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Abstract: Central banks wish to avoid self-fulfilling fluctuations. Interest rate 
rules with a unit response to real rates achieve this under the weakest possible 

assumptions about the behaviour of households and firms. They are robust to 
household heterogeneity, hand-to-mouth consumers, non-rational household 

or firm expectations, active fiscal policy, missing transversality conditions and 
to any form of intertemporal or nominal-real links. They are easy to employ in 

practice, using inflation-protected bonds to infer real rates. With a time-varying 
short-term inflation target, they can implement arbitrary inflation dynamics, 

including optimal policy. This provides a way to translate policy makers’ 
desired path for inflation into one for nominal rates. US Federal Reserve 

behaviour is remarkably close to that predicted by a real rate rule, given US 
monetary policymakers’ desired inflation path. Real rate rules work thanks to 

the key role played by the Fisher equation in monetary transmission. 
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1 Introduction 
Today you start work as president of the Fictian Central Bank (FCB). As FCB 

president, you have a clear mandate to stabilize inflation, even if that results in 

unemployment or output losses. How should you act? Having studied New 
Keynesian macro, you are inclined to follow some variant of the Taylor rule. 

You recall the Taylor principle: the response of nominal rates to inflation should 
be greater than one to ensure determinacy—the existence of a unique stable 

solution, without self-fulfilling fluctuations. But you also remember reading 
other papers which talked of the Taylor principle being insufficient if there are 

hand-to-mouth households (Galí, Lopez-Salido & Valles 2004), firm-specific 
capital (Sveen & Weinke 2005), high government spending (Natvik 2009), or if 

the inflation target is positive (Ascari & Ropele 2009), particularly in the 
presence of trend growth and sticky wages (Khan, Phaneuf & Victor 2019). 

Indeed, you recollect that the Taylor principle inverts if there are sufficiently 
many hand-to-mouth households (Bilbiie 2008), financial frictions (Lewis & 

Roth 2018; Manea 2019), or non-rational expectations (Branch & McGough 
2010; 2018). You also recall that if real government surpluses do not respond to 

government debt levels, then following the Taylor principle can lead to 
explosive inflation (Leeper 1991; Leeper & Leith 2016; Cochrane 2023). Is there 

a way you could act to ensure determinacy and stable inflation, even if one or 
more of these circumstances is true? This paper provides a family of “robust 

real rate rules” that manage to do this. We then reassess classic questions of 
monetary economics through the lens of these rules. 

For a central bank to use a real rate rule, both nominal and real bonds must 
be traded in the economy. If a unit of the former is purchased at 𝑡𝑡, it returns the 

principal plus a nominal yield of 𝑖𝑖𝑡𝑡 in period 𝑡𝑡 + 1. If a unit of the latter is 
purchased at 𝑡𝑡, it returns the principal plus a nominal yield of 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 in 

period 𝑡𝑡 + 1, where 𝜋𝜋𝑡𝑡+1 is realized inflation between 𝑡𝑡 and 𝑡𝑡 + 1. US Treasury 
Inflation Protected Securities (TIPS) are one example of a real bond. 

Arbitrage between the nominal and real bond markets implies that the 
Fisher equation must hold, i.e.: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, (1) 



 

Page 3 of 45 

where 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 is the full information rational expectation of period 𝑡𝑡 + 1’s 

inflation rate, given period 𝑡𝑡’s information. We are abstracting for the moment 
from inflation risk premia, term premia and liquidity premia, all of which can 

generate endogenous wedges in the Fisher equation. However, all our results 
are robust to such wedges, as we show in Section 3. 

We suppose that the central bank observes the nominal and real bond 
markets, and that it can intervene in the former. Then the central bank can 

choose to set nominal interest rates according to the simple “real rate rule”: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, (2) 

where 𝜙𝜙 > 1 (the Taylor principle). Combining these two equations gives that: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, 

which has a unique non-explosive solution of 𝜋𝜋𝑡𝑡 = 0. Determinate inflation! 
Here we have ignored the zero lower bound (ZLB), as the focus of this paper 

is on determinacy away from the ZLB. Nonetheless, in Section 4 we show that 
real rate rules continue to perform well even with the ZLB. We are also 

sidestepping the equilibrium selection issues raised by Cochrane (2011) and 
following the standard New Keynesian literature in assuming agents select 

non-explosive paths for inflation. The limited memory arguments of Angeletos 
& Lian (2023) give one justification for this. Alternatively, the escape clause 

rules of Christiano & Takahashi (2018; 2020) give central banks a way to ensure 
coordination on expectations consistent with non-explosive inflation. 

Why are real rate rules so robust? Firstly, they do not require an aggregate 
Euler equation to hold, even approximately. For the Fisher equation (1) to hold 

(still ignoring risk/term/liquidity premia for now), there only need to be two 
deep pocketed, fully informed, rational agents. Arbitrage takes care of the rest. 

Even full information is not necessary. In a large market, the Fisher equation 
can come to hold even when information about future inflation is dispersed 

amongst market participants (Hellwig 1980; Lou et al. 2019). If there is an 
aggregate Euler equation, its role is only to determine equilibrium real interest 
rates, given the values of other variables. 

Given that the rule does not require an aggregate Euler equation to hold, it 

is automatically robust to household heterogeneity, hand-to-mouth agents, and 
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non-rational consumer expectations. The only expectations that matter are the 

expectations of participants in the markets for nominal and real bonds. It is 
much more reasonable to assume that financial markets lead to pricing 

consistent with rational expectations than to assume rationality of households 
more generally. In fact, even financial market participants do not need to be 

fully rational. Real rate rules continue to work if financial market participants 
are learning, or if they are not fully rational. 

Real rate rules also have a second source of robustness: they do not require 
an aggregate Phillips curve to hold. The slope of the Phillips curve can have no 

impact on the dynamics of inflation. If a central bank is unconcerned with 
output, they do not even need to know if the Phillips curve holds, let alone its 

slope. Nor does it matter how firms form inflation expectations. The Fisher 
equation and the monetary rule pin down inflation, so while non-rational firm 

expectations could affect output fluctuations, they will not alter inflation 
dynamics. The only requirement is that at least some prices are updated each 

period using current information. If there is a Phillips curve, it determines the 
output gap from the level of inflation consistent with the Fisher equation and 

the monetary rule. 
The possibility of decoupling inflation from the rest of the economy has 

wide ranging implications. For example, there is a tradition in monetary 
economics of examining model features producing amplification or dampening 

of monetary shocks. Under a real rate rule, if the Fisher equation holds then no 
change to the model can ever produce amplification or dampening, except a 

change to the monetary rule itself. Thus, such amplification/dampening results 
were always highly dependent on the particular monetary rule being used. 

With a greater than unit response to real rates, amplification can be flipped to 
dampening, and vice versa. 

Likewise, a persistent question in monetary economics has been “which 
shocks drive inflation?”. Here too, the answer must be crucially sensitive to the 
monetary rule being used. Under a real rate rule, only monetary policy shocks 
or shocks to the Fisher equation could move inflation. Central banks have the 

power to control inflation almost perfectly, so ultimate responsibility for 
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inflation must rest with them. 

An even more fundamental question of monetary economics is “how does 
monetary policy work?”. The traditional answer involves movements in 

nominal rates leading to movements in real rates, due to sticky prices. But this 
cannot be the transmission mechanism under flexible prices, as then real rates 

are exogenous. Nor too can it be the transmission mechanism under a real rate 
rule, as then real rate movements are irrelevant. In these cases, monetary policy 

works exclusively through the Fisher equation’s link between nominal rates and 
expected inflation. Since outcomes under a real rate rule are qualitatively so 

similar to those under a traditional rule, our results suggest that Fisher equation 
transmission is the norm. Rupert & Šustek (2019) draw the same conclusion 

based on the observation that contractionary (positive) monetary shocks can 
lower real rates in New Keynesian models with capital. 

The rest of this paper further examines real rate rules, along with the classic 
questions of monetary economics they help answer. The next section shows 

how real rate rules can ensure inflation hits an arbitrary time varying short-
term inflation target. Hence, real rate rules can implement optimal policy, 

attaining high welfare, and can also explain observed inflation dynamics. We 
also discuss the benefits of smoothing real rate rules. 

Section 3 looks at the impact of monetary shocks and Fisher equation 
wedges. We also examine the implications of following a real rate rule in a 

simple New Keynesian model. Next, Section 4 presents a modified real rate rule 
designed to ensure determinacy even in the presence of the zero lower bound.  

Section 5 discusses how a real rate rule could be implemented in practice. 
We show that it is easy to adapt real rate rules to work with longer bonds, and 

that neither information nor indexation lags present a challenge to the 
performance of these rules. In Section 6 we show that the practical real rate rule 

of Section 5 provides an excellent fit to actual US Federal Reserve behaviour, 
even when the short-term inflation target is disciplined by data from the 
Summary of Economic Projections. 

Section 7 examines some potential challenges to the performance of real rate 

rules. We show they work in fully non-linear models and that they are robust 
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to bounded rationality and learning. We also show that, generically, real rate 

rules continue to work even when inflation is determined by something other 
than monetary policy, as under the fiscal theory of the price level. 

Prior literature. Rules like equation (2) have appeared in Adão, Correia & 
Teles (2011), Lubik, Matthes & Mertens (2019) and Holden (2021) amongst 

other places. However, in the prior literature they have chiefly been introduced 
for analytic convenience, rather than as serious proposals. One exception is the 

work of Cochrane (2017; 2023), who briefly discusses rules of this form within 
the context of a wider discussion of rules that hold 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant (i.e. rules 

with 𝜙𝜙 = 0). Cochrane (2018) further explores rules holding 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 constant. 
The “indexed payment on reserve” rules of Hall & Reis (2016) also rely on 

observable real rates, but use a different mechanism to achieve determinacy. 
They propose that the central bank issues an asset (“reserves”) with nominal 

return from $1 of $(1 + 𝑟𝑟𝑡𝑡)
𝑝𝑝𝑡𝑡+1
𝑝𝑝𝑡𝑡

∗  or $(1 + 𝑖𝑖𝑡𝑡)
𝑝𝑝𝑡𝑡
𝑝𝑝𝑡𝑡

∗. Additionally, in older work, Hetzel 
(1990) proposes using the spread between nominal and real bonds to guide 

monetary policy, and Dowd (1994) proposes targeting the price of futures 
contracts on the price level. This has a similar flavour to a real rate rule, as these 

rules effectively use expected inflation as the instrument of monetary policy. 
Forecast targeting has also been proposed by Hall & Mankiw (1994) and 

Svensson (1997), amongst others. Bernanke & Woodford (1997) examine the 
desirability of responding to private sector inflation forecasts, finding that this 

can lead to indeterminacy. The difference is that whereas the Bernanke & 
Woodford (1997) rules set nominal rates to a multiple of expected inflation, real 

rate rules set expected inflation to a multiple of current inflation. Rules of the 
form 𝑖𝑖𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + ⋯, are a special case of the Bernanke & Woodford (1997) 

class, and have been used by Bilbiie (2008; 2011) for analytic convenience. By 
the Fisher equation, following such a rule is equivalent to directly setting the 
real rate, which has led some authors to refer to these rules as “real rate rules” 
(Beaudry, Preston & Portier 2022), although they are quite different to the “real 

rate rules” studied in this paper. However, rules setting real rates break under 
flexible prices and wages (as then real rates are exogenous), leading to lower 

robustness. Our real rate rules do not have this problem.  
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There is also an established literature looking at rules tracking the efficient 

or “natural” real interest rate (Woodford 2003). This uses rules of the form 𝑖𝑖𝑡𝑡 =
𝑛𝑛𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, where 𝑛𝑛𝑡𝑡 is the natural real rate. While this looks very similar to our 

equation (2) (swap 𝑟𝑟𝑡𝑡 for 𝑛𝑛𝑡𝑡), it is a very different idea. By the Fisher equation, 
the previous natural rate rule implies that 𝜋𝜋𝑡𝑡 = 𝜙𝜙−1(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡) + 𝜙𝜙−1𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
𝔼𝔼𝑡𝑡 ∑ 𝜙𝜙−𝑘𝑘−1�𝑟𝑟𝑡𝑡+𝑘𝑘 − 𝑛𝑛𝑡𝑡+𝑘𝑘�∞

𝑘𝑘=0 , assuming that 𝜙𝜙 > 1 and that inflation is non-
explosive. However, since 𝑟𝑟𝑡𝑡 is endogenous, this “solution” for 𝜋𝜋𝑡𝑡 does not 

automatically imply uniqueness, unlike under a real rate rule. Nor does it imply 
zero inflation in equilibrium, except under restrictive assumptions on the rest 

of the model, such as the absence of cost-push shocks. Furthermore, while real 
rates are observable through inflation-protected securities, natural real rates 

must be inferred from estimates of shocks under a particular model. For 
example, the natural rate usually depends on shocks to technology and 

discount factors, neither of which are directly observable. 
Money growth rules also generally deliver determinacy (Carlstrom & Fuerst 

2003). However, they translate fluctuations in money demand or velocity into 
fluctuations in inflation, so they do not give the degree of inflation control 

provided by real rate rules. Despite this, even simple money growth rules can 
perform comparably to traditional rules, and even outperform them when the 

ZLB binds frequently (Belongia & Ireland 2022; Billi, Söderström & Walsh 
2023). We show that real rate rules keep their robust performance even in the 

presence of the ZLB. 

2 Time-varying short-term inflation targets 
The robust real rate rule of equation (2) ensures zero inflation in all 

periods.1 But this is not always desirable. For example, with sticky prices, it is 

optimal for the central bank to tolerate higher inflation in response to an 
unexpected increase in mark-ups. The traditional solution is for the central bank 
to respond to output gaps in their monetary rule, but any response to other 
variables risks reducing robustness.2 A better solution is for the central bank to 

 
1 See Online Appendix A for a discussion of outcomes off the equilibrium path. 
2 Online Appendix B shows that real rate rules keep some robustness even with a response to other 

endogenous variables. 
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adopt a time-varying short-term inflation target. With this target responding to 

other endogenous variables or shocks, the central bank can produce desirable 
movements in inflation without compromising robustness. With such a target, 

real rate rules can determinately implement any target path for inflation, no 
matter the rest of the model. This implies they can also implement optimal 

policy, maximizing welfare. It also means that any observed inflation and 
interest rate dynamics are consistent with a real rate rule. 

