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Abstract 

Carbon capture, utilization, and storage (CCUS) techniques are vital to reaching decarbonization goals. 

Using nationwide CCUS data and property-level housing transaction records in the U.S., we quantify the 

impact of CCUS projects on nearby property values. Our research reveals three main findings. First, within 

15 km of a CCUS project, property values decrease by 10.18% on average and the impact is heterogeneous 

depending on the property proximity. Second, a CCUS project’s negative impact varies across the project 

types and facility conditions. The value of a property decreases by 9.88% and 6.42% after a carbon capture-

only and a carbon storage-only project is operational within 15 km of the property, respectively. Retrofit 

CCUS facilities have no significant impact on nearby housing prices, whereas new-built CCUS facilities 

significantly reduce nearby house prices by 10.68%. Third, we apply a DDD approach to distinguish 

between CCUS effects and oil basin effects on housing prices and find that the CCUS operation has a net 

impact of -17.84% on nearby housing prices when compared to similar houses in oil basins without CCUS 

operations. Our mechanism analysis indicates that the increase in house prices resulting from CCUS within 

5 km may be attributed to the implementation of CCUS projects which capture carbon emissions and 

improve local air quality. Reduced house prices within 15 km of CCUS projects may be attributed to a 

decrease in both local economic development and air quality. We also explore the heterogeneous responses 

of CCUS operations based on environmental awareness, local economic activities, and the facility industry. 

Our paper provides important policy implications on the local economic impacts and the siting choices of 

CCUS projects. The study provides useful insights into how CCUS projects may be expanded efficiently.  
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1 Introduction 

The carbon capture, utilization, and storage (CCUS) technique is widely recognized as an irreplaceable 

negative emission technology, which is of great significance in combating climate warming (Smith et al., 

2015; Davis et al., 2018; Duan et al., 2021). The CCUS technology is expected to provide 15% of the 

cumulative emission reduction contribution in the 2070 sustainable development scenario (IEA, 2020). 

As of Jan 2022, there were 38 CCUS projects that were completed, in operation, or operation in 

suspension in the U.S. Despite the rapid development of CCUS projects, the economic costs and benefits 

of CCUS projects in local communities are rarely assessed quantitatively, which presents great challenges 

to relevant policy decisions regarding CCUS project expansions.  

The environmental and economic benefits of CCUS projects are multifold. While the benefits of carbon 

sequestration are accrued at a global level, the potential negative externalities of CCUS projects are 

mostly borne by local communities. A CCUS project, for example, may pose a risk to nearby geological 

formations, and thus increase the risk of complications such as earthquakes (Zoback & Gorelick, 2012, 

2015). CO2 that has been liquefied or stored under high pressure may lead to groundwater contamination 

when leaks occur during the process of geologic sequestration, resulting in the mobilization of hazardous 

inorganic elements during this process (Eldardiry & Habib, 2018). Water pollution may also be caused by 

the displacement of brine in the environment (Newmark et al., 2010). It has been suggested that the 

energy penalty issue associated with CCUS in power plants may lead to increased air pollution (EEA, 

2011; Jacobson, 2019). It is difficult to accurately quantify these geological and pollution risks and the 

impact of such risks on local communities due to the lack of data and causal evidence. Nonetheless, it is 

believed that the presence of CCUS projects could drive local economic growth and benefit nearby 

communities through increased employment opportunities (Chen & Jiang, 2022).  

This study estimates the net impact of CCUS on the surrounding housing values in the U.S. Using high-

resolution spatial data, we provide empirical evidence on how potential environmental and geological 

impacts are capitalized into the housing market to enable a more precise estimation of the local impacts of 

CCUS. We leverage the spatial and temporal variations of CCUS projects and daily housing transaction 

data from 1990 to 2021 to quantify the potential impact. Based on the buffer we calculated, properties 

located within 15 km of a CCUS project are impacted by the project. We find that the sale price decreases 

by 10.18% on average as a result of CCUS operations. However, house values increase by 3.6% if they 

are within 5 km of CCUS facilities. As distance increases, the positive impact decreases and adverse 

environmental costs become dominant so that the project’s impact shifts from being positive to 

significantly negative.  

Our study also differentiates the impact of CCUS projects based on the project type and facility 

conditions, such as carbon capture projects, carbon storage projects, retrofitted CCUS projects, and new 

CCUS projects. Sale prices decrease by 9.88% when a carbon capture project is in operation within 15 km 

and decrease by 6.42% when a storage project is in operation. While retrofitted CCUS projects do not 

significantly affect nearby housing prices, new-built CCUS projects significantly reduce nearby home 

prices by 10.68% on average. Our study also uses a triple difference (DDD) approach to distinguish the 

effects of CCUS projects on housing prices from the effects of oil basins, since CCUS projects are 

primarily located in oil basins in the U.S. The CCUS operation has a net impact of -17.84% on nearby 

housing prices when compared to similar houses in oil basins without CCUS operations. 

The mechanism analysis reveals that the reduction in housing prices could be attributed to the hindered 

local economic developments following CCUS projects operating within 15 km, which implies a spatial 

limit on the positive economic spillovers from CCUS industrial investments (Cheng & Jiang, 2022). 

Furthermore, the net decline in housing prices caused by CCUS operations may also be attributed to 
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changes in air pollution, since a worsening air environment is likely to result in a decline in property 

value. Regarding the positive impacts on house values within 5 km of CCUS projects, we find that having 

a CCUS project within 5 km improves air quality, but the impact on the air quality may not reach a wider 

impact zone. Also, the low net captured rates may increase air pollution compared to when there is no 

capture (Jacobson, 2019).  

We make two primary contributions to the literature. Firstly, we contribute to the valuation of public and 

environmental amenities through the application of the hedonic pricing approach. We add to a growing 

literature on the local impacts of the construction of public transit infrastructure, gas station sites, and 

renewable energy (RE) projects (Hewitt & Hewitt, 2012; Yang et al., 2020; Zabel & Guignet, 2012). 

Hewitt and Hewitt (2012) find that houses located close to urban rail stations are more expensive. Gas 

stations can reduce nearby property values by more than 10% if leaks from underground storage tanks 

occur at publicized (and more severe) sites (Zabel and Guignet, 2012). Similarly, shale gas development 

(Muehlenbachs et al., 2015), the conversion of coal-fired power plants into gas-fired power plants (Mei et 

al., 2021), and urban natural gas leaks (Shen et al., 2021) all have the potential to negatively impact the 

value of nearby properties. The local impacts of renewable energy projects, such as wind and solar, on 

housing prices have also been studied in recent research. While it is widely accepted that renewable 

energy projects have social benefits (such as reducing greenhouse gas emissions), studies also indicate 

they could lead to a decrease in house values (Dröes & Koster, 2016; Gaur & Lang, 2020; Gibbons, 2015; 

Jarvis, 2021) because of factors such as blocking of views, noise from wind turbines, and Nimbyism. 

There are few studies investigating the economic impacts of CCUS specifically. Secondly, our paper adds 

to the strand of literature that examines public attitudes toward CCUS projects by revealing preferences in 

the United States. Through surveys, Liu et al. (2021) and Linzenich et al. (2019/2021) examined public 

perceptions of CCUS projects in China and Germany, respectively. There is conflicting evidence 

regarding how individuals value CCUS projects (Sun et al., 2020). The study provides useful insights into 

how CCUS projects may be expanded efficiently as possible opposition from residents may lead to 

increased tensions, similar to what was observed when wind and solar projects were expanded (Carlisle et 

al., 2015). Our findings have important implications for the successful expansion of CCUS projects on a 

large scale around the globe. 

2 Materials and Methods 

2.1 Data 

The Global CCS Institute1 contains the project level information for all CCUS projects in the U.S., 

including the first year in operation, technology details, ownership, facility category (commercial or 

demonstration), facility industry (natural gas processing, power generation, hydrogen production, 

fertilizer production, refining, ethanol production, etc.), and facility location. In total, there are 21 projects 

in operation, 14 projects completed, and 2 projects’ operations in suspension as of January 2022. 

Our study includes 26 CCUS projects that are not located in remote areas (i.e., have residential 

communities within 10 miles). Figure 1 illustrates the locations of 26 CCUS sites in our sample. CCUS 

projects in the United States are typically located in oil and gas fields or basins. The operational years of 

the 26 CCUS projects range from 2000 to 2018. We consider two important features when analyzing the 

impact of CCUS projects on nearby property values, including project type and whether the project is 

retrofitted. 17 of the CCUS projects are carbon capture projects, while 12 are carbon storage projects, and 

3 are both carbon capture and storage projects. Carbon capture projects include carbon capture facilities, 

carbon capture tests, and carbon capture technology tests. Carbon storage projects include carbon storage 

 
1 Global CCS Institute. https://co2re.co/FacilityData.  

https://co2re.co/FacilityData
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facilities, enhanced oil recovery (EOR) projects, storage performance tests, and CO2 injection and 

monitor projects. Three projects are both carbon capture and storage projects (site17, site 26, and site31). 

As for facility conditions, 20 of them are new-built projects, while 6 are retrofitted projects. Retrofitted 

projects in our sample include (1) projects retrofitting a CO2 capture/storage facility (site1, site16, site26 

in the Supplementary Tables A1 and A2) or a closed well (site24), or (2) a CO2 capture facility is 

retrofitted to an existing power plant or a production unit of a plant (site30, site31).2  

 

Figure 1. An overview map of CCUS site locations in the sample, along with boundaries of basins and 

oil/gas fields in the United States. 

Individual housing transaction data is provided by Zillow through the Zillow Transaction and Assessment 

Dataset (ZTRAX)3. The dataset provides historical transaction and assessment records (including sale 

prices, locations, translation dates, etc.) with property-level building attributes such as the number of 

rooms, building area, land values, and year built. We match these houses with nearby CCUS projects 

based on the longitudes and latitudes. There are 4,699,009 transactions of properties located within 100 

km of a CCUS project from 1990 to 2021.4   

We also collect an extensive set of explanatory variables to mitigate potential omitted variable concerns. 

