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Abstract

Electric vehicle sales have been growing rapidly in the United States and around
the world. This study explores the drivers of demand for electric vehicles, examin-
ing whether this trend is primarily a result of technology improvements or changes
in consumer preferences for the technology over time. We conduct a discrete choice
experiment of new vehicle consumers in the U.S., weighted to be representative of the
population. Results suggest that improved technology has been the stronger force.
Estimates of consumer willingness to pay for vehicle attributes show that when con-
sumers compare a gasoline vehicle to its battery electric vehicle (BEV) counterpart,
the improved operating cost, acceleration, and fast charging capabilities of today’s
BEVs often roughly compensate for their perceived disadvantages, particularly for
longer-range BEVs. Moreover, forecasted improvements of BEV range and price show
that consumer valuation of many BEVs is expected to equal or exceed their gasoline
counterparts by 2030, resulting in BEVs capturing 40% to 60% of consumers choos-
ing between gasoline and BEV powertrain options for the same vehicle. Applying the
consumer choice estimates to a market-wide simulation suggests that by 2030, if ev-
ery gasoline vehicle had a BEV option the majority of new car and near-majority of
new sport-utility vehicle choice shares would be electric due to projected technology
improvements alone.



Introduction

Technology development and consumer adoption of battery electric vehicles (BEVs) are
among the greatest contributors to uncertainty in the energy efficiency and carbon intensity
of future passenger transportation (NASEM, 2021). While BEVs have historically been a
small percentage of the vehicle market, the pace of recent technological change in BEVs has
been rapid, with battery costs alone dropping by a factor of ten from 2010 to 2021 (US
DOE’s VTO, 2021). The average range of BEVs has increased by 200%, while efficiency has
increased by 15% (US EPA, 2021), and the number of BEV offerings has grown dramatically
(US DOE, 2021). At the same time, consumer exposure to BEVs socially has likely increased
as the number of these vehicles on the road has grown (U.S. Environmental Protection
Agency, 2021b, Fig. 4.14), major policies have pushed electric vehicles to the forefront
of political debates (Newsom, 2020; The White House, 2021), and major automakers have
pledged to solely provide electric vehicles in the near future (Miller, 2021). Coffman et al.
Coffman et al. (2017, p.86) provide a review of literature showing that social interactions
can influence BEV adoption. The questions of how the consumer probability of choosing a
BEV has changed over time, what is driving changes in consumer choices, and how much
BEV market share may increase in the future have important implications for automotive
technologies and policies. For example, California recently passed emission standards that
effectively ban the sale of new cars that run on gasoline only (Newsom, 2020), and General
Motors endorsed strengthening federal emission standards so that 50% of new vehicles are
electric by 2030 (General Motors, 2022). The viability of these emissions targets and policies
depends on whether technological improvements, changes in consumer preferences, or both,
can generate large increases in BEV market share in the near future.

This paper examines consumer choices of plug-in electric vehicles!, including BEVs and
plug-in hybrid electric vehicles (PHEVS) relative to conventional gasoline vehicles. We focus
on how consumer demand for plug-in electric vehicles has been changing over time, account-
ing for how the technology has improved and allowing for changing preferences. We field a
discrete choice experiment where U.S. new vehicle consumers choose among potential vehi-
cle options, mimicking the process of comparing vehicles on an automaker’s website. The
results of the experiment are compared to a companion discrete choice experiment that was
conducted in 2012-2013 in order to examine changes in consumer vehicle choices over time
Helveston et al. (2015). In both cases, the weighted respondent pool is a representative
sample of new vehicle buyers in the U.S.

The results show that advances in BEV technology—in particular increases in range and
reductions in the BEV price-premium—nhave driven substantial increases in consumer choices
of BEV cars and SUVs over their conventional gasoline vehicle counterparts. Estimates of
consumer willingness to pay for vehicle attributes show that any perceived disadvantages of
BEVs relative to gasoline vehicles are often compensated by the BEV’s improved operating
cost, acceleration, and fast-charging capabilities, particularly for BEVs with longer range.

IThe term “plug-in electric vehicle” (PEV) refers to vehicles that acquire some or all of their propulsion
energy from an external electricity source (usually the power grid), including (1) battery electric vehicles
(BEVs) and (2) plug-in hybrid electric vehicles (PHEVSs), which use a blend of electricity and petroleum
for propulsion (including extended-range electric vehicles (EREVs)). PEVs do not not include traditional
hybrid electric vehicles (HEVSs) (such as the Toyota Prius) that do not plug in.



This, combined with technology cost reductions that are expected to reduce the BEV price
premium, implies that forecasts of technology improvements are especially important for
projecting consumer demand for plug-in electric vehicles going forward. In contrast, while
it is possible that consumer preferences may have changed, we do not find statistically
significant changes in these preferences over the past decade.

Using the resulting estimates in consumer choice simulations, we find that for today’s
passenger cars that offer both gasoline and BEV powertrain options, the average premium
consumers are willingness to pay for a BEV over a gasoline version of the same vehicle ranges
from -$11,500 to $6,700, depending on the vehicle. We report all monetary values in year
2022 USD using the consumer price index, unless otherwise noted. Accounting for expected
improvements in BEV range and price by 2030, this WTP shift to a range of -$4,400 to
$8,100. For SUVs, we see a similar trend, with willingness to pay a premium for BEVs
shifting from -$8,600 to -$7,900 today to a range of -$5,200 to -$2,100 by 2030.

Simulating a future scenario where every conventional gasoline vehicle has an available
BEV counterpart and BEV technology improvements follow projections from the National
Academies (NASEM, 2021) with supply adequate to match demand at projected prices, we
estimate that BEVs would make up the majority of new car sales and near-majority of new
SUVs sales by 2030.

Given the limited historical evidence available to understand mainstream consumer pref-
erences for plug-in electric vehicles, we draw upon carefully constructed discrete choice survey
experiments with randomized vehicle profiles, using a choice-based conjoint design. Specif-
ically, the results are derived from two discrete-choice survey experiments run eight years
apart and designed to be as comparable as possible, while accounting for changes in the
automobile market. The surveys are of a representative sample of new vehicle buyers in the
United States. The contribution of this paper is both the second survey, conducted in 2020-
2021, and a comparison of this second survey to the previous survey performed in 2012-2013
Helveston et al. (2015).2

This work contributes to a broad literature on the consumer preferences for plug-in elec-
tric vehicles. Classic work on vehicle preferences focuses on a static equilibrium setting where
the market and technology is not changing (e.g., see the studies reviewed in Dimitropoulos
et al., 2013; Greene et al., 2018). Some work attempts to incorporate a time dimension in
estimating consumer preferences by asking individuals to consider their own future decisions
(Cirillo et al., 2017; Maness and Cirillo, 2012), but there is little empirical work on the
question of how consumer preferences and demand for emerging technologies like plug-in
electric vehicles might be changing over time due to technology improvements or changes in
preferences.

We identify only three related studies in the peer-reviewed literature that attempt to
explore trends in consumer preferences for plug-in electric vehicles. In the first notable
contribution, Carley et al. (2019) examined the changes in stated intention to purchase a
plug-in electric vehicle between 2011 to 2017 from potential new vehicle purchasers’ in the
largest 21 U.S. cities, finding that American consumers were more intent on purchasing plug-

2Because the second study was performed during the COVID-19 pandemic, we ask respondents how the
pandemic impacted them and re-estimate results excluding respondents who were impacted in ways that
may have influenced their preferences for vehicles. We do not find any statistically significant differences in
results. Details are provided in the SI.



in vehicles in 2017 relative to 2011. Secondly, Jenn et al. (2020) examined changes throughout
2010 and 2017 in California plug-in electric vehicle purchasers’ ratings of the importance of
various incentives, such as rebates, on their decision to purchase a plug-in electric vehicle,
finding that adoption of these vehicles has become more dependent on incentives over time.
Finally, Kurani (2019) uses survey data up to 2017 to show that the distribution of individuals
considering electric vehicles hasn’t dramatically shifted. These studies lay the groundwork for
understanding consumer preferences relating to plug-in electric vehicles but answer different
questions in a notably different automobile market than today due to the rapidly changing
technology. Furthermore, they do not explore the degree to which consumer willingness to
trade off relevant vehicle attributes associated with electrification (e.g., range, operating cost,
price, etc.) may have changed over time due to technology improvements or other factors
and what this could imply for the sales of new vehicles in upcoming years. Our study is the
first to shed light on these questions.

Scope of Study

Our data collection approach was designed to examine changes in preferences of mass-
market U.S. consumers—meaning consumers representative of U.S. new vehicle purchasers.
Because early-adopters’ preferences differ from mass-market preferences (Eggers and Eggers,
2011; Kumar and Alok, 2020; Morton et al., 2016; Muehlegger and Rapson, 2018; Smith et
al., 2017; Wang et al., 2020), revealed-preference (RP) data, such as historical sales, may
not provide good estimates of mass-market consumer preferences, so we instead leverage
stated-preference (SP) data. There are many pros and cons of using SP data over RP data
(Louviere et al., 2000, p.21-24; Helveston et al., 2018, Table 1). In particular, the use of
SP data allows us to present respondents with electric vehicles that are not yet available
on the market (Louviere et al., 2000, p.22-23). For instance, a BEV passenger car with 300
miles of range could be presented with a purchase price of $17,000. Such a vehicle is not
currently available in the market, although it is anticipated to be available within the next
5-10 years (NASEM, 2021). Further, we are able to account for how large changes in fuel and
energy costs (beyond the variation observed in recent fuel prices) impact preferences over
time. This capability of SP data allows us to analyze how future changes in technologies,
as well as fuel and energy prices, may influence consumer vehicle purchases. The use of SP
data also allows us to conduct a controlled experiment that would be prohibitive to conduct
in the marketplace. Use of controlled experiments enables the modeler to (1) observe all
of the same attributes observed by the respondent (unlike RP data, where consumers make
purchases while observing attributes that are not available to the modeler); (2) observe the
full choice set (unlike RP data, where the modeler does not typically know what alternatives
were available at the time of purchase or which the consumer considered or was even aware
of); and (3) avoid confounding (unlike RP data, where strong correlations, such as between
EV technology and efficiency, can make it difficult to identify whether consumers are buying
EVs because they are electric or because they are efficient). Finally, SP data avoid supply-
side issues that interfere with demand-side estimates, such as reduced vehicle availability
during the COVID-19 pandemic.

