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Abstract

The RMB exchange rate policy is governed by a two-pillar rule with time-varying policy

coefficients. The time-varying policy perturbs market expectations and generates an ex-

pectation formation effect. Through this effect, the economy may guarantee determinacy

and prevent self-fulfilling depreciation. This paper provides a theory for PBC’s use of

the counter-cyclical factor (CCF) policy, an important driver of time-varying policy. To

evaluate the effectiveness of CCF policy, we estimate a Markovian regime-switching policy

rule. A salient feature of the estimated rule is the frequent switching in the market pillar

policy coefficient. In a simple rational expectation model, we then demonstrate that the

estimated policy rule has a strong expectation formation effect. The authority can use the

CCF policy to effectively manage market sentiment and prevent self-fulfilling depreciation.

However, the switching needs to happen at a higher frequency than the announced CCF in

data, otherwise, the RMB exchange market cannot be stabilized due to a weak expectation

effect.
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1 Introduction

With rapid economic growth over the last 40 years, China’s exchange rate policy has become

increasingly important in international trade and the financial market. The People’s Bank

of China (PBC) currently enforces a managed floating policy.1 This policy relies on the

formation of the central parity rate. Since 2016, this formation has depended on two

pillars: market flexibility and RMB index stability.2 In mid-2017, PBC incorporated a

counter-cyclical factor (CCF, hereafter) into the central parity rate’s formation mechanism

to handle market irrationality. And this CCF factor is phased in and out over time.

In recent work, Jermann et al. [2022] (JWY, hereafter) document a two-pillar policy

using the expression

∆ct = αdt−1 + β(1− wusd)∆xt + εt (1)

where ∆ct is the percentage change of the RMB/USD central parity rate; dt−1 captures the

previous day’s market deviation of the RMB/USD rate from its parity rate, thus reflecting

the market flexibility; and ∆xt is the percentage change in the implied dollar index, which

captures the RMB index stability or basket pillar. wusd is the PBC-announced USD weight

in the RMB index. JWY also discover that policy coefficient α differs greatly between sub-

periods, which are classified according to official announcements about the implementation

of CCF.

In this paper, we complement JWY’s findings by exploring the possible consequence

of time-varying policy coefficients. We investigate the impact of regime changes on the

determinacy of the model by allowing stochastic variations in the parameters of the RMB

policy rule. Our analysis shows that a regime-switching parity rate policy can influence the

market’s expectation formation and prevent self-fulfilling RMB depreciation in the exchange

market. This finding provides a rationale for the introduction of a counter-cyclical factor

in the RMB policy design. And we argue that the regime-switching itself could be a policy

tool to stabilize the economy.

To begin with, we show that the time-varying coefficient is a readily observable feature

of the RMB policy. We use a motivational 60-day rolling window estimation and observe

the changing dynamics of policy coefficients from November 2015 to December 2021. The

results, depicted in Figure 1, show that policy coefficients undergo significant shifts. There

1The policy allows RMB spot rates to fluctuate within a predetermined band around the central parity
rate in the intraday market.

2The first pillar is defined as “ the closing rates of the previous business day,” and the second pillar is “a
theoretical rate that maintains the stability of the RMB index.” See the PBC’s Monetary Policy Reports of
2016Q1 and of 2017Q2 for details of the reform and details on the CCF, respectively.
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Figure 1: t±30D Rolling-window Estimates of the Two-Pillar Rule
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Note: This figure plots the 60-day rolling window regression estimates of the policy coefficients α and β for
each rolling sample. The shadowed area are periods with official announcements about the implementation
of CCF.

are a number of observations worthy of highlighting. First, except during early 2016 and

mid-to-late 2019, the coefficients α and β are negatively correlated and have a sum of

approximately one. Second, the average value of α in the subperiods with the announced

CCF policy is smaller than in other periods. Third, the variations of α and β are much

more frequent than official announcements about CCF policy.

The CCF’s impact on RMB policy is well-documented, although its operational details

remain undisclosed.3 PBC’s Monetary Policy Report (2017Q2) stated that “after the intro-

duction of the counter-cyclical factor the central parity formation mechanism has increased

the weight of the reference to the currency basket.” According to JWY, a third factor,

that is incorporated into the RMB policy, reflecting the market sentiment, is the daytime

component of the basket pillar. Its policy response captures the use of CCF, and imposing

the countercyclical factor is equivalent to shifting away from the market pillar toward the

daytime components of the basket pillar. Our rolling-window regression of the extended

3We are not saying that CCF is the only driver of these time-varying patterns. Alternatively, as high-
lighted in Primiceri [2005] in the U.S. context, the time-varying policy parameters may be due to the
policymaker’s belief updating and learning behavior.
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two-pillar rule also reveals a clear trade-off between market flexibility and the CCF factor.4

To formally evaluate the consequence of the time-varying RMB policy rule and to ra-

tionalize the CCF policy, we draw inspiration from the vast literature on regime-switching

monetary policy. Particularly, we extend the classical idea of Davig and Leeper [2007] in an

international framework. In theory, the CCF policy may work as it leads to regime-switching

policy rule and helps to deal with market irrationality by ruling out indeterminacy. The

key mechanism relies on the expectation formation effect.5 Thus, an essential work before

evaluating the time-varying RMB policy rule quantitatively is to quantify the strength of

the expectation formation effect in data.

We model a Markovian regime-switching policy rule. As in Davig and Leeper [2007], the

Markovian transitory probability matrix captures the strength of the expectation formation

effect. The benchmark coefficient-switching model is developed in the style of Chang et al.

[2023]. This model generalizes the extended policy rule to allow the switching of both the

policy coefficients and the volatility of policy discretion. We consider two states for each

policy coefficient and two states for the volatility of policy discretion. Switching is driven

by a four-dimensional vector autoregressive (VAR) latent factor. Each element of the vector

drives the switching of its corresponding coefficient.

Maximum likelihood estimation over the full sample generates valuable insights into the

regime-switching patterns for the RMB policy rule. Highlights of our estimation include

significantly different policy coefficients and volatility regimes, as well as the parameters of

latent policy factors that drive the switching of each policy coefficient. Benchmark factors

show that the policy coefficients on the market pillar, stability pillar, and sentiment switch

frequently, while the policy discretion volatility remains persistent. We observe that as the

market pillar coefficient becomes high (low), the stability and sentiment coefficients become

low (high). Furthermore, the estimated changes in the market pillar coefficient occur at

substantially higher frequencies than those that have been publicly disclosed. This finding

suggests that PBC may be using the CCF policy at discretion without thoroughly informing

the public, or at least from the perspective of an econometrician or market participant who

learns the policy from data. Once again, we emphasize that the market perception of the

RMB plays a central role in the market’s expectation formation.

To analyze the economic effects of switching CCF policies, we build a rational expecta-

4Throughout the paper, the terms “extended” and “modified” are used interchangeably when referring
to a policy rule.

5The emphasis on the market expectation formation effect induced by CCF policy is practically relevant.
Since 2022, no official announcement has been made regarding the use of the CCF regime. Anecdotally,
however, some market participants believe that the CCF policy is used in the period when the RMB continues
to depreciate.See Bloomberg News: Some China Banks Change Fixing Models as Yuan Weakness Deepens.

https://www.bloomberg.com/news/articles/2022-08-26/some-china-banks-change-fixing-models-as-yuan-weakness-deepens##xj4y7vzkg
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tion model similar to that of Svensson [1994] and JWY. We evaluate the role of CCF policy

in ruling out the self-fulfilling prophecy in the foreign exchange market. This aligns well

with PBC’s intention to propose the CCF. In its Monetary Policy Report (2017Q2), PBC

stated that “This factor is used to partially offset the deviation of the previous closing rate

from the daytime component of the basket pillar, which may be driven by sentiment-induced

“procyclicality” in the foreign exchange market.”

We first present a linear rational expectation (LRE) model—an economy with a constant

exchange rate policy rule. The model includes the goods market, money market, and foreign

exchange rate. For simplicity, the monetary policy only reacts to the foreign interest rate

and central parity rate. We distinguish between noise traders and informed traders in

the intraday exchange rate market. In this economy, if the monetary policy is muted,

a sentiment shock would lead to self-fulfilling depreciation in the RMB exchange market

unless noise traders lean against the wind. We also demonstrate the importance of policy

coordination. For instance, a mild monetary policy (i.e., an internal policy that is insensitive

to the central parity rate) and an aggressive exchange rate policy (i.e., an external policy

that is sensitive to market conditions) can ensure a unique equilibrium and eliminate the

possibility of multiple equilibria and self-fulfilling depreciation by jointly influencing the

excess return of RMB asset. However, the internal-external coordination required for a

unique equilibrium still depends on the noise trader’s market force (i.e., the relative size of

the noise trader and their sensitivity to the spot rate when forming their expectations).

In reality, the coordination required of the monetary policy department may be too

demanding, given that the policy is also responsible for output and employment. We next

explore a model with a constant monetary policy and a Markov-switching exchange rate

policy. Our empirical estimation of the structural parameters suggests that aa low α regime

itself leads to indeterminacy in our simple LRE model. This result is partially due to our

minimalist specification of monetary policy. In future research, it will be important to entail

a more realistic monetary policy rule and the role played by a low α regime in stabilizing

the exchange market. For transparency, all analyses herein are limited to the minimalist

model to illustrate the consequence of switching policies.

We model the switching process of policy coefficients as an exogenous Markov chain.

Our main model only considers the switching of the market pillar coefficient.6 Using the

Markovian transition probability matrix from our empirical exercise, the model solution

shows that the region of determinacy is substantially expanded relative to the one implied

by the constant policy rule. This expansion is due to the effects of regime change expec-

6In an extended model, we also show that the switching of the stability pillar policy coefficient does not
change the main results of our analysis.
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tation formation, which are highlighted in the work by Davig and Leeper [2007]. In our

environment, the exchange market participants realize that the future policy regime may

differ from the prevailing regime. Irrational behavior in this market cannot be self-fulfilled

even if the current policy combination is in the low α regime, as the rational market agent

internalizes a nonzero probability of a high α regime in the future. The switching policy

reduces the requirement for coordination between monetary policy and exchange rate policy.

The time-varying policy, with a switching frequency of α much higher than the frequency

of official announcements about CCF policy, guarantees a determinate equilibrium in the

Markov-switching rational expectations (MSRE) model. For a daily frequency model, the

announced CCF policy is introduced and lifted several times at a very low frequency. To

examine the consequence of the de jure policy, we solve the model at a very low switching

probability between the high and low α regimes; all other elements are identical to those in

the benchmark exercise. We find that extremely persistent regimes weaken the expectation

formation effect. This result is not surprising, as the low α regime itself cannot stabilize the

market in the LRE model. Yet, our result emphasizes the importance of managing market

expectations.

Lastly, we highlight the cost of the expectation formation effect. We report the simulated

moments of interest variables. We find that the standard deviation of the log difference

between the central parity rate and the basket pillar is significantly larger in our MSRE

model. Its size is three times larger than the one in the LRE model. Meanwhile, an MSRE

model with a very low switching probability between the high and low α regimes can also

reduce the variability of the log difference between the central parity rate and the basket

pillar. Thus, it is clear that a strong expectation formation effect may help to guarantee

model determinacy but at the cost of generating a volatile current account. This is the

trade-off that the authority needs to balance when trying to manage market expectations.

Literature review: Topic-wise, our study is positioned within a fast-growing body

of literature that aims to understand China’s recent reforms of macroeconomics policies

and of the financial system. For examples, see Chen et al. [2018], Liu et al. [2021] and

Brunnermeier et al. [2022]. Regarding the literature that focuses on the RMB exchange

rate policy and reform, Frankel and Wei [2007], Frankel [2009] and Sun [2010] study policy

after the RMB exchange rate regime reform in 2005. Cheung et al. [2018a,b] study the

determinants of central parity after the reform in 2015 and Clark [2017] explore the role

of dollar in driving the change of RMB. Liang et al. [2019] studies the spread between the

onshore and offshore markets after the reform. Su and Qian [2021] test a structural break

in the exchange rate mechanism. Lei et al. [2022] study the optimal trading band. Our

paper is most closely related to JWY. Their work is the first paper to study empirically
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and theoretically the two-pillar policy and demystify the mechanism of the CCF. Inspired

by these preceding works, we study a generalized two-pillar policy by allowing time-varying

policy coefficients. Our work complements the findings of JWY and contributes to this

important literature by providing a simple explanation of using the CCF policy.

In terms of methodology, our paper is related to the general literature on regime-

switching models and a vast literature on monetary economics that employs such methods

in studying time-varying monetary and fiscal policies. Regarding the empirical method-

ology, regime-switching models are widely used and proven useful in many contexts. For

instance, Davig and Leeper [2006a,b], Bianchi [2012], Bianchi and Ilut [2017], and Chang

et al. [2023] focus on the studies of US monetary and fiscal policies. Kaminsky [1993] applies

the regime-switching monetary policy to the exchange market. Bianchi et al. [2018] uses

the regime-switching model to discuss uncertainty shocks. Falck et al. [2021] discuss the

switching regimes of professional forecasters. Bianchi et al. [2022] discuss the implications

in asset pricing.

