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Abstract

Using high-frequency location data of individuals, we explore the relationship be-

tween temperature and farm worker labor in California. We find that hot weather

reduces workers’ likelihood to work, and when they do work, they tend to work fewer

hours. We also observe temporal substitution, as workers work during sunrise hours

to avoid extreme heat. These effects are more pronounced when the temperature ex-

ceeds 100◦F. Additionally, we find heterogeneity in workers’ response to heat events

over frequency, with those who experience more days with higher temperatures be-

ing less likely to reduce labor supply in response to extreme heat events, but more

likely to adjust their work schedule to cooler sunrise hours. Our results suggest that

climate change could have significant impacts on the labor market and productivity

of agricultural industries.

1 Introduction

Farmworkers are directly exposed to the effects of a warming climate, and they are 35

times more likely to suffer from heat-related illnesses than other workers (Gubernot et al.,

2015). The threat posed by extreme heat to farmworker health and safety is likely to

grow. Under a business-as-usual scenario, most regions in the U.S. will experience 20-30

more days per year where temperatures exceed 90◦F (USGCRP, 2018) by mid-century.
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Understanding how farmers and farmworkers respond and adapt to heat is a first-order

question facing U.S. agriculture.

We ask whether agricultural labor in California responds to extreme temperatures

at the extensive – do farmworkers work at their primary worksite? – and the intensive

margins – conditional on working, do farmworkers vary hours worked? Using individual-

level cellphone-location tracking data, we measure temporal adaptation at fine temporal

scales. We explore additional margins of adaptation: Do farmworkers shift labor within

the day by working more during cooler times, i.e., early morning or evening?

This paper fills a person-sized gap in the literature that estimates the effects of cli-

mate change on agriculture. While the impacts of climate change on crop yield and total

factor productivity have been extensively studied, see inter alia Schlenker and Roberts

(2009); Burke and Emerick (2016); Gammans et al. (2017); Ortiz-Bobea et al. (2021), ef-

fects on agricultural labor in the United States have gone largely unexamined (Alston

et al., 2021)1. Labor is a crucial input to agriculture and understanding how agricultural

labor adapts in the face of a warming climate is critical to a broader understanding of the

impacts of climate change in agriculture.

More broadly, we contribute to a literature that studies the effects of environmental

conditions on labor markets (Hausman et al., 1984; Carson et al., 2011; Graff Zivin and

Neidell, 2012; Hanna and Oliva, 2015). We expand on earlier work that uses survey data

and time diaries to investigate how workers in high-risk sectors adjust hours worked

on days with high temperatures. For example, Graff Zivin and Neidell (2014) find that

workers in these sectors reduce hours worked by almost 1 hour on days above 100◦F

relative to days with highs of 76-80◦F. Relative to earlier work, we study the repeated

decisions of thousands of individual farmworkers at fine temporal and spatial scales over

the course of the 2020 growing season.

1There is literature that studies the effects of temperature or rainfall on migration decisions or nonagri-
cultural employment in developing countries (Jessoe et al., 2018; Cattaneo et al., 2019; Branco and Feres,
2021), but research on how farmworkers in the United States are affected by environmental conditions and
adjust in the short term is scarce.
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Our research also adds to the existing body of work that investigates how climate

change affects adaptation strategies, including the use of air conditioning and adjust-

ments in working hours (Auffhammer and Aroonruengsawat, 2011; Graff Zivin and Nei-

dell, 2014; Barreca et al., 2016; Dillender, 2021; LoPalo, 2023). Our individual and hourly

level observational data allow us to explore the specific adaptation choices made by work-

ers. We find that workers experiencing fewer hot days are more likely to reduce their

workdays and hours. In contrast, workers exposed to more hot days are more inclined

to adjust their working hours to cooler sunrise times, rather than reducing their over-

all labor time. The differences in adaptation choices may be attributed to physiological

acclimatization, which involves the body adapting to prolonged exposure to high tem-

peratures. This biological change can result in workers who have experienced more ex-

tremely hot days becoming less responsive to discomfort from heat and having a reduced

physiological reaction to hot temperatures. These results emphasize the importance of

acknowledging the diverse constraints individuals face when adapting to heat including

biological limits, which is crucial for understanding adaptation strategies and developing

effective policies.

We use unique location and movement data obtained from a company that collects

individual location information from roughly 400 smartphone applications. The data is

an unbalanced panel and each observation includes a device ID, location coordinates, and

timestamp. To identify farmworkers and their workplaces, we match location informa-

tion with maps of crop field boundaries provided by LandIQ (LandIQ, 2021). We con-

struct a sample of farmworkers by selecting individuals observed in a field multiple times

during working hours during a month. We investigate robustness of results to our sample

construction assumptions. Using the timestamp and workplace information, we identify

farmworkers’ daily and hourly labor decisions. To estimate the impacts of temperature

on these decisions, we merge this data with temperature data from PRISM (PRISM, 2021).

Identifying the effect of temperature on farmworker behavior relies on the unpre-
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dictable and plausibly random fluctuations in temperature at a local level on a daily or

hourly basis. We include a comprehensive set of fixed effects including individual, week-

end, and month for daily analysis and we add hour-by-month fixed effects for hourly anal-

ysis. Thus, identification is driven by variations in daily temperature over time within an

individual, weekdays or weekends, and months. In our empirical work, we allow temper-

ature to have a nonlinear effect on labor outcomes, we bin temperature into 15 indicator

variables.

We find that farmworkers are less likely to work on hot days, and when they do work,

they work fewer hours. We find that farmworkers substitute across time within a day,

with a higher probability of working during cooler hours such as sunrise. These effects

become more pronounced as the temperature exceeds 100◦F. We also find that responses

to heat events vary based on the individual’s frequency of exposure to high temperatures:

those who experience higher temperatures regularly are less likely to reduce their work

days or hours but more likely to work on cooler sunrise hours.

The rest of the paper unfolds as follows: Section 2 explains the background on the

impact of temperature on crop workers in California and policies that have been put in

place to address the effects of temperature. Section 3 presents our data, including sum-

mary statistics and comparisons to other data sources on agricultural workers. Section

4 examines worker outcomes in terms of both extensive and intensive margins, and ex-

pands our analysis to include within-day adjustment. Finally, in Section 5, we discuss the

implications of our findings and provide concluding remarks.

2 Background

2.1 Temperature and Agricultural Worker Movement

Farmworkers work predominantly outdoors and are directly exposed to the elements.

As a result, they experience extremely high rates of heat related illnesses. Compared
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to other workers, farmworkers face a 35-fold increase in baseline risk of heat-related ill-

nesses (Gubernot et al., 2015). The mortality rate from heat stroke among crop workers is

roughly 20 times higher than that of workers in other industries (Jackson and Rosenberg,

2010). A recent survey conducted among Californian farmworkers found that 32% of re-

spondents reported experiencing symptoms associated with heat-related illness (Ridgway

et al., 2022).

Figure 1: Temperature and Workers by Month

(a) Temperature by Month (b) Workers by Month

Notes: The panel (a) in Figure 1 depicts the average maximum temperature by month and panel (b) presents
the crop-production employment by month in California from 2018 to 2021. The data are retrieved from
California’s Employment Development Department (EDD, 2020).

In California, peak employment season for farmworkers coincides with the hottest

time of the year. This overlap is evident in the temperature patterns shown in panel

(a) of Figure 1, which displays the average maximum temperature by month. Panel (b)

presents the crop-production employment by month in California from 2018 to 2021,

illustrating the similar trends between temperature and employment. Finally, farm work

often involves physically demanding tasks such as crop harvesting, plant trimming, or

machinery operation. These activities can increase body temperature and lead to heat
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exhaustion or heat stroke.

