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Abstract

Wedocument evidence that the rise in automation technology contributed to the rise

of superstar firms in the past two decades. We explain the empirical link between

automation and industry concentration in a general equilibrium framework with

heterogeneous firms and variable markups. A firm can operate a labor-only technol-

ogy or, by paying a per-period fixed cost, an automation technology that uses both

workers and robots as inputs. Given the fixed cost, more productive, larger firms are

more likely to automate. Increased automation boosts labor productivity, enabling

large, robot-using firms to expand further, which raises industry concentration. Our

calibratedmodel does well in matching the highly skewed automation usage toward

a few superstar firms observed in the Census data. Since robots substitute for labor,

increased automation raises sales concentration more than employment concentra-

tion, also consistentwith empirical evidence. Amodest subsidy for automatingfirms

improves welfare since productivity gains outweigh increased markup distortions.
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1 Introduction

Industries in the United States have become increasingly concentrated, with each major

sector increasingly dominated by a small number of superstar firms (Autor et al., 2020).

Based on empirical evidence and a theoretical framework, we argue that steady increases

in theusageof automation technology since the early 2000shave contributed significantly

to the rise of superstar firms, particularly in the manufacturing sector.

The link between automation and industry concentration can be visualized from

the time-series plots in Figure 1. The figure shows the average shares of sales and

employment of the largest firms within manufacturing industries (Panel A).1 The sales

share of the top four firms (CR4) rose from about 40.5% in the late 1990s to about 43.5% in

2012, an increase of about 3 percentage points. During the same period, the sales share

of the top 20 firms (CR20) also increased substantially. The employment shares of the top

firms, in comparison, stayed relatively flat. The rise in industry concentration coincides

with the rise in automation, as Panel B of the figure shows. Since the early 2000s, the

relative price of robots has declined by about 40%, while the number of industrial robots

per thousand manufacturing employees has quadrupled.2

Sales concentration has also increased in Europe (Bajgar et al., 2019). For the man-

ufacturing sector, sales concentration in Europe started rising a few years ahead of that

in North America (see Figure 9 of Bajgar et al. (2019)). This timing of the increases in

industry concentration aligns with the timing of automation adoptions: adoptions of

automation technologies (in particular, industrial robots) started earlier in the European

market than in the North American market (Acemoglu and Restrepo, 2020).

Our empirical findings suggest that the correlations between automation and concen-

tration observed in the aggregate time series are also present in the industry-level data.

1The figure is taken from Figure IV in Autor et al. (2020) with permissions from the Oxford University
Press (License Number 5241431011126).

2Automation is more general than using robots in production. In both the empirical and theoretical
parts of this paper, we focus on the role of robots, and whenever we talk about “automation” we simply
mean using “robots” in production.
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Figure 1. Trends in Industry Concentration and Automation in Manufacturing

(a) Industry concentration (b) Robot prices and robot density

Note: Panel (a) is taken from Autor et al. (2020) and shows the industry concentration measured by both
the sales share and the employment share of the top 4 firms (left scale) or the top 20 firms (right scale)
across four-digit industries in the manufacturing sector. Panel (b) shows the unit value of newly shipped
industrial robots deflated by the personal consumption expenditures price index (red line, left scale) and
robot density measured by the operation stock of robots per thousand manufacturing workers (blue line,
right scale). Both series of robot price and the operation stock of industrial robots are taken from the
International Federation of Robotics (IFR).

We use Compustat firm-level data to construct industry concentration measures at the

North American Industry Classification System (NAICS) two-digit industry level. We

also construct an industry-level measure of robot density, which is defined as the ratio

of the operation stock of industrial robots from the International Federation of Robotics

(IFR) to thousands of manufacturing employment from the Bureau of Labor Statistics

(BLS). We find that robot density is positively correlated with a sales-based measure

of industry concentration (i.e., the sales share of the top 1% firms) and the correla-

tion is economically important and statistically significant. In contrast, the correlation

of robot density with employment-based concentration (measured by the employment

share of the top 1% firms) is positive but statistically insignificant, with a magnitude

much smaller than the correlation with sales concentration.

Theobserved correlations, however, donot necessarily reflect causal relationsbecause

both industry concentration and robot density are endogenous. To study the potential

causal effects of automation on industry concentration, we estimate an instrumental
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variable (IV) panel specification. As documented by Acemoglu and Restrepo (2020),

robot adoptions vary considerably across industries, and a common set of industries in

both theUnitedStates andEurope aremore automatable and therefore experienced rapid

robot adoptions in recent decades. More importantly, robot adoption trends in many

European economies have been ahead of the United States. Thus, we use the lagged

average robot density in five European economies as an instrumental variable for the

U.S. robot density in our industry-level panel data regressions.3 This approach allows

us to capture the global technological advancements in robotics. The IV regressions

provide robust evidence that automation has significantly contributed to the rise of sales

concentration in the United States, but its effect on employment concentration is small

and insignificant. Our results are economically important: a one standard deviation

increase in robot density raises the sales share of the top 1% firms by about 31 percent.

To understand the economic mechanism that links automation to industry concen-

tration, we construct a dynamic general equilibrium model featuring heterogeneous

firms, endogenous automation decisions, and variable markups (with Kimball (1995)

preferences). Firms have access to two types of technologies for producing differenti-

ated intermediate goods: one is the traditional technology that uses labor as the sole

input, and the other is an automation technology that uses both labor and robots with

a constant elasticity of substitution. Operating the automation technology incurs a ran-

dom per-period fixed cost. Firms also face idiosyncratic, persistent productivity shocks.

A firm’s automation decision (i.e., whether to employ the traditional or the automation

technology) depends on the realization of the fixed cost relative to productivity. At a

given fixed cost, a larger firm is more likely to automate because it has higher produc-

tivity, higher market power, and thus higher profits. Increased automation improves a

firm’s labor productivity, allowing large, robot-using firms to expand their sales share

further. This economy-of-scale effect leads to a positive connection between automation

and industry concentration. Since robots substitute for workers, the expansion of those

3The five European economies include Denmark, Finland, France, Italy, and Sweden, all adopted
robotics ahead of the United States.
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large firms relies more on robots than onworkers. Thus, a rise in automation raises sales

concentration more than employment concentration.

To assess the plausibility of the model’s quantitative predictions, we calibrate the

model parameters to match several moments in the data and in the empirical macro

literature. Specifically, we internally calibrate three key, non-standard parameters: the

fixed cost of operating the automation technology, the price of robots, and the elasticity

of substitution between labor and robot inputs in production. To calibrate these three

parameters, we target three statistics observed in the data: (1) the share of manufactur-

ing firms that use robots for production, (2) the employment share of those robot-using

firms, and (3) the size of the cumulative increases in robot density relative to the cumu-

lative declines in robot prices. The 2019 Annual Business Survey (ABS) conducted by

the U.S. Census Bureau (Acemoglu et al., 2022) shows that approximately 8.7% of U.S.

manufacturing firms used robotics during 2016-2018, while 45.1% of U.S. manufacturing

workers were employed at these firms.4 These two moments indicate that robot adop-

tions are heavily skewed toward a few very large firms (see also Zolas et al., 2020). As for

the third targetedmoment, we use the fact that, during the period from 2002 to 2016, the

average price of robots fell by 40%, while the robot density measured by the operational

stock of industrial robots per thousand manufacturing workers rose by about 300%. We

calibrate the model such that, in the steady state equilibrium, the model implies a 300%

increase in robot density when robot prices fall by 40%.

We use the calibrated model to examine the implications of an exogenous change

in the relative price of robots for industry concentration. A decline in the robot price

raises the probability of automation through two channels. First, it reduces the user cost

of robots, benefiting large firms that operate the automation technology (an intensive-

margin effect). Second, it inducesmorefirms to adopt robots (an extensive-margin effect).

Through the intensive-margin effect, the decline in the robot price enables large firms

to become even larger, raising industry concentration. Through the extensive-margin

4The ABS covers a large and nationally representative sample of over 850,000 firms in all private,
nonfarm business sectors.
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effect, however, some smaller firms that initially operate the worker-only technology

would switch to the automation technology when the robot price declines. This would

reduce the sales share of the superstar firms and lower industry concentration.

Under our calibration, the intensive-margin effect dominates, such that a decline

in the robot price leads to an increase in industry concentration. This is because the

calibrated model captures the fact that the usage of automation technology is highly

skewed toward a small fraction of large firms, in line with the micro-level data (Zolas

et al., 2020; Acemoglu et al., 2022). Amodest decline in the robot price would not induce

a sufficiently large share of smaller firms to switch to the automation technology, while

it enables large firms that already use the automation technology to expand further,

raising sales concentration.

A decline in the relative price of robots also increases the employment concentration,

although the increase is smaller than that in sales concentration because the expansion

of large firms relies more on robots than on workers. This model prediction is consistent

with our empirical evidence that robot adoptions significantly raise the sales share of

the top 1% firms, but the effects on the employment share of the top firms are small and

insignificant.

Under our calibration, the model predicts that a 40% decline in the relative price of

robots—amagnitude similar to that observed during the past two decades—can explain

about 52% of the rise in sales concentration in the U.S. manufacturing and about 22% of

the divergence between sales and employment concentration.

Although automation in our model is a labor-substituting technology, employment

in automating firms increases following a decline in the robot price, in line with the ABS

survey of Zolas et al. (2020). This is because increased robot usage raises labor produc-

tivity, which in turn boosts the labor demand of automating firms. Furthermore, since

larger firms have higher markups and lower labor shares, the between-firm reallocation

triggered by a decline in automation costs reduces the average labor share and increases

the averagemarkup, consistent with the reallocation channel documented byAutor et al.
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(2020), Acemoglu, Lelarge and Restrepo (2020), and Kehrig and Vincent (2021).

Our model implies that the relation between robot prices and industry concentration

can be non-monotonic. We show that, in a counterfactual exercise with a sufficiently

large decline in the relative price of robots, the extensive-margin effect would become

dominant, such that a sufficiently large number of (medium-sized) firms would switch

technologies and expand production, reducing the sales share of the top 1% firms. Thus,

in an economy with widely spread automation technologies, a decline in automation

costs may not increase (and even reduce) industry concentration.5

The rapid rise of automation in recent years has raised an important policy ques-

tion: Should robots be taxed?6 We use our model to examine the implication of taxing

(or subsidizing) robot-using firms for allocations and welfare. Because of monopolis-

tic competition and variable markups in product markets, equilibrium allocations in

our model are inefficient. Taxing automating firms reallocates production from large,

robot-using firms to smaller firms, reducing industry concentration and also reducing

both the average markup and the markup dispersion. However, since larger firms are

more productive, such reallocation lowers aggregate productivity. The optimal flat tax

policy faces a tradeoff between alleviating markup distortions and reducing aggregate

productivity.

