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Abstract

Advances in artificial intelligence (A.I.) are a double-edged sword. On the one

hand, they may increase economic growth as A.I. augments our ability to innovate

or even itself learns to discover new ideas. On the other hand, many experts note

that these advances entail existential risk: creating a superintelligent entity mis-

aligned with human values could lead to catastrophic outcomes, including human

extinction. This paper considers the optimal use of A.I. technology in the presence

of these opportunities and risks. Under what conditions should we continue the

rapid progress of A.I. and under what conditions should we stop?

*I’m grateful to Jean-Felix Brouillette, Tom Davidson, Sebastian Di Tella, Maya Eden, Pete Klenow,
Anton Korinek, Kevin Kuruc, Pascual Restrepo, Charlotte Siegmann, Chris Tonetti, and Phil Trammell for
helpful comments and discussions.
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1. Introduction

Recent advances in artificial intelligence (A.I.) will surely raise living standards in the

coming years. Protein-folding, speech recognition, and the amazing accomplishments

of generative models in producing text and images have sped past expectations from

just a few years ago (Bubeck et al., 2023). It seems likely that A.I. will augment our

ablities to innovate in the near term, and it is certainly within the realm of possibility

that A.I. could exceed human intelligence at many cognitive tasks and even begin inno-

vating itself. Once machines can produce ideas, the limits to growth set by the quantity

and quality of researchers may no longer hold, and growth rates could speed up, poten-

tially even leading to a singularity with infinite consumption. Models along these lines

have been explored by Aghion, Jones and Jones (2019), Trammell and Korinek (2020),

Davidson (2021), and Nordhaus (2021).

On the other hand, as many experts have warned recently, these advances do not

come without risk. A substantial contingent of the A.I. research community, including

leading researchers at OpenAI and Google, warn that these advances could constitute

an existential risk for humanity: if we create an intelligence smarter than humans that

is not aligned with our goals, there is some risk that humans could be left behind or

even annihilated. These concerns raise substantial questions about whether we should

pause our research on A.I. or perhaps stop it altogether at some point.

More succinctly, A.I. could raise living standards by more than electricity or the

internet. But it may pose risks that exceed those from nuclear weapons. Moreover,

these possibilities — however likely or unlikely — are correlated. It is precisely the

state of the world in which A.I. could lead to profound increases in living standards

that seems most likely to pose existential risk. This paper considers the optimal use

of A.I. in the presence of this double-edged sword. Under what conditions should we

continue the rapid progress of A.I. and under what conditions should we stop?

The goal of the paper is not to provide an exact answer to this question, as the an-

swer will surely depend on parameters that we cannot precisely quantify. Instead, the

paper develops some simple models to elucidate the economic forces that are involved

in thinking through these questions.

Several insights emerge:

1. The curvature of utility is very important. With log utility, the models are re-
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markably unconcerned with existential risk, suggesting that large consumption

gains that A.I. might deliver can be worth gambles that involve a 1-in-3 chance of

extinction.

2. For CRRA utility with a risk aversion coefficient (γ) of 2 or more, the picture changes

sharply. These utility functions are bounded, and the marginal utility of con-

sumption falls rapidly. Models with this feature are quite conservative in trading

off consumption gains versus existential risk.

3. These findings even extend to singularity scenarios. If utility is bounded — as it

is in the standard utility functions we use frequently in a variety of applications

in economics — then even infinite consumption generates relatively small gains.

The models with bounded utility remain conservative even when a singularity

delivers infinite consumption.

4. A key exception to this conservative view of existential risk emerges if the rapid in-

novation associated with A.I. leads to new technologies that extend life expectancy

and reduce mortality. These gains are “in the same units” as existential risk and

do not run into the sharply declining marginal utility of consumption. Even with

a future-oriented focus that comes from low discounting, A.I.-induced mortality

reductions can make large existential risks bearable.

In Section 2, we develop a simple model to illustrate some of these forces as clearly

as possible. Section 3 then extends the analysis to include a richer theory of dynamics,

the possibility of a singularity, and the prospect that the innovations from A.I. could

also extend life expectancy.

Related literature. Serious concerns about the existential risk associated with artifi-

cial intelligence have been highlighted in recent decades by Joy (2000), Bostrom (2002,

2014), Rees (2003), Posner (2004), and Yudkowsky et al. (2008). These concerns have

accelerated together with the progress of A.I. itself. Ngo, Chan and Mindermann (2023)

provides a recent overview of how these concerns could materialize in the context of

the “alignment problem.”