Our work is also related to the literature on MSRE model. In an otherwise canonical

New-Keynesian model, Davig and Leeper [2007] use a quasi-linear solution of the MSRE

model to highlight the possibility of using regime-switching monetary policy to rule out

self-fulfilled inflation. We are inspired by their insights, and solve a simple MSRE model of

the RMB exchange rate to demonstrate that regime-switching RMB policy rules may help

to rule out self-fulfilling depreciation in the market. Notably, our solution is nonlinear, and

we borrow the solution method from the following literature. Farmer et al. [2009] discusses

the general solution of a forward-looking MSRE model without predetermined variables.

Cho [2016] and Cho [2021] discuss the general solution in a model with predetermined

variables. In our analysis, the central parity rate is partly determined by the closing rate of

the previous day, and thus our system includes a predetermined variable. We apply Cho’s

solution technique in the RMB policy context.

The rest of the paper is organized as follows. Section 2 reviews the extended central

parity rule and generalizes it to the regime-switching model, followed by discussions of

the empirical findings and robustness checks. Section 3 presents tne baseline LRE model.

Section 4 highlights the self-fulfilling phenomenon in this model. In section 5, we extend

the baseline LRE model to an MSRE model and evaluate the consequence of the regime-

switching policy. Section 6 concludes the paper.
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2 Empirical Analysis

This section focuses on analyzing the empirical profile of the RMB central parity rates

to establish stylized facts of RMB policy regimes. The section has three parts. The first

part empirically examines an extended JWY rule that accounts for CCF policy in rolling

samples. The second part examines a flexible benchmark policy rule with regime-switching

coefficients, capable of accommodating all salient data features revealed by the rolling re-

gressions. Each and every component in the rule is driven by a corresponding latent factor.

A prevailing feature of the estimated regimes is the high switching frequency in the market

pillar coefficient. The last part examines a switching version of JWY’s simple two-pillar

rule without the intra-day RMB component. Compared to the benchmark, this exercise

shows that the intra-day RMB data provide useful information about the policy regimes.

Nonetheless, the regime-switching in the market pillar coefficients is robust and remains

central to the empirical profile of time-varying RMB policy.

2.1 Evidence of Time-varying Policy in RMB from a Rolling-Window

Regression Analysis

We start by presenting results based on an extended formulation of the two-pillar policy

rule proposed by JWY. In the simple two-pillar policy rule (Equation (1)), the RMB/USD

central parity rate SCPt is determined by the previous closing RMB/USD exchange rate7,

SCLt−1, and a US dollar index Xt with a 24-hour reference period that is implied by an

RMB index.8 According to JWY, the first component of the policy rule is known as the

market flexibility pillar, while the second component is the stability or basket pillar of the

RMB index. Two reforms were implemented in early 2017. In February 2017, the PBC

changed the reference period of the basket pillar from 24 hours to 15 hours. Since then,

only the nighttime component of the implied US dollar index has been used in the basket

pillar. That is, ∆xNTt = log(
Xt,7:30AM

Xt−1,4:30PM
), where Xt,7:30AM and Xt,4:30PM are the implied

dollar index at 7:30 AM and 4:30 PM Beijing time, respectively. In May 2017, the PBC

introduced an additional policy tool called the “counter-cyclical factor” (CCF) to manage

market sentiment and irrationality.

JWY proposes to use the change of the daytime component of the implied US dollar

7All exchange rate levels in this paper are US dollar prices in terms of RMB.

8The RMB index is defined as Bt = χ
X

(1−wusd)
t

SCP
t

. χ is a constant parameter. ∆xt = ∆ log(Xt)

is the change of Xt within 24 hours. Specifically, the following definition is obtained from JWY:

Xt = Cx(S
CP,EUR/CNY

SCP,USD/CNY )
weur

1−wusd ( S
CP,JPY/CNY

SCP,USD/CNY )
wjpy

1−wusd .... Cx is some constant parameter.
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index ∆xDTt to proxy for the market sentiment:

∆xDTt = log(
Xt,4:30PM

Xt,7:30AM
).

PBC’s response to the sentiment captures the CCF policy.

Based on the construction ofXt (See Footnote 8), ∆xDTt can be regarded as an exogenous

sentiment process outside of the RMB onshore market. Due to the liberalization of China’s

financial account, these market sentiment shocks affect the RMB market. As a result, a CCF

policy is proposed and implemented by the PBC. Upon including the sentiment component,

the extended RMB policy rule takes the following expression:

∆ct = αdt−1 + βDT (1− wusd)∆xDTt−1 + βNT (1− wusd)∆xNTt + σεt (2)

where ct = log(SCPt ) and ∆ct = ct−ct−1 is the percentage change in the RMB/USD central

parity rate; dt−1 = log(SCLt−1)− log(SCPt−1) captures the market deviation of RMB/USD spot

rate from its parity rate. ∆xNTt and ∆xDTt are the changes in the nighttime and daytime

components of the basket pillar, respectively. The policy coefficients α, βDT , βNT are PBC’s

response to various information. As shown in JWY, they can arise as functions of PBC’s

policy weights on various policy objectives. A larger α corresponds to a greater emphasis

on the market-driven RMB rate; a larger βDT reflects a greater effort to counter the market

irrationality; and a larger βNT corresponds to a heavier weight on RMB index stability.

Throughout the paper, wusd denotes the index weight of USD in the RMB index.9 σεt

represents the policy discretion, and εt is an innovation with unit variance.

We gathered daily data on the central parity rate covering the period 11/10/2015 to

12/31/2021 from the China Foreign Exchange Trade System (CFETS). The data on the mar-

ket closing rate is collected from Bloomberg. The 24-hour implied dollar index is constructed

based on the data from CFETS, with its daytime and nighttime components constructed

using the BFI data from Bloomberg, following JWY’s method. In line with the CCF pol-

icy reform, we limited our benchmark sample to data from 2/20/2017 to 12/31/2021 to

maintain consistency. Figure 2 displays the policy coefficients that vary over time, obtained

from rolling-window regressions for Equation (2). The rolling sample includes 30 days be-

fore and after a trading day t. Additionally, the associated coefficient of determination (R2)

is presented for each rolling sample.

9The RMB index, which is based on CFETS, changes its currency basket weight periodically. The weight
of USD, wusd, is 0.224 from 1/1/2017 to 12/31/2019, 0.2159 from 1/1/2020 to 12/31/2020, and 0.1879 from
1/1/2021 to 12/31/2021.
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Figure 2: t±30D Rolling-Window Estimates of the Extended “Two-Pillar” Rule
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Note: This figure plots the 60-day rolling window regression estimates of the extended policy coefficients
and the R2 for each rolling sample.

The rolling policy coefficients exhibit a pattern of regime-switching between significantly

different coefficients over time. Two major recurrent policy regimes emerged from our sam-

ple.The former is characterized by a combination of high α and low βDT ; the latter is

characterized by a combination of low α and high βDT . The variations of the two coeffi-

cients are correlated, though far from perfect, with a correlation coefficient of -0.48. The

time variations in α and βDT are frequent and quantitatively significant, with α values

ranging from 0.1 to approximately 0.8 and βDT values ranging from 0 to approximately

0.4. Furthermore, our estimation reveals that βDT∆xDTt−1 accounts for about 15% of the

predicted variation in ∆ct.
10 This discovery suggests that PBC frequently and considerably

changes its RMB policy to counter market irrationality. On the other hand, the correlation

between α and βNT - the stability pillar coefficient - appears to vary over time, with an over-

all correlation coefficient of 0.40. JWY argued for negatively correlated α and βNT . In our

estimation, we note that α and βNT are negatively correlated, as per JWY, except during

10For each rolling sample, we quantify the contribution of βDT∆xDTt−1 to the predicted variation of ∆ct by

R2
DT =

∑
(β̂DT ∆xDT

t−1)2∑
(∆̂ct)2

. Then, we compute the total contribution rate across all rolling samples.
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mid-2017, 2019, and mid-2021. Lastly, the rolling R2 indicates the presence of significant

heteroskedasticity over time. In particular, the model performs poorly during mid-to-late

2019, which coincides with the peak of the US-China trade war.11

To summarize, it is useful to consider an econometric model where each coefficient in

the extended RMB rule is driven by a latent factor, with the factors correlated with each

other.

2.2 Benchmark Specification for Regime-Switching Rules

To develop further insight into the dynamics observed in the rolling-window estimations,

we investigate a benchmark regime-switching RMB policy rule that generalizes Equation

(2). This policy rule allows changes in the coefficients and volatility:

∆ct = α (rαt ) dt−1 + βDT (rβDTt )(1− wusd)∆xDTt + βNT (rβNTt )(1− wusd)∆xNTt + σ(rσt )εt(3)

with εt ∼i.i.d N(0, 1) and state-dependent coefficients

α(rαt ) = α0(1− rαt ) + α1r
α
t , α0 < α1,

βDT (rβDTt ) = βDT,0(1− rβDTt ) + βDT,1r
βDT
t , βDT,1 < βDT,0,

βNT (rβNTt ) = βNT,0(1− rβNTt ) + βNT,1r
βNT
t , βNT,0 < βNT,1,

σ(rσt ) = σ0(1− rσt ) + σ1r
σ
t , 0 < σ0 < σ1.

For each policy coefficient, there is an associated binary regime indicator, represented by

rit ∈ {0, 1}, where i belongs to the set {α, βNT , βDT , σ}. At any given time t, the exchange

rate policy mix of PBC can be denoted by the vector Rt = (rαt , r
βNT
t , rβDTt , rσt )′. The

switching of α, βNT , and βDT reflects changes in policies regarding RMB market flexibility,

RMB index stability, and market sentiment. Meanwhile, the switching of σ captures the

heteroskedasticity in policy discretion.

The model is Markovian. To achieve this with a reasonable number of parameters, we

introduce a latent vector autoregressive process represented by the vector

wt = (wαt , w
βNT
t , wβDTt , wσt )′

11In August 2019, China was labeled as a “currency manipulator.” During this period, the central parity
rate of RMB/USD remained stable, reducing the effectiveness of a linear model in explaining the dependent
variable.
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such that

wt = Awt−1 + vt (4)

with a 3× 3 stable autoregressive coefficient matrix

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


and innovation vt ∼i.i.d N(0,V) that is independent of policy shock εt at all leads and lags,

and with a covariance matrix that has a lower triangular part

V =


1

ρα,βNT 1

ρα,βDT ρβNT ,βDT 1

ρα,σ ρβNT ,σ ρβDT ,σ 1

 .

We require V to be a proper correlation matrix for parameter identification.12 For each t,

the latent regime factors determine the regime by

rit = 1{wit ≥ τ i} i ∈ {α, βNT , βDT , σ} (5)

where 1(·) is an indicator function and τ = (τα, τβNT , τβDT , τσ) is a vector of the threshold

parameters to be estimated.13

The latent factors are indices of PBC’s policy positions whose conditional means may

be learned by the market. The inclination towards a more market-driven RMB is measured

by wαt ; the policy stance towards stabilizing the RMB index is measured by wβNTt ; the

stance in managing market sentiment is measured by wβDTt ; and the stance towards using

discretionary policy is measured by wσt . The coefficient matrix A describes the dynamic

relationships among these policy factors, and the correlation matrix V characterizes the

relationships among innovations in policy factors. The assumption that wt is stationary

12See Chang et al. [2023] for a detailed discussion.
13The latent factors and thresholds imply a time-invariant regime transition matrix. Our model admits

23 = 8 regimes in total. The transition matrix can be alternatively modeled using an 8 × 8 transition
probability matrix that involves 56 free parameters. Although we do not expect all parameters in the
transition matrix to be significant with respect to zero, it is generally unclear what assumptions to impose.
Our specification offers a set of interpretable assumptions on the transition matrix with 15 free parameters.
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Table 1: Maximum Likelihood Estimates of Benchmark Regime-Switching Parity Rule

Threshold Est SE Factor Est SE Policy Est SE

τ1 0.332 0.160 a11 -0.593 0.083 α0 0.341 0.025
τ2 -0.521 0.215 a21 0.799 0.100 α1 0.800 0.023
τ3 0.344 0.264 a31 0.091 0.267 βNT,0 0.230 0.015
τ4 9.145 1.787 a41 -0.814 0.076 βNT,1 0.558 0.028

a12 -0.453 0.079 βDT,0 0.396 0.025
a22 -0.073 0.138 βDT,1 0.034 0.073
a32 0.693 0.045 σ0 0.058 0.003
a42 -0.242 0.099 σ1 0.175 0.020
a13 0.500 0.104
a23 -0.754 0.249
a33 -0.074 0.198
a43 0.757 0.491
a14 -0.769 0.377
a24 -0.998 0.336
a34 0.039 0.105
a44 0.403 0.125
ρ12 -0.145 0.242
ρ13 -0.516 0.178
ρ14 0.005 0.002
ρ23 0.019 0.017
ρ24 -0.133 0.027
ρ34 0.774 0.032

log `/T 1.001
p-value 0.000

Note: We use a non-derivative-based global optimizer in our ML estimation over a sample spanning from 2/20/2017
to 12/31/2021. Standard errors are computed from 1000 samples with a length of 1000 that are generated through
stationary block-bootstrapping with an average block size of 60, which is selected by Politis and White [2004]. The
p-value reports the statistical significance of a likelihood ratio test against the linear model with llk/obs = 0.768.

leads to an unconditional distribution of wt, which is centered around zero. This assumption

appears to be reasonable, given the recurring policy regimes suggested in Figure 2.

