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Abstract 

USDA Economic Research Service (ERS) releases estimates of farm sector income, informing the 

public on the financial performance of the U.S. agriculture sector. This paper uses the ERS 

estimates for 1968–2019 state-level annual farm sector net income to explore the effect of droughts 

on the U.S. agricultural sector, and to evaluate the distribution of the drought impacts among the 

U.S. regions. We also examine the extent to which the government safety net, including direct 

government payments and federal crop insurance program indemnities, compensates for the 

impacts of the drought on farm sector profitability. Panel-data fixed effect regression models are 

estimated, with the drought indicators constructed from the county crop damage days reported in 

the Spatial Hazard Events and Losses Database for the United States (SHELDUSTM). We show 

that market net farm income (NFI) is negatively correlated with the drought indicators. Our 

preliminary results also suggest that a significant share of damages to sector performance are offset 

by federal crop insurance program indemnities. Finally, our results show that the drought’s impacts 

and the effects of the government safety net may be distributed differently among the regions.  

 

Key words: U.S. agricultural sector, calendar-year state-level net farm income, drought days, 

panel data regression analysis, government payments, federal crop insurance program indemnities.  
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As one of the 13 principal federal statistical agencies in the United States (U.S.), the U.S. 

Department of Agriculture’s Economic Research Service (USDA/ERS) produces forecasts and 

estimates of the U.S. farm sector income and finances. USDA/ERS releases annual, state-level 

estimates of net farm income and their components, including commodity value of production, 

Government direct farm program payments, and production expenses. USDA/ERS data and 

analysis are used by USDA and other farm sector stakeholders, including lenders, agribusinesses, 

and farm organizations, to inform their perspectives on the financial health of the U.S. agricultural 

economy. The U.S. Congress, the Secretary of Agriculture, and numerous public and private 

entities rely on ERS farm income forecasts and estimates for a variety of uses – from aiding in 

legislation and USDA program development to helping states assess their local farm economies.  

Most of the state-level calendar year financial indicators are available starting in 1949 (see U.S. 

Department of Agriculture, Economic Research Service [USDA/ERS], 2023a), and given this 

comprehensive nature and long time series, studies have used USDA/ERS farm sector income and 

wealth statistics to evaluate the impacts of significant events affecting U.S. agriculture. For 

example, Boehlje et al. (2013) used the data to discuss “boom and bust” cycles in agricultural 

industry and explore past financial performance of the sector. More recently, Giri et al. (2022) 

used USDA/ERS forecasts and estimates to examine 2020 farm sector financial ratios before and 

after the onset of the Coronavirus (COVID-19) pandemic, showing that at the national level, all 

solvency, liquidity, and profitability ratios for the U.S. agricultural sector for 2020 were weaker 

than their respective average ratios obtained from 2000 to 2019 data.  

In this paper, we use USDA/ERS state-level annual farm sector net income (USDA/ERS, 2022) to 

examine drought impacts on U.S. agriculture. Extreme weather events, such as droughts and heat 

waves, are becoming more frequent in the changing climate caused by anthropogenic greenhouse 
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gas emission. While many effects of climate change on agriculture are still uncertain, Pörtner et 

al. (2022) assign a high level of confidence to the expert conclusions that climate change leads to 

negative effects on crop quality and it shifts the distribution of crops and livestock losses. These 

changes affect livelihood in rural communities and pose global food security risks (Pörtner et al., 

2022).  

While some extreme weather events have localized impacts (e.g., hurricanes and floods), the 

weather dynamics, such as the jet stream and cyclones and anticyclones, can lead to co-variability 

of weather across regions (Kornhuber et al., 2020). Many events can affect vast expanses and 

therefore, they can be reflected in aggregate, state- or national-level, indicators (e.g., see the 

national-level analysis of weather effect on crop production and agricultural productivity in Lesk 

et al., 2016, and Ortiz-Bobea et al., 2021).    

Many of the past studies focused on the effects of droughts and heat waves on crop yields (e.g., 

Schlenker & Roberts, 2006, Lobell et al., 2013, Teixeir et al., 2013, Lesk et al., 2016, and Miller 

et al., 2021), while the analysis of financial measures and weather and climate events is relatively 

sparse (Ortiz-Bobea et al., 2021). Yet, weather impacts on agricultural profitability can deviate 

from the impacts on yield because of market-based price changes that can support profits, and due 

to the adaptation adjustments by producers, including changing mixtures of crops and livestock 

commodity production, altering agricultural inputs and costs, and other adjustments. For example, 

Kuwayama et al. (2019) report negative and statistically significant effects of drought on crop 

yields but little to no effects of droughts on farm income at the county level.  
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In times of drought, payments from the government safety net may offset the effects of drought on 

farm profit.2 Government safety net “is a collection of programs that provide risk protection and 

financial support to U.S. farmers in times of low farm prices and natural disasters” (p. 1, Rosch, 

2021; see also Rosch, 2015). Federal crop insurance program may play a unique role in supporting 

farm income during droughts since the crop insurance indemnifies revenue or yield, which we may 

expect to be impacted by weather related shocks like drought3. This may account for the fact that 

since 2000, 42.1 percent of total Federal crop insurance program indemnities were in response to 

drought or high temperature events (USDA/ERS, 2023d). Furthermore, government safety net has 

been evolving, and its role in offsetting financial impacts of drought may also be changing over 

time. A major change in the federal crop insurance program resulted from the Federal Crop 

Insurance Reform and Department of Agriculture Reauthorization Act of 1994, which increased 

premium subsidies and required farmers to purchase crop insurance as a condition for supporting 

commodity support payments (Rosch, 2021). While this requirement to purchase crop insurance 

was only active for one year (the Federal Agriculture Improvement and Reform Act of 1996 

removed it), the result was a dramatic increase in the insurance participation. Under 100 million 

acres  were insured in 1994, while over 200 million acres were insured in 1995, with high levels 

of participation persisting into 2023 (USDA/ERS, 2023d).  