The conference volume on the economic analysis of artificial intelligence in Agrawal,

Gans and Goldfarb, eds (2019) provides a wealth of perspectives on the possible costs



A.I., GROWTH, AND EXISTENTIAL RISK 3

and benefits of A.I., nicely summarized by Agrawal, Gans and Goldfarb (2019). Bryn-

jolfsson and McAfee (2014) highlight a myriad of potential benefits from artificial in-

telligence, while Brynjolfsson, Rock and Syverson (2021) note that growth could ini-

tially slow as organizational changes are implemented, reminiscent of the adoption of

electricity and information technology. Acemoglu and Lensman (2023) show that the

optimal adoption of transformative technologies such as A.I. that involve both large

costs and large benefits can be delayed if the costs are somewhat irreversible.

Jones (2016) considers the tradeoffs between the economic benefits of new tech-

nologies and their potential costs in terms of lost lives, for example because of nuclear

weapons, biohazards, or even the risks associated with frontier science. That paper

argues that as we get richer, it may be optimal to slow the rate of economic growth, or at

least redirect innovation toward life-saving technologies. This paper differs by focusing

explicitly on the amazing potential benefits as well as the existential risk associated

with artificial intelligence.

Aschenbrenner (2020) extends the framework in Jones (2016) to focus on existential

risk, positing that existential risk is increasing in aggregate consumption and decreas-

ing in aggregate mitigation efforts. He suggests we may live in a critical “time of per-

ils” in which we are advanced enough to face high risk but not rich enough to spend

sufficiently on mitigation efforts. Martin and Pindyck (2015, 2020) consider catastro-

phes and how the value of statistical life (VSL) can be used to evaluate the gains from

avoiding catastrophes. All of this work — as well as the present paper — builds on

Rosen (1988), Murphy and Topel (2003), Nordhaus (2003), and Hall and Jones (2007) in

thinking about how to value lives.

2. A Simple Model

For the first model, suppose that advances in A.I. allow computers to augment and even

substitute for humans in innovation, leading to an acceleration of economic growth to

some rate g, say something like 10% per year. However, the use of this A.I. poses an ex-

istential risk to humanity. Using the advanced A.I. for T periods leads to a consumption

per person of c = c0e
gT , but at the same time, the probability that the world survives is

S(T ) = e−δT .
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We simplify further so that the model is essentially static. The only decision is to

choose T , the intensity of using the A.I. All growth and existential risk is realized im-

mediately rather than over time, and if society survives, people consume the constant

c = c0e
gT forever after.

Social welfare for a constant population of N people getting the constant flow utility

u(c) forever is

U = N

∫

∞

0
e−ρtu(c)dt =

1

ρ
Nu(c).

Constant exogenous rates of population growth or decline would only change the dis-

count rate ρ to ρ− n; it is therefore already included implicitly.

The setup then reduces to the static problem of choosing T to maximize expected

utility, where the expectation is taken with respect to existential risk:

EU = S(T ) ·
1

ρ
Nu(c) = e−δT ·

1

ρ
Nu(c0e

gT ).

Notice that the N and the ρ just scale up or down social welfare but will drop out of

the first order condition. The N people each benefit from the higher growth and each

suffer the loss if the world ends. And the present value of the infinite future is simply

proportional to the annual flow u(c) via 1/ρ. Also, we’ve normalized the utility of death

to zero, an assumption we will discuss later.

Taking the first order condition, it is easy to see that it is optimal to use the A.I. as

long as

δ ·
N

ρ
v(c)

Lost lives

≤ g ·
N

ρ
Extra growth

where v(c) ≡
u(c)

u′(c)c
.

If you let the A.I. run for one more period, the cost is a probability δ of ending the world,

which is a loss of v(c) per person, scaled up by N/ρ for population and present value.

The benefit is the extra period of consumption growth at rate g, also scaled by N/ρ. The

optimal choice of how long to let the A.I. run trades off these costs and benefits.

Canceling terms, rewriting, and assuming an interior solution, the solution is to

choose T ∗ such that c∗ = c0e
gT ∗

satisfies

v(c∗) =
g

δ
(1)
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The left side of this equation is v(c) ≡ u(c)/u′(c)c, which is the value of a year of life in

consumption units as a ratio to consumption per person. For example, in the United

States today, a typical value of a year life is around $250,000, which comes from VSL’s

of around $10 million for a 40-year old who might live for 40 more years. Because

consumption per person is around $40,000, this value of life implies v(cus,today) ≈ 6.