2.3 Benchmark Estimation Results

The model is estimated using the maximum likelihood (ML) method with the regime-

switching filter proposed by Chang et al. [2023]. The estimated parameters and their boot-

strapped standard errors are presented in Table 1. At the ML estimate, we generate the
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Figure 3: Benchmark Policy Regime Factors
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Note: This figure plots the filtered sequence of wαt − τα, wβNT
t − τβNT , w

βDT
t − τβDT and wσt − τσ (left scale),

respectively, at the maximum likelihood estimates. The red dashed lines (left scale) plot the t± 30 moving
average of the filtered wt. The shaped areas represent the announced periods of the activation of the CCF.

filtered series of policy factors, E(wit|Ft), i ∈ {α, βNT , βDT , σ}, shown in Figure 3.14

The coefficient estimates from the benchmark model are fairly consistent with the find-

ings from the rolling regressions.15 We observe strong evidence of coefficient switching

across α, βDT , βNT , and σ. There are two α regimes, with values 0.341 and 0.800, and two

βDT regimes, with values 0.396 and 0.034. We also identify two βNT regimes. One regime

has a value of 0.507, the other regime has a value of 0.000. Finally, we find a low-σ regime

with a volatility of 0.061 and a high-σ regime with a volatility of 0.200. The small standard

errors indicate that all of the coefficient pairs are well separated under different regimes.

The estimated latent factors generate additional insights. Figure 3 plots the estimated

wαt at a daily frequency against the factor-specific threshold and PBC’s announced dates

14For presentation, we plot E(wit|Ft) − τi, i ∈ {α, βNT , βDT , σ} in Figure 3, where τi’s are ML estimates
so that all threshold parameters are normalized to zero. Throughout, we use Ft to denote the information
set up to time t. In the empirical section, Ft = σ({∆cs, ds−1,∆x

DT
s−1,∆x

NT
s }ts=2).

15Our regime-switching model significantly outperforms the linear model, as demonstrated by a likelihood
ratio test with a p-value of 0.000, and much lower information criteria, including AIC, BIC, AICC, CAIC,
and HQC.
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Figure 4: Benchmark Smoothed Policy Regime Probabilities
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Note: The shaded areas plot the announced periods of the introduction of CCF.

of the CCF regime.16 The α−factor, if falls below its threshold, drives α to the low value,

suggesting less market-driven RMB. Learning from data, the α coefficient is more likely

low during the announced CCF periods. Moreover, the correlation between α and βDT

factors is 0.972, while the correlation of all other pairs fall in the range of -0.4 and -0.6.

This finding draws a tight connection between the CCF policy and the market pillar of

RMB. The resulting policy regimes of (α, βDT ), in our estimates, are (0.341, 0.396) and

(0.800, 0.034).

The market perception of policymaking eventually guides the trading decisions. An

econometrician or market participant can reasonably suspect that policy coefficient switches

occur at a frequency much higher than the announced activation of CCF.17 The high-

frequency changes can potentially result from pure noise. However, after smoothing the es-

timated factor by the moving average (Figure 3) and a backward filter (Figure 4), the move-

ments at frequencies higher than the PBC’s CCF announcements remain pronounced. In

contrast, the heteroskedasticity regimes after backward smoothing are rather clean. Given

16According to PBC’s announcements, the CCF was introduced during two periods: 05/26/2017 to
01/08/2018 and 08/24/2018 to 10/26/2020.

17They do indeed. See Footnote 7 for anecdotal evidence.
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these results, we are motivated to develop a daily frequency model in the theoretical sec-

tion wherein market participants face uncertain policy in the form of Markov switching α,

through which we examine the policy implications of the CCF policies.

The relationship between the market pillar and stability pillar, as measured by α and

βNT , is consistent with the statement of PBC’s Monetary Report (2017Q2), in that a

CCF policy predicts a high βNT . In addition, JWY predicts a low α in tandem. The

correlation coefficient between the two estimated factors is -0.51. The α-factor response to

yesterday’s βNT -factor, a12, is significantly negative. On the other hand, the switching of

βNT inferred from data does not fully align with the announced CCF policy, as demonstrated

in Figure 3. This potential gap between the central bank announcement and empirical

estimates reaffirms the importance of examining policymaking from the market perspective.

In our quantitative analysis, we consider the benchmark case with a constant βNT and then

explore the alternative scenario with switching βNT regimes in Appendix E.

Fourth, it is clear that σ switching plays a crucial role in significant events. The threshold

of the σ factor creates precisely identified regimes that correspond with major occurrences

such as the U.S.-China trade war and the COVID-19 outbreak. It is empirically nontrivial

to include a switching σ. We note that without heteroskedasticity, the low α estimate would

be informed by the data from the significant events above and return a value close to zero,

masking the two regimes in the more tranquil periods we intend to study.

2.4 CCF Regime as Switching Coefficients in A Simple Two-Pillar Rule

The two-pillar policy is a fairly accurate representation of the RMB policy, as clarified in

JWY. However, the public is unaware of the exact implementation of the CCF policy and

the exact construction of market sentiment. One can infer the CCF by learning the regimes

of the simple rule. In this section, we analyze the RMB policy regimes using a simple

two-pillar policy. As discussed in the preceding section, we also include regime-switching

volatilities.

∆ct = α (rαt ) dt−1 + β(rβt )(1− ωusd)∆xt + σ(rσt )εt (6)

where εt ∼i.i.d N(0, 1) and state-dependent coefficients

α(rαt ) = α0(1− rαt ) + α1r
α
t , α0 < α1,

β(rβt ) = β0(1− rβt ) + β1r
β
t , β0 < β1,

σ(rσt ) = σ0(1− rσt ) + σ1r
σ
t , 0 < σ0 < σ1.
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Table 2: Maximum Likelihood Estimates of the Two-Pillar Regime-Switching Parity Rule

Threshold Est. S.E. Factor Est. S.E. Policy Est. S.E.

τα -1.012 1.456 a11 0.878 0.386 α0 0.351 0.089
τβ -1.565 0.967 a21 0.290 0.543 α1 0.747 0.062
τσ 9.575 2.787 a31 -0.213 0.529 β0 0.171 0.046

a12 -0.085 0.153 β1 0.513 0.023
a22 0.734 0.385 σ0 0.061 0.005
a32 0.067 0.292 σ1 0.184 0.026
a13 0.002 0.230
a23 0.204 0.422
a33 0.906 0.339
ρα,β -0.969 0.029
ρα,σ 0.092 0.158
ρβ,σ 0.158 0.028

T 1498
log `/T 1.042

Note: We use a non-derivative-based global optimizer in maximum likelihood estimation over a sample spanning
from 11/10/2015 to 12/31 2021. Standard errors are computed from 1,000 samples with a length of 1000 that are
generated through stationary block bootstrapping with an average block size 60. The block size is selected according
to Politis and White [2004].

Note that ∆xt in the above rule combines its nighttime component ∆xNTt and daytime

component ∆xDTt−1 in the extended rule (3). The dynamics of the regime are modeled in the

same way as the benchmark model, with the required changes in notation.

The ML estimates for the model (6) presented in Table 2 give a summary of the RMB

policy that aligns well with our benchmark model.18 In particular, the policy coefficients

in different regimes resemble the benchmark result in Table 1. Moreover, the α regime

remains central to the RMB policy switch. The estimated regime factors in Figure 5 reveal

that all policy regime factors are similar to the benchmark estimates. Among all factors,

the correlation between the wαt series in the two estimations is 0.71.19 Our findings in the

benchmark specification are robust: α regimes are well identified, with values of 0.35 and

0.75; the α regime switches at a high frequency; the evidence of shifting from the market

flexibility toward the basket stability is mild.

18This data sample covers the time period from 11/10/2015 to 12/31/2021 and includes various significant
policy reforms that occurred after the PBC implemented the two-pillar RMB policy in 2015. To ensure
consistency in our data analysis, the overnight implied dollar index (Xt) in this model is calculated using a
24-hour reference period following the PBC announcement before 2/20/2017.

19The correlation between wβNT
t and wβt is 0.41, and the correlation between the two estimations of wσt

is 0.59.
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Figure 5: Switching Two-Pillar Policy Regime Factors
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Note: This figure plots the filtered sequence of wαt − τα, wβNT
t − τβNT and wσt − τσ (left scale), respectively,

at the maximum likelihood estimates. The red dashed lines (left scale) plot the t± 30 moving average of the
filtered wt. The red solid lines (right scale) plot the announced periods of the introduction of the CCF.

However, the α regimes induced from the two-pillar model are in the high regime more

often than the benchmark model. Evidently, the day factor is informative about the RMB

policy regime from the econometrician’s perspective. In addition, according to Figure 5,

the RMB policy may have begun to change in 2016, which is much earlier than the official

communication in early 2017. This finding is not unexpected, as the PBC may have wanted

to control market expectations, especially given the strong expectation of RMB depreciation

throughout 2016.

Note that ∆xDTt−1 is not included directly in this simple rule. By construction, this

variable is the daytime component of ∆xt. For a more detailed discussion, please refer to

Appendix A.1. As a sentiment shock, ∆xDTt−1 has a direct impact on the spot market, which

in turn drives dt−1. To provide evidence that the α regime is still driven by the CCF policy,

we report additional results of ordinary least squares (OLS) regression in Appendix A.2.
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Here, the dependent variable is the policy factor wit, i ∈ {α, β, σ}, and the independent

variable of interest is ∆xDTt−1. The results show that the CCF policy has a significant impact

on wαt , which is estimated based on the simple rule. However, ∆xDTt−1 does not have a

significant impact on wβt . The result provides further evidence that one may learn the CCF

policy by learning the α regime.

To summarize, the key regime dynamics remain robust when viewed through a policy

framework consisting of two pillars with switching coefficients. To market participants, the

intra-day data offers additional information about the RMB policy regime. Meanwhile, the

α regime remains central to the market expectation of RMB policymaking.

3 Theoretical Model

In this section, we propose a model for exchange rate determinacy based on Svensson

[1994] and Jermann et al. [2022]. We focus on three key markets: the goods market, the

foreign exchange market, and the intraday market.20 In particular, we include the noise

trader in the benchmark model proposed by JWY. Noise traders do not possess complete

information and rely on a regressive approach to form their expectations of exchange rates.

The inclusion of noise traders is crucial as it enables us to deviate from the conventional

uncovered interest parity condition and use the data to pin down structural parameters for

quantitative analysis.

Using this model, we first discuss the indeterminacy issue of the RMB exchange rate

market. Drawing inspiration from Davig and Leeper [2007], we then analyze the impact of

regime-switching policy in terms of mitigating the self-fulfilling prophecy that occurs in the

foreign exchange market.

3.1 The Goods Market

The goods market is characterized as in Flanders and Helpman [1979]. Overall, the RMB

exchange rate affects the country’s trade balance. The log of trade balance, log(TBt), is a

linear expression of the central parity rate:

∆ log(TBt) = (1− ωusd)∆xt −∆ct. (7)

20JWY model also includes the characterization of the money market and specifies the real exchange rate.
However, for the purpose of our analysis, we are only focusing on a scenario where the real exchange rate
remains constant. Readers are referred to Appendix C.1 for our demonstration that the process of the real
exchange rate does not have an impact on our analysis.
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The changes in the basket-implied dollar index ∆xt comprise an exogenous i.i.d process21:

∆xt ∼i.i.d N(0, σ2
∆x).

3.2 The Foreign Exchange Market

The spot exchange rate (i.e., closing rate) is denoted as et = log(SCLt ), which measures the

price of USD in RMB. Let the Foreign interest rate be i∗t , which is an exogenous stationary

autoregressive (AR) process:

i∗t = ρi∗i
∗
t−1 + εi∗,t, εi∗,t ∼i.i.d N(0, σ2

i∗) (8)

where ρi∗ is the AR coefficient, and εi∗,t is the foreign interest rate shock.

