G,G′ be the distribution

of posterior means induced by π,π′, respectively. Then G ⪯MPS G′ whenever π′ Blackwell

dominates π. Since F can be induced by the generalized quantile signal, Lemma 3 implies

that every mean-preserving contraction of F can also be induced by a privacy-preserving

signal. Thus, by Theorem 1, it suffices to show that, for any family Φ = {Φθ}θ∈Θ of measure-

preserving transformations, the distribution G of posterior means induced by π⋆Φ is a mean-

preserving contraction of F . To see this, observe that the posterior mean after observing a

signal realization s drawn from π⋆Φ is given by

E[F −1(Φθ(s) ∣ θ)] . (A.9)

Note, that the function s ↦ E[F −1(Φθ(s) ∣ θ)] is not necessarily monotone. The generalized

quantile function G−1 of the posterior mean is given by the monotone rearrangement of the
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above function. If we denote this rearrangement by ψ ∶ [0,1]→ [0,1], we have that

G−1(s) = E[F −1(Φθ(ψ(s)) ∣ θ)] .

As Φθ ○ ψ is a measure-preserving transformation, we have that for all t ∈ [0,1],

∫
1

t
G−1(s)ds = ∫

1

t
E[F −1(Φθ ○ ψ(s) ∣ θ)]ds ≤ ∫

1

t
E[F −1(s ∣ θ)]ds = ∫

1

t
F
−1(s)ds .

The inequality in the above equation follows since for any value of t ∈ [0,1] the measure-

preserving transformation Φθ ○ ψ that maximizes the above integral is the identity. The

above equation shows that G−1 is majorized by F
−1
, which implies that G is majorized by F

(see, for example, Shaked and Shanthikumar (2007), Section 3.A), which implies that G is a

mean-preserving spread of F .

Proof of Lemma 2. By definition, θ has the same distribution in both cases. We thus

only need show that for each fixed θ there exists a random variable ω⋆(q, θ) such that if q

is uniformly distributed ω⋆ and ω have the same distribution conditional on θ. To this end,

let ϕ ∶ Ω → [0,1] be the Borel isomorphism. Since (Ω,F) is a standard Borel space, ϕ is

well-defined and both ϕ and ϕ−1 are measurable. For any θ ∈ Θ, let ν(C ∣ θ) ∶= P[{ω ∈ Ω ∶
ϕ(ω) ∈ C} ∣ θ], for all Borel set C ⊆ [0,1]. Then, for F −1(q ∣ θ) defined as

F −1(q ∣ θ) ∶= inf{x ∈ [0,1] ∶ ν([0, x] ∣ θ) ≥ q} ,

for all q ∈ [0,1] and for all θ ∈ Θ, both q ↦ F −1(q ∣ θ) and θ ↦ F −1(q ∣ θ) are measurable.

Moreover,

λ({q ∈ [0,1] ∶ F −1(q ∣ θ) ∈ C}) = ν(C ∣ θ) ,

for all Borel-measurable set C ⊆ [0,1] and for all θ ∈ Θ. Now let ω⋆(q, θ) ∶ [0,1] ×Θ → Ω be

defined as ω⋆(q, θ) ∶= ϕ−1(F −1(q ∣ θ)). Then ω⋆ is measurable. Moreover, for any θ ∈ Θ and

for any measurable A ∈ F ,

λ({q ∈ [0,1] ∶ ω⋆(q, θ) ∈ A}) =λ({q ∈ [0,1] ∶ ϕ−1(F −1(q ∣ θ)) ∈ A}) = λ({q ∈ [0,1] ∶ F −1(q ∣ θ) ∈ ϕ(A)})
=ν(ϕ(A) ∣ θ) = P[ϕ−1(ϕ(A)) ∣ θ] = P[A ∣ θ] ,
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as desired.

