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Abstract. Field evidence suggests that gradual changes are often not obvious to agents, but large and

sudden changes frequently result in overreactions. I develop, apply, test, and structurally estimate a

portable model of history-dependent decision making under risk that produces this phenomenon (known

as the �boiling-frog e�ect�) as the interaction between memory and attention. If a risky prospect looks

similar to the past, it does not catch attention. If it is very dissimilar, it is contrasted away from the

past and receives too much attention. I provide an experimental test of the model and display evidence

of four novel e�ects of history-dependent risk preferences: (i) assimilation, (ii) contrast, (iii) the boiling-

frog and (iv) a recency e�ect. The model parsimoniously reconciles some pricing anomalies in asset and

housing markets and provides a novel comparative static.

1. Introduction

Gradual changes attract less attention than drastic ones. For example, a person might fail to appreci-

ate the cumulative worsening of his health conditions when this happens gradually, like when aging. In

contrast, he might be shocked by a drastic, even if transient, health deterioration and overreact because

of it. Studies from �nancial markets show that news is appreciated less when it is received gradually,

compared to when it is received drastically: Da et al. (2014), and Grinblatt and Moskowitz (2004)

�nd that past gradual price increases predict higher future returns than drastic increases of the same

cumulative magnitude. Pricing instability of changes in fundamentals is also found in housing markets.

Prices overreact to the opening of industrial plants that pose serious health risks (Currie et al. 2015,

Sanders 2012).1 On the other hand, prices do not react when hazardous pollution changes in a gradual

fashion (Greenstone and Gallagher 2008).

I develop, test and apply a model of decision making that shows how these and other instabilities in

evaluation of risky prospects arise as the byproduct of the interaction between memory and attention.

When a decision maker faces a risky prospect she spontaneously thinks of past similar prospects she

faced, and thinks more easily about the ones faced closer in time. The past is an anchor for her
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as well as participants to the Behavioral Economics workshop, Finance workshop and Theory workshop at Harvard Uni-
versity. Support of the Chae Family Economics Research Fund �The economics of crises: �nance, macroeconomics� is
gratefully aknowledged. Errors are mine.
1Relatedly, Davis (2004) shows a negligible house price reaction when evidence of a cancer cluster is dispersed across
multiple years, and a very signi�cant price change when a number of cases appears within the same year.
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evaluation. If the currently faced prospect looks like the past, she assimilates towards it and does not

pay much attention to the change. If the current prospect is very di�erent from the past, she contrasts

away from it, and pays too much attention to the change.2 This leads the decision maker to underreact

to a cumulatively sizeable gradual change: at each period she is biased by recent past remembered

expectations and does not notice enough the small bit of additional news because of assimilation. In

the alternative case where the news comes in one big chunk, the remembered past prospects look very

di�erent from the updated prospect, and the decision maker overreacts to the news. Assimilation is

di�erent from one of the premises of Prospect Theory (Kahneman and Tversky, 1979) that people are

sensitive to small changes. The model can be seen as the most natural analogue of Bordalo et al. (2020)

in the domain of choice under risk.

1.1. Model and applications. To �x ideas, suppose an individual evaluates the health risk from air

pollution of her neighbourhood, that is a random damage D. When she considers D she spontaneously

retrieves past air pollution risks that she faced, and she collapses them in an average Dm. More recent

memories are easier to retrieve, hence Dm relies more on the recent past. She anchors the evaluation on

the expected past damage E [Dm] and pays attention to how D di�ers from Dm. I model how much she

notices the change from Dm to D with the attention weight g (E [D]− E [Dm]) ≥ 0. Her evaluation is

anchored to the past expected damage and adjusted to the change from the past, with attention weight

g

E [Dm]︸ ︷︷ ︸
anchor

+

attention weight︷ ︸︸ ︷
g (E [D]− E [Dm])


E [D]− E [Dm]︸ ︷︷ ︸

adjustment


 .

If D looks similar to Dm then 0 < g (E [D]− E [Dm]) < 1: in this case the decision maker does not

pay much attention to the change in health risk E [D] − E [Dm] and underreacts to it. If D contrasts

away from Dm then g (E [D]− E [Dm]) > 1: in this case she pays too much attention to the change in

expectation and overreacts to it.

Take for example three individuals, Ann, Bob, and Carl that live in di�erent places, evaluate the

yearly health risk from pollution in their residential area, and decide at which price they are willing to

sell their house. In the place where Ann lives, the yearly health risk is 2% in week 1, 2.1% in week 2,

2.2% in week 3, 2.3% in week 4, and it jumps to 5% in week 5. Instead Bob receives news in a more

gradual fashion: the health risk is 2% in week 1, 2.8% in week 2, 3.6% in week 3, 4.2% in week 4, and

it is 5% in week 5. Instead, Carl does not receive news and faces a health risk equal to 5%. When

evaluating the risk in week 5, Ann retrieves much lower past risks: 5% contrasts away from them and

seems large (g > 1). This makes Ann willing to sell at a lower price than Carl. Instead, Bob retrieves

2This is a manifestation of a natural tendency, widely detected in decades of research in cognitive psychology (measuring
perception of physical quantities, Helson and Rohles, 1959), to assimilate an item to a reference that is close to it, and
to contrast an item that is largely di�erent from the reference. The presence of these two e�ects is also documented in
studies in social psychology, pioneered by Sherif, M., & Hovland, C. I. (1961), where assimilation and contrast is found in
assessment of people, groups and objects (Herr, Sherman, and Fazio 1983, Strack, Schwarz, and Gschneidinger 1985, Herr
1986, Lombardi, Higgins, and Bargh 1987, Manis, Nelson, and Shedler 1988, Wilder and Thompson 1988, Shimp, Stuart,
and Engle 1991).
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more similar risks from the past and assimiliates the 5% risk to them, so that the 5% risk seems smaller

(g < 1). So Bob is willing to sell at a higher price than Carl.

The model yields predictions that are testable in the lab through binary choices between gambles. (i)

An individual is less likely to choose a gamble that has improved gradually over time than one that has

improved sizeably all of the sudden. I call this property, following folk wisdom, the boiling-frog e�ect in

choice under risk. This term comes from the (empirically disputed) conjecture that a frog would jump

out of a pan whose water is being heated up quickly, while it would stay in it if water were heated up

gradually, and eventually die. The model also yields two predictions that are symmetric with respect to

each other. (ii) An individual is more likely to choose a gamble if it comes as a large improvement from

the past, rather than as a large worsening from the past. This is the contrast e�ect, because the gamble

is contrasted against the past and looks much better or worse than it. The assimilation e�ect is the

opposite phenomenon: a gamble that departs from the past by a small amount looks similar to it: (iii)

an individual is more likely to accept a gamble after a mild worsening rather than a mild improvement.3

I show in Appendix E that the model can coherently and parsimoniously reconcile asset pricing

anomalies in light of assimilation or contrast, which depend on the size of the change in fundamentals.

In the logic of prediction (i), when positive news about a stock is given in small bits, investors' evaluations

are assimilated to what they remember. Instead, contrast occurs when the news is given drastically.

After a big chunk of positive news, the price goes up by more than when the cumulatively equal amount

of news is released gradually. In the long run investors correct the price towards the rational benchmark,

so that returns after a stream of small positive news are larger than after a big chunk of good news,

as shown in Grinblatt and Moskowitz (2004) and Da et al. (2014). In a housing market application,

the market notices (neglects) drastic (gradual) changes in pollution because the updated expectations

are contrasted against (assimilated to) the past. For this mechanism, pollution premia measured via

time variation within location in pollution are larger than premia measured in the crossection, if the

change in pollution is drastic (as found for air quality by Chay and Greenstone, 2005), and smaller than

crossectional premia if the change is gradual (as found by Greenstone and Gallagher, 2008 for hazardous

waste).45 Moreover, the contrast e�ect (ii) is consistent with �ndings in Currie et al. (2015): a drastic

3More formally, a gamble is chosen more frequently if it is close but dominated (in �rst-order stochastic sense) by a past
recent one, than if it is close and dominant.
4Assimilation explains evidence in �nancial markets presented by Giglio and Shue (2014).They �nd that the passage of
time after a merger announcement predicts changes in future probability of success, but such changes are not fully priced
by the market. The model says that the gradual nature of these changes in expectations produces underreaction, hence
predicting future returns.
Assimilation also can help make sense of the positive average returns of stocks experiencing predictable long run demo-
graphic shifts that gradually a�ect the customer base of their industry, as in Della Vigna and Pollet (2007).
5Mur�n and Spiegel (2020), indeed �nds no discount in houses exposed to sea level rise even controlling for altitude.
Harrison, Smersh, and Schwartz (2001), relatedly, �nds that the price discount in exposed areas is less than the present
discounted value of insurance premia. Further evidence of underreaction of pricing of long term sea level rise is given by
Keys (2020) that �nds no premia in Florida between 2013 and 2018, and some risk premia emerging between 2018 and
2020.
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increase in health risk, caused by the opening of a polluting plant, creates contrast of the present against

the past. Price overshoots on impact and partly reverts as people get accustomed to the plant.6

A comparative static of the model can be tested with US stock market returns. When there is on

average small news (hence volatility is small), investors are inattentive: inattention generates positive

autocorrelation of returns. On the other hand when investors receive big news (hence volatility is

high), they pay too much attention to big news and overreact on average: this generates negative

autocorrelation. I test a weaker version of this prediction in the US stock market and �nd that the

volatility of returns negatively predicts subsequent return autocorrelation both at the market and at

the individual stock level.

1.2. Experiments. I test predictions (i), (ii) and (iii) with between-subjects experiments administered

to an online sample of 2010 people. Subjects face sequences of either 4 or 5 choice sets that comprise two

binary lotteries. The risky lottery pays a higher payo� with a smaller chance than the safe lottery, and

both lotteries pay $0 with some chance. The safer lottery is the same across all treatments and stages

of the choice sequences. One choice set is the same in all treatments. Subjects di�er in the history of

choice sets faced before the common choice set. In the �rst (second) �contrast� treatment, the history

of choice sets displays a riskier option that has a much higher (lower) probability of upside, compared

to the one in the common �nal choice set. In the �rst (second) �assimilation� treatment, choice sets

are faced such that the probability of upside of the riskier option declines (increases) across stages by a

small percentage in each stage. As an example, in the �assimilation� treatments one subject sees that

the risky option improves gradually across stages, by paying $80 with 2% in Stage 1, 5% in Stage 2, 6%

in Stage 3, 7% in Stage 4, and 9% in Stage 5. Another subject, instead, faces the same sequence of risky

options in reverse order. As a result, when judging the same gamble, the two subjects di�er in that one

has just faced a similar slightly worse option, while the other has seen a similar slightly better one.7 As

another example, the test of prediction (i) is obtained by comparing the second �contrast� treatment

against the the second �assimilation� treatment. In both treatments the target risky option at the �nal

stage pays $80 with 9% chance and $0 otherwise (the alternative pays $9 with 60% chance in all stages).

In the �contrast� treatment the �nal stage is preceded by three stages where the risky option pays $80,

respectively, with 2%, 4% and 3% chance. Subjects in the �assimilation� treatment face risky options'

probabilities in this order: 2%, 5%, 6%, 7%. I run analogous treatments where, instead of the upside's

probability, the upside's payo� changes in a fashion similar to the mentioned four treatments.

Results show evidence of all of the three predictions, and make the case for the proposition that

individual decisions depend on the recent past, with biases of contrast and assimilation. (i) I �nd higher

take-up (32 pp vs. 23 pp) of the riskier option by subjects who faced a history of largely less-paying risky

options compared to a history of less-paying risky options whose upside probability mildly increased

in each stage. This suggests that the drastic change in a risky gamble is noticed more than a gradual

one. (ii) I �nd higher take-up (32 pp vs. 11 pp) of the risky gamble by subjects who previously faced

6Relatedly, Bin and Landry (2013) estimate a discount between 6% and 20% of houses in a �ood zone after a hurricane,
but such discount diminishes with time from the event, suggesting overreaction.
7With better and worse I mean, respectively, a �rst-order stochastically dominant gamble and a dominated one.
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a history of signi�cantly higher-paying risky options than a history of signi�cantly lower-paying ones.

This suggests that a drastic upward change in a gamble boosts its evaluation up, or that a drastic

downward change depresses it. (iii) I �nd higher take-up (21 pp vs. 16 pp) of the risky gamble by

subjects who previously faced a history of mildly higher-paying risky options than a history of mildly

lower-paying ones. This suggests that a small downward change in a gamble distorts its evaluation up,

while a small upward change distorts it down. The �rst two results also clearly hold in treatments where

one lottery changes in the payo� value as opposed to its probability, while a weaker version of the third

result holds.

I estimate the preference parameters of my model and provide indirect evidence of a shape in valuation

akin to the one theorized by Bordalo et al (2020) in consumer choice. To my knowledge, this work is the

�rst one to estimate a reference dependent valuation function of this family. Valuation shrinks towards

the reference point for options similar to it, and is exaggerated away for options di�erent from it.8

The model predicts also (iv) a recency e�ect in choice: a given history of past gambles is more likely

to generate contrast if the most recent gambles are far away from the one under evaluation, than if they

are close. I design two experimental treatments where the same choice sets before a �nal choice set are

faced in di�erent order across subjects, and �nd strong empirical support for the recency e�ect.

1.3. Related Literature.

1.3.1. Experiments. To the best of my knowledge, this work is the �rst to provide experimental evidence

of sequential contrast in risk taking and the simplest to provide evidence of sequential assimilation in

risk taking and the boiling frog e�ect. Two experimental works are primarily related to this paper.

Schram and Sonneman (2011) �nds that in a virtual experiment of insuring against a health risk with

some switching costs, subjects stick longer with an undercovering plan if the simulated health conditions

decline gradually, as opposed to when they decline drastically. My experiment detects the Boiling Frog

e�ect in a neutral setting without any explicit switching cost. Frydman and Jin (2022) �nds that risk

taking is smaller when the risky lottery is within a sequence of lotteries with relatively lower upsides: I

show that the model can recast such evidence as assimilation in risk taking.

Previous literature asking subjects a sequence of choices has focused on other phenomena than this

paper, such as the endowment e�ect (Sprenger 2015) and compromise e�ect in choice under risk, typically

elicited via multiple price lists (Miller, Meyer and Lanzetta, 1969; Birnbaum 1992; Binswanger, 1981;

Murnighan, Roth and Schoumaker, 1987; Harrison, Lau, Rutstrom, and Sullivan 2005; Freeman, Halevy,

and Kneeland, 2019; Beauchamp, Benjamin, Laibson, Chabris, 2020). The design of the present paper

involves sequential choices without subjects knowing how many of the total choices they will have

to make, nor they being reminded what they chose, nor they being able to change their previous

choices. Moreover, as shown in the Appendix B, when subjects face all questions in the same page, the

assimilation e�ect disappears.

8I also study the counterfactual scenario where decision maker face a high payo� reference point. The estimates predict
that contrast in probability changes is stronger when stakes are higher. This suggests that in real world high stakes
problems overreaction is more likely to occur.
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1.3.2. Theories. The joint results of the experiment I design in this paper are hard to account with

existing models of risky choice. Under the assumption of plausible expectations, expectations-based

reference-dependence (Koszegi and Rabin 2006), can only capture assimilation, and not the boiling frog

and the contrast e�ect. Theories of underreaction (including rational inattention Sims, 2003, Caplin and

Dean, 2015, sparsity as in Gabaix, 2014 and noisy perception of numbers as in Woodford 2012, 2014)

can explain assimilation as the product of costly attention (the �rst two theories), or of estimation of

noisy numbers using the previously observed numbers as a prior (the latter theory). They predict that

as shocks get larger (either if the signal is stronger like in rational inattention or the variance gets larger

as in sparsity) the decision maker should act more rationally, while my theory, as tested experimentally,

also features overreaction, that is not rational. Bushong et al. (2021) can capture the boiling frog e�ect

but not the evidence of contrast. The contrast e�ect cannot easily be explained by Expectations Based

Reference Dependence (Koszegi and Rabin, 2006, 2009). In the simplest case of binary lotteries, the

theory predicts that, if people expect the past chosen lottery, they prefer to take the risky lottery most

similar to it rather than a safer one.9

The �nancial application of the model can feature dynamics of medium term momentum (Jegadeesh

and Titman, 1993) and delayed overreaction (De Bondt and Thaler 1985) found empirically in �nancial

markets, which is modelled by Barberis et al. (1998), Daniel, Hirshleifer and Subrahmaniam (1998),

Hong and Stein (1999), and Mullainathan (2002). The boiling-frog e�ect is a distinguishing prediction

of my model from that literature.

Theories of beliefs such as diagnostic expectations (Bordalo et al., 2018) do not predict a switch from

under to over reaction depending on the size of the shock.10 Rabin and Vayanos (2010) can imply both

under and overreaction in risk taking: di�erently from that work, my model predicts overreaction to

large shocks from steady state, and does not predict the occurrence of underreaction to arbitrarily long

sequences.

1.4. Structure of the paper. The structure of the paper proceeds as follows. Section 2 presents the

model, Section 3 discusses the main predictions, Section 4 presents the experimental test of the predic-

tions of Section 3 and discusses the results, including the estimation, Section 7 presents applications

and one test with �eld data, Section 5 presents secondary predictions, Section 6 concludes.

2. A model of decision making

2.1. Evaluation compared to the past. A decision maker faces choices in periods 1, ..., T between

risky prospects that realize at T . At time t, she considers the risky prospect At and retrieves a com-

bination of recently encountered risky prospects, Amt ,which will be de�ned formally later. Throughout

the paper, I shall use the term risky prospect, lottery or gamble intercheangebly. Lotteries are elements

of the space ∆
(
R
)
which is the set of probability distributions over consumption units. Uncertainty is

9I show this in Appendix C.
10It can predict underreaction under other distributional assumptions
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realized at time T .11 A stylized example of a decision in such a domain is the problem of investing into

a risky asset that pays at a �nal period and on which the investor receives information at each t ≤ T

Example 1. (Learning about an asset) Suppose an investor can either pick a stock with a random

payment X at time T or a safe asset paying S. Suppose the investor receives information on X in each

period t. In the model this is as if, at each period t, the choice set is

Ct = {At, δS}

where At = fX|t, that is, At is the marginal distribution of the stock X conditional on information

received up to time t, while δS is the lottery giving S w.p.1, to be delivered at T as well. This domain

will be used in Subsection 7. N

For every outcome x, the evaluation of the probability At (x) is anchored to Amt (x) and adjusted to

At (x) . This is according to the following expression:

π (At (x) |Amt ) := Amt (x)︸ ︷︷ ︸
anchor

+

attention︷ ︸︸ ︷
g
(
FAt , FAmt

)

At (x)−Amt (x)︸ ︷︷ ︸

adjustment


 (2.1)

where FAt , FAmt are the cumulative distribution functions of At and Amt . The extent to which the

adjustment catches attention is modulated by the function g ≥ 0. The adjustment of At from Amt
catches a lot of attention when g is large, while little attention when g is small. Crucially, g is monotone,

meaning that the adjustment from Amt to At gets more attention the further away At is from Amt . This

representation resembles Bordalo et al. (2020) which posits a model of evaluation of attributes, where a

change from the reference point is weighted by the salience function which satis�es the ordering property,

to which monotonicity is an analogue in this case.

De�nition 1. (attention weighting function)

Let F,G be cumulative distribution functions.

F,G 7−→ g (F,G) ∈ R+

The function g has the following properties

(i) Monotonicity

F >FOSD G >FOSD H =⇒ g (F,H) > g (G,H) (2.2)

and ∀H there exists H <FOSD H <FOSD H̄, such that

g
(
H̄,H

)
= g (H,H) = 1 (2.3)

while

g (H,H) = 0 (2.4)

11The slight abuse of notation makes the discussion simpler without any ambiguity. The non abusive notation speci�es a
set of temporal lotteries de�ned recursively as Ht = ∆

({
0
}
×Ht+1

)
with HT = ∆ (R) .and the space of the lotteries being

such that, for any lottery At, the marginal distribution at t of consumption in T is the same as the marginal at T.
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(ii) Continuity

g (·, ·)
is continuous in both arguments in the L2 norm.

(iii) Symmetry

g (F,H) = g (H,F ) (2.5)

The monotonicity property determines how the strength of similarity produces anchoring to the

anchor (g small) or overreaction to the adjustment (g large). I say that At is assimilated to Amt when

0 < g
(
FAt , FAmt

)
< 1,

which happens if L2 distance between FAt and FAmt is small enough, i.e. when the two lotteries are

close. If this is the case, the DM underreacts to the change between what he remembers, Amt , and

what he faces, At.

We say that At is contrasted away from Amt , when

g
(
FAt , FAmt

)
> 1,

which happens only if d
(
FAt , FAmt

)
is large enough, i.e. when the two lotteries are far away. If this is

the case, the DM overreacts to the change between Amt and At.

