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Abstract

Professional house price forecast data are consistent with a rational model where agents must learn about

the parameters of the house price growth process and the underlying state of the housing market. Slow

learning about the long-run mean can generate forecast bias, a response of forecasts to lagged realizations,

sluggish response of forecasts to contemporaneous realizations, and over-reaction to forecast revisions.

Introducing behavioral biases, either over-confidence or diagnostic expectations, helps the model further

improve its predictions for short-horizon over-reaction and dispersion. Using panel data for a cross-section

of forecasters and a term structure of forecasts are important for generating these results.
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1 Introduction

A recent and active literature studies how economic agents form expectations and how those expectations

affect outcomes. The housing market is an important laboratory for this inquiry given the prominence of

housing in households’ portfolios and in the broader functioning of the macroeconomy, and given the role

that expectations may play in driving aggregate house price fluctuations.1

This research agenda has been propelled by the increasing availability of survey data. In the realm of

real estate, survey data on house price forecasts have been available for a while (Case and Shiller, 1988),

but their scope continues to improve as discussed in the survey paper by Kuchler, Piazzesi and Stroebel

(2023). One finding from surveying households is that past house price growth is an important driver of

forecasts of future house price growth. While time series variation in expectations is naturally smaller than

time series variation in realizations, house price expectations are nevertheless substantially more optimistic

following recent price increases. Households seem to extrapolate from past realizations.2 Another stylized

fact is that the cross-sectional dispersion in forecasts of house price growth is large; it exceeds the time-

series variation in the average forecast. There has been only limited success in empirically accounting for

the dispersion in forecasts.3

The survey evidence naturally raises the question of how to best understand the expectation formation

process in the housing market. The debate on whether extrapolation represents an optimal use of infor-

mation, for example, is complicated by the fact that, unlike stock and bond returns, house price changes

display substantial serial correlation. In an experimental setting, Armona, Fuster and Zafar (2019) find

that subjects revise both short-term and long-term expectations when they receive information about past

realized house price changes. They argue that, while respondents extrapolate from past information on av-

erage, they do so too little at short horizons (one-year), where actual momentum is strong, and too much at

long horizons (five-year), where home price growth tends to mean revert. Case et al. (2012) and De Stefani

(2021) document similar patterns in the data. One interpretation of this evidence is as a manifestation of

extrapolation bias in the housing market context. The behavioral model of Glaeser and Nathanson (2017)

generates this under-extrapolation in the short run and over-extrapolation in the long-run when agents ne-

glect that past prices contain information about the beliefs of other agents and assume that other agents

1Bailey et al. (2018) show that house price expectations affect home purchase decisions, while Bailey et al. (2019) show that they
affect mortgage leverage choice and mortgage rate. Favilukis, Ludvigson and Van Nieuwerburgh (2017); Kaplan, Mitman and Violante
(2020); Greenwald and Guren (2021) debate the role of expectations and credit constraints in accounting for the boom and bust in U.S.
house prices. Jacobson (2022) endogenizes how beliefs are formed in Kaplan, Mitman and Violante (2020) via adaptive expectations.

2Evidence that house price growth expectations are positively correlated with past realized house price growth goes back to Case
and Shiller (1988). Recent contributions include Case et al. (2012); Fuster, Laibson and Mendel (2010); Greenwood and Shleifer (2014);
Barberis et al. (2015); Liu and Palmer (2021); Giglio et al. (2021a,b).

3Kindermann et al. (2021) show that Bayesian learning with heterogeneous information between renters and owners can explain
the dispersion of cross-sectional forecasts during the recent house price boom in Germany.
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made the same mistake in the past.

This paper studies the question of expectation formation in the housing market with new data and new

tools. We use a unique data set of professional forecasters collected by the forecasting firm Pulsenomics.

About 100 professionals from industry, policy, and academia predict house price growth in the current

calendar year and in each of the next four (or five) calendar years.4 The survey is quarterly and spans the

period from 2010.Q1 until 2022.Q4 (52 quarters). What is unique about this data is that (i) it is a panel

data set, i.e., we can track the individual forecasters over time, and (ii) that it contains a term structure

of expectations. Existing survey data, including outside of the housing domain, typically contain no panel

dimension and no or limited forecast data across longer horizons. We will show that both the cross-sectional

and the term-structure dimensions are important for inference.

While professionals may exhibit different expectations from individuals, their belief formation is of

independent interest given (i) their expertise, (ii) the prevalence of professional survey data in economics

and finance, and (iii) the fact that many individuals rely on professionals. Indeed, Fuster et al. (2022) show

that, when households are given the opportunity to pick among different sources of information to help

predict future house price changes, about half chose the forecast of housing experts.

We begin by documenting several empirical facts about house price expectations in our data set. First,

like in the household survey data, there is substantial time series variation in average expectations that is

correlated with past house price growth, but less than in the realized time series.

Second, there is substantial cross-sectional dispersion in forecasts in each survey. Using hand collected

data from LinkedIn, we obtain a large set of demographic characteristics for each forecaster, including

age, location, and detailed education and professional experience history. These individual characteristics

explain an additional 10% points of panel variation in forecasts relative to a model with time fixed effects.

Years of experience is the most important covariate among the individual characteristics.

Third, a new fact to the housing expectation literature is that the dispersion in forecasts is higher for

short-run than for long-run forecasts.

Fourth, we focus on the slope of a regression of forecast errors on the forecast revision. Coibion and

Gorodnichenko (2015) interprets the positive sign and magnitude of the CG slope coefficient estimated

based on consensus data as evidence for limited- and sticky-information models, and specifically for under-

reaction of the forecast to news. For house price growth, we find a negative slope using individual fore-

caster data (panel regression), suggesting over-reaction. Using consensus data, in contrast, the slope turns

positive. A similar sign reversal for individual versus consensus forecast data has been observed in other

macro-economic and financial series by Bordalo et al. (2020), who propose diagnostic expectations to ac-

4The Wall Street Journal runs a similar survey, but we are not aware of any analysis like ours with that data set.
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count for the over-reaction at the individual level. Ours is the first paper to study individual and consensus

forecasts jointly in the housing context. We add to the literature new facts about how the CG slope co-

efficients change with the horizon of the forecast, and show that the horizon dependence is revealing for

models of expectation formation.

Fifth, we find strong evidence that long-horizon forecasts are fully mean-reverting. Figure 1 shows the

consensus forecast (i.e., averaged across forecasters) for each horizon in each quarter in the colored dashed

lines. The solid black line shows the realized house price growth. Forecasters’ prediction for annual house

price growth four years from now is close to the unconditional mean of house price growth, indicating

that the typical forecaster expects full mean-reversion by year four. This suggests that professional fore-

casters under-extrapolate over long-horizons, in contrast with households who the literature argued over-

extrapolate over long horizons.5 However, the literature hitherto does not have much data (and no panel

data) on long-term forecasts of house price growth. And the statement of over- or under-extrapolation

requires a model. As we will argue below, this evidence is consistent with a rational learning model.

Figure 1: Zillow/Pulsenomics Survey Forecasts of House Price Growth
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Notes: The black solid line shows the realized annual house price growth. Each short colored dashed line with six small
dots represents the actual annual house price growth at that quarter (the first circle), the average survey forecasts of
house price growth of the current year (the second circle), and the average survey forecasts of house price growth in
the following 4 years (subsequent four circles).

Sixth, we study the slope of a panel regression of the forecast on the realized value of house price growth.

5In other words, households underestimate the long-term mean reversion, while professionals overestimate the long-term mean
reversion.
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This tests the Mincer and Zarnowitz (1969) prediction that the rational forecast and the truth should on

average move one-for-one with one another. In the data, we find very weak correlations between forecasts

and realizations.

Seventh, we look at the size of the forecast error, finding that the predicted house price growth in our

sample is significantly below realized house price growth.

All these features of the data are usually interpreted as prima facie evidence against the rational expecta-

tion model. The main finding of this paper is that a state-of-the-art Bayesian learning model with learning

about the hidden state of the housing market and about model parameters goes a long way towards ac-

counting for these features.

Similar to Bordalo et al. (2020); Farmer, Nakamura and Steinsson (2023), we model house price growth as

containing a long-run mean, a latent mean-reverting component, and an i.i.d. noise term. The key deviation

from rational expectations is that agents do not know the parameters of this data generating process, unlike

in Bordalo et al. (2020), which assume agents know the value of the long-run mean and the persistence

parameter governing the mean-reverting component. Learning about the long-run mean turns out to be

particularly important for the results.

Using Bayes Law, our forecasters combine their priors with data on house price realizations and private

signals to learn about the parameters and the state of the housing market. Unlike Farmer, Nakamura and

Steinsson (2023), we allow for heterogeneity across forecasters. We allow for heterogeneity in the priors

about the long-run mean of house price growth and for heterogeneity in signals. Each forecaster’s private

signal is a noisy version of house price growth that is i.i.d. across forecasters. The signal reflects the external

data that each forecaster brings to bear on the prediction problem. The dispersion in the signal captures the

heterogeneity in that information set. The signal dispersion can also capture differential limits on attention

or information processing capacity across forecasters (e.g., Sims, 2003; Woodford, 2009; Van Nieuwerburgh

and Veldkamp, 2009).

Even though the true parameters of the house price process are constant, the posterior (subjective) be-

liefs about these parameters are time-varying and heterogeneous because forecasters see different signals

(Patton and Timmermann, 2010; Collin-Dufresne, Johannes and Lochstoer, 2016) and start from different

priors about long-run mean house price growth. Cross-sectional dispersion in forecasts arises from prior

and signal heterogeneity.

We estimate the parameters of the model using simulated method of moments with the help of cloud

computing.

This model matches most, but not all aforementioned features of the data. It produces large in-sample

forecast biases, negative CG regression slopes at the individual level and especially at longer horizons,
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and positive slopes at the aggregate level, realistic dependencies of house price growth forecasts on both

contemporaneous and lagged realized house price growth, and substantial cross-sectional dispersion in

forecasts especially at longer horizons.

A key mechanism behind the model’s success lies in the fact that the long-run mean house price growth

rate is difficult to learn about. Slow learning arises from the persistence of house price growth, which means

that additional observations carry relatively little no information (Collin-Dufresne, Johannes and Lochstoer,

2016) , and from the multidimensional nature of the learning problem. Forecasters who simultaneously

have to learn about multiple parameters and the state of the housing market face an identification problem

of having to attribute noisy signals to these various sources of uncertainty (Renxuan, 2020) .6

This slow learning is reflected in substantial uncertainty about the long-run mean. When forecasters

have more diffuse priors, they assign more weight to their signals when making forecasts. The resulting

forecasts appear excessively volatile or “over-reacting" to news about house price growth. Confronted with

output from this model on a panel of forecasters, an econometrician would observe negative individual CG

coefficients and a positive response of the forecast to past house price growth.

Generating substantial forecast dispersion requires both heterogeneity in priors and in signals. Signal

heterogeneity helps but ultimately has limited bite in a world where forecasters are aware that their sig-

nals contain substantial noise. Heterogeneity in forecasters’ prior beliefs about the long-run mean has a

first-order impact on forecast dispersion, as long as uncertainty about the long-run mean is not too high. If

uncertainty is too high, forecasters assign little weight to their priors when forming posteriors and hetero-

geneity in the prior fades away.

Taken together, the comprehensive set of moments we consider identify a set of model parameters that

point to significant uncertainty and heterogeneity in the prior long-run mean house price growth rate. They

also point to the importance of signal heterogeneity.

Where the learning model falls short is in generating a negative enough CG coefficient at the 1-year

forecast horizon and enough forecast dispersion at the 1-year horizon.

To remedy this shortcoming, we embed two seminal concepts from behavioral economics—over-confidence

and diagnostic expectations—in our learning model. An overconfident forecaster has a subjective signal

precision that exceeds the objective one. Following Bordalo et al. (2020), a forecaster with diagnostic ex-

pectations forms distorted estimates for the mean-reverting state of the housing market. We show that

either overconfidence or diagnostic expectations are tremendously helpful for matching the one-year indi-

6An emerging literature investigates the sources of slow learning. Nagel and Xu (2022) propose that investors’ fading memory
when learning about long-run fundamentals can generate slow-learning, leading to a permanent subjective equity premium. Barberis
and Jin (2023) draw on the psychology literature, suggesting “model-free" learning, where individuals infer from personal experiences
(Malmendier and Nagel, 2011), even from their distant past, leading to slow-learning.
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vidual GC slopes and one-year forecast dispersion. In contrast, the effect on longer-horizon forecasts from

these behavioral frictions is small. Learning about the long-run mean is what helps the model match the

longer-horizon CG slope and forecast dispersion. Combined, we are able to account for the full set of ex-

pectations moments, and arrive at a compelling synthesis of how to understand the extent of rationality

and disagreement in house price forecasts.

To provide additional intuition for these results and to highlight the uniqueness of our data, we consider

two simpler models: one where there is no heterogeneity across forecasters and one where there is no

information on long-horizon forecasts.

The former is the model that a researcher who only has access to consensus (i.e., average) forecast data

would be forced to estimate. When trying to fit the “no dispersion" model to the same set of moments

(minus the forecast dispersion moments of course), we obtain a significantly worse fit. We also obtain

substantially different prior parameter estimates, especially for the crucial parameter that governs the prior

uncertainty about long-run mean growth. This suggests that the individual CG regression slopes, which

require a panel dataset to estimate, are important to identify a plausible learning model.

The latter model estimation, which only uses one-year ahead forecast moments, illustrates the impor-

tance of having access to a term structure of forecasts. We find that the fit deteriorates enormously, and the

parameter estimates change substantially. Specifically, we estimate a lower prior mean for the persistence

parameter with substantially more uncertainty around the estimate than in our benchmark model.

The rest of this paper is organized as follows. Section 2 introduces the Pulsenomics house price forecast

data and documents key empirical facts on professional house price growth forecasts across time and fore-

casters. Section 3 sets up the model and the estimation algorithm. The results for the benchmark learning

model are in Section 4. Section 5 adds overconfidence and diagnostic expectations to the benchmark model.