That is, a year of life is worth six times per capita consumption. Notice that with linear

utility, v(c) ≡ u(c)/u′(c)c would equal one. With curvature, v(c) is typically greater than

one: u′(c)c values consumption using the (low) marginal utility, while u(c) incorporates

the inframarginal benefits analogous to consumer surplus.

2.1 CRRA Utility

Equation (1) implicitly defines the optimal level of consumption c∗. We choose the

amount of time T ∗ to let the A.I. run until the value of life is equal to g/δ, which I think

of as the “A.I. Benefit-Cost” ratio, or AIBC ratio for short.

To solve further, assume the CRRA functional form for utility:

u(c) =











ū+ c1−γ

1−γ
if γ 6= 1

ū+ log c if γ = 1

With CRRA utility, the value of life is given by

v(c) ≡
u(c)

u′(c)c
=











ūcγ−1 + 1
1−γ

if γ 6= 1

ū+ log c if γ = 1
(2)

We will focus on the cases of γ > 1 and γ = 1 (log utility) as being most relevant. A

large literature in macroeconomics focuses on these cases. However, it will be easy to

see what happens if γ < 1.

Crucially, notice that the value of life v(c) rises with consumption for γ ≥ 1. To see

the intuition for this fact, consider Figure 1 and note that utility is bounded for γ > 1.

In this case, the marginal utility of consumption falls rapidly, and flow utility can never

be larger than the parameter ū.

You can also see from Figure 1 why the parameter ū is important. In setting up

the problem, we normalized the utility when dead to zero; this is a free normalization
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Figure 1: Bounded flow utility when γ > 1

CONSUMPTION, c

UTILITY, u(c)

Note: For γ > 1, CRRA utility is bounded, and the upper bound is given by the
parameter ū.
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and we could have chosen any other value. However, once death is zero, life must give

positive utility in order to be preferred. With γ > 1, the term c1−γ/(1 − γ) is less than

zero. In other words, unless we do something — like adding a constant ū > 0 — life

would not be preferred to death.

With γ > 1, the parameter ū can be interpreted as the maximum flow utility an in-

dividual can obtain, even with infinite consumption. Put differently, even with infinite

consumption, the utility from living remains finite. This has important implications

for A.I. Even a singularity that delivers infinite consumption sometime in the next few

decades only leads to a flow utility of ū, not to infinite utility. In contrast, if γ < 1 or

even in the log case of γ = 1, then infinite consumption would lead to infinite utility.

Combining the equation for v(c) in (2) with the key first-order condition in (1) gives

c∗ =











[

1
ū

(

g
δ
+ 1

γ−1

)]
1

γ−1
if γ > 1

exp
(

g
δ
− ū

)

if γ = 1
(3)

The comparative statics are then straightforward. The higher is the AIBC ratio g/δ, the

higher is c∗; faster growth from A.I. raises c∗ while a higher rate of existential risk lowers

c∗. A higher ū means that life is more valuable at any given level of consumption, and

this reduces c∗; the existential risk is less worth it.

The solution for c∗ then implies the optimal choice of T ∗ since c = c0e
gT :

T ∗ =
1

g
log(c∗/c0).

2.2 Quantitative Analysis

The AIBC ratio g/δ is obviously a critical input into any quantitative analysis of this

model. We consider each of g and δ in turn. Letting the A.I. run for one additional

period raises consumption by, for example, g = 10%. This is extraordinarily rapid

economic growth, much faster than the 2% per year growth experienced in the U.S.

for the past 150 years. In a semi-endogenous growth setup, achieving this faster growth

rate would involve increasing the growth rate of researchers by at least a factor of 5.

This would be an amazing accomplishment, but it is one that some observers think is

possible for A.I. By choosing such a high value, we are giving the benefit of the doubt to
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Table 1: Consumption and Existential Risk: Simple Model

—— δ = 1% —— —— δ = 2% ——

γ c∗ T ∗ Exist.Risk c∗ T ∗ Exist.Risk

1 54.60 40.0 0.33 1 0 0

2 1.57 4.5 0.04 1 0 0

3 1.27 2.4 0.02 1 0 0

Note: The table shows the quantitative results for the optimal choices from the
simple model, assuming g = 10% so that the AIBC ratio is 10 in the left panel and
5 in the right panel. Other values assumed are c0 = 1 and v(c0) = 6. The value
of ū is chosen to match v(c0) = 6 for each value of γ. The “Exist.Risk” column
reports 1− exp(−δT ∗), which is the overall probability of existential risk.

the possibility that A.I. is incredibly useful.