The objectives of this paper are to explore the drought effects on state-level, annual market net 

income measures for the U.S. agricultural sector, and to evaluate the distribution of the drought 

 
2  Following the sector-level accounting in USDA/ERS (2023a), net farm income is comprised of the value of 
production, farm-related income (including total commodity insurance indemnities), expenses and payments to 
stakeholders, net Government transactions (including direct government payments), and capital consumption.  
3 This is in contrast to many historic and current government programs, many of which support prices. Historic 
examples of such programs include deficiency payments (1987-1996), direct and countercyclical payments (2002-
2007). Similarly, the 2014 Farm Bill introduced Agriculture Risk Coverage (ARC) and Price Loss Coverage (PLC), 
where PLC is triggered by price decreases, whereas ARC is triggered by revenue.  
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impacts among the U.S. regions. We also explore if the government safety net, including direct 

government payments and federal crop insurance program indemnities, may partially alleviate the 

impacts of the droughts on the sector’s profitability. Finally, we investigate if the drought effects 

and the role of the government safety net changed over time. In particular, given the significant 

changes in the federal crop insurance program and related expansion in the enrolled acreage in 

1995, we compare the results of the analysis for two time period: pre-1995 and 1995+.   

Method and Data 

Conceptual Model 

Agricultural profit from production and sales of commodities on the market, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋, can be 

presented as the difference between gross revenues and expenses, as follows:4  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋 = 𝑝𝑝(𝑞𝑞(𝑤𝑤)) 𝑞𝑞(𝑤𝑤) − 𝑐𝑐(𝑞𝑞(𝑤𝑤))       (1) 

where w refers to weather event (drought in this study), q(w) denotes quantity produced, which is 

a function of weather, and p and c refer to price and costs, which depend on quantity and therefore, 

weather.  

A drought can result in a reduction in quantity (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

< 0), and using equation (1), marginal changes 

in the profits in response to the drought can be expressed as follows: 

𝜕𝜕 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑞𝑞 + 𝑝𝑝 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

       (2) 

The first term is the increase in gross revenue due to potential commodity price increase. It can 

mitigate (a part of the) profit losses due to lower production (Deschênes & Greenstone, 2007). The 

 
4 In this paper, we modify the stylized model from Deschênes & Greenstone (2007) to represent changes in the 
sector net incomes. 
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second term in equation (2) measures the reduction in the gross revenue due to drought-induced 

quantity changes. The third term in equation (2) is the change in production expenses,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,  due 

to the reduction in quantity. The relative sizes of the three components and the ultimate effect of 

droughts on profits depend on the elasticity of the supply and demand curves.  

The conceptual model (1)–(2) does not account for the safety net made available to producers by 

the federal Government, such as the federal crop insurance program, agriculture disaster assistance 

programs, or other government programs. Potential effects of government payments on 

agricultural supply are discussed, for example, in Burfisher & Hopkins (2004), Goodwin & Mishra 

(2005), Moro & Scokai (2013), and Weber et al. (2016). If we denote government payments as 

GP, the total agricultural net income, 𝜋𝜋, can be expressed as the sum of the market profit and 

government payments: 

𝜋𝜋 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋(𝑤𝑤) + 𝐺𝐺𝐺𝐺(𝑤𝑤)        (3) 

where government payments GP depend on the weather events, w. Note that this dependence can 

be direct (e.g., when ad hoc payments are made in response to drought-related yield losses) or 

indirect (e.g., when droughts and supply shortage cause increase in prices and reductions in income 

support program payments). The effect of droughts on this net income can be conceptualized as 

follows: 

𝜕𝜕 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑞𝑞 + 𝑝𝑝 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

      (4) 

 In this paper, we examine to what degree the government safety net can have offset drought-

related reductions in profits, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋. In other words, we evaluate and compare the changes in 
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market profits, 𝜕𝜕 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋
𝜕𝜕𝜕𝜕

, as well as changes in government payments, 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, in response to 

droughts, and we do that for two time periods, pre-1995, and 1995 and after.  

Method 

A panel-data regression model was used to examine the correlation between sector market net 

income, 𝜋𝜋, and droughts: 

            (5) 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋𝑖𝑖𝑚𝑚 is the state-level, annual market net farm sector income; i indexes states; t refers 

to year, and 𝑤𝑤𝑖𝑖𝑚𝑚 includes weather indicators (i.e., county drought days, as explained below). In this 

equation, 𝛼𝛼0 is a constant, 𝑐𝑐𝑖𝑖 is state fixed effect, 𝜆𝜆𝑚𝑚 is year fixed effect, and 𝑢𝑢𝑖𝑖𝑚𝑚 is assumed to 

capture the remaining uncertainty.5 The inclusion of state and year fixed effects controls for time 

invariant state-level factors, like geographic location, and time varying factors common to all 

states, like macroeconomic conditions.  

To explore the effect of the government safety net (SN), we run the same model(s) but with the 

dependent variable being federal crop insurance program indemnities and direct government 

payments:  

            (6) 

where k refers to the type of safety net considered, specifically, direct government payments or 

federal crop insurance program indemnities.   

 
5 Here, 𝑢𝑢𝑖𝑖𝑚𝑚 is assumed to be normally distributed; various model specifications are compared, including those 
accounting for potential heteroscedasticity (‘robust’ option in Stata’s xtreg ) and clustering of the errors by state 
(‘cluster’ option in Stata’s xtreg ).  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋𝑖𝑖𝑚𝑚 = 𝛼𝛼0 + 𝛽𝛽1𝑤𝑤𝑖𝑖𝑚𝑚 + 𝑐𝑐𝑖𝑖 + 𝜆𝜆𝑚𝑚 + 𝑢𝑢𝑖𝑖𝑚𝑚 

𝑆𝑆𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝛼𝛼0 + 𝛽𝛽2𝑤𝑤𝑖𝑖𝑚𝑚 + 𝑐𝑐𝑖𝑖 + 𝜆𝜆𝑚𝑚 + 𝑢𝑢𝑖𝑖𝑚𝑚 
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We further seek to understand the expanded importance of the federal crop insurance program 

indemnities in supporting farm incomes in times of drought, especially in response to the 1995 

expansion in the federal crop insurance program participation. To do this we estimate models based 

on the first (1968–1994) and second (1995–2019) halves of the sample:  

            (7) 

The difference between coefficients 𝛽𝛽194 and 𝛽𝛽195 would reflect empirically the changes over time 

in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋 response function to the droughts. A similar model was estimated with the states’ 

𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 and 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 as the dependent variables (i.e., with the 

coefficients in the two periods denoted  𝛽𝛽294 and 𝛽𝛽295). 

Finally, the following steps were used to examine the regional distribution of drought impacts on  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋  and income from safety net programs, focusing on the more recent years (1995-2019).  

First, region-specific effect of droughts on 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋 was examined using the following model:  

            (8) 

where, as before, 𝑤𝑤𝑖𝑖𝑚𝑚95 identifies drought events occurring in tth year and ith state. However, the 

regression coefficients 𝛽𝛽1𝑗𝑗95 are interacted with each USDA-ERS farm production region. 