Section 6 explains the importance of having a panel dimension and a term structure of forecasts in the data

in order to identify the key parameters and account for the key moments of the survey data. Section 7

concludes. The Appendix contains additional empirical results, model derivations, and auxiliary model

results.

1.1 Contributions to the Literature

The main contributions of this paper are twofold. First, we show that parameter uncertainty and Bayesian

learning can generate over-reaction at the individual forecaster level (i.e. the negative CG coefficients) together

with other salient features of forecast data including positive responses (under-extrapolative) to past real-

ized price growth at different forecasting horizons. This contributes to a literature that studies expectation
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formation based on survey data (Mankiw and Reis, 2002; Coibion and Gorodnichenko, 2012, 2015; Bordalo

et al., 2019, 2020; Nagel and Xu, 2022; Bianchi, Ludvigson and Ma, 2022; Broer and Kohlhas, 2023).

Bordalo et al. (2020) and Broer and Kohlhas (2023) document over-reaction across a broader set of

macroeconomic forecasts among professional forecasters. They propose behavioral explanations, diag-

nostic expectations and over-confidence about the signal precision, respectively. Different from their ap-

proaches, our explanation builds on the premise that forecasters do not have full information and therefore

perform rational parameter learning, along the lines of Friedman (1979); Timmermann (1993); Lewellen

and Shanken (2002); Cogley and Sargent (2008); Croce, Lettau and Ludvigson (2015); Collin-Dufresne, Jo-

hannes and Lochstoer (2016); Kozlowski, Veldkamp and Venkateswaran (2020); Singleton (2021); Farmer,

Nakamura and Steinsson (2023).

Recently, Farmer, Nakamura and Steinsson (2023) (henceforth FNS) propose forecaster learning as an

explanation for the under-reaction (positive CG coefficients) observed among professionals’ interest rate fore-

casts at the consensus level. The key economic force behind their model’s success in generating the positive

CG coefficients is forecasters’ downward-biased initial prior beliefs of how persistent interest rate process

is. Besides targeting the real estate market, which shows negative CG coefficients at the individual level, the

economic mechanism we propose is different from FNS. Specifically, we model the long-run component in

house price growth as a long-run mean (Collin-Dufresne, Johannes and Lochstoer, 2016) and demonstrate

that, when forecasters have uncertainty about the long-run mean, their forecast appears to “over-react" to

news (negative individual CG coefficients). Furthermore, we show that the learning mechanism proposed

by FNS generates over-extrapolative forecasts together with over-reaction (positive CG slopes), while our

mechanism generates under-extrapolation and over-reaction simulatneously, consistent with the data.

Second, we are the first to jointly examine the term structure of individual forecasts, consensus forecasts,

and forecast disagreement in a consistent framework. This allows us to uncover tensions between differ-

ent empirical moments, and ultimately achieve parameter identification in a richer model of expectation

formation. Furthermore, it enables us to provide a quantitative assessment of the sources of disagreement

among forecasters and the role of behavioral frictions in a world where forecasters need to learn about the

state of the market and the parameters.

Previous studies have typically examined these empirical moments in isolation or separate pairs. For ex-

ample, Bordalo et al. (2020) study individual forecasts and consensus forecasts but do not consider the term

structure of forecasts nor the disagreement among forecasters. Farmer, Nakamura and Steinsson (2023)

examine the term structure of consensus forecasts without considering the individual forecasts nor the dis-

agreement among forecasters. Gandhi, Gormsen and Lazarus (2023) study the term structure of returns

expectations in stock market using surveys and options but do not consider individual forecasts.
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A separate literature studies the (term structure of) disagreement among forecasters (Mankiw, Reis and

Wolfers, 2003; Lorenzoni, 2009; Patton and Timmermann, 2010; Andrade et al., 2016; Kindermann et al.,

2021; Giacoletti, Laursen and Singleton, 2021). In particular, Andrade et al. (2016) document that disagree-

ment persists for forecasting horizons over 5 years and that the term structure of disagreement takes dif-

ferent shapes for different macro variables. They propose a sticky information model in a multi-variate

setting to match these empirical moments. In their model, forecasters know the parameters that govern the

dynamics of the different macro variables, and they only update a subset of the variables in their informa-

tion set in each period. In our model, forecasters continuously update their forecasts about only one macro

variable (house price), but the forecasters do not know the value of the parameters governing the D.G.P.

Our model does not require a multi-variate setting to generate different shapes of term structure of dis-

agreements. Furthermore, we show that salient moments of survey data, such as the sensitivity of forecasts

to past house price growth, impose strong restrictions on the shape of the term structure of disagreements.

2 Facts About Experts’ House Price Growth Forecasts

Using a unique data set of professional forecasters collected by the forecasting firm Pulsenomics, we docu-

ment several important empirical facts about house price growth forecasts, including time series variation,

cross-sectional dispersion and heterogeneity, relation to past house price growth, and other forecast anoma-

lies.

2.1 Data

The forecast data we use come from Zillow Home Price Expectations Survey. The survey is conducted by

Pulsenomics, an independent research and index product development firm. The sample period of our

survey data is 2010Q1 to 2022Q4 (52 quarters). Every quarter, more than 100 professionals are surveyed to

predict the year-by-year home price growth over a five-year horizon. This diverse expert panel consists of

professionals and economists from industry, policy, and academia. The survey for each quarter is conducted

in the middle of the second month of that quarter, e.g., the 2010Q1 survey is conducted in the middle of

Feb 2010.7 The survey data is unique in the following ways. First, it is a panel data set. Each individual

forecaster can be tracked over time. This allows us to study belief formation at both the individual and

the consensus levels. Second, it contains a term structure of forecasts with relatively long horizons (from

current year to 4 years ahead). Information from the term structure of expectations turns out to be very

informative for estimating the belief formation process.

7More details about the timing of the survey and the data availability can be found in Appendix A.
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We augment this data set by manually collecting a large set of demographic characteristics for each

forecaster from LinkedIn. It contains characteristics in the following categories:

• Personal: (i) Age, (ii) Region metropolitan area, non-metropolitan area, and outside the U.S. This

variable is categorized based on the location of the forecaster.

• Educational background: (i) Highest degree (PhD, Master’s, or Bachelor’s), (ii) Major (classified as

economics, STEM, or both).

• Professional experience: (i) Length of work experience (calculated as the number of years since the

forecaster started her first job), (ii) Industry (classified based on the firm that currently employs

the forecaster), (iii) Number of skills (calculated based on the skills that a forecaster reports on her

LinkedIn page. Each reported skill can be endorsed by other people.), (iv) Skills related to real estate

(based on self-reported skills).

• Number of followers: defined as the total number of followers on her LinkedIn page. This variable is

a proxy for the forecaster’s network of professional connections and sphere of influence.

The data we use for the house price index is the Zillow Home Value Index (ZHVI). This index is cal-

culated by Zillow based on more than 100 million U.S. homes. Since forecasters in the Zillow Home Price

Expectations Survey are asked to predict the changes in the ZHVI, we naturally use this index as our data

source for the house price index. The index is available monthly and data for a given month is published

on the third Thursday of the following month. This data series starts in 1996.

2.2 Time-series and Cross-section of Forecasts

Expectations of house price growth vary over time and have large dispersion across individuals. Figure

2 shows the time series of short-term and long-term expected house price growth, alongside past realized

house price growth. Consistent with the findings from household surveys, there is significant time-series

variation in professional house price growth forecasts. However, the magnitude of this time-series variation

(right axis, solid line) is smaller than the time-series variation in the realized house price growth (left axis,

dashed line). Another important pattern is that the variation in long-term expectations (plotted in panel b)

is smaller than the variation in short-term expectations (panel a). This finding is consistent with Figure 1,

which showed that long-term forecasts fluctuate only modestly around the long-run mean.

Figure 3 shows the cross-sectional dispersion of house price forecasts in the 2022.Q4 survey. There is

substantial dispersion across individuals. The cross-sectional variation in forecasts exceeds the time-series

variation in average forecasts of house price growth. For example, some professionals forecast a house price
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growth of 5% in 2023 while others expect a decrease of 20% (panel a). The forecast for 2026 still shows wide

dispersion (panel b), but is smaller than the dispersion about 2023. This large cross-sectional dispersion,

ranging from 0% to 10% in 2022.Q4, stands in contrast with the modest fluctuations in the time series of

average four-year ahead house price growth forecasts, which move around in a much smaller range of

around 2.5% to 4.5%.

Table 1 explores the role of individual characteristics in accounting for the cross-sectional variation in

house price forecasts. It estimates a panel regression of individual house price growth forecasts on fore-

caster characteristics. To provide a baseline, Column (1) regresses the forecasts on a time fixed effect. This

picks up all variation in past house price growth as well as in all other macro variables. Column (2) adds the

forecaster characteristics, introduced above. The R2 increases from 29.5% to 39.7% for the one-year ahead

forecast and from 3.7% to 11.1% for the 4-year ahead forecast. The most significant variable is length of

experience. Forecasters with 15-25 years of professional experience predict quarterly house price growth

over the next year (four-years ahead) that is nearly 1% (0.6%) point lower than forecasters with more than

35 years of experience.

Despite the rich set of covariates, the table makes clear that there is a lot of unexplained heterogeneity in

these forecasts. This leaves open the door for unobservable heterogeneous information across forecasters.
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Figure 2: Time-Series of House Price Growth Forecasts
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Notes: This figure presents the time series of average professional forecasts of U.S. house price growth and past house
price growth. Panel A shows the expected 1-year-ahead 1-year end-of-year house price growth (e.g., from Dec/31/2010
to Dec/31/2011 for 2010Q1 survey, solid line, right y-axis) and the actual house price growth in the last year (e.g., from
Dec/31/2008 to Dec/31/2009 for 2010Q1 survey, dashed, left y-axis). Panel B shows the expected 4-year-ahead 1-year
end-of-year house price growth (e.g., from Dec/31/2013 to Dec/31/2014 for 2010Q1 survey, solid line, right y-axis) and
the actual house price growth in the last year (e.g., from Dec/31/2008 to Dec/31/2009 for 2010Q1 survey, dashed, left
y-axis).
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Figure 3: Cross-Sectional Dispersion of House Price Growth Forecasts
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Notes: This figure shows the cross-sectional dispersion of house price growth forecasts in 2022Q4 survey. Panel A shows
the histogram of expected 1-year-ahead 1-year end-of-year house price growth (from Dec/31/2022 to Dec/31/2023).
Panel B shows the histogram of expected 4-year-ahead 1-year end-of-year house price growth (from Dec/31/2025 to
Dec/31/2026).
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Table 1: Demographic Characteristics and House Price Growth Forecasts

1Y EoY HP Growth (In 1 Year) 1Y EoY HP Growth (In 4 Years)

(1) (2) (3) (4)

Length of Experience (yrs.)

ą35 (omitted) (omitted)

25-35 -1.004*** -0.427*
(0.316) (0.252)

15-25 -0.919*** -0.569**
(0.290) (0.237)

ă15 -0.533* -0.598***
(0.272) (0.219)

Highest Degree

Bachelor (omitted) (omitted)

Master -0.101 0.255
(0.374) (0.398)

Doctor 0.297 0.646
(0.354) (0.424)

Region

Metro Area (omitted) (omitted)

Non-Metro Area -0.098 -0.077
(0.258) (0.203)

Foreign 0.190 0.352
(0.345) (0.266)

Major

Econ 0.346 -0.152
(0.233) (0.223)

STEM -0.688 -0.332
(0.485) (0.253)

Econ * STEM 0.565 0.368
(0.564) (0.419)

Skill Number

ă25% Percentile (omitted) (omitted)

25% - 50% Percentile -0.108 0.233
(0.320) (0.276)

50 - 75% Percentile -0.199 0.040
(0.269) (0.183)

ą75% Percentile -0.571** 0.096
(0.283) (0.268)

Has Skills Related to Real Estate 0.016 0.010
(0.235) (0.225)

Number of Followers

ă25% Percentile (omitted) (omitted)

25% - 50% Percentile 0.565 0.310
(0.374) (0.272)

50 - 75% Percentile 0.507 0.098
(0.360) (0.315)

ą75% Percentile 0.323 0.125
(0.372) (0.258)

Survey Quarter FE Y Y Y Y
R-Squared 0.295 0.397 0.037 0.111
Number of Observations 5,503 3,052 5,503 3,052
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2.3 Forecast Anomalies

As a motivation for the model, we document several key empirical results. These empirical patterns are

typically interpreted as evidence that expectations depart from rationality.

First, we show that house price growth expectations exhibit correlations with past returns. We estimate

the sensitivity coefficients from:

Eit[yt+h] = a + byt´j + εt+h, (1)

where yt+h denotes one-year house price growth h years from now, yt´j is lagged annualized house price

growth over the past j years, and Eit[yt+h] the individual forecast of that future house price growth. Panel

A of Table 2 shows the results. Specifically, short-term forecasts are strongly positively correlated with past

realized growth, while long-term forecasts are insensitive to past realized growth.

Panel B contrasts these correlations of expected house price growth with the same correlations for re-

alized house price growth, estimated for the same period 2010–2022. Realized house price growth shows

strong serial correlation that diminishes with the horizon. Professional forecasters “under-extrapolate" at

all future horizons h = 1, 2, 3, 4. Put differently, they over-estimate the degree of mean reversion in house

prices growth.

Second, individual house price forecasts have persistent biases, ei,t+h|t ” yt+h ´ Eit[yt+h] . The average

bias in the panel data set of forecasters can be estimated from the regression:

ei,t+h|t = a f b + εi,t+h, (2)

Panel A of Table A1 shows that forecasts are systematically lower than actual house price growth during

our 2010–2022 sample, so that the bias a is large and positive.