Proof of Lemma 3. Suppose that π is Blackwell-more informative than π′. Fix any privacy

set P ∈ P and consider the decision problem where A = [0,1] and u(a,ω) = −(1{ω ∈ P}−a)2.
Taking the first order condition yields that the unique optimum in the optimization problem

max
a∈[0,1]

Eπ [−(1{ω ∈ P} − a)2 ∣ s] (A.10)

is given by

a⋆(s ∣ π) = Eπ [1{ω ∈ P} ∣ s] = Pπ [ω ∈ P ∣ s] = P [ω ∈ P ] .

where the last equality in the above equation follows as π is privacy-preserving. The optimal

action thus does not depend on the signal realization and consequently a decision-maker

observing the signal π′ can guarantee themselves the same expected payoff by using the

constant action P [ω ∈ P ]. As the expected payoff under the Blackwell dominated signal π′

is weakly lower, it follows that a = P [ω ∈ P ] must be an optimal action under the signal π′

for all signal realizations. Since the optimal action of the decision problem (A.10) is unique,

it follows that

a⋆(s ∣ π′) = Eπ′ [1{ω ∈ P} ∣ s] = Pπ′ [ω ∈ P ∣ s] = P [ω ∈ P ]

which implies that π′ is privacy-preserving.

Proof of Lemma 4. Consider any privacy-preserving signal π, let γ ∈ ∆∆(Ω ×Θ) be the

distribution over posteriors on Ω×Θ induced by π. Since π is privacy-preserving, for γ-almost

all µ ∈∆(Ω×Θ), the marginal of µ on Θ must be νΘ. Since Ω is standard-Borel, there exists

a transition probability µ̃ ∶ Θ→∆(Ω) such that

µ(A ×B) = ∫
B
µ̃(A ∣ θ)dνΘ ,

for all measurable A ⊆ Ω and for all measurable B ⊆ Θ.

Furthermore, since (Ω,F) is a standard Borel space, there exists a Borel isomorphism

ϕ ∶ Ω→ [0,1] such that both ϕ and ϕ−1 ∶ [0,1]→ Ω are measurable. For any µ ∈∆(Ω×Θ) and
for any θ ∈ Θ, let Fµ(C ∣ θ) ∶= µ̃({ω ∈ Ω ∶ ϕ(ω) ∈ C} ∣ θ) for all Borel measurable C ⊆ [0,1].
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Let

F −1µ (q ∣ θ) ∶= inf{x ∈ [0,1] ∶ Fµ([0, x] ∣ θ) ≥ q} ,

for all q ∈ [0,1], for all θ ∈ Θ, and for all µ ∈∆(Ω×Θ). Note that the functions q ↦ F −1µ (q ∣ θ),
θ ↦ F −1µ (q ∣ θ), and µ↦ F −1µ (q ∣ θ) are measurable.

Now let ω̃µ(q, θ) ∶= ϕ(F −1µ (q ∣ θ)) for all q ∈ [0,1], for all θ ∈ Θ, and for all µ ∈ ∆(Ω ×Θ).
Then for all θ ∈ Θ and for all measurable A ∈ F ,

λ({q ∈ [0,1] ∶ ω̃µ(q, θ) ∈ A}) =λ({q ∈ [0,1] ∶ ϕ(F −1µ (q ∣ θ)) ∈ A}) = λ({q ∈ [0,1] ∶ F −1µ (q ∣ θ) ∈ ϕ−1(A)})
=Fµ(ϕ−1(A) ∣ θ)) = µ̃(ϕ(ϕ−1(A)) ∣ θ) = µ̃(A ∣ θ) .

That is, the conditional distribution of ω̃µ(q, θ) given θ, equals µ̃(⋅ ∣ θ) for all θ ∈ Θ, whenever

q ∈ [0,1] follows the uniform distribution.

For any q ∈ [0,1], define νq,µ ∈∆(Ω ×Θ) by

νq,µ(A ×B) ∶= ∫
B
1{ω̃µ(q, θ) ∈ A}dνΘ .