The utility of the decision maker is

U (At|Amt ) :=

∫
u (x) dπ (At (x) |Amt )

which becomes

U (At|Amt ) = EAmt [u]︸ ︷︷ ︸
anchor

+

attention weight︷ ︸︸ ︷
g
(
FAt , FAmt

)



EAt [u]− EAmt [u]︸ ︷︷ ︸

adjustment





(2.6)

where u is a strictly increasing function which represents consumption utility. The distorted utility

of At is anchored to the expected utility of the reference Amt , and adjusted to the rational expected

utility of At, by a degree commanded by the similarity between At and A
m
t . If At is very far from the

remembered lottery Amt , g > 1 and U (At|Amt ) > EAt [u] and the DM overreacts. When g < 1, she

underreacts to the change.

Example 2. One convenient example of g is

g (F,G) = θ

{∣∣∣∣EF [v]− EG [v]

∣∣∣∣
}β

(2.7)

where v is a strictly increasing function of x, θ > 0, and β > 0. N

Assimilation and contrast of evaluation of goods' attributes such as price and quality is modelled by

Bordalo et al. (2020) (henceforth BGS), who suggest that the evaluation of a price of a good is anchored

to remembered prices in similar contexts and adjusted to the observed price, with larger adjustment
8

https://scholar.harvard.edu/files/shleifer/files/qjaa007.pdf


the larger the surprise. The logic of my model is analogous. A lottery At cues the retrieval of past

similar lotteries summarized by Amt which anchors evaluation. The �nal evaluation of At depends on

how At di�ers from what the DM remembers: signi�cantly large di�erences from Amt command large

adjustments, that is overreaction, and small di�erences command underreaction. The monotonicity

property of the function g can be seen as the counterpart in the risky domain of the ordering property

of the salience function which is proposed in BGS.

This representation mirrors two widely detected features of human perception: assimilation occurs

when some element is judged as tending toward a reference element, and contrast occurs when some

element is judged as being more opposed to a reference one (Leeuwenberg 1982): for example, in a task

of lifting two weights sequentially, experimental subjects report estimates biased toward the �rst weight

if it is moderate, and biased away from it, if it is extreme.12 These phenomena are detected in domains

including the perception of brightness and size (Helson and Rohles, 1959, Helson and Joy, 1962, Helson,

1963).13

Example 2 shows one special case of attention functon g that is useful for applications. Example 3

shows how the similarity between At and its reference Amt leads to upward and downward bias in the

evaluation, in the simplest possible case of binary lotteries. For notational ease, (K, p) means a lottery

that pays K with probability p and 0 with probability 1− p.

Example 3. (binary lotteries) Suppose the decision maker evaluates a binary lottery At and has linear

utility u.

At(x) =




p x = K

1− p x = 0

and remembers a binary lottery Amt

Amt (x) =




pm x = K

1− pm x = 0

To save space I sometimes describe At as (K, p) and Amt as (K, pm). The evaluation of At is biased by

the distance between p and pm. Just for expositional ease, assume a quadratric function for g :

g ((K, p) , (K, pm)) = θ (Kp−Kpm)2

with θ > 0. The utility, anchored to the expected utility of Amt

U (At|Amt ) = Kpm︸ ︷︷ ︸
anchor

+ θ {K (p− pm)}3︸ ︷︷ ︸
attention×adjustment

12The notion of contrast in optics appears in Helmholtz (1866).
13Such empirical regularities have provided further motivation to adaptation level theory (Helson, 1964) whose basic
assumptions are that stimuli are judged based on past recent experiences. An individual whose perceptual system has
adapted to an environment, contrasts the stimulus away. Instead, if the stimulus is adjacent to the environment, the
perception of the stimulus adapts to it. An implication of this view is that small di�erences in stimuli are attenuated, and
large ones are exaggerated.
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Figure 2.1. Assimilation and contrast of a binary lottery (K, p) when remembered
lottery is (K, pm)

Left graph: the red curve plots the utility U((K, p) | (K, pm)) for �xed pm = 0.3 and p on the x axis and linear consumption utility. The
green line plots the average Ep = Kp as a function of p. The dark and light blue areas identify the assimilation region, where p is close
to pm, while the dark and light orange areas identify the contrast region, where p is far from pm. Darker areas identify values for p
such that the decision maker is risk loving, that is where U (At|Am

t ) > Ep, while lighter areas identify values for p where the decision
maker is risk averse, U (At|Am

t ) < Ep.
Right graph: the red curve plots U ((K, p) | (K, pm)) for �xed p, while pmvaries on the x axis. The green horizontal line is the expected
value Kp. p and p̄ identify the switching points between assimilation and contrast. Area colors de�ne the same behavior as in the left

graph.

Figure 2.1 shows, for �xed memory pm, the evaluation U (At|Amt ) as a function of p. The key lesson

is that there is an assimilation region
[
p, p̄
]
with p̄ > pm > p where, the anchoring of the evaluation

is such to bias the evaluation towards it, that is if p̄ > p > pm utility is downward biased towards the

anchor, that is

Kpm< U (At|Amt ) <︸ ︷︷ ︸
Atsimilar toAmt

Kp

while, if p < p < pm, utility is upward biased towards the anchor, that is

Kpm> U (At|Amt ) >︸ ︷︷ ︸
At similar toAmt

Kp

the opposite occurs for probabilities in the contrast region p /∈
[
p, p̄
]
. N

Example 4. (Average distorted by assimilation and contrast)

Suppose the similarity weight is g (F,G) = θ

∣∣∣∣Et −Emt

∣∣∣∣ where Et =
∫
xdAt and Emt =

∫
xdAmt . If the

decision maker has linear consumption utility u we can represent the distorted utility as

U (At|Amt ) =: Eθt = Emt + θ





(Et − Emt )2 if Et > Emt
− (Et − Emt )2 if Et < Emt

For expected value Et close and above Emt , Eθt is below Et, implying underreaction of the distorted

expected value to the change from Emt to Et. For expected value Et far above remembered Emt , Eθt is
10



Figure 2.2. Distorted Average

Example: A simple case with g (At, A
m
t ) = θ|Et − Em

t |

Assume u is linear

Eθ
t [X] = U (At|Am

t )

= Em
t +




θ (Et − Em

t )2 Et > Em
t

−θ (Et − Em
t )2 Et < Em

t

where Em
t =

∫
xdAm (x) and Et =

∫
xdAt (x)

Eθ
t

EtEm
t

•

Figure: Distorted Expectations
14 / 38

The blue curve plots Eθt as a function ofEt on the x axis, for �xed Emt .

above Et, implying overreaction to the change from Emt to Et. Figure 2.2 graphically represents the

verbal description. N

2.2. Past history shapes the reference point. I specify Amt , in the spirit of BGS, by resorting to

norm theory (Kahneman and Miller, 1986) which suggests that the reference point is shaped by recency

and similarity.14

At each t, the DM faces choice set

Ct ⊆ ∆ (R)

each element of Ct speci�es lotteries that pay at a �nal date T , with uncertainty resolved at T . For a

given At ∈ Ct , the decision maker retrieves the most similar past lotteries encountered and discounts

them by recency.15 One case of a sequence of choice sets of options that pay at a �nal period is an

environment where there is learning as in the Example 1 below.

We are now ready to de�ne how the remembered lottery Amt is constructed.

De�nition 2. Let Amt be the remembered lottery cued by At

Amt = (1− ρ)
t∑

j=1

ρj−1Ât−j + ρtAt

where ρ ∈
[
0, 1

)
is the recency discount factor, and Ât−j is the most similar lottery to At from those

encountered at time t− j. That is:

Ât−j =





arg minν∈Ct−j d (ν,At) if At non deterministic

At if At deterministic

14As the authors themselves write, these ideas are imported from Avant and Helson (1973), Ward (1979) and Lockhead
and King (1983).
15Even if I use this restriction to highlight the key predictions, the domain can be easily generalized to multi period
lotteries.
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where

d (ν,At) =





∫
(Fν (x)− FAt (x))2 dx if ν non deterministic

+∞ if ν deterministic

In words, when the DM faces a new distribution At she recalls the past distributions Ât−j which are

closest to it, and discount those further away by factor ρ.

Example 5. (gradual vs drastic changes in past history lead to di�erent reference points) Suppose there

5 periods and two decision makers, G and D. Between period 1 and 4, one risky prospect that they face

changes in time (say because they receive information about it and update). The payment is realized

at time 5.

Cis =
{(

$80, pis
)
, ($9, 60%)

}
i = D,G, s = 1, .., 4

where

pDs = 0.02, 0.025, 0.03, 0.09

pGs = 0.02, 0.04, 0.065, 0.09

that is, D faces a drastic change between period 3 and 4, while D faces gradual changes throughout.

When they evaluate the lottery

($80, 9%)

they retrieve two di�erent remembered lotteries Am,D4 and Am,G4

Am,D4 =
(
$80, (1− ρ)

{
0.03 + ρ0.025 + ρ20.02

}
+ ρ30.09

)

while

Am,D4 =
(
$80, (1− ρ)

{
0.065 + ρ0.04 + ρ20.02

}
+ ρ30.09

)

since G has faced a path of better lotteries, in �rst-order stochastic dominance sense, G retrieves a

better lottery than D, that is Am,G4 >FOSD Am,D4 .N

Example. 1 (continued) Take the investor in Example 1. The expected value of the remembered

stock payment Amt is

Emt [X] := EAmt [x] = (1− ρ)
t∑

j=1

(
ρj−1Et−j [X]

)
+ ρtEt [X]

that is, the decision maker remembers an average of prior expectations and gives more weight to the

more recent ones.

Suppose the investor has linear utility u (x) = x and g is as in Example 2, with v linear.

with β > 0. Suppose, additionally, that the decision maker only retrieved the most recent past, which

is ρ = 0, then

Eθt [X] := U (At|Amt ) = Et−1 [X] + θ





(Et [X]− Et−1 [X])β+1 if Et [X] ≥ Et−1 [X]

− (Et [X]− Et−1 [X])β+1 if Et [X] < Et−1 [X]

N
12



3. Main predictions: history dependent risk taking

The �rst key result from analyzing the model is that when a risky prospect looks similar to past ones,

its evaluation is distorted towards them. Instead, when the prospect looks very di�erent from the past

remembered, its evaluation is contrasted away. A natural consequence of these two forces is the second

result: the e�ect on evaluation produced by a change in a risky prospect from t0 to t1 is attenuated by

the addition of intermediate steps populated with intermediate (in �rst-order stochastic sense) lotteries.

I call this the boiling frog e�ect in choice under risk: small intermediate steps attenuate the reaction

to a change in risky prospects. In subsection 7 I show that we can interpret some phenomena in asset

prices as the manifestation of this force.

Proposition 1 discusses assimilation and contrast. Suppose there are two identical people, Ann and

Bob, evaluating the same risky prospect (K, p), that means K with probability p and 0 otherwise. Bob

has seen risky prospects that slightly �rst-order stochastically dominate (K, p) , like
(
K, pBobs

)
with

pBobs ? p, Ann has seen prospects that are slightly dominated, like
(
K, pAnns

)
with pAnns > p. Then Bob

assimilates the risky prospect to the slightly better (in FOSD sense) ones and has a higher evaluation

than Ann who assimilates the prospect to a slightly worse one (in FOSD sense). Suppose instead, the

former was exposed to risky prospects largely better (in FOSD sense), that is pBobs >> p, while the

latter was exposed to largely worse risky prospects, pAnns << p. The �rst one considers (K, p) as a

drastic deterioration from the past, while the second will view it as a drastic improvement. Hence,

assimilation (contrast) to better options biases choice in favor (against) the current risky prospect At.

The next proposition states this more generally. Let Ai,mt be the memory anchor for i = Ann,Bob.

Proposition 1. Suppose, at time t, Ct = {At, B}. Consider two alternative histories of choice sets for

s < t,

Cis =
{
Ais, B

}
i = Ann,Bob

such that d (As, B) > d (As, At) for every s. Assume either ρ is small or t is large. There are threshold

lotteries

µAt <FOSD At <FOSD µ̄At

such that:

(Assimilation) If

µAt <FOSD AAnns <FOSD At <FOSD ABobs <FOSD µ̄At

then

U
(
At|AAnn,mt

)
≥ U

(
B|BAnn,m

)
=⇒ U

(
At|ABob,mt

)
> U

(
B|BBob,m

)
.

(Contrast) If

AAnns <FOSD µAt <FOSD µ̄At <FOSD ABobs

U
(
At|ABob,mt

)
≥ U

(
B|BBob,m

)
=⇒ U

(
At|AAnn,mt

)
> U

(
B|BAnn,m

)
.

Proposition 1 says that we can �nd thresholds µAt and µ̄At that identify a cuto� between the

assimilation (where U
(
At|AAnn,mt

)
< U

(
At|ABob,mt

)
) and the contrast (where U

(
At|AAnn,mt

)
>

13



U
(
At|ABob,mt

)
) regions. In the assimilation region the value of At is attracted to the value of past

histories. The contrast region is where the value of At is exaggerated away from the past. Think of the

example of an insurance against an adverse event with time-varying likelihood ps,s = 0, 1. Suppose a

decision maker with linear utility u decided her willingness to pay for the insurance in period 1. The

assimilation region determines the maximum change in probability from period 0 to 1, so that the DM

still wants to pay a price below fair value (or, alternatively, does not insure, if the price is �xed at fair

value). If the change from 0 to 1 is above the cuto� that identi�es the assimilation region, the DM

exaggerates the change and is willing to pay an insurance above fair value.The cuto�s identi�ed in the

proposition are such that

U
(
At|µAt

)
= U

(
At|µ̄At

)
= U (At|At) = EAt [u.]

In the example of linear utility, are they correspond to the past historical distributions that make the

agent risk neutral when evaluating At. Figure 2.1 plots the expected utility of a lottery (K, p; 0, 1− p),
which pays K with probability p and 0 otherwise, as a function of the probability of past remembered

lotteries of the form (K, ps) where pm = (1− ρ)
∑
ρs−1ps + ρtp. The past pm distorts the evaluation.

Past slightly better expectations, so that pm ∈ [p, p̄] , make the lottery look better, as in the dark blue

region. Past signi�cantly better expectations, so that pm > p̄, make the lottery look worse, as in the

light orange region. Past signi�cantly (slightly) worse expectations, so that pm < p ,

(
pm ∈

[
p, p
])

make the lottery look better (worse), as in the dark orange (light blue) region. Corollary 2 states the

result of Proposition 1 for binary lotteries, which is tested experimentally in Section 4.

Consider again, the case of a decision maker that decides how much to pay for insurance against a

time-varying probability in the adverse event. We just discussed that, if a change is above a cuto�, she

will exaggerate her willingness to pay for insurance above fair value, because she will contrast the new

risk against what she has in memory. This fact yields an interesting additional implication, which is

that, if she faces a gradual change in risk, her memory gets populated with moderately higher risks. As

a result, a given probability pt will look less strikingly di�erent from the past pmt relative to the case

where the DM experienced a discrete jump. This hypothetical behavior is sometimes referred to as a

Boiling Frog e�ect, which I state in Proposition 2, and on which I provide experimental evidence in

Section 4.

Proposition 2. (Boiling Frog) Under the same assumptions of Proposition 1, suppose AAnn1 = ABob1 =

A1 ≤FOSD µAtsuppose

AAnns <FOSD µAt

for every s and

AAnns <FOSD ABobs

for all s between 1 and t. Then

U
(
At|ABob,mt

)
≥ U

(
B|BBob,m

)
=⇒ U

(
At|AAnn,mt

)
> U

(
B|BAnn,m

)
.

In words Ann values At more than Bob if she saw lotteries dominated by some seen by b
14



Proposition 2 says that when evaluating lottery At, if, before t, Ann has seen lotteries below the

contrast threshold µAt , while Bob has seen the same starting lotteries than Ann, but relatively better

(in �rst-order stochastic sense) lotteries between 1 and t, then Ann has a higher evaluation of At relative

to Bob. This is because Ann contrasts At upwards more than Bob does.

To get the simple meaning of Proposition 2, think about a probability of adverse event that evolves

in three periods, starting from p0 = p and being equal to p2 in the last period. If the change from p0 to

p2 is large enough, Ann faced pAnn1 = p, that is a drastic change from p to p2, and evaluates the risk to

be larger than Bob who faced pBob1 ∈
(
p, p2

)
, that is a more gradual path leading to p2.

The predictions so far rely on the memory anchor Amt being a backward looking average of past

lotteries, and not much on the exponential discounting of past lotteries. Relevant other implications

descend from the assumption of discounting: the reaction to the present depends on the order of past

experiences. To �x ideas, suppose Ann and Bob has seen past lotteries

Ais =
(
K, pis; 0, 1− pis

)
i = Ann,Bob

such that pis < p, s < t. Suppose they saw the same lotteries but not in the same order: in particular

Ann has seen them ordered in a declining fashion: pAnns < pAnns−1 . Suppose at time t they evaluate

the same lotteryAt = (K, p; 0, 1− p). Then, if the recent lotteries end up being di�erent enough, Ann

chooses At more than Bob. This has an application in any setup where a principal wants to manage

surprises to boost the perception of an outcome, as I exemplify in Subsection 1: a given set of surprises

produces larger reaction if it is observed in increasing order: a convex trend produces overreaction. I

test for the history-order dependence of risk taking in Subsection 4.6. The following corollary states the

prediction more generally.

Corollary 1. (Recency e�ect) Under the same assumptions of Proposition 1. Then there exists 0 <

ρ̄ < 1 such that, if

0 < ρ < ρ̄

and
⋃
s<t

{
AAnns

}
=
⋃
s<t

{
ABobs

}
and

AAnnt−1 ≤FOSD µAt

and

AAnns <FOSD AAnns−1 <FOSD At

for s < t, then

U
(
At|ABob,mt

)
≥ U

(
B|BBob,m

)
=⇒ U

(
At|AAnn,mt

)
> U

(
B|BAnn,m

)
.

The Corollary says that Ann values At more than Bob if Ann saw a declining order of lotteries before

At, while Bob saw the same lotteries but in di�erent order. This prediction will be tested in Subsection

4.6.
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4. Experimental Evidence

In this section I experimentally test the main novel predictions of the model.

(1) The contrast prediction says that if lottery pays much more (less) in �rst-order stochastic sense

than the most similar ones remembered, it is chosen more (less) often.

(2) The assimilation prediction consists in the notion that if a lottery pays slightly more (less) in

�rst-order stochastic sense than the most similar ones remembered, it will be chosen less (more)

often.

(3) Assimilation and contrast interact, implying that gradual upward (in stochastic dominance

sense) changes in a lottery make the resulting lottery chosen less often than drastic upward

changes.

I test these predictions through randomly assigned cross subject experimental treatments where each

subject faces a sequence of binary choices between binary lotteries, and only one lottery changes across

choice sets. In the �rst set of treatments the probability of the outcome of a lottery changes across

stages (Subsection 4.1). In the second set of treatments the outcome of one of the lotteries changes

across stages (Subsection 4.7).

The experiment was pre registered at the American Economics Association's RCT registry, with ID

AEARCTR-0009601 on June 18th 2022. The experiments have taken place in July and August 2022 on

the online platform Proli�c. The task takes about 2 minutes. Subjects were instructed that they were

paid a �xed amount of $0.40 (an hourly rate of $12) plus, if they got selected, the random payment of

one of the lotteries they chose. The uncertainty regarding the payo� of the lottery drawn is resolved at

the end of the experiment.

4.1. Experimental paradigm 1: changes in probability. In each treatment subjects make a se-

quence of choices between two lotteries. In stage t, subject in treatment j must choose between either

$80 with probability qTjt , and $0 with probability 1 − qTjt , or $9 with probability 0.6, and $0 with

probability 0.4. This means that the choice sets are as follows:

Cjt =
{(

$80, qTjt ; $0, 1− qTjt
)
, (($9, 0.6; $0, 0.4))

}

with j indexing the treatment j = 1, 2, 3, 4.

When subjects face a choice set at stage t, they neither see their previous choice sets, nor they are

reminded what they chose. They are told in the instructions that one choice will be implemented for

one subject in their experimental wave.

I refer to a lottery that pays A with probability q and 0 otherwise as (A, q).

Treatment 1. (
qT1
t

)5
t=1

= (0.09, 0.07, 0.06, 0.05, 0.02)

Subjects choose between an alternative that varies across choice sets and a safer lottery that is invariant.

The option paying $80 decreases in �rst-order stochastic dominance across choice sets.
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Treatment 2. (
qT2
t

)5
t=1

= (0.02, 0.05, 0.06, 0.07, 0.09)

The option paying $80 increases in �rst-order stochastic dominance across choice sets.