Third, we estimate (inverse) Mincer-Zarnowitz regressions of forecasts on contemporaneous realiza-

tions:8

Eit[yt+h] = amz + bmzyt+h + εi,t+h, (3)

Full information rational expectations implies that the truth and the forecast move one-for-one, i.e., bmz = 1

in the above regression. We find that forecasts move less than one-for-one with the truth. Panel B of Table

A1 shows slope estimates close to zero for h = 1 and even negative for h = 2, 3, 4.

8The standard Mincer-Zarnowitz regression is defined as: yt+h = ramz +rbmzEit[yt+h] +rεi,t+h. However, in a pooled individual-level
panel regression, the dependent variable yt+h is the same for every individual in a single cross-section, which can cause the regressors
to correlate with error terms. To avoid a biased estimation of the coefficient, we use an inverse version of the Mincer-Zarnowitz
regressions. In these inverse MZ regressions, full information rational expectation still implies that bmz = 1, meaning that realized
values move one-for-one with forecasts. If bmz ‰ 1, the interpretation of the coefficient can be adjusted accordingly.
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Table 2: Effect of House Price Growth History on House Price Growth Forecasts

Panel A: Expected 1Y HP Growth at Different Horizon:

Current Year 1-Year Ahead 2-Years Ahead 3-Years Ahead 4-Years Ahead

Past 1Y HPG 0.549*** 0.165*** 0.044** 0.015 0.003
(0.040) (0.042) (0.017) (0.011) (0.011)

Past 4Y HPG 0.480*** 0.131** 0.019 -0.003 -0.009
(0.061) (0.050) (0.022) (0.014) (0.013)

Num. of Obs. 5,503 5,503 5,503 5,503 5,503 5,503 5,503 5,503 5,503 5,503
R-Squared 0.628 0.410 0.116 0.063 0.014 0.002 0.002 0.000 0.000 0.001

Panel B: Realized 1Y HP Growth (2010-2022) at Different Horizon:

Current Year 1-Year Ahead 2-Years Ahead 3-Years Ahead 4-Years Ahead

Past 1Y HPG 0.735*** 0.464** 0.194 0.169 0.269**
(0.115) (0.187) (0.132) (0.141) (0.127)

Past 4Y HPG 0.705*** 0.498** 0.291* 0.291* 0.437***
(0.167) (0.215) (0.157) (0.152) (0.142)

Num. of Obs. 52 52 48 48 44 44 40 40 36 36
R-Squared 0.739 0.560 0.283 0.297 0.0722 0.191 0.0642 0.211 0.158 0.425

Notes: Panel A shows the relationship between house price forecasts and past house price growth. The coefficients are
estimated from individual-level panel regressions. Panel B shows regression estimates of actual house price growth
dependence on past growth. All past house price growth variables are annualized. Standard errors are in parentheses.

For time-series regressions, standard errors are Newey-West with lag length of L =
Q

0.75 ˆ T1/3
U

. For individual-level
panel regressions, standard errors are clustered at the quarter and forecaster level. Standard errors are reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

Fourth, forecast revisions negatively predict future forecast errors. We estimate the Coibion-Gorodnichenko

regressions:

et+h|t = acg + bcg (Eit[yt+h] ´ Eit´1[yt+h]) + εt+h, (4)

These regressions test the null of full-information rational expectations (bcg = 0) against the alternative of

limited- or sticky-information models. If bcg ą 0, the forecasts suffer from “under-reaction," in the sense

that an increase in the forecast leaves the new forecast still too low on average. If bcg ă 0, the forecasts suffer

from “over-reaction." Panel C of Table A1 finds that professional forecast errors are negatively correlated

with forecast revisions, and more so at longer horizons. Professional house price forecasts suffer from

over-reaction.
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Table 3: Other Forecast Anomalies

Forecast Horizon

Current Year 1-Year Ahead 2-Years Ahead 3-Years Ahead 4-Years Ahead

Panel A: Bias
a 1.724*** 3.593*** 4.935*** 5.240*** 5.072***

(0.387) (0.630) (0.565) (0.574) (0.628)

Num. of Obs. 5,503 5,117 4,737 4,352 3,911

Panel B: Inverse MZ Regressions
b 0.596*** 0.124** -0.043** -0.056*** -0.064***

(0.058) (0.049) (0.021) (0.017) (0.016)

Num. of Obs. 5,503 5,117 4,737 4,352 3,911
R-squared 0.548 0.048 0.005 0.010 0.016

Panel C: CG Regressions
b -0.201 -0.219 -0.514*** -0.574*** -0.418***

(0.144) (0.258) (0.070) (0.007) (0.062)

Num. of Obs. 4,728 4,407 4,065 3,732 2,589
R-squared 0.019 0.006 0.029 0.032 0.017

Notes: This table shows the regression estimates of other forecast anomalies at different horizons. Panel A shows
the estimates of bias in equation 2. Panel B shows the estimates of inverse MZ regression specified in equation 3.
Panel C shows the estimates of CG regression in equation 4. All coefficients are estimated from individual-level panel
regressions. Standard errors are in parentheses. Standard errors are clustered by both forecaster and time. ***: p<0.001;
**: p < 0.01; *: p<0.05.
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3 Model

We develop a model to understand these key empirical results. The model aims to simultaneously match

the panel of individual house price forecasts and the heterogeneity across forecasters. It provides a labo-

ratory to quantitatively assess the importance of imperfect information, learning, and behavioral biases in

shaping expectations.

3.1 Setup

The key assumption of the model is that forecasters do not know and must learn the underlying state of

the housing market and the parameters that govern the data-generating-process (D.G.P.) of the house price

growth process. Our setup is similar to Bordalo et al. (2020) and Farmer, Nakamura and Steinsson (2023)

who study macroeconomic and financial time series. Unlike Bordalo et al. (2020), who also assume the

presence of a latent state, we assume that forecasters additionally do not know the underlying parame-

ters of the DGP. They need to estimate the parameters in order to forecast house price growth. Unlike

Farmer, Nakamura and Steinsson (2023), we additionally account for forecasts at multiple horizons and

for disagreement among forecasters by allowing different forecasters to receive heterogeneous noisy sig-

nals. Farmer, Nakamura and Steinsson (2023) work with consensus forecasts and a single-period forecast

horizon.

House Price Growth Process We assume that the house price growth yt, measured by log changes in the

ZHVI, contains a long-term mean, µ̄, a mean-reverting component xt, and a noise term et:

yt = µ + xt +

b

γσ2et et „ N(0, 1) (5)

xt = ρxt´1 +
b

(1 ´ γ) σ2ηt ηt „ N(0, 1) (6)

where γ governs the proportion of variance in total house price growth, σ2, that comes from the noise

component et. The noise et term captures the fact that aggregate house price growth data from Zillow is a

noisy measure of the true house price growth. Indeed, Zillow revises its own historical past realized price

growth as new data becomes available.9 Through the persistent state variable x, the model captures the fact

that house price growth is serially correlated, unlike price growth in many other financial time series, and

may exhibit mean-reversion. The model is similar to “the kernel of truth” laid out in Bordalo et al. (2020),

9As one example, Zillow began reporting the “Raw/MidTier" as its “headline" index series as of August 2022, instead of “smoothed,
seasonally adjusted" series. While the correlation between these two series is above 99%, they are not the same. As another example,
Zillow adopted a new index construction methodology, the “neural Zestimate", in January 2023. In unreported results, we find that
this methodology change has little impact on our estimation results, because the empirical moments do not change much.
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except for the presence of a long-term mean µ̄. The lines over the parameters indicate that these are the true

parameters that govern the objective D.G.P., unknown to the forecasters.

Forecasters’ Heterogeneous Signal Extraction Process Each quarter, the Pulsenomics Survey asks its 100

participants to make forecasts for house price growth over the current calendar year and each of the next

three calendar years. Let T denote the current quarter during which forecasters are asked to fill out the

survey. Each forecaster observes (is shown) the realized price growth up to previous quarter (T ´ 1) when

making forecasts for future house price growth, but does not know the house price in the current quarter

T. We formalize the timing of the survey in Appendix A.

Each forecaster i at time T has information set si,T , defined as

Si,T := (s1,t, . . . , s1,T´1, si,T)
1 (7)

The information set contains all historical realized house price growth and a private signal about current

and future house price growth, or

si,t =

$

’

’

&

’

’

%

yt t ď T ´ 1

yT + αi,T , αi,T „ N(0, Γ2
σ2) t = T

(8)

Notice that Γ denotes objectively how much noise (variance of αi,T) is in forecasters’ information signal. The

noise αi,T are assumed to be i.i.d. across investors and time. Γ differs from γ in that the latter captures the

proportion of the noise in the realized house price growth, the part that attributes to the one-period shock

not going into neither xt nor µ.

The parameter Γ (without the .) captures forecasters’ subjective beliefs about the amount of noise in

their signals. In the case of Γ = Γ, which is our benchmark case, forecasters correctly understand the true

amount of noise that their private signals contain.

Ultimately, their different information sets si,T lead them disagree about the current and future house

price growth, which should be reflected in their house price forecasts. This heterogeneity in forecasters’

signals is rooted in a literature on investors’ noisy signals and rational attention (e.g., Sims, 2003; Woodford,

2009; Van Nieuwerburgh and Veldkamp, 2009). One can interpret the differences in signals as different

forecasters using different predictors to estimate house price growth or paying different amount of attention

to the latest developments in housing markets.
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Forecasters’ Subjective Expectation Formation Process Based on past realized house price growth and

their own individual signals, the forecasters make inference about the values of the parameters and the

latent state of the housing markets. They correctly understand the underlying structure of the D.G.P. in

Equation (5) and (6), and the presence of noise in their signals as in Equation (8). However, they do not

know the true values of the underlying parameters and states. They need to make inference about the

parameters (µ, ρ, σ, γ) and the latent state txtu
T
t=0 in order to form expectations about future house prices

based on their information set Si,T . They are Bayesian learners. We assume in our benchmark case that the

forecasters know the value of Γ, the objective signal volatility.

From the perspective of the forecasters, their learning process takes the following form:

si,t = µi,t + rxi,t + rei,t, rei,t „ N(0, Hi,t) (9)

rxi,t = ρi,t rxi,t´1 +
a

1 ´ γi,tσi,t rηi,t, rηi,t „ N(0, 1) (10)

where

Hi,t =

$

’

’

&

’

’

%

γi,tσ
2
i,t, t ď T ´ 1

(γi,t + Γ2)σ2
i,t, t = T

(11)

Because of the heterogeneity in forecaster information, the parameter estimates (µi,t, ρi,t, σi,t, γi,t) are

heterogeneous across forecasters, as indicated by the subscript ”i” (Patton and Timmermann, 2010). The

state estimates, rxi,t, are also heterogeneous across forecasts and subjective, as indicated by ” r. ”. The

disagreement across forecasters is bounded as all of the forecasters observe the same history of realized

house price growth up until the previous quarter, or si,t = yt, @t = 1, ..., T ´ 1.

Due to parameter uncertainty and learning (Collin-Dufresne, Johannes and Lochstoer, 2016), the param-

eter estimates (µi,t, ρi,t, σi,t, γi,t) are time-varying, because they are the posterior mean estimates given the

realized data up until that point, signals, and prior distributions.

Forecasters’ Prior Beliefs We assume the following prior distributions for the parameters:

µ0 „ N(µµ, σ2
µ),

ρ0 „ N(µρ, σ2
ρ ),

σ2
0 „ IG(A, B),

γ0 „ Beta(C, D)
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These priors are common across forecasters, except that we introduce an additional parameter λ which

captures heterogeneity across forecasters in the prior belief about the long-run mean HPA. Forecasters prior

mean house price growth beliefs are uniformly distributed over the range [µµ ´ 1
2 λ, µµ + 1

2 λ].

The agents in the model know the parameters that govern these prior distributions (µµ, σ2
µ, λ, µρ, σ2

ρ , A, B, C, D).

We start agents off in 1996 with these priors.

Upon receiving new signals, forecasters update their prior beliefs to arrive at posterior beliefs for the

parameters (µi,t, ρi,t, σi,t, γi,t) using Bayes Rule. Given these new estimates for parameters, they estimate

the underlying mean-reverting state rxi,t using Kalman Filtering and Smoothing.

We derive analytical expressions for these posterior means based on marginal distributions of these

parameters. We then perform Gibbs-Sampling to combine the marginal posteriors to arrive at the posterior

mean of the forecasts for future house price growth. Appendix B contains the details.

Given their posterior parameter and state estimates, the forecasters form their forecasts for the m-quarter

ahead house price growth:

Ei,t(yt+m,1) = µi,t + ρm
i,t rxi,t, (12)

where µi,t is the long-run mean forecast and rxi,t is the transitory component that affects the short- and

medium-term forecast. Appendix A details how we compute the annual forecasts that mimic the exact

structure and timing of the Pulsenomics survey.

Incorporating Behavioral Biases to the Expectation Formation Process Following a literature on over-

confidence, we introduce an additional parameter ϕ := Γ/Γ. When ϕ ą 1, the objective signal noise is

larger than the subjective signal noise. Forecasters’ perceived signal precision is greater than the actual

signal precision, i.e. they are overconfident about the precision of their signals. Conversely, when ϕ ă 1,

forecasters are under-confident. The benchmark model sets ϕ = 1. We incorporate ϕ into our learning

model and examine its impact on the model’s fit to the data in Section 5.

Following the literature on diagnostic expectations (Bordalo et al., 2020), we allow forecasters to have

potentially distorted estimates of the state of the housing market, pxi,t, when applying the Kalman filter,

given their posterior estimates for the parameters. The degree of distortion is governed by the parameter

θ, with a positive (negative) θ leading to an overreaction (underreaction) to news. When θ = 0, forecasters

apply the optimal Kalman gain and we recover our benchmark rational learning model. We discuss this

extensionin Section 5, and provide the technical details on how to incorporate diagnostic expectations in

our learning model in Appendix C.
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3.2 Benchmark Model Estimation

We, the econometricians, do not know the parameters of the prior distributions and must estimate them. We

estimate the six parameters, δ = (µµ, σ2
µ, µρ, σ2

ρ , Γ, λ) that govern our benchmark rational learning model

using Simulated Method of Moments (SMM). We fix the parameters A, B, C, D that govern the prior dis-

tributions of σ2
0 and γ. In extensions, we estimate additional parameters ϕ and θ to evaluate the impact

of behavioral biases in forecasts. These parameters are set to one and zero, respectively, for our baseline

analysis.