Let it be the interest rate in the Home country (i.e., China). Home’s domestic monetary

policy is a linear function of the state variables i∗t and ct,

it = φcct + φi∗i
∗
t (9)

where φc and φi∗ are the internal monetary policy coefficients.

The variable ρt+1 represents the ex-post excess return of RMB-denominated bonds in a

log-linearized form:

ρt+1 ≡ (it − i∗t )− (et+1 − et). (10)

As will be clear in the next subsection, the value of ρt+1 plays an important role in deter-

mining the investors’ position of RMB assets.

In the foreign exchange market, the authority announces the central parity rate ct. We

denote the market-closing exchange rate’s deviation from the parity rate as dt = et − ct.
The policy rule is a simple two pillar policy denoted as Equation (1). We will examine the

behavior of an economy under this rule and highlight the problem of multiple equilibria. In

Section 5, we present a regime-switching central parity rate policy to investigate whether

this policy can alleviate the issue of indeterminacy.

3.3 The Intraday Market

In the intraday foreign exchange market, a continuum of investors on unit interval select

portfolios consisting of RMB and dollar assets. For investor j ∈ [0, 1], the first-order

21This specification is consistent with our dollar index data.
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condition implies an optimal position

Xj
t =

Ejt (ρt+1)

ζvarjt (ρt+1)
. (11)

The optimization problem of traders is standard and is explained in detail in Appendix B.1.

The information structure is the key to determining the RMB asset position. Following

De Long et al. [1990], Jeanne and Rose [2002], and JWY, we consider two types of traders:

informed traders and noise traders with incomplete information. The informed traders,

denoted as j ∈ [1−N, 1], have rational expectations. That is, informed traders have accurate

information regarding asset returns and risks. Their expected premium and conditional

variance regarding the excess return of holding RMB assets are

Ejt (ρt+1) = Et(ρt+1),∀j ∈ [1−N, 1],

V arjt (ρt+1) = V art(ρt+1),∀j ∈ [1−N, 1].

Thus, the position of informed traders, denoted as XI
t ,22 is

XI
t =

Et(ρt+1)

ζV art(ρt+1)
. (12)

The noise traders, denoted as j ∈ [0, 1−N), have precise information on the risks. Their

conditional variance is identical to the informed traders,23

V arNt (ρt+1) = V art(ρt+1).

However, noise traders have imperfect information regarding asset returns. We follow

Frankel and Froot [1987] and assume that noise traders form their expectation of exchange

rate via regressive learning :

EN (et+1 − et) = γ(et − e) (13)

where e is the log long-run exchange rate (steady-state level), and γ is the learning parame-

ter, which is the key to our analysis.24 Thus, the position of noise traders, denoted as XN
t ,

22We suppress the individual index here because all informed traders choose the same position.
23This assumption is an innocuous simplification. Our results are not affected if we relax this assumption.

See Appendix C.2 for details.
24In our setting, exp(e) = 1.
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is

XN
t =

ENt (ρt+1)

ζV art(ρt+1)
. (14)

In our specified information structure, informed traders and noise traders differ only

in their expected exchange rate. Equations (12) and (14) highlight this distinction. This

difference in exchange rate expectations results in distinct expectations of excess return

between the noise and informed traders, which ultimately lead them to hold different asset

positions.

In equilibrium, informed traders and noise traders are the only market forces in the

intraday market.25 Without government intervention, the market clearing condition of

RMB asset is NXI
t + (1 − N)XN

t = 0. Substituting XI
t and XN

t using (12) and (14)

respectively, we find that

NEt(ρt+1) + (1−N)ENt (ρt+1) = 0. (15)

The equation presented above shows how the expectation of noise traders influences the

equilibrium excess return. By substituting the value of ρt+1 with its definition from (10),

we can derive the modified uncovered interest parity condition

(it − i∗t )− Et(et+1 − et) = −n(it − i∗t ) + nγ(et − e), (16)

where n = (1−N)

N
denotes the size of noise traders relative to the size of informed traders. It

is important to emphasize that Et is the rational expectation operator conditional on the

public information in period t.

4 The Indeterminacy Issue

To demonstrate the problem of multiple equilibria in the LRE model discussed in Section

3, we present the economy in the state-space form. Here, the vector of state variables is

Xt = [i∗t , ct] . As in JWY, we introduce the forward looking variable et and define the vector

25The government intervention can be directly introduced as another policy instrument, similar to Brun-
nermeier et al. [2022] and Jermann et al. [2020]. With the government intervention Gt, the market clearing
condition of RMB assets becomes NXI

t + (1 − N)XN
t + Gt = 0. This intervention can help to prevent a

self-fulfilling cycle. For example, if a sentiment shock leads to RMB depreciation in the market, strong gov-
ernment policies can stabilize the economy at the cost of losing foreign reserves. However, our paper focuses
on evaluating the consequences of regime-switching in the central parity rate rule. We aim to determine if
it is possible to stabilize the market without government intervention and without losing foreign reserves.
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Zt = [X ′t, et]
′. The dynamics of Zt follows[

Xt+1

Etet+1

]
= AZt +Bεz,t+1 (17)

where εz,t+1 = [εi∗,t+1,∆xt+1, σεt+1]′ with matrices

A =

 ρi∗ 0 0

0 1− α α

(1 + n) (φi∗ − 1) (1 + n)φc 1− nγ

 , B =

 1 0 0

0 β(1− ω0) 1

0 0 0

 .
The discussion of the indeterminacy issue in Section 4 is based on Equation (17). Fol-

lowing Blanchard and Kahn [1980] (BK, hereafter), the determinacy is defined as the non-

explosive expectations of Xt and et.
26 The BK condition requires the A matrix to have

exactly one eigenvalue outside the circle because we have one forward-looking variable.

Our general result suggests that determinacy depends on the coordination of the internal

monetary policy with the central parity rate policy. However, the literature on the use of

monetary policy to prevent multiple equilibria in the foreign exchange market is limited. To

address this, we first estimate the key parameters using the forecast survey data. Then, we

examine a special case wherein monetary policy is not influenced by the central parity rate

to highlight the self-fulfilling prophecy. In the general case, we emphasize the significance

of policy interactions in ensuring a unique equilibrium.

4.1 Estimation of the Key Parameters

The parameters α, (1 + n)φc, and nγ determine the eigenvalue of A matrix and are the

key parameters for our analysis. The full sample OLS estimation of the parity rule gives

α = 0.42. We further leverage Bloomberg’s institutional-level forecasts of the CNY/USD

26We can rewrite A matrix in Jordan form A = C−1JC, where the diagonal elements of J are the
eigenvalues of A. Consider the transformation [Yt, Qt]

′ = C[Xt, et]
′. The determinacy of the system is

equivalent to the unique determination of Qt. That is,

Qt = −
∞∑
i=0

(µ3)−i−1(C11B1 + C12B2)Etεz,t+i (18)

The uniqueness of Qt is guaranteed by the well-known BK condition. And J =

 µ1 0 0
0 µ2 0
0 0 µ3

 ; C−1 = C11
(2×2)

C12
(2×1)

C21
(1×2)

C22
(1×1)
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spot rates over the same sample span to estimate the strength of noise trading and China’s

domestic monetary policy coefficients.

One important data feature is that all of the institutional forecasts are daily frequency

forecasts of fixed targets, with quarterly moving targets instead of fixed horizons. To connect

the data with our daily frequency model, we iterate the state space model (17) h periods

forward to yield

E(Zt+h|et, ct, i∗t ) = AhZt.

From this, we obtain

Ei(et+h|et, ct, i∗t ) = Ah[3,1]i
∗
t +Ah[3,2]ct +Ah[3,3]et. (19)

where Ah[p,q] denotes the (p, q)-th element in the matrix Ah. Ei(et+h|et, ct, i∗t ) is the h-day

forecast value of institution i.

We consider one-month ahead forecasts in the regression (h = 23). Table 8 in Ap-

pendix F reports the regression results. The estimates of γ2 and γ3 are quite robust and

accurate over different specifications. With the value of α, we solve from the model with

both individual- and time-fixed effects that nγ = 1.6, (1 + n)φc = 1.58. As will be clear

soon, these two numbers are important for our quantitative analysis.

4.2 A Special Case When Monetary Policy Does Not Adjust

In this simple case, monetary policy has no effect, as φc equals zero. With the following

proposition, we aim to explain the mechanism behind the self-fulfilling prophecy without

the influence of monetary policy, and we emphasize the significance of noise traders.

Proposition 4.1. If φc = 0, the eigenvalues of matrix A are

µ1 = ρi∗ , µ2 = 1− α, µ3 = 1− nγ.

The Blanchard-Kahn condition can only be satisfied if γ < 0 or γ > 2
n .

Imagine a scenario where a non-fundamental shock causes rational market participants

to anticipate a future depreciation of the RMB. As a result, the expected future value of

RMB assets, Etρt+1, decreases. This outcome leads to a reduced optimal RMB position

for rational traders, XI
t . In the absence of noise traders and monetary policy adjustments,

the decrease in demand for RMB assets leads to a decrease in the assets’ value, causing the

RMB to depreciate in the spot market. This is a typical self-fulfilling phenomenon in the

foreign exchange market.
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Noise traders may disrupt the self-fulfilling phenomenon. If they notice that et is rising,

they may anticipate that the RMB will increase in value on the following day due to γ < 0.

As a result, noise traders anticipate a greater premium for holding RMB assets, which is

captured by ENt (ρt+1). This increases noise traders’ willingness to hold RMB assets, which

in turn increases the demand for RMB assets and prevents the self-fulfilling depreciation of

the RMB in the foreign exchange market.

Alternatively, when γ > 2
n , the noise traders anticipate a greater decrease in the value

of the RMB when et increases. As a result, they are less likely to hold RMB assets.

However, RMB cannot feasibly depreciate, as no traders are willing to hold RMB assets.

Consequently, the equilibrium RMB exchange rate must appreciate the in the face of a

non-fundamental depreciation shock.

4.3 A General Case When Monetary Policy Adjusts

When discussing determinacy, internal monetary policy is an important factor to consider.

This is because the interest rate is a component of the modified uncovered interest parity

condition and affects asset returns. When the monetary policy is specified by Equation (9),

one of the eigenvalues of matrix A is µ1 = ρi∗ . The other two eigenvalues µ2 and µ3, can

be calculated using the following equation:

µ =
(2− α− nγ)±

√
[α− nγ]2 + 4αφc(1 + n)

2
. (20)

As discussed in the previous subsection, when γ < 0, the government can always guar-

antee the determinacy by muting monetary policy’s response to the central parity rate

(φc = 0). Therefore, in this part, we focus on the situation wherein γ > 0. According to the

panel regression results in Subsection 4.1, the value of nγ is approximately 1.6. We focus

on this value in our quantitative exercises.

We use |µ| to denote the absolute value of µ. The proposition below outlines the require-

ments for policy coefficients to avoid indeterminacy in LRE. Specifically, only one value of

|µ| can be greater than one.

Proposition 4.2. If γ > 0, to guarantee the Blanchard-Kahn condition, the monetary

policy coefficients φc and exchange rate policy coefficient α must satisfy one of the following
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conditions:

φc(1 + n) > nγ and φc(1 + n)α < (2− α)(2− nγ),

Or,

φc(1 + n) < nγ, α < nγ, and φc(1 + n)α > (2− α)(2− nγ).

Proof. See Appendix B.2

Proposition 4.2 includes Proposition 4.1 as a special case. To see this, suppose that φc

approaches zero, and the above condition reduces to the required constraints listed in 4.1.

In general, a constraint on nγ is not sufficient to guarantee a unique equilibrium when the

monetary policy responds to the central parity rate. Nonetheless, noise traders’ learning

behavior can affect the system’s stability, potentially leading to a unique equilibrium even

if nγ < 2.

Let us start by examining two interesting special cases. The first case assumes that α

approaches zero but remains greater than zero.27 According to Equation (2), the central

parity rate remains unaffected by the closing rate of the previous day. The equilibrium

is unique when the monetary policy coefficient φc is greater than (1 − N)γ. This occurs

because a non-fundamental shock may trigger a self-fulfilling phenomenon in the market,

where noise traders’ learning behavior further enhances the self-fulfilling depreciation if γ

is positive. As the interest rate is a significant factor that determines the excess return of

holding RMB assets, the monetary policy rule can compensate investors who hold RMB

assets by responding to the increasing parity rate, thereby increasing the asset demand.

This self-fulfilling chain breaks down when the monetary policy stance is aggressive enough

to dominate the amplification effect of noise traders.

In the second case, if α approaches one, the central parity rate responds fully to the

closing rate of the previous day, and the monetary policy coefficient φc should fall within

the range of 2−nγ
1+n and nγ

1+n . If both the monetary and exchange rate authorities are ag-

gressive, any sentiment-driven depreciation will be fully reflected in the central parity rate

and overcorrected by the interest rate, leading to no equilibrium solution. Conversely, if

the monetary policy is too unresponsive to the central parity rate, it will fail to prevent

self-fulfilling depreciation, resulting in an undetermined system.