Treatment 3. The sequence of choice sets is
(
qT3
t

)4
t=1

= (0.21, 0.23, 0.22, 0.09)

The option paying $80 decreases in �rst-order stochastic dominance across choice sets, with a large

jump between t = 3 and t = 4.

Treatment 4. The sequence of choice sets is
(
qT4
t

)4
t=1

= (0.02, 0.04, 0.03, 0.09)

The option paying $80 increases in �rst-order stochastic dominance across choice sets, with a large

jump between t = 3 and t = 4.

One wave of subjects (N=1210) was randomly assigned either to Treatment 1 or 2. Another simul-

taneous wave of subjects (N=400) was randomly assigned either to Treatment 3 or 4.

Table 3 summarizes the di�erent experimental treatments.

4.2. Model's derived hypotheses . The following predictions come from Corollary 2. Let us call

P (A, q|TJ)

the frequency of choice of option (A, q) in Treatment J.

Prediction 1 - Contrast

P (($80, 9%)|T3) < P (($80, 9%)|T4)

Prediction 2 - Weak assimilation

In Treatment 1 the option paying $80 is chosen more often than in Treatment 2 on average
∑T

t=1 P (($80, qt)|T1)

T
>

∑T
t=1 P (($80, qt)|T2)

T

The strong assimilation prediction is a stronger test of the model and says the following.

Prediction 3 - Strong Assimilation

If P (($80, 9%)|T4) ≤ P (($80, 9%)|T1) then

P (($80, qt)|T1) > P (($80, qt)|T2)

for each

t = 1, ..., T

The last prediction connects contrast and assimilation and says that, for �xed starting and ending

choice sets, (A, qT ) is chosen less often if it comes after a sequence of choice sets that entails a gradual
17



positive change in the probability of A than if it comes after a drastic change from qT−1 to qT . The

intuition is that, after a drastic change, contrast is at play and the lottery gets overvalued. While after a

gradual change either assimilation or weaker contrast make the lottery (A, qT ) stand out less noticeably.

Prediction 4 - Boiling Frog

In Treatment 4 the option paying $80 is chosen more often than in Treatment 2 at stage 4

P (($80, 9%)|T2) < P (($80, 9%)|T4)

4.3. Results.

4.3.1. Evidence of Contrast. The top panel in Figure 4.1 below compares the choice frequency of the

risky option ($80, 9%) across Treatment 3 (where it is shown after subjects have seen ($80, 21%),

($80, 23%) and ($80, 22%)), and Treatment 4 (where it is shown after subjects have seen ($80, 2%),

($80, 4%) and ($80, 3%) ). The risky option is chosen by 32% of the subjects when it appears larger

than the preceding options in Treatment 4, and less than half of the times (12%) when it comes after

larger options. Column (1) in the top panel of Table 1 shows that the treatment di�erence of about

−20% is statistically signi�cant at every meaningful level, and also economically signi�cant: a decision

maker that sees the option after a much better one is more than 50% less likely to choose it compared

to a decision maker that has seen worse choices �rst.

Another relevant comparison is between the choice likelihood of a decision maker who observed

better options (T3) with a decision maker who sees the option without having observed anything before

(T1). The top panel in Figure 4.2 shows that the choice frequency of ($80, 9%) when it is encountered

�rst (Treatment 1) is approximately 36% which is not statistically distinguishable from the 32% of

treatment 4. Also in this case, the treatment di�erence between T3 and T1 is large and statistically

signi�cant, implying that a decision maker that observed largely �rst-order stochastically dominating

options before is less than half as likely to choose the risky option as a decision maker who has seen

nothing before. The insigni�cant di�erence between T1 and T3 choice frequency of ($80, 9%), moreover,

suggests that ($80, 9%) is approximately in the crossing point between the assimilation and the contrast

region, relative to the reference lottery which is a combination of ($80, 4%),($80, 3%), ($80, 2%). This is

only a heuristic argument: the rigorous inference of the crossing point can be found in subsection 6.4.1,

where I perform a structural estimation of the contrast parameter θ , the recency parameter ρ,and the

coe�cient of relative risk aversion 1− α.

4.3.2. Evidence of Assimilation . The bottom panel of Figure 4.1 compares the cross period average

choice frequency of the risky options ($80, qt between Treatment 1, where the options are showed

sequentially in a decreasing order of stochastic dominance (qt goes smoothly from 9% to 2%), and

Treatment 2, where the options are showed in increasing order of stochastic dominance (qt goes gradually

from 2% to 9%). This way the same option in Treatment 1 is preceded by slightly better ones, while in

Treatment 2 is preceded by slightly worse ones. The table shows that subjects choose ($80, qt around

22% of the time if they are preceded by slightly FOS dominant ones (in Treatment 1), and around 17%

of the time when the options are preceded by slightly FOS dominated ones in Treatment 2. As shown
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Figure 4.1. Contrast and Assimilation

Choice frequencies of option $80, q are shown, with q on the x axis and segments indicating 95% con�dence intervals. Green dots
indicate Treatment 3, while orange dots indicate Treatment 4.

The blue dot is the cross period average frequency of Treatment 1, while the red dot is of Treatment 2.

in the bottom panel of Table 1, the treatment e�ect of 4% is statistically di�erent from 0. The size of

the e�ect is economically relevant: on average subjects can decrease their propensity to take risk by

20% if they are shown worse risky options that look similar to the target.
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A more nuanced picture is revealed if we estimate treatment e�ects on choice for every option sep-

arately: the choice frequency of ($80, 9%) is larger by 10% when it is seen as a �rst option rather

than when it is preceded by the increasing sequence of FOS dominated options. Subjects observing a

gradual decline in the probability of $80 are also signi�cantly more likely to choose ($80, 9%), ($80, 7%)

and ($80, 6%) compared to subjects that, before facing it, have seen the sequence of worse options

($80, 2%) , ($80, 5%) , ($80, 6%). The e�ect weakens and disappears for values below 6%, and actually

reverses for the option ($80, 2%): this means that ($80, 2%) is contrasted away from the previous op-

tions in Treatment 3. The decline of the size of the point estimate of the e�ect is suggestive that the

assimilation acts from below. That is, subjects might be primed more e�ectively by low probability

options, and thus assimilate options that slightly FOS dominate them, while they might not be as-

similating an option preceded by options that slightly FOS dominate it, or they might even contrast

it. In order to test whether this mechanism is at play, choice frequencies of the intermediate options

($80, 2%) , ($80, 5%) , ($80, 6%) , ($80, 7%) should be estimated in an experiment where they are not pre-

ceded by any other option. In absence of that, it can be asserted that the di�erence in risk taking in

the choice set containing the relatively better option ($80, 9%) all comes from assimilation to the worse

options in treatment 2, since in treatment 1 the option ($80, 9%) is observed in isolation.

4.3.3. Boiling Frog e�ect in choice under risk. As shown in the bottom panel of Figure 4.2, the choice

frequency of the option ($80, 9%), which is encountered last in both Treatments 2 and 4, is larger by 8

in Treatment 4, where the probability of $80 rises more drastically across choice sets than in Treatment

2. Such di�erence is statistically signi�cant at 5% level, as shown by Column (2) of the top panel of

Table 1. I conclude that Prediction 4 is con�rmed.

4.4. Discussion. The results overall reveal sizable contrast and assimilation e�ects. The choice of an

option is less likely if the option looks like a drastic improvement from the past, relative to when it looks

like a drastic deterioration from the past, and also relative to when it looks like a gradual improvement

from the past.

The results from the comparison between T3 and T4 can be consistent with inertia: subjects in T4

choose the safer option at the beginning and keep on choosing it because they are either stuck to the

status quo or do not even pay attention. Inertia is ruled out by the comparison between T4 and T2,

which reveals the boiling frog e�ect: if subjects are stuck to the status quo or are not paying attention

to features of the option that they are not choosing, then observing ($80, 9%) after a smooth sequence of

improving options as in T2 or after a drastic change as in T4 should not make a di�erence, because the

starting and ending choice sets are the same for both treatments. Instead, as we have discussed, there

is an economically and statistically signi�cant di�erence of about 8% in choice frequencies of ($80, 9%)

between the two treatments.

We have seen in subsection 4.3.2 evidence consistent with an hypothesis that subjects assimilate only

from �below� that is, they are not sensitive to slight improvements in options. This brings subjects to be

less willing to take an option is preceded by FOS dominated ones. In order for subjects in treatment T1

to be more likely to take ($80, 9%) than in T2, it is not necessary for them to be biased by assimilation

in T1. The pattern observed implies that there is assimilation at least in one of the two treatments,
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Figure 4.2. Assimilation and the Boiling Frog e�ect

Average choice frequencies of option $80, q are shown. q is reported on the x axis. Segments show 95% con�dence intervals. Blue dots
represent the choice frequencies in Treatment 1, red and orange dots represent those of Treatment 2, green dots represent choice

frequencies of Treatment 4

but not necessarily in both. The comparison of P ($80, 9%) across T1 and T2 shows that there is

assimilation in T2, because subject are less risk taking after an ascending path of probabilities than if

considering the option in isolation. Another question is whether subjects in T1 are also assimilating,

that is the choice frequency of the risky options are larger than in the case where they see them in

isolation.16 Given that we only get to see choices in isolation of only one option, we cannot estimate

the assimilation or contrast e�ect of T1 only. Subjects in T1 may be less likely to choose the risky

option in T1 than if they saw each risky option in isolation, implying that they are actually contrasting

16With �in isolation� I mean facing a choice set without having seen anything else similar before
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Table 1. Assimilation, Contrast and the Boiling Frog e�ect

(1) 
($80,9%) 

-0.208***
(0.0404)
0.322***
(0.0281)

398 
0.063 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

(2) 
($80,9%) 

0.0876** 
(0.0351) 
0.234*** 
(0.0174) 

828 
0.008 

(5) (1) (2)
9% 7%

(3) (4)
6% 5% 2% 

0.126*** 0.0959*** 0.0480** 0.0133 
(0.0260) (0.0242) (0.0223) (0.0211) 
0.234*** 0.186*** 0.161*** 0.152*** 
(0.0181) (0.0168) (0.0155) (0.0147) 

-0.0645***
(0.0177)
0.138***
(0.0123)

1,208 1,208 1,208 1,208 1,208 

D Drastic  effect 

A Gradual

Observations 
R-squared 0.019 0.013 0.004 0.000 0.011 

      Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

D Drastic effect

A Drastic

A Drastic effect

A Gradual

Observations 
R-squared

The top table shows the regressions of a dummy(=1 if ($80, 9%) is chosen) on a constant (�A Drastic� in Column (1) and �A Gradual�
in Column (2)) and a Treatment dummy. The dummy �D Drastic e�ect� is =1 if subject is in Treatment 3, the dummy �A Drastic
e�ect� is =1 if subject is in Treatment 4. In Column (1) the sample includes Treatments 3 and 4, while in Column (2) it includes

Treatments 2 and 4.
The bottom table shows, for each column, the regression coe�cients of a dummy = 1 if ($80, q) is chosen and 0 otherwise, with q
varying across columns. The regressor �D Gradual e�ect� is a dummy =1 if the observation is in Treatment 1 and =0 if it is in

Treatment 2. The regressor �A Gradual� is the constant. The sample includesTreatment 1 and 2.

the options against the preceding ones. An answer to this question can be drawn from an additional

treatment, called T1*, that is discussed in Appendix B, where subjects observe one more choice set

{($80, 11%) , ($9, 60%)}before the choice sets of T1, in their same order. Results displayed in the top

left table of Table 6 show that

P (($80, 9%) |T1∗) u 27% < 35% u P (($80, 9%) |T1)

suggesting that subjects contrast ($80, 9%) in treatment T1∗. The model, at least under functional

forms that I later use in this paper, predicts

P (($80, 9%) |T2) < P (($80, 9%) |T1) < P (($80, 9%) |T1∗)
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that is, if ($80, 9%) is assimilated in T2 to lower probability options, than it should be assimilated in

T1∗to the higher probability option ($80, 11%). This inconsistency between the model and the data

suggests that other forces can be additionally at play, whose investigation is beyond the scope of this

work.

4.5. Switching point between assimilation and contrast. In Subsection 4.3.1 I have argued qual-

itatively where might be the switching point between assimilation and contrast in the probability of

receiving $80, conditional on a history of options observed. The purpose of this subsection is twofold:

�rst I provide a rigorous answer to the question of where is the elicited switching point between assimi-

lation and contrast in the current experiments. Secondly, I answer the question of how does a DM with

preferences estimated in my experiment reacts to risks of much larger magnitude, which are not feasible

in an experimental setting. In order to answer these questions, I estimate preference parameters under

the assumption of a functional form equal to

g (F,G) = θ

∣∣∣∣EF [u]− EG [u]

∣∣∣∣

Estimation details are in Appendix D. The key parameters are θ, ρ and the curvature of utility α.

Suppose a subject has seen many times ($80, p̄) and now evaluates ($80, p̄+ δ). The switching point

is de�ned as the value δ such that

U (80, p̄+ δ|80, p̄) = E(80,p̄+δ) [u] .

Such value depends not only on the structural parameters, but also on the values at stake:

δ =
1

θ

1

80α

where α comes from a functional form assumption over consumption utility:

u (x) = xα.

Appendix D shows that the estimate of θ and α is

θ̂1 = 1.29

and

α̂1 = 0.52

That yield the switching point

δ̂1 = 0.079

Suppose p̄ is equal to 5.5%, like in Figure 4.3. After having faced the lottery ($80, 5.5%),the decision

maker will like the lottery

($80, 12.4%)

just as much as if she saw such a lottery without being primed with anything. In other words, the

estimated parameters predict the choice frequency of ($80, 12.6%) to be the same both when seen in
23



Figure 4.3. Estimated preferences

Both �gures plot in red the distorted expected utility of a lottery ($K, p, $0, 1− p) conditional on past lotteries being
($K, 5.5%, $0, 94.5%). p is reported on the x axis. In the top panel K = 80, while in the bottom panel K = 200. The �gure is

constructed using θ̂1 and α̂1, which are estimates from the sample including T1, T2, T3 and T4. The the undistorted expected utility is
plotted in green. Dashed lines represent 95% con�dence intervals, obtained via block bootstrap.

isolation and when seen after a long sequence of ($80, 5.5%).17 This calculation immediately yields the

assimilation region that we would obtain in an experiment we have not run. Suppose we wanted a

decision maker not to buy a risky lottery paying ($200, 12%) sold at fair value. We may naively think

that, since we estimated an assimilation region of 5.5%± 12.4% in our experiment, ($200, 12%) would

be assimilated downwards to a priming lottery of ($200, 5.5%), so that the priming would succeed in

reducing risk taking of a subject. The model instead says that the assimilation region is stake dependent,

and shrinks as stakes scale up: Figure 4.3, bottom panel, shows that ($200, 12%) lies in the contrast

region of ($200, 5.5%). This means that the priming would increase risk taking, back�ring the original

purpose.

17In other words, the certainty equivalent of ($80, 12.6%) is the same whether the option comes after ($80, 5.5%), or when
it is seen in isolation.
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Table 2. Recency e�ect. Treatments

R1 R2

Stage 1 $80, 7% vs $9, 60% $80, 2% vs $9, 60%

Stage 2 $80, 6% vs $9, 60% $80, 5% vs $9, 60%

Stage 3 $80, 5% vs $9, 60% $80, 6% vs $9, 60%

Stage 4 $80, 2% vs $9, 60% $80, 7% vs $9, 60%

Stage 5 $80, 9% vs $9, 60% $80, 9% vs $9, 60%

Each column displays the sequence of choice sets faced by subjects in Treatment R1 and R2, respectively.

Figure 4.4. Recency e�ect

Choice frequencies of ($80, q%), q is on the x axis. Green dots: Treatment R1. Yellow dot: Treatment R2.

4.6. Recency e�ect: estimation and one additional experimental test. The structural estima-

tion described in the appendix allows me to recover an estimate of the recency parameter ρ which is

equal to ρ̂1 = 0.02. This essentially means that subjects acts as if the remembered lottery was equal

to the last lottery they saw. This suggests that changing the order of the history, holding the elements

of the past the same, should have dramatic e�ects on choice. I run the additional treatments on 320

subjects on Proli�c, summarized in Table 2, to test for this. In R1 subjects see a declining path of

probability of the upside $80 to 2%, right before a jump to 9%. In R2, subjects see the same choice

sets as in R1, but in a gradual increase from 2% to 9%. The recency parameter just estimated says

that subjects in stage 5 of R1 perceive a jump from the remembered lottery ($80, 2%) to ($80, 9%)

that makes them evaluate the lottery approximately on the cuto� between assimilation and contrast.

Instead, subject in stage 5 in R2 should assimilate ($80, 9%) to ($80, 7%) and choose it less often than

subjects in R1

The results are in Figure 4.4. The choice frequency of ($80, 9%) is signi�cantly larger (by about 15

percentage points) in subjects in R1 than in R2, con�rming the prediction of the model.
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4.7. Experimental paradigm 2: changes in payo�s. The model predicts that the same forces of

contrast and assimilation should be at play also when the lottery under evaluation does not share the

same support of its reference lottery. In other words, if a lottery (A, q) is assimilated to a lottery

(A, q + δ), for δ small, then the model says that it is also assimilated to (A+ ε, q) with ε small. Sym-

metrically, for ε large, it gets contrasted away from (A+ ε, q). It depends on the contrast parameter

θ how large (small) must ε be to deliver contrast (assimilation). In the spirit of the main treatments

explained in Subsection 4.1, I design four additional cross subject treatments where a sequence of choice

sets is shown, with the following structure

Cjt =
{

($80, 0.09) ,
((

$BTj
t , 0.6

))}

where the treatments are indexed by j = 5, 6, 7, 8.

Treatment 5:
(
BT5
t

)4
t=1

= (5, 4, 2, 1)

BT2
t gradually decreases across choice sets.

Treatment 6:
(
BT6
t

)4
t=1

= (1, 2, 4, 5)

BT2
t gradually increases across choice sets.

Treatment 7:
(
BT7
t

)4
t=1

= (9, 8, 8.5, 5)

BT2
t drastically decreases from stage t = 3 to t = 4.

Treatment 8:
(
BT8
t

)4
t=1

= (1, 2, 1.5, 5)

BT2
t drastically increases from stage t = 3 to t = 4.

One wave of subjects (N=400) was randomly assigned either to Treatment 5 or 6. Another simulta-

neous wave of subjects (N=400) was randomly assigned either to Treatment 7 or 8.

Table 3 gives a summary of the Treatments.

Table 3. Treatments

T1 T2 T3 T4

Stage 1 $80, 9% vs $9, 60% $80, 2% vs $9, 60% $80, 21% vs $9, 60% $80, 2% vs $9, 60%

Stage 2 $80, 7% vs $9, 60% $80, 5% vs $9, 60% $80, 23% vs $9, 60% $80, 4% vs $9, 60%

Stage 3 $80, 6% vs $9, 60% $80, 6% vs $9, 60% $80, 22% vs $9, 60% $80, 3% vs $9, 60%

Stage 4 $80, 5% vs $9, 60% $80, 7% vs $9, 60% $80, 9% vs $9, 60% $80, 9% vs $9, 60%

Stage 5 $80, 2% vs $9, 60% $80, 9% vs $9, 60%

T5 T6 T7 T8

Stage 1 $80, 9% vs $5, 60% $80, 9% vs $1, 60% $80, 9% vs $9, 60% $80, 9% vs $1, 60%

Stage 2 $80, 9% vs $4, 60% $80, 9% vs $2, 60% $80, 9% vs $8, 60% $80, 9% vs $2, 60%

Stage 3 $80, 9% vs $2, 60% $80, 9% vs $4, 60% $80, 9% vs $8.5, 60% $80, 9% vs $1.5, 60%

Stage 4 $80, 9% vs $1, 60% $80, 9% vs $5, 60% $80, 9% vs $5, 60% $80, 9% vs $5, 60%
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Predictions:

The model predicts assimilation in Treatment 5 and 6, contrast in Treatments 7 and 8, and the boiling

frog e�ect in Treatments 6 and 8.

(1) (Contrast)

C ($5, p|T8) > C ($5, p|T7)

(2) (Weak Assimilation)
∑T

t=1C (($Bt, p)|T5)

T
>

∑T
t=1C (($Bt, p)|T6)

T

(3) (Strong Assimilation)

C (($Bt, p)|T5) > C (($Bt, p)|T6)

at every period t

(4) (Boiling Frog)

C ($5, p|T6) > C ($5, p|T8)

4.7.1. Results. The data show a strong contrast e�ect. The top left panel in Figure 4.5 shows that the

option paying $5 with probability 60%, in Treatment 8, is chosen 58% of the time, while only 37% of

the times in Treatment 7. As shown in Column (1) in the top panel of Table 7, the di�erence in choice

frequencies is economically sizable and statistically signi�cant at any meaningful con�dence level. Hence

evidence con�rms that the same lottery is contrasted away from the previous lotteries in at least one of

the two Treatments.