Time-varying short-term inflation targets also solve one of the greatest 
challenges to the real-world uptake of monetary rules. No central bank 

governor wants to give up their ability to respond to unusual circumstances in 
unusual ways. A time-varying short-term inflation target splits the monetary 

decision in two. The governor and board announce the level of inflation they 
would like to hit over the next month(s), while the trading desk can 

mechanically follow a real rate rule to achieve that target. This combines the 
flexibility benefits of discretionary reactions to current circumstances, via 

changes to the target path of inflation, with the determinacy benefits of rigid 
commitment to a rule.3 

How do these time-varying short-term targets work? To start, let 𝜋𝜋𝑡𝑡
∗ be the 

central bank’s period 𝑡𝑡 inflation target for period 𝑡𝑡 inflation. This can be a 

function of any of the model’s endogenous variables and exogenous shocks.4 
For example, in order to dampen the output response to mark-up shocks, the 

central bank could set 𝜋𝜋𝑡𝑡
∗ either as a decreasing function of the output gap, or 

as an increasing function of the mark-up shock. The central bank should 

publish this target each period, else the limited information of market 
participants could lead to additional volatility. 

With a time-varying inflation target, the real rate rule becomes: 

 
3 The two-part approach to implementation also helps resolve the concern implicitly raised by Afrouzi et 
al. (2023). Within a period, the central bank would like to move after firms have set prices, so it can punish 
their deviations. But it would also like to move before firms so that it can influence their price setting that 
period. This conflict is resolved by announcing the current period inflation target at the start of the period 
but setting nominal rates via a real rate rule at the end of the period, responding to observed prices. 
4 Ireland (2007) also allows the central bank’s inflation target to respond to other structural shocks. He 

presents evidence that the US Federal Reserve has reacted to mark-up shocks. 
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𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1
∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗). (3) 
From the Fisher equation (1), this implies, 𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋𝑡𝑡+1

∗ � = 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗). 

Again with 𝜙𝜙 > 1, there is a unique non-explosive solution for 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗, now 

with 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗ for all 𝑡𝑡. I.e., at all periods of time, and in all states of the world, 

realised inflation is equal to 𝜋𝜋𝑡𝑡
∗. The central bank can choose an arbitrary path 

for inflation as the unique, determinate equilibrium outcome. 

There are only two constraints on the short-term inflation target. The first is 
that the central bank must be capable of calculating a reasonable approximation 

to 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1
∗ . One way to ensure this is to make 𝜋𝜋𝑡𝑡

∗ only a function of 𝑡𝑡 − 1 dated 
variables. Alternatively, the central bank could respond to variables for which 

there are liquid futures or option markets, or the central bank could form these 
expectations using a forecasting model. Errors in these forecasts will show up 

as monetary policy shocks, increasing the variance of 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗, but we will see 

that this can be dampened with a large 𝜙𝜙. 

The second constraint on the inflation target is that if the monetary rule is 
replaced with the equation 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗, then inflation should still be stable and 

determinate. For example, we cannot set 𝜋𝜋𝑡𝑡
∗ ≔ 2𝜋𝜋𝑡𝑡−1 + 𝜀𝜀∗,𝑡𝑡, for some target 

shock 𝜀𝜀∗,𝑡𝑡, as then with 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡
∗, 𝜋𝜋𝑡𝑡 = 2𝜋𝜋𝑡𝑡−1 + 𝜀𝜀∗,𝑡𝑡, which is an explosive 

process. One way to ensure this condition is for 𝜋𝜋𝑡𝑡
∗ to be only a function of 

exogenous variables, but this is far from necessary. However, responding to 

exogenous variables is enough to mimic the outcome of any other monetary 
policy regime, as in a stationary equilibrium, endogenous variables must have 

a representation as a function of the infinite history of the economy’s shocks.5 
This has two important implications. Firstly, it means that appropriately 

designed real rate rules can implement (timeless/unconditional/etc.) optimal 
policy, and thus attain the highest possible level of welfare.6 Rules with time 

varying targets can also mimic outcomes under rules responding to additional 
endogenous variables. Secondly, it means that without direct evidence on 𝜋𝜋𝑡𝑡

∗, it 

 
5 We show this formally in Supplemental Appendix J.6. 
6 Other papers have examined the implementation of optimal policy using instrument rate rules (see e.g. 
Svensson & Woodford 2003; Dotsey & Hornstein 2006; Evans & Honkapohja 2006; Evans & McGough 

2010). Ours is unique in enabling the implementation of a certain inflation path robustly across models. 
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is impossible to test empirically if a central bank is using a general real rate rule. 

Any dynamics of inflation and interest rates are consistent with a real rate rule 
like (3), for an appropriately chosen 𝜋𝜋𝑡𝑡

∗. Thus, real rate rules are observationally 

equivalent to any other specification for central bank behaviour. 
To see how implementing optimal monetary policy with a real rate rule 

works, suppose that the model contains the New Keynesian Phillips curve: 
𝜋𝜋𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (4) 

where 𝑥𝑥𝑡𝑡 is the output gap and 𝜔𝜔𝑡𝑡 is a mark-up/cost-push shock.7 And suppose 
that the central bank wants to minimise a discounted weighted combination of 

the variances of inflation and the output gap, 𝔼𝔼0 ∑ 𝛽𝛽𝑡𝑡�𝜋𝜋𝑡𝑡
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2�∞
𝑡𝑡=0 , where 𝜆𝜆 >

0. Then, under the timelessly optimal perspective of Woodford (1999), the 

central bank wants to ensure 𝜋𝜋𝑡𝑡 = −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) in all periods. They can do 
this by setting 𝜋𝜋𝑡𝑡

∗ ≔ −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) and using the rule of equation (3). This 

is determinate as long as 𝛽𝛽 > 0.8 It ensures that 𝜋𝜋𝑡𝑡 = −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) even if 
the central bank’s model of the economy is misspecified, and the true link 

between inflation and the output gap is not given by equation (4). This contrasts 
with other proposals for policy implementation,6 which depend on all the 

parameters of the Euler and Phillips curves, and hence may produce strange 
outcomes under misspecification. 

Alternatively, the central bank may prefer to announce a target for next 
period’s inflation, not this period’s. The optimal path for one period ahead 

inflation, 𝜋𝜋𝑡𝑡+1|𝑡𝑡, minimizes 𝔼𝔼0 ∑ 𝛽𝛽𝑡𝑡�𝜋𝜋𝑡𝑡|𝑡𝑡−1
2 + 𝜆𝜆𝑥𝑥𝑡𝑡

2�∞
𝑡𝑡=0  subject to 𝜋𝜋𝑡𝑡|𝑡𝑡−1 = 𝛽𝛽𝜋𝜋𝑡𝑡+1|𝑡𝑡 +

𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡. This is a purely backwards-looking constraint, so there is no longer 

any difference between discretion, commitment, or timeless policy. The solution 
is 𝜋𝜋𝑡𝑡+1|𝑡𝑡 = −𝜅𝜅−1𝜆𝜆𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡�, which can be determinately implemented with 

𝛽𝛽 > 0 by setting the period 𝑡𝑡 target for period 𝑡𝑡 + 1 inflation, 𝜋𝜋𝑡𝑡+1|𝑡𝑡
∗ , to 

 
7 Throughout this paper, we multiply the mark-up shock by 𝜅𝜅 as the ratio of the response to 𝑥𝑥𝑡𝑡 and the 
response to 𝜔𝜔𝑡𝑡 is not a function of either the (Calvo) price adjustment probability or the (Rotemberg) 
price adjustment cost. See Khan (2005) for derivations. 
8 From substituting 𝜋𝜋𝑡𝑡 = −𝜅𝜅−1𝜆𝜆(𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1) into the Phillips curve, we see that determinacy requires the 
quadratic 𝑞𝑞(𝐴𝐴) = 𝛽𝛽𝛽𝛽𝐴𝐴2 − �𝜅𝜅2 + 𝜆𝜆�1 + 𝛽𝛽��𝐴𝐴 + 𝜆𝜆 to have one root inside the unit circle and one root outside. 
With 𝛽𝛽 > 0, determinacy then follows from the facts that 𝑞𝑞′′(0) = 2𝛽𝛽𝛽𝛽 > 0, 𝑞𝑞′(0) = −�𝜅𝜅2 + 𝜆𝜆�1 + 𝛽𝛽�� < 0, 

𝑞𝑞(0) = 𝜆𝜆 > 0 and 𝑞𝑞(1) = −𝜅𝜅2 < 0. 
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−𝜅𝜅−1𝜆𝜆𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡�,9 and using the rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1|𝑡𝑡
∗ + 𝜙𝜙�𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡|𝑡𝑡−1

∗ �.10 

We have seen that time-varying short-term inflation targets make real rate 
rules into effective tools for implementing optimal policy. One final note is in 

order though: It is important to distinguish the time-varying short-term 
inflation target from the central bank’s constant long-term target (of 2% say). 

Just as central banks currently need to communicate carefully when choosing 
not to raise rates despite inflation being above target, so with a time-varying 

short-term target, a central bank would want to carefully justify their choice to 
allow temporarily higher inflation. But it need pose no greater risk to central 

bank credibility. Indeed, the US Federal Reserve already effectively announces 
a path for 𝜋𝜋𝑡𝑡

∗ through the Summary of Economic Projections. This gives 

monetary policy makers’ forecasts for inflation conditional on their beliefs 
about “appropriate monetary policy”.11 

2.1 Adding interest rate smoothing 
High degrees of interest rate smoothing are often thought to be a good 

description of actual central bank behaviour given the rarity of large interest 
rate changes. However, since the rule (3) can generate arbitrary inflation 

dynamics (and hence arbitrary nominal rate dynamics), we cannot conclude 
based on observed nominal rates that the central bank is actually smoothing 

rates. Nonetheless, interest rate smoothing is worth investigating, as it can be a 
source of added robustness. 

With a fully smoothed real rate rule, the central bank sets interest rates so:12 
𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = (𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + �𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1

∗ − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡
∗� + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗), (5) 

where 𝜃𝜃 > 0 and where 𝜋𝜋𝑡𝑡
∗ is the short-term inflation target, as before. Note: the 

central bank smooths 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡, not just 𝑖𝑖𝑡𝑡. This ensures real rates can still be 

substituted out from the Fisher equation. 
One advantage of full smoothing is that it removes the impact of permanent 

 
9 Determinacy follows from substituting 𝑥𝑥𝑡𝑡 = 𝜅𝜅−1�𝜋𝜋𝑡𝑡|𝑡𝑡−1 − 𝛽𝛽𝜋𝜋𝑡𝑡+1|𝑡𝑡� into 𝜋𝜋𝑡𝑡+1|𝑡𝑡 = −𝜅𝜅−1𝜆𝜆𝔼𝔼𝑡𝑡�𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡�, 
leading to the same characteristic quadratic as in the previous footnote. 
10 It is important to note that it is 𝜋𝜋𝑡𝑡 not 𝜋𝜋𝑡𝑡|𝑡𝑡−1 that enters the rule, as although inflation will be 
predetermined in equilibrium, out of equilibrium it might not be. 
11 See Supplemental Appendix I.1 for more information on the Summary of Economic Projections. 
12 We examine partially smoothed real rate rules in Supplemental Appendix J.7. 
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wedges in the Fisher equation. Suppose that due to static convenience yields, 

risk, or liquidity premia (say), the Fisher equation took the form 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 +
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈, for some constant wedge 𝜈𝜈. Now let 𝜋̂𝜋𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗ and 𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡𝜋̂𝜋𝑡𝑡+1, 

then the Fisher equation and monetary rule imply 𝜋̂𝜋𝑡𝑡 = 𝜃𝜃−1(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1). 
Substituting this back into the definition of 𝑒𝑒𝑡𝑡 then implies 𝔼𝔼𝑡𝑡𝑒𝑒𝑡𝑡+1 = (1 + 𝜃𝜃)𝑒𝑒𝑡𝑡, 

which has the unique non-explosive solution 𝑒𝑒𝑡𝑡 = 0 as 𝜃𝜃 > 0. Thus, in 
equilibrium, 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗. 

This establishes that when 𝜈𝜈 = 0, our smoothed real rate rule produces the 
same equilibrium inflation (and hence the same nominal rates) as our 

unsmoothed real rate rule, equation (3). Moreover, the smoothed rule ensures 
inflation stays at target even when 𝜈𝜈 ≠ 0, unlike the unsmoothed rule. We will 

see in Section 5 that smoothing also ensures inflation remains stationary even 
when there is a non-stationary Fisher equation wedge or monetary shock. 

It is also more robust in one further important respect. Whereas the rule in 
equation (3) required a response to current inflation of 𝜙𝜙 > 1, the fully 

smoothed real rate rule just needs a response to current inflation of 𝜃𝜃 > 0. In 
practice, it may be hard for central banks to commit to responding more than 

one for one to inflation. Even if they manage this, it will be hard for them to 
convince other economic agents they really will be so aggressive. Since inflation 

and nominal rates are identical for any 𝜙𝜙 > 1, there is no way for these agents 
to observe 𝜙𝜙. Even with 𝜙𝜙 < 1, there are equilibria which are observationally 

equivalent to the equilibria with 𝜙𝜙 > 1. It would be far easier for central banks 
to convince economic agents that they at least respond positively to inflation. 

This is all that is needed for a fully smoothed real rate rule. 
This gives a compelling argument for the preferability of smoothing real rate 

rules. In Section 4 we will see another benefit of such rules: smoothing prevents 
the existence of sunspot equilibria in the presence of the zero lower bound.  

3 Monetary shocks and Fisher equation wedges 
With the Fisher equation (1) and the monetary rule of equations (2), (3) or 

(5), inflation is always at its target. For inflation to move from this target, there 
must be a shock to either the Fisher equation or the monetary rule. In this 

section, we examine the consequences of these shocks, including their 
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implications for real variables in the three equation New Keynesian (NK) 

model. We also examine what happens if the Fisher equation contains an 
endogenous wedge, coming from time varying risk premia, for example. 

3.1 Monetary policy shocks 
We can add a monetary policy shock, 𝜁𝜁𝑡𝑡, to the rule of equation (2), giving: 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡. (6) 
One source of monetary policy shocks could be the central bank’s limited 

information. If the central bank does not perfectly observe current inflation, and 
sets interest rates to 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋̃𝜋𝑡𝑡, where 𝜋̃𝜋𝑡𝑡 is its signal about inflation, then it 

will end up setting a slightly different level for nominal rates than that dictated 
by the rule 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡, effectively generating monetary policy shocks.13,14 

From combining (6) with the Fisher equation (1) we have: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, (7) 

which has the unique solution 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡, if 𝜙𝜙 > 1 and 𝜁𝜁𝑡𝑡 follows an AR(1) 

process with persistence 𝜌𝜌 ∈ (−1,1). 