Our benchmark estimation aims to match salient features of the individual forecasters’ panel data set

as well as forecast dispersion, 36 moments in all. The technical details of the estimation are relegated to

Appendix D. Given the computational complexities, the model is estimated on a supercomputer using

Microsoft Azure.

Given a candidate parameter vector δ, we proceed as follows

1. Obtain N forecasters’ heterogeneous signals by

(a) simulating normally distributed private signals αi,t „ N(0, Γ̄2σ̄2), i = 1, ..., N

(b) and adding them to the current quarter’s realized price growth: si,t := yt + αi,t.

2. Perform Bayesian learning for each forecaster i, using si,t as inputs, and prior parameters (µµ, σ2
µ, µρ, σ2

ρ ).

This leads to individual forecasters’ house price growth prediction, Ei,t(yt+h), for different horizons h

and periods t = 1, ...T.

3. Construct the 36 model-implied moments based on these forecasts Ei,t(yt+h) as follows:

(a) Estimate panel regressions based on individual forecasts Ei,t(yt+h) and actual realized house

price growth yt+h. We use four forecasting horizons for each regression moment: h = 1, 2, 3, 4.

i. Bias: Regress forecast error yt+h ´ Ei,t(yt+h) on a constant; collect mean estimates (1 moment

per horizon).

ii. Coibion-Gorodnichenko regression: Regress forecast error yt+h ´ Ei,t(yt+h) on a constant

and the forecast revision Ei,t(yt+h)´ Ei,t´1(yt+h); collect intercept and slope (2 moments per

horizon).

iii. Mincer-Zarnowitz regression: Regress forecast Ei,t(yt+h) on a constant and the realization

yt+h; collect intercept and slope (2 moments per horizon).

iv. Forecast on lagged realization: Regress forecast Ei,t(yt+h) on constant and realized house

price growth yt´j for j = 0.25, 2, 4; collect slope (3 moments per horizon).
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(b) Forecast dispersion for each h = 1, 2, 3, 4

i. We compute the cross-sectional variance of the individual forecasts in each quarter, and

average over quarters:

Disph =
1
T

T
ÿ

t=1

Vart(Ei,t(yt+m,h))

4. Minimize the distance between the model-implied and the empirical moments through searching

over the parameters δ:

pδ = argminδ

K
ÿ

k=1

mk(δ)

where the kth moment condition is the absolute difference between the empirical and the model-

implied moment weighted by the standard error of that moment. The weighting scheme recognizes

estimation uncertainty in the empirical moments, giving more weight to more precisely estimated

moments.10

mk(δ) =
|EmpiricalMomentk ´ ModelImpliedk|

SE(EmpiricalMomentk)
k = 1, ...K

We start our estimation process in 1996.Q1, when the ZHVI time series starts. This means that the prior

distribution refers to 1996.Q1 and that the forecasters in our model start their learning process in 1996.Q1.

The model produces quarterly model-implied house price growth forecasts from 1996.Q1 until 2022.Q4.

Since Pulsenomics only started to collect experts’ survey data from 2010.Q1 onwards, we use the model-

implied expert forecasts from 2010.Q1 until 2022.Q4 to match the empirical moments.11

Given individual forecasts, we can compute the model-implied consensus forecast as the average fore-

cast among the N forecasters in the model:

Ec
t (yt+h) =

1
N

N
ÿ

i=1

Ei,t(yt+h)

We can also compute the moments in step 3(a) based on the consensus forecast rather than the individual

forecast in both model and data. We return to this in Section 6.
10This is what we do for the 32 regression moments for which we can estimate the empirical standard error. We further increase the

weights of 4 CG slope moments by 10 times due to their importance in understanding individual forecasters’ expectations. Since we
do not have a standard error for the forecast dispersion, for the 4 forecast dispersion moments, we use the absolute error scaled by the
average of the weights of the remaining 32 regression moments for which we do have the empirical standard error.

11We also compare model-implied forecasts between 1996.Q1 and 2009.Q4 to realized house price growth; this is moment not
targeted in the estimation.

23



4 Results Benchmark Learning Model

4.1 Parameter Estimates

Table 4 shows the estimated parameters in δ̂ that govern the prior distributions of µ and ρ, as well as the

signal dispersion parameter Γ.

Table 4: Parameter Estimation for Different Estimation Procedures

Estimation Procedure

Benchmark No LR. No Disp.

Prior About Long-run Mean
µµ 0.762 0.621 0.810
σµ 0.218 0.188 0.040

Heterogeneity of Prior About Long-run Mean
λ 2.928 2.335

Prior About Persistent Parameter
µρ 0.659 0.538 0.685
σρ 0.023 0.182 0.018

Information Heteorgeneity
Γ̄ 1.274 0.977

Notes: This table presents the estimates for the key parameters from our optimization process. The first column is for
the benchmark model. The second column (“No LR.") excludes empirical moments based on the 2-year, 3-year and
4-year ahead forecasts in the optimization. The third column (“No Disp.") is for a simpler model that shuts down the
heterogeneity in prior beliefs and signals and estimates the model by matching moments based on consensus forecasts.
Appendix D provides more details on the optimization procedure.

Figure A1 plots the prior distributions of µ0, ρ0, and σ0 implied by these parameter estimates. The prior

mean long-run growth rate of µµ =0.762% per quarter is consistent with the historical sample average prior

to 1996. Indeed, the Case-Shiller house price index data, which start in 1987, show a quarterly house price

growth rate of 0.69% for the period 1987—1995, prior to the start of our estimation in 1996. The standard

deviation of the prior is 0.218%, which reveals substantial prior uncertainty about the long-run mean house

price growth rate.

The parameter λ = 2.928% captures heterogeneity in the prior mean µµ across forecasters. The data

insist on a large amount of cross-sectional heterogeneity in beliefs about long-run HPA. As we shall see,

learning about the long-run mean is very difficult (slow), so that much of the prior uncertainty persists

over time and in the cross-section. Uncertainty about long-run mean house price growth will be a key

feature that helps the learning model account for various anomalies.

The parameter ρ governs the persistence of the latent state of the housing market, x. We estimate a
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tight prior distribution centered around a mean of 0.659% (quarterly value) with a standard deviation of

0.023%. The long-run moments we consider in our estimation help us to identify the ρ estimates. This is

evidenced by the large difference between the ρ estimates of “Benchmark" and those of“No-LR", which

does not include long-run moments.

Finally, we estimate a substantial amount of signal dispersion across forecasters. Recall that forecast-

ers receive an i.i.d. draw of a signal about current quarterly house price growth, αi,T , which is normally

distributed with mean zero and signal precision (σΓ)´2. Our estimate for Γ of 1.274% indicates that a

forecaster with one-standard deviation higher signal predicts a 1.274% point higher quarterly house price

growth rate.

For simplicity, we fix the prior distribution of σ2
0 „ IG(2.82, 3.27) rather than estimate it. The mean and

volatility of the prior for house price growth volatility in 1996.Q1, the start date of the Zillow data, are set

equal to the observed mean and volatility of annual house price growth from 1975 to 1995 from the Freddie

Mac house price index data. We also fix γ at 0.002, which implies that 4% of total price growth volatility, on

average, is noise.12

4.2 Model Fit

Table 5 column (1) shows the 36 empirically-observed moments that the model aims to fit. Column (2)

reports the moments implied by the Benchmark model. Note that we only have 6 parameters to match

these 36 moments, so that a close fit is far from guaranteed.

12This can be interpreted as a dogmatic prior where the parameters of the beta distribution C and D are chosen to deliver a constant
γ. We explored a version of the model where we let the prior of γ0 to follow Beta distribution and use Metropolis-Hastings to draw
its posterior distribution. Such a specification leads to qualitative similar results but requires much longer computation time. We
therefore fix the γ.
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Table 5: Comparison of Individual-Level Model Fit

Panel A: CG Regression Moments

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

(1) (2) (3) (4) (5) (6)

CG a 1-Yr 3.828 3.080 3.201 3.086 2.063 2.956
(0.071) (0.061) (0.064) (0.061) (0.068) (0.058)

2-Yr 5.032 4.558 4.581 4.546 4.145 4.569
(0.064) (0.056) (0.057) (0.056) (0.066) (0.052)

3-Yr 5.253 4.991 5.003 4.986 4.827 4.947
(0.064) (0.058) (0.059) (0.059) (0.061) (0.053)

4-Yr 5.063 5.008 5.017 5.003 4.953 4.941
(0.078) (0.073) (0.074) (0.074) (0.069) (0.066)

CG b 1-Yr -0.219 0.086 -0.443 -0.312 -0.384 1.786
(0.043) (0.042) (0.024) (0.027) (0.018) (0.094)

2-Yr -0.514 -0.243 -0.413 -0.359 -0.555 0.033
(0.046) (0.079) (0.060) (0.064) (0.022) (0.332)

3-Yr -0.574 -0.365 -0.398 -0.421 -0.598 1.185
(0.051) (0.092) (0.085) (0.088) (0.025) (0.708)

4-Yr -0.418 -0.345 -0.365 -0.336 -0.601 -0.303
(0.063) (0.116) (0.110) (0.111) (0.033) (0.997)

Weighted Cost Function 205.0 137.8 121.5 128.5 975.4

Panel B: Sensitivity to Past House Price Growth

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Sensitivity to 1-Yr 0.186 0.261 0.255 0.277 0.779 0.221
Past 1Q (0.006) (0.005) (0.007) (0.006) (0.007) (0.001)
Growth 2-Yr 0.056 0.088 0.084 0.095 0.643 0.059

(0.005) (0.006) (0.007) (0.006) (0.007) (0.000)
3-Yr 0.019 0.038 0.036 0.040 0.527 0.017

(0.004) (0.006) (0.007) (0.007) (0.007) (0.000)
4-Yr 0.003 0.025 0.024 0.027 0.450 0.005

(0.004) (0.007) (0.007) (0.007) (0.006) (0.000)

Sensitivity to 1-Yr 0.127 0.236 0.231 0.252 0.668 0.195
Past 2Y (0.006) (0.005) (0.007) (0.007) (0.010) (0.002)
Growth 2-Yr 0.026 0.071 0.068 0.077 0.462 0.042

(0.005) (0.005) (0.006) (0.005) (0.008) (0.001)
3-Yr 0.006 0.036 0.034 0.039 0.376 0.012

(0.004) (0.006) (0.006) (0.006) (0.007) (0.000)
4-Yr -0.003 0.025 0.023 0.027 0.330 0.004

(0.004) (0.006) (0.006) (0.006) (0.007) (0.000)

Sensitivity to 1-Yr 0.131 0.231 0.226 0.248 0.632 0.181
Past 4Y (0.007) (0.006) (0.007) (0.007) (0.011) (0.003)
Growth 2-Yr 0.019 0.077 0.074 0.083 0.421 0.039

(0.005) (0.005) (0.006) (0.005) (0.009) (0.001)
3-Yr -0.003 0.044 0.042 0.046 0.342 0.012

(0.005) (0.006) (0.006) (0.006) (0.008) (0.000)
4-Yr -0.009 0.034 0.032 0.036 0.315 0.005

(0.004) (0.006) (0.007) (0.006) (0.007) (0.000)

Weighted Cost Function 116.3 109.4 131.3 1112.7 42.8
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Table 5: Comparison of Individual-Level Model Fit (cont.)

Panel C: Biases and MZ Regression Moments

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Forecast 1-Yr 3.593 2.876 2.889 2.793 1.803 3.007
Biases (%) (0.068) (0.063) (0.069) (0.065) (0.071) (0.062)

2-Yr 4.935 4.450 4.466 4.429 3.979 4.474
(0.060) (0.056) (0.057) (0.056) (0.069) (0.051)

3-Yr 5.240 4.994 5.006 4.989 4.838 4.961
(0.060) (0.057) (0.058) (0.058) (0.064) (0.051)

4-Yr 5.072 5.011 5.020 5.004 4.990 4.942
(0.064) (0.064) (0.065) (0.064) (0.063) (0.057)

Inverse MZ a 1-Yr 2.234 2.513 2.528 2.362 1.147 2.786
(0.063) (0.053) (0.070) (0.064) (0.111) (0.029)

2-Yr 3.227 2.956 2.964 2.953 2.459 3.236
(0.077) (0.069) (0.075) (0.071) (0.136) (0.011)

3-Yr 3.511 2.863 2.876 2.897 1.947 3.233
(0.075) (0.081) (0.086) (0.082) (0.130) (0.004)

4-Yr 3.702 2.905 2.905 2.907 1.320 3.253
(0.071) (0.084) (0.088) (0.085) (0.116) (0.002)

Inverse MZ b 1-Yr 0.124 0.203 0.199 0.237 0.564 0.143
(0.008) (0.006) (0.008) (0.008) (0.013) (0.003)

2-Yr -0.043 0.053 0.050 0.056 0.177 0.014
(0.009) (0.008) (0.009) (0.008) (0.016) (0.001)

3-Yr -0.056 0.048 0.045 0.045 0.178 0.007
(0.008) (0.009) (0.010) (0.009) (0.015) (0.000)

4-Yr -0.064 0.038 0.037 0.038 0.233 0.004
(0.008) (0.009) (0.010) (0.009) (0.013) (0.000)

Weighted Cost Function 97.4 95.2 100.8 278.0 66.7

Panel D: Forecaster Dispersion Moments

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Forecaster 1-Yr 6.098 2.841 6.282 4.669 6.065 ´´

Dispersion (%) 2-Yr 4.834 3.122 3.726 3.283 4.169 ´´

3-Yr 3.519 3.507 3.941 3.579 3.345 ´´

4-Yr 2.970 3.711 4.135 3.795 2.963 ´´

Weighted Cost Function 714.7 359.7 482.7 109.9 ´´

Panel E: Total Weighted Cost Function

Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Total Weighted Cost Function 1133.3 702.1 836.3 1629.0 ´´

Coefficient (weighted) 418.7 342.4 353.6 1519.2 1084.9
Dispersion (weighted) 714.7 359.7 482.7 109.9 ´´

Notes: This table shows the comparison of individual-level fit of different models. Column 1 shows the results calcu-
lated from the actual data. Columns 2 to 6 show the results calculated from N = 100 “forecasters" simulated from
different models. The coefficients shown in Panel A to Panel C are estimated using individual forecasts data (actual
or simulated) in panel regressions based on Equation (1) to Equation (4). Standard errors (without clustering) are re-
ported in parentheses. Panel D shows the dispersion moments. In Panel E, the "Total Weighted Cost Function" are
calculated as follows: for the coefficients ("Coefficient")

ř |Model Implied Coefficients´Actual Coefficients|

Actual Coefficient Standard Errors , and for dispersion
ř

|Model-implied Dispersion ´ Actual Dispersion| ˆ ω, where the weight ω =
řn

i=1
1

actual coefficient standard errors /n.
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The main result of the paper is that the rational learning model goes a long way in explaining the key

empirical moments we documented. This includes many moments commonly interpreted as providing

prima facie evidence of deviations from rationality, such as non-trivial forecast bias, non-zero slope estimates

in the CG regressions, slope coefficients in the (inverse) MZ regressions different from one, and non-trivial

positive slope coefficients of forecasts on lagged realizations.