The size of the optimal tax rate on robot-using firms depends on the calibration of

the model parameters. To study the policy implications of our model, we re-calibrate

the model to match the observed moments in the whole economy instead of the manu-

5Robots in our model are different from general capital equipment. Although both types of capital
can substitute for workers, they differ in the sense that robot usage is highly concentrated in large firms,
whereas equipment usage is much more widely spread. Our counterfactual simulation shows that, if the
use rate of robots (i.e., the fraction of firms that operate automation technologies) is sufficiently high (e.g.,
bringing it to a level similar to the use rate of equipment), a decline in the relative price of robots would
reduce industry concentration because the extensive margin would dominate the intensive margin. Based
on this finding, we conjecture that a decline in the relative price of capital equipment, which is more
widely used than robots, could reduce industry concentration.

6For example, Guerreiro, Rebelo and Teles (2022) argue that steady declines in robot prices can lead
to persistent increases in income inequality by displacing routine workers. To the extent that the current
generation of routine workers cannot move to non-routine occupations, optimal policy calls for taxing
robots. See also Prettner and Strulik (2020) for an analysis of how robot taxes can help redistribute income
from high-skilled workers to low-skilled workers.
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facturing sector. In particular, we target the fraction of firms using robots in the whole

U.S. economy of about 2% and the employment share of those firms of about 15.7%, both

documented by Acemoglu et al. (2022), in addition to matching the observed increases

in robot density relative to the declines in robot prices.

Themodel calibrated to thewhole economydoeswell inpredicting the cross-sectional

distribution of automation usage observed in the firm-level data (also in the whole

economy) from the ABS documented by Zolas et al. (2020). In particular, the usage of

automation technologies is highly skewed toward large, high-productivity firms, both

in the model and in the data. Since we do not target the distribution of automation

usage in our calibration, the ability of the model to correctly predict this cross-sectional

distribution lends credence to the model’s mechanism.

Under our calibration for the whole economy, the model implies that a modest

subsidy (about 2.9% of sales) for automating firmsmaximizeswelfare, yielding awelfare

gain equivalent to about 0.11% of steady-state consumption compared to the benchmark

without policy interventions.

2 Related literature

Ourwork ismotivated by the empirical evidence on industry concentration documented

by Autor et al. (2020). Their study highlights an important between-firm reallocation

channel that connects the rise in industry concentration with the fall in the labor share.

They discuss a few potential drivers of the rise of superstar firms (what they call a

“winner takes most” mechanism), such as greater market competition (e.g., through

globalization) or scale-biased technological change driven by intangible capital invest-

ment and information technology. Other potential drivers of the rise of concentration

studied in the literature include uneven productivity growth across firms (Furman and

Orszag, 2018), declines in knowledge diffusion between the frontier and laggard firms

(Akcigit and Ates, 2019), a slowdown in radical innovations since the 1990s (Olmstead-
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Rumsey, 2019), and the rise of specialized firms (Ekerdt and Wu, 2022). Our evidence

suggests that the increased use of automation technology has also contributed to the

observed increases in industry concentration.

Our evidence further indicates that although automation has contributed to increases

in sales concentration since the late 1990s, it has not raised employment concentration

in the U.S. manufacturing sector. This finding is in line with Hsieh and Rossi-Hansberg

(2019), who document evidence that employment concentration has remained flat or

even declined in all but three broad sectors (services, wholesale, and retail) in the United

States from 1977 to 2013, a period during which sales concentration in most sectors has

steadily increased (Autor et al., 2020).

Our theoretical model suggests that an important driver of the empirical link be-

tween automation and industry concentration is an economies-of-scale effect associated

with high fixed costs of automation and low marginal costs in the production process

enabled by the automation technology. This finding aligns with several other studies

that highlight the importance of economies of scale for driving the increase in industry

concentration (Kwon, Ma and Zimmermann, 2022; Aghion et al., 2019; Lashkari, Bauer

and Boussard, 2022; Tambe et al., 2020; Sui, 2022).

Our work is closely related to Hubmer and Restrepo (2022), who present a model

featuring heterogeneous firmswith fixed costs of automating tasks. Their focus is on the

role of automation in driving the observed decline in the labor share. A decline in capital

prices reduces the aggregate labor share because large firms automate more tasks, while

the median firm continues to operate a labor-intensive technology with a rising labor

share. Although our model’s implications for the relation between automation and the

labor share align with those found by them, our study, in contrast, focuses on how

automation drives industry concentration. Moreover, a key contribution of our work

is that our quantitative model successfully generates the highly skewed distribution of

automation usage toward a few superstar firms observed in the U.S. firm-level data. To

our knowledge, no othermodels in the literature have been able to replicate the observed

9



distribution of automation usage across firms.

More broadly, our work contributes to the burgeoning literature on automation and

labor markets. Automation has important implications for employment, wages, and

labor productivity (Acemoglu and Restrepo, 2018, 2020; Arnoud, 2018; Aghion et al.,

2021; Graetz andMichaels, 2018; Leduc and Liu, 2019). Automation has also contributed

to wage inequality by displacing routine jobs in middle-skill occupations (Autor, Levy

and Murnane, 2003; Autor, Dorn and Hanson, 2013; Jaimovich and Siu, 2020; Prettner

and Strulik, 2020). Empirical evidence suggests that, at the firm level, robot adoptions

are associated with declines in the labor share (Autor and Salomons, 2018; Acemoglu,

Lelarge and Restrepo, 2020). Our paper complements this literature by showing that

automation also has important implications for the rise of superstar firms, and increases

sales concentration more than employment concentration.

3 Industry-level Evidence

This section examines the empirical relation between automation and industry concen-

tration for U.S. manufacturing industries. We first present evidence that automation

(measured by robot density) positively correlates with industry concentration. The

correlations of robot density with sales concentration are statistically significant and

economically important, whereas the correlations with employment concentration are

small and insignificant. We then present causal evidence demonstrating that automation

has significant impacts on sales concentration, but it has no such effects on employment

concentration.

3.1 Data and measurement

We use firm-level data from Compustat to compute two measures of industry concen-

tration: the sales share as well as the employment share of the top 1% of firms in a given
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industry.7 The top 1% of firms is comparable to the top 4 firms analyzed by Autor et al.

(2020), since an average four-digit manufacturing industry has around 364 firms and

therefore the top 4 firms are approximately equivalent to the top 1% of firms.

We construct a measure of robot density for each two-digit industry using data on

manufacturing employment and operation stocks of industrial robots from the Inter-

national Federation of Robotics (IFR).8 We define robot density for industry 9 in year C

as

A>1>C 9C =
robot stock9C

thousands of employees9C
. (1)

For robustness, we also consider an alternative measure of industry-level robot den-

sity, defined as the operation stock of robots per million labor hours. The data of

industry-level employment (EMP) and labor hours (PRODH) are both obtained from the

NBER-CES Manufacturing Industry Dataset.9 We obtain an unbalanced panel with 13

industries covering the 12 years from 2007 to 2018.10

Table 1 reports the summary statistics of variables. First, it shows that robot density

varies widely in our sample. For example, the inter-quartile range (IQR) of robots per

thousand workers is about 10, which is one-third of the sample mean. The standard

deviation of robot density is also large—about three times the mean. These patterns

reflect both within-industry changes in robot adoption over time and across-industry

heterogeneity in robot adoption and the growth rates of robot use. Industry concentra-

tion in our sample also displays large variations. For example, the sales share of the top

1% of firms averages about 30%, with an IQR of about 14% and a standard deviation of

7Using a percentile is more appropriate than using a specific number of firms as the cutoff, given that
the total number of public firms in Compustat changes greatly across time.

8According to the definition of IFR, industrial robots are automatically controlled, reprogrammable,
and multipurpose manipulators with several axes.

9The IFR uses the International Standard Industrial Classification (ISIC, Rev. 4) for industry classifica-
tion, while NBER-CES and Compustat use the North American Industry Classification System (NAICS).
We match the ISIC Rev. 4 industry codes with the NAICS2017US codes using the concordance table from
the U.S. Census Bureau.

10We selected 2007 as the starting point due to the limited availability of IFR data on U.S. industrial
robots at the two-digit industry level prior to that year. Our sample includes 13 industries, identified by
their ISIC rev4 codes: 10-12, 13-15, 16&31, 17-18, 19-22, 23, 24, 25, 26-27, 28, 29, 30, D&E. The sample sizes
for some variables are smaller than 12 × 13 = 156 because of missing values in certain industry-year cells.
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Table 1. Summary Statistics

#obs mean min p25 p50 p75 max s.d.

robots/thousand employees 156 30.42 0.00 0.24 2.26 10.90 419.92 87.96
robots/million hours 156 19.58 0.00 0.18 1.72 7.72 243.54 52.42
top 1% share of sales 121 0.30 0.08 0.22 0.30 0.36 0.77 0.13
top 1% share of employment 106 0.27 0.11 0.21 0.28 0.32 0.46 0.08

Note: This table shows the summary statistics of the data that we use in the regressions. The industry-
level robot density is measured as the operation stock of industrial robots per thousand employees or per
million labor hours. We consider twomeasures of industry concentration: the sales aswell as employment
share of the top 1% of firms in the industry. For both measures of concentration, we restrict our sample to
those industries with at least 10 firms.
Source: Authors’ calculations using IFR, Compustat, and NBER-CES.

13%. The employment share of the top 1% of firms averages about 27% and varies less

than the sales share, with an IQR of about 11% and a standard deviation of about 8%.

3.2 Correlations between automation and industry concentration

We calculate the correlations of automation with industry concentration, controlling for

industry and year fixed effects. Specifically, we estimate the following ordinary least

squares (OLS) specification

.9C = � log(A>1>C 9C) + �9 + �C + �9C , (2)

where the dependent variable .9C is a measure of industry concentration in industry 9

and year C (sales or employment share of the top 1% of firms), and �9 and �C are industry

and year fixed effects, respectively. The key independent variable is the log of robot

density A>1>C 9C . The term �9C denotes the regression residual. The coefficient of interest,

�, measures the semi-elasticity of industry concentration with respect to robot density,

controlling for aggregate conditions and other fixed industry characteristics.