What is the flow probability of existential risk from that action? Experts disagree

about this risk in general, but let me consider two possible values to illustrate some

important points. First, perhaps the existential risk is 1% per year. Second, perhaps it

is twice as dangerous at 2% per year. These values are completely made up, but they

are illustrative and the tradeoffs they imply will be clear. The model in the next section

takes an alternative approach that sidesteps an assumption like this. In the first case,

the AIBC ratio is 10 while in the second case it is 5. Table 1 shows the quantitative results

for various parameter values.

Log utility. As explained earlier, v(cus,today) = 6. If δ = 1% so that the AIBC ratio

is 10, then we would use the A.I. for a number of years until the value of life rises to

10x consumption from its current value of 6x. With log utility (γ = 1), recall from

equation (2) that v(c) = ū + log c. In this case, log c would need to increase by 4 units,

and exp(4) ≈ 55. In other words, with log utility and δ = 1%, we should run the A.I.

until consumption increases by a factor of 55! Growing at 10% per year, this implies

T ∗ = 40, so we would grow at this rapid rate for 40 years. By comparison, the United

States has experienced an approximately 18-fold increase in GDP per capita since 1870.

Modern living standards in the U.S. are also around 50 times higher than those in the

least developed nations, which in turn is not much greater than the living conditions
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experienced by the majority of the world’s population throughout most human history.

What is the price of this amazing change in living standards? Recall that we would

face a flow probability of existential risk of 1% per year for 40 years, so the probability

we survive this A.I. explosion is exp(−.01 × 40) ≈ 0.67. In other words, with log utility

it is optimal to take a 1 in 3 chance of ending human existence in exchange for a 2/3

chance of dramatically raising living standards by a factor of 55.

The next interesting finding in Table 1 is what happens with log utility if δ = 2%

instead of 1%. In this case, notice that the AIBC ratio is 5 instead of 10. But because

v(cus,today) = 6, the value of life in the U.S. today is already too high to make the A.I.

risk worthwhile: δv(cus,today) > g so that the optimal choice is T ∗ = 0. Our range of

uncertainty about the nature of existential risk surely includes both 1% and 2% for δ. In

the former case, we run the A.I. for 40 years and incomes rise by a factor of 55, but in

the latter case we optimally shut the A.I. down immediately. This result is summarized

in our first key point:

Key Point 1 (Log utility): Decisions and optimal outcomes in the simple model with log

utility are very sensitive to the magnitude of the A.I. existential risk. With δ = 1% it

is optimal to use the A.I. technology for 40 years involving an overall 1/3 probability

of existential risk and a stunning 55-fold increase in consumption. With δ = 2%, it

is optimal to shut it down immediately even with log utility (and also for γ > 1).

CRRA utility with γ > 1. In the log case, u(c) is not bounded and the value of life rises

slowly, with the log of consumption. When γ > 1, flow utility is bounded and the value

of life rises as a power function of consumption — rising linearly with c when γ = 2;

more on this shortly. Our second main point is that the optimal value of T ∗ is very

sensitive to γ = 1 versus γ = 2.

To see this, return to the case of δ = 1% so that the AIBC ratio is 10 and consider the

results in Table 1. It is once again optimal to have v(c) rise from the initial value of 6

to a new value of 10. However, because the value of life rises faster with c, this involves

just 4.5 years of A.I.-enabled growth rather than 40 years. Optimal consumption rises

by 57% — a factor of 1.57 instead of a factor of 55 — and the economy bears the price

of existential risk equal to 4%. Moving to γ = 3 roughly cuts these values in half. Our

second key point summarizes this lesson:
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Key Point 2 (CRRA > 1): Holding constant the rate of existential risk at δ = 1%, the

optimal decision varies sharply with whether γ = 1 (log utility) or γ = 2. Log

utility involves the 55-fold gain in consumption, 40 years of using the A.I., and a

1/3 probability of an existential disaster. With γ = 2, the gain in consumption is

dramatically smaller, 57 percent instead of a factor of 55, the A.I. is used for 4.5

years, and the optimal probability of an existential disaster is just 4 percent.

2.3 Heterogeneity and the Value of Life

To understand these results better, it is helpful to consider the value of a year of life, v(c).

Recall that this value is v(c) ≡
u(c)
u′(c)c = ūcγ−1 + 1

1−γ
, so it increases with consumption

when γ ≥ 1. (In the log case, v(c) = u(c) = ū+ log c.) In the U.S. today, the value for an

average person, with consumption around $40,000, equals 6 years of consumption.

Figure 2 plots this value of life against consumption. In this graph, we normalize

the units of consumption so that cus,today = 1. A key point of the graph is the hetero-

geneity in the value of life, both as a function of c and as a function of the risk aversion

parameter γ.