The key criticism of SP data is that it may not reflect the decisions consumers would
make in the marketplace when they must commit large amounts of money, as is the case



with purchasing a new vehicle. Aiming to mitigate this concern, we incorporate multiple
features into the survey design that tend to improve the ability for survey responses to reveal
comparable preferences as when making a true purchase decisions (Vossler et al., 2012). First,
we use a discrete choice survey design that mimics the experience of consumers comparing
vehicle specifications and prices during the purchase decision and simultaneously limits the
cognitive burden on respondents to improve the reliability of responses. Second, we use the
range of vehicle performance specifications and prices of vehicles available in the market so
that if any anchoring effects exist in the survey (Furnham and Boo, 2011), they replicate
anchoring effects that would be present in the market during the purchasing decision. Third,
we explain to respondents that their responses will be used to inform automaker decisions
on vehicle offerings, because it has been shown that SP survey respondents that believe
that their responses will have an impact on decision-makers tend to give responses that are
consistent with choices that have financial consequences (Vossler et al., 2012).

Our survey was conducted from December 2020 to September 2021. After some intro-
ductory questions and information, survey respondents chose (1) either passenger cars or
SUVs, (2) vehicle size, and (3) a given aesthetic among a set of vehicle image options.> The
image selected was held fixed for the remainder of the survey to represent the chosen vehicle
to avoid the potential for respondents to conflate vehicle attributes with presumed styling or
vehicle class differences. Respondents were then shown a series of fifteen choice tasks. In each
choice task, respondents were asked to select their preferred option among three vehicle pro-
files that varied in price, powertrain type (i.e., conventional gasoline vehicle, gasoline-electric
hybrid, PHEV, and BEV), operating cost, 0-60 mph acceleration time, range, whether the
vehicle has fast-charging capability (if it is a BEV), and the brand country-of-origin (e.g.
American, German, Japanese, Korean, Chinese). Values for these attributes were varied
randomly across vehicle profiles and choice tasks to systematically and causally test the ef-
fect of varying vehicle attributes on consumer choice. The survey design is almost identical
to (Helveston et al., 2015) to enable comparison, with updates made to reflect the range of
attributes available in the 2020-2021 vehicle market. Additional details on the survey design
are presented in SI.

In our sample, there are 734 car-buyer and 862 SUV-buyer survey responses from people
who had intentions of purchasing a car within the next two years or had purchased a car
within the prior year of when the survey was fielded, requirements also used in Helveston et
al. (2015) so as to ensure comparability. Respondents were recruited using both Amazon’s
Mechanical Turk (mTurk) and Dynata. mTurk was chosen to replicate data collection from
the study conducted in 2012-2013 in order to investigate changes in consumer preferences
over time. Dynata was chosen because it includes older and higher-income respondents,
which are under-represented by the mTurk sample and improves coverage for generating a
representative sample. We weight the respondents in our analysis to ensure representative-
ness with the U.S. new car and new SUV buying population. Alternative data weighting
results are available in the SI.

3Note, we only consider the car- and SUV-buyer markets, so these results cannot be extrapolated to
the entire US vehicle market. However, these two vehicle classes make up a large majority of the overall
American vehicle market (U.S. Environmental Protection Agency, 2021b, Fig. 3.2), making these results
informative with respect to changes in the overall vehicle market.



Methodology

In our analysis, we use a random coefficients modeling framework that allows for flexible
substitution patterns between vehicle offerings and thus better characterizes consumer pref-
erences than simpler approaches. Specifically, our approach models consumer choice with a
random-coefficient (mixed) logit utility over the attributes of the vehicles (Train, 2009). We
estimate the model in willingness-to-pay (WTP) space (Train and Weeks, 2005), allowing
us to interpret the coefficients as WTP parameters directly, while relaxing the limitations of
the common independence assumption for the distribution of the coefficients (Fiebig et al.,
2010).

Vehicle Choice Model

We model consumer ¢’s utility for vehicle alternative j as follows:

Ui = A (aiaj + WiCj + /Blbj + Pilj + Thfj + SZTX]' — pj) + €ij, (1)

where o; € R is the WTP per unit increase in vehicle acceleration time a; € R (0-60
mph time in seconds), w; € R is WTP per unit increase in vehicle operating costs ¢; € R
(cents/mile), p; € R is WTP per unit increase in BEV range r; € R (miles), §; € Ris WTP
for a BEV powertrain b; € {0, 1} relative to the baseline gasoline vehicle (with identical
range), 1; € R is WTP for BEV fast charging capability f; € {0,1}, and §; € R" is a vector
of WTP coefficients for the vector of remaining indicators x; € {0,1}" for gasoline-electric
hybrid and PHEV powertrains as well as vehicle brand variables and fast charging indicator
variables. A € R is a scaling factor that identifies the magnitude of the price signal relative
to the normalized standard deviation of the error term. p; is the price of the vehicle, and ¢;
is a type I extreme value error term.

The estimated parameters are A and the respondent population mean and standard devi-
ation for each of the WTP random coefficients o, w, 5, p,n and 8. For tractability, we adopt
the common assumption that all WTP parameters are independent and normally-distributed
across the population. Use of the WTP space avoids the conflation of taste heterogeneity
and scaling effects otherwise implied by this assumption (Fiebig et al., 2010).

We use robust standard errors and account for multiple choice observations from each
respondent. The model thus assumes that the error terms are independent only between
individuals. In addition to the preferred random-coefficients (mixed) logit model above,
we estimate alternative model specifications, which are described in the SI. Survey design
and replication instructions, including selection of attributes and levels, is also detailed in
the SI. Finally, we would like to note that the entire study was approved by the Carnegie
Mellon University Institutional Review Board, and that all survey respondents gave informed
consent to participate in this study.



Results

How are BEVs Valued Relative to Conventional Vehicles?

We begin the presentation of our results with a set of head-to-head comparisons, focusing
on vehicle models that offer both a conventional and electric powertrain option.* These com-
parisons provide a clean way to illustrate relative consumer preferences without conflating
unobserved attributes (styling, interior design, etc.). We look at these head-to-head com-
parisons using WTP values estimated from the 2021 survey data (full results are available in
the SI). We also evaluate expected technology progression from (NASEM, 2021) for a hypo-
thetical near-future vehicle. These comparisons set the stage for forward-looking simulations
across the entire fleet and help identify the main drivers of our results.

Figure 1 shows a first head-to-head comparison in a waterfall chart over time. The figure
compares the Nissan Leaf to a close conventional counterpart built on the same platform,
the Nissan Versa. The y-axis is the WTP for the BEV relative to the conventional vehicle.
Figure 1a shows the results for the 2013 Leaf and the 2013 Versa. Figure 1b shows the 2022
Leaf and the 2022 Versa for a present-day comparison. Figure 1c shows a hypothetical Leaf
with 300 miles of range and the 2022 Versa for a comparison of what might occur in the
near future, based on projections from (NASEM, 2021). Lines are included in the first two
panels to indicate the actual BEV price premium, both with and without a $7,500 federal
tax credit.

In Fig. la, we observe that in 2013, relative to the Versa, the Leaf had a shorter (75 mile)
range, which reduced the WTP, a lower average operating cost (see the SI for calculations),
which increased WTP, and a slower acceleration, which lowered WTP. On net, the difference
in the WTP for the Leaf versus the Versa, on average, is -$12,000, and the price premium
was almost +$20,000 before the tax credit. This gap is consistent with the relatively low
choice share of the 2013 Leaf compared to the Versa.

Figure 1b shows a distinctly different picture for model year 2022, given the same con-
sumer preferences. The range of the Leaf is 149 miles, which produces a less negative WTP
relative to the Versa. The operating cost, acceleration, and BEV fast-charging capability
all increased the WTP. On net, the 2022 Leaf WTP is nearly on par with the Versa. Thus,
if the two were priced the same, we should expect to see similar choice share of both. The
2022 Leaf has a $12,000 price premium over the Versa before the tax credit, and we observe
lower choice share of the Leaf than the Versa, as expected. But comparing panels (a) and (b)
shows a substantial change in the overall net WTP due to technology changes alone (cases
including changes in preferences are available in the SI).

Figure 1c provides insight into what might happen in upcoming years with improved
battery technology that allows for longer-range vehicles at a lower cost. For this scenario,
we hold the operating cost, acceleration, and fast-charging capability fixed but assume a
300-mile range and no price premium for the BEV, based on projections from (NASEM,
2021, Fig. 5.37). With these changes, the net WTP for the BEV is above the zero price
premium, suggesting higher share of choices for the Leaf than the Versa.

4Nearly all vehicle specifications were collected from Edmunds. Acceleration measures were collected
from Carindigo for the most recent model year available relative to the model year listed. Press releases
(found here and here) from Nissan give the MSRP for the 2013 Nissan Leaf and Versa. The base trim level
is used in all comparisons unless otherwise noted.


https://www.edmunds.com
https://www.carindigo.com
https://usa.nissannews.com/en-US/releases/nissan-brings-new-u-s-assembled-2013-leaf-to-market-with-major-price-reduction
https://usa.nissannews.com/en-US/releases/2013-nissan-versa-pricing
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Figure 1: Head-to-head charts showing WTP for attributes for the Nissan Leaf BEV relative
to those of the Nissan Versa gasoline vehicle, which is built on the same platform, using
consumer preference data from the 2021 survey. Horizontal lines show the price premiums
associated with the electric vehicle with and without the federal BEV tax credit applied.
Error bars denote £2 standard errors.

We repeat the head-to-head comparison in Fig. 1 for all plug-in electic vehicles available
today that offer a gasoline powertrain option, and Figure 2 summarizes the results. The first
row of panels are cars and the second row shows SUVs. To simplify, we present the net WTP
numbers after accounting for all attributes (range, operating cost, etc.). These net WTP
estimates are presented in blue. In red, we present the BEV price premium. We include
estimations using our survey data across all vehicle model years, including extrapolations
out to 2030 that hold preferences constant at 2021 levels, extend the range of all BEVs to
300 miles, and assume no price premium (acceleration assumptions were informed by Woo
and Magee (2020, Fig. 4), and range and price assumptions are informed by the projections
in NASEM, 2021, Fig. 5.37).

The pattern in the results in Fig. 2 is consistent: for all of the 2021 comparisons, the
net WTP is well below the price premium, but by 2030 the expected improved range and
reduced price premium produce WTP estimates comparable to or greater than the price
premium. Specifically, for the Leaf, Mini, and BMW i4, the forecasted improvements to
2030 have each BEV preferred to its gasoline counterpart, while for the Kona and XC40, the
two powertrains are comparable. For the Ioniq and Niro (which are compared to an HEV
counterpart) the projected WTP is still below the price premium. As before, a key finding
is that changes in attributes are a clear force leading to greater WTP for BEVs, even with
consumer preference parameters held constant.