Most farmworkers in California are undocumented and have limited access to the so-

cial safety net (Hill, 2016), which may exacerbate the net effects of heat on agricultural

workers. Moreover, undocumented farmworkers may be less inclined to seek medical at-

tention or take time off work to recover from illness. The fear of retaliation or deportation

may deter undocumented workers from reporting hazardous work conditions or advocat-

ing for their rights (Ridgway et al., 2022). Taken as a whole, undocumented workers may

have fewer opportunities to engage in activities that would limit the ex-ante or ex-post

effects of heat exposure.

Extreme temperatures will affect both the demand and supply of agricultural labor.

On the demand side, employers are responsible for ensuring the safety of their workers

and minimizing the risk of work-related injuries by adjusting work schedules and loca-

tions. These changes can be implemented voluntarily or as mandated requirements. In

2005, California’s Division of Occupational Safety and Health (Cal/OSHA) introduced

the Heat Illness Prevention regulation to safeguard outdoor workers from heat exposure.

This policy requires employers to offer a range of accomodations such as providing access

to water and shade, allowing additional cool-down rest breaks, and offering heat illness

prevention training.

Cal/OSHA has additional heat-related regulations specific to agriculture. When the

outdoor temperature exceeds 95◦F, the Cal/OSHA standard requires additional high-heat

procedures. Cal/OSHA encourages employers to reduce working hours or cease work

entirely during extreme heat conditions. Alternatively, if rescheduling is not feasible,

employers must implement additional safety measures, such as rotating workers or pro-

viding extra breaks (CADIR, 2023b,a). However, according to a 2020 survey of California

farmworkers (Ridgway et al., 2022), only half of employers comply with Cal/OSHA regu-

lations. Forty-three percent of farmworkers reported that their employers did not provide

a heat illness prevention plan.
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On the supply side, the informal nature of many agricultural employment contracts

facilitates workers choosing not to work on hot days or working fewer hours (Gold et al.,

2021). The prevalence of piece-rate contracts may affect labor supply at the margin.

Farmworkers who operate under a piece-rate contract have greater flexibility over the

pace at which they work compared to hourly wage workers. A survey of 575 farmworkers

from 31 farms in California’s Central and Imperial Valleys during the summers of 2014

and 2015 (Pan et al., 2021), found that, relative to piece rater workers, hourly workers

were more likely to work when temperatures were above 90◦F – approximately 22% of

all hourly observations of farmworkers paid on an hourly basis worked in temperatures

above 90◦F compared to only 5% of piece-rate workers. One alternative interpretation is

that in the face of extreme temperatures, employers shift workers from piece-rate tasks

to less physically demanding tasks that are compensated hourly.

3 Data

We investigate daily and hourly adaptation to temperature using high-frequency

cellphone-location data. Cellphone-location data was collected by a company that ob-

tains location information from approximately 400 mobile applications, including but

not limited to messaging, weather, and dating apps. We observe data from California

between January 1st and October 11th, 2020. Each observation consists of a unique de-

vice identifier, individual location information, time, speed, and horizontal accuracy. The

data is an unbalanced panel, meaning that an individual may have multiple observations

per day but may not be observed every day. Furthermore, the number of observations

varies over time due to the addition and removal of apps from the platform. Note that in-

dividuals may be tracked even if they are not actively using the app as tracking functions

may be operational even if the app is running in the background.

To identify farmworkers, we combine cellphone-location data with a crop field map of
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California. The crop map provides information on field boundaries and crops in Califor-

nia, and was obtained from the California Department of Water Resources and developed

by LandIQ (LandIQ, 2021). We use the 2018 crop map, which was the latest publicly

available layer at the time of our study. Although using a crop map from a different year

than the location data introduces a potential source of error, it is likely to be small, as

conversion of cropland to other uses is relatively rare 2.

Figure 2: Observations of One Person, Field, and Day

(a) Satellite Image of Observations

(b) Statewide Crop Mapping and Observations

Notes: The image and figure depict a wine grape field in Yolo County and a single worker on a single day
during August 2020.

To illustrate how location data is combined with a crop field map, Figure 2 depicts

a wine grape field in Yolo County and location data from a single device on one day in

August 2020. The white dots in panel (a) and blue dots in panel (b) show the locations

of an individual worker throughout the day. By tracking a farmworker’s movement in a

field on a day as shown in panel (b), we infer that the worker worked in the field on that

2For example, only a small percentage of cropland was converted to other uses between 2012 and 2017
USDA (2020).
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day.

We classify an individual as a farmworker if they are observed on at least five days

during a given month in an agricultural field during working hours, defined as 6:00 a.m.

to 8:00 p.m., moving at a speed less than 5 m/s, and with a horizontal accuracy less than

63 m, which is the median value in our sample. While this definition is clearly arbitrary, it

is also reasonable. Results are robust to variety of alternative choices – interested readers

should consult Figure A.0.8 in the appendix for more information.

Given the definition above, we classify 12,667 individuals as farmworkers. This rep-

resents roughly 8% of the average yearly employment in crop production in California in

2020, a Figure which is nearly 20 times larger than the sample size of NAWS (Gold et al.,

2021; BLS, 2022). Farmworkers are chosen from approximately 3.4 million individuals

in the cellphone-location data. Approximately 0.4% of the individuals in the data are

classified as farmworkers, which aligns with the proportion of crop workers in Califor-

nia’s overall population, as reported by the Bureau of Labor Statistics and the US Census

Bureau (BLS, 2022; USCB, 2022).

We define a worker’s usual worksite as the field in which they are observed most over

the previous two weeks. We opt for a two-week time frame instead of the entire sample

period since farmworkers are typically seasonal employees who may work in different

fields throughout the growing season and only for a few weeks during the harvest season.

For the extensive margin analysis, a worker is considered to be working on a day if they

are observed in their modal field. If a worker is not observed in their modal field it

could be that they are not working in their usual field on that day (“not working”) or

alternatively they are simply not observed on that day (“missing”). We treat a worker as

“not working” if they are observed only outside of crop fields on a given day or if they

are observed at least one day in their usual field during a given week, even if they are

not observed elsewhere. Otherwise, we treat that worker-day observation as “missing.”

As above, these choices are somewhat arbitrary but results are robust to a wide set of
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alternative choices (see Table A.0.2 for details).

We calculate hours worked by taking the difference between the first and last time a

worker is found in the same field on a given day. This method almost certainly under-

estimates hours worked because the first and last cellphone pings in a field likely occur

after a worker arrives or before a worker departs for the day. We assign a value of zero to

workers whose first and last observations are found in an hour interval or are found only

outside of a field in a day. Conditional on working, farmworkers are observed in the field

for an average of 5.121 hours per day.

Table 1: Summary Statistics: Dependent Variables

Statistic Mean St. Dev. Min Max

Extensive:

Days Found Inside Crop fields 17.663 24.790 1 281

Days Found Outside Crop fields 28.303 23.293 1 202

Days with Observations 46.497 38.471 1 285

Intensive:

Hours Worked 1.219 2.836 0 14

Days Found Inside Crop fields 29.909 29.125 5 281

Days Found Outside Crop fields 28.303 23.293 1 202

Days with Observations 57.588 43.428 5 281

Hourly Adjustment:

Days with Observations 29.909 29.125 5 281

Notes: Table 1 presents summary statistics of key dependent variables over the period
January 1, 2020, to October 11, 2020.

Table 1 summarizes characteristics of our farmworker sample. Note that samples dif-

fer slightly across the different margins of adjustment considered. On average, we observe

most workers for approximately 50-60 days, of which 20-30 are days observed working

in a field. Because we use location tracking information collected by mobile applications
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with varying start and end dates for different individuals, there is considerable hetero-

geneity in the number of observations on individual workers, ranging from 1 day to 282

days.

A key limitation of using cellphone location data is that we infer occupation based

on location and only have limited additional information about the individuals in our

sample. In an effort to validate our approach, we compare features of our sample line to

information about farmworkers from more traditional sources.