Data on boundaries of basins and oil and gas fields are from U.S. Energy Information Administration 

(EIA)5. Data on population density and personal income per capita (1969-2020) are retrieved from the 

 
2 See Supplementary Tables A1 and A2 for detail information of each site. The site id here is labelled by the authors 

for ease of exposition. Information of retrofitted CCUS projects in the U.S. are from ZEROCO2.NO 

(http://www.zeroco2.no/projects/countries/usa).  
3 Zillow. (2021). Zillow’s Assessor and Real Estate Database. https://www.zillow.com/research/ztrax/. 
4 Since the operational years of CCUS projects in our sample range from 2000 to 2018, we exclude housing 

transactions that occurred before 1990. We believe transactions occurring more than ten years prior to CCUS 

projects’ operation do not contribute more to our analysis. Our final sample consists of transactions from 1990 to 

2021. 
5 EIA. Maps: Oil and Gas Exploration, Resources, and Production. U.S. and lower 48 states. Map data. 

https://www.eia.gov/maps/maps.htm.  

                                                                            

                                                           

                               

http://www.zeroco2.no/projects/countries/usa
https://www.zillow.com/research/ztrax/
https://www.eia.gov/maps/maps.htm
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Bureau of Economic Analysis, US Department of Commerce6. Data on annual electricity prices (1990-

2020) 7 and monthly natural gas prices (1989-2021)8 are obtained at the state level from EIA. Data on 

environmental awareness, measured by the percentage of residents that believe global warming is 

happening (2020), is obtained from the Yale Program on Climate Change Communication9. Texas traffic 

flow data (2002-2021) is collected at the monitoring site level from the Texas Department of 

Transportation10. Texas Data on PM10 (1990-2021) at the monitoring site level is obtained from the 

United States Environmental Protection Agency (EPA)11. The number of business establishments at the 

zip-code level (1994-2020) is obtained from the U.S. Census Bureau12.  

Housing prices are converted into 2021 dollars adjusted for inflation. In Table 1, 21 states have houses 

located within 100 km of a CCUS site. Our sample contains more than 2.7 million houses in Illinois, but 

only 80 are from New Mexico. Mississippi has the lowest average property price, $58,497, while 

Colorado has the highest at $356,584 in our sample. Table 2 compares the building characteristics 

between treatment and control houses in this study. The first three columns contain summary statistics for 

the treatment and control houses from the full sample, a repeated sales sample, and a cross-sectional 

sample after matching. Our main model is based on repeated sales. Columns 4 and 5 present t-test results 

that compare building characteristics of three samples. Column 4 compares full and repeated samples, 

whereas column 5 compares repeated and cross-sectional samples. Houses in the treatment group are 

within the impact buffer of CCUS projects, whereas houses in the control group are outside the buffer 

(but still within 100 km13 of the nearest CCUS project). The term buffer refers to the distance beyond 

which CCUS projects do not affect the housing market in the surrounding area. Detailed information 

regarding buffer estimation is provided in the section on empirical strategy. When comparing the treated 

group with the control group, we find that the treated buildings are newer, smaller (in terms of building 

area), more expensive (in terms of land value), and have a smaller number of rooms and stories than the 

control houses on average. 

Table 1. The distribution of houses and descriptive statistics of housing prices. 

State No. of houses 
Average House Price 

($ in 2021) 
Std. Dev. of House Price 

AL 420,376 198,145 223,524 

CO 23,084 356,584 329,905 

 
6 Bureau of Economic Analysis, US Department of Commerce. Regional data: GDP and income. 

https://apps.bea.gov/iTable/index_regional.cfm.  
7 EIA. Detailed State Data. https://www.eia.gov/electricity/data/state/.  
8 EIA. Natural gas prices. https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PRS_DMcf_m.htm. 
9 Yale Program on Climate Change Communication. https://climatecommunication.yale.edu/visualizations-

data/#visualizations-data-search-filter.  
10 Texas Department of Transportation.  TxDOT AADT Annuals. https://gis-

txdot.opendata.arcgis.com/datasets/TXDOT::txdot-aadt-annuals/explore?location=30.920999%2C-

100.075333%2C6.51&showTable=true.  
11 United States Environmental Protection Agency. Annual Summary Data. Concentration by Monitor. 

https://aqs.epa.gov/aqsweb/airdata/download_files.html#Meta.   
12 County Business Patterns (CBP) Datasets, US census bureau. https://www.census.gov/programs-

surveys/cbp/data/datasets.html.  
13 Despite not expecting the impact of CCUS to reach a radius of 100 km, we choose 100 km to include enough 

properties for the control group. Choosing 100 km is a conservative choice. An additional robustness check is 

conducted later by changing the outer boundary of the control group from 30 km to 100 km. The robustness check 

illustrates that our main results are not sensitive to the outer boundary we chose.  

https://apps.bea.gov/iTable/index_regional.cfm
https://www.eia.gov/electricity/data/state/
https://climatecommunication.yale.edu/visualizations-data/#visualizations-data-search-filter
https://climatecommunication.yale.edu/visualizations-data/#visualizations-data-search-filter
file:///C:/Users/pengfeiliu_2022/Dropbox/Yueming/Yueming_CCUS_SLOAN/US%20CCUS/Texas
https://gis-txdot.opendata.arcgis.com/datasets/TXDOT::txdot-aadt-annuals/explore?location=30.920999%2C-100.075333%2C6.51&showTable=true
https://gis-txdot.opendata.arcgis.com/datasets/TXDOT::txdot-aadt-annuals/explore?location=30.920999%2C-100.075333%2C6.51&showTable=true
https://gis-txdot.opendata.arcgis.com/datasets/TXDOT::txdot-aadt-annuals/explore?location=30.920999%2C-100.075333%2C6.51&showTable=true
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Meta
https://www.census.gov/programs-surveys/cbp/data/datasets.html
https://www.census.gov/programs-surveys/cbp/data/datasets.html
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FL 117,048 175,954 196,515 

IL 2,737,221 328,969 326,238 

IN 3,410 63,917 118,072 

KS 114 79,054 68,623 

KY 290,692 210,290 230,498 

LA 180,069 210,353 227,851 

MI 26,911 121,606 135,754 

MO 337 63,307 53,754 

MS 237 58,497 82,858 

ND 8,118 216,338 142,602 

NM 80 139,393 83,983 

OH 73,369 116,220 160,650 

OK 46,082 168,760 180,389 

PA 133,960 173,206 190,389 

TN 85,455 182,634 188,200 

TX 43,546 102,593 143,354 

WI 456,812 246,580 311,859 

WV 51,883 164,150 168,350 

WY 205 166,108 81,304 

 

Table 2. Comparison of full sample, repeated sales sample, and cross-sectional matched sample 

concerning building characteristics between treatment and control houses. 

 

Full sample 
Repeated 

sales sample 

Cross-

sectional 

sample 

p-value (1) 

versus (2) 

p-value (2) 

versus (3) 

 
(1) (2) (3) (4) (5) 

No. of Treated Houses 156,680 85,434 22,555   

Year built 1971.86 1971.94 1976.92 0.5984 0.0000 

No of stories 1.36 1.38 1.41 0.0000 0.0000 

Total rooms 3.08 2.44 3.15 0.0000 0.0000 

Total bedrooms 2.85 2.92 3.16 0.0000 0.0000 

Building area (Sq Ft) 3859.89 3541.10 4229.05 0.0000 0.0000 

Land value ($) 27826.17 24609.66 19236.33 0.0000 0.0000 

No. of Control Houses 7,112,790 4,613,575 21,877   

Year built 1967.65 1966.82 1975.62 0.0000 0.0000 

No of stories 1.86 1.99 1.53 0.0000 0.0000 

Total rooms 4.92 5.10 3.2 0.0000 0.0000 

Total bedrooms 3.01 3.09 3.18 0.0000 0.0000 

Building area (Sq Ft) 4146.44 3757.89 4332.99 0.0000 0.0000 

Land value ($) 22595.74 20127.72 20279.66 0.0000 0.6615 

Notes: Control houses are located between 15 km and 100 km from CCUS projects, whereas treated houses are 

within 15 km based on buffer estimation later. 
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2.2 Empirical strategy 

As shown in Figure 1, basins are frequently chosen as the sites of CCUS project constructions, as are oil 

and gas fields, saline aquifer traps, and saline aquifers outside of traps and onshore sites (Gough and 

Shackley, 2006). Therefore, self-selection based on location is one of the concerns of this study. 

Furthermore, there may be concurrent changes occurring alongside the construction of the CCUS, such as 

the construction of shopping malls and the development of other local infrastructures. To control for 

potential endogeneity and contemporaneous changes, first, we use a repeated sales data sample with 

individual fixed effects, in addition to a series of time fixed effects (month-of-sample, and county-by-year 

fixed effects) to capture the time-invariant factors at the level of individual houses and the time-varying 

factors at the county level. To avoid the impact of remodeling on housing prices, houses that were 

remodeled after 2000 are excluded from the analysis. Second, we estimate a buffer based on building 

features and the distance from the building to the CCUS to identify which buildings are located within 

close proximity to the CCUS (e.g., Muehlenbachs et al., 2015), which avoids arbitrarily defining the 

treatment distance as inappropriate buffer selection could introduce bias into the study. Third, we employ 

an event study analysis in a difference-in-differences framework to demonstrate that price trends are 

comparable before the treatment and argue that the estimated positive effects are unlikely to be caused by 

unobserved, differential trends between control and treatment groups. Fourth, we utilize a matching 

approach to construct a more balanced control group based on a rich set of observables. Houses assigned 

to the control group are sold during the same transaction year and belong to the same county as those 

assigned to the treatment group. Fifth, since being located within a basin might affect property values, we 

employ a DDD approach to distinguish between CCUS and basin effects on housing prices. We compare 

property values near CCUS projects to those farther away, properties in basins with CCUS to those 

without CCUS, and properties sold before and after CCUS operation. Lastly, we consider other 

contemporaneous changes, such as traffic flow and air pollution, to investigate the mechanisms by which 

CCUS impacts are capitalized into nearby property values. The following sections provide a detailed 

description of our empirical strategies.  

2.2.1  Buffer 

To define the “buffer” of adjacent properties, we follow the method employed by Muehlenbachs et al. 

