What's in a Question? Using Item Response Data to Better Represent Learning

Jesse Bruhn
joint with Mike Gilraine, Jens Ludwig, and Sendhil Mullainathan

Disclaimer: The conclusions of this research do not necessarily reflect the opinions or official positions of the Texas Education Research Center, the Texas Education Agency, the Texas Higher Education Coordinating Board, the Texas Workforce Commission, or the State of Texas

Testing is a major part of education

Ex: standardized testing and prep occupy as much as 18% of instructional time.

Tests are used to make high-stakes decisions

Tests are used to make high-stakes decisions

Tests are used to make high-stakes decisions

Tests are used to make high-stakes decisions

Tests are used to make high-stakes decisions

Test results

T. Chris Riley-Tillman | Matthew K. Burns | Stephen P. Kilgus

Which equation is best reoresented bv this araoh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

12 Janet has 2 new game

- Each game has 3 packs of cards.
- Each pack has 10 cards.
to find the total number of cards Jane has for these 2 games?

F \begin{tabular}{|l|l|l|l|l|l|}
\hline 10 \& 10 \& 10

\hline

\quad

\hline 10 \& 10 \& 10

\hline
\end{tabular}

G | 3 | 3 | 3 |
| :--- | :--- | :--- |

5 What is the solution to this system of equations?

$$
\begin{gathered}
2 x+y=40 \\
x-2 y=-20
\end{gathered}
$$

H | 3 | 10 |
| :--- | :--- |

10

A $(12,16)$
B $(15,17.5)$
C There is no solution.
D There are an infinite number of solutions.
22 A person dives into a pool from its edge to swim to the other side.
The table shows the depth in feet of the person from the sur
of the water after x
quadratic function.

Pool	
Time, x (seconds)	Depth of Person from Surface of Water, $d(x)$ (feet)
1	-2.85
4	-8.28
6	-9.3
8.5	-7.65
10	-5.1
11.5	-1.38

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
H $d(x)=0.26 x^{2}-3.11 x$
$d(x)=0.26 x^{2}-3.11 x+1$

Which equation is best reoresented bv this arabh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
c $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$
12 Janet has 2 new games
Each game has 3 packs of cards.
Each pack has 10 cards.
wich model can be wsal ford the number of cards lane has for these 2 games?

F	10	10	10	10	10	10

5 What is the solution to this system of equations?
$2 x+y=40$
$x-2 y=-20$
A $(12,16)$
B $(15,17.5)$
C There is no solution.
D There are an infinite
A person dives into a pool from its edge to swim to the other side.
The table shows the depth in feet of the person from the sur
of the water after x seconds. The data can be modeled by a
of the water acter X
quadratic function.

Pool	
Time, x (seconds)	Depth of Person from Surface of Water, $d(x)$ (feet)
1	-2.5
4	-8.28
6	-9.3
8.5	-7.65
10	-5.1
11.5	-1.38

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
$d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Aggregator

Which equation is best rebresented bv this arabh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

12 Janet has 2 new games

- Each game has 3 packs of cards

Each pack has 10 cards.
hich model can be used to find the total number of cards lanet has for these 2 games?

F \begin{tabular}{|l|l|l|l|l|l|}
\hline 10 \& 10 \& 10

\hline

\quad

\hline 10 \& 10

\hline
\end{tabular}

Aggregator

Performance Measure

22 A person dives into a pool from its edge to swim to the other side. The table shows the depth in feet of the person from the surfa of the water acter x
quadratic function.

Pool	
Time, x (seconds)	Depth of Person from Surface of Water, $d(x)$ (feet)
1	-2.85
4	-8.28
6	-9.3
8.5	-7.65
10	-5.1
11.5	-1.38

Which function best models the data
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
$d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Which equation is best reoresented bv this aradh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7 \quad$ A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

2 Janet has 2 new game

- Each game has 3 packs of cards.

Each pack has 10 cards.
hich model can ber find has for these 2 games?

Statistics behind aggregation (IRT, MIRT)

22 A person dives into a pool from its edge to swim to the other side. The table shows the depth in feet of the person from the surfice
of the water after x seconds. The data can be modeled by a quadratic function.

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
H $d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Performance Measure

Statistics behind aggregation (IRT, MIRT)

Which equation is best reoresented bv this arabh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7 \quad$ A $68>649$
c $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

2 Janet has 2 new game

- Each game has 3 packs of cards.

Each pack has 10 cards.
find the total number of cards lane has for these 2 games?