Farmworkers in our sample seem to have roughly the same number of distinct em-

ployers as farmworkers in the NAWS. About 62% of farmworkers in our sample worked

with a single employer, which lines up with the 65% reported by NAWS. To compute the

average number of employers per worker, we proceed along the following lines. Accord-

ing to the USDA (2022), the average farm size in California in 2020 was 349 acres, while

the average size of a crop field in California was approximately 36 acres. Dividing the

average farm size by the average crop field size, this implies that farmers in California

own an average of 9.67 fields. Farmworkers in our sample worked in an average of 15.41

fields, which suggests that they worked with approximately 1.6 employers on average.

According to NAWS, farmworkers in California worked for 1.8 employers on average in

2020. Note that our sample period only extends to October 11th, rather than a full 12

months as in the NAWS.

Next, we compare the share of workers by crop type to data from California’s Employ-

ment Development Department (EDD). Results are presented in Table 2, where column

(1) shows the EDD’s share of workers by crop type, column (2) displays the proportion of

workers observed in a field of each type at least once during a day, and column (3) shows

the proportion of hourly observations of workers before aggregating to the daily level.

We believe that column (3) is better at capturing work intensity than column (2).

From this we can see that inferred worker shares by crop are broadly consistent with

official EDD estimates, with the notable exception of berry crops and “other field crops”.
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Table 2: Comparison of the Share of Workers by Crop Type

Crop Type Share of EDD Share of Sample Share of Sample (Hrs)

1 Oilseed and Grain Farming 0.01 0.05 0.04

2 Vegetable and Melon Farming 0.14 0.10 0.14

3 Fruits and Tree Nuts 0.43 0.39 0.37

4 Berry Crops 0.17 0.02 0.04

5 Grapes 0.09 0.15 0.15

6 Citrus Fruits 0.01 0.07 0.05

7 Ornamental Florist and Nursery Products 0.10 0.03 0.04

8 Cotton 0.01 0.01 0.01

9 Other Field Crops 0.04 0.18 0.15

Notes: The first column displays the percentage of employees categorized by crop type
from the Employment Development Department (EDD) of California. The second col-
umn shows the percentage of employees in our sample. The third column indicates the
proportion of hourly observations of workers before they are combined into the daily
level. To determine the share of the sample in column one, we divide the average number
of workers hired per month in a specific crop-type category by the average number of
total workers hired from January to October. We follow the same method to calculate the
sample share displayed in columns two and three.

For instance, about 40% of the workers identified in our sample work in fruit and tree-

nut fields and approximately 14% of workers in our sample work in vegetable and melon

farming, which is consistent with EDD data. However, some differences may be due to

classification errors in the underlying field-crop map. For example, the remote-sensing

data used to construct the field-crop map may not distinguish between “other field crops”

and berries.

Next, we compare the representativeness of the spatial distribution of fields in our

sample to the distribution of all crop fields in California. In Figure 3, green dots indicate

fields in our sample and yellow dots indicate fields where we do not observe a worker.

There is no obvious pattern of omitted areas. The fields in our sample are dispersed

throughout the entire state, though there is a relatively high number of fields in which

we do not observe a worker in the sparsely populated northeastern area of the state.
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Figure 3: Fields in Sample

Notes: In Figure 3, the yellow dots show all of the crop fields in California, and the green dots indicate
fields in our sample.
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Table 3: Comparison of the Share of Workers by County

County Share of EDD Share of sample Share of sample (hrs)

1 Kern County 0.14 0.06 0.07

2 Monterey County 0.14 0.04 0.05

3 Fresno County 0.10 0.09 0.08

4 Tulare County 0.09 0.11 0.11

5 Santa Barbara County 0.06 0.02 0.03

6 Ventura County 0.06 0.04 0.04

7 San Joaquin County 0.04 0.08 0.07

8 Stanislaus County 0.04 0.08 0.07

9 Merced County 0.03 0.06 0.06

10 Riverside County 0.03 0.02 0.02

11 Madera County 0.03 0.03 0.02

12 Imperial County 0.02 0.01 0.01

13 San Diego County 0.02 0.03 0.03

14 Santa Cruz County 0.02 0.01 0.01

15 Kings County 0.02 0.03 0.03

16 Sonoma County 0.02 0.02 0.02

17 Yolo County 0.01 0.02 0.02

18 Napa County 0.01 0.02 0.02

19 San Luis Obispo County 0.01 0.02 0.02

20 Sutter County 0.01 0.02 0.02

Notes: The first column presents the percentage of farmworkers in the top 20 counties with the largest
number of farmworkers, based on data obtained from California’s Employment Development Department
(EDD). The second column displays the percentage of farmworkers in those same counties within our sam-
ple. To calculate the sample share depicted in column one, we divide the monthly average number of
employees hired in a county by the monthly average number of total employees hired from January to Oc-
tober. For the sample share presented in column two, we calculate the average number of farmworkers for
each month during the sampling period and divide the number of farmworkers working in a county by the
total number of farmworkers across all counties in California.

We can also compare the spatial distribution of workers in our sample to employment

data from EDD, by comparing the proportion of farmworkers across counties. Table 3

presents county employment shares from EDD in column (1). Column (2) displays the

proportion of workers observed in a county at least once during a day, while column

(3) presents the proportion of hourly worker observations in our sample. In general, our
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sample underrepresents the largest agricultural counties and overrepresents the smallest.

Taken as a whole, the county shares in the sample are comparable to those in the EDD

dataset.

We combine worker movement data with gridded data on daily maximum tempera-

tures and total precipitation by the PRISM Climate Group, which provides daily informa-

tion at a 4km by 4km resolution (PRISM, 2021). To account for possible non-linearity in

effects as found in previous studies (Deschênes and Greenstone, 2011; Barreca et al., 2016;

Carleton et al., 2022), we assign the maximum temperature recorded on any given field-

day to a vector of 15 temperature bins, using 5◦F increments ranging from below 40◦F

to above 105◦F. We omit the temperature bin of daily maximum temperature between 65

and 70◦F in the regression. To control for the potential effects of rainfall on labor de-

cisions, we link each field-day observation with the daily total precipitation record. We

divide precipitation data into a vector of four rainfall bins: fields-days with no precipita-

tion, fields-days with more than zero and less than 0.5 inches of precipitation, fields-days

with more than 0.5 and less than 1 inch, and fields-days with more than 1 inch of precip-

itation.

To investigate whether farmworkers adjust their work hours during the day, we create

hourly temperature data using daily maximum and minimum temperatures. We employ

the interpolation method developed by Luedeling (2018) to estimate hourly tempera-

tures based on the equations proposed by Linvill et al. (1990). This method models day-

time temperatures as a sine curve and nighttime cooling as a logarithmic decay function.

Moreover, it takes into account the variations in day length across locations by calculating

sunrise and sunset times based on geographic latitude. The mean hourly temperature of

the interpolated data is presented in panel (b) of Figure 3. Typically, the lowest temper-

ature occurs during the early morning hours, around sunrise or shortly before, typically

between 4 am and 6 am. On the other hand, the hottest time of day usually falls in the

late afternoon or early evening, around 3 pm. The pattern in the graph aligns with the
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general within-day weather pattern, with the lowest temperature around 4 am and the

highest temperature around 3 pm.

Figure 4: Temperature by Hour

Notes: Figure 3 depicts the average maximum temperature by hour and field in the sample period.
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Figure 5: Temperature and Workers

(a) Temperature (b) Workers in Fields

Notes: Panel (a) in Figure 5 depicts geographical variation in the daily maximum temperature of fields in a
sample averaged over a hexagon area on July 22, 2020, and panel (b) shows the variation in the number of
workers found in fields summed over hexagon area on the same date.