For example, when γ = 1, the value of life rises very slowly — with the log of con-

sumption. To get to a v(c) = 10 requires a massive increase in c; this was the factor of

55 shown above.

In contrast, when γ = 2, the value of life rises linearly in consumption. Because

ū = 7 in this case, getting v(c) to rise by 4 units from 6 to 10 only requires a 57% increase

in c.

Finally, for higher values of γ, v(c) rises even faster: recall that it looks like v(c) ≈

ūcγ−1. So if γ = 3, the value of life rises with the square of consumption and if γ = 5,

the value of life rises with c4.

An implication of this analysis is that people with different levels of consumption

or people with different values of γ will feel very differently about using A.I. Consider

the low levels of consumption in the poorest countries of the world or for low-income

people in the United States. In this case, the marginal utility of consumption is high and

these people would be more willing to undertake gambles with their lives in order to

reach much higher living standards. On the other hand, people who are rich or people

who are very risk averse would be much less willing to take such gambles.
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Figure 2: The Value of a Year of Life, v(c)

0.5 1 1.5 2
0

5

10

15

20

U.S. average

      today

CONSUMPTION, c

VALUE OF A YEAR OF LIFE, v(c)

Note: The value of a year of life is v(c) ≡ u(c)
u′(c)c

= ūcγ−1 + 1
1−γ

. It is the value of living a year u(c),

converted into consumption units by dividing by u′(c), expressed as a ratio to c itself. Therefore
it has the units of “the value of a year of life measured in years of per capita consumption.” In the
U.S. today, the value for an average person equals 6; we choose different values of ū for the different
values of γ to match this fact. In the graph, average U.S. consumption today is normalized to 1. As
Rosen (1988) pointed out, there are reasons why v(c) may not be less than one: certainly you’d be
willing to give up your consumption... to have your consumption.
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3. Model #2: Mortality Improvements and Singularities

If A.I. doesn’t destroy humanity, it could do more than accelerate growth in consump-

tion. An A.I. capable of accelerating growth to 10% per year might also create cures for

cancer and heart disease and create other innovations that reduce mortality. As we get

richer and life becomes more valuable, these mortality reductions could be a key part

of the benefits of A.I. The existential risk is partially offset by increasing life expectancy

in the good state of the world.

In this section, we incorporate this consideration as well as a more explicit model of

dynamics and even the possibility of a singularity in which A.I. leads consumption to

go to infinity in finite time.

3.1 The Model

Suppose that utilitarian social welfare is the discounted sum of the flow utilities of

everyone alive:

U =

∫

∞

0
e−ρtNtu(ct)dt

where Nt = N0e
nt with n ≡ b−m as the exogenous rate of population growth or decline.

The parameter b is the birth rate at which new people enter the economy, m is the

idiosyncratic mortality rate for individuals, and consumption per person grows at rate

g: ct = c0e
gt. All three of b, m, and g are exogenous and constant with ρ − b + m > 0.

Assume CRRA utility, as before, so that u(c) = ū+ c1−γ/(1−γ) and let us maintain γ > 1

throughout this section.

Substituting in the utility function and the constant exponential consumption growth,

we can solve the integral in the utility function to get

U(g,m) =
N0ū

ρ− b+m
+

N0c
1−γ
0

1− γ
·

1

ρ− b+m+ (γ − 1)g
. (4)

In the absence of A.I., the economy experiences a constant growth rate given by g0

and a mortality rate m0 (the 0 subscripts denote the economy in the absence of A.I.,

not time subscripts). Adopting the A.I. technology leads to faster economic growth at

rate gai and potentially lower mortality at rate mai. However, the cost is a one-time

existential risk that is realized immediately when the A.I. technology is implemented:
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with probability δ, every human dies.

In this case, a social planner maximizing expected utility will implement the A.I. as

long as

U(g0,m0) < (1− δ)U(gai,mai).

Clearly, then, it is optimal to use the A.I. technology provided the existential risk δ is

lower than a critical value δ∗ that makes this equation hold with equality:

δ∗ = 1−
U(g0,m0)

U(gai,mai)
. (5)

To summarize, if the actual one-time existential risk from A.I., δ, is smaller than the

cutoff δ∗, then it is optimal to use the A.I. If the one-time risk is larger than δ∗, then the

A.I. is too dangerous and it is optimal not to use it.

Basic solution. It is helpful to make one additional substitution into equation (4) for

U(g,m) before plugging in to solve for δ∗. In particular, recall that v(c) = ūcγ−1+1/(1−

γ) so that

ūcγ−1 = v(c)−
1

1− γ
.

