

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

Using Automated Vehicles to Replace Buses & Complement Urban Rail Systems

Yantao Huang, Kara Kockelman, Venu Garikapati, Krishna Murthy Gurumurthy

Shared Automated Vehicles (SAVs)

- SAVs can bring traffic, safety, & environmental benefits.
- AVs & automated shuttles have been successfully tested worldwide.
- Long term, SAV costs may be as low as \$0.40 per revenue-mile.
- Flexible design + a variety of service types.

SAVs can **compete with** public transportation by replacing buses **or complement** urban rail systems

Complement Urban Rail

SAVs for first-mile last-mile to Transit:

- Faster speeds (than walking & sometimes biking).
- No coordination needed (with neighbors or family members, for pickup & dropoff at stations).
- Avoid bad weather & carrying items (e.g., bringing a bike onto train or bus, carrying briefcase & umbrella while walking, in rain or snow).
- No parking costs (though SAV idling sites can be important).
- **Energy savings** over conventional vehicles (if use right-sized or all-electric SAVs).
- Lower cost than ridehailing & taxis + Greater fleet control (for faster/smarter vehicle-to-rider assignments).

Automated Mobility Districts (AMDs)

• Short-term deployment of AVs is anticipated to be in the form of SAVs in **geofenced urban districts** with **high trip densities**.

AMD = campus-sized implementation of CAV technology to realize all benefits of a fully automated mobility service within a confined neighborhood.

 Transit stations are great use case for AMDs (thanks to high densities of transit boarding & alighting throughout the day).

Research Objectives

- Quantify impacts of deploying SAVs as FMLM connections to transit in geofenced regions.
- Investigate details of SAV fleet operations, in coordination with mode choice + train schedules.
- SUMO = Simulation of Urban Mobility = microscopic software used to simulate agents (travelers + SAVs) over time, across multiple AMDs serving a rail-transit line.

Huang, Kockelman, Garikapati, Zhu, Young (2021) Use of Shared Automated Vehicles for First-Mile Last-Mile Service: Micro-Simulation of Rail-Transit Connections in Austin, Texas. *Transp Research Record*, 2675.

Austin's Red Line Rail

- **32-mile commuter rail** service connecting downtown Austin to Leander City
- 2,552 person-trips/day = average daily ridership
- Expected to reach 10,000 daily riders by 2025 with a 15-minute frequency
- FMLM SAVs serve 5
 Central Austin stations:
 Crestview, Highland, MLK,
 Plaza Saltillo & Downtown

Network & Travel Demand

- Year 2030 forecast from the region MPO's travel demand model
- 246 traffic analysis zones extracted from the 6-county region's 2,252 TAZs.

Real-Time Simulation Control

- Controller can obtain & react to a riders' current status & location.
- Every 1 minute, SAV ride requests are evaluated & vehicle routing plans are generated.
- Dynamic ride-sharing enabled (so riders can share rides with strangers).
- SAVs can provide FM & LM service in **one routing plan**.

Mode Choice

- Rail headways = 15 min
- SAV fares = \$1/mile

- 15 SAVs per AMD
- 10% travel demand simulated

- Car VMT falls 6.4%.
- SAV+RideTrain mode gains mode share from car.
- Transit Mode share rises from 0.4% to 4.1%.
- **Occupancy** of SAV = 0.74.
- **Empty SAV VMT** = 36% of total SAV VMT.

SAV Fleet Performance

	All 2 AMDs
Shared Vehicle-Miles	31.4%
Shared Person-Trips	90.3%
Average Wait Time	4.61 minutes
Average Ride Distance	2.52 miles
Average Service Duration	15.0 minutes
% Deadheading Distance per Trip	22.3%
% Shared Distance per Trip	27.7%

- High shared trips vs. low shared miles.
- 1-mile detour on average.
- SAVs lower total VMT by **3.6%**, if FMLM riders had been traveling by car.

Wait Times at Train Stations

Train Headway = 15 minutes & Negative x-axis value = Late arrival

What if Passenger-Miles Traveled shift from Cars to SAVs as a transit service...