Table 2 reports the estimation results of the OLS regressions. Industries are weighted
12



Table 2. OLS Regressions for Robot Density and Industry Concentration

top 1% share of sales top 1% share of emp
(1) (2) (3) (4)

ln(robot/thousand emp) 0.021∗∗ 0.002
(0.007) (0.015)

ln(robot/million hours) 0.021∗∗ 0.002
(0.007) (0.015)

Constant 0.295∗∗∗ 0.302∗∗∗ 0.267∗∗∗ 0.268∗∗∗
(0.022) (0.020) (0.039) (0.034)

Observations 117 117 104 104
Industry FE X X X X
Year FE X X X X

Note: This table shows the OLS regression results from the empirical specification (2) that projects the
measures of industry concentration on robot density. Dependent variables are the sales share (first two
columns) and employment share (last two columns) of the top 1% of firms. The industry-level robot
density is measured as the operation stock of industrial robots per thousand workers or million labor
hours within the industry. All regressions weigh the industries by their sales share in the initial year
(2007), and the regressions also control for industry and year fixed effects. Standard errors in parentheses
are clustered at the industry level. Stars denote the statistical significance: * ? < 0.10, ** ? < 0.05, ***
? < 0.01.

by their sales in the initial year (i.e., 2007), following the approach by Autor et al. (2020).

Standard errors, shown in parentheses, are clustered at the industry level.

Table 2 shows that robot density is positively correlatedwith sales concentration (i.e.,

the sales share of the top 1% of firms), with the correlation statistically significant at

the 95 percent confidence level (Columns (1) and (2)). The point estimate in Column (1)

implies that in an industrywith robot density (in log units) that is one standard deviation

above the average, the sales share of the top 1% of firms is about 5.7 percentage points,

or equivalently about 19 percent, above the sample mean (the average sales share of the

top 1% of firms in our sample is 30%).11 The estimated correlation between the hours-

basedmeasure of robot density and sales concentration is very similar inmagnitude and

statistical significance (Column (2)).

11The standard deviation of logged robot density is 2.71. The point estimate in Column (1) indicates
that a one standard deviation increase in logged robot density implies that the sales share of the top 1%
firms increases by 0.021×2.71 ≈ 5.69 percentage points, or about 19 percent of the mean of the sales share.
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The correlation of robot density with employment concentration (i.e., the employ-

ment share of the top 1%of firms), althoughpositive, ismuch smaller than thatwith sales

concentration, and the estimated correlations are statistically insignificant (Columns (3)

and (4)).12 These regression results from cross-sectional data corroborate well with the

time-series correlations between automation and industry concentration illustrated in

Figure 1.

3.3 Effects of automation on industry concentration

The correlations between robot density and industry concentration do not necessarily re-

flect causal effects, since both robot adoption and industry concentration are endogenous

variables. An omitted variable bias can arise when a time-varying industry-level factor

(such as industry-specific productivity) affects both robot density and concentration in

the industry.

To examine how advancements in automation technology may have impacted in-

dustry concentration, we estimate an instrumental-variable (IV) panel specification. We

follow Acemoglu and Restrepo (2020) and use the lag of robot adoptions in European

countries as our instrument for robot adoption in the U.S. As documented by Acemoglu

andRestrepo (2020), robot adoptions vary considerably across industries, and a common

set of industries in both the U.S. and Europe are rapidly adopting robots. Furthermore,

partly due to Europe’s more rapidly aging population, the robot adoption trends in

Europe are ahead of those in the U.S. (Acemoglu and Restrepo, 2022). Therefore, the rise

in robot adoption in European countries can indicate the development of automation

technologies, which would then be correlated with U.S. robot adoption.

We use the lag of the average robot density of five European economies (EURO5)

for each industry as an instrumental variable for U.S. robot density in our regressions.

The EURO5 economies include Denmark, Finland, France, Italy, and Sweden, which all

12There are fewer observations for employment concentration than sales concentration due to a higher
occurrence of missing employment data in Compustat.
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adopted robotics ahead of the United States.13 Similar to our measure of robot density

for the U.S., we measure robot density in the EURO5 economies by the number of

robots per thousand employees (or per million of labor hours) in each industry, with the

employment (and hours) data taken from EUKLEMS. The average robot density of the

five European economies in industry 9 at time C is calculated as

A>1>C�*'$5
9C =

1
5

∑
:∈�*'$5

robot stock: 9C
thousands of employees: 9C

, (3)

where : is an index of economies in the EURO5 group. We use the one-year lagged

EURO5 robot density as the instrumental variable for the U.S. robot density in our

industry-level panel regression.

Our two-stage least squares (2SLS) regressions are just identified, with one endoge-

nous regressor and one instrumental variable. Specifically, in the first stage, we regress

robot density (in log units) at the two-digit industry level in the U.S. on lagged average

robot density (also in log units) in the EURO5 group in the corresponding industries,

controlling for industry and year fixed effects. In the second stage, we regress our mea-

sures of U.S. industry concentration on the predicted logged robot density from the first

stage.

Table 3 displays the IV estimation results. The estimation shows that the quantitative

effects of automation on sales concentration are statistically significant and economically

important (Columns (1) and (2)). A one standard deviation increase in robot density

raises the sales share of the top 1% firms by about 10 percentage points, or equivalently,

about 34 percent relative to its sample average value (which is about 30%).14 This number

is higher than the 6 percentage points (or 19 percent) obtained from the OLS estimation

13Following Acemoglu and Restrepo (2020), we exclude Germany from our sample because it is far
ahead of the other countries in robot adoptions, making it less informative for the US adoption trends
than those trends in the EURO5 economies.

14The logged robot density in the US industries has a standard deviation of 2.71. Thus, the estimation
shown in Table 3 implies that a one standard deviation increase in robot exposure raises the sales share of
the top 1% firms by 0.038 × 2.71 ≈ 10.30 percentage points. In our sample, the average sales share of the
top 1% firms is about 30%. Thus, our estimation suggests that a one standard deviation increase in robot
density would raise the sales share of the top 1% firms by about 34 percent.
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Table 3. IV Regressions for Robot Density and Industry Concentration

top 1% share of sales top 1% share of emp
(1) (2) (3) (4)

ln(robot/thousand emp) 0.038∗∗ 0.012
(0.019) (0.016)

ln(robot/million hours) 0.036∗ 0.014
(0.020) (0.016)

Observations 117 117 104 104
Industry FE X X X X
Year FE X X X X
Anderson-Rubin ?-value 0.000 0.001 0.474 0.401

Note: This table shows the second stage results of the instrumental variable (IV) regression from the em-
pirical specification (2). The dependent variables are the sales share (first two columns) and employment
share (last two columns) of the top 1% of firms. The robot density is measured as the operation stock
of industrial robots per thousand workers or million labor hours within the industry. The instrumental
variable for the U.S. robot density is the one-year lag of the robot density averaged over five European
countries (EURO5). The last row shows the ?-values of Anderson-Rubin weak instrument robust tests
adjusted for non-homoskedasticity. All regressions weigh the industries by their sales share in the initial
year (2007), and the regressions also control for industry and year fixed effects. Standard errors in paren-
theses are clustered at the industry level. Stars denote the statistical significance: * ? < 0.10, ** ? < 0.05,
*** ? < 0.01.

(Table 2), suggesting that omitted variables lead to a downward bias of the coefficient in

the OLS regressions. In comparison, the estimated effects of automation on employment

concentration are small and statistically insignificant (Columns (3) and (4)).

Our estimation and inferences are robust to potentially weak instruments based

on the Anderson-Rubin (AR) test (Anderson and Rubin, 1949), which is one of the

most powerful tests for the null hypothesis in the second stage when the model is just-

identified, regardless of the instrument’s strength (Moreira, 2009; Andrews, Stock and

Sun, 2019). In the last row of Table 3, we report the ?-values of the AR tests adjusted

for non-homoskedasticity. The ?-values indicate that the estimated effects of robot

density on sales concentration are robust to weak instruments at the 99% confidence

level, although the effects on employment concentration are not robust, with a ?-value

of the AR test larger than 0.40.
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3.4 Potential challenges for identification

To identify the effects of automation on market concentration in the U.S., we followed

Acemoglu and Restrepo (2020) and use lagged robot density in five European coun-

tries as an IV for the robot density in the U.S. manufacturing industries. However,

there might be concerns about the validity of this IV. First, there might be unobserved

shocks common to the U.S. and the European countries that could influence U.S. in-

dustry concentration. Responding to this concern, Acemoglu and Restrepo (2020) show

that European robot adoption is largely uncorrelated with several major global trends,

such as import competition, offshoring, the declines of routine jobs, and capital deep-

ening. Hence, they conclude that European robot adoption is an indicator of global

technological advancement in robotics, which in turn affects U.S. robot adoptions as

well.

Second, some of the U.S. firms in our Compustat sample are large firms with global

sales. An increase in robot adoptions in the European countries might increase sales

of those U.S. firms in European markets, which in turn increases the U.S. industry

concentration through increased global sales, rather than through increased U.S. robot

adoptions. This might invalidate the exclusion restrictions in our IV regressions. In

the data, however, global sales are unlikely an important force that drives U.S. industry

concentration because the share of sales of U.S. affiliates in the Europeanmarket are very

small relative to total sales of their U.S. parent companies. For example, according to

the BEA, the sales of majority-owned U.S. affiliates in EURO5 were $474 billion in 2020,

about 3.4% of the total sales of their U.S. parent companies ($13.85 trillion). To further

isolate the global sales channel, we estimated the IV regressions using domestic sales

(i.e., total sales minus exports) of the firms in our sample. We find that the empirical

results are robust to this alternative measure of sales (see Appendix Table A.1).15

15A related concern about the exclusion restrictions in our IV regressions is that robot adoptions in
EURO5 could drive out of the market the least competitive U.S. firms, leading to an increase in U.S.
concentration. However, these effects are likely small since the size of the EURO5 is very small relative to
the U.S. economy.
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Third, another potential issue could be the presence of pre-trends in our sample,

whichmight erroneously suggest causality due to underlying trends that existed prior to

the change in the independent variable. Tomitigate this concern, we employ a pre-trend

test methodology following the approach of Acemoglu and Restrepo (2020). Specifically,

we re-estimate the OLS and IV regressions by using five-year lags of the concentration

measures as the dependent variable. We obtain statistically insignificant estimates, as

shown in Appendix Table A.2. Thus, the increases in industry concentration in our

sample were not driven by a pre-existing trend before the introduction of robots.