17



Figure 5 displays variations in temperature and worker movement data. In panel (a),

we observe the geographical variation in the daily maximum temperature of fields within

a sample, averaged over a hexagon area on July 22, 2020. Even on the same day, there

is a substantial range of temperatures, with the maximum temperature ranging from

50◦F to 110◦F across different locations. Panel (b) depicts the variation in the number of

workers found in fields, aggregated over the same hexagon area on the same date. The

presence of farmworkers across California shows geographical variation, with different

numbers observed in different regions. This rich geographical variation in temperature

and worker distribution allows us to explore the relationship between temperature and

labor outcomes. To account for potential confounding factors, we use wildfire smoke data

from the Hazard Mapping System of the NOAA, which provides information about the

polygon-shaped regions covered by smoke plumes from wildfires.

Table 4 presents the percentage of individuals who experienced specific temperatures

in our sample. According to the Table, on average, 28.8% of days in the sample had daily

maximum temperatures exceeding 95◦F. It is important to note that the large percentage

of observations recording high temperatures is due to the fact that a significant portion of

the data was collected between July and October, which aligns with the harvesting season

in California. During this period, a substantial number of farmworkers are present in the

fields, leading to an increased frequency of temperature observations.

Putting it all together, we begin by creating a balanced panel of fields by combining

weather and smoke data with the field boundaries from LandIQ. Next, we merge farm-

worker movement data with LandIQ to generate the labor decision variable. Finally, we

merge labor decision data with temperature and smoke exposure data to construct our

final dataset.
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Table 4: Summary Statistics: Weather Variables

Statistic Mean St. Dev. Min Max N

% Days Below 40F 0.0001 0.011 0 1 1,065,517

% Days 40-45F 0.001 0.026 0 1 1,065,517

% Days 45-50F 0.005 0.068 0 1 1,065,517

% Days 50-55F 0.014 0.118 0 1 1,065,517

% Days 55-60F 0.029 0.167 0 1 1,065,517

% Days 60-65F 0.041 0.199 0 1 1,065,517

% Days 65-70F (Omitted Bin) 0.056 0.231 0 1 1,065,517

% Days 70-75F 0.059 0.236 0 1 1,065,517

% Days 75-80F 0.065 0.246 0 1 1,065,517

% Days 80-85F 0.083 0.275 0 1 1,065,517

% Days 85-90F 0.152 0.359 0 1 1,065,517

% Days 90-95F 0.208 0.406 0 1 1,065,517

% Days 95-100F 0.181 0.385 0 1 1,065,517

% Days 100-105F 0.080 0.271 0 1 1,065,517

% Days Above 105F 0.027 0.162 0 1 1,065,517

Temperature 86.451 13.148 29.633 119.683 1,065,517

Precipitation 0.007 0.065 0.000 3.930 1,065,517

Notes: Summary statistics for important independent variables during the time period of
January 1, 2020, to October 11, 2020. These data were obtained from the largest sample
size used in the intensive margin analysis. The variable labeled ”Temperature” represents
the daily maximum temperature while ”Precipitation” represents the total daily precipi-
tation in inches.
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4 Research Design and Results

We now explain the identifying variation and the research design used to assess the im-

pact of temperature on labor outcomes and present estimation results. We begin by ex-

amining the extensive margin, which investigates whether workers are observed at their

regular work location on days with high temperatures. Next, we delve into the intensive

margin analysis, exploring whether workers reduce their working hours within a field in

response to the high temperatures. Finally, we explore adaptation in the form of shifting

work hours to cooler times as a means to avoid heat exposure.

We exploit daily variations in temperatures within fields over time. Due to unpre-

dictable fluctuations in temperatures, it seems reasonable to assume that the daily or

hourly variations of temperatures are independent of the unobserved determinants of la-

bor. We estimate the relationship between temperature and labor by categorizing temper-

atures into bins, following previous studies (Deschênes and Greenstone, 2011; Graff Zivin

et al., 2018; Somanathan et al., 2021). These studies have demonstrated the nonlinear ef-

fects of temperature on various variables, such as mortality, cognitive performance, and

work productivity.

4.1 Extensive Margin

We start with examining how workers react to different temperatures at the extensive

margin. We use the linear probability model to estimate the likelihood of individual

workers found at their work location across various temperature ranges:

Worki,f ,d =
J∑
j

βj TMAXj
f ,d +

L∑
l

δl PRECl
f ,d +θSmokef ,d +ηm +γd +λi + ϵi,f ,d (1)

If a worker is found in their usual workplace on a certain day, Worki,f ,d will have a

value of 1. However, if they are located somewhere else or not seen at all during the

week, the value will be 0. As described above, to identify a worker’s usual work site for

each week, we determine the field in which they have been observed the most during the
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preceding two weeks.3 TMAXf ,d denotes 15 daily maximum temperature bins in a field

f in a day d, starting from below 40◦F and increasing in increments of 5◦F up to over

105◦F. PRECf ,d denotes four bins of daily total precipitation in field f in day d: days with

no precipitation, greater than zero to less than half an inch, with half an inch to less than

1 inch, and with more than 1 inch of precipitation.

Rising temperatures contribute to an increase in wildfire risk (Gutierrez et al., 2021),

and wildfire smoke negatively affects workers’ health. As a result, wildfires can have an

impact on both temperature patterns and labor decisions. To account for the effect of

wildfire smoke on labor outcomes, we include Smokef ,d as a control variable. Finally, we

include month fixed effects, ηm, weekend fixed effects, γd , and individual fixed effects, λi .

The standard errors are clustered at the fields and date level to account for the correlated

adaptive behavior that occurs within a field and date.

Panel (a) in Figure 6 and Table A.0.1 show the result of extensive margin analysis. We

find evidence that farmworkers are less likely to be found in their primary field when

their field is extremely hot. Compared to the omitted category (65-70◦F), the probability

of working is reduced by 5.74 percentage points when the temperature of farmworker’s

modal field is above 105◦F.

As we are using an unbalanced sample, one possible issue with our data is that in-

dividuals who appear more frequently in our dataset may have different characteristics,

potentially affecting our estimation results. To address this concern, we conduct addi-

tional analyses using a subgroup of individuals who were observed for a certain number

of days. Specifically, we consider those in the 25th, 50th, and 75th percentiles of the

sample, as shown in panel (a) of Figure A.0.10. Despite using a more balanced group of

individuals, we find that our main findings remain unchanged. We include the results

of similar analyses for other types of adaptation in Figure A.0.10 and Figure A.0.12. The

results are robust to the use of more balanced groups.

3Our findings are robust even when different options for a worker’s usual work site are considered.
Please refer to Figure A.0.9 in the appendix for more information.
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Figure 6: Extensive and Intensive Margin

(a) Extensive (b) Intensive

Notes: Panel (a) in Figure 6 plots temperature coefficients (i.e., dots in the middle) obtained from a linear
probability model regression of the regression equation 1. Panel (b) shows the results of the intensive
margin analysis obtained from equation 2. We assign daily maximum temperatures to 15 temperature
bins, which range from temperatures below 40◦F to temperatures above 105◦F in 5◦ increments. The full
results are presented in Appendix A.0.3. The category with daily maximum temperatures between 65◦F
and 70◦F is omitted from the analysis. The red dotted line indicates the policy threshold, 95◦F, for the
high-heat procedures of the heat illness prevention standard of CA/OSHA. Dark lines show their 90%
and 95% confidence intervals. All regressions for estimates include individual, month, and weekend fixed
effects, daily maximum temperature, precipitation, and precipitation squared variable. Standard errors are
clustered by field and date.
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4.2 Intensive Margin

Next, we examine the impact of temperature on the number of hours worked. To deter-

mine the hours worked in a field, we calculate the time difference between the first and

last observations of a farmworker in a field on the same day. However, if a farmworker is

located within an hour interval in a field, or only found outside of fields on a given day,

we assign zero hours worked.