Specifically, in equation (8),  j refers to the region that includes ith state, and hj represents a dummy 

variable which is equal to zero unless the state belongs to region j (and in this case, hj=1).  

Second, a model similar to model (8) was estimated with the dependent variable being the states’ 

federal crop insurance program indemnities and government payments–to explore the potential 

difference in the regional effects of the government safety net programs: 

            (9) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋𝑖𝑖𝑚𝑚 = 𝛼𝛼0 + 𝛽𝛽194 𝑤𝑤𝑖𝑖𝑚𝑚94  + 𝛽𝛽195 𝑤𝑤𝑖𝑖𝑚𝑚95 + 𝑐𝑐𝑖𝑖 + 𝜆𝜆𝑚𝑚 + 𝑢𝑢𝑖𝑖𝑚𝑚 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋𝑖𝑖𝑚𝑚 = 𝛼𝛼0 + 𝛽𝛽1𝑗𝑗95𝑤𝑤𝑖𝑖𝑚𝑚95 ℎ𝑗𝑗  + 𝑐𝑐𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑚𝑚 

𝑆𝑆𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚 = 𝛼𝛼0 + 𝛽𝛽2𝑗𝑗95𝑤𝑤𝑖𝑖𝑚𝑚95ℎ𝑗𝑗  + 𝑐𝑐𝑖𝑖 + 𝛾𝛾𝑗𝑗𝑚𝑚 + 𝑢𝑢𝑖𝑖𝑚𝑚 
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This regional analysis is limited to the more recent years (1995-2019) to focus on the effect of 

changes to the federal crop insurance program and the effects of newly implemented government 

safety net programs. 

Profits can vary significantly among the states (USDA/ERS, 2023a), and therefore, changes in 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋 due to drought can differ among states. For example, if a drought results in the losses 

of a half of planted acreage or contraction in available livestock water or forage, this loss results 

in larger reductions in profits for the states with a greater planted acreage. To account the variation 

in profits due to extent of the agricultural activity in the state, models (4)–(8) are controlling for 

planted acres. All the models were estimated in Stata/MP 17.0 (StataCorp LLC, 2023).  

Data 

In this study, we explore the effect of droughts on state-level, calendar year net farm income (NFI) 

indexed to 2022 dollars (USDA/ERS, 2022). NFI is a fundamental measure of U.S. farm sector 

finances and profitability, and one of the most frequently cited USDA statistics (McGath et el., 

2009).6 For the state i and calendar year t, USDA/ERS calculates NFI as follows:  

𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖𝑚𝑚 = 𝑉𝑉𝑚𝑚𝑉𝑉𝑢𝑢𝑚𝑚 𝐺𝐺𝑜𝑜 𝐶𝐶𝑚𝑚𝐺𝐺𝑝𝑝 𝑚𝑚𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑉𝑉/𝐴𝐴𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑉𝑉 𝐺𝐺𝑚𝑚𝐺𝐺𝑖𝑖𝑢𝑢𝑐𝑐𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚 +

𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 𝐺𝐺𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚  + 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 𝑁𝑁𝑖𝑖𝑐𝑐𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 –  𝑇𝑇𝐺𝐺𝑚𝑚𝑚𝑚𝑉𝑉 𝐸𝐸𝐸𝐸𝑝𝑝𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚          (10) 

Note that the value of production (i.e., the first term in the equation) includes 'calendar year' 

subscript t, which references the year that the commodity was produced, rather than when it was 

marketed. This value of production also accounts for the value of non-cash items, such as 

 
6 Other financial indicators released as a part of ERS Farm Income and Wealth Statistics include: net cash farm 
income, value added by U.S. agriculture, return to operators, farm balance sheet, selected financial ratios, and 
average farm-level net cash income. See USDA ERS - Data Files: U.S. and State-Level Farm Income and Wealth 
Statistics . 

https://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics/data-files-u-s-and-state-level-farm-income-and-wealth-statistics/
https://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics/data-files-u-s-and-state-level-farm-income-and-wealth-statistics/
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agricultural products consumed on the farm. In turn, direct government payments are those made 

by the Federal Government directly to farmers and ranchers with no intermediaries. Government 

payments do not include Federal Crop Insurance Corporation (FCIC) indemnities (listed as a 

separate component of farm related income) and USDA loans (listed as a liability in the farm 

sector’s balance sheet) (USDA/ERS, 2023c). Most direct government payments to farmers and 

ranchers are typically administered by the USDA under the Farm Bill or other authorities; though 

they can also include supplemental programs authorized by Congress. Examples of program 

categories included into direct government payments in USDA/ERS (2022) are historical 

commodity programs, conservation programs, countercyclical and countercyclical-type programs, 

fixed payments, marketing loan benefits, and supplemental and ad hoc disaster assistance 

(Wakefield, 2022). Among the direct government payment categories, supplemental and ad hoc 

disaster assistance payments are expected to be the most directly related to the adverse weather 

impacts, including droughts. However, ERS (2022) separately identifies this category only since 

1998. Therefore, for this paper, we consider the total direct government payments, and do not 

disaggregate them into the specific programs.  

Next, farm-related income accounts for various cash and non-cash farm-related income. The gross 

imputed rental value of farm dwellings is non-cash income, and it accounts for one third of farm-

related income (on average for 2012-2021, adjusted for inflation). Important for this analysis is 

that farm-related income also includes federal commodity insurance indemnities, which 

contributes 18% of total farm-related income, on average, for 2012-2021 (based on data from 

USDA/ERS, 2023a, adjusted for inflation).7 In this paper, federal crop insurance program 

 
7 Note that the levels of the “Federal commodity insurance indemnities” in USDA/ERS (2023a) are based on the 
national Summary of Business from USDA/RMA (undated), while the authors used information from USDA/RMA 
(2023). However, authors analysis shows that the indemnity levels from these two information sources are highly 
correlated and they are generally close.    
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indemnities are based on the “Summary of Business” reports from the USDA/RMA (USDA/RMA 

2023), because USDA/ERS (2022) do not separately identify the indemnities until 2008. 

In total, the value of crops and animal/animal products, direct government payments, and farm-

related income constitute gross farm income, and therefore, NFI is the difference between gross 

farm income and total expenses. Total expenses are a comprehensive accounting of the sector 

expenses, specifically: farm origin inputs (feed, livestock and poultry, and seed), manufactured 

inputs (e.g., pesticides, fertilizer, fuel, and electricity), other intermediate expenses (e.g., repair 

and maintenance, machine hire and custom work, and marketing, storage, and transportation), 

labor expenses, interest expenses, net rent to landlords, property taxes and fees, and capital 

consumption (which is a measure of economic depreciation).8 Among these expense categories, 

NFI also includes non-cash expenses, such as expenses associated with operator dwellings, non-

cash employee compensation, and a measure of economic depreciation (capital consumption). 