A contractionary (positive) monetary policy shock results in a fall in 
inflation, as expected. One way to understand this is to note that the rule of 

equation (6) is actually a special case of the rule with a time-varying target in 
equation (3). Implicitly, equation (6) targets 𝜋𝜋𝑡𝑡

∗ ≔ − 1
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡, as substituting this 

into equation (3) gives equation (6). Contractionary monetary shocks are 
equivalent to temporary reductions in the inflation target. 

We also see that if the central bank is more aggressive, so 𝜙𝜙 is larger, then 
inflation is less volatile. We will see that this result extends to shocks to the 

Fisher equation, and many other departures from the simple setup of equations 
 

13 In fact, this kind of limited information is inconsistent with our simple model’s assumptions. Real bonds 
bought at 𝑡𝑡 − 1 give a return in period 𝑡𝑡 which is a function of 𝜋𝜋𝑡𝑡. Hence, 𝜋𝜋𝑡𝑡 must be available to all parties 
in period 𝑡𝑡. (It is not “true” inflation that matters, but whatever inflation measure is used in the real bond 

contract.) Of course, in reality inflation is released with a lag, and real bonds have additional indexation 
lag. We explicitly model these lags in Section 5, and our conclusions remain the same. 
14 Schmitt-Grohé & Uribe (2007) look at monetary rules responding to lagged information and show that 
they perform as well as rules responding to current information. Lubik, Matthes & Mertens (2019) look 
at the determinacy consequences of a central bank that filters inflation signals in order to retrieve the 
optimal estimate. The determinacy problems they highlight all disappear if the central bank directly 

responds to its signal. 
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(1) and (2). Large 𝜙𝜙 squashes shocks, bringing inflation nearer to target. 

In this model, only monetary policy shocks affect inflation. Of course, if 
there is a nominal rigidity in the model, monetary shocks may have an impact 

on real variables. But as long as the central bank follows a rule like this, these 
real disruptions have no feedback to inflation. Causation runs from inflation to 

real variables, not the other way round. We can understand inflation without 
worrying about the rest of the economy. 

This result may be surprising, but in fact an extensive body of empirical 
evidence finds no role for the Phillips curve in forecasting inflation (see e.g. 

Atkeson & Ohanian 2001; Ang, Bekaert & Wei 2007; Stock & Watson 2009; 
Dotsey, Fujita & Stark 2018). For example, Dotsey, Fujita & Stark (2018) find 

that post-1984, Phillips curve based forecasts perform worse than those of a 
simple IMA(1,1) model, both unconditionally and conditional on various 

measures of the state of the economy. This is consistent with causation only 
running from inflation to the output gap, not in the opposite direction.15 

Likewise, Miranda-Agrippino & Ricco (2021) find that a contractionary 
monetary policy shock causes an immediate fall in the price level, while impacts 

on unemployment materialise much more slowly. Again, this suggests that 
causation runs from inflation to unemployment, not the other way round. 

3.2 Robust real rate rules in the three equation NK world 
What is the role of the Phillips curve and Euler equation under a real rate 

rule? Suppose in the setup of the previous subsection that 𝜁𝜁𝑡𝑡 is independent of 
other structural shocks, and we have the Phillips curve of equation (4) and the 

discounted/compounded Euler equation: 
𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), (8) 

where 𝑛𝑛𝑡𝑡 is the exogenous natural real rate of interest and 𝑥𝑥𝑡𝑡 is the output gap 
(as before). This form of discounted/compounded Euler equation appears in 

Bilbiie (2019) and (under discounting) in McKay, Nakamura & Steinsson 
(2017). The latter paper shows it provides a good approximation to a 

heterogeneous agent model with incomplete markets. We recover the standard 
 

15 McLeay & Tenreyro (2019) provide an alternative explanation: optimal policy prescribes a negative 

correlation between inflation and output, making difficult empirical identification of the Phillips curve. 
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Euler equation if 𝛿𝛿 = 1 and 𝜍𝜍 is the elasticity of intertemporal substitution. This 

specification also nests the two agent, limited asset market participation 
(“TANK”) model of Bilbiie (2008) when 𝛿𝛿 = 1, but 𝜍𝜍 is allowed to be negative. 

And, it nests the behavioural NK model of Gabaix (2020) if 𝛽𝛽 and 𝛿𝛿 are reduced 
from their values under full rationality by cognitive discounting. 

Since 𝜋𝜋𝑡𝑡 = − 1
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡, and 𝜁𝜁𝑡𝑡 is AR(1) with persistence 𝜌𝜌 ∈ (−1,1), the Phillips 

curve (4) implies that 𝑥𝑥𝑡𝑡 = − 1
𝜅𝜅

1−𝛽𝛽𝛽𝛽
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 − 𝜔𝜔𝑡𝑡. The Phillips curve is determining 

the output gap, given the already determined level of inflation. This is 
consistent with the evidence of Dotsey, Fujita & Stark (2018), as 𝑥𝑥𝑡𝑡 is no help in 

forecasting 𝜋𝜋𝑡𝑡 here. 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = − 𝜌𝜌
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 = 𝜌𝜌𝜋𝜋𝑡𝑡, so once you know 𝜋𝜋𝑡𝑡, you already 

have all the information you need to form the optimal forecast of 𝜋𝜋𝑡𝑡+1. The 

correlation in 𝜋𝜋𝑡𝑡 and 𝑥𝑥𝑡𝑡 provides no extra information.16 
This model also enables us to show the robustness of our rule’s determinacy 

in practice. Note that with 𝑥𝑥𝑡𝑡 expressed as a linear combination of exogenous 
variables, there is no need to solve the Euler equation (8) forward, so the degree 

of discounting (𝛿𝛿) cannot have an effect on determinacy. Not needing to solve 
the Euler equation forward also gives robustness to a missing transversality 

constraint on household assets, as under an overlapping generations structure. 
The only role of the Euler equation is to pin down real rates, given inflation and 

the output gap. For example, if 𝜔𝜔𝑡𝑡 is independent across time, then the Euler 
equation implies 𝑟𝑟𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 1

𝜍𝜍 �1
𝜅𝜅

�1−𝛽𝛽𝛽𝛽��1−𝛿𝛿𝛿𝛿�
𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 + 𝜔𝜔𝑡𝑡�. Via the Fisher equation, this 

in turn implies that 𝑖𝑖𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 1
𝜍𝜍 �1

𝜅𝜅
�1−𝛽𝛽𝛽𝛽��1−𝛿𝛿𝛿𝛿�−𝜅𝜅𝜅𝜅𝜌𝜌

𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡 + 𝜔𝜔𝑡𝑡� in equilibrium.17 
The irrelevance of Euler equation parameters for determinacy contrasts 

with the prior literature on determinacy under standard monetary rules. For 
example, with a standard monetary rule, Bilbiie (2019) finds that when 𝜍𝜍 > 0 

and 𝛽𝛽 ≤ 1, the Taylor principle (𝜙𝜙 > 1) is only sufficient for determinacy in the 

 
16 This result is robust to generalizing to an ARMA(1,1) process for 𝜁𝜁𝑡𝑡. See Supplemental Appendix J.2. 
17 For high values of 𝜌𝜌, �1−𝛽𝛽𝛽𝛽��1−𝛿𝛿𝛿𝛿�−𝜅𝜅𝜅𝜅𝜅𝜅

𝜅𝜅𝜅𝜅  is likely to be negative, so positive monetary policy shocks actually 
lower the nominal rate in equilibrium. (The author thanks a referee for this observation.) This is relatively 
common in NK models (Holden 2021; Bilbiie 2022), and should be unsurprising given the equivalence 
between positive monetary shocks and temporary reductions in the inflation target. The arguments of 
Bilbiie (2022) suggest that sunspot driven liquidity traps are more likely when positive monetary shocks 

have negative effects. We look for such sunspot equilibria under real rate rules in Section 4. 
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discounting case (𝛿𝛿 ≤ 1),18 and Bilbiie (2008) finds that when 𝛿𝛿 = 1 and 𝜍𝜍 < 0, 

the Taylor principle (𝜙𝜙 > 1) is neither necessary nor sufficient for 
determinacy.19,20 Under our rule (6), the Taylor principle is necessary and 

sufficient for determinacy whether there is discounting or compounding, and 
whether 𝜍𝜍 is positive or negative (at least given 𝜙𝜙 ≥ 0).21 

Note that even though a nominal rate peg is determinate when 𝛿𝛿 = 0 (say), 
inflation is not “over-determined” under a real rate rule with 𝛿𝛿 = 0. As ever, the 

monetary rule and the Fisher equation pin down inflation, the Phillips curve 
then pins down the output gap, and the Euler equation gives the level of real 

rates that is consistent with these values. 
The rule is also robust to the presence of lags in the Euler or Phillips curve. 

For example, suppose the Phillips curve and Euler equation are given by: 

𝜋𝜋𝑡𝑡 = 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝛽𝛽𝜚̃𝜚𝜋𝜋𝜋𝜋𝑡𝑡−1 + 𝜅𝜅𝑥𝑥𝑡𝑡 + 𝜅𝜅𝜔𝜔𝑡𝑡, (9) 

𝑥𝑥𝑡𝑡 = 𝛿𝛿�̃1 − 𝜚𝜚𝑥𝑥�𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 + 𝛿𝛿𝜚̃𝜚𝑥𝑥𝑥𝑥𝑡𝑡−1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛𝑡𝑡), 
where 𝛽𝛽 ̃ and 𝛿𝛿 ̃ may not have the same structural interpretation as 𝛽𝛽 and 𝛿𝛿 

(depending on the precise micro-foundation). These equations have no impact 
on the solution for inflation, which remains 𝜋𝜋𝑡𝑡 = − 1

𝜙𝜙−𝜌𝜌 𝜁𝜁𝑡𝑡. Instead, the lag in the 

Euler equation changes the dynamics of the real interest rate, with no impact 
on inflation or output gaps, while the lag in the Phillips curve affects both 

output gap and real rate dynamics, with no impact on inflation. In particular, 
the output gap is given by 𝑥𝑥𝑡𝑡 = 1

𝜅𝜅�𝜙𝜙−𝜌𝜌� ��𝛽𝛽𝜚̃𝜚𝜋𝜋 − 𝜌𝜌�1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌��𝜁𝜁𝑡𝑡−1 −
�1 − 𝛽𝛽�̃1 − 𝜚𝜚𝜋𝜋�𝜌𝜌�𝜀𝜀𝜁𝜁,𝑡𝑡� − 𝜔𝜔𝑡𝑡. As before, the output gap has a closed form 
solution in terms of the monetary policy and cost push shocks. Monetary policy 

shocks are still always contractionary, but they only have a short-lived impact 
on the output gap if 𝜚𝜚𝜋𝜋 is around 𝜌𝜌�1−𝛽𝛽𝜌̃𝜌�

𝛽𝛽�̃1−𝜌𝜌2�
. 

 
18 See equation (40) of Appendix C.1 of Bilbiie (2019). 
19 See Proposition 7 of Appendix B.1 of Bilbiie (2008). 
20 One might wonder whether including a response to the price level improves the robustness of standard 
monetary rules. In Supplemental Appendix J.3 we show this is not the case. Under mild parameter 
restrictions, a small positive response to the price level only produces determinacy if 𝜅𝜅𝜅𝜅 > 0. 
21 This is robust to monetary responses to the real rate which are not exactly equal to 1. This is a corollary 
of the more general result given in Online Appendix B. We give an alternative direct proof in 

Supplemental Appendix J.4.  
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3.3 Wedges in the Fisher equation 
How do real rate rules perform if the Fisher equation does not hold exactly? 

In this subsection, we show that even endogenous “wedges” in the Fisher 

equation do not challenge the robustness of real rate rules. 
Risk premia are one source of such a wedge in the Fisher equation, but 

certainly not the only one. For example, nominal bonds may supply greater 
liquidity services or convenience yield than real bonds, and so nominal bonds 

may command a premium. Such a premium is documented by Fleckenstein, 
Longstaff & Lustig (2014), based on comparing synthetic treasury bonds 

constructed from TIPS and inflation swaps to actual treasury bonds. On the 
other hand, TIPS provide deflation protection, which instead increases the 

value of TIPS. A Fisher equation wedge could also come from bounded 
rationality of market participants, distorting expectations. We look in more 

detail at risk premia and bounded rationality in Section 7, but for now we 
present general results that apply independently of the source of the wedge. 

Suppose then that the linearized Fisher equation takes the form: 
𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡, 

where 𝜈𝜈𝑡𝑡 is a potentially endogenous wedge term. We assume though that 𝜈𝜈𝑡𝑡 is 
stationary, and that there exists some 𝜇𝜇����0, 𝜇𝜇����1, 𝜇𝜇����2, 𝛾𝛾����0, 𝛾𝛾����1, 𝛾𝛾����2 ≥ 0 such that for any 

stationary solution for 𝜋𝜋𝑡𝑡, |𝔼𝔼𝜈𝜈𝑡𝑡| ≤ 𝜇𝜇����0 + 𝜇𝜇����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝜇𝜇����2 Var 𝜋𝜋𝑡𝑡 and Var 𝜈𝜈𝑡𝑡 ≤ 𝛾𝛾����0 +
𝛾𝛾����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝛾𝛾����2 Var 𝜋𝜋𝑡𝑡, for all 𝑡𝑡 ∈ ℤ. This assumption is extremely mild, as all these 

coefficients may be arbitrarily large. For example, if 𝜈𝜈𝑡𝑡 were to come purely from 
an inflation risk premium, we would expect 𝜇𝜇����2 > 0 and 𝛾𝛾����0 > 0 but all other 

coefficients to be zero. Alternatively, if 𝜈𝜈𝑡𝑡 were to come purely from the liquidity 
services provided by nominal bonds, we would expect 𝜇𝜇����0, 𝛾𝛾����0 and 𝜇𝜇����1 to be 

positive (the latter as the value of liquidity services might vary over the cycle), 
but all other coefficients to be zero. 

Combining the modified Fisher equation with the simple rule in (2) gives: 
𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + 𝜈𝜈𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡. 