4 The Model

To understand the empirical connection between automation and industry concentra-

tion, we construct a dynamic general equilibriummodel featuring heterogeneous firms,

variable markups, and endogenous automation decisions.

4.1 Households

The economy is populated by a large number of infinitely lived identical households

with a unit measure. All agents have perfect foresight. The representative household

has the utility function
∞∑
C=0

�C

[
ln�C − "

#1+�
C

1 + �

]
, (4)

where �C denotes consumption, #C denotes labor supply, � ∈ (0, 1) is a subjective dis-

count factor, � ≥ 0 is the inverse Frisch elasticity of labor supply, and " > 0 is the weight

on the disutility from working.

The household faces the sequence of budget constraints

�C + ECBC+1 ≤ ,C#C + (EC + 3C)BC , (5)
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where BC denotes the equity share of firms held by the household, EC denotes the equity

price, 3C denotes the dividend flow, and,C denotes the real wage rate. The household

takes ,C and EC as given, and maximizes the utility function (4) subject to the budget

constraints (5). The optimizing consumption-leisure choice implies the labor supply

equation

,C = "#�
C �C . (6)

The optimizing decision for equity share holdings is given by

EC = �C(EC+1 + 3C+1), (7)

where �C ≡ � �C
�C+1

is the stochastic discount factor. Wewill be focusing on the steady state

of the model and therefore �C = �.

4.2 Final good producers

There is a large number of monopolistically competitive intermediate producers with

a unit measure indexed by 9 ∈ [0, 1]. Final good producers make a composite homo-

geneous good out of the intermediate varieties and sell it to consumers in a perfectly

competitive market, with the final goods price normalized to one. The final good . is

producedusing a bundle of intermediate goods H(9), according to theKimball aggregator∫ 1

0
Λ(
HC(9)
.C
)39 = 1. (8)

For ease of notation, we suppress the time subscript C in what follows.

4.3 Demand for intermediate goods

Denote the relative output of firm 9 by @(9) := H(9)
. . Taking the intermediate goods price

?(9) as given, the cost-minimizing decision of the final good producers leads to the
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following demand schedule for intermediate good 9

?(9) = Λ′(@(9))�, (9)

where � is a demand shifter given by

� =

( ∫
Λ′(@(9))@(9)39

)−1
. (10)

We follow Klenow and Willis (2016) and assume that

Λ(@) = 1 + (� − 1)exp(1
�
)� �

�−1[Γ(�
�
,
1
�
) − Γ(�

�
,
@�/�

�
)], (11)

with � > 1, � ≥ 0, and Γ(B, G) denotes the upper incomplete Gamma function

Γ(B, G) =
∫ ∞

G

EB−14−E3E. (12)

Under the specification (11) for Λ, we obtain

Λ′(@(9)) = � − 1
�

exp(
1 − @(9) ��

�
), (13)

which, using the demand schedule (9), implies that the demand elasticity (i.e., price

elasticity of demand) faced by firm 9 is

�(@(9)) = −
Λ′(@(9))

Λ′′(@(9))@(9) = �@(9)− �
� . (14)

Given this demand elasticity, the firm with relative production @(9) charges the optimal

markup

�(9) =
�(@(9))

�(@(9)) − 1
. (15)
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As a result, larger firms face lower demand elasticities, have more market power, and

charge higher markups.16

4.4 Intermediate goods producers

Intermediate producers, from now on indexed by their productivities ), produce differ-

entiated intermediate goods using two alternative technologies: one with labor as the

sole input, and the other with both labor and robots as input factors. If the firm uses

robots in production, it faces a per-period fixed cost which is realized after drawing the

productivity ), to be elaborated below. The production function takes the CES form

H = )
[

0�

′�−1
� + (1 − 
0)#

�−1
�

] �
�−1
, (16)

where H denotes the firm’s output; # denotes the inputs of workers; and �′ ≥ 0 denotes

the end-of-period robot stock. The labor-only technology corresponds to the special

case with �′ = 0. The parameter � > 1 is the elasticity of substitution between robots

and workers. The parameter 
0 measures the relative importance of robot input in

production.

The idiosyncratic productivity shock follows a stationary AR(1) process

ln)′ = � ln) + �, � ∼ #(0, �2
)), (17)

where )′ is next period productivity, � ∈ (0, 1)measures the persistence of the produc-

tivity shock, and �) > 0 denotes the standard deviation of the innovation.

We assume that to use robots in production, firms face a per-period fixed cost that is

proportional to their productivity. Specifically, a firm with productivity ) draws B from

the 8.8.3. distribution �(·) and needs to pay the per-period cost B) if it uses robots in

16We make the technical assumption that @(9) < �
�
� such that the effective demand elasticity is always

greater than one. This assumption ensures a well-defined equilibrium under monopolistic competition.
In our numerical solutions, we find that this constraint is never binding.
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production. We further assume that the distributions of B and ) are independent.17 A

firm with the realized productivity ) and existing robot stock � that draws a fixed cost

B chooses the price ? and quantity H of its differentiated product, labor input # , and

robot investment �0 to solve the dynamic programming problem

+(), �; B) = max
?,H,#,�0≥(�0−1)�

[
?H−,#−&0�0−B)1{�′ > 0}+��)′ |)

∫
B′
+()′, �′; B′)3�(B′)

]
,

(18)

where 1{G} equals one if G holds and zero otherwise. The firm hires workers in a

competitive labor market with the wage rate , . The firm also chooses automation

investment bypurchasing �0 units of robots at the competitiveprice&0 . Newlypurchased

robots add to the existing stock of robots, and robots depreciate at the constant rate

�0 ∈ (0, 1). The firm’s stock of robots evolves according to the law of motion

�′ = (1 − �0)� + �0 . (19)

Notice that we assume that the newly purchased robots can be used in the production

process in the same period.

The firm solves the recursive problem (18) subject to the production function (16),

the robot law of motion (19), and the demand schedule (9). Since robot operation incurs

a fixed cost, a firm facing a sufficiently high B relative to its productivity would choose

to sell its robots (i.e., by setting �′ = 0) at the market price &0 . In that case, we would

have �0 = (�0 − 1)� ≤ 0.

Appendix B shows that the recursive problem (18) can be simplified to

+(), �; B) = &0(1 − �0)� +max{+ 0()) − B), +=())}, (20)

where the continuation value of operating the automation technology this period (i.e.,

17Assuming that the fixed costs of automation are proportional to firm-level productivity captures
the fact that large firms face higher fixed costs in production, which improves the model calibration
as discussed later. But our qualitative results remain valid even if fixed costs are not assumed to be
proportional to productivity.
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having �′ > 0) is given by

+ 0()) = max
?,H,#,�′>0

[
?H −,# −&0�

′ + ��)′ |)
∫
B′
+()′, �′; B′)3�(B′)

]
, (21)

and the continuation value of operating the labor-only technology this period is given

by

+=()) = max
?,H,#

[
?H −,# + ��)′ |)

∫
B′
+()′, 0; B′)3�(B′)

]
. (22)

Firms with automation technology in (21) optimally choose their production inputs

# and �′ given their production H. As Appendix B shows, the first order conditions

imply

�0 = 
0�0()))
�−1
�

( H
�′

) 1
�
, (23)

, = (1 − 
0)�0()))
�−1
�

( H
#

) 1
�
, (24)

where �0 ≡ &0[1− �(1− �0)] denotes the effective user cost of robots, and �0()) denotes
the marginal cost of production for a firmwith productivity ) operating the automation

technology:

�0()) =

[


�
0�

1−�
0 + (1 − 
0)�,1−�

] 1
1−�

)
. (25)

Moreover, firms operating the labor-only technology in (22) choose their labor input

# given their production H:

# =
H

)
(1 − 
0)

�
1−� , (26)

The marginal cost of production in this case would be

�=()) =
(1 − 
0)

�
1−�,

)
. (27)

Notice that, given the productivity ), the marginal cost of production using the labor-
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only technology is always larger than that using the automation technology, i.e., �0()) ≤
�=()).

The problem (20) implies that firms choose to operate the automation technology (i.e.,

to have �′ > 0) if and only if their draw of the fixed automation cost is small enough:

B ≤ B∗()) ⇐⇒ I0(), B) = 1, (28)

where I0(·) is an indicator of the automation decision, which is a function of the firm-level

variables ) and B, and the cutoff fixed cost equals:

B∗()) ≡
+ 0()) −+=())

)
. (29)

It follows that, for a firm with productivity ), the ex ante (i.e., before drawing the

automation fixed cost) automation probability equals �(B∗())), which is the cumulative

density of the fixed costs evaluated at the indifference point.

AsAppendix B shows, the automation cutoff can bewritten as the difference between

the flow profit from operating the automation technology versus that from employing

the labor-only technology. In other words,

B∗()) =
�0()) − �=())

)
, (30)

where

�0()) = max
?,H,#,�′

[
?H −,# −&0[1 − �(1 − �0)]�′

]
, (31)

subject to the demand schedule (9) and production function (16), and

�=()) = max
?,H,#

[
?H −,#

]
. (32)

subject to the same demand schedule and production function with �′ = 0.
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4.5 Stationary equilibrium

We focus on the stationary equilibrium and thus drop the time subscript for all variables.

The world robot price &0 is exogenously given. The equilibrium consists of aggregate

allocations �, �0 , �, # , and ., wage rate , , firm-level allocations �′()), �0()), #()),
and H()), and firm-level prices ?()) for all ) ∈ �(·), where �(·) denotes the ergodic

distribution implied by the productivity process (17), such that (i) taking, as given, the

aggregate allocations � and# solve the representative household’s optimizing problem;

(ii) taking, and . as given, the firm-level allocations and prices solve each individual

firm’s optimizing problem; and (iii) the markets for the final good and labor clear.