(2015), which compared the prices of properties sold before and after CCUS projects were operational to 

determine the distance beyond which CCUS facilities no longer have an impact on property values.  

First, we select a subset of properties that have been sold more than once and have at least one transaction 

made after the operation of one CCUS facility within 100 km.14 Second, we estimate the residuals of a 

regression that controls for county-by-year fixed effects, month-of-sample fixed effects, business 

establishments by zip-code level, and property-level building characteristics (including building age, 

number of stories, number of bedrooms, number of rooms, building area (in square footage), garage area 

(in square footage), and land assessed value. The CCUS fixed effects and the property fixed effects are 

collinear, so we drop the CCUS fixed effects. Third, we estimate two price functions based on the 

distance to the nearest CCUS site: one for properties sold before the CCUS operation, and one for 

 
14 We choose to only look at houses that have one CCUS facility within 100 km, as it would be difficult to separate 

the impact of the nearest CCUS facility before and after the facility is operational if the house was already being 

impacted by another CCUS project nearby. We choose 100 km to include enough properties for constructing the 

control group even though we do not expect the impact of CCUS to reach a 100-km radius. The 100-km is a 

conservative choice. We also carry out an additional robustness check later, where we change the outer boundary of 

the control group from 30 km to 100 km. We find that our main results are not sensitive to the outer boundary we 

selected.   
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properties sold after. We estimate price functions by using local polynomial regressions with the residuals 

in the last step as the dependent variables.  

2.2.2  DID estimation 

We estimate the overall net effect of the CCUS operation by using the difference-in-differences (DID) 

methodology. Only properties that have been sold at least twice during the sample period are included in 

our main estimation. We also exclude houses from our sample that were remodeled after the year 2000 

(about 1.4% of the total sample) to eliminate any influence of remodeling on the estimation of a price 

premium. By using a DID model based on repeated sales, we compare the prices of the same houses 

rather than comparing houses with different characteristics. The repeated sale sample and full sample 

share many of the same characteristics, including building age, number of stories, number of rooms, 

number of bedrooms, and garage area (see column 4 in Table 2). The percentage differences15 between 

the two sample groups on housing price, building age, number of stories, number of rooms, number of 

bedrooms, building area, land value, and garage area are 4.01%, 0.95%, 5.74%, 4.65%, 2.63%, 7.18%, 

10.78%, and 5.82%, respectively. We also conduct a two-sample t-test which shows the differences 

between the full sample and repeated sample are statistically significant, potentially due to a large sample 

size. As a result, it is important to use the DID approach to eliminate such differences in the levels of 

building attributes. The DID model is specified as follows: 

𝑙𝑛𝑌𝑖𝑐𝑡 = 𝛼𝐷𝑖𝑡 + 𝛽𝐵𝐴𝑖𝑡 + 𝜌𝐵𝐸𝑧𝑦 + 𝛾𝑖 + 𝜎𝑐 × 𝜗𝑦 + 𝜇𝑚 + 𝜀𝑖𝑐𝑡                          (1) 

where 𝑙𝑛𝑌𝑖𝑐𝑡 is the natural logarithm of the sales price of house i at day t in county c. Housing prices are 

converted into 2021 dollars adjusted for inflation rates. 𝐷𝑖𝑡 takes a value of one only if house i is in the 

treatment group (located within the buffer zone) and the post-treatment period. The post-treatment period 

is determined by the operational year of the nearest CCUS project. For operations-in-suspension projects, 

the post-treatment period includes the period following suspension. Despite the suspension of the CCUS 

facility, we assume that its existence continues to influence nearby housing prices.  𝛾𝑖 controls individual 

fixed effects. 𝜎𝑐 × 𝜗𝑦 represents county-by-year fixed effects, and 𝜇𝑚 represents month-of-sample fixed 

effects. In our sample, one house is assigned to only one CCUS project, the one that is closest to it. This 

leads to a collinearity between property fixed effects and CCUS fixed effects. The CCUS fixed effects are 

therefore eliminated. 𝐵𝐴𝑖𝑡 is the building age of house i at day t. 𝐵𝐸𝑧𝑦 is the business establishments of 

zip code z at year y. 𝜀𝑖𝑐𝑡 is an idiosyncratic error term. We cluster our standard errors at the individual 

house in our main model, allowing for correlations between observations within the same house. The 

standard errors are also clustered by county in another model specifications, and the results are presented 

in Table A3. We use 14 distance bins, ranging from 2 km to 15 km, with a 1 km increment, to determine 

how the effects differ as we change the size of the adjacency buffer. There is a limited number of houses 

within 1 km of CCUS projects (86, which accounts for only 0.002% of our sample). We also use the same 

method to determine whether retrofitting the facilities and specific functions of the project have different 

effects on housing prices. 

2.2.3  Cross-sectional analysis with propensity score matching (PSM) 

A DID approach relies upon intertemporal price variation. A shift in the hedonic gradient over time, 

however, can bias the estimations (Kuminoff and Pope, 2014). Muehlenbachs et al. (2015) propose an 

alternative approach for addressing this problem based on cross-sectional data and nearest-neighbor 

matching where the treatment and control groups have identical characteristics except for the treatment 

variable to minimize selection bias. Based on the conditional independence assumption (Angrist and 

 
15 The percentage difference is calculated by dividing the absolute difference between two numbers by their average 

and then multiplying by 100%. 
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Pischke, 2008), nearest-neighbor matching controls the selection bias of the method based on the 

observed features or covariates. Despite this, the matching covariates in our dataset may not contain all 

the important house features. Thus, the cross-sectional estimation with matching is served as a robustness 

check while the DID specification is still preferred as the DID better controls time-invariant, unobserved 

variables.   

We first perform an exact match in the time dimension (transaction year) to account for unobservable 

time-variant factors, and in the geographic dimension (county) to account for unobservable neighborhood 

factors. A propensity score match (PSM) is then applied to identify one nearest neighbor in the control 

group for each treated house according to time-invariant features of the building (Qiu, Wang, and Wang, 

2017). Key house characteristics such as building age, the number of bedrooms, building area, and land 

value are used as covariates for matching. We then use the matched sample to conduct an ordinary least 

squares (OLS) model by regressing the log of house sales prices on a treatment dummy variable, house 

characteristics, and business establishments to control for local economic activities. Post-treatment 

dummies are coded as one for houses treated after CCUS operation, otherwise as zero16. A set of fixed 

effects are also included, such as county-by-year, month-of-sample, and CCUS fixed effects.   

2.2.4  Triple difference (DDD) estimation 

In Figure 1, most CCUS projects are located within oil basins, thus making it difficult to distinguish 

between CCUS impact and basin impact on nearby housing prices. For CCUS projects added to existing 

oil basins, the DDD approach is applied in order to further control for differences in trends as well as any 

contemporaneous changes between the control and treatment groups. DDD enables us to compare the 

values of properties near CCUS projects (i.e., within treatment buffer zones) to those further away, 

properties in oil basins with CCUS to those in oil basins without CCUS, and properties sold before CCUS 

operations to those sold after CCUS operations. The DDD approach primarily uses data from Illinois, 

Kentucky, and Wisconsin since these states have enough data to perform this analysis. The DDD is 

specified as  

𝑙𝑛𝑌𝑖𝑐𝑡 = 𝛽1𝐶𝐶𝑈𝑆 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 + 𝛽2𝐵𝑎𝑠𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 + 𝛽3𝑃𝑜𝑠𝑡𝑖𝑦 + 𝛽4𝐶𝐶𝑈𝑆 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 ∗ 𝐵𝑎𝑠𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 +

𝛽5𝐶𝐶𝑈𝑆 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 ∗ 𝑃𝑜𝑠𝑡𝑖𝑦 + 𝛽6𝐵𝑎𝑠𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 ∗ 𝑃𝑜𝑠𝑡𝑖𝑦 + 𝛽7𝐶𝐶𝑈𝑆 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 ∗ 𝐵𝑎𝑠𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 ∗ 𝑃𝑜𝑠𝑡𝑖𝑦 +

𝛼𝐵𝐴𝑖𝑡 + 𝜌𝐵𝐸𝑧𝑦 + 𝛾𝑖 + 𝜎𝑐 × 𝜗𝑦 + 𝜇𝑚 + 𝜀𝑖𝑐𝑡                            (2) 

where 𝑙𝑛𝑌𝑖𝑐𝑡 is the natural logarithm of the sales price of house i at day t in county c. Housing prices are 

converted into 2021 dollars adjusted for inflation rates. 𝐶𝐶𝑈𝑆 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 takes a value of one only if house i 

is in the treatment group (located within the buffer zone) of CCUS projects, and zero if house i is outside 

the buffer zone but still within 100 km of the nearest CCUS project. 𝐵𝑎𝑠𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑖𝑡 equals one if house i 

is located inside an oil basin, and zero if house i is located outside an oil basin but within 50 km of its 

edge. 𝑃𝑜𝑠𝑡𝑖𝑦 takes the values of one if the transaction year y of house i is after the operational year of the 

closest CCUS project, and zero otherwise. The DDD coefficient 𝛽7 estimates the difference between two 

DIDs, i.e., how the presence of CCUS projects changed the treatment effect on nearby housing prices. 𝛾𝑖 

controls individual fixed effects. 𝜎𝑐 × 𝜗𝑦 represents county-by-year fixed effects, and 𝜇𝑚 represents 

month-of-sample fixed effects. As CCUS fixed effects and property fixed effects are collinear, CCUS 

fixed effects are dropped. 𝐵𝐴𝑖𝑡 is the building age of house I at day t. 𝐵𝐸𝑧𝑦 is the business establishments 

 
16 As part of our sample, we consider CCUS projects that are completed, currently in operation, or currently in 

suspension in the United States. Post-treatment periods are based on the operational year of each CCUS project, 

regardless of whether the project has been suspended, as we anticipate that the presence of suspended CCUS 

facilities will still have an impact on nearby property values. 
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of zip code z at year y. 𝜀𝑖𝑐𝑡 is an idiosyncratic error term. We cluster our standard errors at the individual 

house. 