Based on the estimated value of nγ, Figure 6a shows the combination of policy coef-

ficients φc and α needed for a determinate equilibrium, using the eigenvalue expressions

in (20). Assuming an overall linear exchange rate policy, the green cross represents the

27When α = 0, the solutions of Equation (20) are 1 − µγ and 1. There is no stable equilibrium in this
system.
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Figure 6: Determinacy Region of Benchmark LRE Model

(a) Benchmark Case (b) Alternative Case

Note: cyan: determinacy; blue: multiple solutions; yellow: no solution. Estimated values over the full
sample at the green cross, where α = 0.42 and φc(1 + n) = 1.58.

estimated values of φc and α from the panel regression in Subsection 4.1, indicating that

the RMB policy is working and the economic system is marginally stable. The figure also

highlights the coordination between the monetary policy and the central parity rate policy.

When the monetary policy is less sensitive to the central parity rate, i.e., φc is smaller, the

economy requires the central parity rate formation to better reflect the market conditions,

i.e., α should be larger. This intuition is consistent with the previous special cases. The

monetary authority works with the exchange rate authority to determine the extent to which

the interest rate responds to sentiment-driven depreciation. The interest rate is a compo-

nent of the excess return of holding RMB assets and may break down the self-fulfilling chain.

In summary, a combination of aggressive (passive) monetary policy and passive (aggressive)

exchange rate policy is necessary if the PBC wants to tackle self-fulfilling depreciation in

the RMB exchange market and if the monetary policy can respond to the parity rate.

Importantly, the demand for policy coordination is influenced by the market forces of

noise traders, which is measured by nγ. Recall that in this expression, n represents the

number of noise traders in the market, and γ is the learning parameter that measures

the trader’s sensitivity to the spot rate. When nγ < 2 − nγ, as shown in Figure 6b,

the amplification effect caused by the noise trader is relatively weak, and the exchange

rate depreciation (driven by sentiment and amplified by noise traders) is not sufficiently

significant. The monetary policy coefficient must be larger than nγ to prevent depreciation
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in the spot market and compensate for the holding of RMB assets. However, this policy

parameter cannot be too large if α approaches one, or no solution can guarantee equilibrium.

To summarize, the analysis calls for coordination between the monetary policy and ex-

change rate policy to address indeterminacy. However, this coordination may be difficult in

practice for two reasons. First, monetary policy may have its own goals, such as minimizing

the output gap and stabilizing inflation. Although the regression results in Subsection 4.1

indicate that monetary policy responds to the central parity rate, we acknowledge that it

is not explicitly designed to handle the exchange rate market. Second, the central parity

rate and exchange rate rule are announced on a daily basis, while the monetary policy rule

and corresponding adjustments occur at a lower frequency as they address the output gap

and inflation. An important question concerns whether the exchange rate authority can

handle sentiment shocks in the exchange rate market when monetary policy is binding (i.e.,

a constant rule). We explore this possibility in the next section.

5 Indeterminacy and the Regime-Switching Policy Rule

To understand the impact of regime-switching on the determination of exchange rates, we

extend the linear model to include regime-switching RMB policy rules. Our focus is on a

policy rule with switching coefficients specifically in the market pillar, 28

ct = (1− α(rt))ct−1 + α(rt)et−1 + β(1− ω0)∆xt + σεt. (21)

The exogenous regime rt follows an ergodic Markov chain with a 2× 2 transition matrix P

where the transition probability from a regime i to regime j is pij = Pr(rt+1 = j|rt = i) for

i, j ∈ {0, 1}.
At time t, informed traders can access the observable information set denoted by Ft =

{Zt−l, rt−l, εz,t−1, l = 0, 1, 2, · · · }, where Zt and εz,t are defined in the previous section.

Our system of equations includes Equation (8) to describe the foreign interest rate process,

Equation (21) to describe the RMB central parity policy, and Equation (16) to describe the

modified uncovered interest rate parity condition with regime-switching coefficients. Then,

the MSRE model can be expressed as

Zt = F̃EtZt+1 + Ω̃(rt)Zt−1 + Γ̃εz,t (22)

28In Appendix E, we also consider the switching of β and show that our conclusions are not affected.
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with coefficient matrices

F̃ =

 0 0 0

0 0 0

0 0 γ̃

 , Γ̃ =

 1 0 0

0 β(1− ω0) 1

−γ̃ φi∗−1
N̄

−γ̃ φc
N̄
β(1− ω0) −γ̃ φc

N̄

 ,

Ω̃(rt) =

 ρi∗ 0 0

0 1− α(rt) α(rt)

−γ̃ φi∗−1
N̄

ρi∗ −γ̃ φcN̄ (1− α(rt)) −γ̃ φcN̄ α(rt)

 ,

where γ̃ = [1− nγ]−1 .

5.1 Equilibrium Selection

The MSRE model presents a non-trivial equilibrium selection problem. As demonstrated

in Cho [2016, 2021], any solution to (22) can be written as a combination of a fundamental

component and a sunspot component bt, which is asymptotically covariance stationary and

independent to Z0 and rt for all values of t ≥ 1:

Zt = [Ω(rt)Zt−1 + Γ(rt)εz,t] + bt (23)

bt = Et[F (rt)bt+1] (24)

where

Ω(rt) = Ψ(rt)Ω̃(rt) (25)

Γ(rt) = Ψ(rt)Γ̃ (26)

F (rt) = Ψ(rt)F̃ (27)

for all values of rt, rt+1 ∈ {0, 1}, if there exists matrix inverse

Ψ(rt) =
[
I3 − Et[F̃Ω(rt+1)]

]−1

for all values of rt ∈ {0, 1}. The minimum state variable (MSV) solution to (22) refers

to the fundamental solution Zt = Ω(rt)Zt−1 + Γ(rt)εz,t when the sunspot component bt =

0. This MSV solution is discussed in Davig and Leeper [2007] and Farmer et al. [2009].

Briefly, the MSV solution excludes sunspots. In a more general setting, however, Equation

(23) illustrates that rational expectations may also be affected by the non-fundamental

components. The sunspot process bt is an autoregressive process with regime-switching

coefficients and stationary sunspot shocks. Note that, generally, Ω(rt) is not unique because
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finding solutions of (25) entails solving a quadratic vector equation.29 Therefore, there

generally exists a finite number of MSV solutions and possibly a continuum of mean-square

stable (MSS) sunspot solutions. Additionally, in this system, Γ(rt) and F (rt) are uniquely

defined when Ω(rt) is specified. In the following text, we refer to Ω(rt) as an MSV solution.

Consistent with the literature, we adopt mean-square stability as the stability concept.30

Thus, the determinacy of the MSRE model refers to the uniqueness of the minimum of

modulus mean-square stable (MOD-MSS) solution.31 In the context of our study, Cho [2021]

shows that the mean-square stability of the rational expectations model can be characterized

by the following two types of matrix operators:

Ψ̄G⊗H = [pji(G(j, i)′)T ⊗H(j, i)],

ΨG⊗H = [pij(G(i, j)′)T ⊗H(i, j)],

for generic 3×3 matrices G(i, j) and H(i, j), with a given transition matrix P . Operators T

and ′ denote the non-conjugate transpose and conjugate transpose operators, respectively,

and ⊗ denotes the Kronecker product. In our model, the expression in the squared bracket

above represents the (i, j)-th 32 × 32 dimensional block for all i, j ∈ {0, 1}. The two

expressions at the center of the determinacy in our MSRE model are

Ψ̄Ω⊗Ω =

(
p00Ω(0)⊗ Ω(0) p10Ω(0)⊗ Ω(0)

p01Ω(1)⊗ Ω(1) p11Ω(1)⊗ Ω(1)

)
,

ΨF⊗F =

(
p00F (0)⊗ F (0) p01F (0)⊗ F (0)

p10F (1)⊗ F (1) p11F (1)⊗ F (1)

)
.

Let O represent the set of {Ω(rt), rt = 0, 1}, satisfying (25); we then sort the solutions

by the spectral radius ρ(·) so that

ρ(Ψ̄Ω1⊗Ω1) ≤ ρ(Ψ̄Ω2⊗Ω2) ≤ · · · ≤ ρ(Ψ̄ΩM⊗ΩM ). (28)

Definition 5.1. The MSV solution of model (22) is a MOD solution if Ω(rt) ∈ O and

29Our three-equation model involves a maximum of four MSV solutions after applying the Gröbner basis
technique proposed by Foerster et al. [2016].

30See Definition 1 in Farmer et al. [2009] for a rigorous definition of mean-square stability. Importantly,
the mean-square stability in a regime-switching setting does not require each regime to be stable. As long
as the unstable regime does not occur too frequently, the state variables will still converge to a well-defined
ergodic distribution with finite first and second moments.

31For the LRE models, the MOD solution is identical to the standard one solved by Blanchard and Kahn
[1980]. Also, compared with the forward solution proposed by Cho [2016], the MOD solution provides not
only sufficient but also the necessary conditions for determinacy. Compared with Foerster et al. [2016], the
MOD solution is computationally far more efficient.
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Ω(rt) = Ω1(rt).

Proposition 3 of Cho [2021] classifies an MSRE model to be determinacy-admissible if

ρ(Ψ̄Ω1⊗Ω1)ρ(ΨF1⊗F1) < 1, under which the MSRE model is

1. determinate if and only if ρ(Ψ̄Ω1⊗Ω1) < 1 and ρ(ΨF1⊗F1) ≤ 1,

2. indeterminate if and only if ρ(Ψ̄Ω1⊗Ω1) < 1 and ρ(ΨF1⊗F1) > 1,

3. of no stable solution if and only if ρ(Ψ̄Ω1⊗Ω1) ≥ 1.

5.2 Determinacy Region under Various Policy Tools

In this section, we illustrate how different monetary policy tools affect the RMB determinacy

region using the MSRE framework, and present the results obtained using an LRE model

for comparison.

In Figure 7, we showcase the determinacy regions obtained using the MSRE and LRE

models, conditional on various values of the exchange rate policies α and internal monetary

policies β2 = φc(1 + n), as well as policy regime transition probabilities. The remaining

parameters are consistent with the ML estimates of the benchmark regime-switching model,

panel regression estimates from Bloomberg economic forecasts, and calibration by JWY. We

set ρ∗i = 0.95, as in JWY, and γ̃ = [1 − nγ]−1 = −1.67 according to the panel estimation

results from Bloomberg economic forecasts. For simplicity, we set φi∗−1
N̄

= 0 and β = 0

because they do not impact the determinacy region in our model. The benchmark policy

regime transition probabilities p00 = 0.86 and p11 = 0.73 are computed based on the

estimated transition matrix characterized by (τ ,A,V).32 The solid red line in each figure

represents the 45-degree line, such that the determinacy region of an LRE model is given

by the line segment that overlaps with the shaded area.

Figure 7a demonstrates that an aggressive exchange rate policy with a policy coefficient

α greater than 0.4 is necessary for an LRE model if the internal monetary policy does not

lean sufficiently against the wind by giving a coefficient β2 = 1.58 when γ̃ = −1.67. This

message is already conveyed in Figure 6a. A low α leads to indeterminacy in our LRE

model. This result may be due to our monetary policy specification and the estimated

value of β2 and nγ. Again, a more realistic monetary policy rule should be employed to

explore whether the low α value itself can stabilize the exchange rate market. We reserve

this question for future research. The following exercises are conducted to illustrate the

consequence of switching policy, given our simple model.

32See Appendix D for the calculation in detail.
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Figure 7: Determinacy Regions of the MSRE Model

(a) p00 = 0.86, p11 = 0.73, β2 = 1.58

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(r = 0)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(r
 =

 1
)

(b) p11 = 0.80
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(c) β2 = 1.3 (d) β2 = 1.7

Note: This panel of figures plots the determinacy regions of the MSRE model at different parameter values
on the α(rt = 0)− α(rt = 1) plane. The grey-shaded areas marked by black and dotted red lines envelopes
represent the determinacy region for different parameters. The solid red line in each figure represents the
45-degree line, on which the determinacy region of an LRE is given by the line segment that overlaps with the
shaded area. The green cross reports the estimated policy weights in the benchmark empirical model. The
transition probabilities in (a),(c), and (d) are estimated from the benchmark model, whereas the transition
probabilities in (b) are counterfactual.