Comparing this to the equilibrium condition with a monetary policy shock, (7), 
reveals that exogenous shocks to the Fisher equation act just like monetary 

shocks, only with the opposite sign. In the general case in which 𝜈𝜈𝑡𝑡 is 
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endogenous, we still have that: 

𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡 � 𝜙𝜙−𝑘𝑘−1𝜈𝜈𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
+ lim

𝑘𝑘→∞
�𝜙𝜙−𝑘𝑘𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+𝑘𝑘� = 𝔼𝔼𝑡𝑡 � 𝜙𝜙−𝑘𝑘−1𝜈𝜈𝑡𝑡+𝑘𝑘

∞

𝑘𝑘=0
, 

assuming as ever that we select the stationary equilibrium for inflation.22 Thus, 
with 𝜙𝜙 > 1: 

|𝔼𝔼𝜋𝜋𝑡𝑡| =
|𝔼𝔼𝜈𝜈𝑡𝑡|
𝜙𝜙 − 1 ≤

𝜇𝜇����0 + 𝜇𝜇����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝜇𝜇����2 Var 𝜋𝜋𝑡𝑡
𝜙𝜙 − 1 , 

and:23 

Var 𝜋𝜋𝑡𝑡 = � � 𝜙𝜙−𝑗𝑗−1𝜙𝜙−𝑘𝑘−1 Cov�𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘�
∞

𝑘𝑘=0

∞

𝑗𝑗=0
≤

𝛾𝛾����0 + 𝛾𝛾����1|𝔼𝔼𝜋𝜋𝑡𝑡| + 𝛾𝛾����2 Var 𝜋𝜋𝑡𝑡
�𝜙𝜙 − 1�2 . 

So, for sufficiently large 𝜙𝜙:24 

|𝔼𝔼𝜋𝜋𝑡𝑡| ≤
��𝜙𝜙 − 1�2 − 𝛾𝛾����2�𝜇𝜇����0 + 𝜇𝜇����2𝛾𝛾����0

�𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� − 𝜇𝜇����2𝛾𝛾����1
= Ο �

1
𝜙𝜙�  as 𝜙𝜙 → ∞, 

Var 𝜋𝜋𝑡𝑡 ≤
�𝜙𝜙 − 1 − 𝜇𝜇����1�𝛾𝛾����0 + 𝜇𝜇����0𝛾𝛾����1

�𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� − 𝜇𝜇����2𝛾𝛾����1
= Ο �

1
𝜙𝜙2�  as 𝜙𝜙 → ∞. 

Hence, as 𝜙𝜙 → ∞, 𝔼𝔼𝜋𝜋𝑡𝑡 → 0 and Var 𝜋𝜋𝑡𝑡 → 0. While the central bank can no 
longer guarantee precisely zero inflation in the presence of an endogenous 

wedge, if they are aggressive enough, they can ensure the mean and variance 
of inflation are arbitrarily close to zero. And, as we already saw, using smoothed 

rules further limits the impact of Fisher equation wedges. Thus, wedges in the 
Fisher equation do not present a substantial challenge to the performance of 

real rate rules.  
Inflation swap real rate rules. If the pricing of nominal bonds is highly 

distorted by the liquidity services they provide (for example), then the central 
bank may reach lower inflation bias and variance for a given 𝜙𝜙 by intervening 

in inflation swap markets rather than nominal bond ones. In our notation, an 
inflation swap is a contract agreed in period 𝑡𝑡 between two parties, A and B, in 

which A promises to make a net payment of Π𝑡𝑡+1 − 𝐾𝐾𝑡𝑡 to 𝐵𝐵 in period 𝑡𝑡 + 1, 
where 𝐾𝐾𝑡𝑡 is the negotiated contract rate. Writing Ξ𝑡𝑡+1 for the real stochastic 

discount factor between periods 𝑡𝑡 and 𝑡𝑡 + 1, this contract rate must solve: 
 

22 Ireland (2015) finds a role for risk premia in explaining US inflation fluctuations, so it is empirically 
plausible that the Fisher equation wedge should appear in the solution for inflation. 
23 As by the Cauchy-Schwarz inequality, the law of total variance and stationarity:  Cov�𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗, 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘� ≤
��Var 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑗𝑗��Var 𝔼𝔼𝑡𝑡𝜈𝜈𝑡𝑡+𝑘𝑘� = ��Var 𝜈𝜈𝑡𝑡+𝑗𝑗 − 𝔼𝔼 Var𝑡𝑡 𝜈𝜈𝑡𝑡+𝑗𝑗��Var 𝜈𝜈𝑡𝑡+𝑘𝑘 − 𝔼𝔼 Var𝑡𝑡 𝜈𝜈𝑡𝑡+𝑘𝑘� ≤ Var 𝜈𝜈𝑡𝑡. 
24 In particular, we need 𝜙𝜙 − 1 > 𝜇𝜇����1, �𝜙𝜙 − 1�2 > 𝛾𝛾����2 and �𝜙𝜙 − 1 − 𝜇𝜇����1���𝜙𝜙 − 1�2 − 𝛾𝛾����2� > 𝜇𝜇����2𝛾𝛾����1. 
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𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

�Π𝑡𝑡+1 − 𝐾𝐾𝑡𝑡� = 0. 

So, from log-linearizing, 𝑘𝑘𝑡𝑡 = log 𝐾𝐾𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, to first order. 
The central bank can then use the inflation swap real rate rule, 𝑘𝑘𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡. 

Combined with the inflation swap pricing equation, this gives 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝜙𝜙𝜋𝜋𝑡𝑡, 
just like when the central bank intervenes in nominal bond markets. The 

advantage of directly targeting inflation swap contract rates is that inflation 
swaps are unlikely to supply liquidity services, unlike nominal bonds, meaning 

the inflation swap pricing equation may be less distorted than the Fisher 
equation. One final benefit of directly targeting inflation swap contract rates is 

that inflation swaps do not include the deflation protection given by TIPS. This 
removes an added source of distortion in the 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 gap. 

4 The zero lower bound 
All our examples so far have ignored the zero lower bound (ZLB) on 

nominal interest rates. The ZLB is problematic for real rate rules as it prevents 
the central bank from fixing 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 when 𝑖𝑖𝑡𝑡 = 0. This means that at the ZLB, the 

Euler equation again becomes relevant for outcomes, reducing robustness. This 
section presents a simple solution to restore robustness in the presence of the 

ZLB. In Supplemental Appendix G we give two other potential solutions: price 
level real rate rules, and perpetuity real rate rules. We also show there that 

when households hold perpetuities, appropriately constructed real rate rules 
can rule out both permanent ZLB traps as well as explosive paths for inflation, 

answering Cochrane (2011). 

4.1 The problems caused by the ZLB for real rate rules 
We can see the problems caused by the ZLB even in the simple set-up used 

in this paper’s introduction. In the presence of the zero lower bound, under the 

introduction’s set-up, we have that: 
max�0, 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡� = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. 

While without the ZLB, we can cancel out the 𝑟𝑟𝑡𝑡 in the monetary rule with the 
𝑟𝑟𝑡𝑡 from the Fisher equation, now this is no longer possible. Instead, we have that 
max�−𝑟𝑟𝑡𝑡, 𝜙𝜙𝜋𝜋𝑡𝑡� = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1. Thus, real rates (and hence the Euler equation) 
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potentially matter for inflation dynamics and determinacy. Holden (2021) 

points out that even if 𝑟𝑟𝑡𝑡 is exogenous, with 𝑟𝑟𝑡𝑡 = 0 for 𝑡𝑡 ≠ 1, and even if we 
assume that 𝜋𝜋𝑡𝑡 → 0 as 𝑡𝑡 → ∞, still there are multiple solutions for a value of 𝑟𝑟1 

(𝑟𝑟1 = 0), and no solution for other values of 𝑟𝑟1 (𝑟𝑟1 < 0). 
Holden (2021) shows this multiplicity and non-existence of perfect 

foresight solutions is the rule for NK models with a ZLB, even with a terminal 
condition on inflation ensuring an eventual escape from the ZLB. Additionally, 

there are further solutions converging to a deflationary steady state with 
interest rates at zero (Benhabib, Schmitt-Grohé & Uribe 2001). Furthermore, 

under rational expectations there are always at least as many solutions as under 
perfect foresight, as well as a continuum of further solutions which switch 

based on a sunspot (Holden 2021). 
For example, forward looking NK models without fundamental shocks 

often have absorbing sunspot solutions of the following form (Mertens & Ravn 
2014; Schmidt 2016; Bilbiie 2022). The economy starts at the ZLB in period 1. 

While at the ZLB, there is a constant probability of 𝑞𝑞 ∈ [0,1] of remaining there 
in the next period. With probability 1 − 𝑞𝑞 though, the economy returns to the 

intended steady state and stays there for ever. As an example, suppose that the 
model is given by the following four equations:25  

𝜋𝜋𝑡𝑡 − 𝜋𝜋∗ = 𝛽𝛽𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋𝜋∗� + 𝜅𝜅𝑥𝑥𝑡𝑡, (10) 
𝑥𝑥𝑡𝑡 = 𝛿𝛿𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1 − 𝜍𝜍(𝑟𝑟𝑡𝑡 − 𝑛𝑛), (11) 

max�0, 𝑟𝑟𝑡𝑡 + 𝜋𝜋∗ + 𝜙𝜙(𝜋𝜋𝑡𝑡 − 𝜋𝜋∗)� = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1, 
with 𝜅𝜅𝜅𝜅 ≠ 0, 𝜙𝜙 > 1 and 𝑛𝑛 + 𝜋𝜋∗ > 0 (so there is a steady state with positive 

nominal rates). Then an equilibrium of the form described exists if and only if 
�1−𝛽𝛽𝛽𝛽��1−𝛿𝛿𝛿𝛿�−𝑞𝑞𝑞𝑞𝑞𝑞

𝜅𝜅𝜅𝜅 ≤ 0.26,27 This holds for 𝑞𝑞 sufficiently large when 𝜅𝜅𝜅𝜅 > 0 and 

either 𝛽𝛽 ≤ 1 and 𝛿𝛿 ≥ 1, or 𝛽𝛽 ≥ 1 and 𝛿𝛿 ≤ 1, or 𝛿𝛿 ≥ 0 and 𝛽𝛽 ∈ [1 − 𝜅𝜅𝜅𝜅, 1], or 𝛽𝛽 ≥ 0 

 
25 This is the model of Subsection 3.2, but without shocks, and allowing for a non-zero long-run inflation 
target 𝜋𝜋∗ with full indexation of non-resetting firms to this target. 
26 This is proven in Supplemental Appendix J.8. We also examine two-state sunspot solutions without an 
absorbing state in that appendix. Nakata & Schmidt (2022) look at such equilibria under optimal policy. 
27 In line with the results of Bilbiie (2022), this is identical to the condition for positive monetary shocks 
to lower the nominal rate when 𝑞𝑞 = 𝜌𝜌, in the notation of footnote 17. (The author again thanks a referee 

for this observation.) 
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and 𝛿𝛿 ∈ [1 − 𝜅𝜅𝜅𝜅, 1]. And it holds for 𝑞𝑞 sufficiently small when 𝜅𝜅𝜅𝜅 < 0. Hence for 

most reasonable calibrations of the model (including those aimed at capturing 
the impact of heterogeneity) it holds for at least some 𝑞𝑞, implying that the 

existence of sunspot equilibria is common even under real rate rules. 

4.2 Modified inflation targets 
One of the sources of equilibrium non-existence is that the monetary rule is 

implicitly targeting an infeasible level for inflation when real rates are low. If 

inflation is at target, nominal interest rates should be positive. A modified 
inflation target can ensure this. Furthermore, by introducing some history 

dependence we can rule out sunspot equilibria of the type previously 
considered; interest rate smoothing will do. 

Building on the smoothed rule of equation (5), suppose that from period 1 
onwards, the central bank uses the rule: 

𝑖𝑖𝑡𝑡 = max�0, 𝑟𝑟𝑡𝑡 + (𝑖𝑖𝑡𝑡−1 − 𝑟𝑟𝑡𝑡−1) + �𝔼𝔼𝑡𝑡𝜋̌𝜋𝑡𝑡+1
∗ − 𝔼𝔼𝑡𝑡−1𝜋̌𝜋𝑡𝑡

∗� + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡
∗)� , (12) 

where 𝜃𝜃 > 0 and where the modified inflation target, 𝜋̌𝜋𝑡𝑡
∗, is given by: 

𝜋̌𝜋𝑡𝑡
∗ ≔ max{𝜋𝜋𝑡𝑡

∗, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1} , (13) 
with 𝜋𝜋𝑡𝑡

∗ the original inflation target, and 𝜖𝜖 > 0 some small constant (10 

annualized bps say). Note that if inflation is at the modified target, then 
nominal rates must be positive, by the Fisher equation.28 We assume that the 

central bank announces the modified inflation target at the start of each period, 
so agents do not necessarily need to understand the rule that produces it. Since 

it is hard to give sense to expectations of the modified target before the rule is 
introduced, we will sometimes also assume that 𝔼𝔼0𝜋̌𝜋1

∗ = 𝔼𝔼0𝜋𝜋1, or at least that 

the central bank acts in period 1 as if that were true. 
Under this modified rule, 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡
∗) for all 𝑡𝑡 ≥ 1 is an 

equilibrium.29 This means that 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡
∗ for all 𝑡𝑡 > 1,30 and this will also hold for 

 
28 This modified target is higher (in expectation) than necessary to ensure positive nominal rates. It would 
be enough to set 𝜋̌𝜋𝑡𝑡

∗ ≔ 𝜋𝜋𝑡𝑡
∗ + max{0, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡

∗}, which has a lower 𝑡𝑡 − 1 dated conditional 
expectation than max{𝜋𝜋𝑡𝑡

∗, 𝜖𝜖 − 𝑟𝑟𝑡𝑡−1}, by Jensen’s inequality. However, the target of equation (13) is likely 
to be easier to communicate, and easier to learn, as it is a constraint on observables, not expectations. 
29 That this is the unique equilibrium in the absence of the ZLB follows from the results of Subsection 2.1. 