The final goods market clearing condition is given by

� +&0�0 +
∫
)

∫ B∗())

0
B) 3�(B) 3�()) = .. (33)

The labor market clearing condition is given by

# =

∫
)
#())3�()). (34)

The stock of robots is given by

� = �′ =

∫
)
�′())�(B∗()))3�()). (35)

Total investment in robots equals

�0 = �
′ − (1 − �0)� = �0� = �0

∫
)
�′())�(B∗()))3�()). (36)

Appendix C outlines the computational algorithm to solve the model.
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Figure 2. Automation Decision Rules

Note: This figure shows the automation decisions as a function of firm-level productivity ()) and the
fixed cost of operating the automation technology (B). Firms with (), B) to the lower-right of the solid line
choose to automate (the shaded area) and those to the upper-left of the line choose to use the labor-only
technology. A decline in the robot price shifts the indifference line upward (from the solid to the dashed
line), inducing more use of the automation technology.

5 Model mechanism

Firms are heterogeneous along two dimensions: they face idiosyncratic shocks to both

productivity ()) and the fixed cost of operating the automation technology (B). The

automation decision depends on the combination of the realizations of ) and B. Firms

face a trade-offwhen deciding whether to automate. On the one hand, firms need to pay

a fixed cost B) to automate. On the other hand, the marginal cost of production using

the automation technology (equation (25)) is always lower than that using the labor-only

technology (equation (27)). Since higher-productivity firms are larger and charge higher

markups, they earn higher profits and therefore are more likely to pay the fixed cost and

automate.18

Figure 2 illustrates the automation decision rules. For any given productivity ), a

firm will choose to automate if the realized fixed cost is sufficiently low. Similarly, for

18Aswewill show in Section 7, while automation fixed costs are proportional to firm-level productivity,
more productive firms are still more likely to automate.

26



any given fixed cost B, a firm will automate if the realized productivity is sufficiently

high. There is an upward-sloping line that separates the technology choices. To the

right of the line (high ) or low B), firms use the automation technology and to the left of

the line, they use the labor-only technology. Firms with combinations of ) and B on the

upward-sloping line are indifferent between the two types of technologies.

The locationof the indifference line is endogenous, dependingonaggregate economic

conditions. A decline in the relative price of robots (&0), for example, will reduce the

marginal cost of using the automation technology. This would shift the indifference

curve up (from the solid to the dashed line), such that more firms would choose to

automate (the extensive margin) and those firms already operating the automation

technology would increase their use of robots (the intensive margin).

For a given technology choice (labor-only or automation), a high-productivity firm is

also a large firm in terms of both employment and output. Moreover, high-productivity

firms are also more likely to use robots at any given fixed cost, as illustrated in Figure 2.

A decline in the relative price of robots improves labor productivity, enabling those

robot-using firms to become even larger and increasing the share of top firms in the

product market (through the intensive margin). However, the decline in robot price

also induces some less-productive firms to switch from the labor-only technology to the

automation technology (through the extensive margin), partially offsetting the increase

in the share of sales of the topfirms. The net effect of the decline in the robot price on sales

concentration can be ambiguous, depending on the relative strength of the extensive vs.

the intensive margin effects. As we will show below, under our calibration, the intensive

margin effect dominates, such that a lower robot price leads to a higher concentration

of sales in large firms. This model prediction is consistent with the empirical evidence

presented in Section 3.

An increase in the sales share of large firms following a decline in the robot price

does not directly translate into an increase in the employment share of those firms. Since

robots substitute for workers, large robot-using firms can increase production without
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proportional increases in labor input. Additionally, as these firms grow, they tend to

charge higher markups. Thus, the share of employment of large firms increases by less

than their sales share. This is the key model mechanism for explaining the observation

that automation’s positive impact on sales concentration is stronger than its effects on

employment concentration.

6 Calibration

This section calibrates themodel to the U.S. manufacturing sector to examine the quanti-

tative importance of the automation mechanism in our model, specifically in explaining

the observed rise in sales concentration as well as the divergence between sales and

employment concentration in this sector. We focus on the manufacturing sector for two

reasons. First, automation is more prevalent in the manufacturing sector than in the

whole economy. According to the 2019 ABS, about 8.7% of manufacturing firms use

robots and those firms employ about 45.1% of manufacturing workers. In comparison,

in the whole economy, only about 2% of firms use robots and they employ about 15.7%

of workers (Acemoglu et al., 2022). Second, the increase in sales concentration in the

manufacturing sector was accompanied by one of the largest rises in the gap between

sales and employment concentration in the past two decades (see Figure 1 and Autor

et al. (2020)).

Table 4 displays the calibrated parameters. We externally calibrate a subset of pa-

rameters based on the literature (Panel A). One period in the model corresponds to a

quarter of a year. We set the subjective discount factor to � = 0.99, implying an annual

real interest rate of 4%. We set the inverse Frisch elasticity to � = 0.5, following Rogerson

and Wallenius (2009). We normalize the disutility from working to " = 1. We set the

input weight of robots to 
0 = 0.465 following the study of Eden and Gaggl (2018).19 We

19Since Eden and Gaggl (2018)’s model features ICT, not robots in particular, we will perform a ro-
bustness exercise below and show that our results are qualitatively similar and quantitatively close if we
choose a significantly smaller value for 
0 .

28



Table 4. Parameters

Parameter Notation Value Sources/Matched Moments

Panel A: Assigned Parameters
Discount factor � 0.99 4% annual interest rate
Inverse Frisch elasticity � 0.5 Rogerson and Wallenius (2009)
Working disutility weight " 1 Normalization
Robot input weight 
0 0.465 Eden and Gaggl (2018)
Robot depreciation rate �0 0.02 8% annual depreciation rate
Productivity persistence � 0.95 Khan and Thomas (2008)
Productivity standard dev. �) 0.1 Bloom et al. (2018)
Demand elasticity parameter � 10.86 Edmond, Midrigan and Xu (2021)
Super-elasticity &/� 0.16 Edmond, Midrigan and Xu (2021)

Panel B: Parameters fromMoment Matching
Relative price of robots &0 70.6 Fraction of automating firms
SD of log automation fixed costs �0 3.6 Employment share of automating firms
Elasticity of substitution � 2.0 Growth in the �/# ratio

Note: This table shows the calibrated parameters in the model. Panel A reports the externally calibrated
parameters and their sources. Panel B shows the parameters calibrated by moment matching.

calibrate the quarterly robot depreciation rate to �0 = 0.02, implying an average robot

lifespan of about 12 years, in line with the assumption made by the IFR in imputing the

operation stocks of industrial robots.

We set the persistence of idiosyncratic productivity shocks to � = 0.95 following

Khan and Thomas (2008). We set the standard deviation of productivity shocks to

�) = 0.1, according to the estimation by Bloom et al. (2018).20 To calibrate the elasticity

parameters � and & in the Kimball preferences, we follow Edmond, Midrigan and Xu

(2021) and set � = 10.86 and &/� = 0.16.

We calibrate the remaining parameters to match some key moments in the micro-

level data. These parameters include the relative price of robots &0 , the parameters in

20Bloom et al. (2018) estimate a two-state Markov switching process of firm-level volatility. They find
that the low standard deviation is 0.051 and the high value is 0.209. Moreover, their estimated transition
probabilities suggest that the unconditional probability of the low standard deviation is 68.7%. Therefore,
the average standard deviation is 0.1 (=0.051*68.7%+0.209*(1-68.7%)).
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the distribution of the fixed cost of automation, and the elasticity of substitution between

robots and labor �. We assume that the fixed cost of automation follows a log-normal

distribution ln(B) ∼ N(0, �2
0), and we calibrate the standard deviation parameter �0 . The

calibrated values are shown in Panel B of Table 4.

We target three moments to jointly calibrate three parameters. Here we provide

the intuition behind each targeted moment. The relative price of robots &0 affects the

fraction of firms that use the automation technology (i.e., the automation probability),

which is given by ∫
)
�(B∗())) 3�()).

We calibrate &0 to target the observed fraction of firms that use robots in the 2019 ABS

conducted by the U.S. Census Bureau, which shows that the fraction of manufacturing

firms that use robots is about 8.7% during 2016-2018 (Acemoglu et al., 2022).

The parameter �0 governs the skewness of the distribution of automation fixed costs,

which in turn determines the skewness of automation decisions across the firm size

distribution. Under a smaller �0 , small firms would be less likely to cover the fixed cost

of automation. As a result, the employment-weighted robot use rate would rise. There-

fore, to calibrate �0 , we target the employment share of firms that use the automation

technology, which in our model equals∫
)
�(B∗()))#()) 3�())∫

)
#()) 3�())

. (37)

In the 2019 ABS survey, the employment share of automating firms in themanufacturing

sector is about 45.1% during 2016-2018 (Acemoglu et al., 2022).

To calibrate the elasticity of substitution �, we use the observation that, during the

period from 2002 to 2016, the robot prices (&0 in the model) declined by 40% while

robot density (�/# in the model) increased by 300%. We obtain data on the average

price of robots as well as the operation stock of robots from IFR and on manufacturing

employment from NBER-CES. We calibrate the elasticity of substitution � by matching
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Table 5. Matched Moments

Moments Data Model

Fraction of automating firms 8.7% 8.7%
Employment share of automating firms 45.1% 45.1%
The growth rate of the �/# ratio 300% 300%

Note: This table shows the targeted data moments and the simulated moments by the model. The first
two data moments are based on the ABS data (taken from Acemoglu et al., 2022) and the last moment is
the authors’ calculations using IFR and NBER-CES data.

this growth in the �/# ratio when we reduce &0 by 40% in our model.

By matching the fraction of automating firms and the employment share of those

firms in the ABS data as well as the growth in �/# , we obtain &0 = 70.6, �0 = 3.6,

and � = 2, as shown in Panel B of Table 4. The calibrated model matches the targeted

moments exactly, as shown in Table 5. To put the calibrated elasticity � into context, we

note that Cheng et al. (2021) estimate the firm-level elasticity of substitution between

labor and automation capital inChina ranging from3 to 4.5, with their preferred estimate

being 3.8. Therefore, our calibrated elasticity of � = 2 is conservative relative to their

estimates. We show that if we instead use a higher � in the range estimated by Cheng

et al. (2021) the quantitative importance of automation in our model will be larger.21

7 Model implications

We solve the model’s steady-state equilibrium based on the calibrated parameters. We

now report the model’s quantitative implications.