To study how temperature affects working hours, we estimate the following equation:

WorkHoursi,f ,d =
J∑
j

βj TMAXj
i,d +

L∑
l

δl PRECl
i,d +θSmokef ,d +ηm +γd +λi + ϵi,f ,d (2)

where WorkHoursi,f ,d denotes working hours of worker i in field f on day d.

The results are presented in Figure 6 panel (b) and Table A.0.3. We observe that

farmworkers decrease their working hours by 10.91% when the temperature in the field

exceeds 105◦F, compared to mild temperatures. These findings are based on our preferred

specification, which includes individual, month, and weekend fixed effects.

This percentage reduction is approximately equivalent to about a 1-hour decrease in

working hours a day, assuming a 9-hour workday. These findings are consistent with

those of Graff Zivin and Neidell (2014), who reported that workers in high-risk sectors

reduce their hours worked by almost 1 hour on days with temperatures exceeding 100◦F

compared to days with highs of 76-80◦F.

4.3 Hourly Adjustment

Given our observation that workers are less likely to be present at their regular work sites

during periods of high temperatures and also work shorter hours, we explore additional

dimensions of adaptation. To accomplish this, we leverage our rich individual-level data.

Specifically, we investigate substitution patterns across time. We analyze whether farm-

workers adjust their work schedules to avoid working during hotter times of the day when
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Figure 7: Hourly Adjustment

Notes: Figure shows the results of hourly adjustment analysis. We assign daily maximum temperatures
to 15 temperature bins, which range from temperatures below 40◦F to temperatures above 105◦F in 5◦

increments. Note that temperature bins below 50◦F are excluded from the figure but are still included in
all estimations as control variables. The full results are presented in Appendix A.0.4. The category with
daily maximum temperatures between 65◦F and 70◦F is omitted from the analysis. Dark lines show their
90% and 95% confidence intervals. All regressions for estimates include individual, month, and weekend
fixed effects, daily maximum temperature, precipitation, and precipitation squared variable. Standard
errors are clustered by field and date.
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field temperatures are high.

Individuals may have the option to adjust their daily activities during hot days to

avoid extreme heat. Instead of reducing their work hours or refraining from work en-

tirely, people can engage in intraday substitution by shifting their activities to cooler

hours within the day. To gain a comprehensive understanding of their adjustment pat-

terns, we estimate whether farmworkers tend to work during cooler hours and explore

whether they schedule their work around sunrise and sunset times.

To understand how workers adapt their work within a day, we estimate the following

equation:

Worki,f ,h,d =
J∑
j

βj TMAXj
f ,h,d +

L∑
l

δl PRECl
f ,h,d +θSmokef ,d +πmh +γd +λi + ϵi,f ,h,d (3)

where Worki,f ,h,d is equal to 1 if a worker i worked in field f on hour h and day d and 0 if

they did not. As we have unbalanced data on an individual’s working hours, we assume

that the individual continuously worked from the first time observed in a field to the last

time found in a field. For example, if an individual was first found in a field at 7 am and

last found at 3 pm, we define Worki,f ,h,d as 1 from 7 am to 3 pm in the field, f , on the

given day, d. The equation includes hour-by-month fixed effects, πmh, which absorb all

unobserved hour-specific individual invariant determinants of the labor decision for each

month. We restrict our sample to working hours (6 a.m. to 8 p.m.) as we are specifically

interested in labor-related decisions.

Regression results, corresponding to equation 3, appear in Figure 7 and Table A.0.4.

We find statistically significant decreases in the probability of working during hours with

high temperatures. Specifically, farmworkers are 1.12 percentage points less likely to

work in temperatures exceeding 100◦F and approximately 1.90 percentage points less

likely to work when the temperature in their field surpasses 105◦F, as compared to mod-

erate temperatures. Conversely, they are more likely to work when temperatures range

from 70◦F to 95◦F.

Next, we estimate the following equation to examine whether workers adjust their
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activities by shifting them to cooler sunrise and sunset times:

Suni,f ,d =
J∑
j

βj TMAXj
f ,d +

L∑
l

δl PRECl
f ,d +θSmokef ,d +ηm +γd + ζs +λi + ϵi,f ,d (4)

where we define Suni,f ,d as 1 if individual i worked in field f during the hour of sunrise

and one hour after sunrise when estimating the probability of working during sunrise.

Suni,f ,d is set to 0 if they did not work during that period. When estimating the probabil-

ity of working around sunset, Suni,f ,d is 1 if individual i worked one hour before sunset

and during the hour of sunset. To account for variations in the timing of sunrise and

sunset across seasons, we include sunrise or sunset time fixed effects denoted as ζs.

Results corresponding to equation 4 are presented in Figure 8, Table A.0.5, and Ta-

ble A.0.6. As the field temperature increases, farmworkers are more likely to work dur-

ing sunrise. Notably, when the temperatures exceed 85◦F, there is a 1.55-3.29 percentage

point increase in the likelihood of working during sunrise hours. However, during sunset

hours, the likelihood of farmworkers working shows statistically insignificant increases.

These findings suggest a preference among farmworkers for starting work early to reduce

exposure to excessive heat rather than working late.
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Figure 8: Sunrise and Sunset

(a) Sunrise (b) Sunset

Notes: Panel (a) presents the results of the probability of working on sunrise time defined as the hour of
sunrise and 1 hour after sunrise and panel (b) presents the results of the probability of working on sunset
time defined as the hour of sunset and 1 hour before sunset.
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4.4 Heterogeneity over Frequency

Figure 9: Heterogeneity over Frequency: Extensive and Intensive Margin

(a) Extensive

(b) Intensive

Notes: Panel (a) depicts frequency-based heterogeneity for extensive margin analysis, while panel (b) shows
results for the intensive margin. Blue points represent the low-frequency group results, and red points
represent the high-frequency group estimates.
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Figure 10: Heterogeneity over Frequency: Sunrise

Notes: Figure 10 displays heat frequency heterogeneity in hourly adjustment to sunrise times analysis.
Blue points represent the results for the low-frequency group, while red points indicate the estimates of
the high-frequency group.
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There are several reasons why the responses to temperatures can differ by the groups

of workers who experience more or less frequent heat events. First, the nature of crop

work, with its demands for timely planting and harvesting, places workers who fre-

quently experience heat under constraints. If there have been numerous hot days in the

preceding weeks, these workers may have reduced their work in the previous weeks,

which can limit their ability to adjust their schedules in the current week because post-

poning planting or harvesting can be risky, potentially leading to crop failure. In addi-

tion, workers who frequently experience high temperatures can undergo physiological

acclimatization, which refers to the body’s adaptive changes in response to prolonged

heat exposure. This process can cause workers to feel less discomfort when exposed to

hot temperatures and may reduce their adaptive labor response to high temperatures we

found.

To explore these potential heterogeneous responses, we estimate equations 1, 2, and

3 separately for different frequency groups in our subsequent analysis. We categorized

the groups into low-frequency and high-frequency based on the number of days when

temperatures exceeded 90◦F during the previous two weeks.4 If the usual field where

farmworkers work, experienced days above 90◦F more frequently than in at least the me-

dian value of the fields in the previous two weeks, we classified farmworkers working in

those fields as belonging to the high-frequency group. Conversely, if temperatures ex-

ceeded 90◦F less frequently in the field, they were classified as the low-frequency group.