Thus, it suffices to establish that 𝑖𝑖𝑡𝑡 > 0 for all 𝑡𝑡 ≥ 1 under this equilibrium. This follows as 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 =
𝔼𝔼𝑡𝑡𝜋̌𝜋𝑡𝑡+1

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡�𝜋𝜋𝑡𝑡+1 − 𝜋̌𝜋𝑡𝑡−1
∗ �, i.e., �1 + 𝜃𝜃−1�𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = �1 + 𝜃𝜃−1�𝔼𝔼𝑡𝑡𝜋̌𝜋𝑡𝑡+1

∗ , so 𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑡𝑡 = 𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 = 𝔼𝔼𝑡𝑡𝜋̌𝜋𝑡𝑡+1
∗ ≥
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𝑡𝑡 = 1 under the initial condition 𝔼𝔼0𝜋̌𝜋1
∗ = 𝔼𝔼0𝜋𝜋1. Hence, under this monetary 

rule, no matter the form of the rest of the model, there is a closed form solution 
for inflation in terms of observables. The existence of a closed form solution is 

particularly desirable as it is likely to be easier for agents to coordinate on 
simple solutions. Even the existence of a solution is notable, as under the simple 

rule of the previous subsection there could be no solution at all.  
Additionally, under the 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡
∗) solution, 𝜋𝜋𝑡𝑡 is bounded 

below by −𝑟𝑟𝑡𝑡−1.31 This prevents the severe deflations that can accompany 
shocks taking the economy to the ZLB under standard monetary rules. It also 

removes all of the deflationary bias that usually accompanies the ZLB (Hills, 
Nakata & Schmidt 2019). Instead, the definition of 𝜋̌𝜋𝑡𝑡

∗ implies that 𝔼𝔼𝜋𝜋𝑡𝑡 ≥ 𝔼𝔼𝜋𝜋𝑡𝑡
∗,31 

so there is a mild inflationary bias. 
Moreover, at least in the absence of uncertainty, the 𝜋𝜋𝑡𝑡 ≡ 𝜋̌𝜋𝑡𝑡

∗ − 𝜃𝜃−1𝔼𝔼𝑡𝑡−1(𝜋𝜋𝑡𝑡 −
𝜋̌𝜋𝑡𝑡

∗) solution is unique, assuming that 𝜋𝜋𝑡𝑡 is bounded, and that the economy 
eventually escapes the ZLB for good.32 This is another improvement on the 

performance of the naïve real rate rule of the previous subsection, where there 
were multiple perfect-foresight paths even given these assumptions. 

4.3 Ruling out sunspot equilibria 
The rule of equation (12) also helps rule out sunspot equilibria. The usual 

explanation for the benefit of history dependence when there is a ZLB is as 
follows: history dependence leads to higher inflation after exiting the ZLB, 

raising inflation expectations even while at the ZLB. However, this channel 
cannot help rule out the sunspot equilibria that exist when the ZLB state is 

sufficiently persistent, as in the fully persistent limit, inflation in the non-ZLB 
 

𝜖𝜖 − 𝑟𝑟𝑡𝑡 > −𝑟𝑟𝑡𝑡, implying 𝑖𝑖𝑡𝑡 > 0. 
30 Let 𝑡𝑡 > 1. By the previous footnote, 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝔼𝔼𝑡𝑡−1𝜋̌𝜋𝑡𝑡

∗, so from the solution for inflation, 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡
∗. 

31 At least for 𝑡𝑡 > 1, but also for 𝑡𝑡 = 1 under the initial condition 𝔼𝔼0𝜋̌𝜋1
∗ = 𝔼𝔼0𝜋𝜋1. 

32 Strictly, without further assumptions we only have uniqueness conditional on the path of 𝜋̌𝜋𝑡𝑡
∗. This is 

proven in Supplemental Appendix J.9. For example, an endogenous 𝜋𝜋𝑡𝑡
∗ could produce multiple solutions 

for 𝜋̌𝜋𝑡𝑡
∗. However, at least when 𝜋𝜋𝑡𝑡

∗ is exogenous, there is unconditional uniqueness for standard models. 
For example, with the rest of the model given by equations (10) and (11), with 𝜋𝜋𝑡𝑡

∗ exogenous and 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 >

− 1
2, there is a unique perfect foresight solution under the additional terminal condition 𝜋̌𝜋𝑡𝑡

∗ − 𝜋𝜋𝑡𝑡
∗ → 0 as 

𝑡𝑡 → ∞ (again proved in Supplemental Appendix J.9). Moreover, with 𝛽𝛽+𝛿𝛿
𝜅𝜅𝜅𝜅 ≥ 0, this uniqueness is robust, 

in the sense that no small, continuous change to the model or its parameters could overturn it.  
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state(s) has no impact on inflation in the ZLB state.33 Instead, history 

dependence helps rule out sunspot equilibria by preventing any transition into 
the ZLB state. History dependence allows the central bank to have a weak 

contemporaneous response to inflation. With the monetary rule flatter than the 
Fisher equation, uniqueness is restored. 

We want to know when it is possible for the economy to make a sunspot 
driven jump to the ZLB. So, we need to look at two or more state sunspot 

solutions without an absorbing “good” state. Supplemental Appendix J.8 looks 
at two-state sunspot solutions to the model of Subsection 4.1 with the naïve real 

rate rule. It shows that given mild parameter restrictions,34 a sunspot solution 
only exists when both the “bad” (ZLB) state and the “good” (non-ZLB) state 

are sufficiently persistent. Thus, to examine whether the rule of equation (12) 
prevents similar sunspot solutions, it suffices to consider the extreme case in 

which the economy remains in its current state with probability one. This 
avoids the technical challenges of solving for sunspot solutions with 

endogenous state variables. 
Consider then the model of equations (10), (11), (12) and (13), with 𝜋𝜋𝑡𝑡

∗ =
𝜋𝜋∗ for all 𝑡𝑡, 𝑛𝑛 + 𝜋𝜋∗ > 𝜖𝜖 > 0, 𝜃𝜃 > 0, 𝜅𝜅𝜅𝜅 > 0 and �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0.35 
Suppose that in period 0, the economy was away from the ZLB, and was 

expected to stay there with probability one. Thus, 𝑖𝑖0 − 𝑟𝑟0 = 𝔼𝔼0𝜋𝜋1 = 𝔼𝔼0𝜋̌𝜋1
∗ =

𝜋̌𝜋1
∗ = 𝜋𝜋∗. However, in period 1, a “zero probability sunspot shock” hits, so that 

with probability one, for all 𝑡𝑡 ≥ 1, 0 = 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1. (The expectation drops out 
of the Fisher equation as there is no other uncertainty.) Thus for 𝑡𝑡 ≥ 1, the 

Phillips curve and Euler equation imply that 𝜋𝜋𝑡𝑡 = 𝜋𝜋Z and 𝑥𝑥𝑡𝑡 = 𝑥𝑥Z where 
�1 − 𝛽𝛽�(𝜋𝜋Z − 𝜋𝜋∗) = 𝜅𝜅𝑥𝑥𝑡𝑡 and (1 − 𝛿𝛿)𝑥𝑥Z = 𝜍𝜍(𝜋𝜋Z + 𝑛𝑛), so: 

𝜋𝜋Z − 𝜋𝜋∗ =
𝜅𝜅𝜅𝜅(𝑛𝑛 + 𝜋𝜋∗)

�1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0. 

 
33 Nie & Roulleau-Pasdeloup (2022) show that the higher post-ZLB inflation channel can help rule out 
sunspots given a fixed persistence of the ZLB state. But with policy fixed, sunspots always exist in their 
set-up if the ZLB state is allowed to be sufficiently persistent. 
34 𝜅𝜅𝜅𝜅 > 0, �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0, 𝛽𝛽𝛽𝛽 ≥ 0, 𝜙𝜙 sufficiently large. Note: if 𝜅𝜅𝜅𝜅 > 0, then �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0 
when either 𝛽𝛽 ≤ 1 and 𝛿𝛿 ≥ 1, or 𝛽𝛽 ≥ 1 and 𝛿𝛿 ≤ 1, or 𝛿𝛿 > 0 and 𝛽𝛽 ∈ [1 − 𝜅𝜅𝜅𝜅, 1], or 𝛽𝛽 > 0 and 𝛿𝛿 ∈ [1 − 𝜅𝜅𝜅𝜅, 1]. 
35 The final two assumptions ensure that with the naïve real rate rule, a sunspot solution only exists with 

sufficiently persistent states. The previous footnote gives sufficient conditions for �1 − 𝛽𝛽�(1 − 𝛿𝛿) − 𝜅𝜅𝜅𝜅 < 0. 
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This is consistent with equilibrium if and only if the interest rate would be non-

positive for 𝑡𝑡 ≥ 1 were it not for the ZLB. In period 1, this requires: 
0 ≥ 𝑟𝑟1 + (𝑖𝑖0 − 𝑟𝑟0) + �𝔼𝔼1𝜋̌𝜋2

∗ − 𝔼𝔼0𝜋̌𝜋1
∗� + 𝜃𝜃�𝜋𝜋1 − 𝜋̌𝜋1

∗� 
= max{0, 𝜖𝜖 + 𝜋𝜋Z − 𝜋𝜋∗} + (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗). 

However, if 𝜃𝜃 < 1, then (𝜃𝜃 − 1)(𝜋𝜋Z − 𝜋𝜋∗) > 0, so the condition cannot hold. 

Thus, as long as the central bank does not respond too aggressively to inflation, 
there cannot be sunspot solutions of the kind previously described. 

Furthermore, it follows that as long as the economy is currently sufficiently 
close to the “good” steady state, there is no way for the economy to ever jump 

to the ZLB. Crucial to this result is the fact that interest rate smoothing means 
we only need 𝜃𝜃 to be positive. It does not need to be greater than 1, as the state 

variables ensure the response to anticipated inflation deviations is 1 + 𝜃𝜃 > 1, as 
required by the Taylor principle. Thus, the modified inflation target rule 

delivers robust uniqueness, even in the presence of the ZLB. 

5 Practical implementation of real rate rules 
Until recently, central banks concentrated their monetary interventions in 

overnight debt markets. However, with the rise of quantitative easing, many 

central banks have been buying substantial quantities of longer maturity 
sovereign debt. There is no reason then that central banks could not conduct 

open market operations to fix the interest rate on longer maturity bonds. Since 
long maturity bonds are less likely to hit the ZLB, this lessens the ZLB’s impact. 

Furthermore, using longer maturity bonds is convenient under a real rate rule, 
as in most countries, inflation-protected securities are only issued a few times 

per year, and at long maturities, e.g., five years. As a result, markets in shorter 
maturity inflation-protected securities may be illiquid or even unavailable, and 
it can be difficult to reconstruct the short end of the real yield curve. 

Inflation indexation lags further complicate the use of short maturity 

inflation-protected securities (see e.g. Gürkaynak, Sack & Wright (2010)). For 
example, with time measured in quarters, 3-month maturity US TIPS have a 

period 𝑡𝑡 + 1 realized yield of 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡, not 𝑟𝑟𝑡𝑡 + 𝜋𝜋𝑡𝑡+1 as one might have expected. 
Additionally, there is an information lag as inflation is not observed 

contemporaneously. By using longer maturity bonds, the impact of these 
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indexation and information lags are reduced. This section examines the 

performance of real rate rules when the central bank implements them using 
multiperiod debt in the presence of indexation and information lags. 

5.1 Set-up 
We aim to describe a set-up with many of the frictions that would be 

problematic for a naïve implementation of a real rate rule. The central bank’s 
trading desk would be tasked with maintaining a particular level of the gap 

between nominal and real rates, according to the market for bonds of a certain 
maturity. We let 𝑇𝑇 ≥ 1 be the time to maturity of these bonds, measured in 

periods. The units of time do not need to coincide with the maturity of the bond. 
For example, 𝑇𝑇 may be 60 if periods are months and five-year bonds are used. 

We allow for the possibility that inflation is not observed 
contemporaneously. For example, US CPI is released with a one-month lag. To 

capture this, while keeping to the convention that 𝔼𝔼𝑡𝑡𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡 for all 𝑡𝑡-dated 
endogenous variables 𝑣𝑣𝑡𝑡, we assume that market participants and the central 

bank use the 𝑡𝑡 − 𝑆𝑆 information set in period 𝑡𝑡 (i.e. they know the values of all 
𝑡𝑡 − 𝑆𝑆 and earlier dated variables), for some 𝑆𝑆 ≥ 0. Since the central bank does 

not know 𝜋𝜋𝑡𝑡 at 𝑡𝑡, we assume that they respond to deviations of 𝜋𝜋𝑡𝑡−𝑆𝑆 from target, 
rather than to deviations of 𝜋𝜋𝑡𝑡. 

We write 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 for the nominal yield per-period on a 𝑇𝑇-period nominal bond 
at 𝑡𝑡, and 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 for the real yield per-period on a 𝑇𝑇-period inflation-protected 

bond at 𝑡𝑡. This notation captures the fact that period 𝑡𝑡 nominal and real yields 
must be fixed in period 𝑡𝑡 − 𝑆𝑆: market participants and the central bank only 

have access to the period 𝑡𝑡 − 𝑆𝑆 information set at 𝑡𝑡, and these agents must know 
period 𝑡𝑡 nominal and real rates. 

We allow for a wedge in the Fisher equation to capture inflation risk premia, 
liquidity premia, asymmetric term premia and even departures from full 

information rational expectations amongst market participants. Since only 𝑡𝑡 −
𝑆𝑆 dated variables are known in period 𝑡𝑡, we denote the period 𝑡𝑡 value of this 
shock by 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆. I.e., risk premia (etc.) will be determined 𝑆𝑆 periods in advance, 
though market participants and the central bank will not act on this, as they use 

𝑆𝑆 period old data. 
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We also allow for the possibility of an indexation lag in the return of the real 

bond. We assume that the lag is 𝐿𝐿 periods, where 𝐿𝐿 ≥ 𝑆𝑆. If periods are months, 
then 𝐿𝐿 would be 3 for the US (Gürkaynak, Sack & Wright 2010). 

5.2 The generalized Fisher equation and monetary rule 
Given all this, the Fisher equation coming from arbitrage between nominal 

and real bonds states that: 

𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 = 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇 � 𝜋𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

𝑇𝑇

𝑘𝑘=1
. 