Note that the functions q ↦ νq,µ and µ ↦ νq,µ are measurable since q ↦ ω̃µ(q, θ) and µ ↦
ω̃µ(q, θ) are measurable. Also note that the marginal of νq,µ equals νΘ for all q ∈ [0,1].
Furthermore, for any measurable A ⊆ Ω and for any measurable B ⊆ Θ,

∫
1

0
νq,µ(A ×B)dq =∫

1

0
∫
B
1{ω̃µ(q, θ) ∈ A}dνΘ dq = ∫

B
µ̃(A ∣ θ)dνΘ = µ(A ×B) .

Now define γ⋆ ∈∆∆(Ω ×Θ) as

γ⋆(E) ∶= ∫
Γ
λ({q ∈ [0,1] ∶ νq,µ ∈ E})dγ(µ) .

Theorem 2 of Strassen (1965) then implies that γ⋆ is a mean-preserving spread of γ. Fur-

thermore, note that by construction, for γ⋆-almost all ν̃, ν̃ = νq,µ for some q ∈ [0,1] and for

some µ ∈ ∆∆(Ω ×Θ). In particular, for γ⋆-almost all ν̃, the marginal of ν̃ over Θ is νΘ, and

ν̃({(ω, θ) ∈ Ω ×Θ ∶ w = η(ν̃, θ)}) = 1, for some measurable function η ∶∆∆(Ω ×Θ) ×Θ→ Ω.

As γ⋆ is a mean-preserving spread of the Dirac measure on P, from Blackwell’s theorem,

there exists a signal π⋆ that induces γ⋆ as its distribution of posteriors over Ω×Θ. Since γ⋆ is
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a mean-preserving spread of γ, π⋆ is Blackwell-more informative than π. Since the marginal

over Θ of γ⋆-almost every posterior is νΘ, the signal π⋆ can be chosen so that every posterior

induced by π⋆ has marginal νΘ over Θ, and hence, π⋆ is privacy-preserving. Likewise, since

γ⋆-almost every posterior ν̃ assigns probability 1 to the event {ω = η(ν̃, θ)}, π⋆ can be chosen

so that for any s, the posterior assigns probability 1 to the event {ω = η̃(s, θ)}, for some

η̃ ∶ S ×Θ→ Ω, and hence is conditionally revealing. This completes the proof.

Lemma A.2. For any signal π, there exists a Blackwell-equivalent signal ([0,1], π̂) such that

for any measurable C ⊆ [0,1],

∫
Ω×Θ

π(ω,θ)(C)dP = λ(C) .

Proof. Let γ ∈ ∆∆(Ω ×Θ) be the distribution of posteriors over Ω ×Θ associated with π.

Define a joint distribution Π ∈∆(Ω ×Θ ×∆(Ω ×Θ)) as

Π(A ×B ×C) ∶= ∫
C
µ(A ×B)dγ(µ) ,

for all measurable A ⊆ Ω, B ⊆ Θ, and C ⊆∆(Ω×Θ). Then, since ∆(Ω×Θ) is standard-Borel,
there exists a transition probability π̃ ∶ Ω ×Θ→∆(Ω ×Θ) such that

Π(A ×B ×C) = ∫
A×B

π̃(ω,θ)(C)dP ,

for all measurable A ⊆ Ω, B ⊆ Θ, and C ⊆ ∆(Ω × Θ). Then π is Blackwell equivalent to

(∆(Ω ×Θ), π̃). Moreover, since ∆(Ω ×Θ) is standard-Borel, there exists a signal ([0,1], π̂)
that is equivalent to (∆(Ω ×Θ), π̃) and such that

∫
Ω×Θ

π̂(ω,θ)(C)dP = λ(C) ,

for all measurable C ⊆ [0,1]. This completes the proof.

Proof of Lemma 5. Consider any conditionally revealing privacy-preserving signal π. By

Lemma A.2, it is without loss to assume that S = [0,1] and that the marginal distribution

of s is uniform. Let η ∶ [0,1] → Θ be the measurable function such that ω = η(s, θ) with
Pπ[⋅ ∣ s] probability 1 for all s ∈ S. Note that this implies, for any measurable A ⊆ Ω, and for
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νΘ-almost all θ,

λ({s ∈ [0,1] ∶ η(s, θ) ∈ A}) = P[ω ∈ A ∣ θ] = λ({s ∈ [0,1] ∶ ω⋆(s, θ) ∈ A}) .