Additional discussion of NFI is available in USDA/ERS (2023b).  

When calculating the farm profitability less government payments (i.e., “market NFI”), we exclude 

federal crop insurance program indemnities and direct government payments: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖𝑚𝑚 = 𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖𝑚𝑚 −

𝐷𝐷𝑖𝑖𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚 𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚 𝐺𝐺𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚  – 𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉 𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚 𝑁𝑁𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚              (11) 

For this analysis, nominal NFI, direct government payments, and federal crop insurance program 

indemnities were adjusted for inflation using the U.S. Bureau of Economic Analysis Gross 

Domestic Product Price Index (BEA API series code: A191RG). The values are rebased to 2022 

using the deflator from USDA/ERS (2022).     

 
8 An itemized list of sector-level expenses is available in the ERS data product “Production expenses (usda.gov)”. 

https://data.ers.usda.gov/reports.aspx?ID=17834
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Figures 1(a) and 1(b) show variability in the state-level calendar year NFI and market NFI, by 

year. Panel (a) shows that the average and median state/calendar year NFI has been relatively 

stable since 1968 (in inflation-adjusted terms), but that there is wide cross-state variation for any 

given year, and this state-to-state variation has increased over time. The same applies to the market 

NFI. Comparison of panels (a) and (b) shows that government payments and federal crop insurance 

program indemnities eliminate a few of the negative NFI observations, pulling up the mean NFI 

for most of the years. The variation in the NFI and market NFI among the states can be partially 

explained by the difference in the acreage of the major agricultural crops.  

Figure 1. State Net Farm Income Variation, by Year* 

a) Net Farm Income (NFIit) 
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b) Market Net Farm Income (market NFIit) 

 
* In these box-and-whiskers plots, the rhombuses in the boxes indicate the group means; and the horizontal lines inside 

the boxes are the medians (i.e., 50th percentiles). The two horizontal lines that constitute the top and bottom of the 

boxes are the 25th and 75th percentiles respectively; and the distances between them are the Inter Quartile Ranges 

(IQRs). The whiskers are calculated as 1.5 IQR. Observations falling beyond 1.5 IQR are represented with small 

circles. 

Source: USDA Economic Research Service.  

 

To account for the effects of the factors that may impact entire regions, each state was assigned to 

one of the eleven USDA/ERS Major Land Use Regions (Figure 2). Further, the total planted area 

for the major crops was used as an indicator of the size of the agricultural industry in the state. The 

differences in the planted area may help explain part of the variation in market NFI, and drought 

impacts among the states. The planted area for the following 15 crops were considered: barley; 

beans, dry edible (including chickpeas); corn; cotton; hay (acres harvested); oats; peanuts; 

potatoes; rice; rye; sorghum; soybeans; sugar beets; sunflower; wheat. The total planted acreage 

Calendar Year

-5

0

5

10

15

20

25

Fe
de

ra
l i

ns
ur

an
ce

 in
de

m
ni

tie
s 

(b
ill

io
n 

20
22

 d
ol

la
rs

)
S

ta
te

 N
et

 F
ar

m
 In

co
m

e 
le

ss
 d

ire
ct

 G
ov

er
nm

en
t p

ay
m

en
ts

 a
nd



15 
 

for the states annually for 1968-2019 was acquired from USDA/NASS (2023).  Note that this list 

of crops does not include specialty crops, and therefore, the extent of the agricultural industry in 

large specialty states, like California or Florida, can be misrepresented. 

Figure 2. USDA/ERS Major Land Use Regions 

 
* Alaska and Hawaii are grouped into the Far West Region (not shown on the map). 

Source: USDA Economic Research Service. Copied from: Lubowski et al. (2006). 

 

Various drought indicators were considered for this research. Below, we present the analysis based 

on the drought measure constructed from the drought hazard data in the Spatial Hazard Events and 

Losses Database for the United States (SHELDUSTM; version 20, released on 2/1/2022, see 

ASU/CEMHS 2022). The analysis using an alternative drought-related weather definition is 

presented in Appendix A, and the results are generally consistent with those presented in the main 

part of the paper.  
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SHELDUSTM loss and hazard data are derived from the National Center’s for Environmental 

Information Storm Data (see National Oceanic and Atmospheric Administration, National Centers 

for Environmental Information [NOAA/NCEI], 2022), with hard copies used for 1960-2009 and 

digital data imports since 2010. NOAA/NCEI Storm Data includes only significant weather 

phenomena that have sufficient intensity to cause loss of life, injuries, significant property damage, 

and/or disruption to commerce are documented9 (see National Oceanic & Atmospheric 

Administration, National Weather Service [NOAA/NWS], 2021). For drought events, 

NOAA/NCEI Storm Data uses the definitions of five drought categories from University of 

Nebraska-Lincoln, National Drought Mitigation Center [UNL/NDMC] (2023) and includes 

Extreme (D3) and Exceptional (D4) droughts. For illustration, Extreme (D3) droughts can lead to 

major crop/pasture losses and widespread water shortages, while Exceptional (D4) droughts may 

result in exceptional and widespread crop/pasture losses, as well as water emergencies 

(UNL/NDMC, 2023). In addition, Severe (D2) droughts are also included in Storm Data for 

locations east of the Rocky Mountains (NOAA/NWS, 2021). Given Severe (D2) droughts, crop or 

pasture losses are likely, water shortages are common, and water restrictions are imposed 

(UNL/NDMC, 2023).10 NOAA/NCEI Storm Data reports droughts for forecast zones 

(NOAA/NWS, 2021), which are usually the same as the counties, but can also subset counties to 

reflect weather differences within a county (e.g., due to differences in elevation; see NOAA/NWS, 

2023). 

 
9 The database also includes rare, unusual, weather events that generate media attention, and other significant 
meteorological events, such as record maximum temperatures or minimum precipitation that occur in connection 
with another event (NOAA/NWS, 2021). 
10 Nationwide, NOAA/NCEI Storm Data also includes drought events of lesser classification “if they cause 
significant impacts to people, animals, or vegetation” (p. A-11, NOAA/NWS, 2021). 
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SHELDUSTM contains only events reported in NOAA/NCEI Storm Data that cause losses: 

fatalities, injuries, and property/crop damage. And while NOAA/NCEI Storm Data report the 

droughts for the forecast zones, SHELDUSTM distributes the events to the counties by overlapping 

county and forecast zone boundaries while accounting for the changes in forecast zone and county 

definitions over time. Drought hazard data from SHELDUSTM go back to 1968 and contain 

information on the date of an event and affected location (county and state).  