2.2.5  Heterogeneity analyses 

To examine the heterogeneity of the price premium, a flexible semiparametric approach using the 

partially linear varying coefficient fixed effects panel data is employed. The model is specified as follows: 

𝑙𝑛𝑌𝑖𝑦 = 𝐷𝑖𝑦 × 𝑔(𝑈𝑖𝑦) + 𝑿′𝒊𝒚𝜽 + 𝜌𝑗 + 𝜗𝑦 + 𝜀𝑖𝑦                                       (3) 

where 𝑙𝑛𝑌𝑖𝑦 is the natural logarithm of the sales price at the zip-code zone i in year y. Housing prices are 

converted into 2021 dollars adjusted for inflation rates. We collapse the data at the zip code zone × year 

level so that we have observations each year to support such analysis. 𝐷𝑖𝑦 is the treatment variable with a 

functional coefficient 𝑔(𝑈𝑖𝑦) and 𝑈𝑖𝑦 is a continuous variable to be examined for heterogeneity, including 

environmental awareness at the county level, business establishments at the zip code level, and industry 

of the CCUS projects. 𝑿′𝒊𝒚 is a vector of covariates such as federal fund rates, demographic features by 

county level, and the price of electricity and natural gas by state level. 𝜌𝑗 controls CCUS fixed effects. 𝜗𝑦 

represents year-fixed effects. 𝜀𝑖𝑦 is an idiosyncratic error term.  

2.2.6  Mechanism analysis 

We also examine the mechanisms underlying price reductions after CCUS operation using Texas data, 

since Texas has five CCUS sites, making it the state with the largest number of CCUS projects in our 

dataset. Specifically, we examine whether there are changes in air pollution and traffic flows following 

the CCUS operation. The following model is applied: 

𝑙𝑛𝑇𝑖𝑦 =  𝛽𝐷𝑖𝑦 + 𝑿′𝒊𝒚𝜽 + 𝛾𝑖 + 𝜎𝑐 × 𝜗𝑦 + 𝜀𝑖𝑦                                          (4) 

where 𝑇𝑖𝑦 is the traffic volume (average annual daily traffic, AADT) or air pollution (PM10 

concentration) at the monitoring station level for the house i in year y. 𝐷𝑖𝑦 equals 1 only if house i is in 

the treatment group (located within the buffer zone) and the post-treatment period, and 0 otherwise. 𝑿′𝒊𝒚 

controls for covariates such as business establishments, personal income per capita, and population 

density. 𝛾𝑖 controls individual fixed effects. 𝜎𝑐 × 𝜗𝑦 represents county-by-year fixed effects. We 

eliminate CCUS fixed effects due to their collinearity with property fixed effects. 

2.2.7  Event study analysis 

An event study analysis for DID is conducted to verify the plausibility of the parallel trend assumption 

between houses with and without nearby CCUS projects. When two groups of houses exhibit a parallel 

trend, there does not appear to be a systematic difference as the difference between the two groups 

remains constant over time, thus supporting the validity of our DID analysis. Our strategy is similar to 

Dobkin et al. (2018) in which we limit the sample of observations to five waves prior to the CCUS 

operation and five waves after it and exclude the period right before the CCUS operation (where m = 1). 

But it should be noted that the coefficient for a given lead or lag may be contaminated by other period 

effects. To adjust bias, we employ an alternative estimator free of contamination following Sun and 

Abraham (2021).17 Below is the specification of the event study model:   

𝑙𝑛𝑌𝑖𝑦 = 𝛼𝐵𝐸𝑖𝑦 + 𝑿′𝒊𝒚𝜷 + ∑ 𝜌𝑚(𝐿𝑎𝑔 𝑚)𝑖𝑡
𝑀
𝑚=2 + ∑ 𝛿𝑛(𝐿𝑒𝑎𝑑 𝑛)𝑖𝑡

𝑁
𝑛=1 + 𝛾𝑖 + 𝜎𝑐 × 𝜗𝑦 + 𝜀𝑖𝑦   (5) 

 
17 It is a Stata command called eventstudyinteract, and its source code can be found at 

https://github.com/lsun20/EventStudyInteract. 
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where 𝑙𝑛𝑌𝑖𝑦 is the natural logarithm of the sales price of zip-code zone i at year y. Housing prices are 

converted into 2021 dollars adjusted for inflation rates. M and N represent lags and leads, indicating the 

number of years away from the operation of CCUS projects. The baseline omitted case is the first lag 

where m = 1. Data is collapsed at the zip-code zone × yearly level to ensure we have observations during 

each year for analysis (which is not possible with individual houses). Considering the wide buffer in our 

analysis, we use the average distance between houses in a zip-code zone and the nearest CCUS project in 

determining whether to assign the zip-code zone to treatment. The zip code zones near CCUS projects 

(average distance less than 15 km) are coded as treated and others are coded as control. 𝛾𝑖 controls zip-

code fixed effects. 𝜎𝑐 × 𝜗𝑦 represents county-by-year fixed effects. We assign only the nearest CCUS 

project to each zip code in the area based on the average distance between houses within the zip code and 

the CCUS project. Thus, the zip-code fixed effects and the CCUS fixed effects are collinear, and the 

CCUS fixed effects are therefore removed from the analysis. 𝐵𝐸𝑖𝑦 is the business establishments of zip 

code i at year y. 𝑿′𝒊𝒚 consists of a series of covariates, including building characteristics, demographic 

features, and control variables such as federal fund rates, electricity prices, gas prices, PM 2.5 

concentration, and environmental awareness about whether global warming is happening. 𝜀𝑖𝑦 is an 

idiosyncratic error term. We cluster our standard errors at the zip-code level. 

In addition, we also conduct an event study analysis for DDD. The sample of observations is limited to 

the eight waves prior to and eight waves following the CCUS operation, excluding the period right before 

the operation (m = 1). Following is the specification of the event study model for the DDD approach: 

𝑙𝑛𝑌𝑖𝑐𝑡 = 𝛼𝐵𝐸𝑧𝑦 + 𝑿′𝒊𝒕𝜷 + ∑ 𝜌𝑚(𝐿𝑎𝑔 𝑚)𝑖𝑡
𝑀
𝑚=2 + ∑ 𝛿𝑛(𝐿𝑒𝑎𝑑 𝑛)𝑖𝑡

𝑁
𝑛=1 + 𝛾𝑖 + 𝜎𝑐 × 𝜗𝑦 + 𝜇𝑚 + 𝜀𝑖𝑐𝑡   (6) 

where 𝑙𝑛𝑌𝑖𝑐𝑡 is the natural logarithm of the sales price of house i at day t in county c. Housing prices are 

converted into 2021 dollars adjusted for inflation rates. M and N represent lags and leads, indicating the 

number of years away from the operation of CCUS projects. The baseline omitted case is the first lag 

where m = 1. Houses located in the buffer zone (within 15 km) from a CCUS project are coded as treated 

and others are coded as control. 𝛾𝑖 controls individual fixed effects. 𝜎𝑐 × 𝜗𝑦 represents county-by-year 

fixed effects, 𝜇𝑚 represents month-of-sample fixed effects. We exclude CCUS fixed effects from our 

analysis due to their collinearity with property fixed effects. 𝐵𝐸𝑧𝑦 is the business establishments of zip 

code z at year y. 𝑿′𝒊𝒚 includes a series of covariates, such as building age, real income per capita, and 

population density. 𝜀𝑖𝑐𝑡 is an idiosyncratic error term. We cluster our standard errors at the individual 

house level.  

2.2.8  DID robustness check: changing the outer boundary of the control group 

For robustness checks, we change the outer boundary of the control group by a 10-km distance bin. The 

outer boundary of the control group, i.e., 100 km, was selected to include enough properties to construct 

the control group. Our goal is to determine if outcomes are sensitive to the outer boundary we selected in 

the main model. To accomplish this, we decrease the outer boundary of the control group in a range of 30 

km to 90 km. The robustness checks are carried out using the same DID approach as our main model. 

3 Results 

We first calculate a buffer to determine the ranges of treatment groups near the CCUS projects. Next, we 

compute the impact of the CCUS operation using ZTRAX data across the United States by applying the 

DID method. Our robustness test is conducted using cross-sectional data coupled with the nearest 

neighbor matching. Furthermore, we use a DDD approach to separate the net impacts of CCUS from 

those of oil basins. We then analyze the heterogeneous treatment effects of CCUS projects in relation to 

environmental awareness, local economic activity, and industry of CCUS projects. The mechanism by 
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which CCUS operation affects nearby housing prices is also investigated. Our event study evidence 

indicates that our treatment and control groups had comparable trends before the treatment. 

3.1 Defining the Buffer 

The results of the local polynomial regression are shown in Figure 2. On the vertical axis are the 

residuals of the log housing price. Residual is defined as the difference between the predicted value and 

the actual value (Residual = actual Y v     −      c    Y value). The predicted value is calculated using a 

local polynomial regression model based on the building characteristics. Figure 2 illustrates that both 

price residuals for properties located more than 15 km from CCUS facilities remain close to zero before 

and after the facility is operational. The results show that building characteristics can be used to estimate 

housing prices with reasonable accuracy for houses located outside a 15-km radius of a CCUS project. 

Within 15 km of a CCUS project, however, both residuals of the sales price before and after CCUS 

operation are significantly different from zero. It suggests that there is a significant factor contributing to 

the failure of the prediction, namely the operation of CCUS projects within 15 km. Adjacency impacts are 

present within 15 km of a CCUS site, thereby supporting our decision to establish a 15 km buffer.  

In addition, when we focus on houses within 15 km of a CCUS project, price residuals before and after 

CCUS operations show different patterns. Before CCUS operations, the price residual is negative, which 

indicates that the actual property value is lower than it should be based on house features. After CCUS 

operations, the housing price residual changes depending on distance. The residual is initially positive, 

meaning that the actual housing price is higher than anticipated. It indicates that property values in the 

vicinity of CCUS projects seem to be positively impacted. Eventually, the price residual becomes 

negative, indicating that CCUS projects have a negative impact. Thus, CCUS facilities do not have a 

monotonic impact on houses within the buffer zone after CCUS operations. As distance increases, the 

impact shifts from a positive to a negative one. It is possible that properties located near CCUS projects 

may experience both environmental risks and economic benefits. When the distance is further reduced, 

the environmental costs may be overshadowed by the economic benefits, suggested by evidence 

indicating that CCUS developments increase employment (Chen & Jiang, 2022). In this regard, the price 

of houses adjacent to a CCUS site may increase after it is operational.  

