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Motivation I: Item-Anchoring

Psychometric scales are not cardinal for economic applications.

I economic outcomes are nonlinear in test scores

I cardinality necessary to meaningfully compare means,
variances

Anchoring given scores is an imperfect solution.

I A = E[S|T ] for some cardinal outcome S and test score T

I rescale scores to be cardinally interpretable

Problem: how and why are the given scales constructed?

I by educators, psychometricians

I mastery of a curriculum, etc.

Scores not designed to serve as a proxy for human capital!



Motivation I: Item Anchoring

Any test score is based on some method of aggregating questions.

I M binary questions → 2M possible vectors of item responses

I many, many choices about how to aggregate

I IRT, % correct, etc. represent particular choices

Psychometric scores aggregate items in a non-economic way.

I items not weighted by economic usefulness

I test designers have different objectives

Solution: anchor at the item level.

I A = E[S|D] where D = full vector of item responses



Motivation I: Item Anchoring – A Simple Example
A test is 1/2 trig items and 1/2 statistics items, equally weighted.

I stats is useful in the labor market, trig is not1

“Eric” knows trig but not stats. “Jesse” knows stats but not trig.2

I Jesse and Eric score equally on the exam

I Jesse earns more than Eric

Standard analysis or given-score anchoring:

I Earnings difference unexplained by achievement

But this is just because we are measuring achievement strangely.

I downweight trig, upweight stats =⇒
I Jesse scores higher than Eric and out earns him

1Sorry Mrs. Hamilton...
2Names chosen randomly.



Motivation I: Item Anchoring Matters

Nielsen (2019)

I white-black gaps in wage- and lifetime income-anchored
achievement equal observed gaps

I white-black differences in employment predictable from items

I item-anchored scores resolve the “reading puzzle”

Nielsen (2023)

I Males do not consistently have greater variance on
item-anchored test scales

Bruhn et al. (2023)

I teacher vam, fade out, variation in student achievement

I presentation in about 30 minutes...



Motivation II: Are SD-Unit Scores Meaningful?

Achievement tests commonly scaled to have a unit variance by
grade/age.

I achievement gaps, causal effects, etc. reported in “sd units”

The variance of economically-relevant skills may not be constant
across grades/ages.

I the range of skills/tasks at older ages is much greater than at
younger ages

I sd-units may not have a fixed meaning

Achievement gaps, causal effects, etc. reported in sd-units
might erroneously mask or create heterogeneities by age.

I point also applies to percentile-unit scores



This Paper: Achievement Variance at Different Ages

1. Cardinal achievement measures via item-anchoring.

I aggregation based on item-outcome relationships

I split-half IV correction for measurement error

I lasso to handle large number of items

2. Variance in achievement by grade, pre-k through 8th grade.

I 90/10 and 99/1 gaps as well

3. Assess importance of standardization for:

I the evolution of the white-black achievement gap

I the causal effect of income on achievement



Preview of Results

The standard deviation of achievement increases a lot during
childhood.

I 50% to 400% depending on the anchor

This result depends on the use of item-level data.

I given-anchoring yields smaller/null increases in variance

By-grade standardization totally obscures:

I large increases in white-black achievement inequality

I larger causal effects of income on older children

Standardization and ignoring item-level data are not innocuous.



Contributions to Several Literatures

Non-interpretable variance of achievement – Lang (2010); Cascio and

Staiger (2012); Stevens (1946), Nielsen (2023b)

Test scores and cardinality – Bond and Lang (2013); Lord (1975); Nielsen

(2023a); Domicolo and Nielsen (2022); Cawley et al. (1999); Bettinger et al. (2013)...

Anchoring – Nielsen (2019); Bond and Lang (2018); Heckman, Cunha, Schennach

(2010); Polacheck et al. (2015)...

Intervention fade-out – Bailey et al. (2020); Wan et al. (2021); Hill et al.

(2008)

Any literature that uses sd-unit test scores.



CNLSY Item-Level Data

PIAT math and reading exams.

I age 5-14 respondents in every CNLSY wave

I item content fixed across survey waves

I 84 math, 84 reading items

Items asked in order of increasing difficulty.

I “basal” item depends on age and several “trial” questions

I exam stops when most items answered incorrectly

Fill-in rule:

I items below basal = correct

I items above final question = incorrect



Conceptual Framework and Method

Individuals i in grade g take a test with binary items indexed by j

I di,j,g = 1 if i gets j correct, 0 o.w.

I Di,g = [di,1,g, . . . , di,Ng ,g] is i’s vector of item responses

I Si = economic outcome of interest for i (e.g. earnings)

I Xi,g = other controls (e.g. survey wave, age, etc.)