Willingness to Pay Estimates

The WTP estimates represent the average value (price-equivalency) that consumers place
on changes in vehicle attributes. Consistent with prior work, we find that if all vehicle at-
tributes (range, operating cost, acceleration, brand, etc.) are identical across powertrain
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Figure 2: Car and SUV head-to-head comparisons over time. Red points denote the price
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Car and SUV net WTP calculated using the 2021 study mixed logit model for car-buyers

and SUV-buyers respectively. Error bars denote +2 standard errors. Every panel shares the
same axes.



types, consumers prefer conventional gasoline vehicles over BEVs and PHEVs, on average.
However, consumers significantly value improvements in attributes that plug-in electic vehi-
cles offer, such as reduced operating cost, that have been shown to counteract the preference
for gasoline vehicles. Our results estimate that car (SUV) buyers are willing to pay, on
average, $4,140 ($8,620) more for a gasoline vehicle than a BEV of the same range with fast
charging capability when the vehicles have identical other attributes, and they are willing to
pay an additional $1,480 ($1,460) per second of reduction in 0-60 time; $1,950 ($1,490) per
l¢/mi reduction in operating cost; $5,080 ($7,040) per 100 miles of additional range; and
$4,270 ($4,200) for BEV fast charging capability.

We compare WTP estimates across the new and old datasets using Wald tests for equality
of means and equality of the full set of distribution parameters in the SI. We find no robust
evidence to suggest that mean consumer preferences for BEVs or BEV range have shifted
over time for either car or SUV buyers (additional specifications are discussed in the SI). It
should be clarified that, although we cannot identify changes over time, this does not mean
there hasn’t been any. Rather, there isn’t sufficient evidence to reject our null hypothesis
that preferences have not changed. Additionally, this finding does not imply whether future
changes in consumer preferences over the next decade.

It should be noted that there is an inherent limitation with the 2015 study dataset in that
it has fewer observations than the 2021 study dataset. It is therefore possible that additional
changes in consumer preferences have occurred during this period but were not large enough
to be identified with statistical significance given the size of the 2015 sample.

Consumer Choice Implications

The head-to-head comparisons are valuable to illuminating how changes in BEV technol-
ogy and cost can drive increased BEV WTP and choice shares in a concrete set of comparisons
that reasonably hold factors outside the scope of our analysis constant. However, ultimately
it is the overall market shares that matter. We construct future scenarios and run market-
wide simulations to highlight what our estimation results might imply for the entire vehicle
market if each conventional vehicle offering were to offer a BEV powertrain option. This
assumption may be reasonable for 2030, given that there are dozens of planned BEV offer-
ings by automakers (Car and Driver, 2022). We base our simulations on data from the 2022
CAFE Compliance Model (US NHTSA, 2022). It is important to emphasize that vehicle
sales, and resulting market shares, result from the interaction of supply and demand, and our
study assesses only demand. Specifically, our market simulations assume sufficient supply of
electric vehicles at prices estimated by a recent National Academies report NASEM, 2021.

We focus on two scenarios. The first is a hypothetical current vehicle market where
every conventional vehicle has a BEV counterpart, which is useful to show how more BEV
offerings could change BEV share with today’s technology. For each ICEV, we assume a
BEV counterpart that is on par with offerings that exist today: it has a 200 mile range
and a 48% price premium. The second scenario is a hypothetical future market (model year
2030) where each conventional vehicle has a BEV counterpart with 300 miles of range and
a 0% price premium, representing technology projections from a recent National Academies
report (NASEM, 2021). Finally, we incorporate any unobserved attributes by calibrating
alternative-specific constants (ASCs) to match mean market share within the market share
data U.S. National Highway Traffic Safety Administration (2022), and we assume BEV
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Figure 3: Hypothetical market-wide simulation for model year 2020 and 2030 where all
internal combustion engine and hybrid engine vehicle models have a battery electric vehicle
option associated with them.

counterparts will have identical unobserved attributes and, thus, identical ASCs. Details for
the simulation can be found in the SI.

Figure 3 presents the results of this simulation. We observe that BEV offerings result
in higher simulated car and SUV BEV market shares relative to today’s market shares
(which result from interactions of supply and demand and for which there are far fewer
BEV options). Furthermore, our results suggest that the simulated BEV market share for
both cars and SUVs would increase to roughly half the market by 2030, assuming widely
available comparable BEV offering. These findings highlight that expected technological
improvements are key to the adoption of BEVs.

Sensitivity Analysis

We perform a set of sensitivity analyses to characterize the robustness of our results.
One key question stems from the weighting of our survey data to accurately represent the
vehicle-buying population. The 2015 companion study Helveston et al. (2015) uses MTurk
data supplemented with data from the Pittsburgh Auto Show (an event assessed to attract
primarily ordinary car buyers, rather than enthusiasts), while our current survey uses data
from MTurk and Dynata. To assure that these slightly different data sources do not affect
our results, we re-weight and re-estimate both models using only data from Mechanical Turk
respondents (see the SI). We find that the only robust, identifiable differences amongst car-
buyers in these subsamples are the mean and distributional difference tests for operating
costs and the American brand. For SUV buyers, there are no robust differences identified.

In a second sensitivity analysis, we examine the implications of varying WTP for operat-
ing cost to reflect estimates from the literature in place of our estimates(Busse et al., 2013;
Gillingham et al., 2021; Leard et al., 2017; Sallee et al., 2016).Specifically, we apply lower
and upper bounds from the literature of fixed WTP for a 1¢/mile increase in operating cost
of -$232 and -$1,378 for car buyers and -$250 and -$1,438 for SUV buyers. We find that
our market-wide simulation results remain fairly robust, with substantial BEV adoption at
either end of the range of operating cost WTP (see SI for more details) and relatively mod-
est changes in magnitude. Our market simulations are also similarly robust to alternative
assumptions regarding fuel prices and acceleration improvements for BEVs.
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Discussion and Implications for Technology and Policy

Our findings have important implications for vehicle policies as well as BEV technology
development. Understanding the trajectory of consumer willingness to adopt BEVs is crucial
for the effectiveness of many recent and proposed policies that aim to encourage vehicle
electrification (see the wide range of policies reviewed throughout Hayashida et al. (2021)
as well as Newsom (2020); US Environmental Protection Agency (2021a)). Our results
imply that the likelihood of consumers purchasing BEVs has grown over time because of
technological improvements that have increased range and (in many cases) reduced price
premiums of particular BEVs models relative to their gasoline counterparts. This trend
improves the viability and reduces the costs of regulations that encourage electrification,
such as stronger greenhouse gas emission standards and zero-emission vehicle regulations.

Should technological projections hold, our results suggest that it may be possible to
entirely phase out BEV purchase incentives and still have BEVs capture 50% share of choices
relative to their gasoline counterparts by 2030. This is in-line with forecasts by financial and
consulting companies that rely on expert predictions (McKerracher et al., 2022; Niese et al.,
2022), and they suggest a need to prepare BEV-related infrastructure (e.g. charging stations,
sufficient power generation and transmission, etc.) for a pending increase in adoption. These
results also lend additional evidence to the optimism about transitioning the automotive
industry to focus more on BEV production in the coming decade, and they suggest that
technology progress projections are key for future BEV adoption projections used in policy
planning and cost-benefit analyses. Importantly, we do not model supply-side factors that
could affect market outcomes, and our results assume substantial BEV model availability.

Additionally, our results provide a direction for BEV technology development that can
increase consumer adoption. Our consumer choice estimates underscore the potential impor-
tance of increasing BEV range. Most vehicles with a range of at least 300 miles were valued
by consumers equivalently or more than their conventional gasoline vehicle counterparts.
While BEVs have some disadvantages, such as longer recharging times than it takes to fill
up a gasoline vehicle, our results show that these disadvantages are made up for, on average,
by lower operating costs and fast-charging capability as long as range is sufficiently long.
The results also suggest that further improving the efficiency of BEV powertrains to deliver
faster acceleration and/or lower operating costs can help increase consumer adoption.

Interestingly, we find little evidence of major changes in underlying consumer preferences
independent of vehicle technology. One might speculate that growing awareness of plug-in
electric vehicles between 2013-2021 would have increased the likelihood of consumers pur-
chasing these vehicles even if the technology remained constant over time. While our results
do not rule out that some change in consumer preferences occurred, we do not find statis-
tically significant changes in consumer valuation of plug-in electric vehicles over time once
the specific technology and vehicle attributes are controlled for. This could be interpreted
to imply that consumer awareness efforts are less effective than technology development or,
conversely, that inadequate resources have been devoted to consumer awareness efforts in
the past decade. It is possible that consumer preferences could change in the future as larger
numbers of consumers gain experiences with PEVs (Roberson and Helveston, 2020).

There are some limitations to our study worth mentioning. We use a stated preference
approach because historical data on plug-in electric vehicle sales is scant and largely limited
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to early adopters, who may differ considerably from mass-market consumers (Axsen et al.,
2016). We take several precautions in our discrete choice experiment to minimize potential
stated preference biases, but respondents may nevertheless make different choices in hypo-
thetical choice scenarios than in purchase scenarios. Our sensitivity analysis suggests that
our general findings are robust to variation in model parameters based in the literature. As
more plug-in electric vehicles are adopted over the coming years, revealed preference work
could complement our findings.

Our consumer choice results also assume that the availability of BEVs is ubiquitous and
consumers can just as easily find and purchase these vehicles through automotive retailers
and dealerships as conventional gasoline vehicles. This is not the case in some parts of
the U.S. today, but it may be true in 2030. We also focus our study on passenger cars
and SUVs for greater comparability to previous work, but further work on pickup trucks is
warranted, especially given that pickup trucks are now 14% of new vehicle sales in the U.S.
(U.S. Environmental Protection Agency, 2021b, p.16). We conclude by noting that there is
room for much more work exploring preferences for plug-in electric vehicles, especially across
geography, buyer characteristics (income, race, etc.), and in the used vehicle market.
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Supplementary Information

Survey and Data Cleaning Information

All de-identified data and code necessary to construct provided results are available via
https://cmu.box.com/s/2zme67dl7agnstxbkhrlwcaeag0lvgal. Additionally, the full survey
instruments are available at https://cmu.box.com/s/f2vp6vt8gww1pthd6ycl6z79ytkubxlm.

We seek to develop a survey that is as comparable as possible to the survey utilized in
Helveston et al. (2015) (see example in Fig. 4), but with appropriate updates to acknowledge
the changes in the market. Examples from our MTurk and and Dynata surveys can be found
in Figs. 5 and 6. The final conjoint levels used in Helveston et al. (2015) and our survey can
be found in Tables 1 and 2. There were some minor formatting changes from the Helveston
et al. (2015) study due to updates to the Sawtooth Lighthouse software. Additionally, the
formatting is slightly different formatting between the MTurk and Dynata survey versions

in order to improve legibility.