- SAV may also offer **fixed-route & fixed-stop transit service**.
- Total cost per capita is investigated based on different SAV penetrations.
- Human-driven cars & 10-seater SAVs in a one-way 2-lane, 4mile corridor.
- SAVs stop at stations where people are waiting for pickup or wish to alight.
- Any stopped SAVs wait for any approaching passenger (i.e., walking up within 20 yards).

Results

- Total PMT is fixed = **12,000** during 2 hours.
- Car AVO = 1.2 with average VOTT/person = \$12/hour.
- VOTT of SAV riders = \$30/hr waiting at stops & \$7.5/hr on board.
- Cars have a total per-mile cost = \$0.58 per mile + \$3 parking.
- SAVs have a total per-mile cost = \$1.10 per mile.

SAV PMT Share	Total Cost (\$)	Total Cost per PMT (\$)
0%	\$ 18 <i>,</i> 395	\$ 1.53 / PMT
5%	\$ 19 <i>,</i> 125	\$ 1.59 / PMT
10%	\$ 18 <i>,</i> 876	\$ 1.57 / PMT
20%	\$ 18,568	\$ 1.55 / PMT
50%	\$ 17,414	\$ 1.45 / PMT
100%	\$ 15,142	\$ 1.26 / PMT

Huang, Y. and Kockelman, K.M., 2021. Travel Time Impacts of Using Shared Automated Vehicles along a Fixed-Route Transit Corridor. *Findings*, p.29147.

Deploying SAVs for Various Uses across Large Region

POLARIS for **Chicago simulation**

Door-to-door SAV service + FMLM service + 30-pax SAVs replace Buses

20 counties + Commuter rail

POLARIS Simulation

- Mesoscopic DTA for millions of agents.
- FMLM service to "bus" & rail stations → 2 new mode alternatives.
- Wait time + access & egress travel time for FMLM service fed back to mode choice model.
- Multimodal shortest paths for shortest travel times, between O's & D's.

Network

Road network

Transit network

- **20-county** Chicago region •
- 1,961 TAZs with ~32,000 road links
- **349** unique transit lines + **53,763** stops
- **2,100** routes for **28,000** total transit trips over weekday

Simulation Setup

- 5% Chicago Travel demand
- SAV cost = **\$0.50 per mile**
- SAV fleet size = **12,000** assuming **1 SAV for 40 persons**

SAV **D2D** service scenario:

- Household vehicle ownership falls from 0.66 to 0.37 vehicles per capita.
- Replace Taxi service with low-cost SAV-D2D service.

SAV **D2D** + **FMLM** service scenario:

• Same SAV Fleet size as D2D scenario.

SAV **D2D** + FMLM + SAV-based transit services scenario:

- SAVs with 15 seats + 15 standing spaces.
- Replaces CTA + PACE bus service.

SAV Fleet Performance of On-demand Service (SAV-D2D + SAV-FMLM)

Scenarios	SAV-D2D	SAV-D2D + SAV- FMLM	SAV-D2D + SAV- FMLM + SAV- based Transit
Avg. Travel Time/person (min)	10.0 min	12.6	12.3
Avg. Wait Time/person (min)	4.9 min	4.6	4.3
# of SAV Requests/day	232,247	260,355	259,685
% Requests Met	99.4	98.8	99.0
AVO by Revenue-trips	1.10	1.13	1.11
AVO by Revenue-miles	1.05	1.05	1.05
Avg. Trips/SAV/day	19.4 trips	23.6	23.5
% eVMT	25%	26%	25%
SAV VMT/person/day	3.03	3.16	3.11
VMT/SAV/day	131.4	136.9	134.9
Hours in Operation/SAV/day	4.2 hrs	4.4	4.3

Mode Splits

Assuming SAV fares = \$0.50/mile

Trip Lengths

FMLM Trip Count Distribution

 Trips to/from rail lines stations are dominating the FMLM trips, with a ratio of 6:1

SAV Boardings for FMLM service

Conclusion

- SAVs can provide FMLM connectivity to transit stations, with flexible access/egress decisions & coordination with train schedules.
- FMLM service raises the transit use, better using utilizing SAV fleet with small increased VMT compared to D2D service only.
- The connections to rail stations dominates the FMLM trips.
- Roadway system may benefit from SAVs replacing buses when SAV PMT Share is over 20%.

Questions & Suggestions? Thanks for your time & support!