We assume that 𝑇𝑇 − 𝐿𝐿 ≥ −𝑆𝑆, so that inflation dated 𝑡𝑡 − 𝑆𝑆 or later enters this 

equation. Otherwise, the Fisher equation becomes backward looking and 
determinacy conditions may be quite different. So, for the US, the central bank 

would have to use bonds with maturity of at least two months. 
Supplemental Appendix H presents empirical evidence that this five-year 

Fisher equation holds. There, we review some prior evidence, and show both 
that professional forecasts predict breakeven rates, and that breakeven rates 

forecast realised inflation. 
Based upon our previous rule (12), we suppose that from period 1 − 𝑆𝑆 

onwards, the central bank intervenes in 𝑇𝑇-period nominal bond markets to 
ensure that: 

𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 = max �0, 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈𝑡̅𝑡|𝑡𝑡−𝑆𝑆 + �𝑖𝑖𝑡𝑡−1|𝑡𝑡−1−𝑆𝑆 − 𝑟𝑟𝑡𝑡−1|𝑡𝑡−1−𝑆𝑆 − 𝜈𝜈𝑡̅𝑡−1|𝑡𝑡−1−𝑆𝑆�

+ 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇 � 𝜋̌𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

∗
𝑇𝑇

𝑘𝑘=1
− 𝔼𝔼𝑡𝑡−1−𝑆𝑆

1
𝑇𝑇 � 𝜋̌𝜋𝑡𝑡−1+𝑘𝑘−𝐿𝐿

∗
𝑇𝑇

𝑘𝑘=1
+ 𝜃𝜃�𝜋𝜋𝑡𝑡−𝑆𝑆 − 𝜋̌𝜋𝑡𝑡−𝑆𝑆

∗ �

+
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡−𝑆𝑆 − 𝜋̌𝜋𝑡𝑡−𝑆𝑆

∗ � − �𝜋𝜋𝑡𝑡−𝐿𝐿 − 𝜋̌𝜋𝑡𝑡−𝐿𝐿
∗ ���, 

where 𝜋̌𝜋𝑡𝑡
∗ is the modified inflation target (to be defined), 𝜈𝜈𝑡̅𝑡|𝑡𝑡−𝑆𝑆 is the central 

bank’s period 𝑡𝑡 belief about the level of 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆, and 𝜃𝜃 > 0. 𝜈𝜈𝑡̅𝑡|𝑡𝑡−𝑆𝑆 could also include 

a monetary policy shock component. We stress that the 𝑡𝑡|𝑡𝑡 − 𝑆𝑆 index here does 
not mean that the private sector knows monetary policy shocks 𝑆𝑆 periods in 

advance, as the private sector (and the central bank) uses the 𝑡𝑡 − 𝑆𝑆 information 
set at 𝑡𝑡. The final term here is a response to the change in relative inflation from 
period 𝑡𝑡 − 𝐿𝐿 to 𝑡𝑡 − 𝑆𝑆. This ensures that 𝜃𝜃 > 0 is sufficient for determinacy even 
when 𝑆𝑆 < 𝐿𝐿.36 
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Note that while under conventional monetary policy, nominal interest rates 

are approximately constant between monetary policy committee meetings, this 
may not be the case here. The rule effectively specifies a period 𝑡𝑡 level for 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 −
𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆, not for 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆. The level of 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 may fluctuate (perhaps in part due to 
unexpected changes in 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆), so the central bank’s trading desk could have to 

continuously tweak the level of 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 to hold 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 at its desired level. 
While this is a departure from current operating procedures, there is no reason 

why holding 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 approximately constant should be any harder than 
holding 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 approximately constant. This is thanks to the real-time 

observability of 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 via inflation-protected bonds. 
The central bank could also directly control 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 by promising to 

freely exchange $1 face value of real debt for $ exp�𝑇𝑇�𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆�� face value 
of nominal debt, as suggested by Cochrane (2017; 2018). Alternatively, the 

central bank could buy or sell a long-short portfolio containing $1 face value of 
nominal debt, and −$1 face value of real debt to hold the portfolio’s per-period 

return fixed at $�𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 − 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆�.37 Or, the central bank could directly pin down 
the contract rate on inflation swaps, as suggested in Subsection 3.3. 

We define the modified inflation target to ensure that 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 ≥ 𝜖𝜖, where 𝜖𝜖 > 0 
is a small constant (10 annualized bps say). As in the one period case, the 

central bank should announce the modified inflation target each period, so 
firms and households do not need to understand the precise law of motion of 

𝜋̌𝜋𝑡𝑡
∗. In particular, we define: 

𝜋̌𝜋𝑡𝑡
∗ ≔ max{𝜋̌𝜋𝑡𝑡

�𝑗𝑗�|𝑗𝑗 ∈ {1, … , 𝑇𝑇}}, 
where for 𝑗𝑗 ∈ {1, … , 𝑇𝑇}: 

𝜋̌𝜋𝑡𝑡
�𝑗𝑗� ≔ 𝜋𝜋𝑡𝑡

∗ + max
⎩�
⎨
�⎧0,

𝑇𝑇
𝑗𝑗 �𝜖𝜖 − 𝑟𝑟𝑡𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿|𝑡𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿−𝑆𝑆 − 𝜈𝜈𝑡̅𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿|𝑡𝑡+𝑗𝑗−1−𝑇𝑇+𝐿𝐿−𝑆𝑆�

−
1
𝑗𝑗 � 𝜋̌𝜋𝑡𝑡−𝑘𝑘

∗
𝑇𝑇−𝑗𝑗

𝑘𝑘=1
− 𝔼𝔼𝑡𝑡

1
𝑗𝑗 � 𝜋𝜋𝑡𝑡+𝑘𝑘

∗
𝑗𝑗−1

𝑘𝑘=0 ⎭�
⎬
�⎫. 

If 𝑇𝑇 = 1 and 𝐿𝐿 = 𝑆𝑆 = 0, then much as in Subsection 4.2, 𝜋̌𝜋𝑡𝑡
∗ = max�𝜋𝜋𝑡𝑡

∗, 𝜖𝜖 −
𝑟𝑟𝑡𝑡−1|𝑡𝑡−1 − 𝜈𝜈𝑡̅𝑡−1|𝑡𝑡−1�. More generally, the 𝜋̌𝜋𝑡𝑡

(1) component is enough to ensure that 
 

36 We examine determinacy without this term in Online Appendix E, and show that there is still 
determinacy as long as 𝜃𝜃 > 2

𝑇𝑇, so in the continuous time limit, 𝜃𝜃 > 0 is again sufficient. 
37 The author thanks Peter Ireland for this suggestion. 
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𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈𝑡̅𝑡|𝑡𝑡−𝑆𝑆 + 1
𝑇𝑇 ∑ 𝜋̌𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

∗𝑇𝑇
𝑘𝑘=1 ≥ 𝜖𝜖 for all 𝑡𝑡.38 The 𝜋̌𝜋𝑡𝑡

�𝑗𝑗� components for 𝑗𝑗 > 1 help 

to smooth the inflation increases over time. Rather than increasing the inflation 
target just in the final period of a bond that would otherwise violate the 

constraint, instead we smooth this increase over the life of the bond. The 
particular structure here is designed to minimise the risk of self-fulfilling 

dynamics from the various bounds. Note that we do not attempt to ensure that 
shorter maturity bonds are away from the ZLB, thus the higher is 𝑇𝑇, the closer 

𝜋̌𝜋𝑡𝑡
∗ should be to 𝜋𝜋𝑡𝑡

∗. 

5.3 Solution and robustness 
Define Δ𝑡𝑡 ≔ �𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡� − �𝜈𝜈𝑡𝑡−1+𝑆𝑆|𝑡𝑡−1 − 𝜈𝜈𝑡̅𝑡−1+𝑆𝑆|𝑡𝑡−1� and: 

𝑒𝑒𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡
1
𝑇𝑇 � �𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋̌𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇−𝐿𝐿+𝑆𝑆

𝑘𝑘=1
. 

Then combining the multi-period Fisher equation and the monetary rule 

implies that if the ZLB never binds (as our modified target should ensure), then 
𝑒𝑒𝑡𝑡 + Δ𝑡𝑡 = 𝑒𝑒𝑡𝑡−1 + 𝜃𝜃(𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗). (The final term in the monetary rule has dropped 

out due to cancellation with the first 𝐿𝐿 − 𝑆𝑆 terms of the sums.) Substituting this 
back into the definition of 𝑒𝑒𝑡𝑡 gives the purely forward-looking recurrence: 

𝜃𝜃𝜃𝜃𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 � �𝑒𝑒𝑡𝑡+𝑘𝑘 − 𝑒𝑒𝑡𝑡+𝑘𝑘−1 + Δ𝑡𝑡+𝑘𝑘�
𝑇𝑇−𝐿𝐿+𝑆𝑆

𝑘𝑘=1
. (14) 

Any solution for 𝑒𝑒𝑡𝑡 gives a corresponding solution for 𝜋𝜋𝑡𝑡 as 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡
∗ +

𝜃𝜃−1(𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1 + Δ𝑡𝑡). Note that since we assume the rule is introduced in period 
1 − 𝑆𝑆, equation (14) will hold for all 𝑡𝑡 ≥ 1. 

We start by proving determinacy when Δ𝑡𝑡 is exogenous. We separately 
consider the two cases, 𝑇𝑇 = 𝐿𝐿 − 𝑆𝑆 and 𝑇𝑇 > 𝐿𝐿 − 𝑆𝑆 (recall that we assume 𝑇𝑇 ≥ 𝐿𝐿 −
𝑆𝑆). In the first case, equation (14) states that 𝜃𝜃𝜃𝜃𝑒𝑒𝑡𝑡 = 0, giving a unique solution. 
In the latter case, there is a unique solution if and only if it has a unique solution 

when Δ𝑡𝑡 = 0 for all 𝑡𝑡. In this case, via the substitution 𝑒𝑒𝑡𝑡 = 𝑐𝑐𝜆𝜆𝑡𝑡 we have the 
characteristic polynomial, 𝜃𝜃𝜃𝜃 = 𝜆𝜆𝑇𝑇−𝐿𝐿+𝑆𝑆 − 1, meaning |𝜆𝜆| = (1 + 𝜃𝜃𝜃𝜃)

1
𝑇𝑇−𝐿𝐿+𝑆𝑆 > 1. 

Therefore, all the polynomial’s roots are outside the unit circle, which implies 
 

38 Strictly, we want to ensure that 0 < 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆 = 𝑟𝑟𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆 + 𝔼𝔼𝑡𝑡−𝑆𝑆
1
𝑇𝑇 ∑ 𝜋̌𝜋𝑡𝑡+𝑘𝑘−𝐿𝐿

∗𝑇𝑇
𝑘𝑘=1 . If 𝜈𝜈𝑡̅𝑡|𝑡𝑡−𝑆𝑆 ≠ 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆, then this 

is not guaranteed. However, if the tracking error �𝜈𝜈𝑡̅𝑡|𝑡𝑡−𝑆𝑆 − 𝜈𝜈𝑡𝑡|𝑡𝑡−𝑆𝑆� can be bounded with probability one, then 
we can set 𝜖𝜖 to that bound and ensure 0 < 𝑖𝑖𝑡𝑡|𝑡𝑡−𝑆𝑆. If the tracking error is not bounded with probability one, 

then we can still make the probability of hitting the ZLB negligible by setting a high enough 𝜖𝜖. 
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determinacy as equation (14) is purely forward looking. Thus, at least when Δ𝑡𝑡 

is exogenous, there is a unique solution for inflation.39 In the special case in 
which the central bank observes 𝜈𝜈𝑡𝑡 so 𝜈𝜈𝑡̅𝑡 = 𝜈𝜈𝑡𝑡, then 𝜋𝜋𝑡𝑡 = 𝜋𝜋𝑡𝑡

∗ for all 𝑡𝑡 > 1. 

In the general case in which Δ𝑡𝑡 is potentially endogenous, as long as it is 
stationary, the solution must take the form 𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 ∑ 𝐴𝐴𝑗𝑗Δ𝑡𝑡+𝑗𝑗

∞
𝑗𝑗=1 . Substituting this 

into (14) then matching terms gives that for 𝑗𝑗 ≤ 𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆, 𝐴𝐴𝑗𝑗 = (1 + 𝜃𝜃𝜃𝜃)−1, 
while for 𝑗𝑗 > 𝑇𝑇 − 𝐿𝐿 + 𝑆𝑆, 𝐴𝐴𝑗𝑗 = (1 + 𝜃𝜃𝜃𝜃)−1𝐴𝐴𝑗𝑗−𝑇𝑇+𝐿𝐿−𝑆𝑆. Thus: 

𝑒𝑒𝑡𝑡 = 𝔼𝔼𝑡𝑡 �(1 + 𝜃𝜃𝜃𝜃)
−�

𝑗𝑗
𝑇𝑇−𝐿𝐿+𝑆𝑆�

Δ𝑡𝑡+𝑗𝑗

∞

𝑗𝑗=1
, 

where for all 𝑧𝑧, ⌈𝑧𝑧⌉ denotes the smallest integer greater or equal to 𝑧𝑧. For 

example, in the simple case in which Δ𝑡𝑡 is independent across time (meaning 
that 𝜈𝜈𝑡𝑡+𝑆𝑆|𝑡𝑡 − 𝜈𝜈𝑡̅𝑡+𝑆𝑆|𝑡𝑡 follows a random walk), 𝑒𝑒𝑡𝑡 = 0, so for 𝑡𝑡 > 1, 𝜋𝜋𝑡𝑡 = 𝜋̌𝜋𝑡𝑡

∗ + 𝜃𝜃−1Δ𝑡𝑡. 

Or if Δ𝑡𝑡 follows an AR(1) process with persistence 𝜌𝜌, then 𝑒𝑒𝑡𝑡 = 𝐸𝐸Δ𝑡𝑡 (also AR(1)), 
where 𝐸𝐸 ≔ 𝜌𝜌�1 − 𝜌𝜌𝑇𝑇−𝐿𝐿+𝑆𝑆��1 − 𝜌𝜌�−1�1 − 𝜌𝜌𝑇𝑇−𝐿𝐿+𝑆𝑆 + 𝜃𝜃𝜃𝜃�−1, so 𝑥𝑥𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋̌𝜋𝑡𝑡

∗ =
𝜃𝜃−1�(1 + 𝐸𝐸)Δ𝑡𝑡 − 𝐸𝐸Δ𝑡𝑡−1�. 

Furthermore, under even weaker conditions than those used in Subsection 

3.3, we have that 𝜋𝜋𝑡𝑡 ≈ 𝜋𝜋𝑡𝑡
∗ for large 𝜃𝜃, even when Δ𝑡𝑡 is endogenous (proven in 

Supplemental Appendix J.10). These conditions are very mild, as already 

argued in Subsection 3.3. Thus, with 𝜃𝜃 large, even if the central bank imperfectly 
tracks the risk (etc.) premium 𝜈𝜈𝑡𝑡, and even if their error is endogenous and non-

stationary (𝐼𝐼(1)), it will still be the case that 𝜋𝜋𝑡𝑡 ≈ 𝜋𝜋𝑡𝑡
∗ in all periods. I.e., even in 

the presence of unobservable endogenous, non-stationary wedges in the Fisher 

equation, the central bank can still determinately implement an arbitrary path 
for inflation. The presence of information or indexation lags makes no 

fundamental difference to this. 