SECTION 3

Each option will look like this:

Suppose these 3 vehicles below were the only vehicles available for purchase, m
which would you choose? y

Attribute* Option 1 Option 2 Option 3
Convertional iﬂ PlugrIn Hybrid iﬂ &" Electric S

Vehicle Type ©
300 mile range on 1 tank 300 mile range on 1 tank 75 mile range on full charge

(first 40 miles electric)

Brand © German American Japanese
Purchase Price © $18,000 $32,000 $24,000
Fast Charging Capability © - Mot Available Available
Operating Cost (Equivalent 19 cents per mile 12 cents per mile B cents per mile
Gasoline Fuel Efficiency) © (20 MPG equivalent) (30 MPG equivalent) (60 MPG equivalent)
0 to 60 mph Acceleration 8.5 seconds (Medium-Slow) 8.5 seconds (Medium-Slow) 7 seconds (Medium-Fast)
Time**©
O O O

*Ta view an attribute description, click on; ©
**The average acceleration for cars inthe U.S. is 0 fo 60 mph in 7.4 seconds

Figure 4: Example discrete-choice question from Helveston et al. (2015) survey
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Section 3

Each option will look like this:

Suppose these 3 vehicles below were the only

vehicles available for purchase, which would

you choose?

=/~

=L

Attribute*

Vehicle Type
L

Brand &

Purchase
Price &

Fast Charging
Capability &

Operating
Cost
(Equivalent
Gas Fuel
Efficiency)™

0 to 60 mph
Acceleration
Time#*ih

Option 1

Electric M

400 mile range on full charge

Option 2

Electric M

400 mile range on full charge

Option 3

Plug-in Wybrid [} & M
300 mile range on 1 tank
(first 40 miles electric)

German German Chinesze
$27,000 $20,000 $36,000
Not Available Available -

9 cents per mile
(29 MPG equivalent)

10 cents per mile
(26 MPG equivalent)

10 cents per mile
(26 MPG eguivalent)

8.5 seconds (Medium-Slow)

7 seconds (Medium-Fasz)

7 seconds (Medium-Fasz)

Select

*To view an attribute description, click on:
**The average acceleration for carsin the U.S.is 0 to 60 mph in 7.4 seconds

Figure 5: Example discrete-choice question from new MTurk survey. Each survey included
15 choice questions with attribute levels varied randomly across questions and respondents

Select

plus two choice questions designed as attention checks.
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Each option will look like this:

Suppose these 3 vehicles below were the only vehicles available for

purchase, which would you choose?

Attribute*

Vehicle Type ©

Brand ©
Purchase Price ©®

Fast Charging
Capability @
Operating Cost
(Equivalent Gas Fuel

Option 1

Electric M

100 mile range on full charge

German
$27,000
Not Available

9 cents per mile
(29 MPG equivalent)

Option 2

Conventional iﬂ

300 mile range on 1 tank

German
$27,000

10 cents per mile
(26 MPG equivalent)

Efficiency)®

0 to 60 mph
Acceleration Time**o

Select

7 seconds (Medium-Fast)

7 seconds (Medium-Fast)

Select

"To view an attribute description, click on: @ ; **The average acceleration for cars in the U.S. is 0 to 60 mph in 7.4 seconds

=L

Option 3

Electric M

150 mile range on full charge

Chinese
$27,000
Not Available

9 cents per mile
(29 MPG equivalent)

10 seconds (Slower)

Select

Figure 6: Example discrete-choice question from new Dynata survey. Each survey included
15 choice questions with attribute levels varied randomly across questions and respondents
plus two choice questions designed as attention checks.

Table 1: Conjoint levels used in Helveston et al. (2015).

Cars SUVs

Price ($1,000s) 15, 18, 24, 32, 50 20, 25, 30, 37, 50

Operating Cost (¢/mile) 6,9, 12, 19 9, 13, 19, 23

Acceleration (0-60 Time Sec.) | 5.5, 7, 8.5, 10 7,8,9, 10

BEV Range (Miles) 75, 100, 150 75, 100, 150

PHEV Range (Miles) 10, 20, 40 10, 20, 40

Brand American, Chinese, German, | American, Chinese, German,
Japanese, South Korean Japanese, South Korean
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Table 2: Conjoint levels used in new study.

Cars SUVs

Price ($1,000s) 17, 20, 27, 36, 56 22, 28, 33, 41, 56

Operating Cost (¢/mile) 4, 8,9, 10, 12 5, 7.5, 10, 12.5 15

Acceleration (0-60 Time Sec.) | 5.5, 7, 8.5, 10 7,8,9, 10

BEV Range (Miles) 100, 150, 300, 400 100, 150, 300, 400

PHEV Range (Miles) 20, 40 20, 40

Brand American, Chinese, German, | American, Chinese, German,
Japanese, South Korean Japanese, South Korean

The following explains our choice-based conjoint framework. First, we utilized the latest
Sawtooth Lighthouse software at the time of fielding. We vary alternative attributes ran-
domly across alternatives, choice sets, and individuals. Each individual is shown seventeen
choice sets (two serve as attention checks, one more than Helveston et al. (2015)), each with
three alternatives. Each attention check shows three options that are identical other than
one having 1) a lower price, 2) a lower operating cost, and in the case of BEVs 3) potentially
the availability of BEV fast charging. All data from respondents who did not choose the
dominant alternative in these cases were discarded because choosing a dominated alterna-
tive suggested that the respondent may have not been paying attention or may have not
understood the task.

Attributes for the survey were altered to reflect modern market conditions. First, we
update several of the aesthetic options available to the survey participant to reflect modern
vehicle designs. Operating cost were updated to reflect modern energy efficiencies and fuel
prices.” BEV ranges were updated to reflect modern BEV ranges available. PHEV fast
charging was not included in this survey. Prices were adjusted to account for inflation. See
Tables 1 and 2 for a full list of levels used in both surveys.

Individuals were screened using the following criteria: 1) they (alone or or together with
a partner) are the primary decision maker when it comes to vehicle purchases and 2) they
have bought a car in the last year or intend to in the next two years. Data from those who
did not pass both attention check questions were omitted. These are the same criteria as
applied in Helveston et al. (2015). The newly-collected data and Helveston et al. (2015)
data were weighted against the nationally representative Maritz survey from 2018 and 2010,
respectively.

Multinomial Logit Results

For simplicity and for comparison, we first estimate a multinomial logit model (Train,
2009) before estimating our preferred mixed logit model. Consistent with the logit assump-
tion in the multinomial logit that preference coefficients are homogeneous, we estimate stan-
dard errors under the assumption that there is no panel relationship amongst our data (each

®Operating cost values are calculated based on the reported, combined MPG/MPGe rating for each
vehicle. Conversion from MPGe to operating costs is based on U.S. Environmental Protection Agency
(2016). See Ganz (2021) for a longer description of MPGe. Gasoline and electric costs are $2.636/gallon and
$0.1304/kWh, which were used in the survey and are based on 2019 averages from U.S. Energy Information
Administration (2020a,b).
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observation is independent). This artifact of the model specification likely leads to over-
confident estimates of parameter coefficients, but we present the results from this model
only as a point of reference.

Like our preferred mixed logit specification, the logit results suggest that willingness to
pay for American cars (relative to other cars) has dropped. The logit results also suggest
that willingness to pay for reductions in operating cost has increased. The logit results also
suggest a difference in scaling factor (the degree to which choice patterns appear systematic
vs. random).

Estimation
Weighting Procedures

In order to treat data consistently, we both weight the newly-collected data and reweight
data from Helveston et al. (2015) using a procedure described in the following paragraph.
These data are weighted to demographic data collected from Maritz for the 2018 and 2010
year respectively - data that is nationally representative of the vehicle-buying population.
Each group of vehicle buyers (passenger-car buyers, etc.) is weighted to the demographic
characteristics of those who bought vehicles of that given vehicle type.

We implement an improved weighting procedure relative to that which was used in Helve-
ston et al. (2015). We follow a weighting procedure that is outlined in Barratt et al. (2021).
Essentially this involved weighting the data by minimizing the KL-divergence and subjecting
the weights to constraints such that no individual can be weighted more than 25 times than
any other individual. The latter set of constraints is consistent with that which was used in
Helveston et al. (2015).

We collected various demographic data throughout the survey that overlaps with data
provided in the Maritz surveys: age, marital status, household income, education level,
gender /sex.5 We weight on the joint distribution of decade of age (e.g. being 25 is in one’s
3rd decade of age) and household income. After removing individuals who did not provide
information used for the weighting procedure, we are left with 734 car buyer respondents
and 862 SUV buyers respondents. Results can be seen in Tables 3 to 6.

6We collect information on the gender identity for respondents, Maritz collected data on their sex. Due to
the discrepancy in information, we assume that the sex people responded with in the Maritz survey reflects
their gender identity.
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Table 3: Demographic weighting outcomes for this study’s car-buyer data.

Variable Unweighted Weighted Maritz 2018
Age 50.4 54.5 54.7
(17.5) (15.7) (15.7)
Single 0.41 0.31 0.39
(0.49) (0.46) (0.49)
Income 75.5 109.3 128.1
(46.1) (53.8) (97.4)
College Grad  0.62 0.74 0.55
(0.48) (0.44) (0.5)
Woman 0.51 0.48 0.46
(0.5) (0.5) (0.5)
Household Size 2.44 2.6 1.99
(1.28) (1.3) (1.14)

Table 4: Demographic weighting outcomes for this study’s SUV-buyer data.

Variable Unweighted Weighted Maritz 2018
Age 53.4 55.6 56.5
(17.1) (14.6) (14.2)
Single 0.3 0.19 0.26
(0.46) (0.39) (0.44)
Income 83.2 121.2 150.8
(49.2) (54.5) (104.7)
College Grad 0.6 0.75 0.55
(0.49) (0.43) (0.5)
Woman 0.52 0.47 0.47
(0.5) (0.5) (0.5)
Household Size 2.6 2.66 2.05
(1.29) (1.2) (1.18)

23



Table 5: Demographic weighting outcomes for car-buyer data from Helveston et al. (2015).

Variable Unweighted Weighted Maritz 2010
Age 33.8 46.7 51.8
(12.4) (13.8) (15.9)
Single 0.61 0.34 0.17
(0.49) (0.48) (0.38)
Income 64.6 92.1 119.5
(33.0) (28.5) (88.9)
College Grad  0.53 0.71 0.55
(0.5) (0.46) (0.5)
Woman 0.34 0.36 0.45
(0.48) (0.48) (0.5)
Household Size 2.67 2.81 2.38
(1.27) (1.17) (1.15)

Table 6: Demographic weighting outcomes for SUV-buyer data from Helveston et al. (2015).