We find evidence that farmworkers who worked in fields with high temperatures are

less likely to adapt by reducing work days and hours. Results are shown in Figure 9

and Table A.0.7. We find statistically significant reductions in the probability of going

to work in a low group in response to high temperatures. For the high-frequency group,

4We chose a two-week timeframe because the process of physiological acclimatization can take place
in short timeframes, with healthy individuals exhibiting acclimatization within two weeks (Wagner et al.,
1972). However, if individuals are not present in hot conditions for a week or longer, there is a potential for
a notable decline in the advantageous adjustments that help reduce the risk of heat-related illnesses (CDC,
2018).
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although the coefficients are somewhat similar to those of the low-frequency group, none

of the coefficients are statistically significant at the conventional level. Panel (b) de-

picts the heterogeneous responses in the intensive margin. Workers who experience less

frequent high-temperature days tend to reduce their working hours by approximately

11.42% when the temperatures range from 100 to 105 ◦F compared to the baseline tem-

peratures. On the other hand, workers who frequently experience high-temperature days

do not show any evidence of reducing their working hours.

On the other hand, Figure 10 and Table A.0.7 show that the high-frequency group is

5-6 percentage points more likely to work in sunrise hours on unusually hot days com-

pared to moderate days. However, the low-frequency group does not show this pattern,

and the coefficients are mostly insignificant. The results are in line with the findings

of LoPalo (2023), indicating that interviewers in hotter climates are more likely to start

their jobs early on days with extreme heat to avoid exposure to outdoor temperatures

from travel. Also, the paper did not find clear evidence of a reduction in working hours

in these groups on unusually hot days.

In summary, our findings suggest that individuals in high-frequency work groups

may have limited flexibility in reducing their workload due to the time-sensitive nature

of crop-related jobs, which constrains their ability to implement adaptive measures like

skipping work or reducing their hours. If there are many hot days, workers may not

be able to wait for another cooler day or hour to work but must proactively respond by

working early to minimize their exposure to high temperatures.

4.5 Robustness Check

By randomly reassigning temperatures from different locations to the labor outcomes, we

test the robustness of our results. We shuffle temperatures and randomly assign temper-

atures to farmworkers and estimate the same analysis we did in our main research. We

repeat this process 1,000 times.

31



Figure 11: Random Assignment of Temperature: Extensive and Intensive Margin

(a) Extensive (b) Intensive

Notes: The estimates represented by the thin blue lines were obtained by randomly assigning daily max-
imum temperature to farmworkers and repeating the analysis 1,000 times. Panels (a) and (b) display the
results of extensive and intensive margin analysis, respectively. The red dots on the graph represent our
coefficients using the actual temperature data, while the thick blue solid lines indicate the 2.5th and 97.5th
percentiles of estimates produced by random assignment of temperature levels.
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Figure 11 shows the results of the robustness check of extensive and hourly adjust-

ment analysis. The estimates represented by the thin blue lines are obtained by randomly

assigning daily maximum temperature to farmworkers and repeating the analysis 1,000

times. The red line and dots on the graph represent our coefficients using the actual tem-

perature data, while the thick blue solid lines indicate the 2.5th and 97.5th percentiles of

estimates produced by random assignment of daily maximum temperatures. If our actual

coefficients are positioned close to the blue lines, it implies that our coefficients may be

estimated by chance.

We find that the estimates above 100◦F are not included in the 95% intervals for both

analyses. The results reassure us that the coefficients obtained in our primary analyses are

not a result of chance. The results of the same analyses of other margins of adaptations

are presented in Figure A.0.6 and Figure A.0.7.

5 Discussion & Conclusion

In our study, we use high-frequency movement data of individuals to investigate how

temperature affects farmworker labor in California. The findings show several key pat-

terns. Firstly, we observe that hot weather leads to a decreased likelihood of engaging in

labor. Moreover, even when workers do decide to work, they tend to work fewer hours

during hot weather conditions. Furthermore, we identify temporal substitution behaviors

among farmworkers. When faced with extreme heat, workers adapt by modifying their

work schedules to cooler hours. Notably, these substitution effects are most pronounced

when the temperature exceeds 100◦F. Additionally, our study reveals heterogeneity in

workers’ responses to heat events based on frequency. Specifically, individuals who ex-

perience higher temperatures on a regular basis are less likely to reduce their work days

or hours but more likely to adjust their schedules to cooler morning hours.

Our findings suggest that current adaptation measures may not meet recommended
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policy standards. Farmworkers tend to reduce hours and adjust schedules when tem-

peratures exceed 105◦F, even though Heat Illness Prevention regulations trigger at 95◦F.

Pre-regulation heat impact does not notably differ from the threshold effect.

This raises a concern because farm work often involves physical exertion, which in-

creases the amount of heat that workers are experiencing. There have been cases of out-

door workers experiencing fatal heat strokes, even when the maximum Heat Index for

the day was as low as 86◦F (falling within the range of 80-90◦F, depending on relative

humidity) (DOL, 2023). Sports physiology experts find that heat-related illnesses can oc-

cur at lower to moderate temperatures, even below 65◦F, particularly when individuals

engage in intense physical activity or have heavy workloads (Armstrong et al., 2007).

One limitation of our study is that we do not explore the precise mechanism through

which high temperatures lead to a decrease in the number of working days or hours. Al-

though we have suggested possible reasons related to labor demand and supply, our data

cannot determine the degree to which farmworkers voluntarily reduce their working days

and hours or if farmers encourage workers to rest for their protection. Nonetheless, our

findings on the equilibrium results of labor demand and supply carry their own implica-

tions.

To the best of our knowledge, this is the first study on short-term labor adaptation de-

cisions related to temperature using fine-scale observational data. This approach stands

in contrast to previous studies that have relied on surveys with limited facility coverage

or potentially biased employer reports. By addressing the challenges associated with col-

lecting data on hard-to-track and surveying undocumented workers, our findings offer

a unique contribution that enhances our understanding of the behavior of both undocu-

mented and documented farmworkers.

Overall, our findings highlight the potentially significant impacts of climate change

on the labor market and productivity of agricultural industries, emphasizing the need for

proactive measures to address the challenges posed by rising temperatures.
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A Appendix

Figure A.0.1: The Number of Individuals Observed by Month

(a) Farmworkers by Month
(b) Proportion of Farmworkers to all Individu-
als

Notes: Panel (a) presents the number of farmworkers observed by month, and panel (b) shows the propor-
tion of farmworkers to all individuals found in the mobile location tracking data by month.

Figure A.0.2: The First Day of App Use and the Number of Days Using Apps

(a) The First Day of App Use (b) The Number of Days Using Apps

Notes: In panel (a), the horizontal axis represents the initial day when the app is first used, while in panel
(b), the horizontal axis represents the gap between the first and last day of app usage.
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Figure A.0.3: Extensive and Intensive Margin

(a) Extensive (b) Intensive

Notes: Panel (a) in Figure A.0.3 plots temperature coefficients (i.e., dots in the middle) obtained from a
linear probability model regression of the regression equation 1. Panel (b) shows the results of the inten-
sive margin analysis. We assign daily maximum temperatures to 15 temperature bins, which range from
temperatures below 40◦F to temperatures above 105◦F in 5◦ increments. The category with daily maxi-
mum temperatures between 65◦F and 70◦F is omitted from the analysis. Dark blue lines show the 90%
and 95% confidence intervals. The red dotted line indicates the policy threshold, 95◦F, for CA/OSHA heat
illness prevention standard. All regressions for estimates include individual, month, and weekend fixed
effects, daily maximum temperature, precipitation, and precipitation squared variable. Standard errors are
clustered by field and date.
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Figure A.0.4: Hourly Adjustment

Notes: Figure shows the results of hourly adjustment analysis. We assign daily maximum temperatures
to 15 temperature bins, which range from temperatures below 40◦F to temperatures above 105◦F in 5◦

increments. The category with daily maximum temperatures between 65◦F and 70◦F is omitted from the
analysis. Dark blue lines show the 90% and 95% confidence intervals. The red dotted line indicates the pol-
icy threshold, 95◦F, for CA/OSHA heat illness prevention standard. All regressions for estimates include
individual, month, and weekend fixed effects, daily maximum temperature, precipitation, and precipita-
tion squared variable. Standard errors are clustered by field and date.
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Figure A.0.5: Sunrise and Sunset Time

(a) Sunrise (b) Sunset

Notes: Panel (a) shows the probability of working on sunrise time defined as the hour of sunrise and 1 hour
after sunrise and panel (b) presents the probability of working on sunset times defined as 1 hour before
sunset and the hour that sunsets.