It is also noticeable that the residual after CCUS operations is higher than that before operation within a 

distance of 15 km, however, we cannot reach to the conclusion that nearby property values after 

operations are higher than those before operations. These two price residuals are calculated based on 

different predicted models using two sets of data, one is before CCUS operations, the other is after CCUS 

operations. Thus, they cannot be compared directly.  

As part of our main model, we will assess the CCUS impacts on treated versus control houses using 15 

km as a buffer. As an additional exploration of the changes in the impact of CCUS projects after 
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operations, we also examine the change of post-treatment effects in a 1 km increment within the 15 km 

buffer zone. 

 

Figure 2. Price Gradient of Distance from CCUS facilities. Notes: the buffer is 15 km. 

Buffer sizes may vary based on project type and facility condition. A carbon capture project can benefit 

the environment by reducing greenhouse gas emissions. However, a carbon storage project may lead to 

leaks in the earth and result in the alteration of geological formations. These projects may have different 

effects on the housing market in the near vicinity. Moreover, a new construction project is expected to 

have a greater impact on property values than a retrofitted project, since new construction is built from 

scratch and is more noticeable, whereas a retrofitted project has already been in place for a considerable 

amount of time. Figure 3 illustrates the buffers for carbon capture, carbon storage, retrofits, and new 

construction. Their impact zones are 15 km, 16 km, 15 km, and 13 km, respectively, which are consistent 

with the average buffer estimate in Figure 2.  
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Figure 3. Buffers of different CCUS projects based on project type and facility condition. 

 

3.2 The impact of CCUS projects on home prices 

Using the DID model specified in equation (1), we estimate the impact of CCUS projects on the property 

values of nearby neighborhoods. Figure 4 illustrates the DID design based on buffer estimation. Only 

houses located within 100 km of CCUS projects are included in our sample, among which houses within 

15 km are assigned to the treatment group, and houses between 15 km and 100 km to the control group. 

Figure 5 illustrates our baseline estimation results using a 1 km increment within the buffer, and Table 3 

provides the details of our results. As shown in Figure 5, CCUS projects have no significant effect on 

houses within very close proximity (less than 5 km), possibly due to limited observations (see Table 3). 

As the distance extends to about 5 km, we first observe significant positive adjacency impacts (3.6% 

increase in property values). A CCUS operation could have beneficial economic consequences, such as 

the possibility of reusing CO2 for use in the food industry or other industrial applications. Such increased 

industrial activity and output will increase the employment rate and economic activity in the local area, 

resulting in positive effects on property values. The positive effect observed at a 5-km buffer implies that 

the economic benefits of CCUS projects outweigh the environmental risks for houses located within this 

buffer zone. There is an insignificant impact at 6 km and 7 km distances as negative impacts begin to 

emerge and offset the benefits of CCUS operation. From 8 km to 15 km, CCUS facilities have a 

statistically significant negative impact possibly because projects further away contribute less to 

economic benefits. The negative impact is over 10%. Housing prices are negatively impacted by 
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proximity to CCUS projects within a 15-km radius. According to the results, operating a CCUS facility 

within 15 km may cause local homes to lose 10.2% of their values on average.     

 

Figure 4. DID design: the treatment and control houses for CCUS projects, along with boundaries of 

oil/gas fields and basins. 
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Figure 5. DID results using every 1 km as buffer. 
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Table 3. The impact of CCUS projects on nearby houses’ prices by vicinity. 

  Outcome: Natural log of home prices (2021$) 

Buffer 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Coef. of D 

(ATT) 
-0.046 -0.061 0.031 0.036 0.022 -0.017 -0.078 -0.080 -0.109 -0.115 -0.129 -0.137 -0.122 -0.102 

p-value 0.424 0.133 0.284 0.086 0.221 0.308 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Robust Std Err 0.058 0.041 0.029 0.021 0.018 0.017 0.015 0.013 0.013 0.011 0.010 0.010 0.009 0.008 

90% CI -0.142 -0.128 -0.017 0.002 -0.008 -0.044 -0.102 -0.102 -0.131 -0.133 -0.146 -0.153 -0.137 -0.115 

90% CI 0.049 0.006 0.079 0.071 0.052 0.010 -0.053 -0.058 -0.088 -0.096 -0.112 -0.121 -0.107 -0.088 

R-sq  0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 

Treated houses 920 2,596 5,455 10,104 15,280 21,884 29,949 39,428 48,341 55,970 63,406 69,542 74,937 85,434 

Building age 

control 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Business 
establishments 

control 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Month-of-

sample FE 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

County-by-

year FE 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3,585,195 

Groups/Houses 1,438,093 

 

Notes: Standard errors are clustered at the individual household level. The outcome is the natural log of home prices that are adjusted to 2021$ for inflation. 

During the post-treatment period, the treated buildings were traded with a nearby CCUS project. Transactions with the treatment (having CCUS projects within 

100 km) happened from 1990 to 2021.
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The CCUS impacts by project type and facility condition are depicted in Figure 6 and detailed estimation 

results are presented in Table 4. All models use 15 km as the buffer. As shown in Table 4, column (1) 

identifies the estimated overall impact of CCUS projects. Overall, CCUS projects reduce nearby house 

prices by 10.18%, and the result is statistically significant at a 1% level. Column (2) studies only carbon 

capture projects from the sample where the results demonstrate that carbon capture projects decrease 

nearby housing prices by 9.88% on average. When only carbon storage projects are examined in Column 

(3), the results indicate that property values fall by 6.42% with proximity to carbon storage projects. In 

columns (4) and (5), we examine the impact of retrofit and newly constructed CCUS projects, 

respectively. Our findings indicate that retrofit CCUS projects do not significantly affect housing prices, 

while newly built projects reduce home prices by approximately 10.68%. The retrofitted facilities have 

already existed for a considerable period of time, as opposed to newly constructed facilities for which 

nearby residents have witnessed the construction process. Consequently, retrofitted CCUS projects are 

less likely to attract special attention when individuals buying or selling a home in the area. Furthermore, 

columns (6) and (7) segment new built projects into new carbon capture projects and new carbon storage 

projects. While both projects have significantly negative effects on property values, new capture projects 

appear to have a slightly smaller impact than new storage projects. A new capture project reduces nearby 

housing values by 10.37%, while a new storage project reduces nearby housing values by 13.13%. 

Similar to our main model, the standard errors are clustered by individual houses. Table A3 presents the 

results of when we cluster the standard errors at the county level. Overall, all the coefficients remained 

unchanged as expected, while the p-values are higher, making the coefficient of the carbon storage project 

insignificant when standard errors are clustered at the county level. 
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Figure 6. DID results based on project type and facility conditions. 

Table 4. The impact of CCUS projects by project type and facility condition on nearby houses’ prices. 

 Outcome: Natural log of home prices (2021$) 

Model 1 2 3 4 5 6 7 

Project type All CCUS Carbon 

Capture 

Carbon 

Storage 

Retrofit 

CCUS 

New 

CCUS 

New 

capture 

New 

storage 

Coef. of D (ATT) -0.1018 -0.0988 -0.0643 0.0420 -0.1067 -0.1037 -0.1313 

p-value <0.001 <0.001 0.089 0.390 <0.001 <0.001 0.010 

Robust Std Err 0.0082 0.0082 0.0378 0.0489 0.0083 0.0083 0.0508 

90% CI -0.1153 -0.1123 -0.1264 -0.0384 -0.1204 -0.1174 -0.2149 

90% CI -0.0883 -0.0852 -0.0021 0.1224 -0.0931 -0.0900 -0.0478 

R-sq  0.163 0.175 0.059 0.058 0.170 0.183 0.063 

Observations 3,585,195 3,318,293 459,843 168,244 3,416,951 3,154,147 312,633 

Groups/Houses 1,438,093 1,326,630 198,625 76,221 1,361,874 1,252,324 132,179 

Treated houses 85,434 77,495 23,935 4,199 81,235 74,039 21,407 

Building age control Yes Yes Yes Yes Yes Yes Yes 

Business 

establishments control 
Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes 

Month-of-sample FE Yes Yes Yes Yes Yes Yes Yes 

County-by-year FE Yes Yes Yes Yes Yes Yes Yes 

Notes: Standard errors are clustered at the individual household level. The outcome is the natural log of home prices 

that are adjusted to 2021$ for inflation. During the post-treatment period, the treated buildings were traded with a 
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CCUS project nearby. Transactions with the treatment (having CCUS projects within 100 km) happened from 1990 

to 2021. 

 

3.3 Cross-sectional results with propensity score matching 

Using the propensity score matching approach, we construct an alternative control group. We find a 

control house that is comparable to the treated house on building covariates, was sold in the same 

transaction year, and located in the same county as the treated house. Figure 7 compares the kernel 

density of the propensity score before and after matching for each state. The propensity scores of 

treatment households become closer to those of control groups after matching, suggesting that the houses 

assigned to the control group are more comparable to the treated houses. The OLS regression includes 

only the matched sample. Table 5 provides a detailed description of the coefficients. A treatment 

variable’s coefficient represents the estimated ATT. ATT estimates based on cross-sectional data with 

matching are consistent with DID results. The impact of CCUS on housing prices is still statistically 

significant, though the magnitude is smaller compared to the DID estimates. All CCUS projects combined 

reduce nearby housing prices by 8.52% on average. A decline in nearby property value is associated with 

carbon capture projects, newly constructed projects, and new carbon capture projects, respectively, by 

8.32%, 8.40%, and 8.19%. The impact of retrofitting CCUS operations remains insignificant. The impact 

of carbon storage, however, becomes insignificant when analyzing cross-sectional data with matching. 