Variable Unweighted Weighted Maritz 2010
Age 37.8 45.5 51.7
(11.2) (11.7) (14.3)
Single 0.44 0.36 0.1
(0.5) (0.48) (0.3)
Income 69.3 96.3 143.6
(34.3) (24.5) (101.0)
College Grad  0.54 0.65 0.57
(0.5) (0.48) (0.49)
Woman 0.49 0.44 0.47
(0.5) (0.5) (0.5)
Household Size 2.96 3.02 2.55
(1.35) (1.27) (1.16)

Functional Form Decisions

We estimate our preferred specifications in willingness-to-pay (WTP) space (Train and
Weeks, 2005). WTP space has desirable properties for the resulting estimation uncertainty
of WTP parameters (Helveston et al., 2018; Train and Weeks, 2005). Still, tradeoffs exist
(including nonconcave log-likelihood functions, which we maximize using randomized mul-
tistart with gradient based algorithms) (Carson and Czajkowski, 2019; Train and Weeks,
2005). We adopt the willingness to pay space as we are most interested in characterizing
the monetary tradeoffs that consumers are making with choice share prediction being of
secondary interest.

Our primary specification follows that which was used in Helveston et al. (2015) except
we allow for a continuous parameterization of WTP for BEV range. Past parameterizations
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of range in the utility function have taken many forms: linear (Brownstone, 1999; Haaf et al.,
2014; Hess et al., 2006; McFadden and Train, 2000; Nixon and Saphores, 2011; Segal, 1995;
Tanaka et al., 2014; Train and Sonnier, 2005; Train and Weeks, 2005),” quadratic (Brown-
stone et al., 2018, 1996), log (Daziano, 2013; Hess et al., 2012; Kavalec, 1999), partworth
(Hidrue et al., 2011; Parsons et al., 2014; Zhang et al., 2011), and indirectly through its rela-
tionship to efficiency and tank size (Walls, 1996). Therefore, there isn’t a clear direction for
range parameterization from the literature nor in our cross-validation exercises, so we choose
the functional form that was most interpretable (linear-in-range) but provide the results for
a model estimated with BEV range being transformed using inverse hyperbolic sine. Inverse
hyperbolic sine was chosen due to its similar behavior to the natural logarithm while still
allowing for zero values (Bellemare and Wichman, 2020). All other parameterizations follow
the preferred specification presented in Helveston et al. (2015).

Full Results

We present the full set of results in the following subsections.
Differences Over Time
Multinomial Logit

Table 7, we present the Wald test results for difference over time in our preferred multino-
mial logit specification. Most coefficients are not identifiably different at the 5% significance
level with the exception of the scaling factor for both vehicle types, American cars, BEV
range, and operating cost for car buyers. This is in line with previous work, which shows
that individuals were not meaningfully more likely to consider electric vehicles from 2014 to
2017 (Kurani, 2019).

"Nixon and Saphores (2011) characterizes the range relative to gas vehicles.
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Table 7: Willingness-to-Pay Equality Tests Across Studies - Multinomial Logit

Mixed Logit

Car-Buyer | SUV-Buyer
Attribute Equality of | Equality of
Means Means
Wald Stat | Wald Stat
Acceleration 3.16 1.91
Operating Cost 4.03* 0.63
Gasoline-electric hybrid 2.33 1.5
PHEV 20 0.15 0.53
PHEV 40 0.08 3.72
300-Mile Range BEV 2.85 0.0
BEV Range (100s of Miles) | 5.72* 0.06
No BEV Fast Charging 0.11 2.5
American 14.6%%* 2.34
Chinese 1.31 2.41
Japanese 0.04 1.02
South Korean 1.67 1.73
Scaling Factor 18.16%** 27.02%+%

*p <.05, FF p < .01, K p <001

Table 8, we present the Wald test results for difference over time in our preferred mixed
logit specification. Most tests are not statistically significantly different at the 5% level
with the exception of the scaling factor for both vehicle types, and both the mean and full
distribution for American cars among car buyers.
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Table 8: Willingness-to-Pay Equality Tests Across Studies - Mixed Logit

Car-Buyers SUV-Buyers
Equality of Equality of | Equality of Equality of
Attribute Means Distribution Means Distribution
Wald Stat ~ Wald Stat | Wald Stat ~ Wald Stat
Acceleration 0.89 7.29%* 0.47 2.93
Operating Cost 1.58 4.09 0.18 3.71
HEV 1.41 1.41 0.3 0.59
PHEV 20 0.09 0.99 0.27 0.37
PHEV 40 0.03 1.6 1.76 3.84
300-Mile Range BEV 1.25 1.71 1.18 1.71
BEV Range (100s of Miles) | 2.84 3.04 1.26 1.48
No BEV Fast Charging 0.0 2.42 0.48 2.89
American 11.52%%* 11.72%* 0.77 4.69
Chinese 0.16 0.47 0.89 1.64
Japanese 0.06 0.08 0.03 0.14
South Korean 0.48 1.22 1.36 2.62
Scaling Factor 24.01°%** — 11.317%%*

*p <05, FF p < .01, p <001

Functional Form Comparison

In this section, we present the full set of results for both our preferred linear specification
(presented in the main body) and an alternative specification that uses an inverse hyperbolic
sine transformation of range.® This alternative specification (shown in Egs. (2) and (3))
was chosen for it’s log-like behavior (Bellemare and Wichman, 2020). However, as shown
inTables 9, 10, 12 and 13, the linear model outperforms or performs approximately equally
to the inverse hyperbolic sine model in log-likelihood in all cases.

Vijt = A (Oéiaijt + w04t + Bbij 4 piasinh (rize) + 0; fije + SZTXijt — pijt) + €ijt (2)
. T

2021 Stuﬁ]; = X (aaij + woije + Bbiji + pasinh (rije) +nfije + 8 Xije — pije) + €ije (3)
Tables 9 and 10 shows the results for both the linear and inverse hyperbolic sine range
parameterization for car-buyer and SUV-buyer data from the 2021 study survey data. Addi-
tionally, Table 11 shows the comparison of range formulations performance in five-fold cross
validation exercise. We see that there is no clear patter as to which performs better on
out-of-sample prediction, so we opt to use the linear specification as it is more interpretable.

Still, both formulations are shown here.

8All WTP coefficients are assumed to independently and normally distributed.
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Table 9:

Full results for 2021 study car buyers

Attribute

Parameter

Linear-in-Range

Linear-in-Range

Arcsinh-in-Range Arcsinh-in-Range

Price
Acceleration

Operating Cost
HEV

PHEV 20
PHEV 40

BEV (w/
equivalent range)

Add’l Range
(100s of mi.)

BEV
(0-mi range)

arcsinh(Add’l
Range)

No BEV Fast
Charging

American
Chinese
Japanese

South Korean

AT QT QT AT AT T

9 = 9 T 9 =

Q=

QT QAT QT Q9® Q9 =®

0.066%** (0.002)
~1.31%%* (0.18)

S1.8THFE (0.12)
1.19 (1.17)
0.26 (1.15)

2.02 (1.17)

-3.42%F (1.07)

4.64%%% (0.39)

-3.97%%* (0.89)

-1.72 (0.92)
~18.25%%* (1.14)
-0.88 (0.93)

-5.95%%* (0.94)

0.1%%% (0.003)
~1.41%%% (0.26)
2.42%%% (0.24)
~1.94%%% (0.2)
1.82%%* (0.16)
1.16 (1.17)
6.73%** (1.55)
0.22 (1.09)
3.12 (2.47)
1.94 (1.05)
1.97 (1.61)

-3.91 (1.99)

15.97%% (1.3)
5.05%%* (0.73)
6.69%** (0.62)

~4.27FF% (0.96)

5.37F%* (1.37)
-1.94 (1.15)
9.69%** (1.04)
~21.08%%* (2.41)
20.46%*%* (1.77)
-0.34 (1.14)
9.08%** (1.22)
-5.57F%* (1.08)
8.14%%* (1.09)

0.066*** (0.002)
~1.31%F (0.18)

S1.8THFE (0.12)
1.19 (1.17)
0.27 (1.15)

2.04 (1.17)

~68.15%** (5.42)

10.26%%* (0.87)

-3.95%%* (0.89)

-1.75 (0.92)
~18.27%FF (1.14)
-0.88 (0.93)

-6.01%** (0.94)

0.093%** (0.003)
~1.43%%F (0.26)
2.38%%* (0.23)
-1.94%%% (0.19)
1.77%%% (0.16)
1.29 (1.19)
6.28%F* (1.62)
0.17 (1.12)

3.33 (1.97)
1.99 (1.07)
0.85 (1.22)

-69.05%** (5.22)
12.36*** (3.17)
10.31F* (0.82)
1.69% (0.65)

~4.01%%* (0.98)

5.78%%* (1.53)
2.0 (1.18)
9.6%%* (1.02)
-20.77FF* (2.41)
20.08%** (1.62)
-0.51 (1.16)
9.18%¥* (1.27)
“5.79%FF (1.12)
8.59%** (1.05)

Log-likelihood
# of Individuals
# of Observations

-9336.0
734
11010

-8409.2
734
11010

-9334.1
734
11010

-8538.8
734
11010
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Table 10: Full results for 2021 study SUV buyers