The comparison between treatments yields less clear results when I test for assimilation (Treatment

5 vs Treatment 6). Here the hypothesis is that options paying Bt in Treatment 5 should be chosen more

frequently than in Treatment 6. The top right panel of Figure 4.5 shows that subject do not seem to

do so, since we cannot reject that the cross period choice frequencies are the same across treatments.

The analysis of the heterogenoeus treatment e�ects yields a more nuanced picture, represented in

the bottom left panel of Figure 4.5: contrast occurs for some options and assimilation for others. In

particular, the $5 and $4 dollar options are chosen less likely in Treatment 6, where where they are

preceded by ($1, 0.6) and ($2, 0.6), than in Treatment 5, where the order is decreasing. This suggests

that the $5 option in Treatment 6 is assimilated to the previous lower paying options, while in Treatment

6 it is evaluated in isolation, since it is seen �rst. The opposite occurs for the low paying options $1

and $2: the two options are chosen less likely when they are presented in decreasing order of payo�s,

suggesting that they are contrasted away from the previous options which pay more. Such Treatment

di�erences are statistically signi�cant at 5% or lower levels, as shown in the bottom panel of Table 7.

When comparing Treatments 8 and 6 in the bottom right panel of Figure 4.5 we detect a statistically

signi�cant di�erence in the choice frequency of the option in the last stage, ($5, 0.6), which is chosen 12%

more when presented after a drastic upward change in B rather than after a gradual change (Column

(2) top panel of Table 7). Hence the data con�rm predictions 1. and 4. that are contrast and the

boiling frog.
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Figure 4.5. Contrast, Assimilation and Boiling Frog

The top right panel shows the cross period average frequency of (B, 60%) in Treatment 5 (blue dot) and Treatment 6 (red dot). The
panels on the left show the choice frequencies of ($B, 0.6), with B on the x axis, across Treatment 7 (orange dots) and Treatment 8
(green dots), Treatment 5 (blue dots) and Treatment 6 (red dots). The bottom right panel shows the choice frequency of ($5, 0.6) in

Treatment 8 (orange dot) and Treatment 5 (green dot). Bars indicate 95% con�dence intervals.

4.8. Expectations Based Reference Dependence, contrast, assimilation and the Boiling

Frog. The Expectations Based Reference Dependent (EBRD) utility model proposed by Koszegi and

Rabin (2006) predicts that choice is indirectly distorted by past choice sets through the endogenous for-

mation of expectations. The formal analysis conducted in the Appendix C shows that the expectations

required to rationalize the contrast e�ect and the boiling frog e�ect are not reasonable, for the same

reason why the ones required to rationalize the assimilation e�ect can be reasonable.

I �rst show the predictions of EBRD in Treatments detecting contrast and assimilation through

variation of the probability. Compare two EBRD agents with same preference parameters, each making

two choices. In the �rst stage, one faces
(
$80, phigh

)
vs ($9, q) and the other

(
$80, plow

)
vs ($9, q) ,

with phigh > p > plow. In the second stage both face ($80, p) vs ($9, q). Suppose we observe that the

agent who faced phigh picks($9, q) in the second stage, while the agent who faced plow picks ($80, p)

in the second stage. EBRD predicts that the agent who faced phigh expects to receive $80 ($9) with

a lower (higher) chance than the agent who faced plow. This is not reasonable, because subjects in

Treatment 3 choose
(
$80, phigh

)
, with higher frequency than the one in which subject in Treatment 4
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choose
(
$80, plow

)
, so they sould be expecting the opposite of what EBRD says. An alternative way

to view this is that an EBRD agent who was accustomed to phigh is used to more risk than an agent

accustomed to plow: hence she should pick ($80, p). This does not happen in the contrast e�ect, but it

happens in assimilation: suppose we observe, in stage 2, that the EBRD agent who faced phigh picks

($80, p) while the agent who observed plow does not. EBRD predicts that it must be that the agent who

faced phigh expects to receive $80 with higher chance than the agent who faced plow. These expectations

are consistent with what subjects see and choose.

The predictions of EBRD in the Treatments that vary the payo� of a lottery, as opposed to the

probability, follow a similar logic. An EBRD agent in the low payo� condition should expect the

alternative lottery more than the subject in the high payo� condition, hence should choose the target

option ($5, q) less often, which is not what subjects do in Treatments 7 and 8.

4.9. Summary of experimental results and last remarks. I �nd evidence both of overreaction of

choice to big changes and underreaction to small changes in risk when the support of the lotteries is

held �xed. I �nd evidence of overreaction to big changes in payo�s of lotteries, while mixed evidence of

underreaction and overreaction depending on the direction of the change in payo�s. The bottomline of

the results is condensed in Table 4.

The monotonic treatment di�erences between Treatment 5 and 6 highlighted in the top right panel of

Figure 4.5 resonate the monotonic treatment di�erences found in Treatments 1 and 2, where assimilation

seems to be stronger at higher levels of probability, suggesting the insensitivity is stronger when an option

goes up in probability (or payo�) than when it goes down. Such �ndings suggest that a better �t might

be an attention function g which is asymmetric, which I rule out for tractability purposes.

Table 4. Contrast, Assimilation and the Boiling Frog e�ect in probability and payo�s
Probability Payo�

Contrast Yes Yes
Assimilation Yes Mixed
Boiling Frog Yes Yes
Recency Yes *
* Left to future research.

5. Other predictions

5.1. An endowment e�ect for risk. In hypothetical decisions, subjects are more risk averse when

trading a sure amount for a gamble than vice versa (Hershey, Kunreuther, and Schoemaker 1982,

McCord and de Neufville 1985, Schoemaker 1990, although such methodologies have been criticized by

Holt and Laury 2002, Plott and Zeiler 2005). Sprenger (2015) shows that subjects are more risk averse

when asked to state probability equivalents to certain payments than when asked certain equivalents

to risky payments. According to my model, a similar e�ect can be accounted for if decision makers are

very sensitive to contrast: a DM that remembers a safe lottery and later faces a risky lottery with same

expected value, contrasts the smaller expected utility against the one induced by the safe payment and

is more risk averse than one who remembers the risky lottery.
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Remark 1. Assume ρ = 0 (that is, the DM remembers only the past lottery) and consider two de-

cision makers a and b with same preferences but the following choice sets Ca1 = {(Kp, 1)}, Cb1 =

{(K, p; 0, 1− p)} and Ca2 = Cb2 = {(K, p; 0, 1− p) , (x, 1)} for �xed p and K. Let g be as in Example 2,

with ν = u concave. Then, if θ large,

U

(
(K, p; 0, 1− p)

∣∣∣∣ (Kp, 1)

)
< U

(
(K, p; 0, 1− p)

∣∣∣∣ (K, p; 0, 1− p)
)

that is, a will accept a lower certainty equivalent than b in period 2.

The negative of this result is that, if this behavior is observed also for small stakes lotteries, the inferred

shape of the weight g implies a very small assimilation region, which is in tension with experimental

results yielding assimilation that I lay out later in the paper. Whether these facts can be quantitatively

jointly matched is a matter af structural parameter estimation. Even if I do not estimate parameters

based on samples of the papers mentioned, in Appendix D I compare estimates obtained from my sample

and from the one by Frydman and Jin (2022), and do not reject the null that the preference parameters

are the same across samples. However, the testing for the endowment e�ect as in Remark 1, and an

estimation that takes into account such evidence, is left to future work.

5.2. Assimilation and e�cient coding. Experimental literature on numerical cognition and choice

has studied how the dispersion of options perceived by the decision maker during several decisions

impacts taste for risk. In particular, Frydman and Jin (2022) (FJ) shows in binary choices between a

risky and riskless option that more risk taking is associated with distributions of past upsides that have

a higher mean. While the authors interpret fact as the e�ect of a change in the prior in the simulation

of numbers used as a proxy of value, my model o�ers a di�erent explanation for the same fact. Namely

that assimilation makes the perception of the lottery closer to the mean distribution of the past lotteries

if they are su�ciently close to it. I consider here a setting that adherently represents FJ's experimental

paradigm.

Consider two decision makers a and b choose between
(
Xi
t , p; 0, 1− p

)
and

(
Cit , 1

)
. Over many decision

stages, the frequencies of upsides are Xa
t ∼ fdec t ∈ {1, ..., T} where fdec is an decreasing distribution

over the support [k,K]. Another group of decision makers observes upsides Xb
t ∼ f inc, t ∈ {1, ..., T}

with f inc increasing on the support [k,K].

Proposition 3. Assume u is linear and g is as in Example 2 with β = 1. If [k,K] is su�ciently small,

a decision maker that has observed random sequence Xa
t will be, unconditionally, more likely to be risk

averse than the DM who observed random sequence Xb
t . That is, for any ∀xt ∈ [k,K]]

Pr

(
U

(
(xt, p; 0, 1− p)

∣∣∣∣ {Xa
s }s<t ∼ fdec

)
< U

(
(xtp, 1)

∣∣∣∣ {Xa
s }s<t ∼ fdec

))
>

Pr

(
U

(
(xt, p; 0, 1− p)

∣∣∣∣
{
Xb
s

}
s<t
∼ f inc

)
< U (xtp, 1)

{
Xb
s

}
s<t
∼ f inc

)

if and only if

K ∈
[
k, k +

1

2θp

]
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5.3. Stakes a�ect assimilation and contrast. Suppose a DM is relatively insensitive to a change

by 2% in the probability of his car breaking down. Does the model say that she will be insensitive

of a 2% change in any risk? One might �nd appealing for the model to take into account some stake

dependent sensitivity to changes. That is, even if the DM underreacts to a 2% change of a relatively

modest consequence, she might overreact to a 2% change of the chance of a high stake. The model can

easily take this into account, by allowing the attention weight g to increase if lotteries scale up. That

is, suppose we scale up the payo�s paid by a distribution F by α: the decision maker has increasing

sensitivity in stakes if

g
(
F
(x
α

)
, G
(x
α

))
> g (F (x) , G (x)) ∀α > 1. (5.1)

Such property is satis�ed by the functional form in Example 2, if v is a power function.

Under this restriction, the assimilation region decreases in stakes. Hence we might neglect a 2%

change in car breakdown risk, but overreact to a 2% change in health risk. The following Remark states

it formally.

Remark 2. Let u (x) = kxζ . Let us call, for a generic lottery L, Lα (x) = L
(
x
α

)
. Aαt (x) = At

(
x
α

)
.

Suppose

Cs =
{
µα, Bα

}

and

Ct = {At, Bα}
Let B be such that

U
(
At|µ

)
= U (B|B)

where µ = µAt as de�ned in Proposition 1. Then

α > 1 =⇒ U
(
Aαt |µα

)
> U (Bα|Bα)

The statement simply says that the value of the lottery, if seen after dominated lotteries µα, increases

in α.

6. Conclusion

I develop, test and apply a new portable theory of choice under risk that builds on Bordalo et al.

(2020) that is based on two biases studied for decades in social and cognitive psychology.

Anomalies in markets, often discussed in separate terms of underreaction and overreaction, can be

uni�ed in this work. I show that my model can explain them as the result of decision makers assimilating

environments which look similar to what they are used to, and contrasting environments that starkly

di�er from them, and generates new testable predictions. One prediction is that periods when large

news come in the market are more likely to see overreaction (and successive corrections in the opposite

direction of the news), while periods when small news come are more likely to see underreaction (and

positive correction after the news). This implies a relationship between market volatility and autocorre-

lation which I �nd to be true for US stock market data. Moreover, assimilation and contrast are found

in the experiments which I have run and discussed in this work. Experimental, theoretical and �eld
31
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work might evaluate the implications of such theory and �ndings to policy making. A version of the

Lucas' Critique applies: which gradual policies are indeed underreacted does not only depend on the

perceptual biases I focus on in this paper, but also on the ability of agents to infer from intentionally

manipulated changes. Agents that are sophisticated enough about the policy maker's intention to ex-

ploit the naives' bias, might undo the e�ect of intentionally gradual or drastic policies. Understanding

real world contexts where this is more prevalent is the goal of future work.
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APPENDIX A

Proof. of Proposition 1

Note by monotonicity of g there must be distributions Ĥ >FOSD FAt >FOSD Ḣ such that g
(
FAt , Ḣ

)
>

1. By continuity, we can �nd ρ̂, ρ̇such that

g
((

1− ρ̂t
)
Ĥ + ρ̂tFAt , FAt

)
= 1 (6.1)

and

g
((

1− ρ̇t
)
Ḣ + ρ̇tFAt , FAt

)
= 1

pick ρ∗ = min {ρ̂, ρ̇}. WLOG suppose ρ = ρ∗ = ρ̂. Then, by continuity and monotonicity of g we can

�nd FAt >FOSD H̃ >FOSD Ḣ such that

g
((

1− ρ̂t
)
H̃ + ρ̂tFAt , FAt

)
= 1 (6.2)

Let us call µ and µ̄ the lotteries with cdf equal to, respectively, H̃ and Ĥ.

Note that d
(
Ais, At

)
< d (B,At) implies

Ai,mt = (1− ρ)
∑

ρj−1Ait−j + ρtAt i = a, b

(assimilation) By monotonicity µ < FOSDA
a
s <FOSD At <FOSD Abs <FOSD µ̄ implies

g
(

(1− ρ)
∑

ρj−1FAat−j + ρtFAt , FAt

)
< 1 (6.3)

and

g
(

(1− ρ)
∑

ρj−1FAbt−j
+ ρtFAt , FAt

)
< 1 (6.4)

This implies that

U (At|Aa,mt ) = EAa,m
t

[u] + g
(
FAa,m

t
, FAt

){
EAt [u]− EAa,m

t
[u]
}
< EAt [u] (6.5)

and

U
(
At|Ab,mt

)
= EAa,m

t
[u] + g

(
F
A

b,m
t

, FAt

){
EAt [u]− E

A
b,m
t

[u]
}
> EAt [u] (6.6)

Where (6.5) comes from (6.3) and (6.6) comes from (6.4). The result follows from (6.5) , (6.6) and

the fact that

U
(
B|Bi,m

t

)
= EB [u] (6.7)

(contrast) By monotonicity µ > FOSDA
a
s A

b
s >FOSD µ̄ implies

g
(

(1− ρ)
∑

ρj−1FAa
t−j

+ ρtFAt , FAt

)
> 1 (6.8)

and

g
(

(1− ρ)
∑

ρj−1FAb
t−j

+ ρtFAt , FAt

)
> 1 (6.9)

This implies that

U (At|Aa,mt ) = EAa,m
t

[u] + g
(
FAa,m

t
, FAt

){
EAt [u]− EAa,m

t
[u]
}
> EAt [u] (6.10)
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and

U
(
At|Ab,mt

)
= EAa,m

t
[u] + g

(
F
A

b,m
t

, FAt

){
EAt [u]− E

A
b,m
t

[u]
}
< EAt [u] (6.11)

Where (6.10) comes from (6.8) and (6.11) comes from (6.9). The result follows from (6.10) , (6.11)

and (6.7) �

Proof. of Proposition 2

Aas <FOSD Abs implies Aa,mt <FOSD Ab,mt which implies

g
(
FAa,mt , FAat

)
> g

(
F
Ab,mt

, FAbt

)
(6.12)

by monotonicity. Moreover, by inequality 6.8,

g
(
FAa,mt , FAat

)
> 1. (6.13)

As a result

U (At|Aa,mt )− U
(
At|Ab,mt

)
= EAa,m

t
[u]− EAa,m

t
[u] + g

(
FAa,m

t
, FAt

){
EAt [u]− EAa,m

t
[u]
}

+

−g
(
F
Ab,mt

, FAt

){
EAt [u]− E

Ab,mt
[u]
}
>

> EAa,m
t

[u]− EAa,m
t

[u] + g
(
FAa,m

t
, FAt

){
E
A

b,m
t

[u]− EAa,m
t

[u]
}
> 0 (6.14)

Where the �rst inequality is implied by 6.12 and the last inequality is implied by 6.13. This completes

the proof. �

Proof. of Proposition 3

First notice that

U

(
(xt, p; 0, 1− p)

∣∣∣∣
{
Xi
s

}
s<t

)
= pXm,i

t + θ





(
pxt − pXm,i

t

)2
xt > Xm

t

−
(
pxt − pXm,i

t

)2
xt < Xm

t

where i = a, b and

Xm,i
t = (1− ρ)

t∑

j=1

ρj−1pXi
t−j + ρtpxt

Where Xi
s ∼ f i. Note that f bincreasing and fa decreasing implies F b < F a over the support

[
k,K

]

which implies Xb
s >FOSD Xa

s which implies Xm,b >FOSD Xm,b. Given that p is �xed, rewrite for

notational ease

U

(
(xt, p; 0, 1− p)

∣∣∣∣
{
Xi
s

}
s<t

)
= V

(
xt
∣∣Xm,i

t

)

Note that, for �xed xt

∂

∂Xm,i
t

V
(
xt|Xm,i

t

)
> 0 ⇐⇒ Xm,i

t ∈
[
xt −

1

2θp
, xt +

1

2θp

]

By assumption,

suppf b = suppfa = [k,K] .
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By the de�nition of support,

Pr

(
∂

∂Xm,i
t

V
(
xt|Xm,i

t

)
> 0

)
= Pr

(
Xm,i
t ∈

[
xt −

1

2θp
, xt +

1

2θp

])
= 1 ∀xt ∈ [k,K] ⇐⇒

⇐⇒
[
xt −

1

2θp
, xt +

1

2θp

]
⊇ [k,K] ∀xt ∈ [k,K] ⇐⇒

⇐⇒ xt −
1

2θp
≤ k ∧ xt +

1

2θp
≥ K ∀xt ∈ [k,K] ⇐⇒

⇐⇒ K − 1

2θp
≤ k ∧ k +

1

2θp
≥ K ⇐⇒

⇐⇒ K − k ≤ 1

2θp
(6.15)

(if part) If condition 6.15 is satis�ed, then V
(
xt
∣∣Xm,i

)
is strictly increasing in Xm,i in its support.

This implies that Xm,b >FOSD Xm,a implies

V
(
xt
∣∣Xm,b

)
>FOSD V

(
xt
∣∣Xm,a

)
. (6.16)

By de�nition of �rst-order stochastic dominance, inequality (6.16) implies that ∀c ∈ SuppV

Pr
(
V
(
xt
∣∣Xm,b

)
> c
)
> Pr

(
V
(
xt
∣∣Xm,a

)
> c
)

and

Pr
(
V
(
xt
∣∣Xm,b

)
> c
)

= Pr
(
V
(
xt
∣∣Xm,a

)
> c
)

for ∀c /∈ SuppV.

This, and the fact that U

(
(ct, 1)

∣∣∣∣
{
Xi
s

}
s<t

)
= ct implies the result.

(only if part) suppose condition 6.15 is not satis�ed. WLOG, take k = 0. Then K = 1
2θp + δ for some

δ > 0. Assume ρ = 0. Take xt = 0, and c = p
(

1
2θp + δ

2

)
− θ

(
1

2θp + δ
2

)2
. Take fa continuous. Then

there exists ε > 0 such that

P
(
V
(
0
∣∣Xm,a

)
> c
)

= ε

Take f b such that

f b (x) =




l x ∈

[
k, 1

2θp + δ
2

]

L x ∈
(

1
2θp + δ

2 ,K
]

where

L =
2

δ
χ

with χ > 1− ε and
l =

1− χ
1

2θp + δ
2

.

It follows by construction that

P
(
V
(

0
∣∣Xm,b

)
> c
)
< ε

�
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Proof. of Proposition 7

ρ = 0 =⇒ P θt − P θt−1 = ut + θ
[∣∣ut

∣∣ut −
∣∣ut−1

∣∣ut−1

]

Cov
(

∆P θt+1,∆P
θ
t

)
= Cov

(
−
∣∣ut
∣∣ut, ut − θ

∣∣ut
∣∣ut
)

=

=
1

σ

[
A

∫ ∞

0
xe

1
2σ2

x2dx−B
∫ ∞

0
x4e

1
2σ2

x2dx

]
=

= K1σ
3 −K2σ

4 = σ3 (K1 −K2σ)

where K1 > 0 and K2 > 0. This implies that

Cov
(

∆P θt+1,∆P
θ
t

)
> 0 ⇐⇒ σ <

K1

K2

�

The following Corollaries exemplify Proposition 1

Corollary 2. Suppose, at time t, Ct = {At, B}, where At = (K, p; 0, 1− p) . Consider two alternative

histories of choice sets for s < t,

Cis =
{
Ais, B

}
i = a, b

such that d (As, B) > d (As, At) for every s and Ais =
(
K, pis

)
for i = a, b. Assume either ρ is small or

t is large. Then there are threshold lotteries

p < p < p̄

such that:

(Assimilation) If

p < pas < p < pbs < p̄

then

U (At|Aa,mt ) ≥ U (B|Ba,m) =⇒ U
(
At|Ab,mt

)
> U

(
B|Bb,m

)
.