Importantly, Panel A shows that the model generates a negative slope of the individual CG regressions

at horizons of 2, 3, and 4 years. The negative slope is usually interpreted as evidence that forecasters “over-

react" to news that leads them to update their forecast. We discuss an alternative interpretation of this

result in the context of our learning model below. We note that the CG slope is too small in absolute value,

compared to the data, especially at the one year horizons. The one-year CG slope will be a moment that

can be matched better once behavioral frictions are introduced.

Panel B shows that forecast sensitivity to lagged realized HPA in the model is positive, declining in

the forecast horizon, and declining in the look-back window over which the regressor is computed. All

of these are also features of the data. The long-run forecasts become essentially insensitive to past house

price growth in both model and data. Hence the model produces the fact that forecasters are imputing “too

much" mean-reversion into HPA.

Panel C shows that our learning model produces large average in-sample forecast biases that grow with

the horizon, consistent with the data. It also produces forecasts whose sensitivity to contemporaneous

realized HPA (inverse MZ slope) is close to zero (and far way from one), consistent with the data .

Panel D shows that the model does a reasonably good job matching the level of forecast dispersion,

especially at longer horizons of 2–4 years. The benchmark model understates the forecast dispersion at

short horizons. Much more on this below.

Panel E shows that the distance between model and data, as captured by the cost function, attains a

value of 1,133, a reference point for other model versions discussed below.

Figure 4 plots the estimated model-implied consensus forecast for house price growth in the time series

in panel (a). It looks similar to the figure in the introduction, which was based on empirical forecasts, since

the model fits the data well. Panel (b) shows the same graph but for an individual forecaster, one of the 100

forecasters we have in our model simulation and estimation. The individual forecasts are naturally more

volatile than the consensus. Panel (c) shows all 100 forecasters’ forecasts in the model in grey, along with

the consensus forecast in blue. The width of the grey area illustrate that the model is capable of generating

substantial dispersion in forecasts.
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Figure 4: Model Implied Forecasts: Consensus & Individuals

(a) Model-Implied Consensus Forecast

(b) Model-implied Individual Forecast

(c) Model Implied 100 Individual Forecasts

Notes: Benchmark Rational Learning Model

Table A2 reports 24 residual standard error moments that are not included in the estimation. They mea-

sure the volatility of the regression residuals, generated both from time-series and cross-sectional volatility.

They provide additional opportunities for model validation. The model fits these residual standard error
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moments quite well, confirming that the model not only matches the mean of empirical moments well, but

also the variation of these moments, both over time and across forecasters.

4.3 Individual versus Consensus CG Regression Slopes

Interestingly, the benchmark model also fits well the same moments obtained from consensus forecasts

instead of individual forecasts (in both model and data). Table 6 shows the fit for the CG regression mo-

ments.13 The moments in this table were not used in the estimation. The CG regression slopes are, if

anything, positive when estimated on consensus data. We note the large standard errors on the consensus

CG slop estimates in both model and data.

Table 6: Comparison of Consensus-Level Model Fit of CG Moments

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

(1) (2) (3) (4) (5) (6)

CG a 1-Yr 3.652 2.643 2.634 2.600 1.857 2.953
(0.622) (0.539) (0.542) (0.523) (0.634) (0.597)

2-Yr 5.017 4.501 4.519 4.480 4.205 4.565
(0.557) (0.517) (0.519) (0.521) (0.645) (0.530)

3-Yr 5.160 4.985 5.001 5.023 4.926 4.920
(0.602) (0.522) (0.523) (0.529) (0.573) (0.541)

4-Yr 5.275 4.975 4.975 4.729 5.002 4.932
(0.793) (0.664) (0.664) (0.670) (0.658) (0.692)

CG b 1-Yr 1.808 2.287 2.344 1.770 0.239 1.809
(0.971) (0.781) (0.797) (0.627) (0.388) (0.965)

2-Yr -0.563 0.942 0.910 0.699 -0.774 0.157
(2.150) (2.516) (2.613) (2.223) (0.557) (3.770)

3-Yr -0.997 0.068 -0.285 -3.041 -1.445 6.996
(3.369) (5.830) (5.973) (7.634) (0.775) (15.285)

4-Yr 3.571 2.890 3.618 15.753 -1.346 3.952
(5.745) (8.200) (8.264) (12.060) (0.956) (50.111)

Weighted Cost Function 19.5 17.7 37.1 32.1 30.5

Notes: This table shows the comparison of consensus-level fit of CG moments across different models. Consen-
sus forecasts are calculated as the average forecasts across all forecasters. Column 1 shows the results calcu-
lated from the actual data. Columns 2 to 6 show the results calculated from N = 100 “forecasters" simulated
from different models. Coefficients are estimated using consensus-level forecasts based on time series regressions.
Standard errors (without clustering) are reported in parentheses. "Weighted Cost Function" for the coefficients is
ř |Model Implied Coefficients´Actual Coefficients|

Actual Coefficient Standard Errors .

The sign switch between bcg at the individual level (negative) and at the consensus level (positive) is

found for many other macro-economic and financial survey data and is the topic of the paper by Bordalo

et al. (2020). They argue that the overreaction to news at the individual level and the underreaction to news

at the consensus level can be explained in a model where forecasters receive heterogeneous signals and have

diagnostic expectations. The positive sign at the consensus level comes from aggregating forecast revisions

13These are the only empirical moments that differ when estimated on individual versus consensus data.
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among forecasters with heterogeneous signals, which shrinks the average revisions towards zero. The lack

of reaction to other forecasters’ signals creates rigidity in the consensus belief and a positive consensus

coefficient. This feature arises naturally in Bayesian settings with signal dispersion, including ours.

They argue that the negative sign at the individual level is harder to generate, and it arises from di-

agnostic expectations in their setting. Our paper shows that diagnostic expectations are not necessary to

generate the negative bcg at the individual level. In our rational learning model, the negative slope in the

individual CG regressions is not an actual overreaction to news. Agents are learning about the long-run

mean of HPA in our setting, unlike in Bordalo et al. (2020). When agents receive positive news that leads

them to revise their forecast upward, they optimally move their forecast up so much that it generates a

positive forecast error. Given their deep uncertainty about the prior mean (high σµ), this “over-weighting"

of the signal is optimal. Hence, learning about the long-run mean HPA in the presence of substantial pa-

rameter uncertainty generates a negative relationship between forecast error and forecast revision. More

on this in the next section.

Figure 5 shows scatter plots of forecast revisions (x-axis) against forecast errors (y-axis) in the actual data

(left panel) and in the benchmark model (right panel). The colored dots represent individual forecasters

(organized by year) and the black dots represent the consensus (one dot per period). The dashed line

shows the negative relationship based on the individual data points, while the solid black line shows the

positive (and much more imprecisely estimated) relationship based on the consensus forecast.
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Figure 5: Individual versus Consensus CG Regression Slopes of 4-Year Ahead Forecasts

(a) Actual (b) Benchmark Model

Notes: Black dots show the consensus forecasts at different periods, dashed lines show the individual CG regressions, and solid lines show the consensus
CG regressions.

4.4 Understanding the Main Economic Forces

Two key economic forces drive our model’s forecasts at the individual level and across forecasters. We

discuss these economic forces and demonstrate their presence in our model through simulations.

4.4.1 Learning About the Long-Run Mean and Individual Forecasts

Individual forecasters in our model do not know the true value of long-run house price growth (µ), and

must learn about it by combining prior information and signals using Bayes’ Law. This learning about long-

run mean growth generates patterns that appear anomalous from the perspective of a rational expectations

model. The magnitude of σµ, which governs the precision of forecasters’ prior beliefs, determines the

volatility of their forecasts. This volatility in turn prominently affects the CG coefficients and the sensitivity

of forecasts to past realized growth.

If forecasters have more diffuse priors (larger σµ), they assign more weight to their signals when making

forecasts. In this case, this “modest" forecaster’s forecasts may appear excessively volatile or overreacting

to news about house price growth. An econometrician would observe more negative individual CG coef-

ficients and a stronger response of the forecast to past growth. Conversely, more “dogmatic" forecasters

with tighter prior beliefs (smaller σµ) assign less weight to data in their forecasts. Consequently, their fore-
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cast revisions do not predict future forecast errors, and their response to past realized growth appears too

sluggish compared to the observed auto-correlation in realized house price growth. In the extreme case

where forecasters think they know the exact underlying value of the long-run house price growth (σµ = 0),

they do not revise their long-run forecasts at all, and the sensitivity of long-run forecasts to past returns is

zero. When their beliefs are consistent with the true parameter values, we are back to the Full Information

Rational Expectation (FIRE) case.

Figure 6 demonstrates this mechanism based on model simulations for different values of σµ, reported

on the x-axis. On the y-axes, it plots the values of the individual CG coefficients (Panel a), the sensitivity of

forecast to past 1Q growth (Panel b) and to past 4Y growth (Panel c). As the value of σµ becomes smaller

than the benchmark value, the CG coefficients gradually increase, and become positive around σµ = 0.15,

mimicking the forecasts of a “dogmatic" forecaster. Conversely, the individual CG regression slope becomes

more negative as σµ becomes larger, i.e., as the forecaster becomes more “modest". The effects on forecast-

ers’ sensitivity to past realized growth are the opposite. As σµ increases, forecast sensitivity to past realized

growth increases. Notably, the effect of σµ is the largest on the long-run forecasts and long-run CG slopes,

confirming our “learning about the long-run mean" mechanism.

Figure 6 also reveals how the two sets of empirical moments, individual CG coefficients and the sensitiv-

ity to past growth, help identify the parameter σµ in our model.14 Forecasters in the data exhibit negative

CG coefficients, and a substantial positive short run but zero long-run response to past realized growth.

These moments point towards an intermediate value for σµ. A higher value than 0.25 would help to bring

the model closer to the data in terms of the individual CG slopes at horizons 2-4, but would hurt the model’s

fit for the sensitivity of 2–4-year-ahead forecasts to lagged HPA. The resulting intermediate value of 0.22

implies a high degree of prior uncertainty about long-run HPA. This is a world in which learning about

long-run growth matters (far from the dogmatic case), and new data can really sway forecasts.

Our learning environment is similar to Collin-Dufresne, Johannes and Lochstoer (2016), where learning

about the long-run mean in a multi-dimensional setting leads to “excessive" volatility in the subjective

expectations of forecasters. Their model does not consider the implications for the CG regression nor the

implications for the term structure of sensitivities to past realized house price growth.

4.4.2 Uncertain vs. Biased Initial Beliefs

The economic mechanism behind our model is different from the one proposed in Farmer, Nakamura and

Steinsson (2023), where forecasters have biased prior beliefs. Specifically, when prior beliefs about the per-

14Appendix E.1 provides a more formal discussion of parameter identification. Inspired by Andrews, Gentzkow and Shapiro (2017),
it varies each parameter by 20% up and down around its point estimate, and shows his this variation affects each of the moments used
in estimation.
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Figure 6: Impact of Forecaster Conviction (σµ) on Individual Forecasts
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(a) Impact of σµ on CG-b coefficients
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Notes: The graph varies the parameter σµ, holding all other parameters fixed at the benchmark model’s values.
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sistence parameter ρ are upward-biased, it turns out that their model can generate “anomalous" empirical

moments, including the negative individual CG slopes.15 Our model does not require forecasters’ beliefs to

be biased. Instead, the forecasters in our model are merely uncertain about the long-run mean of house price

growth. Even though biased beliefs (about persistence) and uncertain beliefs (about the long-run mean) can

both generate negative individual CG slopes, only uncertain beliefs can simultaneously match the forecast

sensitivity to past realized house price growth.

To highlight the role of biased beliefs about persistence, we vary the prior mean µρ from 0.35 to 0.95,

holding all other parameters at their benchmark estimates. Based on different priors, we let the forecasters

learn from the HPA data and form their forecasts for future HPA. Panel (a) of Figure 7 shows the individual

CG slope while panels (b) and (c) show the sensitivity of the forecast to past realized HPA.

Higher values of µρ result in more negative individual CG slopes.16 The decrease in CG slopes is most

prominent at the 1-year horizon. When µρ is around 0.85, the CG slopes are closer to the data than at the

benchmark estimate of µρ = 0.66, even though the overall model fit deteriorates significantly.

The main reason for the worse fit arises from the model’s prediction for the forecast sensitivity to past

realized house price growth. The bottom two panels demonstrate that these sensitivities increase in the

value of µρ. As µρ increases, forecasters become much more sensitive to past realized price growth, not

only relative to the benchmark model but also relative to the data. If forecasters’ prior beliefs about µρ are

high, their posterior beliefs about ρ are also higher, and they consider house price growth to be persistent.