Attribute Parameter Linear-in-Range Linear-in-Range Arcsinh-in-Range Arcsinh-in-Range
Price [ 0.072%%* (0.002) 0.105%** (0.004) 0.072*** (0.002)  0.098*** (0.003)
Acceleration 1 L3URRE (0.24)  -146%FF (0.34)  -1.31FFF (0.24)  -1.46%%* (0.34)

o 3.3 (0.36) 3.2 (0.39)
Operating Cost 1 13T (0.08)  -1.49%FF (0.12)  -1.37FFF (0.08)  -1.45%FF (0.12)

o 1.13%% (0.11) 1.14%%% (0.11)
HEV [ 1.12 (0.99) 1.18 (1.02) 1.13 (0.99) 1.43 (1.04)

o 5.05%% (1.38) 5.06%* (1.53)
PHEV 20 0 -1.91 (1.0) -1.44 (0.92) -1.91 (1.0) -1.42 (0.95)

o 0.09 (0.66) 0.21 (0.6)
PHEV 40 [ -0.88 (0.99) -0.61 (0.97) -0.86 (0.98) -0.39 (0.98)

o 4.01% (1.57) 3.27 (1.98)
fi\;;fev I/l ¢ range) " 7.86%F% (0.97)  -8.91FF* (1.97)

o 15.74%% (1.3)
é‘é‘ésl j}aﬁ‘; 0 6.35%%* (0.38)  T.05%** (0.72)

o 6.95%* (0.6)
](30271 fange) i LOT.24F%F (5.5)  -96.27%F% (5.55)

o 15.96*%* (1.68)
ggig;mddl K 14.17%%% (0.87)  13.97%F* (0.84)

o 0.32 (1.27)
gia?SXgFaSt [ S3.3306F (0.84)  -4.20%F (L01)  -3.33%%% (0.85)  -3.83%F* (1.02)

o 6.5%* (1.29) 6.56*** (1.38)
American 1 37264 (0.83)  3.68%* (1.21)  3.75%%% (0.83)  4.08%* (1.27)

o 11.1%%% (0.97) 11.58%%* (0.98)
Chinese 1 _15.93%%% (0.99)  -19.0%%% (1.85)  -15.99%%* (0.99)  -18.99%** (1.92)

o 16.56%%% (1.4) 16.89* (1.49)
Japanese i 0.54 (0.81) 0.34 (1.05) 0.53 (0.81) 0.48 (1.09)

o 8.86*** (1.2) 9.4%** (1.26)
South Korean 1 BBIFRR (0.83)  -5.4FFF (0.93)  -5.52FFF (0.83)  -5.36%% (0.93)

o 6.58%** (1.06) 6.24%%% (1.13)

Log-likelihood
# of Individuals
# of Observations

-10592.0
862
12930

-9521.1
862
12930

-10583.2
862
12930

-9676.4
862
12930
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Table 11: Results from five-fold cross-validation exercise for newly-collected data.

Vehicle Range Model Weight Mean Mean

Type Parameterization Spec.  Year Out-of-Sample LL In-Sample LL
Car Asinh MNL 2018 -1944 -7397
Car Linear MNL 2018 -1879 -7464
SUV Asinh MNL 2018 -2112 -8478
SUV Linear MNL 2018 -2129 -8469
Car Asinh MXL 2018 -1952 -6723
Car Linear MXL 2018 -1851 -6724
SUV Asinh MXL 2018 -2057 -7755
SUV Linear MXL 2018 -2102 -7619

2015 Study

Tables 12 and 13 shows the results for both the linear and inverse hyperbolic sine range
parameterization for car-buyer and SUV-buyer data from the Helveston et al. (2015) data.
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Table 12: Full results for Helveston et al. (2015) car buyers

Attri P . . . . o s
teribute arameter Linear-in-Range Linear-in-Range Arcsinh-in-Range Arcsinh-in-Range

Price " 0.05%%* (0.003)  0.071%** (0.005) 0.05*** (0.003)  0.07*** (0.005)
Acceleration 1 2.13%%% (0.42)  -2.17% (0.77) “2.13%FF (0.42)  -2.19% (0.78)

o 417 (0.64) 4.12%%% (0.64)
Operating Cost ~ p LA9FRE (0.15)  -1.53%FF (0.26)  -1.49%%* (0.15)  -1.54%F* (0.25)

o 1.42%%% (0.2) 1.45%%* (0.2)
HEV [ -3.12 (2.58) -2.21 (2.58) -3.11 (2.58) -2.35 (2.65)

o 6.99 (3.26) 8.13%* (2.64)
PHEV 10 [ -3.05 (2.67) 12,23 (2.47) -3.05 (2.67) -2.04 (2.47)

o 0.42 (0.84) 0.62 (1.3)
PHEV 20 1 1.43 (2.77) 1.03 (2.53) 1.44 (2.77) 1.18 (2.52)

o 0.61 (0.91) 0.03 (0.71)
PHEV 40 [ 1.22 (2.66) 1.46 (2.57) 1.23 (2.66) 1.82 (2.53)

o 6.61 (3.31) 5.6 (4.71)
gllgi; If:g ast [ 4.08 (2.09) 2.99 (2.19) 4.09 (2.09) 2.93 (2.13)

o 8.3%* (2.79) 7.4% (2.85)
EEYVSZ 1/1 ¢ range) " 9.14 (7.36) 4.53 (7.29)

o 11.96% (4.33)
é%gsl iiﬁ% [ 13.48%%% (3.67)  11.7%* (3.88)

o 8.62%%* (2.06)
](30%; ange) [ L94.27FFF (22.01)  -T5.77%%% (20.55)

o 18.32%%% (2.68)
galegf)l(Addl K 14.54** (4.06) 10.77* (3.78)

o 1.46* (0.55)
gﬁa]ngi:gFaSt [ -4.79 (2.31) -4.45 (2.66) -4.79 (2.31) ~4.14 (2.57)

o 10.75%* (3.29) 9.65% (3.38)
American [ 6.84%F (2.04)  T.56** (2.55)  6.84%* (2.04) 7.29% (2.52)

o 12.08%%* (2.41) 11.82%%% (2.44)
Chinese 1 213106 (2.42)  -22.83%FF (3.64) -21.32%%* (2.42)  -22.6%F* (3.75)

o 18.89%%* (2.88) 19.25%%* (3.00)
Japanese 1 -0.42 (2.04) 0.27 (2.21) -0.42 (2.04) 0.19 (2.27)

o 8.67* (2.49) 9.55%% (2.28)
South Korean L -9.02%F* (2.18)  -7.19%* (2.08) -9.01%%* (2.18) -7.31%% (2.1)

o 5.52 (3.54) 5.67 (3.85)
Log-likelihood “4563.7 “4218.5 “4564.4 42923
# of Individuals 358 358 358 358
# of Observations 5370 5370 5370 5370
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Table 13: Full results for Helveston et al. (2015) SUV buyers

Attribute Parameter Linear-in-Range Linear-in-Range Arcsinh-in-Range Arcsinh-in-Range
Price " 0.046%** (0.005) 0.074%** (0.009) 0.046*** (0.005)  0.075*** (0.009)
Acceleration i -2.25%* (0.64) -2.01* (0.73) -2.25%* (0.64) -1.94%* (0.67)

o 2.05% (0.81) 1.74 (0.86)
Operating Cost 1 C118%F% (0.22) 1.2 (0.62) 1.18%%% (0.22)  -1.19 (0.61)

o 2.03%%* (0.47) 2.09%%* (0.45)
HEV [ 6.37 (4.17) 3.51 (4.1) 6.37 (4.17) 3.12 (4.31)

o 8.26 (5.23) 9.26 (4.68)
PHEV 10 " -0.07 (4.36) -0.18 (3.92) -0.09 (4.36) 0.64 (4.16)

o 1.78 (7.27) 6.61 (5.04)
PHEV 20 1 1.13 (4.05) 0.54 (3.68) 1.1 (4.05) 0.47 (3.63)

o 0.87 (3.22) 3.95 (3.23)
PHEV 40 [ 7.56 (4.27) 5.45 (4.46) 7.54 (4.26) 5.96 (4.19)

o 10.49 (4.92) 7.9 (4.56)
gllgi; If:g ast [ -1.32 (3.29) -0.43 (3.57) -1.32 (3.29) -1.04 (3.58)

o 8.8 (4.56) 10.74% (3.8)
iﬂigg 1/1 ¢ range) " 7.42 (12.13) 4.85 (12.52)

o 21.69% (7.51)
é%gsl iiﬁ% 1 7.87 (6.04) 13.7 (5.88)

o 5.1 (4.37)
](30}:3111/1 ange) 1 _71.21 (36.04) ~91.07* (33.78)

o 13.11 (8.33)
la{r;zgj)l(Addl K 9.12 (6.65) 12.98 (6.22)

o 3.6% (1.43)
gﬁa]ngi:gFaSt [ 3.28 (4.09) -0.43 (5.35) 3.33 (4.09) 0.38 (4.78)

o 14.83* (5.87) 12.35 (6.53)
American " 8.68* (3.13) 9.17 (6.15) 8.67* (3.13) 8.65 (5.7)

o 22.11%%* (5.43) 21.1%%% (4.76)
Chinese [ 122.04%%% (3.81) -25.36%F (6.47) -22.05%** (3.81)  -23.54%%* (6.11)

o 21.92%%% (4.82) 23.0%% (4.76)
Japanese 1 3.93 (3.25) 1.02 (3.6) 3.92 (3.25) 1.62 (3.46)

o 10.11%% (3.28) 9.45% (3.77)
South Korean " -10.4% (3.62) “10.48* (4.26)  -10.4* (3.62) ~10.65 (4.74)

o 11.79 (5.57) 15.01% (5.31)
Log-likelihood 15413 13755 “1541.0 13728
# of Individuals 116 116 116 116
# of Observations 1740 1740 1740 1740
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Estimates of Those Unaffected by the COVID-19 Pandemic

We ask individuals in the survey in which of the following ways they were impacted by
the COVID-19 pandemic: Permanent job loss, Temporary job loss, Salary reduction, None
of the above. For those that selected “None of the above”, we re-estimate our models with
that subset of data. We find that results remain comparable across the samples, indicating
that the COVID-19 pandemic is not a major driver of consumer preferences.

Car-Buyers

Figure 7 shows our preferred coefficients estimated with the entire 2021 study car-buyer
data and only who responded as being unaffected economically by the COVID-19 pandemic.
As can be seen, these coefficients overlap closely, which provides evidence that COVID-
related behaviors are not driving any particular results.
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Figure 7: Mixed logit estimation with full sample and those unaffected by Covid-19. Note
that the top left subfigure uses a different y-axis than the other three subfigures.

SUV-Buyers

Figure 8 shows our preferred coefficients estimated with the entire 2021 study SUV-
buyer data and only who responded as being unaffected economically by the COVID-19
pandemic. As can be seen, these coefficients overlap closely, which provides evidence that
COVID-related behaviors are not driving any particular results.
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Willingness to Pay ($1,000s)

Willingness-to-Pay ($1,000s)
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Figure 8: Mixed logit estimation with full sample and those unaffected by Covid-19.
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MTurk Specific Model Comparison

In our preferred preference estimates, we compare results when using the full datasets
from this study as well as Helveston et al. (2015). These data each combine two sources of
data. This study collects data from mTurk and Dynata surveying populations. Helveston
et al. (2015, p.102) collects data from mTurk and the Pittsburgh Auto Show. In order to
identify if the change in sources of data was driving any results, we estimate our preferred
specification models with both datasets using only mTurk data and compare over time.

Car-Buyers

For car buyers, the Wald test results are presented in Tables 14 and 15. The only
major difference in the multinomial logit specification are increased significance levels for
acceleration, operating cost, and Chinese cars. For the mixed logit specification, operating
cost WTP becomes significantly different in means and distribution at the 1% and 0.1% level
respectively. Additionally, there is a change in the distribution of WTP for Chinese cars.