43



Figure A.0.6: Random Assignment of Temperature: Hourly Adjustment

Notes: The estimates represented by the thin blue lines were obtained by randomly assigning daily max-
imum temperature to farmworkers and repeating the analysis 1,000 times. The red dots on the graph
represent our coefficients using the actual temperature data, while the thick blue solid lines indicate the
2.5th and 97.5th percentiles of estimates produced by random assignment of temperature levels.
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Figure A.0.7: Random Assignment of Temperature: Sunrise and Sunset

(a) Sunrise (b) Sunset

Notes: The estimates represented by the thin blue lines were obtained by randomly assigning daily max-
imum temperature to farmworkers and repeating the analysis 1,000 times. Panels (a) and (b) display the
results of sunrise and sunset analysis, respectively. The red line and dots on the graph represent our co-
efficients using the actual temperature data, while the thick blue solid lines indicate the 2.5th and 97.5th
percentiles of estimates produced by random assignment of temperature levels.
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Figure A.0.8: Criteria of Farmworkers

(a) Speed ≤ 1m/s (b) 10 Days

(c) Working Hours: 8am-6pm (d) Horizontal Accuracy ≤ 30m

Notes: The results of extensive margin analysis corresponding to the main results in panel (a) of
Figure 6, with one criterion changed at a time, are depicted in Figure A.0.8. In panel (a) of Fig-
ure A.0.8, only individuals who move at a speed of 1 m/s or less are retained. Panel (b) displays the
outcome when observations that appear for 10 or more days in a month in any field are included
instead of 5 days. In panel (c), the working hours are defined as 8 am to 6 pm, while the main
findings use the 6 am to 8 pm definition. Panel (d) illustrates the results obtained by dropping
observations with a horizontal accuracy greater than 30 m, as opposed to the criteria of 62 m used
in the main results.
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Figure A.0.9: Definition of Modal Field

(a) Weekly (b) Monthly
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Figure A.0.10: Extensive and Intensive Margin

(a) Extensive (b) Intensive

Notes: We sub-sample our main sample based on the number of days farmworkers are observed. Our main
findings, using the entire sample, are represented by a black line with filled circles. The lines with hol-
low circle, square, and triangle symbols indicate the estimates when we analyzed only individuals who are
observed for more than the 25th, 50th, and 75th percentile, respectively. The blue points represent coeffi-
cients that are statistically significant, while the red points represent coefficients that are not statistically
significant.
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Figure A.0.11: Substitution over Space

Figure A.0.12: Hourly Adjustment

Notes: We sub-sample our main sample based on the number of days farmworkers are observed. Our main
findings, using the entire sample, are represented by a black line with filled circles. The lines with the
hollow circle, square, and triangle symbols indicate the estimates when we analyzed only individuals who
are observed for more than the 25th, 50th, and 75th percentile, respectively. The blue points represent
coefficients that are statistically significant, while the red points represent coefficients that are not statisti-
cally significant.
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Table A.0.1: Extensive Margin

(1) (2) (3) (4) (5)

85-90◦F -0.0163 -0.0309∗∗∗ -0.0308∗∗∗ -0.0322∗∗∗ -0.0312∗∗∗

(0.0115) (0.0110) (0.0110) (0.0115) (0.0111)

90-95◦F -0.0162 -0.0335∗∗∗ -0.0329∗∗∗ -0.0346∗∗∗ -0.0333∗∗∗

(0.0121) (0.0120) (0.0119) (0.0124) (0.0120)

95-100◦F -0.0184 -0.0312∗∗ -0.0309∗∗ -0.0329∗∗ -0.0312∗∗

(0.0132) (0.0125) (0.0125) (0.0132) (0.0126)

100-105◦F -0.0237 -0.0365∗∗ -0.0358∗∗ -0.0390∗∗ -0.0360∗∗

(0.0212) (0.0167) (0.0166) (0.0174) (0.0167)

above 105◦F -0.0424∗ -0.0586∗∗∗ -0.0574∗∗∗ -0.0591∗∗∗ -0.0575∗∗∗

(0.0218) (0.0185) (0.0181) (0.0189) (0.0183)

Dependent Variable Mean 0.3452 0.3452 0.3452 0.3452 0.3452

Control Variable Mean 0.3197 0.3197 0.3197 0.3197 0.3197

Observations 581,682 581,682 581,682 581,682 581,682

R2 0.28620 0.29655 0.29656 0.32802 0.29669

Smoke Controls ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓

Field fixed effects ✓

County fixed effects ✓

Notes: Table A.0.1 shows regression results of equation 1 when we estimate the exten-
sive margin analysis.
* p < 0.1.
** p < 0.05.
*** p < 0.01.
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Table A.0.2: Extensive Margin (Conditional)

(1) (2) (3) (4) (5)

85-90◦F -0.0088 -0.0233∗∗ -0.0232∗∗ -0.0238∗∗ -0.0236∗∗

(0.0113) (0.0095) (0.0095) (0.0100) (0.0096)

90-95◦F -0.0106 -0.0257∗∗ -0.0251∗∗ -0.0260∗∗ -0.0254∗∗

(0.0119) (0.0108) (0.0106) (0.0110) (0.0107)

95-100◦F -0.0120 -0.0220∗∗ -0.0217∗ -0.0229∗ -0.0219∗

(0.0128) (0.0111) (0.0111) (0.0117) (0.0112)

100-105◦F -0.0158 -0.0265 -0.0257 -0.0277∗ -0.0258

(0.0210) (0.0160) (0.0158) (0.0165) (0.0160)

above 105◦F -0.0341 -0.0481∗∗∗ -0.0468∗∗∗ -0.0473∗∗∗ -0.0469∗∗∗

(0.0221) (0.0178) (0.0174) (0.0180) (0.0176)

Dependent Variable Mean 0.3642 0.3642 0.3642 0.3642 0.3642

Control Variable Mean 0.3434 0.3434 0.3434 0.3434 0.3434

Observations 551,303 551,303 551,303 551,303 551,303

R2 0.30415 0.31405 0.31407 0.34618 0.31420

Smoke Controls ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓

Field fixed effects ✓

County fixed effects ✓

Notes: Table A.0.2 shows the regression results of equation 1 when we estimate the
conditional extensive margin analysis. We exclude workers who are not observed and
may or may not be working on a day from the sample.
* p < 0.1.
** p < 0.05.
*** p < 0.01.
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Table A.0.3: Intensive Margin

(1) (2) (3) (4) (5)

85-90◦F 0.0224 -0.0192 -0.0190 -0.0182 -0.0173

(0.0322) (0.0331) (0.0331) (0.0398) (0.0333)

90-95◦F 2.15× 10−5 -0.0350 -0.0338 -0.0321 -0.0312

(0.0328) (0.0366) (0.0359) (0.0445) (0.0362)

95-100◦F -0.0245 -0.0437 -0.0432 -0.0372 -0.0406

(0.0351) (0.0367) (0.0365) (0.0461) (0.0369)

100-105◦F -0.0492 -0.0752 -0.0738 -0.0731 -0.0716

(0.0534) (0.0504) (0.0499) (0.0634) (0.0504)

above 105◦F -0.0777 -0.1115∗∗ -0.1091∗∗ -0.1079∗ -0.1065∗∗

(0.0555) (0.0473) (0.0464) (0.0601) (0.0472)