That is, for νΘ-almost all θ, the random variables η(⋅, θ) ∶ [0,1] → Ω and ω⋆(⋅, θ) ∶ [0,1] → Ω

have the same distribution. It then remains to show that, for any two random variables

η1 ∶ [0,1] → Ω and η2 ∶ [0,1] → Ω that have the same distribution, there exists a measure-

preserving transformation Φ such that η1(s) = η2(Φ(s)) for all s ∈ [0,1].
To this end, note that since (Ω,F) is a standard Borel space, there exists a Borel isomor-

phism ϕ ∶ [0,1]→ Ω such that both ϕ and ϕ−1 ∶ Ω→ [0,1] are measurable. Consider any two

integrable functions η1, η2 ∶ [0,1]→ Ω such that

λ({s ∈ [0,1] ∶ η1(s) ∈ A}) = λ({s ∈ [0,1] ∶ η2(s) ∈ A} ,

for all measurable A ∈ F . Then, for any Borel measurable set C ⊆ [0,1],

λ({s ∈ [0,1] ∶ ϕ ○ η1(s) ∈ C}) = λ({s ∈ [0,1] ∶ ϕ ○ η2(s) ∈ C}) .

That is, ϕ ○ η1(s) and ϕ ○ η2(s) have the same distribution whenever s ∈ [0,1] follows the

uniform distribution. Since both ϕ ○ η1 and ϕ ○ η2 are in L1([0,1]), by Proposition 3 of

Ryff (1970), there exists a measure-preserving transformation Φ ∶ [0,1] → [0,1] such that

ϕ ○ η1(s) = ϕ ○ η2(Φ(s)) for all s ∈ [0,1]. Since ϕ is an isomorphism, it follows that η1(s) =
η2(Φ(s)) for all s ∈ [0,1].
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Online Appendix

Proof of Lemma 1. Consider any family Φ = {Φθj}Jj=1 of measure-preserving transforma-

tions. Since F −1(⋅ ∣ θj) is the generalized quantile function, the distribution of F −1(Φθj(s) ∣ θj)
is F (⋅ ∣ θj) for all j ∈ {1, . . . , J}. Therefore, the joint distribution ρ of (F −1(Φθj(s) ∣ θj))Jj=1 is

inM.

Conversely, consider any ρ ∈ M. Since ΩJ is standard Borel, there exists measurable

functions {ηj}Jj=1 such that the joint distribution of (ηj(s))Jj=1 is ρ, where s is the uniform

random variable on [0,1]. Since for all j ∈ {1, . . . , J}, ηj(s) and F −1(s ∣ θj) have the same

distribution, there exists a measure-preserving transformation Φθj ∶ [0,1] → [0,1] such that

ηj(s) = F −1(Φθj(s) ∣ θj) for all s ∈ [0,1] and for all j ∈ {1, . . . , J} by Proposition 3 of Ryff

(1970), as desired.

Proof of Proposition 2. By Theorem 3 and Blackwell’s theorem, any privacy-preserving

signal yields a (weakly) lower payoff to the decision-maker than some reordered canonical

signal. Together with Lemma 1, it then follows that

V ⋆ = sup
ρ∈M
∫
ΩJ
V (ω1, . . . , ωJ)dρ .

Moreover, by Theorem 3, any privacy-preserving that yields V ⋆ must be a Φ-reordered canon-

ical signal π⋆Φ, for some family Φ = {Φθj}Jj=1 of measure-preserving transformations. Thus, by

Lemma 1, the joint distribution of (ω⋆(Φθj(s), θj))Jj=1 must be a solution of (5).