Table 14: Comparison of 2015 study and 2021 study car buyer estimates with only MTurk-
collected Data

Equality of

Attribute Means
Wald Stat
Acceleration 4.38*
Operating Cost 22 48%H*
HEV 0.02
PHEV 20 0.05
PHEV 40 0.22
300-Mile Range BEV 0.01
BEV Range (100s of Miles) 0.05
American 17.5%%*
Chinese 4.78*
Japanese 2.57
South Korean 0.83
Scaling Factor 3.1
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Table 15: Comparison of 2015 study and 2021 study car buyer estimates with only MTurk-

collected Data

SUV-Buyers

Equality of Equality of

Attribute Means Distribution
Wald Stat ~ Wald Stat
Acceleration 1.18 2.03
Operating Cost 8.31°** 19.0%**
HEV 0.04 2.12
PHEV 20 0.06 0.07
PHEV 40 0.07 0.54
300-Mile Range BEV 0.07 0.68
BEV Range (100s of Miles) 0.0 0.59
American 17.22%%* 17.23%**
Chinese 2.64 7.91%
Japanese 1.62 1.75
South Korean 0.85 1.25
Scaling Factor 1.01 -

For car buyers, the Wald test results are presented in Tables 16 and 17.

Table 16: Comparison of 2015 study and 2021 study SUV buyer estimates with only MTurk-

collected Data

Equality of

Attribute Means
Wald Stat

Acceleration 3.1
Operating Cost 0.22
HEV 0.2
PHEV 20 0.42
PHEV 40 0.06
300-Mile Range BEV 3.06
BEV Range (100s of Miles) 3.58
American 1.32
Chinese 0.64
Japanese 0.07
South Korean 0.13
Scaling Factor 2.07
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Table 17: Comparison of 2015 study and 2021 study SUV buyer estimates with only MTurk-
collected Data

Equality of Equality of

Attribute Means Distribution
Wald Stat ~ Wald Stat

Acceleration 4.23%* 5.63

Operating Cost 0.23 0.24

HEV 0.3 3.36

PHEV 20 0.55 1.73

PHEV 40 0.05 5.35

300-Mile Range BEV 2.92 3.91

BEV Range (100s of Miles) 4.13* 4.15

American 0.76 5.62

Chinese 0.59 0.83

Japanese 0.43 0.63

South Korean 0.46 2.2

Scaling Factor 1.21 -

Mechanical Turk-Dynata Comparison

In the following tables, we present Wald test statistics between estimates based on the
2021 Mechanical Turk and 2021 Dynata weighted samples alone. As one can see, there
are minimal differences for the car-buying population under a mixed logit (our preferred)
specification. Across means, only the mean WTP for a 300-mile range BEV is statistically
significant at the 5% level. The SUV-buying population does exhibit more differences as
the mean values for electrification. Likely, these estimates differ due to differences in their
demographics (see Tables 22 and 23).
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Car-Buyers

Table 18: Comparison across 2021 Mechanical Turk and Dynata Car-Buyer Estimates -

Mixed Logit

SUV-Buyers

Equality of Equality of

Attribute Means Distribution
Wald Stat ~ Wald Stat
Acceleration 2.05 6.21°%*
Operating Cost 3.65 3.65
HEV 0.21 0.41
PHEV 20 0.12 0.12
PHEV 40 0.02 0.06
300-Mile Range BEV 6.19%* 6.6*
BEV Range (100s of Miles) 3.93* 3.96
American 0.96 10.08**
Chinese 3.04 3.04
Japanese 0.81 8.99*
South Korean 1.62 4.36
Scaling Factor 28.09%**

Table 19: Comparison across 2021 Mechanical Turk and Dynata SUV-Buyer Estimates -

Mixed Logit

Equality of Equality of

Attribute Means Distribution
Wald Stat  Wald Stat
Acceleration 5.56%* 5.58
Operating Cost 2.32 2.38
HEV 1.73 1.81
PHEV 20 14.41%%* 15.217%%*
PHEV 40 15.28%** 27.68%F*
300-Mile Range BEV 7.6%* 10.77%*
BEV Range (100s of Miles) 0.02 3.64
American 0.3 5.4
Chinese 1.41 2.18
Japanese 2.4 11.33%*
South Korean 0.56 5.08
Scaling Factor 17.39%#* -
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Table 20: Demographic weighting outcomes for this study’s Mechanical Turk car-buyer data.

Variable Unweighted Weighted Maritz 2018
Age 39.2 47.4 54.7
(11.8) (13.6) (15.7)
Single 0.44 0.35 0.39
(0.5) (0.48) (0.49)
Income 69.3 102.3 128.1
(42.4) (52.8) (97.4)
College Grad  0.62 0.72 0.55
(0.49) (0.45) (0.5)
Woman 0.52 0.54 0.46
(0.5) (0.5) (0.5)
Household Size 2.74 3.01 1.99
(1.38) (1.44) (1.14)

Table 21: Demographic weighting outcomes for this study’s Dynata car-buyer data.

Variable Unweighted Weighted Maritz 2018
Age 60.4 57.0 54.7
(15.7) (14.8) (15.7)
Single 0.39 0.27 0.39
(0.49) (0.44) (0.49)
Income 75.9 105.9 128.1
(45.8) (50.3) (97.4)
College Grad  0.63 0.76 0.55
(0.48) (0.43) (0.5)
Woman 0.49 0.44 0.46
(0.5) (0.5) (0.5)
Household Size 2.17 2.44 1.99
(1.11) (1.17) (1.14)
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Table 22: Demographic weighting outcomes for this study’s Mechanical Turk SUV-buyer

data.
Variable Unweighted Weighted Maritz 2018
Age 39.6 48.0 56.5
(11.1) (12.3) (14.2)
Single 0.26 0.18 0.26
(0.44) (0.39) (0.44)
Income 77.9 114.4 150.8
(47.5) (56.8) (104.7)
College Grad 0.6 0.79 0.55
(0.49) (0.4) (0.5)
Woman 0.59 0.54 0.47
(0.49) (0.5) (0.5)
Household Size 3.18 2.97 2.05
(1.39) (1.26) (1.18)

Table 23: Demographic weighting outcomes for this study’s Dynata SUV-buyer data.

Variable Unweighted Weighted Maritz 2018
Age 63.5 60.0 56.5
(13.2) (13.3) (14.2)
Single 0.33 0.24 0.26
(0.47) (0.43) (0.44)
Income 81.8 112.3 150.8
(47.1) (50.9) (104.7)
College Grad 0.6 0.73 0.55
(0.49) (0.45) (0.5)
Woman 0.47 0.46 0.47
(0.5) (0.5) (0.5)
Household Size 2.17 2.44 2.05
(1.02) (1.12) (1.18)

Breakdown of Technology Preference Changes

It should be noted that that main body head to head figures are all based upon prefer-
ences identified with the most recently collected data. In order to identify how these changes
in technology impact net WTP over time relative to underlying changes in preference, we
plot the net WTP of all three technologies across two different sets of WTP estimates based
on data from Helveston et al. (2015) and our newly-collected data respectively. Fig. 9 shows
very clearly that both WTP estimates provide evidence of technology improvements im-
proving BEV value. However, when comparing across outcomes based on different datasets,
the overlapping uncertainty suggests that there is insufficient evidence here to suggest that
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underlying consumer preferences have changed over time. We examine this using statistical
tests in the “Full Results” section of this document.

$40k

$30k

420K - 2015 Study 2021 study
Preferences Preferences

BEV Net WTP Relative to CV

T T T T T T
2013 2022 2030 2013 2022 2030
Model Year

Figure 9: Comparison of net WTP across different technology offering and survey datasets
for the Nissan Leaf and Versa. Error bars denote 4+2 standard errors.

Market-Wide Simulation

Simulation Details

In order to construct a market simulation, we begin with MY 2020 sales data from U.S.
National Highway Traffic Safety Administration (2022). With these data, alternative-specific
constants, conditional on the vehicles’ estimated acceleration?, operating cost, and price were
calibrated to replicate market share for both cars and SUVs.

The future of acceleration for BEVs is not particularly clear because automakers may
choose to forgoe acceleration improvements for other attributes due to the excellent accel-
eration already in many BEVs (Woo and Magee, 2020). Further, in our sample of collected
head-to-head comparisons, we find inconsistent relative performance of BEVs (see Fig. 10a).
Therefore, our base case assumptions in the main body assume that there will be no im-
provement in acceleration.

Additionally, we see wide ranges of price premiums (see Fig. 10b). In order to inform
our MY2020 simulation, we use the mean proportional difference in prices to calculate the
price premium for all hypothetical 2020 BEV offerings.

9We use the same acceleration estimation equation as Greene et al. (2018, Eq. 9).
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Alternative Acceleration Assumptions

We run an alternative case where we assume a more optimistic case for the acceleration
benefits of BEV offerings. Specifically, we reduce 0-60 acceleration time by roughly 25%,
which is the most optimistic value we saw amongst our head-to-head comparisons in Fig. 10a.

As can be seen, in Fig. 11, we see no qualitative differences in adoption, which provides
evidence that our simulation is not sensitive to acceleration performance assumptions.

BEV Car Market Share BEV SUV Market Share
100% 100%

o/ o/, 4
2 80% g 80% Other
< <
L 60% A Z 60% Other
9 Y
S 40% T S 40% A
5 Real ﬁ
0 20% A o 20% Real

MY2020 MY2020
| BEV Share
0% - 0% 4 BEV Share
MY2020 MY2030 MY2020 MY2030

Figure 11: Hypothetical market-wide BEV simulation with alternative BEV acceleration
assumptions
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Alternative Fuel Cost Assumptions

In order to identify how sensitive our results are to fuel price levels, we ran an alter-
native simulation with fuel prices that come from more recent data. Specifically, we as-
sume $4.271/gallon of gasoline and $0.1383/kWh (U.S. Energy Information Administration,
2022a,b).

BEV Car Market Share BEV SUV Market Share
100% 100%
o 80% 1 o 80% A Other
2 2
% 60% - g 60%
v V4
S 40% T S 40% T
E Real 5
o 20% MY2020 o 20% Real
_| BEV Share MY2020
0% - 0% - BEV Share
MY2020 MY2030 MY2020 MY2030

Figure 12: Hypothetical market-wide BEV simulation with alternative fuel cost assumptions
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Alternative Operating Cost WTP Assumptions

Our final alternative assumption tests the sensitivity of our results to the relatively high
WTP for operating cost that we measure within our sample. To test this, we plug in a
fixed, alternative, operating cost WTP value, re-calibrate our ASCs, and then re-simulate
our scenarios.