This equation can be used to write U(g,m)cγ−1
0 as a function of v(c0), which we observe,

instead of ū. Substituting into (5) then gives

1− δ∗ =

v(c0)−
1

1−γ

ρ−b+m0
+ 1

1−γ
· 1
ρ−b+m0+(γ−1)g0

v(c0)−
1

1−γ

ρ−b+mai
+ 1

1−γ
· 1
ρ−b+mai+(γ−1)gai

(6)

Singularity. Next, notice a remarkable fact: when γ > 1, a singularity that delivers

infinite consumption does not deliver infinite utility because flow utility is bounded

at ū. This can be seen easily back in our earlier Figure 1. In this case, utility under a

singularity that occurs at time 0 is given simply by

Using =
N0ū

ρ− b+mai
,

which is also the solution that emerges in (4) when evaluated at g = ∞.

Using this logic, we can set gai = ∞ in (6) to solve for the existential risk cutoff when
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A.I. is associated with a singularity at date 0:

1− δ∗sing =
ρ− b+mai

ρ− b+m0
−

1

1 + (γ − 1)v(c0)
·

ρ− b+mai

ρ− b+m0 + (γ − 1)g0
. (7)

Finally, just for intuition, it is helpful to solve for the singularity cutoff when A.I. has

no additional mortality benefit so that mai = m0 ≡ m:

δ∗sing,m =
1

1 + (γ − 1)v(c0)
·

1

1 + (γ−1)g0
ρ−b+m

(8)

The comparative statics are clear from this last equation. A higher initial value of life

v(c0) reduces the existential risk cutoff. A higher normal growth rate g0 reduces the

cutoff. Higher risk aversion γ — sharper diminishing marginal utility — also reduces

the cutoff. A higher discount rate ρ or mortality rate m raises the singularity cutoff

as the future benefits of regular growth g0 count for less in outweighing the infinite

consumption of the singularity.

3.2 Quantifying the Richer Model

We now quantify the existential risk cutoff δ∗ for various cases using the results we’ve

just derived. We start the economy off as before with v(c0) = 6 and assume an effective

rate of time preference of ρ− b = 1%.

In the case in which A.I. is not used, we assume g0 = 2% and m0 = 1%, correspond-

ing to consumption growth of 2% per year and a mortality rate of 1% per year, implying

a life expectancy of 100 years.

We allow the successful use of A.I. to affect growth in one of two ways: a fast-growth

scenario with gai = 10% or an immediate singularity that delivers infinite consumption.

With respect to mortality, we also consider two scenarios. In the first, A.I. does not

affect mortality and mai = m0 = 1%. In the second, we assume that the innovative

A.I. capable of astounding consumption growth also can offer impressive mortality

improvements so that the mortality rate falls in half to mai = 0.5%. Notice that this

corresponds to life expectancy doubling to 200 years, so this is a large change.

The results for the existential risk cutoff δ∗ are shown in Table 2. The first entry

considers γ = 1.01, very close to log utility. This case confirms the results we saw in

the simple model: with log utility, optimal existential risk cutoffs are remarkably high.
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Table 2: Existential Risk Cutoffs: Mortality Improvements and Singularities

Fast growth: gai = 10% Singularity: gai = ∞

— mai — — mai —

γ 1% 0.5% 1% 0.5%

1.01 0.350 0.572 0.934 0.951

2 0.049 0.290 0.071 0.304

3 0.019 0.265 0.026 0.269

Note: The table shows the quantitative results for the existential risk cutoff δ∗

in the model with mortality improvements and singularities using equation (6).
In the absence of A.I. use, we assume g0 = 2% and m0 = 1%. Other assumed
parameter values are ρ− b = 1% and v(c0) = 6.

For example, when the A.I. delivers 10% growth and no mortality improvement, we find

δ∗ = 35%. Also paralleling the simple model, as we increase γ to 2 or 3, the existential

risk cutoff falls very sharply to just 4.9% and 1.9% respectively. So the first column of

Table 2 basically confirms the results we saw earlier.

Singularities. Next, consider the consequences of making A.I. even more impressive,

so that it leads to an immediate singularity with infinite consumption. These results are

shown in the right panel of Table 2. With near-log utility, the existential risk cutoff for

implementation gets very large, approaching 100%. In fact, it is easy to show that with

γ ≤ 1 — so that utility is logarithmic or even less curved — the optimal existential risk

cutoff for a singularity is 100%. That is, as long as total annihilation of the human race

is not a sure thing, the infinite consumption dominates and A.I. implementation max-

imizes this social welfare function. This strikes me as unappealing, which is consistent

with a large literature in economics focusing on γ > 1 instead of γ ≤ 1.