22 A person dives into a pool from its edge to swim to the other side he table shows the depth in feet of the person from the sur
of the water after x seconds. The data can be modeled by a quadratic function.

Time, x (seconds)	Depth of Person from Surface of Water, $d(x)$ (feet)
1	-2.85
4	-8.28
6	-9.3
8.5	-7.65
10	-5.1
11.5	-1.38

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
$d(x)=0.05 x^{2}+0.74 x+9.17$
$d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Statistics behind aggregation (IRT, MIRT)

Which equation is best reoresented bv this arabh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

12 Janet has 2 new games

- Each game has 3 packs of cards.

Each pack has 10 cards.
Which model can be used to find the total number of cards lanet has for these 2 games?

A $(12,16)$
B $(15,17.5)$
C There is no solution.
D There are an infinite
22 A person dives into a pool from its edge to swim to the other side.
The table shows the depth in feet of the person from the surface of the water after x seconds. The data can be modeled by a quadratic function.

Pool	
Time, x (seconds)	Depth of Person from Surface of Water, $d(x)$ (feet)
1	-2.85
4	-8.28
6	-9.3
8.5	-7.65
10	-5.1
11.5	-1.38

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
H $d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Statistics behind aggregation (IRT, MIRT)

Which equation is best reoresented bv this araoh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

12 Janet has 2 new games

- Each game has 3 packs of cards.

Each pack has 10 cards.
hich model can be weal to find the total number of cards lanet has for these 2 games?
$\longrightarrow p_{i}(\theta)=c_{i}+\frac{1-c_{i}}{1+e^{-a_{i}\left(\theta-b_{i}\right)}}$ \qquad Average of items

22 A person dives into a pool from its edge to swim to the other side. The table shows the depth in feet of the person from the surface
of the water after x seconds. The data can be modeled by a quadratic function.

A $(12,16)$
B $(15,17.5)$
C There is no solution.
D There are an infinite

Pool

Time, x (seconds)	Depth of Person from Surface of Water, $d(x)$ (feet)
1	-2.85
4	-8.28
6	-9.3
8.5	-7.65
10	-5.1
11.5	-1.38

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
$d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Which equation is best reoresented bv this arabh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

2 lane has 2 new games

- Each game has 3 packs of cards.
- Each pack has 10 cards.

Which model can be $\mathbf{U s}$? find the total number of cards Janet has for these 2 games?

\square

A $(12,16)$
B $(15,17.5)$
C There is no solution.
D There are an infinite
22 A person dives into a pool from its edge to swim to the other side.
The table shows the depth in feet of the person from the surface The table shows the depth in feet of the person from the surf
of the water after x seconds. The data can be modeled by a quadratic function.

Which function best models the data?
F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
H $d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

Statistics behind aggregation (IRT, MIRT)

- Under some assumptions, this will be optimal.

$$
\longrightarrow p_{i}(\theta)=a_{i}+\frac{1-c_{i}}{1+e^{-a_{i}\left(--e^{2}\right)}} \Longrightarrow \quad \text { Average of }
$$

Which equation is best reoresented bv this arabh?
A $y=-\frac{7}{4} x+4 \quad \mathbf{1}$ Which comparison is true?
B $y=-\frac{7}{4} x+7$
A $68>649$
C $y=-\frac{4}{7} x+4$
D $y=-\frac{4}{7} x+7$
B $571>582$

C $730<806$

D $709<692$

2 lat 2 new game

- Each game has 3 packs of cards
- Each pack has 10 cards.
find tor tor num has for these 2 games?

What is the solution to this system of equations?
$\begin{aligned} 2 x+y & =40 \\ x-2 y & =-20\end{aligned}$
A $(12,16)$
B $(15,17.5)$
C There is no solution.
D There are an infinite
o swim to the other sid
22 A person dives into a pool from its edge to swim to the other The table shows the depth in feet of the person from the surf quadratic function.

Statistics behind aggregation (IRT, MIRT)

- Under some assumptions, this will be optimal.
 items

F $d(x)=0.05 x^{2}+0.74 x$
G $d(x)=0.05 x^{2}+0.74 x+9.17$
$d(x)=0.26 x^{2}-3.11 x$
J $d(x)=0.26 x^{2}-3.11 x+1$

What do we lose?

How we evaluate teachers

How we evaluate students

How we evaluate interventions

What do we lose?

Teachers:

Districts use test results to evaluate teachers.