(Contrast) If

pas < p < p̄ < pbs

U
(
At|Ab,mt

)
≥ U

(
B|Bb,m

)
=⇒ U (At|Aa,mt ) > U (B|Ba,m) .

Corollary 3. Suppose, at time t, Ct = {At, B}, where At = (K, p; 0, 1− p) . Consider two alternative

histories of choice sets for s < t,

Cis =
{
Ais, B

}
i = a, b

such that d (As, B) > d (As, At) for every s and Ais =
(
Ki
s, p; 0, 1− p

)
for i = a, b. Assume either ρ is

small or t is large. Then there are threshold lotteries

K < K < K̄
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such that:

(Assimilation) If

K < Ka
s < K < Kb

s < K̄

then

U (At|Aa,mt ) ≥ U (B|Ba,m) =⇒ U
(
At|Ab,mt

)
> U

(
B|Bb,m

)
.

(Contrast) If

Ka
s < K < K̄ < Kb

s

U
(
At|Ab,mt

)
≥ U

(
B|Bb,m

)
=⇒ U (At|Aa,mt ) > U (B|Ba,m) .

The following Corollary restates the result about contrast in a formulation that closely tracks the

experimental paradigm that I will use to test the model, and compares two individuals who have the

same utility parameters, but experienced di�erent histories of choice sets. The individuals are called T3

and T4 to represent the treatment conditions that will be used in the experiment.

Appendix B: Additional experimental treatments

In this section I describe the experimental treatments that have been run in addition to the one

presented in the main paper.

Treatments 1*, 2*,1̃,2̃, 9, 10

Description. In all of the treatments, subjects are asked to make binary choices between lotteries and

are told that one of their choices will be implemented. Table 5 displays the sequences of choice sets

across the di�erent treatments. Treatments 1∗and 2∗ are administered on Cloud Research to a total of

380 subjects, of which 362 pass basic comprehension checks. The other treatments are administered on

Proli�c, with Treatments 1̃ and 2̃ being administered to a total of 500 subjects, and 9 and 10 to a total

of 298 subjects, all of which pass the basic checks. Treatments 1* and 2* consist of, respectively, the

same choice sets of Treatment 1 with the addition of the choice set

C1∗
1 = {($80, 11%) , ($9, 60%)} ,

and Treatment 2 with the addition of the choice set

C2∗
6 = C1∗

1

This means that Treatment 2∗ shows to subjects the same choice sets as Treatment 1∗, in reverse

order.

Treatments 1̃and 2̃ face the subjects with the same exact questions as Treatments 1 and 2, but show

all of them on the screen, rather than presenting the choices sequentially on di�erent screens.

Treatments 9 and 10 show choice sets of the form

Cjt =
{(

$Kj
t , 9%

)
, ($5, 60%)

}
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with
(
Kj
t

)4

t=1
=





(90, 86, 88, 50) if j = 9

(20, 24, 22, 50) if j = 10

That is, Treatments 9 and 10 show the same �nal choice set

Cj4 = {($50, 9%) , ($5, 60%)}

but the riskier option ($50, 9%) is preceded, in Treatment 9, by options paying much a larger upside,

while, in Treatment 10, it is preceded by options paying a much smaller upside.

Predictions. The model predicts that we should observe assimilation in Treatments 1∗ and 2∗, because

we have detected assimilation in Treatments 1 and 2: the addition of one option which is marginally

di�erent from the riskier option of choice set C1
1 (C2

5 ), that is ($80, 9%), should not change dramatically

the results. That is,
(

$80, qjt

)
should be chosen more frequently for j = 1 than for j = 2

The model also predicts that we should not observe assimilation in Treatments 1̃ and 2̃, because

choice should be distorted by remembered lotteries, and not by choice sets faced simultaneously.

Finally, the model predicts that we should observe contrast in Treatments 9 and 10. The riskier

lotteries in stages t = 1, 2, 3 are constructed to be di�erent, in expected value terms, from the lottery

in stage 4 as much as the lotteries in Treatments 3 and 4 are from the riskier lottery in the last stage.

Results. The results con�rm the predctions. The top left table in Table 6 reports results from the

comparison between Treatments 1∗ and 2∗. Each column reports the regression of the indicator variable

which is equal to 1 when the riskier option is chosen, and 0 otherwise, on the indicator for Treatment

1∗ (called Treatment 1∗ e�ect) and the constant. Each column reports the coe�cients estimated for

each choice set separately, going from Column (1) that refers to the choice set {($80, 11%) , ($9, 60%)} ,
to Column (6) which refers to {($80, 2%) , ($9, 60%)} . The regressions reveal that the riskier options

($80, 11%) and ($80, 9%) are about 10% more likely to be chosen in Treatment 1∗ than in 2∗, while

results are economically smaller and statistically insigni�cant for the other options. This is consistent

with assimilation: ($80, 11%) and ($80, 9%) in Treatment 2∗ look similar to previously faced options

that pay $80 with a lower chance, and are chosen less often than in Treatment 1∗. The top panel of

Figure 6.1 displays the average choice frequencies of the riskier option across treatments and choice sets.

The comparison of the choice frequencies of ($50, 9%) across Treatments 9 and 10 reveals the contrast

e�ect. As both the central panel of Figure 6.1 and the bottom left table of Table 6 show the riskier

option in stage 4 is chosen 27% less likely in Treatment 9 than in Treatment 10. This suggests that either

($50, 9%) looks exaggerately larger than ($22, 9%) or exaggerately smaller than ($88, 9%), or both.

The comparison of treatment e�ects between Treatments 1, 2, and Treatments 1̃, 2̃, shows that the

assimilation e�ect is weakened when choice sets are shown all in the same screen. The top right Table

in Table 6 displays the Treatment di�erences between 1 and 2 as regression coe�cients. As discussed

in subsection 4.3.2 the Treatment di�erence is statistically signi�cantly positive when the probability

of $80 is 6%, 7% and 9% (implying assimilation of the corresponding options), and negative for 2%

(contrast). The analogous Treatment di�erences between 1̃ and 2̃ reveal much smaller (in absolute
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value) treatment e�ects. I conclude that the observation of choice sets in the same screen dampens the

extent to which subjects are biased by order e�ects consistently with my theory.

Figure 6.1.

The top panel shows the choice frequencies of ($80,q) in Treatment 1* (green dots) and 2* (orange dots),with q on the x axis. The
central panel shows choice frequencies of ($B,9%) in Treatment 9 (grey dots) and 10 (brown dots), with B on the x axis. The lower

panel shows choice frequencies of ($80,q) in Treatment 1̃ (green dots) and 2̃ (orange dots), with q on the x axis. Segments represent
95% con�dence intervals.

Appendix C: Expectations based reference dependence and the Experiments

I hereby relate my experimental �ndings to Expectations based reference dependent gain loss utility,

as in Koszegi and Rabin (2006). The decision maker decides according to a reference dependent utiliry

de�ned as follows.

De�nition 3. The utility of lottery µ with reference lottery ν is

U (π|ν) =

∫
u (x) dπ(x) +

∫ ∫
µ (u (x)− u (y)) dπ (x) dν (y)

where

µ (z) = η {I (z > 0) + λI (z ≤ 0)} z
with η > 0 and λ > 1.
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Table 6. Assimilation and contrast

(1) (2) (3) (4) (5) (6)
11% 9% 7% 6% 5% 2%

Treatment 1*  effect 0.104** 0.0893** 0.0403 0.0271 0.0262 -0.00997
(0.0498) (0.0437) (0.0389) (0.0361) (0.0348) (0.0295)

Treatment 2* 0.293*** 0.181*** 0.144*** 0.122*** 0.112*** 0.0904*** 
(0.0345) (0.0303) (0.0270) (0.0250) (0.0241) (0.0205) 

Observations 362 362 362 362 362 362 
R-squared 0.012 0.011 0.003 0.002 0.002 0.000 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

(1) 
($50,9%) 

-0.273***
(0.0557) 

Treatment 9 effect 

Treatment 10 0.565*** 
(0.0377) 

Observations 298 
R-squared 0.075 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 (1) (2) (3) (4) (5) 
 9% 7% 6% 5% 2% 
      
Treatment 1 effect 0.126*** 0.0959*** 0.0480** 0.0133 -0.0645*** 
 (0.0260) (0.0242) (0.0223) (0.0211) (0.0177) 
Treatment 2 0.234*** 0.186*** 0.161*** 0.152*** 0.138*** 
 (0.0181) (0.0168) (0.0155) (0.0147) (0.0123) 
      
Observations 1,208 1,208 1,208 1,208 1,208 
R-squared 0.019 0.013 0.004 0.000 0.011 

      Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

 (1) (2) (3) (4) (5) 
 9% 7% 6% 5% 2% 
      
Treatment  1�  
effect 

0.0558 0.0749* 0.00829 -0.00153 -0.00977 

 (0.0442) (0.0390) (0.0314) (0.0281) (0.0229) 
Treatment  2�  0.381*** 0.212*** 0.137*** 0.111*** 0.0752*** 
 (0.0327) (0.0289) (0.0232) (0.0208) (0.0170) 
      
Observations 501 501 501 501 501 
R-squared 0.003 0.007 0.000 0.000 0.000 

                                                                 Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
The top left table shows, for each column, the regression coe�cients of a dummy = 1 if the riskier option is chosen and 0 otherwise.
The regressor Treatment 1∗ e�ect is a dummy =1 if the observation is in Treatment 1∗ and =0 if it is in Treatment 2∗. The regressor

Treatment 2∗ is the constant.
The top right table shows, for each column, the regression coe�cients of a dummy = 1 if the riskier option is chosen and 0 otherwise.
The regressor Treatment 1 e�ect is a dummy =1 if the observation is in Treatment 1 and =0 if it is in Treatment 2. The regressor

Treatment 2 is the constant.
The bottom left table shows, for each column, the regression coe�cients of a dummy = 1 if the riskier option is chosen and 0

otherwise. The regressor Treatment 9 e�ect is a dummy =1 if the observation is in Treatment 9 and =0 if it is in Treatment 10. The
regressor Treatment 10 is the constant.

The bottom right table shows, for each column, the regression coe�cients of a dummy = 1 if the riskier option is chosen and 0
otherwise. The regressor Treatment 1̃ e�ect is a dummy =1 if the observation is in Treatment 1 and =0 if it is in Treatment 2. The

regressor Treatment 2̃ is the constant.

Treatments 1, 2 ,3 4

Throughout I consider the evaluation of the same lottery

π = (K, p)

by two decision makers a and d, (a for ascending order and d for descending order) that represent

subjects in two di�erent treatment groups. Let us call νj the reference lottery based on which decision

maker j evaluates gains and losses. The DM evaluates π at time T after having faced

Sjt =
{(
K, rjt

)
, (k, q)

}
for j = a, d and t = 1, 2, T − 1

where K > k. At time T , j chooses π over (k, q) if and only if

U
(
π|νj

)
− U

(
(k, q) |νj

)
> 0.

Contrast E�ect. If a is in Treatment 4 and d is in Treatment 3, we are interested in knowing the

conditions for contrast e�ect, that is

U (π|νa)− U ((k, q) |νa) > 0.

and

U
(
π|νd

)
− U

(
(k, q) |νd

)
< 0.
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Table 7. Contrast, Assimilation and the Boiling Frog (2)

(1) 
($5,60%) 

-0.203***
(0.0492)

D Drastic effect

A Drastic 0.577***
(0.0352)

Observations 397 
R-squared 0.041 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

(2) 
($5,60%) 

0.124** 
(0.0493) 

A Drastic effect 

A Gradual 0.453*** 
(0.0340) 

408 
0.015 

(1) (2)
$5 $4

(3) (4)
$2 $1

0.166*** 0.154*** -0.103** -0.172***
(0.0496) (0.0491) (0.0437) (0.0395) 

D Gradual effect 

A Gradual 0.453*** 0.346*** 0.304*** 0.280*** 
(0.0337) (0.0334) (0.0297) (0.0268) 

Observations 398 398 398 398 
R-squared 0.028 0.024 0.014 0.046 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

The top table shows the regressions of a dummy(=1 if ($5, 60%) is chosen) on a constant (�A Drastic� in Column (1) and �A Gradual�
in Column (2)) and a Treatment dummy. The dummy �D Drastic e�ect� is =1 if subject is in Treatment 7, the dummy �A Drastic
e�ect� is =1 if subject is in Treatment 8. In Column (1) the sample includes Treatments 7 and 8, while in Column (2) it includes

Treatments 6 and 8.
The bottom table shows, for each column, the regression coe�cients of a dummy = 1 if $B, 60% is chosen and 0 otherwise, with B
varying across columns. The regressor �D Gradual e�ect� is a dummy =1 if the observation is in Treatment 5 and =0 if it is in

Treatment 6. The regressor A Gradual is the constant. The sample includes Treatment 5 and 6.

Case 1: each decision maker expects a linear combination of the lotteries previously chosen. Suppose

that decision makers, just before seeing the choice set SjT , believe they will face one of the past ones.

This is plausible given that there is not any trend in the probability of any of the two options in the

periods before T in either of the two treatments. We examine, cases where each j has chosen either

always
(
K, rit

)
or always (k, q) at any

t < T

this is consistent with the evidence of the experiment, where almost all subjects do not switch between

the risky and the safer lottery between period 1 and 3. Such assumption implies that the reference
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lottery of decision maker j is

νj =





(K,
∑

t α
a
t r
a
t ) if j = a and picked (K, rat )

(k, q) if j = a, d and picked (k, q)
(
K,
∑

t α
d
t r
d
t

)
if j = d and picked

(
K, rdt

)
(6.17)

where ∑

t<T

αjt = 1 j = a, d

We call

rj :=
∑

t<T

αjtr
j
t

Before describing all the possible choice combinations at time T that can be observed from a and d

, I introduce a useful result that states that if a decision maker, accustomed to (k, q), picks (K, p) over

(k, q), then she would also pick (K, p) if she was accustomed to (K, r̄) with r̄ arbitrary.

Proposition 4. For every r0 ∈ (0, 1) ,if

U (π|k, q)− U (k, q|k, q) > 0 (6.18)

then

U (π|K, r̄)− U (k, q|K, r̄) > 0. (6.19)

Moreover a decision maker expecting (K, r̄) chooses π over (k, q) if and only if

Eπ [u] > E(k,q) [u] . (6.20)

That is

U (π|K, r̄)− U (k, q|K, r̄) > 0 (6.21)

if and only if

u (K) p− u (k) q > 0. (6.22)

Proof. We �rst prove the second result. Assuming K > k and p > q, simple algebra yields

U (π|K, r̄)− U (k, q|K, r̄) = (u (K) p− u (k) q) {1 + η + η (λ− 1) r̄} > 0 ⇐⇒

⇐⇒ u (K) p > u (k) q

Next we prove the �rst result.

U (π|k, q)− U (k, q|k, q) =

= (u (K) p− u (k) q) {1 + η} − u (k) qη (λ− 1) [p− q] <

< (u (K) p− u (k) q) {1 + η} .
As a result if

0 < U (π|k, q)− U (k, q|k, q)
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it has to be that

(u (K) p− u (k) q) {1 + η} > 0

which implies

u (K) p > u (k) q

that yields the desired result. �

We want to know the possible combinations of period T choices that can be observed simultaneously

in a and d. There are 4 possible combinations of past experiences, two for each decision maker j, that

make four possible combinations of νd and νa that determine four di�erent relations between their

choices.

(1) d has always chosen
(
K, rdt

)
while a has always chosen (k, q) . Since

(
K, rdt

)
is riskier than (k, q) ,

d is accustomed to taking more risk than a. That is

νd =
(
K, rd

)

νa = (k, q)

This makes d more willing to take risk than a. Hence it has to be that if a picks π then also d

picks π.

(2) d has always chosen
(
K, rdt

)
while a has always chosen (K, rat ) . Then

νd =
(
K, rd

)

and

νa = (K, ra)

where rd > ra. The gain loss utility that agents feel in proportion of the rational expected utility

is the same for both options for both agents, and a picks π if and only if d does. This is the

Corollary of the second result of Proposition 4 that states that, conditional on reference lottery

(K, r̄), risk taking is independent of r̄.

(3) Both d and a have always chosen (k, q) ,that is

νd = νa = (k, q)

They have identical preferences: hence a picks π if and only if d does.

(4) d has always chosen (k, q) and a has always chosen (K, rat ) . This case is symmetric to case 1.

Hence if d picks π it means that u (K) p > u (k) q: thus also a picks π. But if η or λ are high

and u (K) p > u (k) q, d picks (k, q) and a picks π, which is the contrast e�ect.

Hence, there can be contrast on average only if the majority of the subjects is like in point 4. But we

observe in the data that decision maker a usually picks (k, p) i periods t < T . Thus cases 1. and 3. apply,

ruling out the contrast e�ect. This statement can be made formal. We impose that there is individual

speci�c randomness in the decision making, that allows us to evaluate the predictions of Expectations

Based reference dependence in terms of choice frequencies. The following Proposition states that if, in

periods t < T, individuals of the a type choose (k, q) more often than individuals of the d type, then it
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must be that they choose (k, q) more often also at time T . In other words, individuals in the ascending

treatment are accustomed to take less risk than individuals in the descending treatment: thus, at time

T, individuals in the ascending treatment choose the risky option less frequently than individuals in the

descending treatment. This is the opposite of what we observe in the treatment comparison between

T3 and T4.

Proposition 5. Assume each subject's utility has an iid shock εji

Ui

(
π|νji

)
− Ui

(
k, q|νji

)
= U

(
π|νji

)
− U

(
k, q|νji

)
+ εji . (6.23)

where

j = a, d

and a is the ascending treatment while d is the descending treatment

Assume that the distribution of εji is identical across populations a and d

Assume that, for every i, the reference lottery at time T , νji , is a combination of the past chosen

lotteries:

νji =

T−1∑

t=1

αjtφ
j
t,i (6.24)

where φjt,it is the lottery chosen at time t by subject i in population j and
∑T−1

t=1 αjt = 1.

Assume K and p are such that

u (K) p > u (k) q (6.25)

then

Pr
((
K, rjT−1

)
is chosen|j = d

)
> Pr

((
K, rjT−1

)
is chosen|j = a

)
(6.26)

implies that

Pr (π is chosen|j = d) > Pr (π is chosen |j = a) (6.27)

Proof. Notice that, depending on the choices at periods t < T , under the restrictions that individual i

in population j either chooses always
(
K, rjt

)
or (k, q)the reference lottery is

νji =





(K,
∑

t α
a
t r
a
t ) if j = a and i picked (K, rat )

(k, q) if j = a and i picked (k, q)
(
K,
∑

t α
d
t r
d
t

)
if j = d and i picked

(
K, rdt

)

(k, q) if j = d and i picked (k, q)

(6.28)

For brevity let us call

rj :=
∑

t

αjtr
j
t (6.29)

U
(
π|K, rj

)
− U

(
k, q|K, rj

)
=: ∆U j (6.30)

let us also call

U (π|k, q)− U (k, q|k, q) =: ∆Ũ (6.31)
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Notice that inequality 6.25 implies

∆U j > ∆Ũ (6.32)

Moreover rdt > ras ∀t, s < T implies

∆Ud > ∆Ua (6.33)

Let us call

δj := Pr
((
K, rjt

)
was chosen |j

)

Pr (π is chosen|j) =

= Pr
(
π is chosen|j,

(
K, rjt

)
was chosen

)
δj + Pr (π is chosen|j, (k, q) was chosen)

(
1− δj

)
(6.34)

Let us call F the cdf of εji

Pr (π is chosen|j) =
[
1− F

(
−∆U j

)]
δj +

[
1− F

(
−∆Ũ

)] (
1− δj

)
(6.35)

Pr (π is chosen|d) >
[
1− F

(
−∆Ud

)]
δa +

[
1− F

(
−∆Ũ

)]
(1− δa) >

> [1− F (−∆Ua)] δa +
[
1− F

(
−∆Ũ

)]
(1− δa) = Pr (π is chosen|a)

Where the �rst inequality follows from inequality (6.27) and (6.32), and the second inequality follows

from (6.33). �

Case 2: decision maker's expectations only restricted to the support of the past options. Suppose that,

instead of expecting to choose between sets that they already encountered, they expect to choose among

sets that contain options that have the same support of the options they faced, but need not be a linear

combination of them.