Proof of Proposition 3. Let V̂ ∶ ΩJ ×A→ R be defined as

V̂ (ω1, . . . , ωJ , a) ∶=
J

∑
j=1
u(ωj, θj, a)P[θ = θj].

We first show that V̂ has increasing difference in (ω1, . . . , ωJ) and a, and is supermodular in

(ω1, . . . , ωJ). Indeed, for any a, a′ ∈ A and ω = (ωj)Jj=1,ω′ = (ω′j)Jj=1 ∈ ΩJ such that a ≥ a′ and
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ωj ≥ ω′j for all j,

V̂ (ω, a) − V̂ (ω, a′) =
J

∑
j=1
[u(ωj, θj, a) − u(ω′j, θj, a′)]P[θ = θj]

≥
J

∑
j=1
[u(ω′j, θj, a) − u(ω′j, θj, a′)]P[θ = θj]

=V̂ (ω′, a) − V̂ (ω′, a′) ,

where the inequality follows from the increasing difference property of u. Furthermore, for

any ω = (ωj)Jj=1,ω′ = (ω′j)Jj=1 ∈ ΩJ and for all a ∈ A,

V̂ (ω ∨ω′, a) + V̂ (ω ∧ω′, a) =
J

∑
j=1
[u(max{ωj, ω

′
j}, θj, a) + u(min{ωj, ω

′
j}, θj, a)]P[θ = θj]

=
J

∑
j=1
[u(ωj, θj, a) + u(ω′j, θj, a)]P[θ = θj] = V̂ (ω, a) + V̂ (ω′, a) ,

We next show that V ∶ ΩJ → R defined in (4) is supermodular. Since argmaxa∈A V̂ (ω, a)
is nonempty for all ω ∈ ΩJ , for any a⋆(ω) ∈ argmaxa∈A V̂ (ω, a) and for any ω = (ωj)Jj=1 ∈ ΩJ ,

V (ω) = V̂ (ω, a⋆(ω)). Therefore, it suffices to show that

V̂ (ω ∨ω′, a⋆(ω ∨ω′)) + V̂ (ω ∧ω′, a⋆(ω ∧ω′)) ≥ V̂ (ω, a⋆(ω)) + V̂ (ω′, a⋆(ω′)) ,

for all ω,ω′ ∈ ΩJ . To see this, consider any ω,ω′ ∈ ΩJ . Since A is totally ordered, it is
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without loss to assume that a⋆(ω) ≥ a⋆(ω′). As a result,

V̂ (ω ∨ω′, a⋆(ω ∨ω′)) + V̂ (ω ∧ω′, a⋆(ω ∧ω′)))
=V̂ (ω ∨ω′, a⋆(ω)) + V̂ (ω ∧ω′, a⋆(ω))
+ [V̂ (ω ∨ω′, a⋆(ω ∨ω′)) − V̂ (ω ∨ω′, a⋆(ω))] + [V̂ (ω ∧ω′, a⋆(ω ∧ω′)) − V̂ (ω ∧ω′, a⋆(ω))]
≥V̂ (ω, a⋆(ω)) + V̂ (ω′, a⋆(ω))
+ [V̂ (ω ∨ω′, a⋆(ω ∨ω′)) − V̂ (ω ∨ω′, a⋆(ω))] + [V̂ (ω ∧ω′, a⋆(ω ∧ω′)) − V̂ (ω ∧ω′, a⋆(ω))]
=V̂ (ω, a⋆(ω)) + V̂ (ω′, a⋆(ω′)) + V̂ (ω′, a⋆(ω)) − V̂ (ω′, a⋆(ω′))
+ [V̂ (ω ∨ω′, a⋆(ω ∨ω′)) − V̂ (ω ∨ω′, a⋆(ω))] + [V̂ (ω ∧ω′, a⋆(ω ∧ω′)) − V̂ (ω ∧ω′, a⋆(ω))]
≥V̂ (ω, a⋆(ω)) + V̂ (ω′, a⋆(ω′)) + V̂ (ω ∧ω′, a⋆(ω)) − V̂ (ω ∧ω′, a⋆(ω′))
+ [V̂ (ω ∨ω′, a⋆(ω ∨ω′)) − V̂ (ω ∨ω′, a⋆(ω))] + [V̂ (ω ∧ω′, a⋆(ω ∧ω′)) − V̂ (ω ∧ω′, a⋆(ω))]
=V̂ (ω, a⋆(ω)) + V̂ (ω′, a⋆(ω′))
+ [V̂ (ω ∨ω′, a⋆(ω ∨ω′)) − V̂ (ω ∨ω′, a⋆(ω))] + [V̂ (ω ∧ω′, a⋆(ω ∧ω′)) − V̂ (ω ∧ω′, a⋆(ω′))]
≥V̂ (ω, a⋆(ω)) + V̂ (ω′, a⋆(ω′)) ,