Item data reveals variability obscured by average growth.
As much as 30\% of teachers in bottom decile value-add land in the top decile of item performance.
"Good versus bad teachers" is a less accurate model than "different teachers are differentially good at promoting different aspects of achievement."

In total, aggregation destroys $\sim 60-70 \%$ of the predictable variation in student performance

What do we lose?

Teachers: $\sim 60-70 \%$ of the
predictable variation in \longrightarrow
student performance

What do we lose?

Students: We use test scores as proxies for later life outcomes.

In total, aggregation destroys as much as 55% of predictable variation in graduation, college attendance, and earnings.

Less than 50\% agreement re: "ineffective" educators using predicted student outcomes versus typical aggregates.

Summary statistics using alternative weights lead to different policies and priorities.

What do we lose?

Teachers:

Students: As much as 55% of
 long-run outcomes

Due to comparative
advantage across items

Different priorities from different averages

What do we lose?

Interventions: The impact of pre-K, small class size, and quality teachers "fades-out" on test scores only to reemerge later in life.
 Fadeout is heterogeneous item-by-item.

Fade-out is partly an illusion due to changing composition of items across tests

Even very crude alternative weighted averages based on item difficulty can double persistence

Can even find weighted averages that "fade-in"

What do we lose?

Teachers:

Due to comparative advantage across items

Students:
 As much as 55% of

Different priorities from different averages

Fadeout: At least 50\% of persistence

What do we lose?

Teachers: $\sim 60-70 \%$ of the

Due to comparative advantage across items student performance

Students: As much as 55% of predictable variation in

Different priorities from different averages long-run outcomes

Fadeout: At least 50% of persistence

Contribution

Educational measurement:

- e.g. Anaya et al. (2022) Bond \& Lang (2018), Cascio \& Staiger (2012), Cunha et al. (2008, 2010), Jacob \& Rothstein (2016), Kaur et al. (2023), Lang (2010), Nielsen (2019, 2023), Reyes (2023).
- Explore implications of item aggregation for measuring educational performance.

Teacher value-add:

- e.g. Chetty et al. (2014a, 2014b), Gilraine \& Pope (2022), Jackson (2018), Mulhern \& Opper (2022), Papay (2011), Rose et al (2022), and many others
- Highlight potential for item data to generate new / nuanced TVA measures.

Fadeout:

- e.g. Bailey et al (2017), Cascio \& Staiger (2012), Chetty et al. (2011), Currie \& Thomas (1995), Ludwig \& Miller (2007), Deming (2009), Heckman et al (2013), Puma et al (2010), Gray-Lobe et al (2022).
- New explanation based on the changing composition of item content.

Universe of Texas

K-12 students:

- 4.5 million students
- 14 million student-years
- 1.24 billion student-yeartest items

Linked to:

- Test scores
- Item responses
- Teachers
- Graduation, college attendance, earnings.

	Full Sample (1)	Teacher-Student Matched Sample (2)
Panel A: Standardized Tests \# of items on Math Test \% Correct on Math Test	52.0	49.0
\# of items on English Test	57.3	56.8
\% Correct on English Test	65.1	45.2
Panel B: Demographics		65.9
\% Hispanic	51.5	51.3
\% Black	12.7	13.0
\% Free Lunch Eligible	51.1	51.9
Class Size	-	22.0
\# of Students	$4,495,344$	$3,644,164$
\# of Teachers	-	81,628
Observations	$14,014,753$	$9,073,848$
(student-year)	$1,240,841,152$	$855,056,544$
Observations		

What do we lose?

Teachers: $\sim 60-70 \%$ of the

student performance

Students: As much as 55% of

Fadeout:

Due to comparative advantage across items

How much information do we lose about teachers?

$$
D_{i q t}=\alpha_{q t}+\Gamma X_{i t}+\eta_{i q t}
$$

$D_{i q t} \Rightarrow$ Takes a value of one if student i correctly answered item \boldsymbol{q} in year t.
$\alpha_{q t} \Rightarrow$ Question fixed effect.
$X_{i t} \Rightarrow$ Standard Chetty et al. (2014a,b) vector of teacher value-added covariates, including lagged average score.

How much information do we lose about teachers?

$D_{i q t}=\alpha_{q t}+\Gamma X_{i t}+\eta_{i q t}$
$\operatorname{var}(\eta) \longrightarrow$ Unexplained student performance
$D_{i q t}=\alpha_{q t}+\delta_{q t(j, t)}+\Gamma X_{i t}+u_{i q t}$
$\delta_{q t i(i, t)} \Rightarrow$ Teacher $j(i, t)$ by item q in year t fixed effect

How much information do we lose about teachers?