21Results are available upon request.
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7.1 Firm-level implications

To examine the automation mechanism in our model, we plot in Figure 3 the firms’

decision rules as a function of the idiosyncratic productivity level ). In each panel, we

show two lines, one in the baseline model with calibrated parameters (black solid line)

and the other in a counterfactual scenario with a lower robot price (low &0 , red dashed

line). Thefigure shows that the automationprobability increaseswithproductivity, since

more productive firms are more likely to be able to cover the fixed costs to access the

automation technology. In addition, a non-degenerate set of firms with sufficiently low

productivity do not use robots and operate the worker-only technology. A decline in the

robot price boosts the automation probabilities, with a larger effect on more productive

firms. It also reduces the productivity cutoff for accessing the automation technology.

The figure also shows the decision rules for firms that use robots and those that don’t

at each level of productivity. In the baseline model, the decision rules are qualitatively

similar between the two types of firms. Inparticular, higher-productivity firms are larger,

with higher employment (#())), higher relative output (@())), have largermarket power

measured bymarkups, andhave lower labor shares. Larger firmshave lower labor shares

for two reasons. First, these firms charge higher markups, reducing the share of labor

compensation in value-added. This force is at play for all firms, regardless of whether

they use robots. Second, larger firms are more likely to automate and as a result have

lower labor shares. This effect works only for the firms that operate the automation

technology.

Figure 3 further shows that the impacts of a decline in the robot price on the firms’

decision rules depend on whether the firm uses robots. For robot-using firms, a decline

in the robot price raises employment, output, and markup at each level of productivity.

A reduction in robot price activates two competing forces on the employment of the

automating firms. On the one hand, these firms substitute away fromworkers to robots,

which tends to reduce employment at these firms. On the other hand, however, by

adopting more robots, labor productivity at these firms rises, leading to an increase in
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Figure 3. Firms’ Decision Rules

Note: This figure shows firms’ decision rules for the firms that automate (w/ robots) and those that
do not automate (w/o robots). The solid-black lines are associated with our baseline calibration, while
red-dashed lines show the results for a counterfactual in which robot price &0 falls by 40%.

labor demand to gain market share. Under our calibration, the latter effect dominates

such that automating firms increase employment following the reduction in the robot

price. This result is in line with the evidence documented in the ABS survey of Zolas

et al. (2020). The labor shares of the automating firms decline despite the increases in

employment, reflecting the substitution of robots for workers and also the increase in

markups as output increases.

For firms without robots, the decline in the robot price has the opposite effect on

their decision rules. In particular, a decline in &0 reduces employment, output, and
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Figure 4. Aggregate Variables

Note: This figure shows the effects of counterfactual changes in the robot price &0 on the fraction of firms
that automate, the share of the top 1% of firms, the labor share, the average markup, the wage rate, and
employment. The vertical blue line indicates the calibrated value of robot price &0 .

markups, and increases the labor share at any given level of productivity. These changes

in the decision rules reflect the reallocation of labor from non-automating firms to

automating firms. As the non-automating firms become smaller, their market power

declines, resulting in lower markups and higher labor shares.

7.2 Aggregate implications

The heterogeneous automation decisions and the consequent between-firm reallocation

have important implications for the steady-state relations between aggregate variables

and the robot price, as shown in Figure 4. To illustrate, we consider a wide range of the

robot price that covers the calibrated value of &0 = 70.6, indicated by the vertical blue

line in the figure.
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At a lower robot price, more firms would find it profitable to automate, raising

the fraction of automating firms. Given the fixed cost of operating the automation

technology, larger firms are more likely to automate and thus they benefit more from

the lower robot price.22 As a result, the product market becomes more concentrated

and the share of the top 1% of firms rises. Importantly, the sales share of the top firms

rises more than their employment share as&0 declines, because those top firms that use

robots can expand production without proportional increases in their labor input, and

also because they charge higher markups; while an increase in markups shows up in

the sales share of top firms, it is not reflected in their employment share. We discuss the

quantitative importance of automation in raising the concentration in themanufacturing

sector below.

As &0 falls, large firms become even larger, raising the average markup in the econ-

omy (both sales- and cost-weighted).23 As Figure 3 shows, a reduction in &0 reallocates

production and employment toward automating firms that have lower labor shares in

the original steady state. Therefore, as &0 falls, the labor share in the aggregate econ-

omy declines. Our model thus implies that declines in the aggregate labor share and

increases in the average markup are mainly driven by the between-firm reallocation

channel, in line with the empirical evidence in Autor et al. (2020) and Acemoglu, Lelarge

and Restrepo (2020).

A reduction in &0 also reduces aggregate employment because production is reallo-

cated to automating firms from the labor-intensive non-automating firms. The decline

in &0 raises equilibrium wages because it improves labor productivity in automating

firms, subsequently raising labor demand and bidding up real wages facing all firms.

When automating firms expand production, however, they gain market power and their

markups rise, thereby mitigating the increase in labor demand and dampening the in-

crease in wages. The reduction in &0 also creates a positive wealth effect: by raising

22As discussed before, while automation fixed costs are proportional to firm-level productivity, more
productive firms are still more likely to automate, as shown in the top-left panel in Figure 3.

23To derive the cost-weighted average markup, we use total variable costs at each firm, as in Edmond,
Midrigan and Xu (2021).

35



consumption, the household is willing to supply less labor at each given wage level. In

equilibrium, a reduction in &0 leads to an increase in wages and a decline in aggregate

employment.24

Automation and Industry Concentration. The top-middle panel in Figure 4 reports

the relations between the robot price &0 and industry concentration measured by the

share of the top 1% of firms in sales (solid line) and employment (dashed line). This

graph helps us examine the quantitative importance of our automation mechanism in

explaining the rise in sales concentration as well as the divergence between sales and

employment concentration. In particular, we focus on a fall in the robot price from 117.6

to its calibrated value of 70.6, representing a 40% decline that captures the observed

magnitude of changes in the relative price of robots in the data over the period from

2002 to 2016, as shown in Figure 1.25 We then examine the extent to which the resulting

changes in industry concentration in the model can account for the actual changes

observed in the data.

As this figure shows, this decline in &0 leads to the sales share of the top 1% of firms

to rise by about 1.56 percentage points (from 26.39% to 27.95%). The employment share

of the top 1% of firms also rises but with a smaller magnitude (1.15 percentage points).

Thus, the gap between sales concentration and employment concentration widens by

about 0.40 percentage points.

In the data, as documented by Autor et al. (2020), sales concentration in manufactur-

24Our model’s prediction that a reduction in the robot price raises worker wages seems to be at odds
with the empirical evidence documented by Acemoglu and Restrepo (2021), who find substantial declines
in the relative wages of workers specialized in routine tasks in industries experiencing rapid automation.
This is perhaps not surprising becausewe focus on studying the relation between automation and industry
concentration and abstract from labor market frictions in our model. In a model with elaborated labor
market frictions, such as the business cycle model with labor search frictions and automation studied by
Leduc and Liu (2019), an increase in automation threat effectively reduces workers’ bargaining power
in wage negotiations, and it can lower equilibrium wages. Incorporating labor market frictions into our
framework is potentially important for understanding the connection between automation and a broader
set of labor market variables (including wages). We leave that important task for future research.

25The data on robot prices in the U.S. are available only after 2002. To have a comparable period with
the concentration measures in Autor et al. (2020), we assume that the fall in robot prices from 1998 to 2012
is the same as that from 2002 to 2016 (i.e., 40%).
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ing measured by the sales share of the top four firms (i.e., CR4) rose from about 40.52%

in 1997 to 43.32% in 2012, an increase of about three percentage points (see Figure 1),

while employment concentration rose from 33.26% to 34.51% during the same period,

an increase of about 1.2 percentage points.26 Thus, the model can explain roughly 52%

(1.56 out of 3 percentage points) of the increases in sales concentration as well as about

22% (0.40 out of the 1.8 percentage points) of the observed divergence between sales and

employment concentration.

The top-middle panel in Figure 4 also illustrates that the relation between robot prices

and industry concentration can be non-monotonic. If the economy starts with a small

share of automating firms in the original steady state, a reduction in the robot price

would increase industry concentration, as we find in the calibrated model here. This is

consistent with the positive effects of automation on sales concentration in the U.S. that

we documented in Section 3. However, in an economywithwidespread automation (i.e.,

an economy with a sufficiently low level of the robot price), a further reduction in the

robot price may not increase industry concentration as much, and it could even reduce

concentration. As the automation technology becomes accessible to smaller firms, the

share of top firms in the economy falls.

These findings suggest that automation is different from general capital equipment.

While equipment is widespread across firms in the economy, automation is highly

skewed toward a small fraction of superstar firms. Indeed, as illustrated by the top-

middle panel in Figure 4, our model implies that a decline in the price of general

equipment that is widely used in the economy could decrease, rather than increase,

industry concentration.

Finally, as wementioned above, we perform a robustness exercise with respect to our

calibration of 
0 , because robots in ourmodel aremore specific than general ICT in Eden

and Gaggl (2018). To this end, we set a significantly smaller value 
0 = 0.1, recalibrate

26Notice that, as Figure 1 shows, sales concentrationmeasured by the sales share of the top 20 firms (i.e.,
CR20) rose by a similar magnitude. We focus on CR4 since, as mentioned before, this is more comparable
to the share of the top 1% firms.
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the parameters that we calibrated internally (i.e., the relative price of robots &0 , the

standard deviation of the fixed cost of automation �0 , and the elasticity of substitution

�), and perform the same counterfactual exercise as we discussed above (i.e., a 40%

reduction in &0). We keep the values of our externally calibrated parameters the same

as in our baseline calibration described above.

Appendix Table A.3 reports the calibrated parameters and Table A.4 indicates that

the model matches the targeted moments exactly. Our counterfactual analysis in this

robustness exercise shows that our results are qualitatively similar and quantitatively

close to our baseline results. In particular, the calibrated model can now explain about

36.7% (1.10 out of 3 percentage points) of the increase in sales concentration as well as

about 19.8% (0.36 out of the 1.8 percentage points) of the observed divergence between

sales and employment concentration.