For use in the analysis, county drought days reported for each event were summed to the total for 

the year and state: 

𝑤𝑤𝑖𝑖𝑚𝑚 = ∑ ∑ 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚            (12) 

where m indexes counties in ith state, v refers to drought events included in SHELDUS™ for mth 

county in tth year, and 𝑖𝑖𝑚𝑚𝑚𝑚 is the number of days with drought crop damage for vth event in mth 

county in year t. Drought days 𝑖𝑖𝑚𝑚𝑚𝑚  are based on SHELDUS™. Note that the number of counties 

in the state influences the drought indicator wit; in this study, we assume that larger number of 

counties indicate larger states and therefor, greater extent of the drought. In other words, we 

assume that the average size of the counties is approximately equal across states. Modeling results 

with alternative strategies to construct drought variable from SHELDUS™ are presented in 

Appendix B.  

For the analysis of the two time periods (pre-1995, and 1995 and after), we created two drought 

indicators for each state,  𝑤𝑤𝑖𝑖𝑚𝑚94   and  𝑤𝑤𝑖𝑖𝑚𝑚95.    

Figure 3 shows mean and maximum drought days values, by year, for 52 years in the study period. 

Based on the mean state drought days, the following periods can be identified as having extensive 

and prolonged droughts: 1975–1977, 1986–1988, 1992–1993, 1996–1998, and 2011–2013. 
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Maximum values confirm this conclusion, but also indicate that in 1975, 1977, 1986, 1996, 2011, 

and 2013 were very dry in selected states. On the other hand, no droughts were reported in 1969–

1974, 1979, and 1981–1982; and only short and localized droughts were observed in 1968, 1985, 

1990, 2004, and 2019.  

Figure 3. Maximum and Mean Drought Day Indicator Values, by Year  

(A) County Drought Days (cumulated to state/year), Mean Values, by Year 

 

(B) County Drought Days (Cumulated to State/Year), Maximum Values, by Year 

 
Source: produced by authors based on data from SHELDUS™ (ASU/CEMHS, 2022). 
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Results 

Regression results suggest a negative association between county crop damage days (cumulated 

to state/year) and market NFI (Table 1).  The first set of results (column 1) only includes state and 

year fixed effects and suggest that each additional county drought day is associated with 

approximately $46,000 decrease in market NFI. Other specifications were included to demonstrate 

robustness. The second column includes state planted acres as an independent variable to control 

for the size of agricultural activity in each state.  The third column includes a year trend in addition 

to year fixed effects to account for trends in technology advancement over time. The last column 

includes year trend by region (i.e., interacted variables) to account for any regional-specific 

changes to technology over time.  The consistency in the magnitude of the identified negative 

relationship between drought and market NFI as more controls are added is suggestive of a robust 

specification.  

However, the regression results in Table 2 show a break in the association between crop damage 

days and market NFI before versus after the 1995 expansion of federal crop insurance program 

enrollment. The reason for this disaggregation is not because we necessarily expect to see a 

difference in the impact of drought on market net farm income, instead we want to assess the extent 

to which any decreases in market NFI are offset by federal crop insurance program indemnities 

and government payments. The results suggest that prior to 1995, the effects of federal crop 

insurance program on market NFI had a high enough variation that we do not see a statistically 

significant effect.11 Post 1995, the effect is significant and negative. The results of the federal crop 

insurance program indemnities post 1995 suggests that of the average decrease in market NFI of 

 
11 The reason for a lack of statistical significance prior to 1995 may be an indication of less intense droughts or an 
issue of data quality for historical observations of crop damage.  
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$187,000 per county crop damage day approximately $101,000 was offset by federal crop 

insurance program indemnities. The results regarding direct government payments seems to 

suggest that drought decreases the likelihood of receiving government payments. Because we only 

have total direct government payments and not payments from specific programs, it is difficult to 

further investigate the mechanism that might be driving this negative association.12 

Table 1. Regression Results of Association between County Drought Days (Cumulated to 
State/Year) and State Market NFI 

 (1) (2) (3) (4) 
     
VARIABLES Market NFI  

($ thousand) 
Market NFI  
($ thousand) 

Market NFI  
($ thousand) 

Market NFI  
($ thousand) 

     
County crop damage 
duration 

-46.44*** -48.05*** -48.05*** -48.76*** 
(17.02) (16.70) (16.70) (16.85) 

Acres planted  0.0280 0.0280 0.00963 
  (0.0615) (0.0615) (0.0566) 
Constant 1.192e+06*** 993,458** 1.079e+07 1.072e+07* 
 (101,571) (470,683) (6.410e+06) (5.700e+06) 
     
State and year FE Yes Yes Yes Yes 
Year trend No No Yes Yes 
Year trend by region No No No Yes 
Observations 1,961 1,961 1,961 1,961 
R-squared 0.276 0.276 0.276 0.296 
Number of States 37α 37 α 37 α 37 α 

Notes: Robust and State clustered standard errors in parentheses. Significance denotes as *** p<0.01, ** p<0.05, * 
p<0.1. α only the states east of Rocky Mountains are included, since for these states, SHELDUS™ and NOAA/NWS 
(2021) are consistent in considering Severe (D2), Extreme (D3), and Exceptional (D4) droughts when reporting crop 
damage days.  

 

 

 
12 The negative association may be due to the fact that some government payments are based on price targets, where 
farmers receive payments if prices fall below specified targets. We might not expect prices to fall during times when 
there is a shock to supply, like drought, which may account for this negative association, however there is more work 
that needs to be done to fully understand this relationship. There may also be a delay in receiving direct government 
payments triggered by natural disasters, which may also weaken the association between the level of payments and 
drought events. 
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Table 2. Association Between Crop Damage Duration and Market NFI, Federal Crop Insurance 
Program Indemnities, and Direct Government Payments.  