The alternative values used are based on extreme, exact valuation parameters presented
in Gillingham et al. (2021, Table 8): 0.17 and 1.01. We take the discount rate associated with
these values, the lifetime and mileage estimates from U.S. National Highway Traffic Safety
Administration (2022), and the formula from Leard et al. (2019, p.64), to calculate the net
present value of a 1¢ reduction in operating cost throughout the lifetime of a passenger car
and SUV. We then multiply this value by the respective valuation parameters. These final
values are then used in our simulations.

The results are shown in Figs. 13 and 14. The results show that our results are not
particularly sensitive to our estimate WTP value, BEV adoption is still expected to grow
dramatically given the simulated scenario.

BEV Car Market Share BEV SUV Market Share
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Figure 13: Hypothetical market-wide BEV simulation under an lower-bound alternative
operating cost WT'P assumption
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Figure 14: Hypothetical market-wide BEV simulation under an upper-bound alternative
operating cost WTP assumption
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Full Head-to-Head Results
BEV Comparison

Simulated Choice Shares

Figure 15 takes the same seven head-to-head comparisons from the main body of the
paper and simulates the probability that a randomly selected individual will choose the
BEV over the conventional vehicle. The same assumptions are made about the evolution of
BEV technologies and costs as were made in the main body.
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Figure 15: BEV Car and SUV head-to-head choice share comparisons over time. Net WTP
calculated using the 2021 study mixed logit model for car- and SUV-buyers respectively.
Error bars denote 2.5 and 97.5 percentiles.

The results show a clear pattern of increasing probabilities of BEV choice over time. This
is especially notable for the Leaf, Mini, and i4, all of which are estimated to take a majority
share of choices by 2030 in these head-to-head scenarios under our assumptions of BEV cost
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and technology improvements. The Ioniq and the three SUVs are just behind, with roughly
40% shares by 2030.

Head-to-Head Comparison Plots

The follows sets of figures show all of the individual head-to-head comparisons that are
made in the previous subsection. The y axis always refers to the WTP value or price for
the BEV option relative to the conventional vehicle option. On the x axis, we show the

successive relative difference between the two vehicles.
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(a) WTP for the 2022 MINI Electric relative to (b) WTP for a hypothetical future MINI Electric
the 2022 MINIL relative to the 2022 MINI.

Figure 16: Head-to-head charts showing W'TP for attributes for the MINI Electric BEV
relative to those of the MINI gasoline vehicle built on the same platform using consumer
preference data from the 2021 survey. Horizontal lines show the price premiums associated
with the electric vehicle with and without the federal BEV tax credit applied. Error bars
denote +2 standard errors.
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(a) WTP for the BMW i4 eDrive40 relative to (b) WTP for a hypothetical future BMW i4
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Figure 17: Head-to-head charts showing WTP for attributes for the BMW i4 BEV relative
to those of the 4-series vehicle built on the same platform using consumer preference data
from the 2021 survey. Horizontal lines show the price premiums associated with the electric
vehicle with and without the federal BEV tax credit applied. Error bars denote +2 standard

errors.
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(a) WTP for the Hyundai Ioniq EV SE relative (b) WTP for a hypothetical future Ioniq EV SE
relative to the Ioniq Hybrid SE.

to the Ioniq Hybrid SE.

Figure 18: Head-to-head charts showing WTP for attributes for the Hyundai Ioniq EV
relative to those of the Ioniq Hybrid vehicle built on the same platform using consumer
preference data from the 2021 survey. Horizontal lines show the price premiums associated
with the electric vehicle with and without the federal BEV tax credit applied. Error bars

denote £2 standard errors.
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Figure 19: Head-to-head charts showing WTP for attributes for the Hyundai Kona EV
relative to those of the Hyundai Kona Hybrid vehicle built on the same platform using
consumer preference data from the 2021 survey. Horizontal lines show the price premiums
associated with the electric vehicle with and without the federal BEV tax credit applied.
Error bars denote +2 standard errors.
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Figure 20: Head-to-head charts showing WTP for attributes for the Volvo XC40 Recharge
BEV relative to those of the XC40 vehicle built on the same platform using consumer pref-
erence data from the 2021 survey. Horizontal lines show the price premiums associated with
the electric vehicle with and without the federal BEV tax credit applied. Error bars denote
+2 standard errors.
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Figure 21: Head-to-head charts showing WTP for attributes for the Kia Niro EV relative to
those of the Niro vehicle built on the same platform using consumer preference data from the
2021 survey. Horizontal lines show the price premiums associated with the electric vehicle
with and without the federal BEV tax credit applied. Error bars denote +2 standard errors.
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Head to Head Comparison Plots
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Figure 22: Head-to-head charts showing WTP for attributes for the Toyota Prius Prime
relative to those of the Prius vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the

PHEV.
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Figure 23: Head-to-head charts showing WTP for attributes for the Audi A7 Recharge
relative to those of the A7 vehicle built on the same platform using consumer preference

data from the 2021 survey. Horizontal lines show the price premiums associated with the
PHEV.
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Figure 24: Head-to-head charts showing WTP for attributes for the Volvo S60 Recharge BEV
relative to those of the S60 vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the

PHEV.
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Figure 25: Head-to-head charts showing WTP for attributes for the Volvo S90 Recharge BEV
relative to those of the S90 vehicle built on the same platform using consumer preference

data from the 2021 survey. Horizontal lines show the price premiums associated with the
PHEV.

%)



Future

2
2022
2
1 .
1 .
. PHEV Price
PHEV Price Premium
Premium 1
1 .
Operating
Operating 0 Cost =
Cost Net (-3.1 ¢/mi.)

PHEV WTP ($10k) Relative to CV

PHEV WTP ($10k) Relative to CV

(-3.1 ¢/mi.)
0 -
04 PHEV
(21 Mile
-1 Range)

-1

-1
(b) WTP for a hypothetical future Lincoln Avi-

(a) WTP for the 2022 Lincoln Aviator Grand ator Grand Touring relative to the Lincoln Avi-
Touring relative to the Lincoln Aviator Reserve. ator Reserve.

Figure 26: Head-to-head charts showing WTP for attributes for the Lincoln Aviator PHEV
relative to those of the Aviator vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the
PHEV.
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Figure 27: Head-to-head charts showing WTP for attributes for the Lincoln Corsair PHEV
relative to those of the Corsair vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the

PHEV.
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Figure 28: Head-to-head charts showing WTP for attributes for the Ford Escape PHEV
relative to those of the Escape vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the

PHEV.
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Figure 29: Head-to-head charts showing WTP for attributes for the Kia Niro PHEV relative
to those of the Kia Niro vehicle built on the same platform using consumer preference data
from the 2021 survey. Horizontal lines show the price premiums associated with the PHEV.
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(b) WTP for a hypothetical future Mitsubishi
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Figure 30: Head-to-head charts showing WTP for attributes for the Mitsubishi Outlander
PHEV relative to those of the Outlander vehicle built on the same platform using consumer
preference data from the 2021 survey. Horizontal lines show the price premiums associated

with the PHEV.
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Figure 31: Head-to-head charts showing WTP for attributes for the Audi Q5 PHEV relative
to those of the Audi Q5 vehicle built on the same platform using consumer preference data
from the 2021 survey. Horizontal lines show the price premiums associated with the PHEV.
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(a) WTP for the 2022 Toyota RAV4 Prime SE (b) WTP for a hypothetical future Toyota RAV4
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Figure 32: Head-to-head charts showing WTP for attributes for the Toyota RAV4 Prime
PHEV relative to those of the RAV4 vehicle built on the same platform using consumer

preference data from the 2021 survey. Horizontal lines show the price premiums associated
with the PHEV.

62



2022 Future

2 2

1A 1 A
> >
O O
o o)
- -+
2 LpHEV Price Accel. Net| £ LTpHEV Price Accel. Net
3 Premium (1. 7-sec. © Premium (-1.7 sec. —_1—
2 Operating 0-60 time) 2 Operating 0-60 time)
— Cost — Cost
2 074 (-3.0 ¢/mi.) S 04 (-3.0 ¢/mi.)
— —
i NiA
= =
=z 04 =z 07
> PHEV > PHEV
T (33 Mile T (33 Mile
e 1 Range) = 1 Range)

-1

-1
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Figure 33: Head-to-head charts showing WTP for attributes for the Hyundai Tucson PHEV
relative to those of the Tucson vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the

PHEV.
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Figure 34: Head-to-head charts showing WTP for attributes for the Jeep Wrangler 4xe
PHEV relative to those of the Wrangler vehicle built on the same platform using consumer
preference data from the 2021 survey. Horizontal lines show the price premiums associated

with the PHEV.
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Figure 35: Head-to-head charts showing WTP for attributes for the Volvo XC60 PHEV
relative to those of the XC60 vehicle built on the same platform using consumer preference
data from the 2021 survey. Horizontal lines show the price premiums associated with the

PHEV.
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(b) WTP for a hypothetical future Volvo XC90
(a) WTP for the 2022 Volvo XC90 Recharge T8 Recharge T8 Inscryption relative to the XC90 B6
Inscryption relative to the XC90 B6 Inscryption. Inscryption.

Figure 36: Head-to-head charts showing WTP for attributes for the XC90 Recharge PHEV
relative to those of the XC90 vehicle built on the same platform using consumer preference

data from the 2021 survey. Horizontal lines show the price premiums associated with the
PHEV.
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Figure 37: Car head-to-head comparisons over time. Red points denote the price premium
of the PHEV relative to the comparable gas-powered vehicle. Blue points denote the net
willingness to pay (WTP) of the PHEV relative to the comparable gas-powered vehicle. Car
net WTP calculated using the 2021 study mixed logit model for car-buyers. Error bars
denote +2 standard errors.
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Figure 38: SUV head-to-head comparisons over time. Red points denote the price premium
of the PHEV relative to the comparable gas-powered vehicle. Blue points denote the net
willingness to pay (WTP) of the PHEV relative to the comparable gas-powered vehicle.
SUV net WTP calculated using the 2021 study mixed logit model for car-buyers. Error bars
denote +2 standard errors.
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Figure 39: PHEV Car head-to-head choice share comparisons over time. Net WTP calculated

using the 2021 study mixed logit model for car buyers. Error bars denote 2.5 and 97.5
percentiles.
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Figure 40: SUV head-to-head choice share comparisons over time. Net WTP calculated
using the 2021 study mixed logit model for SUV buyers. Error bars denote 2.5 and 97.5
percentiles.
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