7.3 Policy analysis

The rapid rise of the automation technology and the accompanying increase in industry

concentration has stimulated ongoing policy debates on the efficacy of taxing automa-

tion. While it is argued that taxing automation might create jobs for workers, it might

also reduce labor productivity and put downward pressure on labor demand. More-

over, taxing automation in a variable-markupworldmight seem attractive since it would

reduce the market power of large, automating firms. In this section, we investigate the

aggregate effects of taxing/subsidizing automation and examine whether such policies

are welfare-improving.

7.3.1 Calibrated model for the whole economy

For policy analysis, we re-calibrate the model to the whole economy. In particular, we

calibrate the three non-standard parameters (&0 , �0 , and �) tomatch the fraction of firms

using robots in the whole U.S. economy (2%) and the employment share of these firms

(15.7%), both obtained from Acemoglu et al. (2022), as well as the growth rate of the
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�/# ratio.27 We keep the values of our externally calibrated parameters the same as in

our baseline calibration in Section 6.

Appendix Tables A.5 and A.6 report calibrated parameters and matched moments,

respectively. The model is again able to match the targeted moments exactly.

Themodel calibrated to thewhole economydoeswell in replicating thehighly skewed

distribution of firm-level automation usage in the ABS data, a moment that we do not

target in the calibration. Figure 5 plots the distribution of AI use rate (i.e., the fraction

of firms that use AI in their production) in the ABS data documented by Zolas et al.

(2020) (the bars), along with the model-predicted share of firms that use the automation

technology (the line), as a function of firm size based on employment.28 The figure

shows that the model closely matches this non-targeted distribution of automation. In

both the data and our model, automation usage is highly skewed toward the few largest

firms. In this sense, automation is quite different from general capital equipment, the

usage of which is widespread.29

The ability of the model to correctly predict this non-targeted distribution lends

credence to the model’s mechanism. By matching the highly skewed distribution of

automation usage, the model is capable of generating the observed sharper increases

in sales concentration than in employment concentration when automation cost falls, as

we showed above.
27Since the IFR data coverage beyond the manufacturing sector is limited, we assume that the growth

rate of �/# in the whole economy is the same as that in the manufacturing sector (i.e., 300% from 2002 to
2016).

28Zolas et al. (2020) report the share of firms that use AI technologies across detailed size categories, e.g.,
1-4 employees, 5-9 employees, or 10,000+ employees (see their Figure 8). To make this data comparable
to our model, we convert the size bins into the cumulative density function (CDF) of employment, using
the number of employees in each firm size category in the 2017 County Business Patterns and Economic
Census. We then plot the AI use rate across the employment CDF. Consistently, we calculate the robot use
rates across the employment CDF in the model using the same method. Note that AI is more commonly
used than robots, and our focus is on the dispersion rather than the mean of these technologies. To ensure
a fair comparison between the data and the model, Figure 5 scales the AI use rates in the data to have the
same mean as that of the robot use rates in our model.

29Acemoglu et al. (2022) document that the distribution of robot use rates across firms is similarly
skewed toward large firms, although they do not report more granular robot use rates for firms within the
top percentile. This is why we compare the distribution of robot use rates in the model to the distribution
of AI use rates in the data.
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Figure 5. Automation Distribution

Note: This figure plots the distribution of AI use rate (i.e., the fraction of firms that use AI in their
production) in the ABS data (bars) and the fraction of firms using robots in the model (line), for firms of
different sizes measured by the cumulative density of employment. The AI use rates are scaled to have
the same mean as that of the robot use rates in the model.

7.3.2 Taxing/Subsidizing Automation.

We now use the model calibrated to the whole economy to examine the effects of tax-

ing/subsidizing automation. To this end, we first introduce into the model a flat sales

tax � on firms that use the automation technology. The intermediate producers’ problem

in equation (18) therefore becomes:

+(), �; B) = max
?,H,#,�0

[
(1−�1{�′ > 0})?H−,#−&0�0−B)1{�′ > 0}+��)′ |)

∫
B′
+()′, �′; B′)3�(B′)

]
.

(38)

We assume that the tax revenue is rebated to consumers in a lump-sum fashion.

To explore the welfare implications of this policy, we compute the consumption

equivalent variation as follows. Denote by,(�) the social welfare in the economy with
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the automation tax rate �. Wemeasure thewelfare losses (or gains) under the automation

tax by the percentage changes in consumption in perpetuity that are required such that

the representative household is indifferent between living in the economy with the tax

and the benchmark economy without the tax.

Specifically, the welfare in the economy with the tax rate � is given by

,(�) =
∞∑
C=0

�C
[
ln�C(�) − "

#C(�)1+�
1 + �

]
, (39)

where �C(�) and #C(�) are consumption and employment in the equilibrium with au-

tomation taxes. The welfare in the benchmark economy without tax is given by

,(0) =
∞∑
C=0

�C
[
ln�C(0) − "

#C(0)1+�
1 + �

]
, (40)

where �C(0) and #C(0) are consumption and employment in the equilibrium of the

benchmark economy without automation taxes (i.e., with � = 0). The welfare losses

associated with the tax rate � is given by the consumption equivalent �, which is defined

by the relation
∞∑
C=0

�C
[
ln�C(0)(1 − �) − "

#C(0)1+�
1 + �

]
=,(�), (41)

Solving for � from Eq. (41), we obtain

� = 1 − exp[(1 − �)(,(�) −,(0))]. (42)

A positive � implies that the economy with automation taxes has lower welfare than the

one without, that is, automation taxes would lead to welfare losses. On the other hand,

a negative �would imply welfare gains from taxing automation.

Figure 6 shows the aggregate effects of imposing a sales tax on automating firms.

First of all, notice that since only 2% of firms use automation technology in the calibrated

economy, even a small automation tax of around 4%would drive themass of automating

41



Figure 6. Effects of Taxing Automation

Note: This figure shows the aggregate effects of imposing a sales tax � on firms that use automation
technology.

firms down to zero, after which increasing the automation tax would have no effects. As

most of the actions are for the case of � < 0, we will focus on the effects of an automation

subsidy in what follows.

An automation subsidy (i.e., � < 0) reduces the marginal cost of using robots and

therefore increases the fraction of automating firms. Automation subsidy has two com-

peting effects on the market share of superstar (i.e., the top 1%) firms. On the intensive

margin, since larger firms are more likely to be able to cover the fixed cost of automation,

an automation subsidy will favor large, automating firms and make them even larger,

leading to an increase in the share of superstar firms. On the extensive margin, however,

an automation subsidy incentivizes some non-automating firms to pay the fixed cost

and automate production, which would make these firms larger and in turn reduces the

market share of superstar firms. Moreover, since an automation subsidy will favor large,
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automating firms that charge higher markups, it also increases the average markup in

the economy.

More robot usage in the economy that is induced by an automation subsidy increases

labor productivity, while reducing the aggregate labor share because a larger fraction

of output in the economy will be produced using the automation technology.30 Starting

from a high level of automation taxes, reducing � would initially reduce employment,

reflecting the labor-substituting effects of automation. With a sufficiently high automa-

tion subsidy, however, increasing subsidies further would boost employment, because

automation raises labor productivity, shifting up labor demand and raising aggregate

employment, despite its labor-substituting effects.

Automation subsidies have non-linear effects on welfare, as shown in Figure 6. An

automation subsidy can raisewelfare by improving labor productivity through increased

automation. On the other hand, an automation subsidy can reduce welfare by raising

industry concentration and the average markup. Figure 6 shows that, under our cali-

bration, there is an interior optimum rate of automation subsidy at about 2.9%, which

maximizes welfare, with a maximum welfare gain of about 0.11 percent of steady-state

consumption equivalent relative to the benchmark without automation taxes or subsi-

dies.

8 Conclusion

We have presented empirical evidence suggesting that automation has contributed to

the rise in industrial concentration since the early 2000s. We explain the link between

automation and industry concentration by an economy-of-scale effect stemming from

fixed costs of operating the automation technology in a general equilibriummodel. Our

calibrated model predicts a highly skewed distribution of automation usage toward a

small number of superstar firms, and this prediction aligns well with the firm-level

30Notice that the rise in average markups also contributes to the fall in the labor share.
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data. Our model predicts that a decline in the robot price of a magnitude similar to

that observed during the past two decades can account for about 52% of the rise in sales

concentration in U.S. manufacturing and about 22% of the diverging trends between

sales concentration and employment concentration. Thus, the rise of automation is

quantitatively important for driving the rise of superstar firms.
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Appendices

A Additional Tables

TableA.1. Regressions for RobotDensity and IndustryConcentration Based onDomestic
Sales

top 1% share of domestic sales
OLS IV

(1) (2) (3) (4)
ln(robot/thousand emp) 0.021∗∗ 0.038∗∗

(0.007) (0.020)
ln(robot/million hours) 0.021∗∗ 0.037∗

(0.007) (0.020)
Observations 117 117 117 117
Industry FE X X X X
Year FE X X X X
Anderson-Rubin ?-value 0.000 0.000

Note: The left-hand side variable in all columns is the domestic sales share of the top 1%of firms (in terms of
domestic sales) in U.S. Compustat data. Domestic sales are defined as firm-level total sales minus exports,
treating missing export data as zeros. The first two columns present OLS regression results analogous
to specification (2), and the last two columns report the second-stage results of the instrumental variable
(IV) regression. The industry-level robot density is measured as the operation stock of industrial robots
per thousand workers or million labor hours within the industry. The instrumental variable for the U.S.
robot density is the one-year lag of the robot density averaged over five European countries (EURO5), as
described in the text. The last row shows the ?-values of Anderson-Rubin weak instrument robust tests
adjusted for non-homoskedasticity. All regressions weigh industries by their sales share in the initial year
(2007), and all regressions control for industry and year fixed effects. Standard errors in parentheses are
clustered at the industry level. Stars denote the statistical significance: * ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table A.2. Robot Density and Industry Concentration: Tests of Pre-trends

five-year lagged top 1% share
sales domestic sales employment

(1) (2) (3) (4) (5) (6)
Panel A: OLS regressions

ln(robot/thousand emp) 0.006 0.007 0.002
(0.011) (0.010) (0.008)

ln(robot/million hours) 0.005 0.006 0.002
(0.011) (0.010) (0.008)

Observations 122 122 122 122 102 102
Panel B: IV regressions

ln(robot/thousand emp) -0.024 -0.016 -0.010
(0.041) (0.034) (0.002)

ln(robot/million hours) -0.025 -0.017 -0.013
(0.045) (0.037) (0.021)

Observations 122 122 122 122 102 102
Covariates

Industry FE X X X X X X
Year FE X X X X X X

Note: This table shows regression results of projecting the five-year lagged measures of industry con-
centration on robot density, testing for potential pre-trends. Panel A displays OLS regression results
and Panel B reports the results of IV regressions. The dependent variables are the five-year lagged sales
shares (1st column), domestic sales shares (2nd column), and employment shares (3rd column) of the top
1% of firms. Domestic sales are defined as firm-level total sales minus exports, treating missing export
data as zero. The industry-level robot density is measured as the operation stock of industrial robots per
thousandworkers ormillion labor hours within the industry. All regressions weigh the industries by their
sales share in the initial year (2007), and the regressions also control for industry and year fixed effects.
Standard errors in parentheses are clustered at the industry level. Stars denote the statistical significance:
* ? < 0.10, ** ? < 0.05, *** ? < 0.01.
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Table A.3. Parameters: robustness exercise with 
0 = 0.1

Parameter Notation Value Matched Moments

Relative price of robots &0 4.6 Fraction of automating firms
SD of log automation fixed costs �0 3.0 Employment share of automating firms
Elasticity of substitution � 2.1 Growth in the �/# ratio

Note: This table shows the calibrated parameters by moment matching in the robustness exercise with

0 = 0.1.