6 Empirical test 
Would the behaviour of the US Federal Reserve have been drastically 

different if it were following a real rate rule? Or have nominal rates in the US 

closely tracked what they would have been under a real rate rule? We 
previously argued that real rate rules could explain any observed outcomes, 

 
39 We do not have the indeterminacy issues for rules setting long-rates that were noted by McGough, 

Rudebusch & Williams (2005), due to the presence of the real rate in our rule. 
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given an appropriate path of 𝜋𝜋𝑡𝑡
∗. Thus, to design a reasonable empirical test of 

the explanatory power of real rate rules, we need additional data to discipline 
𝜋𝜋𝑡𝑡

∗. Luckily, for the US this is available, via the Summary of Economic 

Projections. Each quarter, Federal Reserve board members and regional bank 
presidents are asked for their projections for the economy, conditional on the 

Fed following what they believe to be “appropriate monetary policy”.11 Their 
projections for inflation thus represent what they believe to be the ideal 

outcome for inflation, given the economy’s state, i.e. they are measures of 𝜋𝜋𝑡𝑡
∗. 

In Supplemental Appendix I we document how we recover a quarterly time 

series for 𝜋𝜋𝑡𝑡
∗ from data on these projections at different horizons. 

Armed with estimates of 𝜋𝜋𝑡𝑡
∗, we can then estimate the practical real rate rule 

introduced in Section 5 on actual quarterly US CPI and TIPS breakeven inflation 
data (Q4 2008 to Q4 2022). We work with five-year US treasuries and TIPS, so 

𝑇𝑇 = 20. Since annual yields on five-year US treasuries never dropped below 
0.19 over our sample,40 we ignore the ZLB. We take 𝐿𝐿 = 1 (i.e., three months) 

and 𝑆𝑆 = 0, since the true CPI release delay of below one month is less than half 
of the length of a period (three months). For simplicity we write (e.g.) 𝜈𝜈𝑡𝑡 rather 

than 𝜈𝜈𝑡𝑡|𝑡𝑡. Thus, we wish to estimate: 

𝑦𝑦𝑡𝑡 ≔ 𝔼𝔼𝑡𝑡
1
𝑇𝑇 ��𝜋𝜋𝑡𝑡+𝑘𝑘 − 𝜋𝜋𝑡𝑡+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
− 𝔼𝔼𝑡𝑡−1

1
𝑇𝑇 ��𝜋𝜋𝑡𝑡−1+𝑘𝑘 − 𝜋𝜋𝑡𝑡−1+𝑘𝑘

∗ �
𝑇𝑇−1

𝑘𝑘=0
+ 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1

−
1
𝑇𝑇 �(𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡

∗) − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1
∗ �� = 𝜃𝜃𝑥𝑥𝑡𝑡 + 𝜀𝜀𝜈𝜈̅,𝑡𝑡, 

where 𝑥𝑥𝑡𝑡 ≔ 𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗ and 𝜀𝜀𝜈𝜈̅,𝑡𝑡 ≔ 𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡̅𝑡−1. We describe the empirical counterpart 

of 𝑦𝑦𝑡𝑡 in Supplemental Appendix I.5. 
We begin by estimating 𝑦𝑦𝑡𝑡 = 𝜃𝜃𝑥𝑥𝑡𝑡 + 𝜀𝜀𝜈𝜈̅,𝑡𝑡 by OLS. This gives 𝜃𝜃 ≈ 0.033 with a 

heteroskedasticity and autocorrelation (HAC) robust p-value of 0.002 for a test 
of 𝜃𝜃 = 0. Thus, the OLS slope is significantly different from 0 at 1%. We plot the 

data and the OLS fit in Figure 8.41 
However, OLS is likely to be biased for two reasons. Firstly, the presence of 

measurement error in 𝜋𝜋𝑡𝑡
∗ leads to attenuation bias. Secondly, aside from any 

measurement error, 𝑥𝑥𝑡𝑡 is still likely to be correlated with the error term, and 
 

40 Data from https://fred.stlouisfed.org/series/DGS5.  
41 See Supplemental Appendix I for replication instructions for all these results. 
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hence endogenous. According to the model, 𝑥𝑥𝑡𝑡 is linear in Δ𝑡𝑡 = (𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1) −
(𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡̅𝑡−1) and its lags, and the error term is 𝜀𝜀𝜈𝜈̅,𝑡𝑡 = 𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡̅𝑡−1. If, as is plausible, 
Δ𝑡𝑡 and 𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡̅𝑡−1 are correlated, then 𝑥𝑥𝑡𝑡 will be endogenous. 

To reduce these biases, we instrument 𝑥𝑥𝑡𝑡 with the oil supply news shocks of 

Känzig (2021).42 The oil price news shocks have an immediate impact on 
inflation, as shown by Känzig (2021). They ought not to be driven by the 

monetary shock (𝜀𝜀𝜈𝜈̅,𝑡𝑡) or changes in 𝜋𝜋𝑡𝑡
∗, as they are constructed using a tight 

window around OPEC announcements, during which the US monetary stance 

should not have changed. As evidence, Känzig documents that the shocks are 
uncorrelated with standard measures of monetary policy surprises, and do not 

lead to immediate movements in the Fed funds rate. 
So, the oil price news shocks should be correlated with 𝑥𝑥𝑡𝑡, but not with 𝜀𝜀𝜈𝜈̅,𝑡𝑡 

(the monetary shock), as is required to be a valid instrument. This means they 
must be correlated with 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1, the change in the Fisher wedge. If Δ𝑡𝑡 is IID, 
then 𝑦𝑦𝑡𝑡 = 𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1, so 𝑦𝑦𝑡𝑡 should be correlated with these shocks. We observe a 
correlation of 36%, significantly different from 0 at a 1% level. 

A potential challenge to this instrument is that were the central bank really 
 

42 Känzig provides these shocks to download here: https://github.com/dkaenzig/oilsupplynews. We 

aggregate them to quarterly. 

Figure 1: Data and linear fits. The dotted line is the OLS estimate. The dashed line is the 

monetary shock-based estimate. The solid line is the IV estimate. 
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following a real rate rule, the Fed’s trading desk might detect the movement in 

𝜈𝜈𝑡𝑡 − 𝜈𝜈𝑡𝑡−1 and respond with a similar change in 𝜈𝜈𝑡̅𝑡 − 𝜈𝜈𝑡̅𝑡−1, even within the tight 
window used in constructing the shocks. However, given the observed smooth 

path of Fed Treasury holdings, this seems unlikely in practice.43 
The IV estimates give 𝜃𝜃 ≈ 0.062 with a HAC p-value of 0.003 for a test of 𝜃𝜃 =

0.44 Thus, our preferred estimate of 𝜃𝜃 is significantly different from 0 even at a 
1% level.45 The residuals from this regression are measures of the monetary 

policy shock, 𝜀𝜀𝜈𝜈̅,𝑡𝑡. As such, they should be correlated with the monetary shocks 
identified by Bauer & Swanson (2023), aggregated to quarterly. This correlation 

is 14% over the available sample (Q4 2008 to Q4 2019). That this number is not 
higher is perhaps unsurprising given that nominal rates were near zero for most 

of the sample, making it hard for the Bauer & Swanson high frequency 
identification method to pick up much of a signal. 

The correlation of the residuals with the Bauer Swanson shocks suggests an 
alternative estimate of 𝜃𝜃 as the value that maximizes the correlation between 

the residuals and these shocks.46 This gives an almost identical value of 𝜃𝜃 ≈
0.059, albeit with far larger standard errors. That this estimate is so close 

nonetheless supplies further evidence in support of our IV estimate. 
Given our estimate of 𝜃𝜃, we can also examine how much of the variance of 

various rates can be explained by terms other than the direct effect of the 
monetary policy shock 𝜀𝜀𝜈𝜈̅,𝑡𝑡. In particular, we calculate RSS ≔ �𝑦𝑦𝑡𝑡 − 𝜃𝜃𝑥𝑥𝑡𝑡�2 and 

then evaluate 1 − RSS
TSS, where TSS is the total sum of squares from a rate of 

interest. The IV estimates explain 49.1% of the variance of changes in five-year 

breakeven inflation expectations, 53.3% of the variance of changes in five-year 
 

43 See https://fred.stlouisfed.org/series/WSHOTSL.  
44 We also run the OLS and IV regressions without the 1

𝑇𝑇 ��𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑡𝑡
∗� − �𝜋𝜋𝑡𝑡−1 − 𝜋𝜋𝑡𝑡−1

∗ �� term on the left-
hand side. This gives 𝜃𝜃 ≈ 0.089 (OLS) and 𝜃𝜃 ≈ 0.130 (IV) with both HAC p-values for a test of 𝜃𝜃 = 0 below 

0.0001. Reassuringly, the critical value for determinacy without the extra term is 2𝑇𝑇 = 0.1, so the IV estimate 
is high enough for determinacy, even without the extra term. (The p-value on a test of 𝜃𝜃 = 0.1 is 0.26.) 
45 The first stage F statistic is 42.17 which is generally considered high enough for reliable inference. 
46 Straightforward algebra shows that this is equivalent to running the regression 𝑚𝑚𝑡𝑡 = 𝑎𝑎𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑦𝑦𝑡𝑡 + 𝜊𝜊𝑡𝑡, 
where 𝑚𝑚𝑡𝑡 is the monetary shock series and 𝜊𝜊𝑡𝑡 captures noise in the monetary shock series, and then 
estimating 𝜃𝜃 by − 𝑎𝑎

𝑏𝑏. Standard errors can then be estimated via the delta-method. This estimator is 

consistent if 𝑚𝑚𝑡𝑡 = 𝜒𝜒𝜀𝜀𝜈𝜈,̅𝑡𝑡 + 𝜊𝜊𝑡𝑡, where the noise 𝜊𝜊𝑡𝑡 is uncorrelated with 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡. 
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treasury yields, 97.4% of the variance of levels of five-year breakeven inflation 

expectations, and 97.5% of the variance of levels of five-year treasury yields. 
Thus, our monetary rule explains almost all the variance in five-year yields. A 

real rate rule is a good model of actual Federal Reserve behaviour. 

7 Challenges to real rate rules 
Of course, the world is more complicated than the simple linear models we 

have presented in this paper. While the robustness to the presence of 

endogenous wedges ought to reassure us that real rate rules continue to work 
under many departures from our base assumptions, still we may worry about 

how real rate rules work in non-linear economies, or under bounded rationality. 
We address these particular concerns in the first two subsections below. We 

then go on to show that there is generically a stable equilibrium under a real 
rate rule even with active fiscal policy. 

7.1 Risk premia and non-linear models 
We have focussed on linearized models in the rest of this paper. In this 

subsection we verify that real rate rules still work in fully non-linear models. 
While we have already shown that real rate rules continue to work in the 

presence of endogenous risk premia under mild conditions (in Subsection 3.3), 
it is still reassuring to check things work in the non-linear case.  

Suppose that Ξ𝑡𝑡+1 is the real stochastic discount factor (SDF) between 
period 𝑡𝑡 and period 𝑡𝑡 + 1, that 𝐼𝐼𝑡𝑡 is the gross nominal interest rate (so 𝑖𝑖𝑡𝑡 = log 𝐼𝐼𝑡𝑡) 

and that 𝑅𝑅𝑡𝑡 is the gross real interest rate (so 𝑟𝑟𝑡𝑡 = log 𝑅𝑅𝑡𝑡). Then the pricing 
equations for one-period nominal and real bonds imply: 

𝐼𝐼𝑡𝑡𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1
Π𝑡𝑡+1

= 1, 𝑅𝑅𝑡𝑡𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1 = 1. 

We suppose that the central bank’s target for period 𝑡𝑡 + 1 gross inflation is 
Π𝑡𝑡+1|𝑡𝑡

∗ , which they announce in period 𝑡𝑡. With this target, the nonlinear version 
of equation (3) is the following rule: 

𝐼𝐼𝑡𝑡 = 𝑅𝑅𝑡𝑡Π𝑡𝑡+1|𝑡𝑡
∗ �

Π𝑡𝑡
Π𝑡𝑡|𝑡𝑡−1

∗ �
𝜙𝜙

. 

Combining this rule with the bond pricing equations implies that: 
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𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1

Π𝑡𝑡+1|𝑡𝑡
∗

Π𝑡𝑡+1
= �

Π𝑡𝑡|𝑡𝑡−1
∗

Π𝑡𝑡
�

𝜙𝜙

. 

It is easy to see that Π𝑡𝑡 = Π𝑡𝑡|𝑡𝑡−1
∗  is always one solution of this equation, as 

𝔼𝔼𝑡𝑡
Ξ𝑡𝑡+1

𝔼𝔼𝑡𝑡Ξ𝑡𝑡+1
= 1. Thus, robust real rate rules are always consistent with stable 

inflation, even in fully non-linear models. 
Furthermore, under mild assumptions,47 there exists a constant 𝑍𝑍 ≥ 1 such 

that for all sufficiently high 𝜙𝜙, 1 ≤ Π𝑡𝑡|𝑡𝑡−1
∗

Π𝑡𝑡
≤ 𝑍𝑍

1
𝜙𝜙−1. This upper bound tends to 1 as 

𝜙𝜙 goes to ∞, thus for large 𝜙𝜙, any solution must have Π𝑡𝑡 ≈ Π𝑡𝑡|𝑡𝑡−1
∗ . This holds 

even if the SDF, Ξ𝑡𝑡, is a complicated function of inflation and its history. Under 
slightly stronger assumptions on the SDF,48 we can even guarantee that Π𝑡𝑡 =
Π𝑡𝑡|𝑡𝑡−1

∗  is the unique solution for all sufficiently large 𝜙𝜙. We prove these results 
in Online Appendix D. 