PSM matches the treated and control houses based on building characteristics such as square footage, 

building age, total bedrooms, and land value. Unfortunately, we do not have access to this information for 

some houses. Moreover, some treated houses cannot be paired with control houses and do not meet the 

criteria for matching. Column 5 in Table 2 compares the summary statistics for the cross-sectional 

matched sample and the repeated sales sample. A t-test reveals a statistically significant difference 

between the two samples, perhaps due to the large sample size. Supplementary Figure A1 illustrates the 

graph of common support.   
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Figure 7. Kernel Density Estimation plots of propensity score before and after matching: treatment group 

vs. control group. Notes: for each pair of the comparison plots, the right one is kernel density of 

propensity score before matching whereas the left one is after matching. Following is the number of 

treatment households in each state after PSM: Illinois: 15,944; Kentucky: 1,448; Ohio: 73; Oklahoma: 12; 

Texas: 1,347; Wisconsin: 3,632; West Virginia: 92; Wyoming: 7. 

Table 5. The impact of CCUS projects on nearby houses’ prices using matched samples. 

 Outcome: Natural log of home prices (2021$) 

Model 1 2 3 4 5 6 7 

Project feature All CCUS  Carbon 

Capture 

Carbon 

Storage 

Retrofit 

CCUS 

New 

CCUS 

New 

Capture 

New 

Storage 

Coef. of D (ATT) -0.0852 -0.0832 -0.0481 -0.0000 -0.0840 -0.0819 0.1277 

p-value <0.001 <0.001 0.815 1.000 <0.001 <0.001 0.892 

Robust Std Err 0.0090 0.0089 0.2058 0.1890 0.0089 0.0088 0.9289 

90% CI -0.1000 -0.0979 -0.3888 -0.3115 -0.0986 -0.0964 -1.4642 

90% CI -0.0704 -0.0684 0.2925 0.3115 -0.0694 -0.0675 1.7197 

R-sq  0.5150 0.5108 0.6771 0.4779 0.5170 0.5126 0.7999 

Observations 42,856 42,727 338 722 42,134 42,005 129 

Treated houses 22,555 22,496 165 106 22,449 22,390 59 

Business 

establishments control  
Yes Yes Yes Yes Yes Yes Yes 

House features 

control 
Yes Yes Yes Yes Yes Yes Yes 

County-by-year FE Yes Yes Yes Yes Yes Yes Yes 
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CCUS FE Yes Yes Yes Yes Yes Yes Yes 

Month-of-sample FE Yes Yes Yes Yes Yes Yes Yes 

3.4 Triple difference (DDD) 

We further compare treatment houses and control houses in a basin before and after CCUS operations, as 

well as treatment houses (located within basins) and control houses outside the same basin without CCUS 

projects. The differences between the two DIDs are then compared. Since being placed in a basin can also 

affect housing prices, a DDD approach can be used to estimate the net effect of CCUS on property values. 

The DDD design is shown in Figure 8. A CCUS treatment group within a basin consists of homes located 

within 15 km of a CCUS project, whereas a CCUS control group within the same basin comprises homes 

positioned between 15 km and 100 km from a CCUS project. Houses located inside a basin are included 

in the basin treatment group, while houses outside a basin but within 50 km of the edge of any basin are 

included in the basin control group. For estimation, we use data from Illinois, Kentucky, and Wisconsin 

housing transactions and CCUS site data, since these states have a sufficient number of treatment and 

control projects for both basin and CCUS projects. Table 6 shows that CCUS operation has a net effect of 

-17.84% on nearby housing prices compared to houses situated in basins without CCUS projects. 

Consequently, a house located within close proximity to a CCUS project in a basin is likely to lose 

17.84% of its value compared to a house in the same basin without a CCUS project nearby. Moreover, we 

conducted a robustness check by changing the boundary of the basin control group from 10 km to 100 km 

by a 10-km distance bin, and DDD results remain the same (see Supplementary Table A4). We find that 

the DDD results are not sensitive to the 50-km boundary of the basin control group. 

 

Figure 8. DDD design: the treated and control houses for CCUS projects and basins in Illinois, Kentucky, 

and Wisconsin.  

Table 6. DDD results. 

 Outcome: Natural log of home prices (2021$) 

Coef. of DDD -0.1784 

p-value 0.000 

Robust Std Err 0.0323 

                                                           

                               

                                                 

     c                                                       

                                     

      c                                                     
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90% CI -0.2315 

90% CI -0.1253 

R-sq 0.259 

Observations 2,646,882 

Building age control Yes 

Business establishments control Yes 

Individual FE Yes 

Month-of-sample FE Yes 

County-by-year FE Yes 

 

3.5 Heterogeneity  

Negative housing premiums resulted from CCUS projects may vary with the socioeconomic 

characteristics and industries. We explore potential heterogeneity effects by examining the relationship 

between the impacts of the CCUS facility and other factors, including environmental awareness by 

county, business establishments by zip code, and the industry by CCUS project. Following Shen et al. 

(2021), we use a flexible semiparametric approach for fixed effect panel data, which allows for linearity 

in some variables and non-linearity in others when estimating non-linear heterogeneity. 

As shown in Figure 9, those with lower environmental awareness are less likely to pay attention to CCUS 

operations when purchasing or selling a home. People of higher awareness are also not concerned with 

the operation of CCUS. It is possible that these individuals are also wealthy, and as a result, they purchase 

homes in expensive and convenient locations. CCUS projects are often located in locations such as oil 

and gas fields, which are not wealthy individuals’ first choices for housing. The average level, on the 

other hand, reacts strongly to CCUS locations, suggesting they are only interested in purchasing a house 

near the CCUS projects if the housing prices are substantially reduced. The number of business 

establishments, such as shopping malls, measures the activities of the local economy. In areas with fewer 

business establishments, people are reluctant to live close to CCUS facilities unless the housing price is 

lowered. Therefore, CCUS projects are negative signals for potential buyers in the housing market. It is 

likely that houses would become less competitive in the market if they did not provide the conveniences 

that people require on a daily basis. In contrast, when the number of business establishments reaches a 

certain level, people are willing to pay a higher price to live near CCUS facilities. This reflects that 

potential buyers place the greatest importance on convenience in their daily lives. The side effects of 

having a CCUS project in the vicinity can be mitigated by this measure. Additionally, CCUS projects 

provide potential benefits to the surrounding community. CCUS facilities can reuse CO2 in the food 

industry and for other industrial purposes. An increase in industrial output and activities can potentially 

increase the local employment rate, as indicated by other energy projects (Moreno & Lopez, 2008; 

Slattery et al., 2011). The heterogeneity of the CCUS industry reveals that the overall negative impact of 

CCUS projects on housing prices comes from two industries—ethanol production and fertilizer 

production, and fertilizer production. Their significant negative impact is comparable to our main findings 
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at approximately 10%. 

 

 

(a) Heterogeneity of price change based on environmental awareness and business establishments. 
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(b) Heterogeneity of price change based on the industry of CCUS projects. 

Figure 9. Heterogeneity of price change in houses induced by CCUS projects. 

3.6 Mechanism analysis 

The following analysis examines how air pollution (PM 10 concentration at monitoring station level) and 

traffic flow (average annual daily traffic at monitoring station level) change after the CCUS operation, 

which may provide additional insights into the mechanism that leads to the estimated effect on housing 

prices. Data from monitoring stations allows us to merge each home with the nearest station, thereby 

providing accurate information about traffic flow and air quality for each home. Model 3 of Table 7 

shows that CCUS projects reduce local traffic by 8.69% on an annual basis. Traffic can be an indicator of 

local economic activities. Contrary to previous research showing that CCUS industrial investments 

indirectly create jobs and raise labor incomes (Cheng & Jiang, 2022), our estimates indicate that CCUS 

operations actually adversely affect local economic development and economic activity, thereby reducing 

property values. Furthermore, the air quality deteriorates by 4.36%. Consequently, the net decline in 

housing prices caused by CCUS operations may also be attributed to changes in air pollution, since a 

worsening air environment is likely to result in a decline in property value.  

Regarding the positive impacts on house values within 5 km of CCUS projects, we identify those houses 

as treatment houses and use the same approach to examine whether local economic developments and air 

quality differ within a smaller radius. Model 1 indicates that traffic flow decreases by 14.62%, which 

means that local economic development might be hampered more if CCUS projects are located closer to 
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communities. Model 2 produces a different outcome than the air quality analysis of a 15-km treatment 

zone. It demonstrates that living within 5 km of a CCUS project reduces the PM 10 concentration by 

5.85%. Thus, the positive impact of CCUS projects within 5 km may be attributed to the improvement of 

air quality. However, such merits might not sustain a broader radius. The low net capture rates due to 

uncaptured combustion emissions from coal and natural gas have raised concerns that CCUS projects 

might increase air pollution and overall social costs in comparison to what would otherwise occur without 

capture (Jacobson, 2019). 

Table 7. Impact of CCUS projects on traffic flows and air pollution. 

 Treated houses: within 5 km of a CCUS 

project 

Treated houses: within 15 km of a 

CCUS project 

 ln AADT ln PM 10 ln AADT ln PM 10 

Model 1 2 3 4 

D -0.1462*** -0.0585** -0.0869* 0.0436* 

 (0.0509) (0.0273) (0.0525) (0.0230) 

Demographic features 

control 
Yes Yes Yes Yes 

Business establishments 

control 
Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes 

Month-of-sample FE Yes Yes Yes Yes 

County-by-year FE Yes Yes Yes Yes 

Observations 15422 36589 15422 36589 

Notes: AADT: average annual daily traffic. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 

0.01 

 

3.7 Event study evidence 

Figures 10 and 11 illustrate the coefficients prior to (leads) and following (lags) the operation of CCUS 

projects based on event study models. Before the operation of CCUS projects, the impacts of CCUS 

facilities on housing prices are not statistically different from zero. After CCUS operations, negative 

impacts from CCUS projects on nearby property values start to emerge. Figures 10 and 11 illustrate that 

our model can adequately control for time-varying unobservable differences among houses within and 

outside an oil basin, with or without proximity to CCUS projects before their operation, providing 
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empirical support for the parallel trend assumption. 