Table A.4. Matched moments: robustness exercise with 
0 = 0.1

Moments Data Model

Fraction of automating firms 8.7% 8.7%
Employment share of automating firms 45.1% 45.1%
The growth rate of the �/# ratio 300% 300%

Note: This table shows the targeted data moments and the simulated moments by the model in the
robustness exercise with 
0 = 0.1. The first two data moments are based on the ABS data (taken from
Acemoglu et al., 2022) and the last moment is the authors’ calculations using IFR and NBER-CES data.

Table A.5. Parameters: the whole economy

Parameter Notation Value Matched Moments

Relative price of robots &0 246.4 Fraction of automating firms
SD of log automation fixed costs �0 2.4 Employment share of automating firms
Elasticity of substitution � 1.9 Growth in the �/# ratio

Note: This table shows the calibrated parameters by moment matching for the whole economy.
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Table A.6. Matched moments: the whole economy

Moments Data Model

Fraction of automating firms 2.0% 2.0%
Employment share of automating firms 15.7% 15.7%
The growth rate of the �/# ratio 300% 300%

Note: This table shows the targeted data moments and the simulatedmoments by the model for the whole
economy. The first two data moments are based on the ABS data (taken from Acemoglu et al., 2022) and
the last moment is the authors’ calculations using IFR and NBER-CES data.
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B Derivations

To simplify the intermediate producers’ problem in equation (18), rewire the value

function so that B is not a state variable:

+(), �; B) = max
?,H,#,�′

[
?H −,# −&0[�′ − (1 − �0)�] − B)1{�′ > 0} + ��)′ |)

∫
B′
+()′, �′; B′)3�(B′)

]
= &0(1 − �0)� + max

?,H,#,�′

[
?H −,# −&0�

′ − B)1{�′ > 0} + ��)′ |)
∫
B′
+()′, �′; B′)3�(B′)

]
= &0(1 − �0)� +max

{
max

?,H,#,�′>0

[
?H −,# −&0�

′ + ��)′ |)
∫
B′
+()′, �′; B′)3�(B′)

]
︸                                                                          ︷︷                                                                          ︸

≡+ 0())

−B),

max
?,H,#

[
?H −,# + ��)′ |)

∫
B′
+()′, 0; B′)3�(B′)

]
︸                                                       ︷︷                                                       ︸

≡+=())

}

= &0(1 − �0)� +max{+ 0()) − B), +=())} (43)

The firm with productivity ) chooses �′ > 0 if and only if B ≤ B∗()) ≡ + 0())−+=())
) .

We solve for theoptimaldecisions in+ 0()) and+=())using thefirst-order conditions.
Notice that the capital stock � is not a state variable since there is no friction on it. For

automating firms, we have

+ 0()) = max
?,H,#,�′>0

[
?H −,# −&0�

′ + ��)′ |)
∫
B′
+()′, �′; B′)3�(B′)

]
(44)

Conditional on paying the fixed cost of automation, �′ > 0 would hold. Therefore, the

value of an automating firm becomes:

+ 0()) = max
?,H,#,�′

[
?H −,# −&0�

′ + ��)′ |)
∫
B′
+()′, �′; B′)3�(B′)

]
= max
?,H,#,�′

[
?H −,# −&0�

′ + ��)′ |)
∫
B′

[
&0(1 − �0)�′ +max{+ 0()′) − B′)′, +=()′)}

]
3�(B′)

]
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= max
?,H,#,�′

[
?H −,# −&0�

′ + ��)′ |)
[
&0(1 − �0)�′ +

∫
B′

max{+ 0()′) − B′)′, +=()′)}3�(B′)
] ]

= max
?,H,#,�′

[
?H −,# −&0�

′ + ��)′ |)
[
&0(1 − �0)�′ +

∫ B∗()′)

0
[+ 0()′) − B′)′]3�(B′)

+
∫ ∞

B∗()′)
+=()′)3�(B′)

] ]
= max
?,H,#,�′

[
?H −,# −&0�

′ + ��)′ |)
[
&0(1 − �0)�′ + �(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′)′3�(B′)

+ [1 − �(B∗()′))]+=()′)
] ]

= max
?,H,#,�′

[
?H −,# −&0�

′ + �&0(1 − �0)�′
]
+ ��)′ |)

[
�(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′)′3�(B′)

+ [1 − �(B∗()′))]+=()′)
]

= max
?,H,#,�′

[
?H −,# −&0[1 − �(1 − �0)]�′

]
+ ��)′ |)

[
�(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′)′3�(B′)

+ [1 − �(B∗()′))]+=()′)
]

(45)

Let �0 ≡ &0[1 − �(1 − �0)] denote the effective user cost of robots. Then the optimal

choices of �′ and # are those reported in equations (23) and (24) in the main text.

The value of a non-automating firm can be written as:

+=()) = max
?,H,#

[
?H −,# + ��)′ |)

∫
B′
+()′, 0; B′)3�(B′)

]
=max
?,H,#

[
?H −,# + ��)′ |)

∫
B′

[
max{+ 0()′) − B′)′, +=()′)}

]
3�(B′)

]
=max
?,H,#

[
?H −,# + ��)′ |)

[
�(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′)′3�(B′) + [1 − �(B∗()′))]+=()′)

] ]
=max
?,H,#

[
?H −,#

]
+ ��)′ |)

[
�(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′)′3�(B′) + [1 − �(B∗()′))]+=()′)

]
(46)
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To compute the automation cutoff B∗()), we can write:

B∗())) =+ 0()) −+=())

= max
?,H,#,�′

[
?H −,# −&0[1 − �(1 − �0)]�′

]
+ ��)′ |)

[
�(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′3�(B′) + [1 − �(B∗()′))]+=()′)

]
−max
?,H,#

[
?H −,#

]
− ��)′ |)

[
�(B∗()′))+ 0()′) −

∫ B∗()′)

0
B′3�(B′) + [1 − �(B∗()′))]+=()′)

]
= max
?,H,#,�′

[
?H −,# −&0[1 − �(1 − �0)]�′

]
−max
?,H,#

[
?H −,#

]
, (47)

and therefore

B∗()) =
max

?,H,#,�′

[
?H −,# −&0[1 − �(1 − �0)]�′

]
−max
?,H,#

[
?H −,#

]
)

. (48)

C Solution Algorithm

There are three loops to solve the problem. The . loop is outside of the, loop and the

W loop is outside of the @ loop.

. loop: Use bisection to determine the aggregate final goods and other aggregate

variables.

1. Guess aggregate final goods ..

2. Compute, and firms’ relative production @(9) in the, loop as explained below.

3. Given the equilibrium wage rate, compute other aggregate variables by finding .

using the bisection method:

(a) Given the solved relative production @(9), we have H(9) = @(9)..
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(b) Given robot price &0 and wage rate , , compute the marginal costs �(9) by
eq. (25) and (27), and we can get �′(9) and #(9) from eq. (23), (24), and (26).

(c) The aggregate employment and robot stock are determined by eq. (34) and

eq. (35).

(d) Consumption � is determined by eq. (6).

(e) The steady state aggregate investment in robots �0 is from (36).

(f) Compute .new using the resource constraint (33). Stop if . converges.

i. If . = .new, . and all other aggregate variables are found.

ii. If . > .new, reduce .. Go back to Step 1.

iii. If . < .new, increase .. Go back to 1.

, loop: Use bisection to determine the wage rate.

1. Guess a wage, .

2. Compute firms’ relative production @(9) in the @ loop as explained below.

3. Check whether the Kimball aggregator (8) holds.

(a) If LHS = RHS, the wage rate is found and jump out of, loop to . loop.

(b) If LHS > RHS, increase, to reduce @(9) according to eq. (9). Go back to Step

2.

(c) If LHS < RHS, reduce, to raise @(9) according to eq. (9). Go back to Step 2.

@ loop: Find the relative production.

1. Given the factor prices &0 and, , the marginal cost of production is determined

by eq. (25) for the automation technology and by eq. (27) for the labor-only

technology.

2. Guess a demand shifter �.
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3. Use eq. (9) to solve for the relative output @()) for each ), for firms with and

without robots.

(a) The right-hand side of (9) is a function of @ by plugging in (13).

(b) The price in the left-hand side is the marginal cost in (25) or (27) times the

markup in (15), which is also a function of @.

(c) Use the bisection method to solve for @ in eq. (9).

4. Compute the automation decisions.

(a) Compute H(9) = @(9). with and without robots.

(b) Compute the demand for �′(9) and #(9) with and without robots from eq.

(23), (24), and (26).

(c) For eachproductivity), compute theprofitswith andwithout robots and thus

get the automation cutoffs B∗()) according to (30), and thus the automation

probability �(B∗())).

5. Given the automation decisions, compute �new by (10). Stop if � converges.

Otherwise, go back to Step 2 and repeat until � converges.

(a) If � = �new, � and @(9) are found and jump out of @ loop to, loop.

(b) If � > �new, reduce �. Go back to Step 2.

(c) If � < �new, increase �. Go back to Step 2.
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