Their forecasts become more sensitive to past realized growth, and in fact overly sensitive.

To demonstrate that an upwardly-biased prior belief about persistence (µρ ą ρ) generates over-extrapolative

forecasts—as opposed to the under-extrapolative forecasts that we see in the Pulsenomics survey data,—

we simulate a house price growth process from (5) and (6), setting the true persistence ρ = 0.72. The

correlations between current realized price growth and the past 1-quarter, 2-year and 4-year price growth,

together with their two-standard error bands, are shown as the blue bars in Figure 8. Next, we generate

forecasts based on prior µρ equal to 0.92 and 0.50, representing upward- and downward-biased priors, re-

spectively. We set σρ = 0.02, so that the prior is tight (as estimated in the benchmark model). We set σµ = 0

and µµ = µ = 0.98, in order to shut down the uncertainty about the long-run mean channel and endow

forecasters with an unbiased prior about the long-run mean. The resulting forecast sensitivities to realized

price growth at different horizons are plotted as the red bars (upward-biased, µρ = 0.92) and green bars

(downward-biased, µρ = 0.50), respectively. The upward-biased prior generates forecasts that are overly

15This is a new result since their paper does not consider individual forecaster moments and instead focuses on the consensus
forecast, and hence the positive slope of the CG regression obtained from consensus data.

16Higher values for the prior mean of µρ, such as values above 0.9, also result in higher values for the posterior mean, and a higher
upward-biased estimate assuming the true coefficient ρ takes on some intermediate value around 0.7.
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Figure 7: Impact of Prior Belief about the Persistence Parameter (µρ) on Individual Forecasts
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sensitivity to past house price growth, i.e., over-extrapolation. Conversely, if forecasters have a downward-

biased prior about the persistence parameter, their forecasts under-extrapolate (and they will under-react

leading to positive individual CG slopes). For comparison, we also generate forecasts solely based on un-
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Figure 7: Impact of Prior Belief about the Persistence Parameter (µρ) on Individual Forecasts (cont.)
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Notes: The graph varies the parameter µρ, holding all other parameters fixed at the benchmark model’s values.

certainty about the long-run mean channel, in which forecasters have unbiased but uncertain priors about

the long-run mean with µµ = µ = 0.98 and σµ = 0.22 (as estimated in the benchmark model), but know the

true persistence parameter without uncertainty (σρ = 0, µρ = ρ = 0.72). The orange bars in Figure 8 show

that the uncertainty about the long-run mean channel does not generate over-extrapolative expectations,

but sensitivity to lagged HPA that is in line with the survey data.

4.4.3 Prior and Signal Heterogeneity and Forecast Dispersion

The second set of key targets for our model is the cross-sectional dispersion in forecasts. Both heterogeneity

in forecasters’ prior beliefs (governed by λ) and heterogeneity in their signals (governed by Γ) generate

forecast dispersion. Our model reveals how these two different forces affect both the level and the term

structure of the forecast dispersion, adding new insight to the previous literature (e.g., Patton and Timmer-

mann, 2010).

First, the impact of signal heterogeneity (Γ) on the level of forecast dispersion is limited in a rational

learning model. When forecasters are rational and aware that their signals contain a lot of noise (high

Γ = Γ), they under-weight the signal when forming expectations following Bayes’ Rule. An increase in

Γ initially increases forecast dispersion due to learning from data. However, its impact diminishes as Γ

increases further as forecasters discount their own signal when they realize that Γ is high.

Panel (a) of Figure 9 confirms this mechanism. It plots forecast dispersion, the cross-sectional variance

of the forecast, for different values of the parameter Γ. The declining marginal impact of higher signal

dispersion is visible at all horizons, but is especially strong for the 1-year forecast dispersion which displays
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Figure 8: Uncertain Priors vs. Biased Priors — Differential Impacts on Sensitivity to Past House Price
Growth
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Notes: This graph compares the impacts of uncertainty about the long-run mean (µ) with biased priors about the persis-
tence (ρ) with respect to the resulting forecasts’ correlation with past realized growth. The house price growth process
is simulated based on equations (5) and (6), with parameters µ = 0.9774, ρ = 0.7155, σ2 = 0.5897, and γ = 0.02. As the
benchmark, the blue bars show the correlations between the (simulated) realized price growth and the past 1-quarter,
2-year and 4-year price growth. The orange bars show the correlations of forecasts solely based on uncertainty about
the long-run mean mechanism with parameter values of µµ = µ = 0.98, σµ = 0.22, µρ = ρ = 0.72, and σρ = 0. The
green and red bars show the correlations of forecasts based on biased priors with downward-biased (µρ = 0.50) and
upward-biased (µρ = 0.92) priors about the persistence, respectively. In the biased prior case, the other parameters are
set to: σρ = 0.02, µµ = µ = 0.98, and σµ = 0. Black whiskers show the one standard error above and below the mean
estimates from panel regressions.

a hump shape. At low levels of Γ, increases in Γ lower the slope of the term structure of forecast dispersion,

while beyond the benchmark value of Γ = 1.25, increases in Γ result in a steeper term structure of forecast

dispersion.

Second, the heterogeneity in forecasters’ prior beliefs about the long-run mean (λ) has a first-order

impact on both the level and the slope of the term structure of forecaster dispersion. A higher value of λ

increases the level of forecast dispersion at all horizons. It does so more for the long-run forecasts, leading

to an upward-sloping term structure of forecast dispersion. Panel (b) of Figure 9 confirms this effect given

our benchmark estimate of σµ = 0.218.

Finally, the effect of λ on forecast dispersion should be jointly considered with the level of forecaster

conviction of their prior beliefs (σµ). For more “modest" forecasters who place a lower weight on their prior

beliefs in their expectation formation process (high σµ), the impact of λ on the level of dispersion is limited.

Panel (c) of Figure 9 shows that, when we increase σµ to 0.5, the increase in dispersion is much smaller

when λ increases. We also notice a much lower level of forecast dispersion at all horizons. These results

help explain the intermediate value for σµ found by the estimation routine.
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Figure 9: Impact of Signal Dispersion (Γ) and Prior Heterogeneity (λ) on Forecast Dispersion
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Notes: Panel (a) varies the signal variance parameter Γ = Γ, holding all other parameters fixed at the benchmark
model’s values. Panel (b) varies the parameter λ, which governs the dispersion in the prior about the long-run mean
house price growth rate, holding all other parameters fixed at the benchmark model’s values. Panel (c) redoes panel
(b) for a value of σµ = 0.5, higher than the benchmark value of 0.218.
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In sum, generating enough forecast dispersion requires enough dispersion in the prior (a high value

of λ) as well as a modest amount of uncertainty about the long-run mean (a low enough value of σµ), as

well as enough signal dispersion Γ. There are limits to how much forecast dispersion can be generated by

cranking up signal dispersion when investors are rational (know the true signal noise).

4.4.4 The Speed of Learning and the Degrees of Parameter Uncertainty

Our key mechanism, “uncertainty about the long-run mean" relies on the premise that forecasters’ learning

process is slow. We examine how slow this process is through simulation.

We simulate 100 years of house price growth data from (5) and (6) with µ = 0.9774, ρ = 0.7155, σ2 =

0.5897, and γ = 0.02. We set these parameter values based on their end-of-sample posterior mean estimates

in the benchmark model. Subsequently, we generate HPA forecasts based on our rational learning model

with upward- (Panel a), downward- (Panel b) and un-biased (Panel c) priors about µ, all with the same

level of uncertainty of σµ = 0.218. The resulting posterior parameter estimates are plotted in Figure 10.

Across different values of the prior, parameter learning shrinks the uncertainty about the parameter µ, as

indicated by the narrower bands (5% and 95% percentile) around the posterior estimates as time goes by.

Furthermore, the learning is indeed slow; after 100 years of learning, forecasters’ still revise their posterior

estimates visibly, although their estimates have become much closer to the true value.

We conduct a similar simulation exercise on the learning of ρ, with a tight prior σρ = 0.023, consistent

with our benchmark estimate. As Figure 11 shows, the speed of learning about ρ is even slower than

the learning about µ, due to the tighter priors. Indeed, after 100 years of learning, forecasters’ posterior

estimates have only moved about 0.05 closer to the true value.

Our benchmark model estimation indicates that the forecasters in the Pulsenomics survey have downward-

biased priors about ρ on average (corresponding to panel b in Figure 11). Furthermore, these forecasters are

quite certain about their prior estimate. This is the key feature that leads to the salient pattern of “pulling

forecasts back to the mean", highlighted in Figure 1. In other words, the forecasters believe that house price

growth is more “transitory" than it actually is.

Overall, the results in Figure 10 and 11 show that learning about the parameters is indeed slow, and more

so when forecasters have tight priors. Furthermore, forecasters in our sample exhibit more “modest" prior

beliefs about the long-run mean than about the persistence. This observation motivates us to investigate

the impact of behavioral biases on the short-term versus the long-term forecasts, which we discuss next.
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Figure 10: Posterior Beliefs about the Long-Run Mean (µ) with Different Priors Based on Simulated Data
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(a) Upward-Biased Prior
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(b) Downward-Biased Prior
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(c) Unbiased Prior

Notes: This figure shows the evolution of posterior beliefs about the long-run mean (µ) over time. The house price
growth process is simulated based on equations (5) and (6), with parameters µ = 0.9774, ρ = 0.7155, σ2 = 0.5897
and γ = 0.02. Panel (a) (b) and (c) show the evolution of posterior estimates of µ with upward-biased (µµ = 1.5),
downward-biased (µµ = 0.5), and unbiased priors (µµ = µ = 0.9774), respectively with the The uncertainty σµ = 0.218.
Prior beliefs about the persistence is unbiased µρ = ρ = 0.7155 with σρ = 0.02, consistent with the benchmark model
estimates. The black lines show the mean of the posterior distribution. The grey dashed lines indicate the 5% and 95%
percentiles of the posterior estimates.
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Figure 11: Posterior Beliefs about the Persistence ρ with Simulated Data
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Notes: This figure shows the evolution of posterior beliefs about the persistence ρ over time. A house price growth
process is simulated based on equations (5) and (6), with parameters µ = 0.9774, ρ = 0.7155, σ2 = 0.5897, and γ =
0.02. Panel (a) (b) and (c) show the evolution of posterior beliefs with upward-biased (µρ = 0.96), downward-biased
(µρ = 0.48), and unbiased priors (µρ = ρ = 0.7155) about the persistence ρ, respectively. Prior about the long-run mean
is unbiased: µµ = µ = 0.9774. Other parameters of the prior distribution are set to values: σµ = 0.218 and σρ = 0.02
(consistent with the benchmark model). The black lines show the mean of the posterior distribution. The grey dashed
lines are the 5% and 95% percentiles of the posterior distribution.
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5 The Impact of Behavioral Biases

We now enrich the learning model with one of two different behavioral frictions and show that these fric-

tions help to further improve the fit along two important dimensions: the short-run CG regressions slope

and the short-run cross-sectional forecast dispersion.

5.1 Overconfidence

We allow for a difference in the true and the perceived signal variance, modulated by the parameter ϕ. The

rational learning benchmark, where the two are the same, is ϕ = 1. When ϕ ą 1, the true signal variance is

higher than the perceived one. In this case, forecasters are over-confident about the informational content

of the signal. The opposite is true for ϕ ă 1.

Panel (a) of Figure 12 shows the model-implied CG slope as we change the value of ϕ. As ϕ increases

from 0.25 (under-confidence) to 3 (over-confidence), the CG slope based on 1-year forecasts changes dra-

matically from +0.9 to -0.5. On the other hand, the CG slopes based on forecasts of longer horizons do not

change much at all. Forecasts of 3-4 year still exhibit negative CG slopes, due solely to forecasters learning

about the long-run mean. This result is intuitive. A large ϕ should lead to a more negative CG regression

slope as over-confident forecasters revise their forecasts too much compared to the true information content

of their signals. Furthermore, the effect of ϕ should be most visible in the short-term forecasts, as private

signals mostly concern the current period. After all, everybody agrees on the true, past house price growth,

limiting the potency of over-confidence to affect longer-run forecasts.

Panel (b) of Figure 12 demonstrates how the cross-sectional forecast variance changes with ϕ. As ϕ

increases, forecast dispersion of all horizon increases. However, the 1-year forecast dispersion displays by

far the strongest impact . Intuitively, overconfidence should increase the short-term forecast dispersion.

As we discussed in Section 4.4.3, signal heterogeneity has limited impact on forecast dispersion because

rational forecasters discount their signals when forming forecasts if their signals contain a lot of noise.

However, when forecasters over-estimate the precision of their signals, they discount the signal less than

they should. In this setting, higher signal heterogeneity (Γ) does translate into higher forecast dispersion.

5.2 Diagnostic Expectations

We allow forecasters to display diagnostic expectations, modulated by the behavioral filter parameter θ as

proposed in Bordalo et al. (2020). Figure 13 shows how the individual CG regression slope (Panel a) and

the cross-sectional forecast variance (Panel b) are affected by changing θ up or down by 0.2 increments. The

rational learning benchmark model sets θ = 0.
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Figure 12: The Impact of Overconfidence (ϕ)
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(b) Impact of ϕ on forecast dispersion

Notes: The model with overconfidence introduces a wedge between the objective signal variance Γ and the subjec-
tive variance Γ. The parameter ϕ controls the ratio of the former to the latter. All other parameters are kept at their
benchmark values.

The diagnostic filter affects short forecasting horizons (1-to-2 years) more than long horizons (3-4 years).

This is intuitive given that the behavioral filter affects the dynamics of the latent state and the latent state

has a modest half-life.