As shown in Figure 7a, there is less concern about coordinating monetary and exchange

rate policies because the determinacy region of the economic system is substantially ex-

panded. If the interest rate policy is constrained and insensitive to the exchange rate, the

monetary authority can implement time-varying RMB policy coefficients, occasionally al-

lowing α to be below 0.4 while still achieving determinacy. For example, the green cross
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represents the coefficients of the RMB policy in the empirical section. With estimated

regime transition probabilities, a pair of RMB policies with both high and low α values

(0.806 and 0.338) can satisfy the conditions for determinacy. The low-α value may be a

policy decision due to the expectation formation effect. In contrast to the LRE environ-

ment, the rational agent knows that the policy regime may switch to a high-α regime, thus

ensuring that the state variables in this system will converge to a well-defined ergodic distri-

bution and guarantee mean-square stability. Moreover, the edge of the determinacy region

shows that, similar to the results in Davig and Leeper [2007], the central bank can lean

more heavily against irrational trading of RMB in one regime by imposing an even lower

market pillar coefficient if the other regime implements a larger market pillar coefficient.

Figure 7b illustrates how regime switching can be used as a tool for exchange rate

policy. A central bank can manipulate the determinacy region by committing to certain

probabilities of regime transitions and communicating them to the public. For the purpose of

discussion, we focus on the triangular area above the 45-degree line in Figure 7b. Specifically,

regime-0 (horizontal axis) and regime-1 (vertical axis) correspond to the low-α and high-α

regimes, respectively. Transition probability has a subtle effect on determinacy. In a thought

experiment, we increase p11, i.e., the persistence of high-α regime, from 0.73 to 0.80; all

other parameters remain identical to the benchmark model. Two effects are implied by the

new determinacy region. First, a sufficiently high α in the high-α regime can not be coupled

with a very low α in the other regime. To better understand this implication, recall that α

can only take values in the unit interval. Second, at the boundary of the new determinacy

region (red dashed curve), the central bank must impose a larger α in the high-α regime

for any feasible low-α. According to Proposition 1 of Cho [2021], the problem with a more

persistent high regime is that it may result in ρ(ΨF⊗F ) > 1, hence, a continuum of stable

sunspot processes that is associated with the MOD solution.

Figure 7c and Figure 7d show how internal monetary policy affects the determinacy

regions. These results are closely related to those in Figure 6a. Given the amount of noise

trading in the intraday market characterized by γ and N̄ , the determinacy region of the

MSRE model depends upon the strength of internal monetary policy φc, hence β2 = φc
N̄

,

that leans against the central parity rate ct. In this scenario, the determinacy region under

a weaker monetary policy contracts toward higher market-pillar coefficients in both regimes.

This scenario is shared by the LRE determinacy. The LRE intuition concerning determinacy

under an interest rate policy stronger than noise trading continues to apply to the MSRE

model. Additionally, when β2 > nγ, there is a significant shift in the determinacy region,

as shown in Figure 7d, which is consistent with Figure 6a.
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Figure 8: Determinacy Region of MSRE under Persistent Regimes

Note: This figure plots the determinacy region of the MSRE model on the α(rt = 0)−α(rt = 1) plane. The
solid red line in the figure represents the 45-degree line, on which the determinacy region of an LRE is given
by the line segment that overlaps with the shaded area. The green cross reports the estimated policy weights
in the benchmark empirical model. The transition probabilities are set to be p00 = 0.99 and p11 = 0.99.

5.3 A Countercyclical Exercise with Persistent Regimes

The RMB exchange rate policy underwent important reforms in February 2017. In par-

ticular, the PBC introduces the CCF intermittently as an intervention tool to discourage

speculation. However, our estimates of the market pillar factor wαt in Figure 5 are not fully

aligned with the announced CCF episodes. Rather, the switching frequency is much higher

than the frequency of announced episodes. In the next exercise, we illustrate one possible

consequence when the market completely perceives that the regime switches according to

the official announcement.

The announced CCF regimes are very persistent regarding daily frequency data. The

CCF was first introduced by the PBC on May 26, 2017, and subsequently removed on

Jan 9, 2018. It was then reinstalled on Aug 24, 2018, and suspended on Oct 26, 2020.

An RMB policy regime whose frequency is consistent with the CCF policy announcement

would suggest that the transition probabilities for policy regimes p00, p11 ≈ 1. In light of

this argument, we let agents form the rational expectation using such a transition proba-

bility. In Figure 8, we display the determinacy region, where p00 = 0.99, p11 = 0.99. Our

estimated policy coefficient does not fall within the determinacy region, which implies a
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weak expectation formation effect due to the persistent regime. If the low α regime itself

cannot guarantee determinacy, the rational agent realizes that the probability of switching

to a high-α regime is very low, and therefore, the self-fulfilling prophecy cannot be ruled

out.

This exercise demonstrates the importance of managing market expectations. The im-

portance would not be undermined even if one develops an LRE model with estimated

parameters to show that a low α regime itself works to rule out self-fulfilling depreciation.

In this scenario, the low α is meaningful only if the high α regime leads to indeterminacy.

Our exercise shows that an extremely persistent policy cannot be effective because it implies

a very weak expectation formation effect in such a scenario.

5.4 The cost of expectation formation effect

In this subsection, we present the cost of having a high-frequent regime switching policy.

With this cost, we illustrate the trade-off between ruling out the self-fulfilling prophecy

and generating large volatility. In Table 3, we report the standard deviations of interest

variables. The variabilities of these variables are also discussed by JWY. In their optimal

policy analysis, the variations of ct − et−1 and of ct − s̄t are the key policy targets. Thus,

the authority trades off between the flexibility pillar and the stability pillar. The policy

weights on two pillars can be derived by balancing the policy targets. The parameter values

for simulation are identical to the one used to plot Figure 6a or 7.

As a comparison, we also report the simulated moment of the LRE model, in which the

exchange rate policy rule is constant and there is no expectation formation effect. Overall,

the moments of the LRE model and the MSRE model are similar. Strikingly, When the

economy uses a regime-switching policy, the standard deviation of the difference between

the central parity rate and the basket pillar is 300% more volatile than the LRE model.

This difference comes from two parts: one is the different α value in the LRE model and

the MSRE model; the other one is the transitory probability. To further highlight the

role of transitory probability, I report the simulation results by specifying p00 = 0.99 and

p11 = 0.99. The variabilities of interest variables are smaller if the economy is purely driven

by the fundamental shocks. Yet, as illustrated in Figure 8, the determinacy of the economy

cannot be guaranteed. To this end, we show that by using the regime-switching policy, the

government has a larger policy parameter set to avoid indeterminacy, but at the expense of

a more volatile current account.
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Table 3: Moments in the Model and Counterfactual Exercises

σ(ct − et−1) σ(ct − s̄t) σ(ct) σ(dt) σ(∆dt)

LRE model 0.0963 0.0058 0.7954 0.0138 0.0017
MSRE model 0.0977 0.0176 0.7773 0.013 0.0022

A counterfactual MSRE model 0.0973 0.0155 0.7757 0.0125 0.0016
Note: σ(zt) is the standard deviation of variable zt. The variables listed above are differences between the central
parity rate and the two pillars ct − et−1 and ct − s̄t, the central parity rate ct, the exchange rate deviation dt and

the change of exchange rate devaition. These standard deviations are expressed in basic points. We report the
simulated moments using the calibrated LRE model or MSRE model. That is, we have ρ∗i = 0.95, nγ = 1.6 and

(1 + n)φc = 1.58, φi∗−1
N̄

= −0.5 and β = 0.5 And σ∆x = 0.0024 and σi,∗ = 7.07× 10−07 are from data. For the
LRE model, α = 0.42; For the MSRE model, α0 = 0.341 and α1 = 0.8. p00 = 0.86 and p11 = 0.73. For

counterfactual MSRE model, p00 = 0.99 and p11 = 0.99

6 Conclusion and Future Research

The formation of the RMB central parity rate follows a time-varying two-pillar rule. In

this paper, we highlight the impact of this time-varying policy rule on market expectations.

We exploit a Markovian regime-switching model to uncover the dynamics of policy param-

eters. The Markov transitory probability matrix captures the strength of the expectation

formation effect. In a simple MSRE model, we illustrate that the data-implied transitory

probability can help to expand the parameter regions which can rule out the self-fulfilling

prophecy. Thus, we provide a simple theory to justify the introduction of CCF policy. The

expectation formation effect is the key to implementing the CCF policy effectively. We

also show that a too-persistent regime-switching policy is insufficient to stabilize the RMB

exchange rate market due to a weak expectation formation effect.

Some questions regarding the RMB policy switching remain unanswered. As a first step,

in this study, we model the policy coefficients switching as an exogenous Markov chain. Fu-

ture research could incorporate an endogenous regime-switching process. Policymakers may

consider the endogenous response of the market when designing the counter-cyclical policy.

An optimal policy analysis could be conducted to examine the trade-offs associated with

CCF policy implementation. Moreover, our determinacy concept assumes that sentiment

shocks are exogenous. A useful future study might consider an endogenous sentiment shock

and explore the feedback effect between the market and the government.
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Appendices

Appendix A Daytime Factor and CCF Policy

A.1 Reference Period Reform and Daytime Factor

This section presents a detailed derivation of the RMB central parity rule with a 15-hour

reference period and daytime factor and connects it to the simple two-pillar rule with a

24-hour preference period. The extended policy rule with a 15-hour reference period is

given in Equation (10) of JWY. In the extended rule, with policy weights wNT , wDT , the

central parity rate is a weighted average of the previous closing rate SCLt−1, and the daytime

and nighttime components of the stability implied US dollar index, respectively, S̄DTt−1 and

S̄NTt .

SCPt =
(
S̄NTt

)wNT (
S̄DTt−1

)wDT (
SCLt−1

)1−wNT−wDT
. (29)

Following the notation of JWY, the nighttime and daytime factors are

S̄NTt = SCPt−1

(
Xt,7:30AM

Xt−1,4:30PM

)1−wusd

S̄DTt−1 = SCPt−1

(
Xt−1,4:30PM

Xt−1,7:30AM

)1−wusd

where Xt,7:30AM , Xt,4:30PM are the implied USD index with respect to a basket of currencies

other than the USD computed at 7:30 AM and 4:30 PM Beijing Time. Importantly, Xt in
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the simple two-pillar model equals Xt,7:30AM . With these,

SCPt =
(
S̄NTt

)wNT (
S̄DTt−1

)wDT (
SCLt−1

)1−wNT−wDT
=

(
SCPt−1

(
Xt,7:30AM

Xt−1,4:30PM

)1−wusd
)wNT (

SCPt−1

(
Xt−1,4:30PM

Xt−1,7:30AM

)1−wusd
)wDT (

SCLt−1

)1−wNT−wDT
=

(
SCPt−1

(
Xt,7:30AM

Xt−1,7:30AM

)1−wusd
)wNT (

SCPt−1

SCPt−1

(
Xt−1,7:30AM

Xt−1,4:30PM

)1−wusd
)wNT

×

(
SCPt−1

(
Xt−1,4:30PM

Xt−1,7:30AM

)1−wusd
)wDT (

SCLt−1

)1−wNT−wDT
=

(
SCPt−1

(
Xt,7:30AM

Xt−1,7:30AM

)1−wusd
)wNT (

SCPt−1

)wNT ( 1

SCPt−1

(
Xt−1,7:30AM

Xt−1,4:30PM

)1−wusd
)wNT

×

(
SCPt−1

(
Xt−1,4:30PM

Xt−1,7:30AM

)1−wusd
)wDT (

SCLt−1

)1−wNT−wDT
=

(
SCPt−1

(
Xt,7:30AM

Xt−1,7:30AM

)1−wusd
)wNT (

SCPt−1

)wNT (
SDTt

)wDT−wNT (
SCLt−1

)1−wNT−wDT
Similar to the simple two-pillar model, let

S̄t = SCPt−1

(
Xt,7:30AM

Xt−1,7:30AM

)1−wusd

to have

SCPt =
(
S̄t
)wNT (SCPt−1

)wNT (
S̄DTt−1

)wDT−wNT (
SCLt−1

)1−wNT−wDT
Take first order log difference with respect to SCPt to have

log

(
SCPt
SCPt−1

)
= (1− wNT − wDT ) log

(
SCLt−1

SCPt−1

)

+ wNT log

(
S̄t

SCPt−1

)
+ (wDT − wNT ) log

(
S̄DTt−1

SCPt−1

)
.

This result in the notation of the simple two-pillar rule is

∆ct = (1− wNT − wDT )dt−1 + (wDT − wNT ) log

(
S̄DTt−1

SCPt−1

)
+ wNT (1− wusd)∆xt

= (1− wNT − wDT )dt−1 + (wDT − wNT )∆xDTt−1 + wNT (1− wusd)∆xt.
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It is important to note that the coefficients (1 − wNT − wDT ) and wNT have the same

interpretation as α and β, respectively, in the simple two pillar rule. Compared to the

simple rule, the policy rule above includes the additional daytime component ∆xDTt−1.