$D_{i q t}=\alpha_{q t}+\Gamma X_{i t}+\eta_{i q t}$
$\operatorname{var}(\eta) \longrightarrow$ Unexplained student performance
$D_{i q t}=\alpha_{q t}+\delta_{q t(j, t)}+\Gamma X_{i t}+u_{i q t}$
$\operatorname{var}(\eta)-\operatorname{var}(U) \longrightarrow$ Explained by teachers
$D_{i q t}=\alpha_{q t}+\delta_{j(i, t)}+\Gamma X_{i t}+\epsilon_{i q t}$
$\delta_{t j(i, t)} \Rightarrow$ Teacher $j(i, t)$ by year t fixed effect.

- Up to a scaling, equivalent to "standard" TVA for average scores.

How much information do we lose about teachers?
$D_{i q t}=\alpha_{q t}+\Gamma X_{i t}+\eta_{i q t}$
$\operatorname{var}(\eta) \longrightarrow$ Unexplained student performance
$D_{i q t}=\alpha_{q t}+\delta_{q t(j, t)}+\Gamma X_{i t}+u_{i q t}$
$\operatorname{var}(\eta)-\operatorname{var}(u) \longrightarrow$ Explained by teachers
$D_{i q t}=\alpha_{q t}+\delta_{j(i, t)}+\Gamma X_{i t}+\epsilon_{i q t}$
$\operatorname{var}(\epsilon)-\operatorname{var}(u) \longrightarrow$ Lost by averaging.

How much information do we lose about teachers?

What kind of info? Comparative advantage.

Teacher Rank

What do we lose?

Teachers:

Due to comparative advantage across items

Students: As much as 55% of

long-run outcomes

Fadeout:

Statistical artifact of
Different priorities from different averages
test composition

How much do we lose about student outcomes?

$$
\begin{aligned}
& Y_{i}=F\left(X_{i}, W_{i}\right)+\eta_{i} \\
& Y_{i}=G\left(\bar{X}_{i}, \bar{W}_{i}\right)+\epsilon_{i}
\end{aligned}
$$

Where:

$$
X_{i}=\left\{x_{i}\right\}_{a \in M} \longrightarrow
$$

Indicator variables denoting exact answers (~ 160 per grade-year) to math items.
$W_{i}=\left\{w_{i}\right\}_{a \in E} \longrightarrow$
Indicator variables denoting exact answers (~ 160 per grade-year) to ELA items.

Learned from data using a Gradient
$F()$ and $G()$ Boosted Tree algorithm
(Chen \& Guestrin, 2016)

How much do we lose about student outcomes?

Explanatory Power Loss (\%)

0.4
0.2
0.0

"Outcome" value-add versus test score value-add

View of "ineffective" varies with individual item weighting

What do we lose?

Teachers:

Due to comparative advantage across items

Students:
 As much as 55% of

Different priorities from different averages

Fadeout: At least 50\% of persistence

Fadeout

Impact of a 1-SD Teacher

But tests aren't like wages...

Potential explanations:

Real skill depreciation, similar to fadeout of job training on wages (e.g. Crépon et al., 2013)
 Non-cognitive skills (Heckman et al., 2013)
 Artifact of normalization (Cascio and Staiger, 2012)

Different tests measure different concepts.

$4^{\text {th }}$ Grade Math item \longrightarrow ? $\longrightarrow \longrightarrow 5^{\text {th }}$ Grade Math item

8 Which equation shows a decimal and a fraction that are equivalent?
F $23.5=23 \frac{5}{100}$
G $23.55=23 \frac{55}{10}$
H $23.05=23 \frac{5}{10}$
J $23.5=23 \frac{50}{100}$

2 A worker is building toys at a factory. The relationship between the
 Which graph represents this relationship?

Is fadeout uniform across items?

Fadeout is not uniform across items.

Crude reweighting schemes can double persistence.

Even find fade-in for certain weighted averages.

What do we lose?

Teachers: $\sim 60-70 \%$ of the
predictable variation in student performance

Students: As much as 55% of predictable variation in long-run outcomes

Fadeout: At least 50\% of persistence

Due to comparative advantage across items

Different priorities from different averages

Statistical artifact of test composition

Thank you!