The middle and bottom row of the right panel of the table show that γ = 2 com-

pletely changes the story. Because flow utility is bounded, infinite consumption is not

that much better than gai = 10%, and δ∗ falls to around 7%. With γ = 3, the decline is

even sharper to δ∗ = 2.6%. These findings lead to our third key point:

Key Point 3 (Singularities): How much existential risk society is willing to bear de-

pends critically on whether flow utility is bounded. If γ ≤ 1, the existential risk cut-
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off for an immediate singularity that delivers infinite consumption is δ∗ = 1: any

risk other than sure annihilation is acceptable to achieve infinite consumption. In

contrast, if γ = 2 or 3, the singularity cutoffs are much closer to the cutoffs with

gai = 10% and are much smaller. For example δ∗ = 2.6% when γ = 3: even infinite

consumption is not worth the gamble if the one-time existential risk is greater than

2.6%.

Improved mortality. Finally, consider the possibility of mortality improvements. The

innovations that A.I. creates to accelerate economic growth may affect more than just

consumption. We already see examples of A.I. being used for protein folding, drug

discovery, and evaluating images. An A.I. that could accelerate consumption growth

to 10% or more would surely create innovations that also reduce mortality. As we get

richer and life becomes more valuable, these mortality reductions could be a key part

of how A.I. improves living standards. The existential risk may be partially balanced by

letting everyone live longer in the good state of the world where the existential risk is

not realized.

Table 2 illustrates the importance of this force by considering the possibility that

A.I. cuts the standard mortality rate in half, from 1% per year to 0.5% per year. The

effects on the optimal cutoff for existential risk, δ∗, are large. The intuition for this is

that mortality reductions are “in the same units” as existential risk, unlike consumption

which gets filtered through a bounded utility function. When γ = 2 and gai = 10% for

example, the cutoff for using A.I. (δ∗) rises sharply from 4.9% to 29.0%. When γ = 3, the

change is even more dramatic, with δ∗ rising from 1.9% to 26.5%. A 1-in-4 chance of an

existential catastrophe is more bearable when we live for 200 years instead of 100 years

if the catastrophe does not occur.

The point that mortality and existential risk are in the same units can be made even

more clearly in the simple model from Section 2. For example, when the existential risk

has arrival rate δ, the probability of surviving T years is S(T ) = exp[−(δ+m)T ] and it is

only the sum of existential and mortality risk that matters, not the composition.

The insights regarding mortality improvements are summarized in our fourth key

point:

Key Point 4 (Mortality improvements): With γ > 1, consumption gains have sharply
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diminishing returns and life becomes increasingly valuable. If A.I. can also im-

prove life expectancy and mortality rates apart from existential risk, the existential

risk cutoffs are much higher, on the order of 25–30% for γ = 2 or 3.

Longtermism. What happens if we discount the future at a lower rate and therefore

put more weight on the future? Two insights emerge, one relatively obvious and one

less so.

First, return to the case where mai = m0 so A.I. does not generate any mortality

improvements. Consider what happens if the effective discount rate ρ − b + m falls to

zero. This is easiest to see in equation (8). If ρ−b+m → 0, then δ∗sing,m → 0. That is, if we

are risking an infinite future that is effectively undiscounted, the existential risk cutoff

falls to zero. It is not worth any one-time existential risk even to achieve a singularity

because an infinity of futures is at risk (and because the singularity itself only delivers

finite utility). This echoes the “What We Owe the Future” effect of MacAskill (2022).

Second, consider what happens to the value of mortality improvements as we place

more weight on the future. As before, assume A.I. lowers the mortality rate from 1%

to 0.5%. In this case, we have two different effective discount rates, ρ − b + m0 and

ρ − b + mai. To keep everthing finite, suppose we lower ρ − b to -0.45%. The effective

discount rate with A.I. becomes nearly zero at ρ− b+mai = 0.05% while the rate in the

absence of A.I. is a half percentage point higher at ρ − b +m0 = 0.55%. The results are

shown for the singularity case in Table 3. (The results for gai = 10% are very similar.)

The first two columns repeat our baseline calculation with ρ − b = 1% for easy

comparison. The third column considers lowering ρ−b to -0.45% but with no mortality

improvements (i.e., holding constant mai = m0 = 1%). As expected from the discussion

earlier in this section, the prize to be lost from existential risk is larger, so the cutoffs

decline.