That is, a decision maker has seen
{(
K, rjt

)
, (k, q)

}
and has a distribution over possible choice sets

{(K, r̃) , (k, q)}. That is, she attaches to each {(K, r̃) , (k, q)} a probability Qj (r̃). Her reference lottery

is

νj =

∫
φ (r̃, q) dQj (r̃) (6.36)

where

φ (r̃, q) := arg max
X∈{(K,r̃),(k,q)}

U (X) (6.37)

Given this structure, we allow for beliefs Qj (r̃) to be arbitrary. This implies that νj can be written

as

νj =
(
K, rj ; k, qj ; 0, 1− rj − qj

)
(6.38)

with

0 ≤ rj + qj ≤ 0

we omit the 0 outcome of the lottery for brevity and rewrite

νj =
(
K, rj ; k, qj

)
(6.39)
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Unlike in the previous subsection, in this case it is not possible to determine choice at time T as a

function of past observable choices, because belief Qjneeds not depend on them. On the other hand, it

is possible to characterize the unobservable νj as a function of the choice at time T . The reader is then

left to decide whether the νj that delivers the contrast e�ect is reasonable or not.

Proposition 6. (Contrast and reference beliefs) Let

νj =
(
K, rj ; k, qj

)
(6.40)

If, at T, a picks π and d picks (k, q) it must be either that a expected to choose (k, q) less often than d

did, or that a expects to receive K with higher probability than d does.

Proof. Simple algebra yields

U
(
π|νj

)
− U

(
(k, q) |νj

)
=

= [u (K) p− u (k) q]
{

1 + η + rjη (λ− 1)
}
− u (x) qjη [p− q + λ (1− p)] (6.41)

Note that

U (π|νa)− U ((k, q) |νa) > 0 (6.42)

if and only if

ra >
Aqa −B

C
(6.43)

where

A := u (x) η [p− q + λ (1− p)] > 0 (6.44)

where the inequality follows from λ > 1,

B = [u (K) p− u (k) q] {1 + η} > 0 (6.45)

where the inequality follows from (6.42) and (6.44)

C = [u (K) p− u (k) q] {η (λ− 1)} > 0 (6.46)

and

U
(
π|νd

)
− U

(
(k, q) |νd

)
< 0 (6.47)

is true if and only if

rd <
Aqd −B

C
(6.48)

Subtracting (6.44) from (6.48) we get

rd − ra < A

C

[
qd − qa

]

which implies rd < ra or qd > qa, that yields the result. �

The Proposition means that, under the assumption of arbitrary beliefs on the support of observed

distributions, for subjects in the ascending treatment T4 to choose (K, p) more often than subjects in

the descending treatments, it must be that they expected, before observing the choice set at time T ,

either to K to be more likely than subjects in T3, or that k was less likely than subjects in T3. This is
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puzzling, because, in t < T, subjects in T4 face a probability of K that is much smaller than subjects

in T3, and choose the option (k, q) much more likely than subjects in T3.

I conclude that Expectations Based reference dependence as in Koszegi and Rabin (2006) does not

capture the contrast e�ect, if we tie expectations to previously chosen options, and it can capture if we

allow beliefs to take a counterintuitive shape.

Boiling Frog. Consider now the comparison between subjects in Treatment T4 and T2. Both groups

face an ascending order of the probability of K. As before we take two representative agents, a and

a∗, the former observing the choice sets of T4, that is a drastic change after T − 1, and the latter T2,

which is a gradual change. Just for notational convenience, I denote T as the last period choice set, and

I assume that a had observed Sa0 = ∅ while

Sa
∗

0 =
{(
K, ra

∗
0

)
, (k, q)

}

This is motivated by the fact that in T4 subjects make one choice less than in T2.

I assume that the beliefs before observing choice set T , that is νj , are as assumed in Proposition 6,

that is

νj =
(
K, rj ; k, qj

)
j = a, a∗ (6.49)

I want to characterize beliefs νj , in period T , that are implied by the fact that a chooses (K, p) and

a∗ chooses (k, q), that is the stylized fact which I call gradualism. If a picks π = (K, p), it must be that

she was expecting to receive K (k) more (less) likely than a∗ was. The following Corollary formalizes

the point.

Corollary 4. (Boiling frog and reference beliefs) Let

νj =
(
K, rj ; k, qj

)
j = a, a∗ (6.50)

If, at T, a chooses π and a∗ chooses (k, q), then at least one of the two conditions is true: (i) ra > ra
∗

(ii) qa < qa
∗

Proof. The proof of Proposition 6 applies, replacing d with a∗. �

Let us compare the result of Corollary 4 with our experimental evidence. In periods t < T , subjects

represented by a∗, that is in T2, choose the option paying K more often than subjects represented by

a, in T4. Hence, their history up to T suggests that a should hold higher (lower) expectations to receive

K (or k) relative to a∗, in contradiction with Corollary 4.

Assimilation. Consider now the comparison between subjects in T1 and T2. The former group faces

a gradual descending order in the probability of K, and the latter faces an ascending order. Let us call

d∗ the representative agent of T1. For brevity of exposition, let us restrict our analysis to the �rst 3

choices of each individual. Both individuals face the same choice set at time T = 3,

ST = {(K, p) , (k, q)}
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and at t < T they face choice sets of the following shape

Sjt =
{(
K, rjt

)
, (k, q)

}
for j = a∗, d∗ and t = 1, 2

where

ra
∗

1 < ra
∗

2 < p < rd
∗

2 < rd
∗

1

I assume that the beliefs before observing choice set T , that is νj , are as assumed in Proposition 6,

that is

νj =
(
K, rj ; k, qj

)
j = a∗, d∗ (6.51)

I want to characterize beliefs νj , in period T , that are implied from the fact that d∗ chooses (K, p)

and a∗ chooses (k, q). The model says that if d∗ chooses (K, p), while she must be expecting to the

receive K (k) more (less) likely than a∗. The following Corollary formalizes the point.

Corollary 5. (Assimilation and reference beliefs) Let

νj =
(
K, rj ; k, qj

)
j = a, a∗ (6.52)

If at T d∗ chooses π = (K, p) and a∗ chooses (k, q), then either rd
∗
> ra

∗
or qd

∗
< qa

∗
.

Proof. The proof of Proposition 6 applies, replacing d with a∗ and a with d∗ �

Let us now relate Corollary 5 to the experiment. The properties on νa
∗
and νd

∗
revealed by the

Corollary are consistent with what experimental subjects observe and choose before T , on average.

Indeed, subjects in T1 (represented by d∗in our results) face and choose,K (k) with larger (lower)

likelihood than those in T2 (represented by a∗) do. This suggest that it is not implausible for d∗,

relative to a∗, to expect a higher (lower) likelihood of K (k) going forward. On the other hand, one

could counter argue that decision makers form expectations extrapolating from a trend: if this happens,

having faced qd
∗

2 < qd
∗

1 can lead d∗ to believe rd
∗
< ra

∗
thus believing that the likelihood of choosing

k might be qa
∗
> qd

∗
. Both arguments are plausible. Thus, I conclude that Expectations Based can

predict Assimilation with reference expectations that are plausible in the experimental setting, but there

exist equally plausible expectations that would predict the opposite of assimilation in this setting.

6.1. Contrast and the Rabin's critique. One of the most well known experimental challenges to

concave Expected Utility is the fact that subjects in experiments reject small stakes binary lotteries

with equally likely negative and positive outcomes and expected value close to zero (that is, they are loss

averse). The elicited risk aversion such experiments implies that subjects should prefer an unreasonably

small payment in compensation to a lottery with positive support and very large expected value (Rabin,

(2000)). I show that this implication needs not to hold in my model.

Let us assume that there are two periods, 0 and 1. The choice sets are C0 = {(0, 1)} and C1 =

{(k, 1) , π1}, that is, no risk is faced in the �rst period while in the second period the subject chooses

between a risky π1 and a riskless k. Let us also assume ρ = 0, that is the memory reference point in

period 1 is equal to the previous period lottery, that is 0 with probability 1. Furthermore let us assume
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u (x) = v (c̄+ x)− v (c̄) where

v (c) =
1

1− αy
1−α

Two cases mimic Rabin's point. The �rst case is when k = 0 and

π1 =

(
A (1 + ε) ,

1

2
;−A, 1

2

)

that is, in period 1 the agent chooses whether to accept or reject the lottery π1 withA+ ε > A > 0. We

mirror the standard �nding by supposing that the agent rejects π1even if A→ 0+This is possible in the

model (as in EU), by concavity

U (0, 1) = 0

and

U (π1) = θg (π1, (0, 1))
1

2 (1− α)

[
(c̄+A (1 + ε))1−α + (c̄−A)1−α − 2c̄1−α

]

Just like in expected utility, for A �xed and very small, we can �nd an arbitrarily large α such that

U (π1) < 0

that is a very risk avers subject rejects an extremely small stakes lottery of that kind. We now ask the

Rabin's critique question: will such a risk averse subject require a modest certainty equivalent for a very

large positive lottery? The answer is not necessarily: a very nice lottery contrasts away his memory

reference point by looking even nicer, while the certainty equivalent does not. Suppose

π1 = (A, q; 0, (1− q))
and

k = qA

The utility from the safe prospect is

U ((qA, 1)) =
1

1− α
[
(c̄+ qA)1−α − c̄1−α

]

while the utility from the risky prospect is

U (π1) =
qθ

1− αg (π1, (0, 1))
[
(c̄+ qA)1−α − c̄1−α

]

which is arbitrarily large if A is large and g is unbounded, or if θ is large

Hence, decision makers accustomed to safe payments can be both loss averse when deciding over

small stakes and risk loving when deciding over large stakes.

APPENDIX D: Structural estimation

In Subsection 4.3.1 I have argued qualitatively where is the switching point between assimilation and

contrast in the probability of receiving $80, conditional on a history of options observed. The rigorous

answer requires the estimation of the structural parameters that include the contrast parameter θ and
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the curvature of the instantaneous consumption utility. The estimate allow us (i) to test the stability

of preference parameters across domains and (ii) predict counterfactual scenarios.

In order to address (i) I estimate the parameters of a member of the class of preferences de�ned in

this paper through experimental data collected by Frydman and Jin (2022). Their experiment is an

appealing comparison term because the experimental paradigm di�ers from the one used in this paper

mainly by the number of choices made by each subject (600 vs 5). This allows me to investigate whether

the extent to which hundreds of fast decisions and just a few equally fast decisions get remembered

similarly, yielding comparable recency parameter estimates ρ. I thus perform the same estimation

through my experimental data presented in Section (4). In order to address (ii) I determine the size of

the assimilation region combining the parameter estimates.

6.2. Brief description of Frydman and Jin (2021) experiment II. In the experiment II of FJ,

N = 200 subjects face a sequence of T = 600 binary choice sets of the form

Si,t =

{(
xi,t,

1

2
; 0,

1

2

)
, (ci,t, 1)

}

where for subject i xi,t is drawn at each t from a distribution of support [$2, $8] , and xi,t is drawn from

a distribution of support [$1, $4] .18

6.3. Random utility formulation. First we recall the representation of (??). We assume g (·, ·) has
the same shape used in example 2 and in the applications in Sections 9 and 10. Call

µi,t =

(
xi,t,

1

2
; 0,

1

2

)

and

µmi,t

being the associated remembered lottery which we will shortly derive. The utility is

U
(
µi,t|µmi,t

)
= Eµmi,t [u] +




θ
{
Eµi,t [u]− Eµmi,t [u]

}2
if Eµi,t [u] > Eµmi,t [u]

−θ
{
Eµi,t [u]− Eµmi,t [u]

}2
if Eµi,t [u] < Eµmi,t [u]

(6.53)

For a given
(
xi,t,

1
2 ; 0, 1

2

)
, the closest lottery in l2 norm from choice set Si,t−j is

(
xi,t−j ,

1
2 ; 0, 1

2

)
. Hence

U
(
µi,t|µmi,t

)
=

(
1− ρ

2

) t−1∑

j=1

ρj−1 (u (xi,t−j)) +

(
ρt−1

2

)
u (xi,t) + (6.54)

+




θ 1

4

{(
1− ρt−1

)
u (xi,t)− (1− ρ)

∑t−1
j=1 ρ

j−1 (u (xi,t−j))
}2

if
(

1−ρt−1

1−ρ

)
u (xi,t) >

∑t−1
j=1 ρ

j−1 (u (xi,t−j))

−θ 1
4

{(
1− ρt−1

)
u (xi,t)− (1− ρ)

∑t−1
j=1 ρ

j−1 (u (xi,t−j))
}2

if
(

1−ρt−1

1−ρ

)
u (xi,t) <

∑t−1
j=1 ρ

j−1 (u (xi,t−j))

The utility of lottery (ci,t, 1) is instead

U ((ci,t, 1)) = u (ci,t)

18For half of the sample the distribution of xi,t and ci,t �rst-order stochastically dominates the one of the other half of
the sample.
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We now impose the assumption that u takes the form of a power function

Assumption 1

u (x) = xα.

Now I impose that there is some stochasticity in choice, modelled as an additive random normally

distributed noise:

Assumption 2

(xi,t, pit, ) is chosen over (ci,t, qit) if and only if

U (xi,t, pit, 0, 1− pit)− U (ci,t, qit) + εi,t > 0

where

εi,t ∼i.i.d. N
(
0, σ2

)

The model yields a likelihood as follows

L (y,x, c, ρ, θ, α) =

N∏

i=1

T∏

t=1

Φ

(
U (xi,t)− U (ci,t)

σ

)yt,i (
1− Φ

(
U (xi,t)− U (ci,t)

σ

))1−yt,i

where yi,t = I ((xi,t, pit) is chosen)

Thus I provide an estimate of ρ, θ, α, σ via maximum likelihood:

β̂ =




ρ̂

θ̂

α̂

σ̂


 = arg max

ρ∈[0,1],θ,α,σ
L (y,x, c, ρ, θ, α, σ)

I call the estimate obtained from the sample of our own experiment β̂1 while I call the estimate obtained

from the sample of FJ β̂2

6.4. Estimation result. I use the full sample of both experiment, that is 200 subjects times 600

repetitions in FJ, and, for my experimental sample, 1,810 subjects times 5 repetitions plus 400 subjects

times 4 repetition, who correspond to Treatment 1, 2, 3 and 4. The other Treatments will soon be

included in the analysis.

β̂1 =




ρ̂1

θ̂1

α̂1

σ̂1


 =




0.02

1.28

0.28

1.53




β̂2 =




ρ̂2

θ̂2

α̂2

σ̂2


 =




0.40

1.34

0.72

1.20



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the comparison between the two estimate yields two main insights. Subjects the sample of our experi-

ments, by having a ρ̂1 close to 0 , act as if the memory based lottery was approximately only the lottery

encountered in the previous period. Indeed if ρ = 0

µmi,t = (xi,t−1, pit, 0, 1− pit)

Instead, subjects in the sample of FJ exhibit a discounting ρ̂2 of about 40%. This means that the

memory based lottery attaches weight of about 60% to the lottery of t− 1 , and 40% to the discounted

average of the past lotteries earlier than t− 1. We conclude that subjects in FJ behave as if they had a

longer experimental memory compared to my subjects.

The second interesting comparison is between the contrast parameters estimated across the two

samples, θ̂1 and θ̂2. The two estimates are very close to each other. Overall, we cannot reject the null

hypothesis that the two pairs of estimate of structural parameters (ρ, θ) are the same. Figure 6.2 plots

the 95% con�dence ellipse of the memory and contrast estimators pair (ρ̂1, θ̂1) based on my sample.

The fact that the estimate based on FJ (ρ̂2, θ̂2) lies within the ellipse implies that we cannot reject

the null hypothesis that the parameters estimated are equal across the two samples. This con�rms my

hypothesis that such parameters are structural and thus stable across samples.

Figure 6.2. Con�dence ellipse of ρ̂1 and θ̂1

The light blue area plots the 95 con�dence ellipse for ρ̂1 and θ̂1. ρ is on the x axis, and θ is on the y axis. The blue dot corresponds to(
ρ̂1, θ̂1

)
, while the red dot corresponds to

(
ρ̂2, θ̂2

)
.

6.4.1. Estimation of the assimilation region. The third point that I have alluded to in subsection 4.3.1

is: for given past history of lotteries ($80, p̄), what is the crossing probability p̄ ± δ which divides the

assimilation region from the contrast region? That is δ such that

U (80, p̄+ δ|80, p̄) = E(80,p̄+δ) [u]

Which is identi�ed by

80αp̄+ θ802αδ2 = 80α (p̄+ δ)
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that yields

δ =
1

θ80α

Such a point is a function of θ and α. The larger θ or α, the smaller the assimilation region, i.e.

∂

∂α
δ < 0 and

∂

∂θ
δ < 0

Figure 6.3 plots how the distorted expected utility of lottery ($80, p, $0, 1− p) varies with p, conditioning
on memory lottery ($80, 5.5%, $0, 94.5%). This setup is close to the assimilation treatment of our

experiment, where the risky option pays $80 with p ∈ {2%, 5%, 6%, 7%, 9%}. The top �gure shows the

estimated distorted utility based on the sample of FJ, that is based on estimates
(
ρ̂2, θ̂2, α̂2

)
. The �gure

reveals

δ̂2 =
1

θ̂280α̂2
= 2.0%,

which means that an option paying $80 with 7% is assimilated to ($80, 5.5%), while, instead, an option

paying ($80, 9%) is contrasted away from it.

The bottom �gure shows the distorted utility based on estimates from my sample
(
ρ̂1, θ̂1, α̂1

)
. The

�gure reveals a much larger assimilation region, due to the fact that estimates for θ and α are smaller

in my sample than in FJ. The assimilation region consists of a

δ̂1 = 7.5%

implies, for example, that ($80, 9%) is assimilated to ($80, 5.5%), and ($80, 14%) is contrasted away

from it.

The estimate of δ̂1 is aligned to the intuition I gave in subsection 4.3.1. Let us take the comparison

between the choice frequency of $80, 9% in Treatment 4 as opposed to Treatment 1. Since ρ̂1 ≈ 0

µm5 ≈ ($80, 3%)

in Treatment 4. While

µm1 = ($80, 9%)

in Treatment 1. It follows that in Treatment 4

p̄ = 3%

Now, since

9% < p̄+ δ̂1

it has to be that ($80, 9%) in treatment 4 falls in the assimilation region. This is con�rmed by the

experimental fact that

C ($80, 9%|T4) ≤ C ($80, 9%|T1)

7. Intermezzo: a more general domain useful for applications

One can easily extend the model to the domain of choice of lotteries that can pay in every period. In

section (2) choice set at time t lies in the space of lotteries that pay only at time T , that is, it belongs
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Figure 6.3. Estimated assimilation and contrast regions from FJ and my sample

Both �gures plot in red the distorted expected utility of a lottery ($80, p, $0, 1− p) conditional on past lotteries being

($80, 5.5%, $0, 94.5%). p is reported on the x axis. The estimates of the �rst �gure are performed on the FJ sample: θ̂2 and α̂2. The

estimates of the second �gure are θ̂1 and α̂1, and have been performed on the sample which comprises T1, T2, T3 and T4. The the
undistorted expected utility is plotted in green. Dashed lines represent 95% con�dence intervals, obtained via block bootstrap.

to

Ht = ∆ ({0} ×Ht+1)

where

HT = ∆ (R+)

The choice set at each t is now

Ct ⊂ H∗t = ∆ (R+ ×H∗t+1)

I assume a time separable utility function so that the decision maker is indi�erent with respect to

autocorrelation and temporal resolution of uncertainty.19 Given this, it is su�cient to represent a lottery

µt ∈ Ct
19Stanca (2022) clari�es that the two properties are distinct and correspond to two di�erent representations of recursive
utility preferences.
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as the sequence of lotteries over future periods that it induces

µt =
{
µtt+h

}+∞
h=0

As before, µt cues a sequence of past lotteries
{
µ̂t−j

}∞
j=1

. The remembered t− j lottery cued by µt is

µ̂t−j = arg min
ν∈Ct−j

∞∑

h=0

γhd
(
νt+h, µ

t
t+h

)

that is, the decision maker, when thinking of lottery µt, retrieves one lottery faced at t− j that induces
the sequence of lotteries, from t onwards, that is the closest in the discounted sum of euclidean norms,

where the discounting ensures that such a measure is �nite.

Once the past lotteries have been retrieved
{
µ̂t−j

}∞
j=1

the decision maker aggregates them to form

the remembered average lottery

µm,t = (1− ρ)
∑

ρj−1µ̂t−j

µm,t speci�es a marginal cdf for every future period t+ h :
{
Fm,tt+h

}∞
h=0

Example 6. Consider a variant of Example 5, assuming a �nite horizon T.

C0 =








$0, 100%

$10, 5%

$10, 5%


 ,




$0, 100%

$3, 100%

$3, 100%








C1 =

{(
$10, 5%

$10, 30%

)
,

(
$3, 100%

$3, 100%

)}

C2 = {($10, 30%) , ($3, 100%)}

Let us focus on time 3. When considering lottery µ1 =

(
$10, 5%

$10, 5%

)
the agent retrieves the lotteries

µ̂0 =




$0, 100%

$10, 5%

$10, 5%




µ̂−1 =

(
$10, 5%

$10, 30%

)

So the memory lottery at time 1 speci�es the lottery that pays at time 2 and the lottery that pays at

time 3

µm,1 =

(
$10, 5%

$10, (1− ρ) 5% + ρ30%

)

Now that we have speci�ed the memory lottery vector we can produce the vector of distorted lotteries.