 

Figure 10. Event study evidence for DID approach. Notes: t=-1 is the excluded period. We have dropped 

         v                  = −                  =  .                         c            z   c   . W  

include zip-code and county-by-year fixed effects. The number of treated zip codes is 112, and the 

number of control zip codes is 2,789. 
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Figure 11. Event study evidence for DDD approach. Notes: t=-1 is the excluded period. Observations 

before t = 8 and after t = 8 have been dropped. The standard errors cluster at the household level. We 

include individual fixed effects, month-by-year fixed effects, and county-by-year fixed effects. There are 

29,996 treated houses for DDD (houses in a basin near a CCUS after its operation) and 2,398,774 control 

houses. 

 

3.8 DID Robustness check results 

Our buffer estimate indicates that the treatment group's boundary is (0, 15] km from the nearest CCUS 

project, while the control group's boundary is (15, 100] km. To test if our main DID results are sensitive 

to the 100-km boundary we selected, we decrease the outer boundary of the control group in a range of 30 

km to 90 km by a 10-km distance bin. Results in Table 8 show significant negative coefficients for all 

outer boundaries of the control group. When the outer boundaries exceed 50 km, the coefficients are 

approximately 10%, which is consistent with our main findings and indicates the estimated results are 

robust and are not influenced by the outer boundary we chose. 

Table 8. Robustness check changing outer boundary of the control group. 

 Outcome: Natural log of home prices (2021$) 

Model 1 2 3 4 5 6 7 

Outer boundary of the control group 30 km 40 km 50 km 60 km 70 km 80 km 90 km 

Coef. Of D (ATT) -0.0665 -0.0888 -0.1022 -0.1038 -0.0975 -0.1014 -0.1021 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Robust Std Err 0.0085 0.0083 0.0082 0.0082 0.0082 0.0082 0.0082 

90% CI -0.0805 -0.1024 -0.1157 -0.1173 -0.1110 -0.1149 -0.1156 

90% CI -0.0524 -0.0751 -0.0887 -0.0903 -0.0841 -0.0879 -0.0886 

R-sq 0.165 0.113 0.103 0.118 0.148 0.158 0.166 

Observations 315,667 574,802 922,142 1,360,181 1,911,339 2,503,665 2,988,612 

Groups/Houses 129,238 235,147 376,682 553,371 769,750 999,171 1,194,211 

Treated houses 85,434 85,434 85,434 85,434 85,434 85,434 85,434 

Building age control Yes Yes Yes Yes Yes Yes Yes 

Business establishments control Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes 

Month-of-sample FE Yes Yes Yes Yes Yes Yes Yes 

County-by-year FE Yes Yes Yes Yes Yes Yes Yes 

 

4 Discussions and Conclusions 

This paper examines the impact of CCUS operations on the value of nearby properties. Based on the 

buffer we calculated, properties located within 15 km of a CCUS project are considered close to and 

likely to be affected by CCUS projects. We find that the sale prices fall by 10.18% overall due to CCUS 

operations. The impact of CCUS facilities on houses within the buffer zone is not monotonic. As distance 

increases, the impact shifts from a positive impact to a negative impact. Within 5 km of CCUS projects, 

house values increase by 3.6%. The impact then shifts to being significantly negative and reduces around 

10% of property values within a distance of 8 km to 15 km from the nearest CCUS projects. A CCUS 

project’s overall negative impact varies depending on the project type and facility condition. Property 

values decrease by 9.88% and 6.42% after the operation of a carbon capture and a storage project within 

15 km of the property, respectively. Retrofit CCUS projects have no significant impact on nearby housing 

prices, while new-built CCUS projects significantly reduce the price of nearby houses by 10.68%. Given 

that being positioned in an oil basin may also affect housing values, our study also uses a DDD approach 

to distinguish between CCUS effects and oil basin effects on housing prices. We find that the CCUS 

operation has a net impact of -17.84% on nearby housing prices when compared to similar houses in oil 

basins without CCUS operations. For robustness tests, we use cross-sectional data along with nearest-

neighbor matching. Results support the validity of the estimated negative effects.   

CCUS is recognized as one of the essential technologies for attaining low-carbon consumption of fossil 

fuels in the future as well as a major technical means for maintaining the flexibility of the power system 

working towards net-zero carbon emissions (IEA, 2021). Our findings have important implications for the 

successful expansion of CCUS projects on a large scale around the globe. Firstly, our empirical findings 

expand on the previous discussion of CCUS projects. Through the analysis of high-resolution spatial data 

of CCUS and daily housing transaction data from 1990 to 2021, this study estimates the net impact of 

CCUS on nearby housing values across the United States. CCUS operations have a positive impact on 

houses within a 5-km radius. However, as distance increases, the positive impact diminishes, and adverse 

environmental costs begin to dominate. Local residents will benefit more if CCUS projects are located 

closer to their communities. The total impact zone of CCUS projects is 15 km, and our estimation 

indicates an overall negative impact of CCUS projects on nearby housing prices. As a result, CCUS 

operations will involve community resilience. DOE is working on building energy hubs, of which CCUS 

projects are key elements. Whenever energy hubs are built, community resilience should be considered, 

as should solutions be offered to mitigate any potential negative impacts on the community. This is 

especially important in light of the ongoing attention to climate justice, in which the potential negative 

impacts of the adoption of climate mitigation measures on certain groups of consumers should be 

adequately addressed.  Our study helps policymakers understand the potential adverse impacts of CCUS 

operations on local communities. Policymakers should develop a strategy such as compensation schemes 



 30 

to help mitigate such negative impacts while promoting CCUS projects to enhance climate justice in local 

communities. 

Secondly, we also highlight the disparity between economic benefits and external costs of CCUS projects 

borne by the surrounding communities. CCUS projects have an impact zone of about 15 km, with a 

10.2% reduction in nearby housing prices as a result. We conduct a mechanism analysis to look at how 

CCUS operations are capitalized into housing prices. Our findings suggest that reduced house prices may 

be attributed to a decrease in local economic development in general, caused by CCUS operations within 

15 km, a departure from prior findings that CCUS investments indirectly create jobs and raise labor 

incomes (Cheng & Jiang, 2022). Furthermore, the net decline in housing prices caused by CCUS 

operations may also be attributed to increased air pollution, since a worsening air environment is likely to 

result in a decline in property values. It is worth considering whether homeowners should be compensated 

for the loss they have suffered as a result of CCUS developments. Our findings also show that houses 

located within 5 km of the site have seen an increase in sale prices. Additionally, we examine houses 

within a 5-km radius of CCUS projects to determine the mechanisms of positive impacts resulting from 

CCUS. We find that the increase in house prices may be attributed to the implementation of CCUS 

projects which capture carbon emissions and improve local air quality. Those merits, however, could not 

be sustained in a wider impact zone (15-km radius), as prior research indicates that the low net captured 

rates actually lead to an increase in air pollution compared to when there is no capture (Jacobson, 2019). 

Accordingly, in the siting choices of CCUS projects, it is important to balance the potential damage and 

the potential benefits to local communities. As retrofitted CCUS projects do not affect nearby property 

values, future CCUS developments can promote retrofitting the existing facilities. A carbon storage 

project affects housing prices more adversely than a carbon capture project in new-built projects. 

Consequently, if a new carbon storage facility is necessary, the site should be located at a greater distance 

from the local community than a new carbon capture facility.  

Thirdly, the heterogeneous impacts of the CCUS project need to be considered and incorporated into 

policy decisions. We present a comprehensive analysis of heterogeneous responses based on 

environmental awareness, local economic activities, and the industry of CCUS projects. Our findings 

indicate that housing prices reduce more in areas with people with average environmental awareness. 

Consumers with low and high levels of environmental awareness, however, are not affected by the 

proximity to CCUS projects when purchasing a home. When there are fewer business establishments in 

areas near CCUS facilities, people are reluctant to live there unless the price of housing is reduced. When 

the number of business establishments increases to an average level, consumers are willing to pay more 

for a home even if it is close to a CCUS facility. It is essential for policymakers to conduct a 

heterogeneous analysis to make an informed choice regarding the location of the facility. Furthermore, the 

topic of climate justice also raises our concern that the adverse effects of CCUS projects may not be 

equally distributed among people. The mitigation of CCUS's overall negative impacts should therefore 

not be monotonous, as CCUS techniques could have had a distinctly different impact on different 

individuals. Using our findings, we may be able to create compensation plans that are tailored to different 

individuals. A heterogeneity analysis also reveals that the overall negative impact of CCUS projects on 

housing prices is primarily attributable to two industries: ethanol production and fertilizer production, and 

fertilizer production. This significant negative impact is approximately 10% on houses within 15 km. As a 

result, a CCUS project may be located at a distance of more than 15 km if it involves either ethanol 

production and fertilizer production or fertilizer production to mitigate negative externalities. 
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Supplementary Tables 

Table A1. Facility name. 

Site Facility Name 

1 Air Products Steam Methane Reformer 

2 Arkalon CO2 Compression Facility 

3 Bell Creek - Incidental CO2 Storage Associated with a Commercial EOR Project 

4 Bonanza BioEnergy CCUS EOR 

5 Borger CO2 Compression Facility 

6 Century Plant 

7 CO2 Sequestration Field Test: Deep Unminable Lignite Seam 

8 Coffeyville Gasification Plant 

9 Core Energy CO2-EOR 

10 Cranfield Project 

11 E.W. Brown 0.7 MWe Pilot Carbon Capture Unit 

12 Enid Fertilizer 

13 Farnsworth Unit EOR Field Project - Development Phase 

14 Frio Brine Pilot 

15 Fuel Cell Carbon Capture Pilot Plant 

16 Great Plains Synfuels Plant and Weyburn-Midale 

17 Illinois Basin Decatur Project (CO2 Injection Completed, Monitoring Ongoing) 

18 Illinois Industrial Carbon Capture and Storage 

19 Kevin Dome Carbon Storage Project - Development Phase 

20 Lost Cabin Gas Plant 

21 Marshall County ECBM Project 

22 MGSC Validation Phase (Phase II): CO2 Storage and Enhanced Oil Recovery: Bald Unit Oil Field Test Site 

23 MGSC Validation Phase (Phase II): CO2 Storage and Enhanced Oil Recovery: Sugar Creek Oil Field Test Site 

24 Michigan Basin (Phase II) Geologic CO2 Sequestration Field Test 

25 Michigan Basin Large Scale Injection Test 

26 Mountaineer Validation Facility 

27 National Carbon Capture Center (NCCC) 

28 NET Power Clean Energy Large-scale Pilot Plant 

29 PCS Nitrogen 

30 Petra Nova Carbon Capture 

31 Plant Barry & Citronelle Integrated Project 

32 Pleasant Prairie Power Plant Field Pilot 

33 San Juan Basin ECBM Storage Test 

34 Shute Creek Gas Processing Plant 

35 Terrell Natural Gas Processing Plant (formerly Val Verde Natural Gas Plants) 

36 West Pearl Queen CO2 Sequestration Pilot Test and Modelling Project 

37 Wyoming Integrated Test Center (ITC) 

Note: Facility name for CCUS projects in the United States are provided in Global CCS Institute 

(https://co2re.co/FacilityData).  