A.2 Understanding RMB Policy Regimes in A Simple Two-Pillar Rule

In this section, we shed light on the driver of these policy factors. JWY suggests that the

time variation of policy coefficients is due to the intermittent introduction of the daytime

factor in the RMB policy rule. Their measure of countercyclical factor is defined as ∆xDTt =

log(S̄DTt )−log(SCPt ).33 By replacing the definition of S̄DTt , we find that ∆xDTt = (1−ωusd)∗
log(

Xt,4:30PM

Xt,7:30AM
). Intuitively, a higher value of ∆xDTt implies a depreciation pressure on RMB

in the intraday market. More importantly, the value of ∆xDTt reflects the global market

supply and demand condition outside China, as it captures the changes of the implied dollar

index Xt during the trading hours of the RMB market.

Dividing the data into different subsamples according to the de jure introduction of

CCF, JWY concludes that imposing the counter-cyclical factor essentially shifts the weight

away from the market pillar toward the basket pillar. Besides, the regression coefficient

of the countercyclical factor is insignificantly different from zero in the subperiod with no

such factor. Yet, these exercises only focus on the de jure CCF policy. With our estimated

policy factors, we are able to document the relationship between the de facto CCF policy

and the daytime factor bt. Specifically, we regress the estimated RMB policy factor wit for

i ∈ {α, β, σ} on the daytime factor. The empirical specification is the following:

wit = βi∆x
DT
t−1 + γiw

i
t−1 + ᾱi + εi,t, i ∈ {α, β, σ}. (30)

The estimation results are reported in Table 4. In the same table, we also report the

regression results based on the subsample. Overall, the regression results in Column One

Panel A appear to lend support to the effect of the daytime factor on wα. Yet, the full sample

regression in Column One Panel B finds no significant relationship between the daytime

factor and wβ. Intuitively, the policymaker may respond to the global market conditions,

which may be driven by sentiment-induced “procyclicality.” The response implies that a

depreciation pressure of RMB is associated with a lower wα, suggesting that a low-α regime

33where

S̄DTt = SCPt

(
Xt,4:30PM

Xt,7:30AM

)1−ωusd

Xt,7:30AM , Xt,4:30PM are the implied RMB index with respect to a basket of currencies modulo the USD
computed at 7:30 AM and 4:30 PM Beijing Time.
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is more likely to be implemented. Meanwhile, de facto CCF policy does not lead to a change

of β policy factor. This is the key difference compared to the de jure CCF policy highlighted

by PBC and studied by JWY.

We further explore the relationship using subsample regression. According to the au-

thority, the de jure CCF policy is used in subperiod 3 and subperiod 5. The regression

results in Panel A find that the daytime factor is negatively correlated with wα in subpe-

riod 3,4 and 6. The subperiod 3 and 4 results are consistent with JWY’s (Table III of their

work). The subperiod 6 result is interesting in the sense that it echoes the recent market

view— PBC uses the CCF policy without public announcement. 34 Yet, we do not find a

significant relationship in subperiod 5. Again, these subperiod results suggest that the PBC

may watch the market conditions and determine the policy weights on the market pillar.

The use of CCF policy appears more discretionary than commitment.

Panel C reveals a significant relationship between wσ and the daytime factor ∆xDTt−1.

This result is also interesting. It suggests another way to impose the de facto CCF is to use

the exchange rate policy shock and to surprise the market. In the following quantitative

section, we show that the regimes of σ and β play the same role in the dynamics system

and thus, we do not highlight the switching of wσ.

34Also, our subperiod 6 data lasts from Oct 27, 2020, to Dec 31, 2021, making our sample much longer
than JWY.
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Table 4: Regression on Policy Factor

Panel A:

full sample 2 3 4 5 6
wα
t wα

t wα
t wα

t wα
t wα

t

∆xDTt−1 -0.112*** -0.0454 -0.186* -0.172+ -0.0704 -0.269*
(-2.77) (-0.40) (-1.69) (-1.64) (-1.37) (-1.83)

wα
t−1 0.845*** 0.891*** 0.807*** 0.820*** 0.846*** 0.854***

(-56.44) (-17.19) (-16.41) (-18.83) (-33.06) (-25.36)
ᾱα -0.0314 0.0307 0.00925 -0.0693 -0.0982* 0.00332

(-0.98) (-0.29) (-0.12) (-0.59) (-1.81) (-0.03)

N 1186 64 154 153 524 144
adj. R2 0.718 0.755 0.667 0.678 0.721 0.719

Panel B:

full sample 2 3 4 5 6

wβ
t wβ

t wβ
t wβ

t wβ
t wβ

t

∆xDTt−1 0.00802 -0.154* -0.00519 0.0451 -0.0216 0.152***
(-0.43) (-1.78) (-0.10) (-1.16) (-0.87) (-2.73)

wβ
t−1 0.756*** 0.439*** 0.581*** 0.763*** 0.791*** 0.805***

(-35.43) (-4.21) (-6.78) (-12.45) (-26.99) (-16.63)
ᾱβ -0.0169 -0.200*** -0.111*** 0.0317 0.00301 0.0125

(-1.30) (-3.13) (-3.69) (-0.67) (-0.16) (-0.29)

N 1186 64 154 153 524 144
adj. R2 0.571 0.208 0.329 0.584 0.628 0.639

Panel C:

full sample 2 3 4 5 6
wσ
t wσ

t wσ
t wσ

t wσ
t wσ

t

∆xDTt−1 0.183* -0.159 0.184 0.346 0.0507 0.728*
(-1.94) (-0.57) (-0.83) (-1.49) (-0.47) (-1.94)

wσ
t−1 0.879*** 0.856*** 0.814*** 0.853*** 0.894*** 0.892***

(-63.01) (-14.5) (-16.27) (-20.46) (-41.27) (-30.94)
ᾱσ 0.00599 -0.262 -0.2 0.2 0.0856 0.045

(-0.09) (-1.14) (-1.45) (-0.72) (-0.85) (-0.18)

N 1186 64 154 153 524 144
adj. R2 0.774 0.697 0.666 0.728 0.805 0.783

Note: t statistics in parentheses, and +p < 0.15, ∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. The first column is the
regression with full sample data. Columns 2-6 correspond to regression for subperiod 2-6.
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Appendix B Model and Derivation

B.1 The Optimization Problem of Traders

Now, we describe the intraday foreign exchange market. We assume that there is a contin-

uum of investors in the foreign exchange market, indexed by j ∈ [0, 1], who trade choose to

invest in RMB assets or in dollar assets. Following De Long et al. [1990], Jeanne and Rose

[2002], and JWY, we consider two types of traders in the market: informed traders and

noise traders with incomplete information. The informed traders have accurate information

regarding the asset returns and risks. Each investor born at date t is endowed with wealth

W and chooses optimal investment-consumption strategy to maximize the expected CARA

utility over its next-period wealth W j
t+1.

The optimal RMB position of the informed traders i is Xj
t :

max
Xj
t

Ejt

[
− exp(−ζW j

t+1)
]

subject to the following wealth dynamic:

W j
t+1 = (1 + i∗t )W +Xj

t ρt+1. (31)

ζ captures the risk aversion of the trader. Given that all shocks in our economy are all

log-normal, the above maximization problem is equivalent to solving the following one:

max
Xj
t

Ejt (W
j
t+1)− ζ

2
varjt (W

j
t+1)

where Ejt (W
j
t+1) is the expected wealth in the next period and varjt (W

j
t+1) is the conditional

variance for investor j:

Ejt (W
j
t+1) = (1 + i∗t )W + Ejt (X

j
t ρt+1),

varjt (W
j
t+1) = (Xj

t )2varjt (ρt+1).

The first-order condition implies the optimal position:

Xj
t =

Ejt (ρt+1)

ζvarjt (ρt+1)
(32)
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B.2 Proof of Proposition 4.2

µ =
(2− α− nγ)±

√
∆

2
(33)

where ∆ = [α− nγ]2 + 4φc
N
α and n = (1−N)

N
.

1. When (1 + n)φc > nγ, for any α > 0, we have

∆ = [α− nγ]2 + 4(1 + n)φcα > [α− nγ]2 + 4αnγ = [α+ nγ]2 (34)

Thus,

µ2 =
(2− α− nγ) +

√
∆

2
≥ (2− α− nγ) + α+ nγ

2
> 1

To guarantee determinacy, we must have

−1 < µ3 =
(2− α− nγ)−

√
∆

2
< 1

Note that (34) guarantee that

µ3 =
(2− α− nγ)−

√
∆

2
<

(2− α− nγ)− α− nγ
2

= 1− α− nγ < 1

when α < 1 and nγ > 0.

Then, we need to find the condition that guarantee −1 < µ3 :

−2 < (2− α− nγ)−
√

∆ ⇔
√

∆ < (4− α− nγ)

Rearranging the terms, it is easy to show that

(1 + n)φcα < (2− α)(2− nγ) (35)

2. When 0 < (1 + n)φc < nγ, for any α > 0, we have

∆ = [α− nγ]2 + 4(1 + n)φcα < [α− nγ]2 + 4αnγ = [α+ nγ]2

Thus,

µ2 =
(2− α− nγ) +

√
∆

2
<

(2− α− nγ) + α+ nγ

2
< 1
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There are two possibilities, depending on the relative value of α and nγ.

Case 2.1 When α < nγ, we have

µ2 =
(2− α− nγ) +

√
∆

2
>

(2− α− nγ)− α+ nγ

2
> 1− α > −1

To guarantee determinacy, we must have

−1 > µ3 =
(2− α− nγ)−

√
∆

2
or µ3 > 1

Note that we have

µ3 < µ2 < 1

So, we must find the condition that guarantees −1 > µ3. It is straightforward to get

that

−2 > (2− α− nγ)−
√

∆

⇔

(1 + n)φcα > (2− α)(2− nγ) (36)

Case 2.2 When α > nγ, we show that there is no condition that satisfies the Blanchard-

Kahn condition. In this case,

µ2 =
(2− α− nγ) +

√
∆

2
>

(2− α− nγ) + α− nγ
2

> 1− nγ

When 1− nγ > −1., we have µ2 > 1− nγ > −1.

The condition to guarantee determinacy is

(1 + n)φcα > (2− α)(2− nγ) (37)

But the above condition cannot be satisfied since (1 + n)φc < nγ, which implies

0 > 4− 2α− 2nγ). This cannot be true when 0 < α < 1, γ > 0 and α > nγ.

Alternatively, when 1 − nγ < −1.. It implies 2 < nγ, which contradicts to the

condition that α > nγ. So, the BK condition cannot be satisfied under the condition

that 0 < (1 + n)φc < nγ and α > nγ.
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Appendix C Model Extensions

In this appendix, we extend the benchmark model. We specify the process of the real

exchange rate, introduce the government intervention and release the assumption on the

noise trader’s information set.

C.1 The Role of Real Exchange Rate

A shock studied by JWY is the real exchange rate shock. By definition, the real exchange

rate qt is:

qt = p∗t + et − pt (38)

p∗t is the foreign price level. The domestic price level is pt. As in JWY, we assume that

p∗t = 0. Like i∗t , qt is an exogenous process.

Assuming the money stock to be mt, the money demand function establishes a connec-

tion between the money stock, price level, and interest rate:

mt − pt = −$it (39)

In our benchmark model, we specify the monetary policy rule, see Equation (9). It

is easy to see that the real exchange rate does not change the dynamics of the nominal

exchange rate et. Thus, the real exchange rate is irrelevant to our analysis of the self-

fulfilling prophecy in the exchange rate market. We summarize it as a lemma.

Lemma C.1. In our model, the dynamics of the nominal exchange rate are not affected by

the real exchange rate.

Proof. The proof is straightforward. Whenever there is an exogenous shock to the real

exchange rate, the domestic price level changes. The changing price level requires an ad-

justment of money supply so as to guarantee the equilibrium of the money market. Thus,

the domestic interest rate still follows the rule Equation (9). The dynamics of the nominal

exchange rate are still determined by the system, characterized by Equation (17).

Our research aligns with the findings of JWY, particularly in their Proposition 3 which

states that the value of dt is determined by the foreign interest rate i∗t and the central parity

rate ct in a model that includes the real exchange rate. Furthermore, their model indicates

that the nominal exchange rate remains unaffected by changes in the real exchange rate.
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C.2 An Alternative Conditional Variance of the Excess Return for the

Noise Trader

In this appendix, we argue that our analysis will not be affected by changing the specification

of the noise trader’s conditional variance in the benchmark model.

We follow Jeanne and Rose [2002] and specify the conditional variance of noise trader

to be the unconditional variance σ2
ρ.

V arNt (ρt+1) = σ2
ρ

With this specification, the position of noise trader becomes XN
t =

ENt (ρt+1)
ζσ2
ρ

. The market

clearing condition of RMB assets becomes

(it − i∗t )− Et(et+1 − et) = −n/σ2
ρV art(ρt+1)(it − i∗t ) + n/σ2

ρV art(ρt+1)γ(et − e) (40)

Next, we show that V art(ρt+1) is time-invariant and conclude that our analysis is not

affected if we change the specification of this conditional variance.