VARIABLES Market NFI  
($ thousand) 

Federal crop insurance 
program indemnities 

($ thousand) 

Direct government payments  
($ thousand) 

       
 Prior to  

1995 
1995 and 
beyond 

Prior to  
1995 

1995 and 
beyond 

Prior to  
1995 

1995 and 
beyond 

Sum of county 
crop damage 
days 

-13.07 -186.7*** 0.289 101.4*** -13.72 -29.99*** 
(24.37) (28.28) (3.446) (12.77) (13.01) (9.559) 

Constant 1.651e+06*** -1.838e+06* -54,250*** 956,134*** 1.453e+06*** -11,341 
 (421,173) (935,691) (16,093) (146,779) (250,480) (440,896) 
       
Observations 999 962 999 962 999 962 
R-squared 0.338 0.250 0.196 0.292 0.436 0.411 
Number of 
States 

37 37 37 37 37 37 

 Notes: Robust and State clustered standard errors in parentheses. Significance denotes as *** p<0.01, ** p<0.05, * 
p<0.1.  

 

Table 3 provides an indication of the regional distribution of drought impacts and the distribution 

of federal crop insurance program indemnities and government payments in response to drought. 

The results suggest a negative association between market NFI and county crop damage days for 

states in the Corn Belt, Delta States, and the Southern Plains. For the Corn Belt, we estimated that 

more than 90 percent of the impact on market NFI is offset by federal crop insurance program 

indemnities and direct government payments. In contrast, for the Delta States and Southern Plains, 

less than 50 percent of the impact is offset by federal crop insurance program indemnities or direct 

government payments.  

 



22 
 

Table 3. Association between Crop Damage Duration and Market NFI, Federal Crop Insurance 
Program Indemnities, and Direct Government Payments by Region.  

 

 (1) (2) (3) 
    
VARIABLES Market NFI  

($ thousand) 
Federal crop 

insurance program 
indemnities  
($ thousand) 

Direct government 
payments  

($ thousand) 

Crop damage 
duration interacted 
with each region: 

   

Appalachian 46.24 40.05*** -50.60*** 
 (52.08) (11.99) (13.26) 
Corn Belt -539.4** 367.8*** 137.6*** 
 (227.6) (74.62) (23.87) 
Delta States -153.8*** 34.83* 25.72* 
 (26.48) (20.26) (14.86) 
Lake States 1,063*** -18.75 344.4 
 (196.7) (124.8) (641.3) 
Northeast 84.87 191.6*** -465.8*** 
 (289.5) (48.14) (167.4) 
Northern Plains 1.734 640.5*** -14.38 
 (650.4) (135.6) (113.7) 
Southeast 192.7*** 46.27*** -77.24*** 
 (50.34) (12.30) (27.75) 
Southern Plains -199.7*** 88.79*** -35.56*** 
 (19.74) (3.454) (3.859) 

Constant -1.812e+06* 903,320*** -37,678 
 (948,409) (169,036) (447,191) 
    
Observations 962 962 962 
R-squared 0.257 0.338 0.423 
Number of States 37 37 37 

Note: The analysis is limited to post 1994. Robust and State clustered standard errors in 
parentheses. Significance denotes as *** p<0.01, ** p<0.05, * p<0.1.  

  

Discussion and Conclusion 

This study explored the drought effects on the state-level, annual net farm income in 1989-2019, 

using drought days variable constructed from crop damage duration reported in SHELDUSTM v. 
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20 (ASU/CEMHS, 2022). We found that the market NFI is negatively correlated with the drought 

indicator post 1995. Our preliminary results suggest that the government safety net, including 

direct government payments and federal crop insurance program indemnities, can play an 

important role in alleviating the impacts of the drought on the sector’s profitability. Specifically, 

the increased enrollment in the federal crop insurance program since 1995 may have reduced the 

impact of droughts on the sector. Finally, our results show that neither drought impacts, nor the 

effect of the government safety net were uniformly distributed across regions, with the Corn Belt 

states experiencing the largest impacts from the drought events, on average, while also benefiting 

the most from the government programs.  

This analysis includes several important limitations that should be addressed in future research. 

The first set of limitations is related to the lack of easily accessible annual data on agricultural land 

use and land practices that would span the whole study period (1968-2019). While our regression 

models account for the planted acreage of 15 principal crops, a more comprehensive analysis 

should account for additional factors, such as the extent of irrigated vs. rainfed production (e.g., 

see discussion in Deschênes & Greenstone, 2007), the total agricultural acreage (e.g., including 

specialty crops and pasture), and the difference between planted and harvested agricultural 

acreage.  

Another set of limitations is related to the lack of accepted definition of a drought that can match 

the state and annual level of data aggregation selected for the financial measurements. 

SHELDUSTM v. 20 (ASU/CEMHS, 2022) has been used because it offers strategies for 

aggregating the local, short-term drought observations into the state/calendar year drought days. 

However, even SHELDUSTM v. 20 aggregation procedure was not appropriate for cases other than 

short-term climate impacts, and drought events lasting more than 366 days would require other 
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methods. In this paper, we  use a simple summation of county drought days in each state; we also 

compared the model estimation results among alternative ways to define the drought variable based 

on SHELDUSTM v. 20 and Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) data (see appendices A and B). However, our approach to defining the county drought 

days is not flexible enough to account, for example, for the differences in the growing season 

length among the states or crop-specific temperature thresholds. Furthermore, our approach only 

indirectly accounts for drought intensity. The intensity is accounted for in SHELDUS™ by listing 

only the drought hazards that resulted in losses, and by relying on Storm Data with related selection 

of droughts with D3 and D4 intensity only. However, the drought intensity is not explicitly listed 

in SHELDUS™ and therefore, it is not explicitly considered in this analysis. Further, our estimates 

may be biased towards more recent drought events if the recent events are more abundantly or 

accurately reported in SHELDUS™ . The study may be underestimating the true effect of droughts 

if the drought indicator we use included mainly the drought hazards causing urban losses or the 

hazards affecting densely populated areas (see discussion of similar limitations in the national-

level crop production data in Lesk et al., 2016).  

Since our study examines the sector-level agricultural profitability at the state level, the local 

effects of disasters are not reflected in this analysis (see discussion of similar limitations in the 

national-level crop production data in Lesk et al., 2016). Sub-state agricultural data are more suited 

for the analysis of local effects (e.g., see Kawayama et al., 2019). Further, we limited our analysis 

to drought events, and we did not examine the impacts of such events related to climate change as 

more frequent and intense flooding, extreme cold, hurricanes, and other events. For example, Lesk 

et al. (2016) did not find significant effects of floods and extreme cold events on crop production 

at the national level; however, the result may differ if one considers state-level profitability.  
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Next, our method is not suitable for establishing causality and the mechanisms of climate effects 

on yield and profitability. The methods we used imply correlations between droughts and reduced 

state/calendar year NFI. Alternative methods should be used to establish causality, for example, 

process-based models that can shed the light on the mechanism by which weather can impact plant 

growth and crop yields (e.g., Lobell et al., 2013). Our method does not allow us to account for 

various potential effects of climate on agriculture, such as the effects on yields versus the effect 

on planted and harvested area, or the number of harvests/completed cropping cycles per year (see 

discussion in Iizumi & Ramankutty, 2015). The behavioral responses and long-term effects of 

climate change on farmers’ activities (such as changing crops or crop varieties to maintain or 

increase profits in increasingly dry climate, see discussion in Deschênes & Greenstone, 2007) are 

not examined.  