Each component µtt+hof the vector of lotteries µ
tis distorted by a function that represents how much
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the whole vector µt departs from µm,t

π
(
µt
)

= µm,t + θ
∞∑

h=0

g
(
Fµtt+h

, Fmµt

) (
µt − µm,t

)

where g is the same as in Section 2.

Notice that the setup in section 1 is a particular case of this one. Indeed for a lottery that only has

a �nal payment

µt =




0, 100%

0, 100%
...

µT




it holds the following

π
(
µt
)

= µm,t + θ
T∑

h=0

g
(
Fµtt+h

, Fµm,tt

) (
µt − µm,t

)
=

=




0, 100%

0, 100%
...

µm,tT−1




+ θg
(
FµT−1 , F

m
µt

)




0, 100%

0, 100%
...

µT−1 − µm,tT−1




hence, the distorted lottery pays 0 in every period except in the last period, where it is equal to the

lottery

µm,tT + θg
(
FµT , F

m
µt

) (
µT − µm,tT

)

Let us call πt+h
(
µt
)
the distorted distribution at time t + h induced by π

(
µt
)
, that is the t + h

component of π
(
µt
)
. We are now ready to state the representation

De�nition 4. The discounted expected utility of µt ∈ Ct is equal to

Vt = U
(
πt
(
µt
))

+ βVt,t+1 (7.1)

Vt,t+j = U
(
πt+j

(
µt
))

+ βVt,t+j+1

With β ∈ (0, 1)

APPENDIX E

8. Applications: sequences of news in markets

8.1. A simple asset pricing illustration and an empirical test. As an example on how to apply

my theory of risk preferences, I derive its predictions in the context of the evaluation of risky dividend

streams. The minimal setup so far introduced is su�cient to produce a rich dynamics of asset prices

as a function of public news received in the economy. Throughout this subsection I assume that the

function g is speci�ed as in Example 2. Suppose there is risky asset that pays a dividend DT at a �nal

date T , in �nite supply equal to 1, and a price of P θt . Suppose an investor with linear consumption
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utility has wealth equal to 1 to be invested either in the risky asset or in a safe asset. Both assets pay

at a �nal period T . The investor at each t is naive about the possibility to sell an asset at intermediate

periods before T .20 Thus, the investor has the following utility21 at period t

U (At|Amt ) =





Eθt [DT ]

P θt
if she picks the risky asset

1 else

In equilibrium, the price must be such that she is indi�erent between picking the risky asset and

holding cash, that is

P θt = Eθt [DT ]

Suppose the �nal dividend DT is the sum of interim dividends, that is DT = D0 +
∑T

j=1 ujwhere

uj ∼iid N
(
0, σ2

)

and uj realized at time j. This means that the investor receives news about the stock at each period so

that the rational expectation of DT is a random walk, Et [DT ] = Et−1 [DT ]+ut. The investor biases such

expected value: if the news is small, she assimilate Et [DT ] to Et−1 [DT ] and underreacts. If the news is

large she contrasts Et [DT ] away from Et−1 [DT ] and overreacts. To see this, recall the construction of

Eθt [DT ] from Example 1 (continued). For t large,

Eθt [DT ] ≈ (1− ρ)

t∑
j=1

ρjEt−j [DT ]︸ ︷︷ ︸
memory anchor

+θ



(
Et [DT ]− (1− ρ)

∑t
j=1 ρ

jEt−j [DT ]
)2

forEt > Emt

−

(
Et [DT ]− (1− ρ)

t∑
j=1

ρjEt−j [DT ]

)2

︸ ︷︷ ︸
attentionweight×adjustment

forEt < Emt

When positive news is received about the �nal payo�, the expected value of Et [DT ] increases. If the

news is not big enough, the investor thinks not much has changed, and the price moves too little. Over

time he gets accustomed to the news, as the remembered expectation Emt = (1− ρ)
∑t

j=1 ρ
jEt−j [DT ]

incorporates the recent news, and slowly reacts to the news.

8.1.1. Small sequences of news and momentum in asset prices (Grinblatt and Moskowitz 2004, Da et

al. 2014). The investor under appreciates information which does not move expectations much from

her memory and over appreciates the information that moves it by a lot. This suggests that a surprise

released in small bits over time generates smaller contemporaneous price reaction than one concentrated

in one period, and predicts higher future returns, as the memory anchor gradually adjusts to the new

information set. A sequence of small surprises makes the stock look less dissimilar from the past,

compared to a one-shot big piece of news. This is analytically clearer from the following rewriting of

20This is a common assumption in asset pricing literature, there called myopic portfolio rule.
21In appendix I show how to keep the spirit of the model while assuming mean variance utility. Predictions are analogous.
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Eθt [DT ]

P θt = Eθt [DT ] = Et [DT ] +


ut +

t−t0−1∑

j=1

ρjut−j








∣∣∣∣ut +

t−t0−1∑

j=1

ρjut−j

∣∣∣∣
︸ ︷︷ ︸
attentionweight

θ − 1





(8.1)

Imagine past surprises are equal to uj = u > 0 with j = 1, .., t. The attention given to the change in

the expectation of the stock at time t from what the investor retrieves depends on the recency-discounted

past surprises, and amounts to

g
(
FDT |t, FDmT |t

)
= u

t−t0−1∑

j=0

ρjθ

Think about an alternative history when no surprise occur until t, and all the surprises come at t in

one chunk equal to u∗ = (t− t0)u. The attention to the change of the stock from the past is

g
(
F ∗DT |t, F

∗
DmT |t

)
= (t1 − t0)u > g

(
FDT |t, FDmT |t

)

Figure 8.1 plots these two scenarios. P θt is the price of the stock in the �rst scenario, under a sequence

of small surprises from period 5 to 15, while P θ,∗t is the price when the same quantity of surprise occurs

all at the same period 15. Pt and P
∗
t are the price paths if investors were rational under, respectively,

the �rst and second scenario. While Pt = P ∗t for t = 15, since the total amount of news is the same,

P θ,∗t > P θt , that is the price of the drastic history scenario reacts more than the gradual scenario,

implying lower future returns. The dynamics mirror what Da et al. (2014) label as the �Boiling Frog�

Figure 8.1. Continuous vs Discrete surprise

Time on the x axis. Pt, P ∗t are, respectively, the rational price after gradual news and drastic news. P θt and P θ,∗t are the
behavioral price under gradual and drastic news.

e�ect that they document for individual stock returns (and is documented with a similar measure by

Grinblatt and Moskowitz 2004), and Huang et al. (2021) �nds for cross stock returns: a given past price
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increase is more associated with momentum if it is gradual. The following Remark states this formally,

as a prediction of the model.

Remark 3. Consider two di�erent price paths such that P θt0 = P θ,∗t0 and P θt1 = P θ,∗t1 , where
{
P θj

}t1
j=t0

is

generated by a stream of positive news {uj}jwith uj > 0, while
{
P θ,∗j

}t1
j=t0

is generated by
{
u∗j

}
j
with

u∗j = 0 for j < t1 and ut > 0. If ∆P θ∗t1 is not too small, then

-

Et
[
∆P θ,∗t1,t1+h

]
< Et

[
∆P θt1,t1+h

]

for h above some constant k

- limh→+∞ Et1
[
P θt1+h

]
> limh→+∞ Et1

[
P θ,∗t1+h

]

Figure 8.2. Gradual price increases predict higher returns

Time on the x axis. P θt and P θ,∗t de�ned as in Proposition 3. P θt :price under gradual news. P θ,∗t : price under drastic news.

8.1.2. Underreaction to the passage of time (Giglio and Shue 2014). Delayed overreaction to long se-

quences of news. The assimilation e�ect, interacted with the gradual updating of the memory anchor

naturally yields the prediction that a sequence of su�ciently small bits of positive (negative) news

predicts positive (negative) returns after the news �ow has stopped, as the investor fails to appreciate

the change in the stock from the stock she remembers. This logic explains why in some settings the

mere passage of time, predicts future positive (negative) returns, when such passage is a good (bad)

news. For example, Giglio and Shue (2014) shows that, when the passage of one week should mean

positive (negative) revision on the hazard rate of the success of a merger, higher (lower) future returns

after the week has passed, suggesting investors underappreciate the informational content of one week

passing. While this fact can be explained with absence of explicit news being less attention grabbing

than explicit news, my theory explains it as a product of assimilation: the passage of time is in itself

gradual, and so is the change in the probability of success: the future prospect looks more similar to
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the past than it actually is, leading to future price corrections (Figure 8.3). One way to distinguish the

two explanations would be selecting episodes when the passage of one unit of time is associated with a

drastic informational content (say because a strict deadline is reached): in such episodes, the mentioned

theory predicts the same degree of return predictability, on the contrary my theory would predict less

positive, or even negative predictability.

Figure 8.3. Price response to sequence of very small surprises

Time on the x axis. A sequence of small shocks ut = u > 0 for t = 5, ..., 15. Pt: rational price. P θt : price in the

behavioral economy.

While a sequence of small positive news leads to positive future returns because of assimilation, a

very long sequence is associated with initial under and delayed overreaction. This is because, as the

news cumulates, the investor still remembers some of the features of the stock from far back in time,

since she retrieves a backward looking discounted average of past expectations. As the stock gets far

enough from the remembered one, the investor contrasts it and overreact it, pricing above the rational

investor and drastically reverting below rational when the news �ow stops.

Remark 4. If there is sequence of surprises ut = u > 0 for t ∈ {t0, .., t1} , there exist constants u, ū such

that

- If u < u, the price is below rational and Et1
[
∆P θt1,t1+h

]
> 0 for any h above some constant.

- If u ∈ [u, ū], the price is below rational for some t < t1 and above rational afterwards, so that

Et1
[
∆P θt1,t1+h

]
< 0 for any h above some constant.

- If u > ū, the price is above rational and Et1
[
∆P θt1,t1+h

]
< 0 for any h above some constant.

8.1.3. Volatility and under/overreaction: an empirical test. Suppose one lives in an environment with

frequent big positive and negative news (large σ). In such environment the investor allocates too much

attention to these news because they make the asset look quite di�erent from the past, hence the

investor overreacts. In more normal times, instead, when there is on average small news, the investor

fails to detect changes, assimilates the updated risky prospects, anchors to the past, and underreacts.
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Table 8. Volatility and under/overreaction. Market returns.

autocorrt(monthly) autocorrt(yearly)

1926-2022 1990-2022 1926-2022 1990-2022

volt−1 −1.29∗∗∗ −1.14∗∗∗

volt−1 −0.59∗∗∗ −0.38

Obs. 1056 352 96 32
The table shows in the �rst (last) two columns the coe�cient of a linear regression of within-month (year) autocorrelation of daily
(monthly) value weighted market returns on volatility of returns in the previous month (year). Results are presented for the whole

sample (1926-2022) and the restricted sample (1990-2022).

This yields the prediction that when the volatility of the market is high, there should be on average

overreaction to information, while when the volatility is low, there is underreaction, which leads to the

following �nal result.

Proposition 7. Assume ρ = 0, that is investors anchor to t− 1 memories. There is some z̄ such that

σ2 > z̄ =⇒ Cov
(
∆P θt ,∆P

θ
t+1

)
< 0 and σ2 < z̄ =⇒ Cov

(
∆P θt ,∆P

θ
t+1

)
> 0.

The weaker version of this prediction is that market volatility and market return autocorrelation are

negatively related. I test this prediction in the time series of US stock market returns from 1926 to 2022

following Campbell et al. (2022) that extends Chiah et al. (2020) and Campbell et al. (2001). The

return volatility of period t is de�ned as in Campbell et al. (2022), and is given by equation (8.2).

volt =

√∑

s∈t

(
Rs,m − R̄m,t

)2
(8.2)

I conduct the analysis both looking at within year volatility (t = year) and within-month volatility

(t = month) of daily (s = day) returns, and consider analogous return autocorrelations within the same

period. Rs,m is the value weighted market return of period s, and R̄m,t is the average of market returns

of period s comprised in unit of time t. Market returns are taken from CRSP. Moreover, I further test

the prediction for individual stock returns.22 Table 8 shows that there is a statistically and economically

signi�cant negative relation between return autocorrelation and volatility.23 The relation is robust to

restricting to the more recent part of the sample, after the occurrence of the downward trend in market

autocorrelation documented by Froot and Perold (1995). The analysis at the stock level con�rms that

monthly volatilty of daily stock returns negatively predicts autocorrelation in the next month, even

when controlling for stock �xed e�ects and market level volatility.

The sign of the predictability of autocorrelation with volatility is consistent with the model's predic-

tion that there is larger sensitivity to larger surprises. The results cannot be produced by persistent

stochastic volatility of returns: simulating a GARCH model yields a zero correlation between return au-

tocorrelation and lagged return volatility. While the predictability at the market level can be explained

by time-varying market liquidity generating reversal in daily returns as in Nagel (2012), liquidity is

22The use of lagged volatility avoids the negative mechanical relationship that arises when comparing the two simulaneous
series. In case the reader is nonetheless interested, statistics are reported in Table 12 of Appendix E.
23The correlation coe�cients are shown in Table 13 of Appendix E.
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Table 9. Volatility and under/overreaction. Individual stock returns.

autocorrt(monthly)

(1) (2) (3) (4)

volt−1 -0.41*** -0.46*** -0.40*** -0.47***
Obs. 2448630 2448630 2448630 2112520

The table shows the coe�cient of a linear regression of within-month autocorrelation of daily returns on volatility of returns in the
previous month for individual stocks. Univariate regression results with stock �xed e�ects are presented in column (1), while
column (2) controls for market level monthly volatilty, column (3) adds year �xed e�ects, and column (4) controls for the
interaction between market volatility and the absolute value of rolling betas. The sample covers years from 1990 to 2018.

less likely to explain stock level predictability of autocorrelation when controlling for market volatility.

Behavioral or rational theories of inattention, such as, respectively, Gabaix (2014) and Sims (2006), do

not predict negative autocorrelation for large enough volatility, as I �nd in the later portion of the data,

consistent with my theory. Theories of beliefs distortion such as Diagnostic Expectations (Bordalo et

al. 2018) or the gambler's fallacy (Rabin and Vayanos, 2010) can feature underreaction and delayed

overreaction, but do not predict a that the sensitivity to a shock depends on its size. Theories of cat-

egorization as Mullainathan (2002) predict size-dependent sensitivity to news, but not the boiling-frog

e�ect documented in the �nancial literature.24

9. Asset Pricing under Assimilation and Contrast

9.1. Setup. Let us assume that there is a riskless asset (cash) in inelastic supply and a risky asset in

�xed supply of 1, which pays a dividend at a terminal date. The dividend is the sum of a random iid

shocks that realize at each period. With probability β the asset survives and gets to the next period,

while with probability (1− β) it dies and pays o� the sum of the realized shocks until that period. That

is the asset pays, if it reaches t+ h, D̄+
∑t+h

j=1 ujwhere uj ∼iid N
(
0, σ2

u

)
. Conditional on reaching time

t, the dividend paid at time t+ h is thus

Dt+h =




D̄ +

∑t+h
j=1 uj w.p. βh (1− β)

0 w.p. 1− βh (1− β)

We call DT the total random payment of the asset, that is the sum of the dividends. Conditional on

reaching time t, it is

DT =

∞∑

h=0

Dt+h

this setup is convenient since the expectation of DT is a random walk

Et [DT ] = Et−1 [DT ] + ut

and the variance is constant, avoiding horizon e�ects of asset prices.

24The reason of this is that in Mullainathan (2002) the category to which a posterior belongs is independent of history.
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The agent, endowed with a stock of �nancial wealth W0 at time 0 has mean variance preferences over

�nal wealth. That is, she selects demand of the risky asset Xt to solve

max
Xt

{
Xt

(
Eθt [DT ]− Pt

)
− γ

2
X2
t Vt [DT ]

}

this problem is standard except for one di�erence, which is that the expectation Eθ is taken over the

distorted distribution rather than the rational one.25 The demand of the risky asset is thus

Xt =
Eθt [DT ]− Pt
γV [DT ]

where

V [DT ] = Vt [DT ]

which is constant over t. The equilibrium price is thus

Pt = Eθt [DT ]− γV [DT ]

9.2. Distorted expectation. As described in previous sections the decision maker exaggerates the
probability of events that have become largely more likely, while she attenuates the probability of
events that have only become slightly more likely. The distorted expected value of DT conditional on
information at time t is the sum of the the distorted expectations of the stochastic dividend of each
period Dt+h, where each of them is distorted by a function of the total departure of the process {Dt+h}h
from the one retrieved from memory.

Eθt [DT ] = (1− ρ)
∑∞
j=1 ρ

j−1Et−j [DT ] + θ
{∑∞

h=1 g
(
F
Dt+h
t , (1− ρ)

∑∞
j=1 ρ

j−1F
Dt+h
t−j

)} {
Et [DT ]− (1− ρ)

∑∞
j=1 ρ

j−1Et−j [DT ]
}

expectations norm salience deviation from norm

The distorted expectation is anchored to a weighted average of all the previous expectations with a

larger weight on the most recent ones, plus a deviation term which is exaggerated if the distribution

of dividends F
Dt+h
t is signi�cantly di�erent from the weighted average of the past distributions. Large

positive deviations make Eθt [DT ] > Et [DT ] while

Lemma 1. If

g (F,G) = |EF − EG|
the distorted expectation Eθ can be rewritten as

Eθt [DT ] = (1− ρ)

∞∑

j=1

ρj−1Dt−j+




θ
{
Dt − (1− ρ)

∑∞
j=1 ρ

j−1Dt−j

}2
if Dt > (1− ρ)

∑∞
j=1 ρ

j−1Dt−j

−θ
{
Dt − (1− ρ)

∑∞
j=1 ρ

j−1Dt−j

}2
if Dt < (1− ρ)

∑∞
j=1 ρ

j−1Dt−j

(9.1)

25The reader might ask why just the expectation is assumed to be distorted and not also the variance. One reason is
that the purpose of the application is to highlight the additional explanatory power from a standard model with only one
additional change. Numerical simulations of the model, with distorted variance, show results similar to the ones discussed.
The second reason is that an undistorted variance makes the problem more analytically tractable without the need to
resort to numerical simulations.
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A shock in the dividend at time t which brings it above the historical average dividend (1− ρ)
∑∞

j=1 ρ
j−1Dt−j

is overestimated if

Dt >> (1− ρ)
∞∑

j=1

ρj−1Dt−j

because the innovation is salient and is over appreciated by the investor, while it can be underestimated

if

Dt u (1− ρ)

∞∑

j=1

ρj−1Dt−j

as the dividend gets assimilated to the past historical average. To see this more clearly, we can simplify

further expression (9.1) as

Eθt [DT ] = Et [DT ] +


ut +

t−t0−1∑

j=1

ρjut−j





|ut +

t−t0−1∑

j=1

ρjut−j |θ − 1





if the innovation in dividend is large, so that

|ut +

t−t0−1∑

j=1

ρjut−j | >
1

θ

the distorted expectation overshoots the rational expectation: the dividend at time t suprises the investor

who had in memory a combination of past dividends (1− ρ)
∑∞

j=1 ρ
j−1Dt−j that contrast the realization

Dt, hence the agent overshoots her expectation for the terminal dividend DT .

On the contrary, suppose there has been a sequence of small positive innovations to dividends{uj}tt0
, if these innovations are small enough the distorted expectation undershoots the rational expectation:

small innovations are not appreciated because dividend Dj is assimilated to the past dividends in

memory.

9.3. Predictions. The price is a linear function of investors' expectations

Pt = Eθt [DT ]− γV [DT ] =

= Et [DT ] + γV [DT ] +


ut +

t−t0−1∑

j=1

ρjut−j





|ut +

t−t0−1∑

j=1

ρjut−j |θ − 1





The last term of the expression summarizes the e�ect of the distortion on the processing of the news:

if the news is very large and positive, the term is positive meaning that the expectation overshoots the

rational and so the price is above rational. θ, the contrast parameter, determines what size the shocks

to the dividend must take for the investors to overreact to such shocks. If the news, or the sequence of

past news, is small, then the term is negative, since the rational expectations are close to the memory

norm, and the price is below rational. The opposite is true for negative news: the price is below rational

for large negative news, and above rational for small negative ones.

∆Pt = ut +



t−t0−1∑

j=0

ρjut−j





|

t−t0−1∑

j=0

ρjut−j |θ − 1



−



t−t0−1∑

j=0

ρjut−j−1





|

t−t0−1∑

j=0

ρjut−j−1|θ − 1




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where the �rst term ut is the dividend shock at time t, which in an economy populated by rational

investors should be equal to the price change. In this economy, there are two additional terms. the

second term is the bias in price at time t which depends on the shocks realized until t.