7.2 Learning and bounded rationality 
Our general results on Fisher equation wedges also imply substantial 

robustness to departures from full rationality (non-rational expectations equal 
rational expectations plus a wedge). But as before, it is reassuring to see how 

this works in practice. We summarise results here for several prominent models 
of bounded rationality. In all cases, we suppose that the central bank follows 

the monetary rule of equation (6), 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡, where 𝜁𝜁𝑡𝑡 is an AR(1) 
process with persistence 𝜌𝜌 ∈ (−1,1), and where 𝜙𝜙 > 0 at least. Full details and 

proofs are given in Online Appendix C. Evidence on departures from full 
rationality is surveyed in Coibion, Gorodnichenko & Kamdar (2018) and in the 

handbook edited by Bachmann, Topa & Klaauw (2023). 
Adaptive, naïve, and extrapolative expectations. Branch & McGough 

(2009) suppose that aggregate inflation expectations are a linear combination 
of rational expectations and an additional term capturing adaptive, naïve or 
extrapolative expectations. In particular, agents’ period 𝑡𝑡 expectation of period 
𝑡𝑡 + 1 inflation is given by 𝛼𝛼𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + (1 − 𝛼𝛼)𝜃𝜃𝜋𝜋𝑡𝑡−1. Here, 𝛼𝛼 ∈ [0,1] gives the 

 
47 Π𝑡𝑡 must be bounded above, as it is in the non-linear NK model. See Online Appendix D.1 for further 
discussion of this. Furthermore, the SDF must have bounded moments of some (positive) order. 
48 This requires the SDF to have a finite upper bound (almost surely), and for the gap between the realized 

SDF and the SDF if Π𝑡𝑡 = Π𝑡𝑡|𝑡𝑡−1
∗  to be bounded by a linear function of Π𝑡𝑡|𝑡𝑡−1

∗

Π𝑡𝑡
. 
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weight on rational expectations, and 𝜃𝜃 ≥ 0 controls whether the non-rational 

part is adaptive (𝜃𝜃 < 1), naïve (𝜃𝜃 = 1) or extrapolative (𝜃𝜃 > 1). This leads to the 
behavioural Fisher equation 𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛼𝛼𝔼𝔼𝑡𝑡𝜋𝜋𝑡𝑡+1 + (1 − 𝛼𝛼)𝜃𝜃𝜋𝜋𝑡𝑡−1. We show that the 

solution is unique and stable as long as 𝜙𝜙 > 𝛼𝛼 + (1 − 𝛼𝛼)𝜃𝜃. (This may be stronger 
than 𝜙𝜙 > 1 if 𝜃𝜃 > 1.) Furthermore, as 𝜙𝜙 → ∞, var 𝜋𝜋𝑡𝑡 → 0. This means that 

sufficiently aggressive monetary policy can squash the variance of inflation, 
even in the presence of adaptive, naïve, or extrapolative expectations. 

Diagnostic expectations. Under diagnostic expectations (Bordalo, 
Gennaioli & Shleifer 2018; L’Huillier, Singh & Yoo 2021; Bianchi, Ilut & Saijo 

2023), agents’ expectations overreact to new information, as measured by 
changes in rational forecasts. As in the previous case, the solution under 

diagnostic expectations is unique and stable as long as 𝜙𝜙 is sufficiently large 
(𝜙𝜙 > 2.40 would do according to the estimates of Bianchi, Ilut & Saijo (2023)). 

And again, as 𝜙𝜙 → ∞, var 𝜋𝜋𝑡𝑡 → 0. Furthermore, as 𝜙𝜙 → ∞, var��𝜙𝜙 − 𝜌𝜌�𝜋𝜋𝑡𝑡 +
𝜁𝜁𝑡𝑡� → 0, which means that with even moderately high 𝜙𝜙, inflation’s dynamics 

will be very close to its dynamics under rational expectations. 
Finite horizon planning. Woodford (2019) gives a model of limited 

planning horizons. Agents are assumed to optimize over decisions in finitely 
many future periods, using a learned value function to evaluate outcomes at 

their planning horizon. We find that 𝜙𝜙 > 1 is stronger than necessary, and, as 
before, as 𝜙𝜙 → ∞, var 𝜋𝜋𝑡𝑡 → 0, and var��𝜙𝜙 − 𝜌𝜌�𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡� → 0 as well. It is 

particularly reassuring that with finite horizon planning, determinacy 
conditions are weaker than under rational expectations. Given a mix of finite 

horizon expectations and diagnostic or extrapolative ones, it is likely that 𝜙𝜙 not 
much larger than one would be sufficient. 

Least squares learning.  Under least squares learning (Marcet & 
Sargent 1989; Evans & Honkapohja 2001), agents update their beliefs about the 

laws of motion of endogenous variables via recursive least squares. For 
simplicity, we assume agents can directly observe the monetary shock 𝜁𝜁𝑡𝑡. We 

suppose that in period 𝑡𝑡, agents believe that for all 𝑠𝑠, 𝜋𝜋𝑠𝑠 = 𝑎𝑎𝑡𝑡 + 𝑏𝑏𝑡𝑡𝜁𝜁𝑠𝑠 + 𝜀𝜀𝑠𝑠, where 
they believe 𝔼𝔼𝑠𝑠−1𝜀𝜀𝑠𝑠 = 0. Allowing for a constant seems natural, as they may not 

know the inflation target (assumed to be zero), or the size of the static Fisher 
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equation wedge (also assumed to be zero). They estimate the coefficients 𝑎𝑎𝑡𝑡 and 

𝑏𝑏𝑡𝑡 by recursive least squares, given some initial prior beliefs. We show that if 
𝜙𝜙 > 1, then under recursive least squares learning, with probability one, 𝑎𝑎𝑡𝑡 

converges to 0 and 𝑏𝑏𝑡𝑡 converges to − 1
𝜙𝜙−𝜌𝜌. Furthermore, 𝜋𝜋𝑡𝑡 + 𝜁𝜁𝑡𝑡

𝜙𝜙−𝜌𝜌 converges in 
probability to zero. Thus, agents succeed in learning the rational expectations 

solution, no matter what the initial conditions are. This guarantee of global 
stability under least squares learning is an improvement over the situation with 

standard monetary rules, for which at best local stability can be proven (see e.g. 
Bullard & Mitra (2002)). 

Constant gain learning. If agents believe parameters may be non-
stationary, then it is no longer reasonable to perform least squares learning. 

Instead, it is natural to assume that they learn with a constant gain coefficient 
on new observations (Evans & Honkapohja 2001). This replaces the decreasing 

gain of recursive least squares with some constant, 𝛾𝛾 > 0. We prove that with 
𝜌𝜌 = 0, 𝜙𝜙 > 1 and 𝛾𝛾 sufficiently low, 𝑎𝑎𝑡𝑡 and 𝑏𝑏𝑡𝑡 converge in probability to the truth. 

Thus, even though agents are using a constant gain, they still manage to exactly 
learn the true parameters, whatever the initial conditions. It is easy for agents 

to learn the rational expectations equilibrium under a real rate rule! 

7.3 The fiscal theory of the price level and over determinacy 
As long as the linear Fisher equation holds, robust real rate rules can never 

fail to rule out sunspots. However, in an economy in which the price level is 

determinate independent of monetary policy, they may still produce explosive 
inflation.49 This is true of any monetary rule respecting the Taylor principle, not 

just the real rate rules we examine in this paper. Inflation becomes “over 
determined”, and an explosive solution is all that remains. 

For example, suppose that government debt is all one period and nominal, 
and that real government surpluses are not responsive to government debt 
levels, meaning fiscal policy is “active” in the sense of Leeper (1991). Then the 

 
49 Note: it is certainly not the case though that in any model in which an interest rate peg is determinate, 
a real rate rule would produce explosive inflation. For example, in the New Keynesian model with a 
discounted Euler equation, from Subsection 3.2, if 𝛿𝛿 ∈ �− 1+𝛽𝛽+𝜅𝜅𝜅𝜅

1+𝛽𝛽 , 1−𝛽𝛽−𝜅𝜅𝜅𝜅
1−𝛽𝛽 � then an interest rate peg is 

determinate. We saw that the real rate rule is also determinate (and non-explosive) in this model. 
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price level is pinned down by the government debt valuation equation (see e.g. 

Cochrane (2023)), in line with the fiscal theory of the price level (FTPL). With 
flexible prices and constant real interest rates, to a first order approximation: 

𝜋𝜋𝑡𝑡 − 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = −𝜀𝜀𝑠𝑠,𝑡𝑡, (15) 
where 𝜀𝜀𝑠𝑠,𝑡𝑡 is a shock to the present value of real primary government surpluses, 

scaled by the value of outstanding real government debt, with 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑠𝑠,𝑡𝑡 = 0.50 
Suppose in this world that the central bank did follow the basic real rate rule 

𝑖𝑖𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝜙𝜙𝜋𝜋𝑡𝑡 + 𝜀𝜀𝜁𝜁,𝑡𝑡, where 𝜙𝜙 > 1 and 𝔼𝔼𝑡𝑡−1𝜀𝜀𝜁𝜁,𝑡𝑡 = 0. Then, from the Fisher 
equation, 𝔼𝔼𝑡𝑡−1𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 + 𝜀𝜀𝜁𝜁,𝑡𝑡−1, implying from (15) that 𝜋𝜋𝑡𝑡 = 𝜙𝜙𝜋𝜋𝑡𝑡−1 +
𝜀𝜀𝜁𝜁,𝑡𝑡−1 − 𝜀𝜀𝑠𝑠,𝑡𝑡. With 𝜙𝜙 > 1, this is an explosive process. We know from Subsection 
3.1 that if there were to be a stationary solution for 𝜋𝜋𝑡𝑡, it must have 𝜋𝜋𝑡𝑡 = − 1

𝜙𝜙 𝜀𝜀𝜁𝜁,𝑡𝑡. 

But this is inconsistent with equation (15) as long as 𝜀𝜀𝜁𝜁,𝑡𝑡 ≠ 𝜙𝜙𝜀𝜀𝑠𝑠,𝑡𝑡, so only the 
non-stationary solution is left. 

However, this is a knife edge result. For example, suppose that the 
government issues multi-period (geometric coupon) debt, and that both 

monetary and fiscal policy are active (i.e., real primary government surpluses 
do not respond to debt, and the monetary rule satisfies the Taylor principle). 

Based on results with one period debt, researchers have tended to assume that 
this “active-active” combination will inevitably produce explosive inflation. 

This is incorrect. 
In Online Appendix F.1 we examine the equilibria of a non-linear model 

with multi-period debt under flexible prices. We show that under active fiscal 
policy, there is at least one equilibrium in which real variables and inflation are 

stable and independent of surpluses, whether or not monetary policy is active. 
These equilibria feature a growing bubble in the price of government debt 

which is balanced by declining debt quantities. The initial debt price jumps to 
ensure the transversality condition is still satisfied, giving a “Fiscal Theory of 

the Debt Price”. These equilibria exist as long as the geometric decay factor for 
the bond coupons is not precisely equal to zero (the one-period debt case). 
Furthermore, under passive monetary policy, we find a continuum of 
equilibria, contrary to the usual claim that the active fiscal, passive monetary, 

 
50 See Cochrane (2023), Subsection 2.5 and following. 
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combination ensures unique outcomes (which is again only true with one 

period debt). These equilibria feature arbitrarily high inflation. 
These results are not specific to the particular model set-up we use in Online 

Appendix F.1. Firstly, in Online Appendix F.2 we show that these results also 
hold in a linearised model with sticky prices. Then, in Online Appendix F.3 we 

show that generically, any model achieving determinacy via an FTPL-type 
mechanism must admit a stable solution under a real rate rule. There are only 

two main restrictions for this result. Firstly, the potentially explosive variables 
such as bond prices must not feed back to the real economy. Secondly, the 

equations determining the potentially explosive variables must not be too 
forward looking. Both assumptions are satisfied by standard FTPL models 

under geometric coupon debt.51 Therefore, only in knife edge cases will 
following the Taylor principle guarantee explosive inflation. Real rate rules are 

robust to the risk of active fiscal policy, or other sources of over determination. 

8 Conclusion 
This paper’s implications are stark. Under a real rate rule: the central bank 

can always achieve its inflation target, no matter the rest of the economy; any 

movement in inflation must be due to insufficient central bank aggression, or a 
central bank choice to so move inflation; monetary policy works in spite of, not 

because of, real rate movements; causation runs exclusively from inflation to 
the output gap, not the other way round; household and firm decisions, 

constraints and inflation expectations are irrelevant for inflation dynamics; and 
nothing can amplify or dampen the impact of shocks on inflation, except 

changes in the central bank’s own behaviour. With a time-varying short-term 
inflation target, real rate rules can determinately implement optimal monetary 
policy, or match observed dynamics. They continue to work in the presence of 
the ZLB, endogenous wedges in the Fisher equation, or active fiscal policy. 

To a policy maker, these conclusions may be shocking. However, for readers 
familiar with New Keynesian models, perhaps they are not completely 

 
51 Note that the geometric coupon bond first order condition 𝑄𝑄𝑡𝑡 = 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

�1 + 𝜔𝜔𝑄𝑄𝑡𝑡+1� can be rewritten as 
the two equations 𝐸𝐸𝑡𝑡 = 1+𝜔𝜔𝑄𝑄𝑡𝑡

𝑄𝑄𝑡𝑡−1
, and 1 = 𝔼𝔼𝑡𝑡

Ξ𝑡𝑡+1
Π𝑡𝑡+1

𝐸𝐸𝑡𝑡+1. Here 𝑄𝑄𝑡𝑡 is potentially explosive, but is determined by 

a backward-looking equation, while 𝐸𝐸𝑡𝑡 is asymptotically stable. 
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surprising. In models in which an aggressive response to inflation produces 

determinacy, with an extremely aggressive response, the variance of inflation 
can be pushed down to near zero. And Rupert & Šustek (2019) argue that even 

in New Keynesian models with a standard monetary rule, monetary policy 
does not operate via real rates. Rather, real rate rules just crystallise the 

monetary policy transmission mechanism that is at work in all New Keynesian 
models. Monetary policy acts via the Fisher equation, and via the Taylor 

principle’s promise to induce explosive inflation should inflation deviate from 
target. Plausible arguments ruling out the explosive and deflationary equilibria 

include those of Angeletos & Lian (2023), of Christiano & Takahashi (2018; 
2020) and of our Supplemental Appendix G.1. 

Real rate rules are not just a mere theoretical curiosity though. We have 
presented a positive vision for the practical implementation of a real rate rule 

with a time-varying short-term inflation target. Under this proposal, central 
bank boards keep the crucial role of choosing the desired path of inflation. Only 

the technical decision of how to set rates to hit that path is delegated to the rule. 
The rule embeds no politically sensitive views about the slope of the Phillips 

curve or the costs of inflation. And the rule can be implemented using assets 
for which there is already a liquid market: either nominal and real long-

maturity bonds, or inflation swaps. Current Federal Reserve behaviour is 
remarkably close to this practical rule: the rule explains 97.5% of the variance 

of five-year US treasury yields. 
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