 

https://co2re.co/FacilityData
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Table A2. Information of CCUS projects.  

Site Retrofit Capture Storage 
commu

nity10 
Type Category Status Operational Industry 

1 1 1 0 1 capture 
Commercial CCS 

Facility 
Operational 2013 

Hydrogen 

Production 

2 0 1 0 1 capture 
Commercial CCS 

Facility 
Operational 2009 

Ethanol 

Production 

3 0 0 1 0 
MVA, storage 

and EOR 

Pilot and 

Demonstration 

CCS Facility 

Operational 2010 
Natural Gas 

Processing 

4 0 1 0 1 capture 
Commercial CCS 

Facility 
Operational 2012 

Ethanol 

Production 

5 0 1 0 1 capture 
Commercial CCS 

Facility 
Completed 2001 

Fertiliser 

Production 

6 0 1 0 0 capture 
Commercial CCS 

Facility 
Operational 2010 

Natural Gas 

Processing 

7 0 0 1 0 
storage 

performance test 

Pilot and 

Demonstration 

CCS Facility 

Completed 2009 N/A 

8 0 1 0 1 capture 
Commercial CCS 

Facility 
Operational 2013 

Fertiliser 

Production 

9 0 0 1 1 EOR 
Commercial CCS 

Facility 
Operational 2003 

Natural Gas 

Processing 

10 0 0 1 1 
monitor CO2 

injection  

Pilot and 

Demonstration 

CCS Facility 

Operational 2009 N/A 

11 0 1 0 1 
test carbon 

capture tech 

Pilot and 

Demonstration 

CCS Facility 

Operational 2014 
Power 

Generation 

12 0 1 0 1 capture 
Commercial CCS 

Facility 
Operational 1982 

Fertiliser 

Production 

13 0 0 1 1 
test and monitor 

CO2 injection  

Pilot and 

Demonstration 

CCS Facility 

Operational 2013 

Ethanol 

Production 

and Fertiliser 

Production 

14 0 0 1 1 

monitor CO2 

injection and 

test storage 

performance 

Pilot and 

Demonstration 

CCS Facility 

Completed 2004 N/A 

15 0 1 0 1 
test carbon 

capture tech 

Pilot and 

Demonstration 

CCS Facility 

Operational 2016 
Power 

Generation 

16 1 1 0 1 capture 
Commercial CCS 

Facility 
Operational 2000 

Synthetic 

Natural Gas 

17 0 1 1 1 

bioenergy 

carbon capture 

and geological 

storage 

(BECCS) 

Pilot and 

Demonstration 

CCS Facility 

Completed 2011 
Ethanol 

Production 

18 0 1 1 1 
Carbon Capture 

and Storage 

Commercial CCS 

Facility 
Operational 2017 

Ethanol 

Production 

19 0 0 1 0 

monitor CO2 

injection and 

test storage 

performance 

Pilot and 

Demonstration 

CCS Facility 

Completed 2014 N/A 

20 1 1 0 0 capture 
Commercial CCS 

Facility 

Operation 

Suspended 
2013 

Natural Gas 

Processing 

21 0 0 1 1 
storage 

performance test 

Pilot and 

Demonstration 

CCS Facility 

Completed 2009 N/A 
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22 0 0 1 1 

CO2 injection 

test, CO2 

Storage and 

EOR 

Pilot and 

Demonstration 

CCS Facility 

Completed 2009 N/A 

23 0 0 1 1 

CO2 injection 

test, CO2 

Storage and 

EOR 

Pilot and 

Demonstration 

CCS Facility 

Completed 2009 N/A 

24 1 0 1 1 

CO2 

Sequestration 

Field Test 

Pilot and 

Demonstration 

CCS Facility 

Completed 2008 
Natural Gas 

Processing 

25 1 0 1 1 

CO2 

Sequestration 

Field Test 

Pilot and 

Demonstration 

CCS Facility 

Operational 2013 
Natural Gas 

Processing 

26 1 1 1 1 

carbon capture, 

monitor CO2 

injection and 

test storage 

performance 

Pilot and 

Demonstration 

CCS Facility 

Completed 2009 
Power 

Generation 

27 0 1 0 1 
test carbon 

capture tech 

Pilot and 

Demonstration 

CCS Facility 

Operational 2011 Various 

28 0 1 0 1 

demonstrate 

new tech of 

capture 

Pilot and 

Demonstration 

CCS Facility 

Operational 2018 
Power 

Generation 

29 0 1 0 1 capture 
Commercial CCS 

Facility 
Operational 2013 

Fertiliser 

Production 

30 1 1 0 1 capture 
Commercial CCS 

Facility 

Operation 

Suspended 
2017 

Power 

Generation 

31 1 1 1 1 
capture and 

storage 

Pilot and 

Demonstration 

CCS Facility 

Completed 2012 
Power 

Generation 

32 0 1 0 1 
test CO2 capture 

tech 

Pilot and 

Demonstration 

CCS Facility 

Completed 2008 
Power 

Generation 

33 0 0 1 1 
storage 

performance test 

Pilot and 

Demonstration 

CCS Facility 

Completed 2008 N/A 

34 0 1 0 0 capture 
Commercial CCS 

Facility 
Operational 1986 

Natural Gas 

Processing 

35 0 1 0 0 capture 
Commercial CCS 

Facility 
Operational 1972 

Natural Gas 

Processing 

36 0 0 1 0 
test storage 

performance 

Pilot and 

Demonstration 

CCS Facility 

Completed 2002 N/A 

37 0 1 0 1 
carbon capture 

test 

Pilot and 

Demonstration 

CCS Facility 

Operational 2018 
Power 

Generation 

Notes: Global CCS Institute (https://co2re.co/FacilityData) provides facility name, facility category, facility 

status, country, operational year, facility industry, and facility short description. Retrofit, capture, storage, 

community10, and type are collected from ZEROCO2.NO (http://www.zeroco2.no/projects/countries/usa), 

company websites, and news. The authors created the first column based on the order in which projects are listed in 

Global CCS Institute. The retrofit variable is a dummy variable. It equals 1 if the facility has been retrofitted, and 0 

otherwise. Based on the type of project, two dummy variables were created: capture and storage, the information for 

which was compiled from news articles and company websites. Capture equals 1 for carbon capture projects, and 0 

otherwise. Storage equals 1 for carbon storage projects, and 0 otherwise. Community10 indicates whether a 

residential community is within 10 miles of the CCUS project. The value of Community10 is equal to zero if there is 

no residential community within 10 miles of the CCUS project, suggesting the project is located in rural areas. 

Otherwise, it is equal to one. 

https://co2re.co/FacilityData
http://www.zeroco2.no/projects/countries/usa
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Table A3. DID results clustering standard errors at the county level. 

 Outcome: Natural log of home prices (2021$) 

Model 1 2 3 4 5 6 7 

Project type All CCUS Carbon 

Capture 

Carbon 

Storage 

Retrofit 

CCUS 

New 

CCUS 

New 

Capture 

New 

Storage 

Coef. of D (ATT) -0.1018 -0.0988 -0.0643 0.0420 -0.1067 -0.1037 -0.1313 

p-value 0.027 0.043 0.259 0.174 0.019 0.031 0.028 

Robust Std Err 0.0459 0.0484 0.0567 0.0305 0.0451 0.0476 0.0590 

90% CI -0.1776 -0.1788 -0.1581 -0.0090 -0.1812 -0.1824 -0.2292 

90% CI -0.0260 -0.0188 0.0296 0.0930 -0.0323 -0.0249 -0.0334 

R-sq  0.163 0.175 0.059 0.058 0.170 0.183 0.063 

Observations 3,585,195 3,318,293 459,843 168,244 3,416,951 3,154,147 312,633 

Groups/Houses 1,438,093 1,326,630 198,625 76,221 1,379,157 1,252,324 132,179 

Treated houses 85,434 77,495 23,935 4,199 81,235 74,039 21,407 

Building age control Yes Yes Yes Yes Yes Yes Yes 

Business establishments 

control 
Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes 

Month-of-sample FE Yes Yes Yes Yes Yes Yes Yes 

County-by-year FE Yes Yes Yes Yes Yes Yes Yes 

Note: Standard errors are clustered at the county level. The outcome is the natural log of home prices that are 

adjusted to 2021$ for inflation. During the post-treatment period, the treated buildings were traded with a CCUS 

project nearby. Transactions with the treatment (having CCUS projects within 100 km) happened from 1990 to 

2021. 
 

Table A4. DDD robustness check: changing the boundary of basin control group 

 Outcome: Natural log of home prices (2021$) 

Boundary of basin control group 10 km 20 km 30 km 40 km 50 km 60 km 70 km 80 km 90 km 100 km 

Coef. of DDD -0.178 -0.178 -0.178 -0.178 -0.178 -0.178 -0.178 -0.178 -0.178 -0.178 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Robust Std Err 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 

90% CI -0.232 -0.232 -0.232 -0.232 -0.232 -0.232 -0.232 -0.232 -0.232 -0.232 
90% CI -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 

R-sq  0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259 

Obs 2,646,882 
Building age control Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Business establishments control Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Month-of-sample FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

County-by-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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Supplementary figures 

 

Figure A1. Common support for matching the houses with nearby CCUS projects and those without. 

 

 

 