From the definition of risk premium, we have ρt+1 = (it−i∗t )−(et+1−et). The conditional

variance

V art(ρt+1) = (ρt+1 − Etρt+1)2 = (et+1 − Etet+1)2. (41)

From the system Equation (17), we know that et+1 − Etet+1 = A(3,)εz,t+1. Therefore, it is

straightforward to show that the conditional variance of the excess return is time-invariant.
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Appendix D Regime Transition Probabilities

In this section, we demonstrate the process of obtaining regime transition probabilities of

rαt , which is at the core of our empirical and theoretical analysis.

Table 5: Regimes

Rt = 1 Rt = 2 Rt = 3 Rt = 4 Rt = 5 Rt = 6 Rt = 7 Rt = 8

rαt 0 0 0 0 1 1 1 1

rβt 0 0 1 1 0 0 1 1
rσt 0 1 0 1 0 1 0 1

The byproducts of the regime-switching filter include the regime transition probability

p(rαt+1, r
β
t+1, r

σ
t+1|rαt , r

β
t , r

σ
t ), and the stationary regime probabilities π(rαt , r

β
t , r

σ
t ). With a

slight abuse of notation, we code the regime Rt as in Table 5.

Table 6: Benchmark Regime Transition and Stationary Probabilities

Rt = 1 Rt = 2 Rt = 3 Rt = 4 Rt = 5 Rt = 6 Rt = 7 Rt = 8

Rt+1 = 1 0.09 0.00 0.03 0.00 0.02 0.00 0.01 0.00
Rt+1 = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rt+1 = 3 0.52 0.16 0.78 0.04 0.10 0.06 0.29 0.00
Rt+1 = 4 0.00 0.58 0.04 0.87 0.00 0.16 0.00 0.42
Rt+1 = 5 0.13 0.00 0.03 0.00 0.37 0.00 0.12 0.00
Rt+1 = 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rt+1 = 7 0.26 0.19 0.15 0.02 0.51 0.60 0.58 0.27
Rt+1 = 8 0.00 0.06 0.00 0.03 0.00 0.15 0.00 0.25

π(Rt) 0.02 0.00 0.41 0.24 0.07 0.00 0.26 0.01

The ML estimates of the benchmark model in Table 1 imply a transition matrix in

Table 6. From these components, we can easily obtain the joint regime probabilities

p(rαt+1, r
β
t+1, r

σ
t+1, r

α
t , r

β
t , r

σ
t ) = p(rαt+1, r

β
t+1, r

σ
t+1|rαt , r

β
t , r

σ
t )π(rαt , r

β
t , r

σ
t )),

and marginalize to get the joint probabilities

p(rαt+1, r
α
t ) =

∑
rβt+1,r

β
t ,r

σ
t+1,r

σ
t

p(rαt+1, r
β
t+1, r

σ
t+1, r

α
t , r

β
t , r

σ
t ).

In addition, we may marginalize the stationary distribution to have the stationary rαt prob-
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abilities

π(rαt ) =
∑
rβt ,r

σ
t

π(rαt , r
β
t , r

σ
t ).

Table 7 collects the joint and stationary regime probabilities for rαt that is computed from

Table 7: Joint and Stationary Regime Probabilities for rαt

rαt = 0 rαt = 1

rαt+1 = 0 0.5728 0.0908
rαt+1 = 1 0.0902 0.2462

π(rαt ) 0.6630 0.3370

the benchmark transition matrix.

Therefore, the corresponding rαt transition probabilities can be easily obtained as

p(rαt+1|rαt ) =
p(rαt+1, r

α
t )

π(rαt )
.

Specifically, we find p(rαt+1 = 0|rαt = 0) = 0.86 and p(rαt+1 = 1|rαt = 1) = 0.73
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Appendix E Model with Switching α and β in RMB Rule

To explore the implication of Regime-Switching α and β coefficients on the exchange rate’s

determinacy, we extend the model to allow both coefficients to switch, possibly together.

We will use most of the previous notation in this section when there is little risk of confusion.

To begin with, we consider a regime-switching policy rule with switching coefficients,

ct = (1− α(rαt ))ct−1 + α(rαt )et−1 + β(rβt )(1− ω0)∆xt + σεt (42)

with exogenous binary state variables rαt , r
β
t ∈ {0, 1}. Let the exogenous regime rt =

1 + rαt + 2rβt and assume it follows an ergodic Markov chain with a 4× 4 transition matrix

Q where the transition probability from a regime i to regime j is qij = Pr(rt+1 = j|rt = i)

for i, j ∈ {1, 2, 3, 4}. Then, we can rewrite the policy rule as

ct = (1− α(rt))ct−1 + α(rt)et−1 + β(rt)(1− ω0)∆xt + σεt (43)

by defining

α(rt = 1 + rαt + 2rβt ) = α(rαt ) for rβt = 0, 1

β(rt = 1 + rαt + 2rβt ) = β(rβt ) for rαt = 0, 1

Denote the information set observable to traders at time t as Ft = {Zt−l, rt−l, εz,t−1, l =

0, 1, 2, · · · } with Zt and εz,t defined in the previous section. Our system of equations with

regime-switching coefficients contains foreign interest rate process, Equation (8), RMB cen-

tral parity policy, Equation (43), and modified uncovered interest rate parity condition,

Equation (16). Then the Markov-switching rational expectation (MSRE) model has the

expression

Zt = F̃EtZt+1 + Ω̃(rt)Zt−1 + Γ̃(rt)εz,t (44)

with coefficient matrices
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F̃ =

 0 0 0

0 0 0

0 0 γ̃

 ; Γ̃ =

 1 0 0

0 β(rt)(1− ω0) 1

−γ̃ φi∗−1
N̄

−γ̃ φc
N̄
β(rt)(1− ω0) −γ̃ φc

N̄



Ω̃(rt) =

 ρi∗ 0 0

0 1− α(rt) α(rt)

−γ̃ φi∗−1
N̄

ρi∗ −γ̃ φcN̄ (1− α(rt)) −γ̃ φcN̄ α(rt)


where γ̃ = [1− nγ]−1.

Similar to the benchmark model, an equilibrium selection issue arises. We apply the

result of Cho [2016, 2021] again to find that any solution to (44) can be written as a

combination of a fundamental component and a sunspot component bt that is asymptotically

covariance stationary and independent to Z0 and rt for all t ≥ 1

Zt = [Ω̄(rt)Zt−1 + Γ̄(rt)εz,t] + bt (45)

bt = Et[F̄ (rt)bt+1] (46)

where

Ω̄(rt) = Ψ(rt)Ω̃(rt) (47)

Γ̄(rt) = Ψ(rt)Γ̃(rt) (48)

F̄ (rt) = Ψ(rt)F̃ (49)

for all rt, rt+1 ∈ {1, 2, 3, 4}, if there exists

Ψ(rt) =
[
I3 − Et[F̃ Ω̄(rt+1)]

]−1

for all rt ∈ {1, 2, 3, 4}. Note that (Ω̄(rt), Γ̄(rt)) is referred to as an MSV solution to the

extended model, which depends on the values of α(rt) and β(rt).

The model determinacy in the MOD-MSS sense only depends on Ω̄(rt) and the regime

transition probability matrix because F̄ (rt) is determined once Ω̄(rt) is given. By the same

argument in the main text, the model has a unique real MSS solution if and only if there
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are minimum spectral radius ρ(Ψ̄Ω̄1⊗Ω̄1
) < 1 and ρ(ΨF̄1⊗F̄1

) ≤ 1, where

Ψ̄Ω̄1⊗Ω̄1
=


q11Ω̄1(1)⊗ Ω̄1(1) · · · q41Ω̄1(1)⊗ Ω̄1(1)

...
. . .

...

q14Ω̄1(4)⊗ Ω̄1(4) · · · q44Ω̄1(4)⊗ Ω̄1(4)



ΨF̄1⊗F̄1
=


q11F̄1(1)⊗ F̄1(1) · · · q14F̄1(1)⊗ F̄1(1)

...
. . .

...

q41F̄1(4)⊗ F̄1(4) · · · q44F̄1(4)⊗ F̄1(4)


Clearly, model determinacy depends on α(rt) and Q, but not on the values of β(rt). We

may expect the determinacy condition to be identical to the model with only α switching

in the vein of footnote (17) of Cho [2021]. Upon this, we assume without loss of generality

that β(rt) = β, and assume rβt does not switch between 0, 1. This violates the ergodicity

assumption of rt but simplifies the discussion. Similar to the argument in Appendix E of

Cho [2021], where he shows the equivalence of MOD determinacy conditions to the standard

eigenvalue conditions in LRE, non-switching β reduces the system to one that only admits α

switching with ergodic rαt process. That is, the extended model is identical to the benchmark

model, hence, its determinacy region.

If we continue and examine the transition probabilities for the extended model assuming

non-switching β, then there are

q11 = q33 = p00, (50)

q12 = q34 = p01, (51)

q21 = q43 = p10, (52)

q22 = q44 = p11, (53)

q13 = q14 = q23 = q24 = q31 = q41 = q32 = q42 = 0, (54)

with pij ’s the same transition probabilities in the benchmark model with α switching only.

Additionally,

Ψ(k) =

I3 −
4∑
j=1

qkjF̃ Ω̄(j)

−1

=


[
I3 −

∑2
j=1 qkjF̃ Ω̄(j)

]−1
if k = 1, 2[

I3 −
∑4

j=3 qkjF̃ Ω̄(j)
]−1

if k = 3, 4



54

which implies

Ω̄1(3) = Ω̄1(1) Ω̄1(4) = Ω̄1(2)

F̄1(3) = F̄1(1) F̄1(4) = F̄1(2)

by equations (47), (50)-(53), and the fact that Ω̃(1) = Ω̃(3) and Ω̃(2) = Ω̃(4) in our

construction. It is important to realize Ω̄1(1), Ω̄1(2), F̄1(1), F̄1(2) here are the same solutions

to the benchmark model, namely, Ω1(0),Ω1(1), F1(0), F1(1). From these calculations, there

are

Ψ̄Ω̄1⊗Ω̄1
=


p00Ω1(0)⊗ Ω1(0) p10Ω1(0)⊗ Ω1(0)

p01Ω1(1)⊗ Ω1(1) p11Ω1(1)⊗ Ω1(1)

p00Ω1(0)⊗ Ω1(0) p10Ω1(0)⊗ Ω1(0)

p01Ω1(1)⊗ Ω1(1) p11Ω1(1)⊗ Ω1(1)



ΨF̄1⊗F̄1
=


p00F1(0)⊗ F1(0) p01F1(0)⊗ F1(0)

p10F1(1)⊗ F1(1) p11F1(1)⊗ F1(1)

p00F1(0)⊗ F1(0) p01F1(0)⊗ F1(0)

p10F1(1)⊗ F1(1) p11F1(1)⊗ F1(1)


The expressions above show that the 4× 4 matrices share the same eigenvalues, hence, the

same spectral radius, of their 2 × 2 diagonal blocks, which is identical to the benchmark

model with only α switching.
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Appendix F Estimating Noise Trading Behavior and Domes-

tic Monetary Policy

We use h-period ahead forecast data of the CNY/USD spot rate and consider panel regres-

sion

Ei(et+h|et, ct, i∗t ) = µi + νt + γ1i
∗
t + γ2ct + γ3et + εit

Where Ei(et+h|et, ct, i∗t ) denotes institution i’s (out of 95) h-day ahead forecast of RMB/USD

exchange rate at time t (out of 24, four times a year) in natural log; i∗t : Daily LIBOR rate

(Annualized rate/240); ct: RMB/USD parity rate in natural log; et: Spot RMB/USD rate

in natural log. With α estimated from the parity rule over the full sample spanning from

2015 to 2021, we may identify up to 1
N̄
φc and nγ by solving for Ah[3,2] = γ2 and Ah[3,3] = γ3.

We consider one-month ahead forecasts in the regression. To that end, we note that an

average month has 23 trading days, and let h = 23.35 Table 8 reports the regression results.

The estimates of γ2 and γ3 are quite robust and accurate over different specifications. With

α = 0.42 We use it to solve from the model with both individual- and time-fixed effects

that nγ = 1.6, 1
N̄
φc = 1.58.

Table 8: Panel Regression for One-month-ahead CNY/USD Forecasts

Forecast 1 2 3

LIBOR -1.465 -1.060 -0.991
(0.259) (0.243) (0.299)

Parity 3.089 2.356 2.184
(0.234) (0.247) (0.169)

Spot -2.084 -1.558 -1.396
(0.234) (0.242) (0.166)

Constant *
Individual FE *
Time FE *

R2 0.441 0.441
Obs 1511 1511 1511

Note: The robust standard errors for fixed effect models are reported in parenthesis.

35The selection of h is important because Ah with an even h imposes unnecessary sign restrictions on
γ2, γ3 that prevent a solution for 1

N̄
φc and nγ.