While the rational learning model can generate a negative slope coefficient in the 1-year CG regression,

at least for some combinations of parameters (different from the benchmark model), the distance between

the one-year CG b coefficient in the benchmark model and the data is substantial. Consistent with the

intuition in Bordalo et al. (2020), diagnostic expectations can help generate a strongly negative CG short-

horizon slope coefficient. In fact, the best fit for the one-year CG slope and cross-sectional forecast variance

are obtained for a value around θ = 0.8, close to the values proposed by Bordalo et al. (2020). Diagnostic
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expectations help resolve the tension between short-run and long-run forecast dispersion. Learning in the

presence of uncertainty about the long-run mean growth rate µ generates high long-run forecast dispersion,

while diagnostic expectations helps generate the high short-run forecast dispersion.

Figure 13: The Impact of Diagnostic Expectations (θ)
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Notes: Based on the benchmark model.

5.3 The Impact of Behavioral Biases on Overall Model Fit

Figure 14 compares the cost function values for different levels of overconfidence (panel a) or diagnostic

expectations (panel b). Incorporating either overconfidence (ϕ ą 1) or a diagnostic filter (θ ą 0) improves

the model fit, i.e., reduces the total cost function. Specifically, an overconfidence level at ϕ = 2.25 and a

diagnostic expectation of θ = 0.8 can reduce the cost function by 38% and 26%, respectively, bringing our

model significantly closer to the data.
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Columns 3 and 4 of Table 5 show that the reduction in total costs comes from both the reduction in

regression coefficient estimates (first 32 moments), and the forecast dispersion (4 moments). The improve-

ment comes mainly from the short-term CG slopes and short-term dispersion. Figure 14, which also de-

composes the total cost functions into the contributions from each forecast horizon, shows that nearly the

entire improvement comes from the one-year-horizon forecasts. The long-run moments, on the other hand,

are not much impacted by either behavioral frictions.

These results highlight the importance of having a rich enough rational benchmark model when making

inference on the rationality of subjective forecasts. With the rational learning benchmark, we can make

quantitative inference on how much and where behavioral biases play a role in shaping expectations. When

added to a full-fledged learning model with uncertainty about the long-run mean, either overconfidence

or diagnostic expectations are very helpful to generate realistic short-run CG coefficients and short-run

forecast dispersion. These biases have little impact on the longer-run moments, which are successfully

accounted for by learning dynamics.
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Figure 14: The Impact of Behavioral Biases on Overall Model Fit
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Notes: The height of the bars shows the overall cost function value, the goodness of fit of the 36 moments in Table 5.
It breaks down this cost function into the contribution form each of the four different forecast horizons. Panel (a) is
for various values of the overconfidence parameter ϕ, panel (b) for the diagnostic expectations parameter θ. All other
parameters are held at their benchmark model’s values.

6 Assessing Importance of Term Structure and Cross-sectional Data

Most standard survey data sources contain limited information on the term structure of forecasts and/or

limited information on the cross-section of forecasters. Indeed, the typical survey data would contain only

a one-period ahead consensus forecast. This section discusses the importance of term structure and cross-

sectional information for parameter inference, and hence for the interpretation of forecast data.
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6.1 Benchmark Model Estimation without Term Structure

We consider a special case of the benchmark model where we have no term structure of forecasts. We only

have access to the one-year ahead forecast (h = 1). The estimation of this model involves 9 rather than 36

moments. Its purpose is to illustrate the role of term structure of forecaster data.

Parameter Estimates The parameter estimates are in the column “No LR." of Table 4. This model esti-

mates a somewhat lower prior mean for house price growth (µµ), with somewhat less dispersion across

forecasters (λ), and somewhat less uncertainty (σµ). However, the main difference is the lower estimate for

the prior mean of the persistence parameter (µρ = 0.54 rather than 0.66) with a much larger prior standard

deviation (σρ = 0.182 rather than 0.023). Finally, this model estimates a similar amount of signal dispersion

across forecasters than in the benchmark model. This shows that the parameter estimates are significantly

different when term structure information is omitted or not available. Put differently, the lack of long-run

forecasts can lead to severely biased inference on parameters.

Model Fit The fifth column of Table 5 shows the resulting model fit for the model without long-run

forecast moments (column “No LR."). It reports all model-implied moments even though only the 1-year

moments are used in estimation. The overall fit for all 36 moments is much worse than in the benchmark

model; the distance between the model-implied and observed moments rises from 1,133 to 1,629. This

shows that there is important information in long-horizon forecasts that does not naturally get captured

when estimating the model on one-year data and studying its implications for longer forecast horizons.

This model does an excellent job fitting the forecast dispersion across horizons, and a good job fitting

the individual CG moments across horizons. However, this comes at the expense of a much worse fit for

the sensitivity of forecasts to lagged house price growth, which the model severely overstates.

This excess sensitivity arises from the much higher value for the posterior persistence parameter in the

no LR model.17 In turn, this high posterior estimate results from the much higher prior uncertainty about

the persistence parameter (σρ is 8 times higher than in the benchmark).18 Intuitively, when agents are more

uncertain about the persistence parameter, they are likely to revise it more strongly. In the benchmark

model, the prior on persistence is fairly tight, limiting the role for learning about ρ.

17Indeed, the value of the posterior persistence parameter in the benchmark model (Figure A2 panel B) is much lower than the
posterior persistence parameter in the no LR model (Figure A3 panel B).

18The prior mean estimate (µρ) is actually lower than in the benchmark, but this effect gets overpowered by the uncertainty channel.
Panel (d) of Figure A4 and A5 In Appendix E.1 provide quantitative analysis to compare the impact of µρ and σρ on the sensitivity of
forecasts to lagged house price growth.
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6.2 The Impact of Forecaster Heterogeneity

We consider a second special case of the benchmark model where instead of using the individual forecaster

panel data, we only use the consensus forecast data, i.e., the average across the forecasters. This case serves

as a tool for explaining the role of forecaster heterogeneity. It allows us to speak to the literature that studies

individual versus consensus forecasts (e.g., Bordalo et al., 2020). We use 32 moments in the estimation of

this model. Compared to the benchmark model, we drop the four moments that measure forecast disper-

sion (since there is no dispersion in this model). These 32 moments are the same as in the benchmark model,

except that they are based on consensus forecasts rather than individual forecasts. This only makes a dif-

ference for the CG slope, which–as we pointed out–changes sign when going from individual to aggregate

forecasts.

Parameter Estimates Table 4 shows the parameter estimates from the simpler model estimated on con-

sensus data in the column labeled “No Disp". The main difference with the benchmark model is the much

lower estimate for prior uncertainty about the long-run mean house price growth rate, σµ. The latter is 0.04

in the No Disp model compared to 0.22 in the benchmark model.

Section 4 extensively discussed the crucial role of σµ. Without a high enough value for σµ, beliefs about

mean house price growth become too “dogmatic." These parameter values effectively shut down the “learn-

ing about the long-run mean" channel. This channel is the key driver of the negative CG regression slopes

at horizons h = 2 ´ 4.

Model Fit Table 5 shows the resulting model fit for the model without investor heterogeneity (column

“No Disp."). The overall fit for the 36 moments deteriorates dramatically from 1,133 to 3,260.

Not surprisingly, the model produces no cross-sectional forecast dispersion. As anticipated, the model

without forecaster dispersion can also not produce negative individual CG slopes because of its low value

for σµ. Rather the model implies similar CG slopes at the individual and the consensus level. Since the latter

are positive in the data, and well-matched (see Table 6), the No Disp model implies the wrong sign for the

individual CG slopes. The remaining moments, including the sensitivity of forecasts to lagged house price

growth, are matched reasonably well.

In sum, having access to panel survey data is a distinct advantage when it comes to identifying the

important role of learning about the long-run mean, as revealed by the negative sign of the long-run CG

regression slopes.
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7 Conclusion

We argue that a rational learning model with parameter uncertainty about the long-run mean and forecaster

heterogeneity goes a long way towards accounting for the features of forecast data traditionally associated

with behavioral biases. We do so in the context of U.S. house price forecasts, exploiting a unique panel data

set of individual-level forecasts that contain a term structure of forecasts. Theories of behavioral biases such

as overconfidence and diagnostic expectations are useful complements that help the model account for the

high degree of over-reaction and dispersion in short-horizon forecasts.

Future work could explore additional heterogeneity informed by observable forecaster characteristics.

Estimating our model on macro-economic and financial survey data is another exciting avenue for future

work.
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Appendix

A The Timing of Pusenomics Survey

The Pulsenomics Survey asks the its participants to make forecasts for the end-of-year price growth of

different forecasting horizons at quarterly frequency. We therefore design the model and notation to fully

take advantage of the survey structure.

First, define the log price growth, or log price returns

yT,h = log
(

PT
PT´h

)

where T denotes the date at which the end price is collected and h the holding period for the price return.

As a background of the Paulsenomics Survey, the survey for each quarter is conducted in the middle

of the second month of each quarter. For example, the survey for 2020-Q1 is conducted in the middle

of February. Zillow Home Value Index (ZHVI) for a given month is published on the third Thursday of

the following month. Thus, the latest available ZHVI we have for 2020-Q1 Survey is ZHVI of Dec 2019.

Therefore, in the 2020-Q1 survey, the latest information that experts actually use is from 2019-Q4. Suppose

the survey is conducted in year ys, quarter qs, e.g., 2020Q1. Then experts actually form expectation using

the data of 2019Q4,

• t are the end of quarter dates of the experts’ information set, e.g. t = 2019Q4;

• k = 4, 8, 12, 16, 20 are forecasting horizons, e.g. k = 4 is the current year forecast (4 quarters ahead),

k = 8 the next one year forecast and etc;

• qs = 1, 2, 3, 4 are the calendar quarters in which the surveys are conducted in real time;

• q = qs ´ 1 is the effective quarter end, of which the experts’ make their forecasts based on.

For our survey, h := 4, since the expected price growth is always measured over a 4-quarter horizon,

starting from Q1 to Q4 each calendar year. And the price growth always takes the the form of

yt+k´q,4 = log

(
Pt+k´q

Pt+k´q´4

)

As a demonstrating example for why the quarter in which the survey is conducted matters, consider the

next year (8Q ahead) forecast, conducted at 2020-Q2, so the information set for forecasters is up until 2020-

Q1. This would be about the price growth from 2020-Q4 (2 quarters from now) to 2021-Q4 (6 quarters from
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now). Indeed, we have

t + k ´ q : 2020Q1+8Q ´ 1Q = 2021Q4

Notice that for the current year forecast (k = 4), at the time that forecasts are made, there had already

been realized price growth observed within the forecasting horizon, which will be taken into account in the

framework.

Define the (subjective) expectation over the next quarter, made by forecaster i, as

si,t := Ei,t(yt+1,1) = Ei,t

[
log(

Pt+1

Pt
)

]

The model implies that the m period ahead forecasts are given by

Ei,t(yt+m,1) = µi,t + ρm
i,txt (A1)

so the µt will be the long-run forecast as m Ñ 8, while xt will be the transitory component that drives part

of the short-term forecasts.

B Posterior Distributions of Parameters and States

B.1 Model Setup

yt = µ + xt + et, et „ N(0, Ht)

xt = ρxt´1 +
a

1 ´ γσηt, ηt „ N(0, 1)

t = 1, ..., T

Ht =

$

’

’

&

’

’

%

γσ2 , t ‰ T

(γ + Γ2)σ2 , t = T

The individual subscripts, i, are ignored.
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B.2 Prior Beliefs of Parameters and States

Parameters:

µ „ N(µµ, σ2
µ)

ρ „ N(µρ, σ2
ρ )

σ2 „ IG(A, B)

States:

x1 „ N(0, 1)

B.3 Gibbs Sampling

We start with an initial guess of the parameter θ(0) = (µ(0), ρ(0), σ(0), x(0)1:T)
1. Given a draw of the parameters

θ(b), we draw θ(b+1) as follows:

1. Draw ρ(b+1)|µ(b), σ(b), x(b)1:T , y1:T,. Given the other parameters, beliefs about ρ can be updated from the

autoregression:
1

b

1 ´ γ(b)
x(b)t = ρ

1
b

1 ´ γ(b)
x(b)t´1 + σ(b)ηt.

Define

σ̂2
ρ ” [σ´2

ρ +
ΣT

s=2(x(b)s´1)
2

(σ(b))2(1 ´ γ(b))
]´1

µ̂ρ ” σ̂2
ρ [

µρ

σ2
ρ
+

ΣT
s=2x(b)s´1x(b)s

(σ(b))2(1 ´ γ(b))
]

The posterior of ρ is N(µ̂ρ, σ̂2
ρ ) and thus we draw ρ(b+1) „ N(µ̂ρ, σ̂2

ρ ).

2. Draw µ(b+1)|ρ(b+1), σ(b), x(b)1:T , y1:T,. Given the other parameters, beliefs about µ can be updated from

the regression:

yt ´ xt = µ + et.
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Consider the matrix form


y1 ´ x1

...

yT ´ xT

 =


1
...

1

 µ +


e1
...

eT

 ,


e1
...

eT

 „ N(0, σ2



γ 0
. . .

γ

0 γ + Γ2


looooooooooooooomooooooooooooooon

Λ

)

Define

σ̂2
µ ” [σ´2

µ +
T ´ 1

γ(b)(σ(b))2
+

1
(γ(b) + Γ2)(σ(b))2

]´1

µ̂µ ” σ̂2
µ[

µµ

σ2
µ
+

ΣT´1
s=1 (ys ´ x(b)s )

γ(b)(σ(b))2
+

yT ´ x(b)T
(γ(b) + Γ2)(σ(b))2

]

The posterior of µ is N(µ̂µ, σ̂2
µ) and thus we draw µ(b+1) „ N(µ̂µ, σ̂2

µ).

3. Draw σ(b+1)|µ(b+1), ρ(b+1), x(b)1:T , y1:T,. Given the other parameters, beliefs about µ can be updated from

the regressions:

yt ´ xt = µ + et

1
b

1 ´ γ(b)
x(b)t = ρ(b+1) 1

b

1 ´ γ(b)
x(b)t´1 + σ(b)ηt

Consider the matrix form of the first equation


y1 ´ x1

...

yT ´ xT

 =


1
...