Goal: estimate achievement Ai,g, defined by E[Si|Di,g, Xi,g]

Si = Ai,g + ηi,g, E[ηi,gAi,g] = 0

Construct Âi,g by estimating for some f :

Âi,g ≡ Ŝi = f̂(Di,g, Xi,g)



Conceptual Framework and Method

Interested in estimating statistics like σ2Ag
.

I Âi,g is estimated with error: σ2
Âg

= σ2Ag
+ σ2νg

I regression of Âi,g on Ai,g estimates Rg ≡ σ2Ag
/(σ2Ag

+ σ2νg)

Feasible regression of Âi,g on Si downward biased for Rg.

I Si = Ai,g + ηi,g

I need an instrument for Si

Split-half IV approach:

I partition test items into disjoint (1) and (2)

I estimate Â
(1)
i,g and Â

(2)
i,g separately on these groups

I Z
(1)
i,g = average Sj among j 6= i where Â

(2)
i,g = Â

(2)
j,g



Empirical Implementation

Residualize Si with year, race, sex, and interactions → S̃i.

I alternative residualizations yield very similar results.

By grade, separate lasso regressions of S̃i on odd and even item
indicators.

I yields Â
(1)
i,g and Â

(2)
i,g

Regress Â
(1)
i,g on S̃i, instrumenting with Z

(1)
i,g .

I yields ˆ̃γ
(1)
g

Estimate σ̂Ag using

√
V ar(Â

(1)
g )× ˆ̃γ

(1)
g .



The SD of Achievement Through Childhood
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The SD of Achievement Through Childhood
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Lasso typically selects more items in higher grades.

I about 20-25 in pre-k/k to 40-50 in grade 8

I not always – highest grade completed

Alternative models yield qualitatively similar results.

I lasso with 2-way item interactions, OLS, elasticnet, alternative
lasso set-ups



The Reliability of Item-Anchored Achievement
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The SD of Given-Anchored Achievement
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Implications for Young/Old Estimates

Growing variance =⇒ standardization shrinks later-age estimates

Compared to pre-k/k, same-size estimates in grades 7/8 will be

I 32% as large for log income at 25

I 20% as large for log wage at 25

I about 65% as large for highest grade, college, and next PIAT

These declines are similar in magnitude to:

I causal effect estimates on older versus younger children – e.g.,

Kane, Rockoff, and Staiger (2008); Dee and Jacob (2011)

I estimates of effect fade-out – e.g., Krueger and Whitmore (2001)



The Black-White Math & Reading Achievement Gap

Log Income Log Wage College Highest Grade Next PIAT

Anchor 0.09∗∗∗ 0.09∗∗∗ 0.06∗∗∗ 0.27∗∗∗ 0.29∗∗∗

(0.02) (0.03) (0.01) (0.04) (0.03)
Change 131% 869% 69% 78% 110%

By-Grade SD -0.30 0.78∗ 0.13 0.17 0.22∗∗∗

(0.33) (0.47) (0.17) (0.13) (0.07)
Change -26% 90% 11% 18% 35%

Anchor units – significant increases in achievement inequality.

SD units – mixed significance, smaller percentage changes.



Effect of Income on Achievement – Dahl and Lochner 2012
sd units anchor units

< 12 ≥ 12 ∆sd < 12 ≥ 12 ∆anchor

PIAT 0.11 0.04 0.07
(0.07) (0.03) (0.08)

College 0.12 0.08∗ 0.04 0.01 0.03∗ -0.02
(0.09) (0.04) (0.10) (0.01) (0.01) (0.02)

Highest Grade 0.14 0.10** 0.05 0.06 0.06** 0.00
(0.1) (0.04) (0.11) (0.04) (0.03) (0.05)

Log(income) 0.10 0.12** -0.02 0.01 0.03* -0.03*
(0.10) (0.06) (0.11) (0.01) (0.02) (0.02)

Log(wage) 0.16 0.11** 0.05 0.01 0.03** -0.02*
(0.12) (0.06) (0.13) (0.01) (0.02) (0.02)

Next PIAT 0.08 0.07* 0.01 0.04 0.05* -0.01
(0.07) (0.04) (0.08) (0.04) (0.03) (0.04)

Anchor units – income has much larger effects on older children

SD units – income might have larger effects on younger children



Conclusion

The sd of achievement is much larger for older children.

Converting scores to sd units is not benign:

I white-black achievement gap trends

I causal effects of income

The use if item-anchored scores is critical.

Future research:

I what (if anything) unites predictive items?

I how do items/skills interact?

I more data and methodological exploration needed
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