Finally, this study focused on only one measure or agricultural profitability – market NFI. 

USDA/ERS publishes other sector-level financial measures, such as net cash farm income, 

inventory changes, value of production, and total expenses, and analysis of these can help decipher 

at least some mechanisms by which drought affects profitability (e.g., comparing the impact on 

receipts vs expenses, or the role of adaptation efforts such as holding inventories to reduce losses 

due to droughts). While this paper explored the total effect of direct government payments, 

additional analysis is needed to evaluate the role of specific direct government payment programs, 

such as ad hoc and disaster assistance, in offsetting drought impacts on agricultural profitability. 
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Appendix A. Drought Indicators Based on Parameter-elevation Regressions on Independent 

Slopes Model (PRISM)  

As a robustness check, we examined the drought impacts on sector-level agricultural profitability 

using the drought indicator constructed from temperature and precipitation data in Parameter-

elevation Regressions on Independent Slopes Model (PRISM). Specifically, we rely on the 

growing degree days and precipitation data created by Schlenker & Roberts (2006, 2009). Growing 

degree days are generally defined as a fraction of a given day between two temperature boundaries, 

summed over the entire growing season (Schlenker & Roberts, 2006). The county-level dataset of 

growing degree days and precipitation was produced by Schlenker & Roberts (2006, 2009) using 

monthly PRISM and daily weather observations from individual weather stations. For this paper, 

the county-level growing degree days and precipitation data from Schlenker & Roberts (2006, 

2009) were averaged among counties in each state. To match the SHELDUS™ data, the time spans 

was set to 1968-2019, and the geographical span included the states in contiguous U.S. The 

growing season was defined as six months (April – September).  

SHELDUS™ data used in this paper represents the overlap between the drought related weather 

in a specific county and crop damage observation within that county. In contrast, the PRISM 

growing degree days and precipitation variables can describe drought conditions that may or may 

not result in observable crop damage (Figure A1). Because drought is often characterized by the 

interplay between temperature and precipitation, one way to see similarities between the PRISM 

variables and the SHELDUS™ drought variables is to think about above average and below 

average precipitation and extreme heat events (where extreme heat are defined as degree-days 

above 29 degrees Celsius).  The average extreme heat degree days and average precipitation values 

were calculated for each state; these values were subtracted from the extreme heat degree days and 
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precipitation observations for that state, producing “demeaned” annual observations. The 

demeaned values are displayed in figure A2, where, for example, points to the left of 0, represent 

lower than average precipitation and point above 0 represent higher than average extreme heat 

duration.  “Normal” years in terms of precipitation and extreme heat can serve as a basis for the 

comparison. In this analysis, “normal” is defined as observations within one standard deviation of 

the mean, and the observations outside one standard deviation are classified as “abnormal”.  

 

Figure A1. Schematic Illustration of SHELDUS™ and PRISM data  

 
Source: USDA/ERS; developed by authors of this paper.  
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Figure A2.  Plot of Extreme Heat Duration and Precipitation (Demeaned) 

 
Note: Normal values of extreme heat and precipitation are within one standard deviation of the mean. Abnormal 
extreme heat defined as values that are more than one standard deviation above (below) the mean. Abnormal 
precipitation defined as values that are more than one standard deviation above (below) the mean. Source: 
USDA/ERS, developed by authors, based on data from SHELDUS™ and Schlenker & Roberts (2006, 2009) 
 

Comparison of crop damage duration defined based on SHELDUS™ with the extreme weather 

variables based on PRISM shows that the two values are tied-in, though they are not identical 

(Table A1). Specifically, high extreme heat and/or low precipitation (based on PRISM) seem to be 

related to higher SHELDUS™-based crop damage duration measure. And PRISM-based 

observations in Quadrant II (high extreme temperature and low precipitation) correspond to the 

highest average county crop damage duration observations based on SHELDUS™.  
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Table A1. Comparison of Drought and Weather Variables based on SHELDUS™ and PRISM  

PRIMS-based definition 

Average county crop 
damage duration 

(based on 
SHELDUS™) 

Number of 
observations 

   
High precipitation and   
 low extreme heat 4.4 116 
 normal extreme heat 15.3 263 
 high extreme heat 56.4 60 
Normal precipitation 
and   

 

 low extreme heat 144.1 182 
 normal extreme heat 100.6 1384 
 high extreme heat 163.1 204 
Low precipitation and   
 low extreme heat  0.0 5 
 normal extreme heat 280.2 235 
 high extreme heat 573.1 148 

Note: Normal observations are within one standard deviation of the State mean precipitation and extreme heat. Low 
precipitation is lower than one standard deviation below the mean. High precipitation is higher than one standard 
deviation above the mean. Low extreme heat is lower than one standard deviation below the mean. High extreme heat 
is higher than one standard deviation above the mean. 

 

The results of the analysis using PRISM-based variables are comparable with those received with 

SHELDUS™ data and reported in the main section of this paper. As Table A2 shows, extremely 

low precipitation and/or high extreme heat days are associated with lower market NFI and higher 

federal crop insurance program indemnities, offsetting part of the estimated drought impacts. 