Dependent Variable Mean 1.219 1.219 1.219 1.219 1.219

Control Variable Mean 1.066 1.066 1.066 1.066 1.066

Observations 1,065,517 1,065,517 1,065,517 1,065,517 1,065,517

R2 0.26673 0.26830 0.26830 0.38844 0.26846

Smoke Controls ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓

Field fixed effects ✓

County fixed effects ✓

Notes: Table A.0.3 shows regression results of equation 2 when we estimate the intensive
margin analysis.
* p < 0.1.
** p < 0.05.
*** p < 0.01.
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Table A.0.4: Hourly Adjustment

(1) (2) (3) (4) (5)

85-90◦F 0.0336∗∗∗ 0.0089∗∗∗ 0.0089∗∗∗ 0.0093∗∗∗ 0.0092∗∗∗

(0.0025) (0.0019) (0.0019) (0.0023) (0.0019)

90-95◦F 0.0352∗∗∗ 0.0048∗∗ 0.0048∗∗ 0.0050∗ 0.0051∗∗

(0.0024) (0.0022) (0.0022) (0.0026) (0.0022)

95-100◦F 0.0307∗∗∗ -0.0021 -0.0021 -0.0022 -0.0018

(0.0026) (0.0028) (0.0028) (0.0033) (0.0028)

100-105◦F 0.0254∗∗∗ -0.0113∗∗∗ -0.0112∗∗∗ -0.0122∗∗ -0.0109∗∗

(0.0040) (0.0042) (0.0042) (0.0049) (0.0043)

above 105◦F 0.0245∗∗∗ -0.0191∗∗∗ -0.0190∗∗∗ -0.0207∗∗∗ -0.0187∗∗∗

(0.0055) (0.0060) (0.0060) (0.0064) (0.0060)

Dependent Variable Mean 0.1878 0.1878 0.1878 0.1878 0.1878

Control Variable Mean 0.1777 0.1777 0.1777 0.1777 0.1777

Observations 10,724,730 10,724,730 10,724,730 10,724,730 10,724,730

R2 0.09113 0.11897 0.11897 0.17086 0.11905

Smoke Controls ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓

Hour x Month fixed effects ✓ ✓ ✓ ✓

Field fixed effects ✓

County fixed effects ✓

Notes: Table A.0.4 shows regression results of equation 3.
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Table A.0.5: Sunrise

(1) (2) (3) (4) (5)

85-90◦F 0.0216∗∗∗ 0.0155∗∗∗ 0.0155∗∗∗ 0.0171∗∗∗ 0.0151∗∗∗

(0.0041) (0.0042) (0.0042) (0.0041) (0.0042)

90-95◦F 0.0247∗∗∗ 0.0183∗∗∗ 0.0183∗∗∗ 0.0192∗∗∗ 0.0180∗∗∗

(0.0044) (0.0045) (0.0045) (0.0045) (0.0045)

95-100◦F 0.0296∗∗∗ 0.0226∗∗∗ 0.0226∗∗∗ 0.0231∗∗∗ 0.0224∗∗∗

(0.0044) (0.0047) (0.0047) (0.0046) (0.0047)

100-105◦F 0.0253∗∗∗ 0.0181∗∗∗ 0.0181∗∗∗ 0.0186∗∗∗ 0.0178∗∗∗

(0.0061) (0.0065) (0.0066) (0.0065) (0.0066)

above 105◦F 0.0413∗∗∗ 0.0329∗∗∗ 0.0329∗∗∗ 0.0315∗∗∗ 0.0330∗∗∗

(0.0064) (0.0065) (0.0066) (0.0067) (0.0066)

Dependent Variable Mean 0.2722 0.2722 0.2722 0.2722 0.2722

Control Variable Mean 0.2791 0.2791 0.2791 0.2791 0.2791

Observations 714,988 714,988 714,988 714,988 714,988

R2 0.19223 0.19238 0.19238 0.36378 0.19261

Smoke Controls ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓

Sunrise Time fixed effects ✓ ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓

Field fixed effects ✓

County fixed effects ✓

Notes: Table A.0.5 shows regression results of equation 4. We define the dependent
variable as 1 if farmworkers worked in the field during the hour of sunrise and one hour
after sunrise.
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Table A.0.6: Sunset

(1) (2) (3) (4) (5)

85-90◦F 0.0022 0.0038 0.0038 0.0059 0.0039

(0.0029) (0.0040) (0.0039) (0.0044) (0.0040)

90-95◦F 0.0003 0.0022 0.0018 0.0036 0.0020

(0.0031) (0.0045) (0.0043) (0.0049) (0.0043)

95-100◦F 0.0024 0.0041 0.0037 0.0048 0.0039

(0.0032) (0.0044) (0.0042) (0.0048) (0.0043)

100-105◦F 0.0044 0.0060 0.0054 0.0056 0.0055

(0.0036) (0.0047) (0.0045) (0.0050) (0.0046)

above 105◦F 0.0022 0.0050 0.0032 0.0043 0.0033

(0.0046) (0.0054) (0.0049) (0.0054) (0.0050)

Dependent Variable Mean 0.0454 0.0454 0.0454 0.0454 0.0454

Control Variable Mean 0.0946 0.0946 0.0946 0.0946 0.0946

Observations 714,988 714,988 714,988 714,988 714,988

R2 0.18576 0.18590 0.18595 0.29210 0.18617

Smoke Controls ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓

Sunset Time fixed effects ✓ ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓

Field fixed effects ✓

County fixed effects ✓

Notes: Table A.0.6 shows regression results of equation 4. We define the dependent
variable as 1 if farmworkers worked in the field during the hour of sunset and one hour
before sunset.
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Table A.0.7: Heterogeneity over Frequency

Extensive Low Extensive High Intensive Low Intensive High Sunrise Low Sunrise High

(1) (2) (3) (4) (5) (6)

85-90◦F -0.0228 -0.0205 -0.0115 0.0842 0.0003 0.0436

(0.0143) (0.0196) (0.0532) (0.0741) (0.0104) (0.0272)

90-95◦F -0.0263∗ -0.0207 -0.0317 0.0749 0.0038 0.0534∗∗

(0.0149) (0.0201) (0.0572) (0.0771) (0.0107) (0.0267)

95-100◦F -0.0256 -0.0205 -0.0143 0.0544 0.0056 0.0541∗∗

(0.0165) (0.0206) (0.0614) (0.0788) (0.0112) (0.0269)

100-105◦F -0.0308 -0.0235 -0.0577 0.0254 -0.0061 0.0530∗

(0.0190) (0.0229) (0.0842) (0.0862) (0.0124) (0.0274)

above 105◦F -0.0591∗∗ -0.0416∗ -0.1303∗ 0.0056 0.0198 0.0599∗∗

(0.0239) (0.0235) (0.0757) (0.0929) (0.0123) (0.0280)

Dependent Variable Mean 0.3572 0.3333 1.240 1.216 0.2936 0.3104

Control Variable Mean 0.3405 0.2948 1.168 0.9534 0.3329 0.3333

Observations 271,656 278,983 475,197 536,829 123,517 116,594

R2 0.32541 0.33628 0.39369 0.39298 0.22134 0.22951

Smoke Controls ✓ ✓ ✓ ✓ ✓ ✓

Month fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Weekend fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Individual fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Field fixed effects ✓ ✓ ✓ ✓ ✓

Sunrise fixed effects ✓ ✓

Notes: Table A.0.7 presents the estimated coefficients for the extensive margin, intensive
margin, and hourly adjustment for sunrise hours analyses in both low and high-frequency
groups.

56


	Introduction
	Background
	Temperature and Agricultural Worker Movement

	Data
	Research Design and Results
	Extensive Margin
	Intensive Margin
	Hourly Adjustment
	Heterogeneity over Frequency
	Robustness Check

	Discussion & Conclusion
	Appendix
	Appendix