The surprise comes in the last column, where we study the case in which A.I. im-

proves the mortality rate so that mai = 0.5%. The cutoffs rise sharply to δ∗ > 0.9.

Any one-time existential risk of less than 90% is worth taking in order to improve the

mortality rate by half a percentage point, even for γ as high as 3. The reason is that

we are discounting the future less, so mortality improvements themselves are more

valuable.1 The intuition is that as ρ− b+mai → 0, the social welfare from adopting A.I.,

1To see this mathematically, return to equation (7) and factor out ρ − b +mai. The limiting results are
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Table 3: Existential Risk Cutoffs: Mortality Improvements with Less Discounting

Baseline Less discounting

ρ− b = 1% ρ− b = −0.45%

— mai — — mai —

γ 1% 0.5% 1% 0.5%

1.01 0.934 0.951 0.910 0.992

2 0.071 0.304 0.031 0.912

3 0.026 0.269 0.009 0.910

Note: The table shows the quantitative results for the existential risk cutoff δ∗ in
the model with singularities using equation (7). We assume g0 = 2%, gai = ∞,
m0 = 1%, and v(c0) = 6.

U(gai,mai), goes to infinity, while the welfare from not adopting A.I., U(g0,m0) stays

finite — the higher mortality rate m0 ensures a postive effective discount rate in that

case.

In this example, one concern is that we are holding the birth rate b constant, so

that a lower mortality rate implies a higher population growth rate. Perhaps a different

example is also instructive to see that this is not important. Consider a world that lasts

10,000 years in the absence of existential risk. Suppose 1 million people are born each

year and they face a constant mortality rate of 1% initially. The steady-state population

in that case is 100 million people. Now suppose A.I. lowers the mortality rate to 0.5%.

In this case, the steady-state population is 200 million people, twice as large. With zero

discounting and bounded utility, the existential risk cutoff for a utilitarian social welfare

function approaches 1/2, the ratios of the populations in the two cases (it is not exact

because of transition dynamics). In other words, mortality improvements once again

lead to very high existential risk cutoffs.

Even with a longtermism focus, society in these examples is willing to tolerate huge

existential risk if one benefit of A.I. is to reduce mortality and improve life expectancy.

We value the large number of future generations, and they themselves benefit from

living longer. Extending lives from 100 to 200 years is not especially valuable if we

heavily discount the future, but it becomes tremendously valuable with a longterm

the same with finite gai, but the derivatives are not always monotonic.
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perspective.

Key Point 5 (Longtermism): Consider the case where A.I. leads to a singularity. Absent

mortality improvements, lowering the effective discount rate to place more weight

on the future reduces the existential risk cutoff, which falls to zero in the limit. With

mortality improvements, the result is the opposite: putting more weight on the fu-

ture means that A.I.-driven mortality improvements are more valuable, potentially

making any existential risk other than sure disaster worth bearing.

4. Conclusion

The point of this paper is not to provide a sharp answer to the question of “Should we

shut down A.I.?” even setting aside the important issue of how that could be achieved.

Instead, simple models are used to study how the answer to this question varies with

relatively small changes in how we set up the problem.

One key sensitivity is whether we use log utility or CRRA utility with γ = 2 or more.

With log utility, remarkably large amounts of existential risk are tolerated in order to

take advantage of huge advances in living standards. But with γ = 2 or more, gambling

with existential risk is much less appealing.

Next, even singularities that deliver infinite consumption immediately are not as

valuable as one might have thought. With bounded utility (e.g. γ > 1), infinite con-

sumption merely pushes us to the upper bound and the marginal utility of the addi-

tional consumption is small. The finding that with γ = 2 or more, social welfare in

these models suggests taking great care with existential risk continues to hold even in

the presence of a singularity.

Finally, one way in which it can be optimal to entertain greater amounts of exis-

tential risk is if A.I. leads to new innovations that improve life expectancy. Mortality

improvements and existential risk are measured in the same units and do not run into

the diminishing marginal utility of consumption. This result is reinforced by low effec-

tive discount rates that put high weight on the future.

There are of course many considerations that are omitted from this analysis. For

example, investments in A.I. safety may lower existential risk. It may be optimal to delay

using the A.I. until the risk can be lowered (even beyond the cutoffs here, depending on
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the effectiveness of those investments). Another consideration involves the nature of

risk. Here, individuals — and hence the utilitarian social planner — treat “10% of the

population dies each period” as equivalent to “there is a 10% chance of human extinc-

tion” because from an individual’s standpoint, both involve a 10% chance of dying. In

contrast, many people have the instinct that these two risks should not be symmetric,

which could lead to more conservative cutoffs.
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