Direct government payments do not show strong correlation with the weather variables, and this 

can be partially explained by the wide range of programs included into the total government 

payments (with many of these programs not triggered by natural perils) or the delays in payments.  
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Table A2. Estimation Results for Weather Variables based on PRISM  
 (1) (2) (3) (4) (5) (6) 
       
VARIABLES Market NFI ($ thousand) 

 
Federal crop insurance program 

indemnities ($ thousand) 
 

Direct government payments ($ 
thousand) 

 Prior to 1995 1995 and after Prior to 1995 1995 and after Prior to 1995 1995 and after 
       
High precipitation and normal 
extreme heat days 

-164,362 -186,038 -1,128 10,052 35,961 -12,507 
(104,924) (152,990) (5,659) (21,328) (29,912) (24,646) 

Low precipitation and normal 
extreme heat days 

-98,226* -94,274 3,824* 33,649** -9,381 28,483 
(50,547) (73,123) (2,267) (14,347) (26,942) (26,007) 

High extreme heat days and 
normal precipitation 

-304,964** -127,680 -2,836 69,057*** 7,583 -45,821** 
(144,750) (96,026) (3,495) (22,620) (52,753) (21,675) 

Low extreme heat days and 
normal precipitation 

2,542 404,696*** 3,277 2,968 -1,591 -108,877*** 
(94,823) (103,697) (3,740) (15,537) (24,170) (37,139) 

Quad I: High precipitation and 
high extreme heat days  

62,526 -919,627 -14,588*** -37,608 28,355 92,927 
(102,224) (808,276) (3,850) (35,064) (32,969) (60,936) 

Quad II: Low precipitation and 
high extreme heat days 

-614,380*** -296,550** 36,767*** 208,742*** 26,214 -60,600** 
(135,686) (114,155) (10,244) (59,845) (66,286) (24,164) 

Quad III: Low precipitation and 
low extreme heat days  

464,080*** -393,493* -15,088*** -90,319** -26,335 163,647*** 
(73,792) (211,436) (3,580) (41,468) (29,131) (44,032) 

Quad IV: High precipitation 
and low extreme heat days 
Constant  

12,796 -75,768 10,809 63,166 11,221 -5,339 
(186,240) (137,227) (9,889) (52,035) (45,915) (35,529) 

1.173e+06*** 1.157e+06*** 5,514 36,370* 448,664*** 261,341*** 
 (88,743) (112,324) (3,615) (20,268) (31,262) (21,461) 
       
Observations 1,323 1,274 1,323 1,274 1,323 1,274 
R-squared 0.305 0.184 0.174 0.203 0.340 0.375 
Number of States 49 49 49 49 49 49 
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Appendix B. Alternative Drought Variables Constructed from SHELDUS™ Crop Damage Days  
 

In addition to the simple sum of the county crop damage days (CDD), alternative definitions of 

the drought variables were considered. Specifically, four definitions of a state-level drought 

variable were examined: 1) simple summation of county crop damage days (results reported in the 

main part of the paper); 2) sum of county crop damage days weighed by county size; 3) average 

county crop damage days; and 4) sum county crop damage days interacted with state planted acres. 

Each of these possible variable constructions has its own limitations.  The first measure is a simple 

summation of crop damage days (CDD) experience by v counties in state i.  This measure will be 

inflated for states with more (smaller) counties. 

𝐷𝐷𝑖𝑖1 =  ∑ 𝐶𝐶𝐷𝐷𝐷𝐷𝑚𝑚
𝑁𝑁𝑖𝑖
𝑚𝑚=1        (B1) 

The second measure weights the county CDD by the size of the county, Av. This may overstate 

crop damage in counties with little agricultural activity.   

𝐷𝐷𝑖𝑖2 =  ∑ 𝐶𝐶𝐷𝐷𝐷𝐷𝑚𝑚
𝑁𝑁𝑖𝑖
𝑚𝑚=1 ∗ 𝐴𝐴𝑚𝑚      (B2) 

The third measure is the average CDD. This is calculated by summing the CDD in each state and 

dividing by the, N, number of counties in the state.  

𝐷𝐷𝑖𝑖3 =  
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣
𝑁𝑁𝑖𝑖
𝑣𝑣=1
𝑁𝑁𝑖𝑖

       (B3) 

One limitation of this measure is that concentrated extreme drought and widespread moderate 

drought may results in the same D3 value but could have a different impact on farm income for the 

state. 
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The fourth measure interacts state planted acres, Pi, with the simple sum of CDD. Because state 

planted acres Pi, is the sum of county planted acres pk, we can write this equation as: 

𝐷𝐷𝑖𝑖4 =  ∑ 𝐶𝐶𝐷𝐷𝐷𝐷𝑚𝑚
𝑁𝑁𝑖𝑖
𝑚𝑚=1 ∗ ∑ 𝑝𝑝𝑛𝑛

𝑁𝑁𝑖𝑖
𝑛𝑛=1        (B4) 

One limitation of this construction is that 𝐷𝐷𝑖𝑖4 will contain irrelevant elements resulting from 

distributing these two polynomials, mainly instances when 𝐺𝐺 ≠ 𝑖𝑖. 

The estimation results for NFI and market NFI for these alternative drought variable definitions is 

presented in Table B1. The results are generally consistent across the variable definitions and those 

reported in the main part of the paper.  
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Table B1. Analysis of NFI and Market NFI Using Alternative Drought Variables Constructed from SHELDUS™ Crop Damage Days 
 (1) (2) (3) (4) (5) (6) (7) (8) 
         
VARIABLES NFI ($ 

thousand) 
NFI ($ 

thousand) 
NFI ($ 

thousand) 
NFI ($ 

thousand) 
Market NFI ($ 

thousand) 
Market NFI ($ 

thousand) 
Market NFI ($ 

thousand) 
Market NFI ($ 

thousand) 
 D1 D2 D3 D4 D1 D2 D3 D4 
 Simple sum 

CDD 
CDD 

weighted by 
county size 

Average CDD CDD 
interacted with 
state planted 

acres 

Simple sum 
CDD 

CDD 
weighted by 
county size 

Average CDD CDD 
interacted with 
state planted 

acres 
         
Pre 1995 x D -50.48*** -0.0634*** -3,941** -2.90e-06*** -24.80 -0.0329 -3,132 -1.65e-06 
 (11.82) (0.00964) (1,592) (6.49e-07) (21.52) (0.0268) (2,263) (1.53e-06) 
1995 and after 
x D 

-28.57 -0.0338* -667.1 -1.69e-06* -117.3*** -0.119*** -11,674 -5.90e-06*** 

 (25.09) (0.0196) (5,271) (8.73e-07) (22.16) (0.0200) (8,235) (1.18e-06) 
Constant 1.715e+06*** 1.715e+06*** 1.715e+06*** 1.715e+06*** 1.192e+06*** 1.192e+06*** 1.192e+06*** 1.192e+06*** 
 (90,392) (90,601) (89,676) (90,775) (102,799) (102,878) (100,994) (103,421) 
         
Observations 1,961 1,961 1,961 1,961 1,961 1,961 1,961 1,961 
R-squared 0.274 0.275 0.273 0.276 0.278 0.277 0.276 0.279 
Number of 
States 

37 37 37 37 37 37 37 37 

AIC 59234 59232 59237 59230 59521 59523 59527 59518 
Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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