where the first inequality follows from supermodularity of V̂ , the second inequality follows

from the increasing difference property of V̂ and from a⋆(ω) ≥ a⋆(ω′), and the third inequality

follows from optimality of a⋆.

Finally, note that by Lemma 1, (5) is equivalent to choosing a family {Φj}Jj=1 of measure-

preserving transformations to maximize

∫
1

0
V (F −1(Φ1(q) ∣ θ1), . . . , F −1(ΦJ(q) ∣ θJ))dq.

Since V is supermodular, corollary 3 of Tchen (1980) (see also, Theorem 2.1 of Puccetti and

Wang 2015) implies that

∫
1

0
V (F −1(Φ1(q) ∣ θ1), . . . , F −1(ΦJ(q) ∣ θJ))dq ≤ ∫

1

0
V (F −1(q ∣ θ1), . . . F −1(q ∣ θJ))dq

for any family {Φj}Jj=1 of measure-preserving transformations. Together with Lemma 1, V ⋆

is attained by the generalized quantile signal, as desired.
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Proof of Proposition 5. For any ρ ∈M, Lemma 1 implies that there exists a family Φ =
{Φθ}θ∈Θ of measure-preserving transformations such that the joint distribution of (ω⋆(Φθj(s), θj))Jj=1
is ρ, where s follows the uniform distribution on [0,1]. Consider the problem where the sender

is restricted to choose garblings of the Φ-reordered canonical signal. Standard arguments (Au-

mann and Maschler 1995; Kamenica and Gentzkow 2011) implies that the sender’s value in

this restricted problem is V S(ρ). By Theorem 3, since every privacy-preserving signal is a

garbling of some reordered canonical signal, the sender’s value V ⋆S in the original problem

must be given by

max
ρ∈M

V S(ρ) .

Transforming the Optimal Transport Problem In Section 5.2, we claim that the

optional transport problem (5) with V (ω1, ω2) = min{ω1, ω2} is equivalent to the standard

problem with an absolute transport cost. To see this, note that −min{ω1, ω2} =max{x1, x2}−
(x1 + x2) = 0.5max{x1 − x2, x2 − x1} − 0.5(x1 + x2) = 0.5∣x1 − x2∣ − 0.5(x1 + x2). Consequently,
as the marginal distribution of ω1, ω2 is fixed we have that

argmax
ρ
∫ V (ω1, ω2)dρ = argmin

ρ
∫ ∣ω1 − ω2∣dρ .

Verifying the Optimality of ρ∗ In Section 5.2, we claim that the joint distribution ρ∗

is optimal in our example. To see this, recall that a joint distribution ρ ∈M is a solution

of the associated optimal transport problem if and only if there exists Lagrange multipliers

L,K ∶ Ω→ R that satisfy the complementary slackness condition: L(ω1)+K(ω2) ≥ V (ω1, ω2),
for all (ω1, ω2) ∈ Ω2, with equality on the support of ρ. It can then be verified that the

complementary slackness condition is satisfied under the Lagrange multipliers (L(ω))ω∈Ω =
(1,2, 5/2) and (K(ω))ω∈Ω = (0,0, 1/2), and hence ρ⋆ is indeed a solution.
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