1

 µ +


e1
...

eT

 ,


e1
...

eT

 „ N(0, σ2



γ 0
. . .

γ

0 γ + Γ2


looooooooooooooomooooooooooooooon

Λ

)

Define

Â ” A +
2T ´ 1

2

B̂ ” B +
ΣT´1

s=1 (ys ´ x(b)s ´ µ(b+1))2

2γ(b)
+

(yT ´ x(b)T ´ µ(b+1))2

2(γ(b) + Γ2)
+

ΣT
s=2(x(b)s ´ ρ(b+1)x(b)s´1)

2

2(1 ´ γ(b))

The posterior of σ2 is IG(Â, B̂) and thus we draw (σ(b+1))2 „ IG(Â, B̂).
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4. Draw x(b+1)
1:T |µ(b+1), ρ(b+1), σ(b+1), γ, y1:T,. This can be done using the standard Kalman filter and sim-

ulation smoother.

C Forecasting with Diagnostic Filters

C.1 General Model Setup

Define linear Gaussian state-space model

yt = Zαt + ϵt, ϵt „ N(0, H)

αt+1 = Tαt + Rηt, ηt „ N(0, Q)

α1 „ N(a1, P1), t = 1, ..., n.

Let Yt denote the set of past observations y1, ..., yt.

C.2 Notation

Expression

at|t E(αt|Yt)

at+1 E(αt+1|Yt)

Pt|t Var(αt|Yt)

Pt+1 Var(αt+1|Yt)

vt yt ´ Ztat

Ft Var(vt|Yt´1)

C.3 Representative Function and Distorted Posterior

Define the representativeness of a state α at t as the likelihood ratio:

Rt(α) =
f (α|Yt)

f (α|Yt´1 Y tαt|t´1u)

State α is more representative at t if the signal yt received in this period raises the probability of that state

relative to the case where the news equals the ex ante forecast, yt = Zat , as described in the denominator.

The forecaster then over-weighs representative states by using the distorted posterior,

f θ(αt|Yt) = f (αt|Yt)Rt(αt)
θ 1

Jt
,
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where Jt is a normalization factor and θ is a constant.

C.4 Distorted Posterior Distribution in the Steady State

The distorted posterior f θ(αt|Yt) is normal in the steady state characterized by a time-varying mean aθ
t|t and

constant covariance Σ, where

aθ
t|t = at|t + θ(at|t ´ at)

Σ = P̄ ´ P̄Z1 F̄´1ZP̄

and P̄ and F̄ are the steady state solutions of Pt+1 and Ft.

C.5 Proof of the Distorted Posterior Distribution in the Steady State

For yt = Zat, we have at|t = at as we receive no news this case, i.e., vt = 0. So f (αt|Yt´1 Y tαt|t´1u) „

N(at, Σ).

As we now know the distributions of f (αt|Yt´1 Y tαt|t´1u) and f (αt|Yt), the log likelihood of f θ(αt|Yt)

is the following

ln f θ(αt|Yt)9 ´
1
2
(αt ´ at|t)

1Σ´1(αt ´ at|t) ´
1
2

θ(αt ´ at|t)
1Σ´1(αt ´ at|t) +

1
2

θ(αt ´ at)
1Σ´1(αt ´ at)

9 ´
1
2

α1
tΣ

´1αt + α1
tΣ

´1at|t ´
1
2

θα1
tΣ

´1αt + θα1
tΣ

´1at|t +
1
2

θα1
tΣ

´1αt ´ θα1
tΣ

´1at

9 ´
1
2

α1
tΣ

´1αt + α1
tΣ

´1(at|t + θ(at|t ´ at))

By completing the square, we can see that f θ(αt|Yt) is normal with mean at|t + θ(at|t ´ at) and covariance

Σ.

C.6 Implementation of the Diagnostic Filter

To forecast with diagnostic filters, we include an additional step in the previous Gibbs sampling procedure.

We additonally draw αdiag,t|t „ N(at|t + θ(at|t ´ at), Σ), which is later used in the forecasting step and θ

controls the degree of diagnosticity.
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D Estimating Prior Beliefs of Forecasters

D.1 Forecasting with the Posterior Parameters and States

The algorithm described in the above section yields B samples of the posterior of the states and parameters

of our model at each point in time t. We remove the first J samples as burn-in and re-index these samples

by b as follows tµ(b), ρ(b), σ(b), x(b)1:t uB
b=1. We then use the following algorithm to produce a real-time forecast

distribution for the housing growth rate at time t:

1. For each b = 1, ..., B, simulate a path of shocks tη
(b)
t+huH

h=1 from the standard normal distribution.

2. Starting from h = 1, construct a simulated path of the states over H subsequent periods using the

following equations:

x(b)t+h = ρ(b)x(b)t+h´1|t +
b

1 ´ γ(b)σ(b)ω
(b)
t+h

3. Use the simulated states to construct the forecast distribution of the quarterly rate ty(b)t+h|tu where

y(b)t+h|t = µ
(b)
t|t + x(b)t+h|t

4. The quarterly forecast of yt+h given time t information is computed as

Ftyt+h =
1
B

ΣB
b=1y(b)t+h|t

5. The quarterly forecasts are then aggregated to annual forecasts by considering both the simulated

forecasts and realized current year’s quarterly rate.

D.2 Searching over Prior Beliefs

Let δ = (µµ, σµ, µρ, σµ, Γ)1 be the set of parameters that we wish to optimize. Define the moment function as

m(δ) =
ř EmpiricalMoment´ModelImpliedMoment

EmpiricalMoment . The parameters are then estimated via the simulated method

of moments (SMM) with an identity weighting matrix,

Θ̂ = argminδm(δ)1m(δ).

Every evaluation of the moment function m(δ) requires us to add noise in the last observation and sample

from the posterior of the model 30 times which corresponds to a simulated panel of 30 individuals. We use

a burn-in sample of 2000 draws and keep the subsequent 8000 draws. The global minimum is found using

the Bayesian optimization routine from the Python’s scikit-optimize package.
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E Additional Empirical Results

Table A1: Forecast Anomalies with Individual Fixed Effects

Forecast Horizon

Current Year 1-Year Ahead 2-Years Ahead 3-Years Ahead 4-Years Ahead

Panel A: Sensitivity to Past 1Q Growth

b 0.460*** 0.187*** 0.059*** 0.022** 0.005
(0.051) (0.034) (0.013) (0.009) (0.010)

Num. of Obs. 5,486 5,486 5,486 5,486 5,486
R-squared 0.609 0.493 0.508 0.426 0.373

Panel B: Sensitivity to Past 2Y Growth

b 0.489*** 0.122** 0.026 0.009 -0.001
(0.050) (0.054) (0.018) (0.013) (0.015)

Num. of Obs. 5,486 5,486 5,486 5,486 5,486
R-squared 0.587 0.417 0.491 0.422 0.373

Panel C: Sensitivity to Past 4Y Growth

b 0.488*** 0.129** 0.016 -0.005 -0.012
(0.060) (0.049) (0.021) (0.015) (0.015)

Num. of Obs. 5,486 5,486 5,486 5,486 5,486
R-squared 0.506 0.411 0.489 0.422 0.374

Panel D: Inverse MZ Regressions

b 0.580*** 0.084* -0.042** -0.045** -0.057***
(0.061) (0.046) (0.019) (0.017) (0.015)

Num. of Obs. 5,486 5,101 4,717 4,337 3,894
R-squared 0.629 0.439 0.521 0.471 0.466

Panel E: CG Regressions

b -0.298** -0.287 -0.528*** -0.534*** -0.428***
(0.124) (0.219) (0.041) (0.001) (0.053)

Num. of Obs. 4,701 4,384 4,040 3,703 2,563
R-squared 0.237 0.255 0.313 0.301 0.313

Notes: This table shows the regression estimates of forecast anomalies at different horizons with individual fixed effects.
Panel A to Panel C show the relationship between house price forecasts and past house price growth, estimated using
equation 1. Panel D shows the estimates of inverse MZ regression specified in equation 3. Panel E shows the estimates
of CG regression in equation 4. All coefficients are estimated from individual-level panel regressions. Standard errors
are in parentheses. Standard errors are clustered by both forecaster and time. ***: p<0.001; **: p < 0.01; *: p<0.05.
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Figure A1: Prior Distributions of Parameters in the Benchmark Model

(a) Prior distribution of the long-run mean (µ)

(b) Prior distribution of the persistent parameter (ρ)

(c) Prior distribution of the volatility parameter (σ2)
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Figure A2: Posterior Distributions of Parameters in the Benchmark Model

(a) Posterior distribution of the long-run mean (µ)

(b) Posterior distribution of the persistent parameter (ρ)

(c) Posterior distribution of the volatility parameter (σ2)
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Figure A3: Posterior Distributions of Parameters in the No LR Model

(a) Posterior distribution of the long-run mean (µ)

(b) Posterior distribution of the persistent parameter (ρ)

(c) Posterior distribution of the volatility parameter (σ2)
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Table A2: Comparison of Residual Standard Errors from Individual Forecaster Regressions

Panel A: CG Regressions

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

(1) (2) (3) (4) (5) (6)

CG 1-Yr 4.670 4.132 4.394 4.182 4.636 3.881
2-Yr 4.057 3.666 3.738 3.678 4.290 3.341
3-Yr 3.888 3.648 3.711 3.665 3.778 3.273
4-Yr 3.942 3.810 3.866 3.822 3.607 3.418

Weighted Cost Function 1.3 0.8 1.2 0.7 2.6

Panel B: Sensitivity to Past House Price Growth

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Sensitivity to 1-Yr 2.704 1.811 2.592 2.335 2.694 0.477
Past 1Q 2-Yr 2.240 1.786 1.946 1.839 2.214 0.112
Growth 3-Yr 1.900 1.881 1.992 1.900 1.891 0.055

4-Yr 1.756 1.933 2.039 1.954 1.767 0.048

Sensitivity to 1-Yr 2.836 1.970 2.699 2.471 3.753 0.845
Past 2Y 2-Yr 2.262 1.792 1.951 1.845 2.757 0.189
Growth 3-Yr 1.904 1.880 1.991 1.898 2.336 0.068

4-Yr 1.757 1.932 2.038 1.953 2.147 0.049

Sensitivity to 1-Yr 2.848 2.005 2.724 2.499 3.990 0.953
Past 4Y 2-Yr 2.265 1.786 1.946 1.839 2.935 0.209
Growth 3-Yr 1.904 1.875 1.988 1.894 2.515 0.072

4-Yr 1.756 1.929 2.035 1.950 2.285 0.049

Weighted Cost Function 4.6 2.4 2.9 5.2 23.0

Panel C: Biases and Inverse MZ Regressions

Moments Horizon Data Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Forecast 1-Yr 4.858 4.373 4.759 4.471 4.899 4.265
Biases (%) 2-Yr 4.136 3.697 3.784 3.716 4.548 3.361

3-Yr 3.928 3.626 3.693 3.647 4.031 3.234
4-Yr 4.031 3.826 3.884 3.835 3.757 3.419

Inverse MZ 1-Yr 2.595 2.130 2.813 2.577 4.431 1.156
2-Yr 2.107 1.820 1.975 1.878 3.587 0.284
3-Yr 1.835 1.883 1.994 1.903 3.014 0.090
4-Yr 1.710 1.932 2.038 1.954 2.680 0.053

Weighted Cost Function 2.5 1.7 1.8 6.3 9.3

Panel D: Total Weighted Cost Function

Benchmark Overconfidence Diagnostic Exp. No LR. No Disp.
(ϕ = 2.25) (θ = 0.8)

Total Weighted Cost Function 8.4 4.9 6.0 12.3 35.0

Notes: "Weighted Cost Function" for residual standard errors (RSE) of the regressions: |Model Implied RSE ´

Actual RSE|.
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E.1 Parameter Identification

Inspired by Andrews, Gentzkow and Shapiro (2017), Figure A4 and Figure A5 vary each parameter by 20%

up and down around its point estimate, and shows his this variation affects each of the moments used in

estimation. If the moment changes substantially, the parameter in question is important for identification.

Since the vertical axes are on the same scale across subplots, the variations are directly comparable. The

graph is useful in providing intuition for the estimates.

The figure shows that increasing the prior mean of persistence, µρ, affects several moments, but espe-

cially the sensitivity of house price forecasts to past price growth, and to a lesser extent the slope of the MZ

regression, the slope of the CG regression, and the forecast dispersion. Since different moments respond in

opposite directions, this parameter is well identified from the moments.

The prior mean of house price growth affects the mean forecast bias, the intercept of the MZ regression

(not plotted), and the slope of the CG regression.

The figure also makes clear that the term structure of the forecasts is important in identifying the pa-

rameters. For example, the 3- and 4-year CG regression slopes are important for identifying the prior mean

of ρ. The slope of the regression of forecasts on lagged realized house price growth, and how that slope

varies across horizons, is also important for estimating the prior mean of ρ.
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Figure A4: Sensitivity of Moments to Positive Perturbations of Parameters
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Figure A4: Sensitivity of Moments to Positive Perturbations of Parameters (cont.)
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(e) Sensitivity of Dispersion to Parameter Perturbations

Notes: This figure shows how different empirical moments change if we increase the parameter value by 20% from its
original point estimates. The changes in moment are calculated as the moment values based on perturbed parameters
minus the moments based on the original parameter values, weighted by the weights in calculating the cost function.
Each set of bars is for a particular moment. The different bars within each set (different colors) indicate the four different
forecasting horizons.
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Figure A5: Sensitivity of Moments to Negative Perturbations of Parameters
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Figure A5: Sensitivity of Moments to Negative Perturbations of Parameters (cont.)
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Notes: This figure shows how different empirical moments change if we decrease the parameter value by 20% from its
original point estimates. The changes in moment are calculated as the moment values based on perturbed parameters
minus the moments based on the original parameter values, weighted by the weights in calculating the cost function.
Each set of bars is for a particular moment. The different bars within each set (different colors) indicate the four different
forecasting horizons.
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