The third term is the bias in price at time t− 1 which depends on dividend shocks realized until t− 1

9.3.1. Underreaction and overreaction to one shot surprise. Consider the simple case of a shock from

the steady state. That is, dividends have remained constant until a positive shock occurs at time t. The

memory norm is equal to the dividend Dt−1 realized before the shock, since all shocks {ut−j}t−t0−1
j=1 are

0

(1− ρ)
∞∑

j=1

ρj−1Et−j [DT ] = (1− ρ)
∞∑

j=1

ρj−1Dt−j = Dt−1

. As an innovation occurs to Dt the investor updates her expected value of DT

Eθt [DT ] = Et [DT ] + ut {|ut|θ − 1} (9.2)

where this simpli�cation follows from the fact that the past shocks are 0. From this expression it

is clear that the distorted expected value Eθt [DT ] overreacts to the rational expectation if utis large,

underreacts if ut is small. The intuition is that if utis small the posterior distribution on DT is very close

to the remembered prior, so it is assimilated and the distorted expectation undershoots. An coincidental

intuition is that if ut is small Dt looks close to Dt−1 which is remembered by the investor since it is

the past expectations on DT . As Dt is assimilated to Dt−1, the investor does not fully appreciate the

change in dividend.

The underreaction in expected value is re�ected into underreaction in the price: after a small positive

shock ut at time t the price adjusts less than it would if the investor was rational, predicting average

positive return after t.

A large shock, on the other hand, has the opposite e�ect on future average returns. If Dt is much

larger than Dt−1 (that is, if ut is large enough), the long run expectation of DT is contrasted against the

remembered one, hence it looks large and overshoots the rational expectation. This makes the price go

above the rational price, causing overreaction at time t, which is followed by negative average returns.

The following proposition summarizes the above description.

Proposition 8. Assume the steady state at t− 1

(Assimilation =⇒ underreaction) If |ut| < 1
θ

- If Rt−1,t > 0 then Et [Rt,t+h] > 0 for h large

- If Rt−1,t < 0 then Et [Rt,t+h] < 0 for h large

(Contrast =⇒ overreaction) If |ut| > 1
θ

- If Rt−1,t > 0 then Et [Rt,t+h] < 0 for h large

- If Rt−1,t < 0 then Et [Rt,t+h] > 0 for h large

Such results help compare the theory with other models that capture over and under reaction to

one shot news. The most related one is Mullainathan (2000): a model with homogeneous investors

who update picking the posterior from the same �nite set of categories generates an extreme version

of underreaction: if the news is small enough for investors not to change category, the price does not
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Figure 9.1. Assimilation: momentum after a small shock

Figure 9.2. contrast: reversal after a large shock

move at all. Investor heterogeneity is necessary to generate price movements. In my model, price

movements occur due to the gradual adjustment of the memory norm to the rational expectations.

Rabin and Vayanos (2009) shows how an individuall mistakenly believing in mean reversion of signals

overestimates changes in the underyling state after a long sequence of positive news and thus overreacts,

while underreacts to short sequence of news. The model predicts that the e�ect on the next period

forecast of a one o� positive shock from steady state does not depend on the shock's size: the decision

maker believes the signal mean reverts in the next period while updates on the state correctly, hence

her expectation underreacts, no matter the size of the shock26. Diagnostic expectations (Bordalo et

al, 2018), on the contrary, predicts overreaction to every shock, under the assumption of normally

distributed dividends, which is the most frequently applied case.

26Hence, after a one o� shock from steady state, the model predicts positive expected returns

70

https://www.jstor.org/stable/40587644#metadata_info_tab_contents
https://scholar.harvard.edu/files/shleifer/files/bordalo_et_al-2018-the_journal_of_finance.pdf
https://scholar.harvard.edu/files/shleifer/files/bordalo_et_al-2018-the_journal_of_finance.pdf


9.3.2. Sequence of surprises. So far we have seen that it is the size of the surprise that determines

whether price goes above or below rational, generating subsequent momentum or reversal. The dynamics

of price are more nuanced when more than one surprise occurs. Small positive surprises to dividends, if

they are small enough, do not change the posterior distribution from the memory average very much,

so that the investors consistently underreact to the surprise, generating momentum after the �ow of

surprises has stopped coming. The e�ect is due to assimilation, just like in Proposition (8), where all

the action comes from the distorted expected value Eθt

Eθt =
(1− ρ)

∑
ρj−1Et−j+ |Et − (1− ρ)

∑
ρj−1Et−j |

(
Et − (1− ρ)

∑
ρj−1Et−j

)

memory distortion < 1 deviation frommemory

The surprises of the sequence can be so small that |Et− (1− ρ)
∑
ρj−1Et−j | < 1 for the whole length

of the sequence. Since the price is linear in the expected value, we conclude that sequences of small

surprises in dividends generate momentum both during their occurrence and after they stop.

More insteresting is the case of sequences of surprise a relatively larger magnitude: as the news �ow

starts, the posterior distribution over DT might still be assimilated to the remembered one, and so its

expectation. Hence the price reacts less than rational. As the surprises cumulate, the posterior gets

su�ciently far from memory so that

|Et − (1− ρ)
∑

ρj−1Et−j | > 1

At this point the present information looks enough di�erent from the one in memory, hence the investor

overreacts, bringing price above rational. As soon as the news stops �owing, the remembered expecta-

tions get accustomed to the recent expectations, so the e�ect of the surprises gradually weakens. The

bubble bursts and price reverts back to the rational level in a few periods. Crucially, when the bubble

bursts the price falls below rational before reverting to it: the intuition is that the remembered expec-

tations get closer to the rational expectations from below: hence the rational expectation is assimilated

to memory, the distorted expectation is thus biased below the rational, and the price too.

If the size of the suprise, instead, is large enough, the price goes above rational on impact because

the distorted expectation overshoots above the rational and starts reverting downward after the news

�ow stops, following analogous dynamics. The next proposition formally expresses the behavior of the

price depending on the di�erent sequences of surprises.
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Figure 9.3. Price response to sequence of medium small surprises

Figure 9.4. Price response to sequence of very small surprises

9.3.3. Continuous vs discrete news: the Frog in the pan e�ect. In this economy, as shown in Proposition

(8), i

9.3.4. Consistent vs alternating news. In this economy populated with investors biased by remembered

expectations the current period realization of dividendsDt does not contain all the information predictive

of future returns. The dividend Dt in combination with past realizations of the dividends can generate

over or undervaluation the stock. The history of surprises received until date t matters in determining

valuation: if Dt is realized after a period of consistent and increasing surprises, past dividends are

contrastingly lower than Dt (because they have been increasing over time), so past expectations are

lower than current rational ones. As a result the investor contrasts the present expected value from

the past ones (or alternatively, contrasts Dtfrom the past dividends) and overestimates it, pricing the
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asset above its rational price. Since the price P θt is above rational, it will decline on average. As a

result, a recent history of subsequent surprises in expected dividends predicts lower returns than a

history of alternated surprises. Symmetrically, a recent history of subsequent disappointments produces

overshooting of distorted expecations below rational, predicting future higher returns. The following

�gures compare three price and information histories, all of which share the same total amount of

information released, that is

Dt1 = D̄ +

t1∑

t0

ut

for all three cases (t1 = 35 in the graphs). The di�erence across the three histories is the order in which

surprises have occurred: in the �rst one, surpises alternate, in the second one bad surprises occur at

the beginning of the history and better ones later on. In the third history, good surprises occur early

and bad ones later on. Given that the total information is the same at time t1, a rational investor at

time t1 shoud price the asset the same in all three cases (as it is the case in the �gures). Instead, for

a behavioral investor, contrasting the t1 distribution against the history of past expectations distorts

prices. In the second case, Et1 is contrasted away from the average past expectations, which is low

because of low initial realizations of dividends. Hence, Eθt1overshoots relative to Et1driving up price.

In the �rst case, the alternation of news is such that the investor does not notice salient deviations of

the rational distribution from the remembered average, hence does not signi�cantly in�ate nor de�ate

prices. The third case is symmetrical to the second one: at t1 the investor remembers the high past

expectations induced by the past good news: when the bad news arrive and cumulates she contrast the

expectation against the high remembered expectation, and overshoots the price downwards. As a result,

returns after t1 will be on average higher in case 3, where the expectation is contrasted downwards from

a high remembered expectation, relative to case 1 which has average returns higher than case 2 where

the expectation is contrasted upwards.

Figure 9.5. Mixed surprises
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Figure 9.6. Ordered surprises (negative to positive)

Figure 9.7. Ordered surprises (positive to negative)

The following proposition states formally the result, which holds for price histories where the total

surprise received
∑t1

t0
ut is large enough.

Proposition 9. Assume the market at t0 is in steady state. Consider a stream of shocks {ut}t1t0 such

that ut ≥ ut−1 ∀t (at least one of the inequalities being strict), and such that
∑

t ut > κ. Consider

another stream of news {u∗t }t1t0 which is a permutation of {ut}t1t0. Then,
- the expected price change at t1 after {ut}t1t0 will be lower than after {u∗t }t1t0, that is

Et [∆Pt+1] < Et
[
∆P ∗t+1

]

- the expected t+ h return under {ut}t1t0 is lower than under {u∗t }t1t0 for h large

- limh→+∞ Et [Pt+h] = limh→+∞ Et
[
P ∗t+h

]
= Pt = P ∗t
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Table 10. Return under and overreaction by percentiles of market volatility

autocorrt
Daily Monthly

1926-2022 1990-2022 1926-2022 1990-2022

constant
0.098∗∗∗

(0.009)
−0.017
(0.015)

0.150
(0.017)

0.025
(0.024)

volt ≥ 50th
−0.049∗∗∗

(0.014)
−0.016
(0.015)

−0.078∗∗∗

(0.026)
0.020

(0.036)

volt ≥ 90th
−0.079∗∗∗

(0.024)
−0.091∗∗

(0.038)
−0.0744∗

(0.042)
−0.148∗∗

(0.047)
Obs. 1056 352 96 32

The table shows the results of the regression of market autocorrelation (daily or monthly) on the constant, one dummy =1 if
simultaneous volatility is above the 50th percentile, and one dummy=1 if simultaneous volatility is above the 90th percentile. The

regressions are perrformed both on the whole sample (1926-2022) and on the recent sample (1990-2022).

Table 11. Return under and overreaction by percentiles of market volatility

autocorrt
Daily Monthly

1926-2022 1990-2022 1926-2022 1990-2022

constant
0.094∗∗∗

(0.010)
−0.001
(0.015)

0.146∗∗∗

(0.017)
0.001

(0.027)

volt−1 ≥ 50th
−0.040∗∗∗

(0.014)
−0.060∗∗

(0.023)
−0.078∗∗∗

(0.026)
−0.003
(0.040)

volt−1 ≥ 90th
−0.075∗∗∗

(0.024)
−0.027
(0.038)

−0.058
(0.043)

−0.074
(0.059)

Obs. 1056 352 96 32
The table shows the results of the regression of value weighted market return autocorrelation (daily or monthly) within period t

(t = month for daily returns, t = year if monthly returns) on the constant, one dummy =1 if the return volatility at t− 1 is above
the 50th percentile, and one dummy=1 if volatility at t− 1 is above the 90th percentile. The regressions are perrformed both on the

whole sample (1926-2022) and on the recent sample (1990-2022).

Table 12. Correlation between volatility and under/overreaction

acorrtdaily returns acorrt monthly returns

1926-2022 1990-2022 1926-2022 1990-2022

volt −0.18∗∗∗ −0.16∗∗

volt −0.38∗∗∗ −0.52∗∗

Obs. 1056 352 96 32
The table shows the correlation coe�cient between within-month autocorrelation of daily returns and simultaneous volatility (�rst
and second columns), and the correlation coe�cient between within year autocorrelation of monthly returns and volatility (third
and fourth columns). Results are presented for the whole sample (1926-2022) and the restricted sample (1990-2022). Standard

errors are computed via bootstrap.

Empirical test, additional tables.

10. Pricing amenities under Assimilation and Contrast

The following section applies my model to a standard housing market where rents are pinned down

by a geographic indi�erence condition between amenities and prices re�ect future rents. I show that
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Table 13. Correlation between volatility and under/overreaction

acorrtdaily returns acorrt monthly returns

1926-2022 1990-2022 1926-2022 1990-2022

volt−1 −0.17∗∗∗ −0.15∗∗

volt−1 −0.38∗∗∗ −0.28∗

Obs. 1056 352 96 32
The table shows the correlation coe�cient between within-month autocorrelation of daily returns and lagged volatility (�rst and
second columns), and the correlation coe�cient between within year autocorrelation of monthly returns and volatility (third and
fourth columns). Results are presented for the whole sample (1926-2022) and the restricted sample (1990-2022). Standard errors

are computed via bootstrap.

when agents hold distorted perception of the future equilibrium prices, changes in amenities are under-

appreciated when occurring slowly and overappreciated when occurring drastically. This application

helps make sense of the evidence of negligble e�ect of gradual government policies, of the overreaction

of prices to news about the opening of polluting plants and of the delayed e�ect of sea level rise change

in expectations on prices.

Consider two cities A and B. If a worker, at time t, chooses to live in city A, she earns wage wt,

perceives amenity at, and pay rent Rt. If she chooses city B,she earns w̄, gets amenity ā and pays R̄.

Workers' utility is linear in consumption and amenity. Consumption is equal to

wt −Rt

UAt (at, wt −Rt) = at + wt −Rt
city B is the reservation city, that is, it has deterministic rent, wage and amenities,27 so that the utility

derived from living in city B is

UBt = ā+ w̄ − R̄
While workers cannot buy a house, landlords can own one. Landlords have linear utility in consump-

tion, discount factor β and have no wealth, but can borrow at interest rate equal to r for one period

and purchase one, and only one, unit of housing at price Pt. If she buys a house, in period t she gets

consumption

RAt

and, in period t+ 1, she repays the loan by selling it, incurring consumption

Pt+1 − Pt
If she does not buy the house at time t she gets consumption 0. Let us assume that (i) landlords' utility

is linear in consumption and (ii) random payments are evaluated as separate lotteries (i.e. landlords

distort random sale prices as separate from random rents). At each period they choose whether to own

or not to own a house. Rent at time t, RAt , is known before they make the decision.

yt ∈ {own, not own}

27This is a convenient expositional assumption often made in the urban economics literature (Rosen, 1979, Roback 1982)
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Vt (yt) =




Rt + βEθt [Pt+1]− Pt + βEtV

θ
t+1 (yt+1) if yt = own

0 + EtV
θ
t+1 (yt+1) if yt = not own

EtV
θ
t+j (yt+1) =




Eθt [Rt+j ] + βEθt [Pt+j+1]− βEθt [Pt+j (1 + r)] + βEtV

θ
t+j+1 (yt+j+1) yt+1 = own

0 + βEtV
θ
t+j+1 (yt+j+1) yt+1 = not own

Lemma 2. (Landlords' indi�erence)

In equilibrium

Rt = at − ā+ wt − w̄ + R̄

Moreover, if (i) landlords' utility is linear in consumption, and (ii) random payments are evaluated as

separate lotteries.

Pt = Rt + βEθt [Pt+1]

the housing premium for location A amenities and wages is

Pt − PB = at − ā+ wt − w̄ + βEθt [Xt+1] (10.1)

where the price of location B housing is

PB = R̄
1− βT+1

1− β
and

Xt+1 = at − ā+ wt − w̄ + βEθt+1 [Xt+2]

The lemma above restates two trivial facts. The �rst one says that rent, pinned down by indi�erence

of workers between the two cities, positively depends on amenities and wage. The second one shows

that, under appropriate restrictions, the price of housing follows a familiar recursive formulation and

is equal to the rent plus the discounted expected future price. Expression (10.1) shows that the price

di�erential depends on the distorted expectations of fundamentals of the cities, that is the amenity

di�erential at − ā and the wage di�erential wt − w̄.
To illustrate the main insight of this application, assume wt = w̄ for all t. That is

Pt − PB = at − ā+ βEθt [Xt+1]

where

Xt+1 = at − ā+ βEθt+1 [Xt+2]

Let us now highlight the key implication of the model by further simplifying. Suppose β = 1−ρ = 1,

and amenities in city A are constant in period 1 and 2, that is at = â for all t < T . Like in GIn period

1, the city government decides to improve amenities by undertaking a policy whose purpose is to reduce

hazardous waste at period T. That is,

aT = â+

T∑

j=1

εt
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where εt are i.i.d shocks which realize at t and have symmetric pdf. These shocks capture the action

that the government undertakes in the periods which gets converted into amenity aT in period 3. 28

The price di�erential between the two cities thus depends on the updated values of amenity in city

A in period 3. Assume that ρ = 1, that is that agents in the economy evaluate random payments by

comparing them with what they remember from the previous period. The amenity premium πt depends

on the expected improvements that payo� at time T , which are distorted.

Pt − PB = (T − t) (â− ā) + Eθt [aT ]

Lemma 3. (Slow vs fast changes in amenities) Assume 1− ρ = β = 1 and

g (F,G) = (|EF [X]− EG [X] |)α

with α > 0. If T is large, gradual increases (declines) in long term amenity aT are priced less than

sharp ones. That is,

PT−1 − P0 > 0

is smaller if

Eθt [aT ]− Eθt−1 [aT ] = δ

for t = 1, ..., T − 1than if

Eθt [aT ]− Eθt−1 =




δ (T − 1) t = t1

0 t 6= t1

The following result is another manifestation of contrast and assimilation. When shocks are large

(high variance) price changes revert back (the covariance of price changes is negative). When shocks

are small (small variance) the price underreacts and exhibits momentum.

Lemma 4. Let εt ∼i.i.d. U [−k, k]. Let â = ā. Then there is momentum in house prices if k < K̄,while

there is overreaction in the premium if k > K̄. That is

Cov0 [∆Pt,∆Pt−1] > 0

if k < K̄ and

Cov0 [∆Pt,∆Pt−1] < 0

if k > K̄

10.1. Application 2: gradual and drastic changes in pollution. Between vs within compar-

isons. Suppose there are two cities, A, and B. A has a �xed level of pollution characterized by amenity

ā and B has time-varying pollution, modelled by mean reverting amenities

at+1 = (1− δ) µ̄+ δat + εt+1 (10.2)

with εt ∼ N
(
0, σ2

)
with δ ∈ (0, 1]. Suppose agents in the economy had discount rate β and, in

particular, landlords could own one unit of property in either of the two cities. Housing in city A has

28Notice that in this application the law of iterated expectations holds, that is Eθt
[
Eθt+k [aT ]

]
= Eθt [aT ] . This is not true

in general.
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price P̄ , while price P θt in city B is determined in equilibrium. In the appendix, I show that the price

P θt is a linear function of the distorted expected value of the sum of future amenities which boils down

to a function of the current amenity level at and the past level at−1.

Eθt



∞∑

j=1

βjat+j


 =

β

1− β µ̄+
βδ

1− βδ (at−1 − µ̄)

︸ ︷︷ ︸
memory anchor

+θ

(
βδ

1− βδ

)2

·





[at − at−1]2 if at > at−1

− [at − at−1]2︸ ︷︷ ︸
adjustment×dissimilarity

if at < at−1

(10.3)

The price depends on the di�erence in the long run means of amenities between the two cities and

on the present and past shocks

P θt = P̄ +
β

1− β (µ̄− ā)︸ ︷︷ ︸
crossectional di�erence

+
βδ

1− βδ (at−1 − µ̄) + κ





[at − at−1]2 if at > at−1

− [at − at−1]2 if at < at−1

(10.4)

Suppose we had a long panel of observations of pollution and house prices. If we estimated the premium

with a between estimator, like in crossectional studies, and regressed linearly price on amenities, we

would obtain a coe�cient of β
1−β which is the e�ect of a higher long run µ̄ on P θ. If, instead, we wanted

to estimate a linear regression using a within estimator, the size of the coe�cient would depend on how

the distorted expectation in city B varies. For pollution that varies by a small amount, the price reacts

too little, as the current pollution is assimilated to the past one, so the e�ect of amenities on prices

will be small than β
1−β . When pollution varies by a large amount, instead, it contrasts against what

agents remember, so the price is oversensitive to variation in pollution, and the estimated coe�cient

will be higher than β
1−β . This can help explain why the estimated air pollution premia from within

city variation by Chay and Greenstone (2005) are larger than crossectional estimates, as the authors

show that the change in air pollution is very drastic. Also this explains why the hazardous waste premia

estimated within cities by Greenstone and Gallagher 2008 are much smaller than crossectional estimates.

This is because the shock to pollution whose e�ect they estimate is distributed in several small shocks

over a long period of time: the environment is assimilated to what people remember, and so they take

much longer to realize the total change.
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